idx
int64 | project
string | commit_id
string | project_url
string | commit_url
string | commit_message
string | target
int64 | func
string | func_hash
string | file_name
string | file_hash
string | cwe
string | cve
string | cve_desc
string | nvd_url
string |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
194,963
|
ImageMagick6
|
dc070da861a015d3c97488fdcca6063b44d47a7b
|
https://github.com/ImageMagick/ImageMagick6
|
https://github.com/ImageMagick/ImageMagick6/commit/dc070da861a015d3c97488fdcca6063b44d47a7b
|
https://github.com/ImageMagick/ImageMagick/pull/5034
| 1
|
static MagickBooleanType GetEXIFProperty(const Image *image,
const char *property)
{
#define MaxDirectoryStack 16
#define EXIF_DELIMITER "\n"
#define EXIF_NUM_FORMATS 12
#define EXIF_FMT_BYTE 1
#define EXIF_FMT_STRING 2
#define EXIF_FMT_USHORT 3
#define EXIF_FMT_ULONG 4
#define EXIF_FMT_URATIONAL 5
#define EXIF_FMT_SBYTE 6
#define EXIF_FMT_UNDEFINED 7
#define EXIF_FMT_SSHORT 8
#define EXIF_FMT_SLONG 9
#define EXIF_FMT_SRATIONAL 10
#define EXIF_FMT_SINGLE 11
#define EXIF_FMT_DOUBLE 12
#define TAG_EXIF_OFFSET 0x8769
#define TAG_GPS_OFFSET 0x8825
#define TAG_INTEROP_OFFSET 0xa005
#define EXIFMultipleValues(size,format,arg) \
{ \
ssize_t \
component; \
\
size_t \
length; \
\
unsigned char \
*p1; \
\
length=0; \
p1=p; \
for (component=0; component < components; component++) \
{ \
length+=FormatLocaleString(buffer+length,MaxTextExtent-length, \
format", ",arg); \
if (length >= (MaxTextExtent-1)) \
length=MaxTextExtent-1; \
p1+=size; \
} \
if (length > 1) \
buffer[length-2]='\0'; \
value=AcquireString(buffer); \
}
#define EXIFMultipleFractions(size,format,arg1,arg2) \
{ \
ssize_t \
component; \
\
size_t \
length; \
\
unsigned char \
*p1; \
\
length=0; \
p1=p; \
for (component=0; component < components; component++) \
{ \
length+=FormatLocaleString(buffer+length,MaxTextExtent-length, \
format", ",(arg1),(arg2)); \
if (length >= (MaxTextExtent-1)) \
length=MaxTextExtent-1; \
p1+=size; \
} \
if (length > 1) \
buffer[length-2]='\0'; \
value=AcquireString(buffer); \
}
typedef struct _DirectoryInfo
{
const unsigned char
*directory;
size_t
entry;
ssize_t
offset;
} DirectoryInfo;
typedef struct _TagInfo
{
size_t
tag;
const char
description[36];
} TagInfo;
static const TagInfo
EXIFTag[] =
{
{ 0x001, "exif:InteroperabilityIndex" },
{ 0x002, "exif:InteroperabilityVersion" },
{ 0x100, "exif:ImageWidth" },
{ 0x101, "exif:ImageLength" },
{ 0x102, "exif:BitsPerSample" },
{ 0x103, "exif:Compression" },
{ 0x106, "exif:PhotometricInterpretation" },
{ 0x10a, "exif:FillOrder" },
{ 0x10d, "exif:DocumentName" },
{ 0x10e, "exif:ImageDescription" },
{ 0x10f, "exif:Make" },
{ 0x110, "exif:Model" },
