SentenceTransformer based on BXresearch/DeBERTa2-0.9B-ST-v2
This is a sentence-transformers model finetuned from BXresearch/DeBERTa2-0.9B-ST-v2 on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 1536-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BXresearch/DeBERTa2-0.9B-ST-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1536 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("bobox/DeBERTa2-0.9B-ST-stsb")
sentences = [
'The boy is playing the piano.',
'The woman is pouring oil into the pan.',
'A small black and white dog is swimming in water.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.9174 |
| spearman_cosine |
0.9293 |
| pearson_manhattan |
0.9283 |
| spearman_manhattan |
0.9298 |
| pearson_euclidean |
0.9287 |
| spearman_euclidean |
0.9302 |
| pearson_dot |
0.9016 |
| spearman_dot |
0.9063 |
| pearson_max |
0.9287 |
| spearman_max |
0.9302 |
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.7539 |
| cosine_accuracy_threshold |
0.7934 |
| cosine_f1 |
0.6264 |
| cosine_f1_threshold |
0.7288 |
| cosine_precision |
0.5644 |
| cosine_recall |
0.7037 |
| cosine_ap |
0.5952 |
| dot_accuracy |
0.7461 |
| dot_accuracy_threshold |
853.77 |
| dot_f1 |
0.6106 |
| dot_f1_threshold |
685.5369 |
| dot_precision |
0.4759 |
| dot_recall |
0.8519 |
| dot_ap |
0.5773 |
| manhattan_accuracy |
0.7539 |
| manhattan_accuracy_threshold |
654.8433 |
| manhattan_f1 |
0.6244 |
| manhattan_f1_threshold |
811.6582 |
| manhattan_precision |
0.4929 |
| manhattan_recall |
0.8519 |
| manhattan_ap |
0.5966 |
| euclidean_accuracy |
0.7539 |
| euclidean_accuracy_threshold |
21.0488 |
| euclidean_f1 |
0.6244 |
| euclidean_f1_threshold |
26.1134 |
| euclidean_precision |
0.4929 |
| euclidean_recall |
0.8519 |
| euclidean_ap |
0.595 |
| max_accuracy |
0.7539 |
| max_accuracy_threshold |
853.77 |
| max_f1 |
0.6264 |
| max_f1_threshold |
811.6582 |
| max_precision |
0.5644 |
| max_recall |
0.8519 |
| max_ap |
0.5966 |
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.7148 |
| cosine_accuracy_threshold |
0.7153 |
| cosine_f1 |
0.7224 |
| cosine_f1_threshold |
0.6805 |
| cosine_precision |
0.6786 |
| cosine_recall |
0.7724 |
| cosine_ap |
0.755 |
| dot_accuracy |
0.6914 |
| dot_accuracy_threshold |
720.3964 |
| dot_f1 |
0.7059 |
| dot_f1_threshold |
706.5613 |
| dot_precision |
0.6443 |
| dot_recall |
0.7805 |
| dot_ap |
0.7012 |
| manhattan_accuracy |
0.7227 |
| manhattan_accuracy_threshold |
760.718 |
| manhattan_f1 |
0.728 |
