cometadata/jina-reranker-v2-multilingual-affiliations-v5

This is a Cross Encoder model finetuned from jinaai/jina-reranker-v2-base-multilingual using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("cometadata/jina-reranker-v2-multilingual-affiliations-v5")
# Get scores for pairs of texts
pairs = [
    ['Université Toulouse', 'a  Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE ,  Albi ,  France'],
    ['Université Toulouse', 'National Polytechnic Institute of Toulouse'],
    ['School of Fundamental Science and Technology, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan', 'Center for Supercentenarian Research, Keio University, Tokyo, Japan'],
    ['School of Fundamental Science and Technology, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan', 'g    Toin Human Science and Technology Center, Department of Materials Science and Technology, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225, Japan'],
    ['Division of Pulmonary and Critical Care Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina', 'Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, CB# 7295, Chapel Hill, NC 27599, USA'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'Université Toulouse',
    [
        'a  Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE ,  Albi ,  France',
        'National Polytechnic Institute of Toulouse',
        'Center for Supercentenarian Research, Keio University, Tokyo, Japan',
        'g    Toin Human Science and Technology Center, Department of Materials Science and Technology, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225, Japan',
        'Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, CB# 7295, Chapel Hill, NC 27599, USA',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.9356 (-0.0644)
mrr@10 0.9356 (-0.0644)
ndcg@10 0.9548 (-0.0452)

Training Details

Training Dataset

Unnamed Dataset

  • Size: 30,310 training samples
  • Columns: query, document, and label
  • Approximate statistics based on the first 1000 samples:
    query document label
    type string string int
    details
    • min: 4 characters
    • mean: 95.13 characters
    • max: 448 characters
    • min: 12 characters
    • mean: 70.71 characters
    • max: 504 characters
    • 0: ~50.00%
    • 1: ~50.00%
  • Samples:
    query document label
    Institute of Biodiversity, One Health and Veterinary Medicine, University of Glasgow , Glasgow , United Kingdom; Department of Preventive and Community Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea. Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Science, University of Glasgow , Glasgow G12 8QQ , UK 1
    Institute of Biodiversity, One Health and Veterinary Medicine, University of Glasgow , Glasgow , United Kingdom; Department of Preventive and Community Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea. The Royal College of Physicians and Surgeons of Glasgow , Glasgow , United Kingdom 0
    Indukaka Ipcowala Center for Interdisciplinary Studies in Science and Technology, Sardar Patel University, Anand, Gujarat, India Chemistry Department, V. P. & R. P. T. P Science College, Affiliated to Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India. 1
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 808 evaluation samples
  • Columns: query, document, and label
  • Approximate statistics based on the first 808 samples:
    query document label
    type string string int
    details
    • min: 14 characters
    • mean: 80.47 characters
    • max: 394 characters
    • min: 15 characters
    • mean: 109.87 characters
    • max: 500 characters
    • 0: ~50.00%
    • 1: ~50.00%
  • Samples:
    query document label
    Université Toulouse a Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE , Albi , France 1
    Université Toulouse National Polytechnic Institute of Toulouse 0
    School of Fundamental Science and Technology, Keio University 1 , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan Center for Supercentenarian Research, Keio University, Tokyo, Japan 1
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • hub_model_id: cometadata/jina-reranker-v2-multilingual-affiliations-v5

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: cometadata/jina-reranker-v2-multilingual-affiliations-v5
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss affiliation-val_ndcg@10
-1 -1 - - 0.8812 (-0.1188)
0.0011 1 0.7276 - -
0.1055 100 0.5555 - -
0.2110 200 0.4469 - -
0.3165 300 0.3703 - -
0.4219 400 0.3362 - -
0.5274 500 0.3207 0.5372 0.9502 (-0.0498)
0.6329 600 0.2941 - -
0.7384 700 0.2894 - -
0.8439 800 0.2879 - -
0.9494 900 0.2834 - -
1.0549 1000 0.2651 0.5197 0.9520 (-0.0480)
1.1603 1100 0.2848 - -
1.2658 1200 0.2641 - -
1.3713 1300 0.2574 - -
1.4768 1400 0.2542 - -
1.5823 1500 0.2945 0.5101 0.9548 (-0.0452)
1.6878 1600 0.2729 - -
1.7932 1700 0.2609 - -
1.8987 1800 0.2807 - -
-1 -1 - - 0.9548 (-0.0452)
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.12
  • Sentence Transformers: 5.2.0
  • Transformers: 4.57.3
  • PyTorch: 2.9.1+cu128
  • Accelerate: 1.12.0
  • Datasets: 4.4.2
  • Tokenizers: 0.22.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
4
Safetensors
Model size
0.3B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for cometadata/jina-reranker-v2-multilingual-affiliations-v5

Finetuned
(26)
this model

Paper for cometadata/jina-reranker-v2-multilingual-affiliations-v5

Evaluation results