{ 0x111, "exif:StripOffsets" },
{ 0x112, "exif:Orientation" },
{ 0x115, "exif:SamplesPerPixel" },
{ 0x116, "exif:RowsPerStrip" },
{ 0x117, "exif:StripByteCounts" },
{ 0x11a, "exif:XResolution" },
{ 0x11b, "exif:YResolution" },
{ 0x11c, "exif:PlanarConfiguration" },
{ 0x11d, "exif:PageName" },
{ 0x11e, "exif:XPosition" },
{ 0x11f, "exif:YPosition" },
{ 0x118, "exif:MinSampleValue" },
{ 0x119, "exif:MaxSampleValue" },
{ 0x120, "exif:FreeOffsets" },
{ 0x121, "exif:FreeByteCounts" },
{ 0x122, "exif:GrayResponseUnit" },
{ 0x123, "exif:GrayResponseCurve" },
{ 0x124, "exif:T4Options" },
{ 0x125, "exif:T6Options" },
{ 0x128, "exif:ResolutionUnit" },
{ 0x12d, "exif:TransferFunction" },
{ 0x131, "exif:Software" },
{ 0x132, "exif:DateTime" },
{ 0x13b, "exif:Artist" },
{ 0x13e, "exif:WhitePoint" },
{ 0x13f, "exif:PrimaryChromaticities" },
{ 0x140, "exif:ColorMap" },
{ 0x141, "exif:HalfToneHints" },
{ 0x142, "exif:TileWidth" },
{ 0x143, "exif:TileLength" },
{ 0x144, "exif:TileOffsets" },
{ 0x145, "exif:TileByteCounts" },
{ 0x14a, "exif:SubIFD" },
{ 0x14c, "exif:InkSet" },
{ 0x14d, "exif:InkNames" },
{ 0x14e, "exif:NumberOfInks" },
{ 0x150, "exif:DotRange" },
{ 0x151, "exif:TargetPrinter" },
{ 0x152, "exif:ExtraSample" },
{ 0x153, "exif:SampleFormat" },
{ 0x154, "exif:SMinSampleValue" },
{ 0x155, "exif:SMaxSampleValue" },
{ 0x156, "exif:TransferRange" },
{ 0x157, "exif:ClipPath" },
{ 0x158, "exif:XClipPathUnits" },
{ 0x159, "exif:YClipPathUnits" },
{ 0x15a, "exif:Indexed" },
{ 0x15b, "exif:JPEGTables" },
{ 0x15f, "exif:OPIProxy" },
{ 0x200, "exif:JPEGProc" },
{ 0x201, "exif:JPEGInterchangeFormat" },
{ 0x202, "exif:JPEGInterchangeFormatLength" },
{ 0x203, "exif:JPEGRestartInterval" },
{ 0x205, "exif:JPEGLosslessPredictors" },
{ 0x206, "exif:JPEGPointTransforms" },
{ 0x207, "exif:JPEGQTables" },
{ 0x208, "exif:JPEGDCTables" },
{ 0x209, "exif:JPEGACTables" },
{ 0x211, "exif:YCbCrCoefficients" },
{ 0x212, "exif:YCbCrSubSampling" },
{ 0x213, "exif:YCbCrPositioning" },
{ 0x214, "exif:ReferenceBlackWhite" },
{ 0x2bc, "exif:ExtensibleMetadataPlatform" },
{ 0x301, "exif:Gamma" },
{ 0x302, "exif:ICCProfileDescriptor" },
{ 0x303, "exif:SRGBRenderingIntent" },
{ 0x320, "exif:ImageTitle" },
{ 0x5001, "exif:ResolutionXUnit" },
{ 0x5002, "exif:ResolutionYUnit" },
{ 0x5003, "exif:ResolutionXLengthUnit" },
{ 0x5004, "exif:ResolutionYLengthUnit" },
{ 0x5005, "exif:PrintFlags" },
{ 0x5006, "exif:PrintFlagsVersion" },
{ 0x5007, "exif:PrintFlagsCrop" },
{ 0x5008, "exif:PrintFlagsBleedWidth" },
{ 0x5009, "exif:PrintFlagsBleedWidthScale" },
{ 0x500A, "exif:HalftoneLPI" },
{ 0x500B, "exif:HalftoneLPIUnit" },
{ 0x500C, "exif:HalftoneDegree" },