| manhattan_f1_threshold |
807.8878 |
| manhattan_precision |
0.6884 |
| manhattan_recall |
0.7724 |
| manhattan_ap |
0.7705 |
| euclidean_accuracy |
0.7266 |
| euclidean_accuracy_threshold |
25.6344 |
| euclidean_f1 |
0.7244 |
| euclidean_f1_threshold |
25.6344 |
| euclidean_precision |
0.7023 |
| euclidean_recall |
0.748 |
| euclidean_ap |
0.7674 |
| max_accuracy |
0.7266 |
| max_accuracy_threshold |
760.718 |
| max_f1 |
0.728 |
| max_f1_threshold |
807.8878 |
| max_precision |
0.7023 |
| max_recall |
0.7805 |
| max_ap |
0.7705 |
Training Details
Training Dataset
sentence-transformers/stsb
Evaluation Dataset
sentence-transformers/stsb
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_eval_batch_size: 256
gradient_accumulation_steps: 2
learning_rate: 1.5e-05
weight_decay: 5e-05
num_train_epochs: 2
lr_scheduler_type: cosine_with_min_lr
lr_scheduler_kwargs: {'num_cycles': 0.5, 'min_lr': 2e-06}
warmup_ratio: 0.2
save_safetensors: False
fp16: True
push_to_hub: True
hub_model_id: bobox/DeBERTa2-0.9B-ST-stsb-checkpoints-tmp
hub_strategy: all_checkpoints
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 8
per_device_eval_batch_size: 256
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 2
eval_accumulation_steps: None
learning_rate: 1.5e-05
weight_decay: 5e-05
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 2
max_steps: -1
lr_scheduler_type: cosine_with_min_lr
lr_scheduler_kwargs: {'num_cycles': 0.5, 'min_lr': 2e-06}
warmup_ratio: 0.2
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: False
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: bobox/DeBERTa2-0.9B-ST-stsb-checkpoints-tmp
hub_strategy: all_checkpoints
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
loss |
Qnli-dev_max_ap |
allNLI-dev_max_ap |
sts-test_spearman_cosine |
| 0.0056 |
2 |
2.6549 |
- |
- |
- |
- |
| 0.0111 |
4 |
2.7355 |
- |
- |
- |
- |
| 0.0167 |
6 |
3.6211 |
- |
- |
- |
- |
| 0.0223 |
8 |
3.0686 |
- |
- |
- |
- |
| 0.0278 |
10 |
3.4113 |
- |
- |
- |
- |
| 0.0334 |
12 |
2.4857 |
- |
- |
- |
- |
| 0.0389 |
14 |
2.4288 |
- |
- |
- |
- |
| 0.0445 |
16 |
2.6203 |
- |
- |
- |
- |
| 0.0501 |
18 |
2.7441 |
- |
- |
- |
- |
| 0.0556 |
20 |
3.4263 |
- |
- |
- |
- |
| 0.0612 |
22 |
2.3565 |
- |
- |
- |
- |
| 0.0668 |
24 |
2.5596 |
- |
- |
- |
- |
| 0.0723 |
26 |
3.0866 |
- |
- |
- |
- |
| 0.0779 |
28 |
3.223 |
- |
- |
- |
- |
| 0.0834 |
30 |
2.012 |
- |
- |
- |
- |
| 0.0890 |
32 |
3.2829 |
- |
- |
- |
- |
| 0.0946 |
34 |
3.9277 |
- |
- |
