db806de803d4453718136c725f35c8e5

This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-7B on the dair-ai/emotion [split] dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6038
  • Data Size: 1.0
  • Epoch Runtime: 436.4765
  • Accuracy: 0.9244
  • F1 Macro: 0.8808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 30.9953 0 6.4117 0.1467 0.0590
No log 1 500 17.8548 0.0078 8.5870 0.2863 0.1749
No log 2 1000 6.8559 0.0156 20.2647 0.5202 0.2735
No log 3 1500 3.7588 0.0312 34.5336 0.6996 0.6123
No log 4 2000 1.9829 0.0625 57.4625 0.8432 0.7964
0.2265 5 2500 2.1728 0.125 84.4405 0.8548 0.8164
1.212 6 3000 1.3173 0.25 143.5163 0.8901 0.7394
0.1434 7 3500 1.3661 0.5 230.8958 0.9133 0.8638
0.7733 8.0 4000 0.6688 1.0 409.8183 0.9284 0.8743
0.4879 9.0 4500 0.6411 1.0 407.9665 0.9279 0.8902
0.593 10.0 5000 0.6788 1.0 411.5251 0.9304 0.8917
0.5484 11.0 5500 0.9786 1.0 436.9212 0.9219 0.8818
0.3847 12.0 6000 1.2340 1.0 458.0374 0.9204 0.8694
0.3118 13.0 6500 1.6038 1.0 436.4765 0.9244 0.8808

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
11
Safetensors
Model size
2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for contemmcm/db806de803d4453718136c725f35c8e5

Finetuned
(253)
this model