{ 0x500D, "exif:HalftoneShape" },
{ 0x500E, "exif:HalftoneMisc" },
{ 0x500F, "exif:HalftoneScreen" },
{ 0x5010, "exif:JPEGQuality" },
{ 0x5011, "exif:GridSize" },
{ 0x5012, "exif:ThumbnailFormat" },
{ 0x5013, "exif:ThumbnailWidth" },
{ 0x5014, "exif:ThumbnailHeight" },
{ 0x5015, "exif:ThumbnailColorDepth" },
{ 0x5016, "exif:ThumbnailPlanes" },
{ 0x5017, "exif:ThumbnailRawBytes" },
{ 0x5018, "exif:ThumbnailSize" },
{ 0x5019, "exif:ThumbnailCompressedSize" },
{ 0x501a, "exif:ColorTransferFunction" },
{ 0x501b, "exif:ThumbnailData" },
{ 0x5020, "exif:ThumbnailImageWidth" },
{ 0x5021, "exif:ThumbnailImageHeight" },
{ 0x5022, "exif:ThumbnailBitsPerSample" },
{ 0x5023, "exif:ThumbnailCompression" },
{ 0x5024, "exif:ThumbnailPhotometricInterp" },
{ 0x5025, "exif:ThumbnailImageDescription" },
{ 0x5026, "exif:ThumbnailEquipMake" },
{ 0x5027, "exif:ThumbnailEquipModel" },
{ 0x5028, "exif:ThumbnailStripOffsets" },
{ 0x5029, "exif:ThumbnailOrientation" },
{ 0x502a, "exif:ThumbnailSamplesPerPixel" },
{ 0x502b, "exif:ThumbnailRowsPerStrip" },
{ 0x502c, "exif:ThumbnailStripBytesCount" },
{ 0x502d, "exif:ThumbnailResolutionX" },
{ 0x502e, "exif:ThumbnailResolutionY" },
{ 0x502f, "exif:ThumbnailPlanarConfig" },
{ 0x5030, "exif:ThumbnailResolutionUnit" },
{ 0x5031, "exif:ThumbnailTransferFunction" },
{ 0x5032, "exif:ThumbnailSoftwareUsed" },
{ 0x5033, "exif:ThumbnailDateTime" },
{ 0x5034, "exif:ThumbnailArtist" },
{ 0x5035, "exif:ThumbnailWhitePoint" },
{ 0x5036, "exif:ThumbnailPrimaryChromaticities" },
{ 0x5037, "exif:ThumbnailYCbCrCoefficients" },
{ 0x5038, "exif:ThumbnailYCbCrSubsampling" },
{ 0x5039, "exif:ThumbnailYCbCrPositioning" },
{ 0x503A, "exif:ThumbnailRefBlackWhite" },
{ 0x503B, "exif:ThumbnailCopyRight" },
{ 0x5090, "exif:LuminanceTable" },
{ 0x5091, "exif:ChrominanceTable" },
{ 0x5100, "exif:FrameDelay" },
{ 0x5101, "exif:LoopCount" },
{ 0x5110, "exif:PixelUnit" },
{ 0x5111, "exif:PixelPerUnitX" },
{ 0x5112, "exif:PixelPerUnitY" },
{ 0x5113, "exif:PaletteHistogram" },
{ 0x1000, "exif:RelatedImageFileFormat" },
{ 0x1001, "exif:RelatedImageLength" },
{ 0x1002, "exif:RelatedImageWidth" },
{ 0x800d, "exif:ImageID" },
{ 0x80e3, "exif:Matteing" },
{ 0x80e4, "exif:DataType" },
{ 0x80e5, "exif:ImageDepth" },
{ 0x80e6, "exif:TileDepth" },
{ 0x828d, "exif:CFARepeatPatternDim" },
{ 0x828e, "exif:CFAPattern2" },
{ 0x828f, "exif:BatteryLevel" },
{ 0x8298, "exif:Copyright" },
{ 0x829a, "exif:ExposureTime" },
{ 0x829d, "exif:FNumber" },
{ 0x83bb, "exif:IPTC/NAA" },
{ 0x84e3, "exif:IT8RasterPadding" },
{ 0x84e5, "exif:IT8ColorTable" },
{ 0x8649, "exif:ImageResourceInformation" },
{ 0x8769, "exif:ExifOffset" }, /* specs as "Exif IFD Pointer"? */