- |
- |
| 0.1001 |
36 |
2.785 |
2.6652 |
0.7960 |
0.6275 |
0.9294 |
| 0.1057 |
38 |
3.4966 |
- |
- |
- |
- |
| 0.1113 |
40 |
2.5923 |
- |
- |
- |
- |
| 0.1168 |
42 |
3.4418 |
- |
- |
- |
- |
| 0.1224 |
44 |
2.6519 |
- |
- |
- |
- |
| 0.1280 |
46 |
3.7746 |
- |
- |
- |
- |
| 0.1335 |
48 |
2.6736 |
- |
- |
- |
- |
| 0.1391 |
50 |
3.6764 |
- |
- |
- |
- |
| 0.1446 |
52 |
3.5311 |
- |
- |
- |
- |
| 0.1502 |
54 |
2.5869 |
- |
- |
- |
- |
| 0.1558 |
56 |
3.183 |
- |
- |
- |
- |
| 0.1613 |
58 |
2.747 |
- |
- |
- |
- |
| 0.1669 |
60 |
1.965 |
- |
- |
- |
- |
| 0.1725 |
62 |
2.1785 |
- |
- |
- |
- |
| 0.1780 |
64 |
2.5788 |
- |
- |
- |
- |
| 0.1836 |
66 |
3.1776 |
- |
- |
- |
- |
| 0.1892 |
68 |
2.6464 |
- |
- |
- |
- |
| 0.1947 |
70 |
2.7619 |
- |
- |
- |
- |
| 0.2003 |
72 |
3.0911 |
2.6171 |
0.7923 |
0.6295 |
0.9276 |
| 0.2058 |
74 |
2.4308 |
- |
- |
- |
- |
| 0.2114 |
76 |
3.2068 |
- |
- |
- |
- |
| 0.2170 |
78 |
2.4081 |
- |
- |
- |
- |
| 0.2225 |
80 |
2.3257 |
- |
- |
- |
- |
| 0.2281 |
82 |
3.0499 |
- |
- |
- |
- |
| 0.2337 |
84 |
3.2518 |
- |
- |
- |
- |
| 0.2392 |
86 |
2.7876 |
- |
- |
- |
- |
| 0.2448 |
88 |
2.7898 |
- |
- |
- |
- |
| 0.2503 |
90 |
2.7116 |
- |
- |
- |
- |
| 0.2559 |
92 |
3.0505 |
- |
- |
- |
- |
| 0.2615 |
94 |
2.5901 |
- |
- |
- |
- |
| 0.2670 |
96 |
1.9563 |
- |
- |
- |
- |
| 0.2726 |
98 |
2.1006 |
- |
- |
- |
- |
| 0.2782 |
100 |
2.1853 |
- |
- |
- |
- |
| 0.2837 |
102 |
2.327 |
- |
- |
- |
- |
| 0.2893 |
104 |
1.9937 |
- |
- |
- |
- |
| 0.2949 |
106 |
2.543 |
- |
- |
- |
- |
| 0.3004 |
108 |
1.9826 |
2.4596 |
0.7919 |
0.6329 |
0.9341 |
| 0.3060 |
110 |
3.0746 |
- |
- |
- |
- |
| 0.3115 |
112 |
2.4145 |
- |
- |
- |
- |
| 0.3171 |
114 |
2.244 |
- |
- |
- |
- |
| 0.3227 |
116 |
2.78 |
- |
- |
- |
- |
| 0.3282 |
118 |
2.8323 |
- |
- |
- |
- |
| 0.3338 |
120 |
2.4639 |
- |
- |
- |
- |
| 0.3394 |
122 |
2.9216 |
- |
- |
- |
- |
| 0.3449 |
124 |
2.0747 |
- |
- |
- |
- |
| 0.3505 |
126 |
2.7573 |
- |
- |
- |
- |
| 0.3561 |
128 |
3.7019 |
- |
- |
- |
- |
| 0.3616 |
130 |
3.3155 |
- |
- |
- |
- |
| 0.3672 |
132 |
3.625 |
- |
- |
- |
- |
| 0.3727 |
134 |
3.2889 |
- |
- |
- |
- |
| 0.3783 |
136 |
3.5936 |
- |
- |
- |
- |
| 0.3839 |
138 |
3.5932 |
- |
- |
- |
- |
| 0.3894 |
140 |
3.0457 |
- |
- |
- |
- |
| 0.3950 |
142 |
3.093 |
- |
- |
- |
- |
| 0.4006 |
144 |
2.7189 |
2.4698 |
0.7752 |
0.5896 |
0.9346 |
| 0.4061 |
146 |
3.2578 |
- |
- |
- |
- |
| 0.4117 |
148 |
3.3581 |
- |
- |
- |
- |
| 0.4172 |
150 |
2.9734 |
- |
