distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5738
- Accuracy: 0.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|---|---|---|---|---|
| 2.1392 | 1.0 | 57 | 0.58 | 2.0354 |
| 1.6258 | 2.0 | 114 | 0.62 | 1.5654 |
| 1.3598 | 3.0 | 171 | 0.71 | 1.2824 |
| 1.0427 | 4.0 | 228 | 0.7 | 1.1595 |
| 0.9695 | 5.0 | 285 | 0.79 | 1.0014 |
| 0.8573 | 6.0 | 342 | 0.79 | 0.9319 |
| 0.8554 | 7.0 | 399 | 0.79 | 0.8992 |
| 0.7055 | 8.0 | 456 | 0.79 | 0.8725 |
| 0.6791 | 9.0 | 513 | 0.81 | 0.8256 |
| 0.6471 | 10.0 | 570 | 0.81 | 0.7848 |
| 0.566 | 11.0 | 627 | 0.82 | 0.7702 |
| 0.5671 | 12.0 | 684 | 0.82 | 0.7426 |
| 0.5618 | 13.0 | 741 | 0.82 | 0.7179 |
| 0.4187 | 14.0 | 798 | 0.81 | 0.7058 |
| 0.4102 | 15.0 | 855 | 0.83 | 0.6610 |
| 0.339 | 16.0 | 912 | 0.86 | 0.6316 |
| 0.3389 | 17.0 | 969 | 0.87 | 0.6201 |
| 0.3212 | 18.0 | 1026 | 0.84 | 0.6248 |
| 0.3987 | 19.0 | 1083 | 0.5782 | 0.87 |
| 0.2508 | 20.0 | 1140 | 0.6046 | 0.86 |
| 0.2239 | 21.0 | 1197 | 0.5738 | 0.88 |
| 0.1996 | 22.0 | 1254 | 0.6067 | 0.82 |
| 0.2178 | 23.0 | 1311 | 0.5493 | 0.88 |
| 0.1786 | 24.0 | 1368 | 0.5466 | 0.88 |
| 0.1471 | 25.0 | 1425 | 0.5557 | 0.86 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 2.14.0
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for bogosla/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubertDataset used to train bogosla/distilhubert-finetuned-gtzan
Evaluation results
- Accuracy on GTZANself-reported0.880