{ 0x8773, "exif:InterColorProfile" },
{ 0x8822, "exif:ExposureProgram" },
{ 0x8824, "exif:SpectralSensitivity" },
{ 0x8825, "exif:GPSInfo" }, /* specs as "GPSInfo IFD Pointer"? */
{ 0x8827, "exif:PhotographicSensitivity" },
{ 0x8828, "exif:OECF" },
{ 0x8829, "exif:Interlace" },
{ 0x882a, "exif:TimeZoneOffset" },
{ 0x882b, "exif:SelfTimerMode" },
{ 0x8830, "exif:SensitivityType" },
{ 0x8831, "exif:StandardOutputSensitivity" },
{ 0x8832, "exif:RecommendedExposureIndex" },
{ 0x8833, "exif:ISOSpeed" },
{ 0x8834, "exif:ISOSpeedLatitudeyyy" },
{ 0x8835, "exif:ISOSpeedLatitudezzz" },
{ 0x9000, "exif:ExifVersion" },
{ 0x9003, "exif:DateTimeOriginal" },
{ 0x9004, "exif:DateTimeDigitized" },
{ 0x9010, "exif:OffsetTime" },
{ 0x9011, "exif:OffsetTimeOriginal" },
{ 0x9012, "exif:OffsetTimeDigitized" },
{ 0x9101, "exif:ComponentsConfiguration" },
{ 0x9102, "exif:CompressedBitsPerPixel" },
{ 0x9201, "exif:ShutterSpeedValue" },
{ 0x9202, "exif:ApertureValue" },
{ 0x9203, "exif:BrightnessValue" },
{ 0x9204, "exif:ExposureBiasValue" },
{ 0x9205, "exif:MaxApertureValue" },
{ 0x9206, "exif:SubjectDistance" },
{ 0x9207, "exif:MeteringMode" },
{ 0x9208, "exif:LightSource" },
{ 0x9209, "exif:Flash" },
{ 0x920a, "exif:FocalLength" },
{ 0x920b, "exif:FlashEnergy" },
{ 0x920c, "exif:SpatialFrequencyResponse" },
{ 0x920d, "exif:Noise" },
{ 0x9214, "exif:SubjectArea" },
{ 0x9290, "exif:SubSecTime" },
{ 0x9291, "exif:SubSecTimeOriginal" },
{ 0x9292, "exif:SubSecTimeDigitized" },
{ 0x9211, "exif:ImageNumber" },
{ 0x9212, "exif:SecurityClassification" },
{ 0x9213, "exif:ImageHistory" },
{ 0x9214, "exif:SubjectArea" },
{ 0x9215, "exif:ExposureIndex" },
{ 0x9216, "exif:TIFF-EPStandardID" },
{ 0x927c, "exif:MakerNote" },
{ 0x9286, "exif:UserComment" },
{ 0x9290, "exif:SubSecTime" },
{ 0x9291, "exif:SubSecTimeOriginal" },
{ 0x9292, "exif:SubSecTimeDigitized" },
{ 0x9400, "exif:Temperature" },
{ 0x9401, "exif:Humidity" },
{ 0x9402, "exif:Pressure" },
{ 0x9403, "exif:WaterDepth" },
{ 0x9404, "exif:Acceleration" },
{ 0x9405, "exif:CameraElevationAngle" },
{ 0x9C9b, "exif:WinXP-Title" },
{ 0x9C9c, "exif:WinXP-Comments" },
{ 0x9C9d, "exif:WinXP-Author" },
{ 0x9C9e, "exif:WinXP-Keywords" },
{ 0x9C9f, "exif:WinXP-Subject" },
{ 0xa000, "exif:FlashPixVersion" },
{ 0xa001, "exif:ColorSpace" },
{ 0xa002, "exif:PixelXDimension" },
{ 0xa003, "exif:PixelYDimension" },
{ 0xa004, "exif:RelatedSoundFile" },
{ 0xa005, "exif:InteroperabilityOffset" },
{ 0xa20b, "exif:FlashEnergy" },
{ 0xa20c, "exif:SpatialFrequencyResponse" },
{ 0xa20d, "exif:Noise" },
{ 0xa20e, "exif:FocalPlaneXResolution" },
{ 0xa20f, "exif:FocalPlaneYResolution" },
{ 0xa210, "exif:FocalPlaneResolutionUnit" },