- |
- |
- |
| 0.4228 |
152 |
3.0514 |
- |
- |
- |
- |
| 0.4284 |
154 |
3.1983 |
- |
- |
- |
- |
| 0.4339 |
156 |
2.9033 |
- |
- |
- |
- |
| 0.4395 |
158 |
2.9279 |
- |
- |
- |
- |
| 0.4451 |
160 |
3.1336 |
- |
- |
- |
- |
| 0.4506 |
162 |
3.1467 |
- |
- |
- |
- |
| 0.4562 |
164 |
3.0381 |
- |
- |
- |
- |
| 0.4618 |
166 |
3.068 |
- |
- |
- |
- |
| 0.4673 |
168 |
3.0261 |
- |
- |
- |
- |
| 0.4729 |
170 |
3.2867 |
- |
- |
- |
- |
| 0.4784 |
172 |
2.8474 |
- |
- |
- |
- |
| 0.4840 |
174 |
2.7982 |
- |
- |
- |
- |
| 0.4896 |
176 |
2.7945 |
- |
- |
- |
- |
| 0.4951 |
178 |
3.1312 |
- |
- |
- |
- |
| 0.5007 |
180 |
2.9704 |
2.4640 |
0.7524 |
0.6033 |
0.9242 |
| 0.5063 |
182 |
2.9856 |
- |
- |
- |
- |
| 0.5118 |
184 |
3.014 |
- |
- |
- |
- |
| 0.5174 |
186 |
3.0125 |
- |
- |
- |
- |
| 0.5229 |
188 |
2.8149 |
- |
- |
- |
- |
| 0.5285 |
190 |
2.7954 |
- |
- |
- |
- |
| 0.5341 |
192 |
3.078 |
- |
- |
- |
- |
| 0.5396 |
194 |
2.955 |
- |
- |
- |
- |
| 0.5452 |
196 |
2.9468 |
- |
- |
- |
- |
| 0.5508 |
198 |
3.0791 |
- |
- |
- |
- |
| 0.5563 |
200 |
2.998 |
- |
- |
- |
- |
| 0.5619 |
202 |
2.9068 |
- |
- |
- |
- |
| 0.5675 |
204 |
2.8283 |
- |
- |
- |
- |
| 0.5730 |
206 |
2.9216 |
- |
- |
- |
- |
| 0.5786 |
208 |
3.3441 |
- |
- |
- |
- |
| 0.5841 |
210 |
3.0 |
- |
- |
- |
- |
| 0.5897 |
212 |
2.9023 |
- |
- |
- |
- |
| 0.5953 |
214 |
2.8177 |
- |
- |
- |
- |
| 0.6008 |
216 |
2.8262 |
2.4979 |
0.7899 |
0.6037 |
0.9260 |
| 0.6064 |
218 |
2.7832 |
- |
- |
- |
- |
| 0.6120 |
220 |
3.0085 |
- |
- |
- |
- |
| 0.6175 |
222 |
2.8762 |
- |
- |
- |
- |
| 0.6231 |
224 |
3.147 |
- |
- |
- |
- |
| 0.6287 |
226 |
3.4262 |
- |
- |
- |
- |
| 0.6342 |
228 |
2.8271 |
- |
- |
- |
- |
| 0.6398 |
230 |
2.4024 |
- |
- |
- |
- |
| 0.6453 |
232 |
2.7556 |
- |
- |
- |
- |
| 0.6509 |
234 |
3.4652 |
- |
- |
- |
- |
| 0.6565 |
236 |
2.7235 |
- |
- |
- |
- |
| 0.6620 |
238 |
2.6498 |
- |
- |
- |
- |
| 0.6676 |
240 |
3.0933 |
- |
- |
- |
- |
| 0.6732 |
242 |
3.1193 |
- |
- |
- |
- |
| 0.6787 |
244 |
2.7249 |
- |
- |
- |
- |
| 0.6843 |
246 |
2.8931 |
- |
- |
- |
- |
| 0.6898 |
248 |
2.7913 |
- |
- |
- |
- |
| 0.6954 |
250 |
2.6933 |
- |
- |
- |
- |
| 0.7010 |
252 |
2.5632 |
2.4585 |
0.7700 |
0.6065 |
0.9298 |
| 0.7065 |
254 |
2.8347 |
- |
- |
- |
- |
| 0.7121 |
256 |
2.3827 |
- |
- |
- |
- |
| 0.7177 |
258 |
2.9065 |
- |
- |
- |
- |
| 0.7232 |
260 |
2.8162 |
- |
- |
- |
- |
| 0.7288 |
262 |
2.5485 |
- |
- |
- |
- |
| 0.7344 |
264 |
2.5751 |
- |
- |
- |
- |
| 0.7399 |