{ 0xa214, "exif:SubjectLocation" },
{ 0xa215, "exif:ExposureIndex" },
{ 0xa216, "exif:TIFF/EPStandardID" },
{ 0xa217, "exif:SensingMethod" },
{ 0xa300, "exif:FileSource" },
{ 0xa301, "exif:SceneType" },
{ 0xa302, "exif:CFAPattern" },
{ 0xa401, "exif:CustomRendered" },
{ 0xa402, "exif:ExposureMode" },
{ 0xa403, "exif:WhiteBalance" },
{ 0xa404, "exif:DigitalZoomRatio" },
{ 0xa405, "exif:FocalLengthIn35mmFilm" },
{ 0xa406, "exif:SceneCaptureType" },
{ 0xa407, "exif:GainControl" },
{ 0xa408, "exif:Contrast" },
{ 0xa409, "exif:Saturation" },
{ 0xa40a, "exif:Sharpness" },
{ 0xa40b, "exif:DeviceSettingDescription" },
{ 0xa40c, "exif:SubjectDistanceRange" },
{ 0xa420, "exif:ImageUniqueID" },
{ 0xa430, "exif:CameraOwnerName" },
{ 0xa431, "exif:BodySerialNumber" },
{ 0xa432, "exif:LensSpecification" },
{ 0xa433, "exif:LensMake" },
{ 0xa434, "exif:LensModel" },
{ 0xa435, "exif:LensSerialNumber" },
{ 0xc4a5, "exif:PrintImageMatching" },
{ 0xa500, "exif:Gamma" },
{ 0xc640, "exif:CR2Slice" },
{ 0x10000, "exif:GPSVersionID" },
{ 0x10001, "exif:GPSLatitudeRef" },
{ 0x10002, "exif:GPSLatitude" },
{ 0x10003, "exif:GPSLongitudeRef" },
{ 0x10004, "exif:GPSLongitude" },
{ 0x10005, "exif:GPSAltitudeRef" },
{ 0x10006, "exif:GPSAltitude" },
{ 0x10007, "exif:GPSTimeStamp" },
{ 0x10008, "exif:GPSSatellites" },
{ 0x10009, "exif:GPSStatus" },
{ 0x1000a, "exif:GPSMeasureMode" },
{ 0x1000b, "exif:GPSDop" },
{ 0x1000c, "exif:GPSSpeedRef" },
{ 0x1000d, "exif:GPSSpeed" },
{ 0x1000e, "exif:GPSTrackRef" },
{ 0x1000f, "exif:GPSTrack" },
{ 0x10010, "exif:GPSImgDirectionRef" },
{ 0x10011, "exif:GPSImgDirection" },
{ 0x10012, "exif:GPSMapDatum" },
{ 0x10013, "exif:GPSDestLatitudeRef" },
{ 0x10014, "exif:GPSDestLatitude" },
{ 0x10015, "exif:GPSDestLongitudeRef" },
{ 0x10016, "exif:GPSDestLongitude" },
{ 0x10017, "exif:GPSDestBearingRef" },
{ 0x10018, "exif:GPSDestBearing" },
{ 0x10019, "exif:GPSDestDistanceRef" },
{ 0x1001a, "exif:GPSDestDistance" },
{ 0x1001b, "exif:GPSProcessingMethod" },
{ 0x1001c, "exif:GPSAreaInformation" },
{ 0x1001d, "exif:GPSDateStamp" },
{ 0x1001e, "exif:GPSDifferential" },
{ 0x1001f, "exif:GPSHPositioningError" },
{ 0x00000, "" }
}; /* http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf */
const StringInfo
*profile;
const unsigned char
*directory,
*exif;
DirectoryInfo
directory_stack[MaxDirectoryStack];
EndianType
endian;
MagickBooleanType
status;
ssize_t
i;
size_t
entry,
length,
number_entries,
tag,
tag_value;
SplayTreeInfo
*exif_resources;
ssize_t
all,
id,
level,
offset,
tag_offset;
static int
tag_bytes[] = {0, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 4, 8};
/*
If EXIF data exists, then try to parse the request for a tag.