266 |
2.9056 |
- |
- |
- |
- |
| 0.7455 |
268 |
3.1397 |
- |
- |
- |
- |
| 0.7510 |
270 |
3.3107 |
- |
- |
- |
- |
| 0.7566 |
272 |
2.9024 |
- |
- |
- |
- |
| 0.7622 |
274 |
2.2307 |
- |
- |
- |
- |
| 0.7677 |
276 |
3.0097 |
- |
- |
- |
- |
| 0.7733 |
278 |
3.1406 |
- |
- |
- |
- |
| 0.7789 |
280 |
2.6786 |
- |
- |
- |
- |
| 0.7844 |
282 |
2.8882 |
- |
- |
- |
- |
| 0.7900 |
284 |
2.7215 |
- |
- |
- |
- |
| 0.7955 |
286 |
3.4188 |
- |
- |
- |
- |
| 0.8011 |
288 |
2.9901 |
2.4414 |
0.7665 |
0.6023 |
0.9288 |
| 0.8067 |
290 |
2.5144 |
- |
- |
- |
- |
| 0.8122 |
292 |
3.1932 |
- |
- |
- |
- |
| 0.8178 |
294 |
2.9733 |
- |
- |
- |
- |
| 0.8234 |
296 |
2.6895 |
- |
- |
- |
- |
| 0.8289 |
298 |
2.678 |
- |
- |
- |
- |
| 0.8345 |
300 |
2.5462 |
- |
- |
- |
- |
| 0.8401 |
302 |
2.6911 |
- |
- |
- |
- |
| 0.8456 |
304 |
2.8404 |
- |
- |
- |
- |
| 0.8512 |
306 |
2.5358 |
- |
- |
- |
- |
| 0.8567 |
308 |
3.1245 |
- |
- |
- |
- |
| 0.8623 |
310 |
2.3404 |
- |
- |
- |
- |
| 0.8679 |
312 |
3.0751 |
- |
- |
- |
- |
| 0.8734 |
314 |
2.7005 |
- |
- |
- |
- |
| 0.8790 |
316 |
2.7387 |
- |
- |
- |
- |
| 0.8846 |
318 |
2.7227 |
- |
- |
- |
- |
| 0.8901 |
320 |
2.9085 |
- |
- |
- |
- |
| 0.8957 |
322 |
3.3239 |
- |
- |
- |
- |
| 0.9013 |
324 |
2.4256 |
2.4106 |
0.7644 |
0.6087 |
0.9304 |
| 0.9068 |
326 |
2.5059 |
- |
- |
- |
- |
| 0.9124 |
328 |
2.5387 |
- |
- |
- |
- |
| 0.9179 |
330 |
2.899 |
- |
- |
- |
- |
| 0.9235 |
332 |
2.7256 |
- |
- |
- |
- |
| 0.9291 |
334 |
2.4862 |
- |
- |
- |
- |
| 0.9346 |
336 |
3.0014 |
- |
- |
- |
- |
| 0.9402 |
338 |
2.4164 |
- |
- |
- |
- |
| 0.9458 |
340 |
2.3148 |
- |
- |
- |
- |
| 0.9513 |
342 |
2.9414 |
- |
- |
- |
- |
| 0.9569 |
344 |
2.4435 |
- |
- |
- |
- |
| 0.9624 |
346 |
2.6286 |
- |
- |
- |
- |
| 0.9680 |
348 |
2.1744 |
- |
- |
- |
- |
| 0.9736 |
350 |
2.5866 |
- |
- |
- |
- |
| 0.9791 |
352 |
2.8333 |
- |
- |
- |
- |
| 0.9847 |
354 |
2.3544 |
- |
- |
- |
- |
| 0.9903 |
356 |
2.5397 |
- |
- |
- |
- |
| 0.9958 |
358 |
3.4058 |
- |
- |
- |
- |
| 1.0014 |
360 |
2.2904 |
2.4089 |
0.7888 |
0.6104 |
0.9338 |
| 1.0070 |
362 |
2.7925 |
- |
- |
- |
- |
| 1.0125 |
364 |
2.6415 |
- |
- |
- |
- |
| 1.0181 |
366 |
2.724 |
- |
- |
- |
- |
| 1.0236 |
368 |
2.569 |
- |
- |
- |
- |
| 1.0292 |
370 |
2.808 |
- |
- |
- |
- |
| 1.0348 |
372 |
2.4672 |
- |
- |
- |
- |
| 1.0403 |
374 |
2.3964 |
- |
- |
- |
- |
| 1.0459 |
376 |
2.3518 |
- |
- |
- |
- |
| 1.0515 |
378 |
2.7617 |
- |
- |
- |
- |
| 1.0570 |
380 |
2.5651 |
- |
- |
- |
- |
| 1.0626 |
382 |
2.2623 |
- |
- |
- |
- |
| 1.0682 |
384 |
2.2048 |
- |
- |
- |
- |
| 1.0737 |
386 |
2.1426 |
- |
- |
- |
- |
| 1.0793 |
388 |
1.8182 |
- |
- |
- |
- |
| 1.0848 |
390 |
2.3166 |
- |
- |
- |
- |
| 1.0904 |
392 |
2.4101 |
- |
- |
- |
- |
| 1.0960 |
394 |
2.8932 |
- |
- |
- |
- |
| 1.1015 |
396 |
3.0201 |
2.4217 |
0.7851 |
0.6205 |
0.9301 |
| 1.1071 |
398 |
2.6101 |
- |
- |
- |
- |
| 1.1127 |
400 |
2.3627 |
- |
- |
- |
- |
| 1.1182 |
402 |
2.5402 |
- |
- |
- |
- |
| 1.1238 |
404 |
2.695 |
- |
- |
- |
- |
| 1.1293 |
406 |
3.0563 |
- |
- |
- |
- |
| 1.1349 |
408 |
2.2296 |
- |
- |
- |
- |
| 1.1405 |
410 |
3.057 |
- |
- |
- |
- |
| 1.1460 |
412 |
2.8023 |
- |
- |
- |
- |
| 1.1516 |
414 |
2.6492 |
- |
- |
- |
- |
| 1.1572 |
416 |
2.2406 |
- |
- |
- |
- |
| 1.1627 |
418 |
1.7195 |
- |
- |
- |
- |
| 1.1683 |
420 |
2.2773 |
- |
- |
- |
- |
| 1.1739 |
422 |
2.3639 |
- |
- |
- |
- |
| 1.1794 |
424 |
2.3348 |
- |
- |
- |
- |
| 1.1850 |
426 |
2.6791 |
- |
- |
- |
- |
| 1.1905 |
428 |
2.3621 |
- |
- |
- |
- |
| 1.1961 |
430 |
2.5224 |
- |
- |
- |
- |
| 1.2017 |
432 |
2.4063 |
2.4724 |
0.7628 |
0.6043 |
0.9270 |
| 1.2072 |
434 |
1.9713 |
- |
- |
- |
- |
| 1.2128 |
436 |
2.4265 |
- |
- |
- |
- |
| 1.2184 |
438 |
2.0827 |
- |
- |
- |
- |
| 1.2239 |
440 |
2.0696 |
- |
- |
- |
- |
| 1.2295 |
442 |
2.7507 |
- |
- |
- |
- |
| 1.2350 |
444 |
2.5436 |
- |
- |
- |
- |
| 1.2406 |
446 |
2.4039 |
- |
- |
- |
- |
| 1.2462 |
448 |
2.4229 |
- |
- |
- |
- |
| 1.2517 |
450 |
2.323 |
- |
- |
- |
- |
| 1.2573 |
452 |
2.6099 |
- |
- |
- |
- |
| 1.2629 |
454 |
2.0329 |
- |
- |
- |
- |
| 1.2684 |
456 |
1.8797 |
- |
- |
- |
- |
| 1.2740 |
458 |
1.4485 |
- |
- |
- |
- |
| 1.2796 |
460 |
1.6794 |
- |
- |
- |
- |
| 1.2851 |
462 |
2.0934 |
- |
- |
- |
- |
| 1.2907 |
464 |
1.9579 |
- |
- |
- |
- |
| 1.2962 |
466 |
1.9288 |
- |
- |
- |
- |
| 1.3018 |
468 |
1.5874 |
2.5056 |
0.7833 |
0.5948 |
0.9345 |
| 1.3074 |
470 |
1.8715 |
- |
- |
- |
- |
| 1.3129 |
472 |
1.3778 |
- |
- |
- |
- |
| 1.3185 |
474 |
2.2242 |
- |
- |
- |
- |
| 1.3241 |
476 |
2.4031 |
- |
- |
- |
- |
| 1.3296 |
478 |
1.924 |
- |
- |
- |
- |
| 1.3352 |
480 |
1.7895 |
- |
- |
- |
- |
| 1.3408 |
482 |
2.0349 |
- |
- |
- |
- |
| 1.3463 |
484 |
1.8116 |
- |
- |
- |
- |
| 1.3519 |
486 |
2.353 |
- |
- |
- |
- |
| 1.3574 |
488 |
3.4263 |
- |
- |
- |
- |
| 1.3630 |
490 |
4.0606 |
- |
- |
- |
- |
| 1.3686 |
492 |
2.7423 |
- |
- |
- |
- |
| 1.3741 |
494 |
2.8461 |
- |
- |
- |
- |
| 1.3797 |
496 |
3.0742 |
- |
- |
- |
- |
| 1.3853 |
498 |
2.2054 |
- |
- |
- |
- |
| 1.3908 |
500 |
2.6009 |
- |
- |
- |
- |
| 1.3964 |
502 |
2.242 |
- |
- |
- |
- |
| 1.4019 |
504 |
2.9416 |
2.5288 |
0.7969 |
0.6010 |
0.9323 |
| 1.4075 |
506 |
3.8179 |
- |
- |
- |
- |
| 1.4131 |
508 |
3.0147 |
- |
- |
- |
- |
| 1.4186 |
510 |
2.2185 |
- |
- |
- |
- |
| 1.4242 |
512 |
3.0323 |
- |
- |
- |
- |
| 1.4298 |
514 |
2.6922 |
- |
- |
- |
- |
| 1.4353 |
516 |
2.6219 |
- |
- |
- |
- |
| 1.4409 |
518 |
2.4365 |
- |
- |
- |
- |
| 1.4465 |
520 |
3.1643 |
- |
- |
- |
- |
| 1.4520 |
522 |
2.5548 |
- |
- |
- |
- |
| 1.4576 |
524 |
2.3798 |
- |
- |
- |
- |
| 1.4631 |
526 |
2.6361 |
- |
- |
- |
- |
| 1.4687 |
528 |
2.6859 |
- |
- |
- |
- |
| 1.4743 |
530 |
2.6071 |
- |
- |
- |
- |
| 1.4798 |
532 |
2.2565 |
- |
- |
- |
- |
| 1.4854 |
534 |
2.2415 |
- |
- |
- |
- |
| 1.4910 |
536 |
2.4591 |
- |
- |
- |
- |
| 1.4965 |
538 |
2.6729 |
- |
- |
- |
- |
| 1.5021 |
540 |
2.3898 |
2.5025 |
0.7881 |
0.5978 |
0.9300 |
| 1.5076 |
542 |
2.4614 |
- |
- |
- |
- |
| 1.5132 |
544 |
2.5447 |
- |
- |
- |
- |
| 1.5188 |
546 |
2.502 |
- |
- |
- |
- |
| 1.5243 |
548 |
2.1892 |
- |
- |
- |
- |
| 1.5299 |
550 |
2.7081 |
- |
- |
- |
- |
| 1.5355 |
552 |
2.5523 |
- |
- |
- |
- |
| 1.5410 |
554 |
2.3571 |
- |
- |
- |
- |
| 1.5466 |
556 |
2.7694 |
- |
- |
- |
- |
| 1.5522 |
558 |
2.2 |
- |
- |
- |
- |
| 1.5577 |
560 |
2.4179 |
- |
- |
- |
- |
| 1.5633 |
562 |
2.3914 |
- |
- |
- |
- |
| 1.5688 |
564 |
2.1722 |
- |
- |
- |
- |
| 1.5744 |
566 |
2.345 |
- |
- |
- |
- |
| 1.5800 |
568 |
3.0069 |
- |
- |
- |
- |
| 1.5855 |
570 |
2.4231 |
- |
- |
- |
- |
| 1.5911 |
572 |
2.3597 |
- |
- |
- |
- |
| 1.5967 |
574 |
2.143 |
- |
- |
- |
- |
| 1.6022 |
576 |
2.6288 |
2.5368 |
0.7943 |
0.6048 |
0.9265 |
| 1.6078 |
578 |
2.3905 |
- |
- |
- |
- |
| 1.6134 |
580 |
2.1823 |
- |
- |
- |
- |
| 1.6189 |
582 |
2.367 |
- |
- |
- |
- |
| 1.6245 |
584 |
2.8189 |
- |
- |
- |
- |
| 1.6300 |
586 |
2.6536 |
- |
- |
- |
- |
| 1.6356 |
588 |
2.2134 |
- |
- |
- |
- |
| 1.6412 |
590 |
1.6949 |
- |
- |
- |
- |
| 1.6467 |
592 |
2.2029 |
- |
- |
- |
- |
| 1.6523 |
594 |
3.0223 |
- |
- |
- |
- |
| 1.6579 |
596 |
2.239 |
- |
- |
- |
- |
| 1.6634 |
598 |
2.3388 |
- |
- |
- |
- |
| 1.6690 |
600 |
2.3066 |
- |
- |
- |
- |
| 1.6745 |
602 |
2.4762 |
- |
- |
- |
- |
| 1.6801 |
604 |
1.9503 |
- |
- |
- |
- |
| 1.6857 |
606 |
2.1252 |
- |
- |
- |
- |
| 1.6912 |
608 |
1.8253 |
- |
- |
- |
- |
| 1.6968 |
610 |
2.2938 |
- |
- |
- |
- |
| 1.7024 |
612 |
1.9489 |
2.5747 |
0.7675 |
0.5964 |
0.9267 |
| 1.7079 |
614 |
1.9238 |
- |
- |
- |
- |
| 1.7135 |
616 |
1.8171 |
- |
- |
- |
- |
| 1.7191 |
618 |
2.2371 |
- |
- |
- |
- |
| 1.7246 |
620 |
2.4901 |
- |
- |
- |
- |
| 1.7302 |
622 |
1.8503 |
- |
- |
- |
- |
| 1.7357 |
624 |
2.017 |
- |
- |
- |
- |
| 1.7413 |
626 |
2.3069 |
- |
- |
- |
- |
| 1.7469 |
628 |
2.444 |
- |
- |
- |
- |
| 1.7524 |
630 |
1.9606 |
- |
- |
- |
- |
| 1.7580 |
632 |
2.2364 |
- |
- |
- |
- |
| 1.7636 |
634 |
1.8711 |
- |
- |
- |
- |
| 1.7691 |
636 |
2.4233 |
- |
- |
- |
- |
| 1.7747 |
638 |
2.4065 |
- |
- |
- |
- |
| 1.7803 |
640 |
2.0725 |
- |
- |
- |
- |
| 1.7858 |
642 |
2.0578 |
- |
- |
- |
- |
| 1.7914 |
644 |
2.2066 |
- |
- |
- |
- |
| 1.7969 |
646 |
1.7767 |
- |
- |
- |
- |
| 1.8025 |
648 |
2.7388 |
2.5685 |
0.7663 |
0.5959 |
0.9292 |
| 1.8081 |
650 |
1.854 |
- |
- |
- |
- |
| 1.8136 |
652 |
2.7337 |
- |
- |
- |
- |
| 1.8192 |
654 |
2.4477 |
- |
- |
- |
- |
| 1.8248 |
656 |
2.4818 |
- |
- |
- |
- |
| 1.8303 |
658 |
1.8592 |
- |
- |
- |
- |
| 1.8359 |
660 |
1.8396 |
- |
- |
- |
- |
| 1.8414 |
662 |
2.3893 |
- |
- |
- |
- |
| 1.8470 |
664 |
2.0139 |
- |
- |
- |
- |
| 1.8526 |
666 |
2.8837 |
- |
- |
- |
- |
| 1.8581 |
668 |
2.0342 |
- |
- |
- |
- |
| 1.8637 |
670 |
1.8857 |
- |
- |
- |
- |
| 1.8693 |
672 |
2.1147 |
- |
- |
- |
- |
| 1.8748 |
674 |
1.6263 |
- |
- |
- |
- |
| 1.8804 |
676 |
2.2987 |
- |
- |
- |
- |
| 1.8860 |
678 |
1.9678 |
- |
- |
- |
- |
| 1.8915 |
680 |
1.9999 |
- |
- |
- |
- |
| 1.8971 |
682 |
2.2802 |
- |
- |
- |
- |
| 1.9026 |
684 |
1.9666 |
2.5536 |
0.7717 |
0.5967 |
0.9289 |
| 1.9082 |
686 |
1.8156 |
- |
- |
- |
- |
| 1.9138 |
688 |
1.9542 |
- |
- |
- |
- |
| 1.9193 |
690 |
1.859 |
- |
- |
- |
- |
| 1.9249 |
692 |
1.6237 |
- |
- |
- |
- |
| 1.9305 |
694 |
2.3085 |
- |
- |
- |
- |
| 1.9360 |
696 |
2.1461 |
- |
- |
- |
- |
| 1.9416 |
698 |
1.7024 |
- |
- |
- |
- |
| 1.9471 |
700 |
2.2181 |
- |
- |
- |
- |
| 1.9527 |
702 |
2.4782 |
- |
- |
- |
- |
| 1.9583 |
704 |
1.7378 |
- |
- |
- |
- |
| 1.9638 |
706 |
2.0422 |
- |
- |
- |
- |
| 1.9694 |
708 |
1.7577 |
- |
- |
- |
- |
| 1.9750 |
710 |
2.0209 |
- |
- |
- |
- |
| 1.9805 |
712 |
2.0372 |
- |
- |
- |
- |
| 1.9861 |
714 |
2.0915 |
- |
- |
- |
- |
| 1.9917 |
716 |
1.603 |
- |
- |
- |
- |
| 1.9972 |
718 |
1.7111 |
2.5566 |
0.7705 |
0.5966 |
0.9293 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AnglELoss
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}