*/
profile=GetImageProfile(image,"exif");
if (profile == (const StringInfo *) NULL)
return(MagickFalse);
if ((property == (const char *) NULL) || (*property == '\0'))
return(MagickFalse);
while (isspace((int) ((unsigned char) *property)) != 0)
property++;
if (strlen(property) <= 5)
return(MagickFalse);
all=0;
tag=(~0UL);
switch (*(property+5))
{
case '*':
{
/*
Caller has asked for all the tags in the EXIF data.
*/
tag=0;
all=1; /* return the data in description=value format */
break;
}
case '!':
{
tag=0;
all=2; /* return the data in tagid=value format */
break;
}
case '#':
case '@':
{
int
c;
size_t
n;
/*
Check for a hex based tag specification first.
*/
tag=(*(property+5) == '@') ? 1UL : 0UL;
property+=6;
n=strlen(property);
if (n != 4)
return(MagickFalse);
/*
Parse tag specification as a hex number.
*/
n/=4;
do
{
for (i=(ssize_t) n-1L; i >= 0; i--)
{
c=(*property++);
tag<<=4;
if ((c >= '0') && (c <= '9'))
tag|=(c-'0');
else
if ((c >= 'A') && (c <= 'F'))
tag|=(c-('A'-10));
else
if ((c >= 'a') && (c <= 'f'))
tag|=(c-('a'-10));
else
return(MagickFalse);
}
} while (*property != '\0');
break;
}
default:
{
/*
Try to match the text with a tag name instead.
*/
for (i=0; ; i++)
{
if (EXIFTag[i].tag == 0)
break;
if (LocaleCompare(EXIFTag[i].description,property) == 0)
{
tag=(size_t) EXIFTag[i].tag;
break;
}
}
break;
}
}
if (tag == (~0UL))
return(MagickFalse);
length=GetStringInfoLength(profile);
if (length < 6)
return(MagickFalse);
exif=GetStringInfoDatum(profile);
while (length != 0)
{
if (ReadPropertyByte(&exif,&length) != 0x45)
continue;
if (ReadPropertyByte(&exif,&length) != 0x78)
continue;
if (ReadPropertyByte(&exif,&length) != 0x69)
continue;
if (ReadPropertyByte(&exif,&length) != 0x66)
continue;
if (ReadPropertyByte(&exif,&length) != 0x00)
continue;
if (ReadPropertyByte(&exif,&length) != 0x00)
continue;
break;
}
if (length < 16)
return(MagickFalse);
id=(ssize_t) ReadPropertySignedShort(LSBEndian,exif);
endian=LSBEndian;
if (id == 0x4949)
endian=LSBEndian;
else
if (id == 0x4D4D)
endian=MSBEndian;
else
return(MagickFalse);
if (ReadPropertyUnsignedShort(endian,exif+2) != 0x002a)
return(MagickFalse);
/*
This the offset to the first IFD.
*/
offset=(ssize_t) ReadPropertySignedLong(endian,exif+4);
if ((offset < 0) || (size_t) offset >= length)
return(MagickFalse);
/*
Set the pointer to the first IFD and follow it were it leads.
*/
status=MagickFalse;
directory=exif+offset;
level=0;
entry=0;
tag_offset=0;
exif_resources=NewSplayTree((int (*)(const void *,const void *)) NULL,
(void *(*)(void *)) NULL,(void *(*)(void *)) NULL);
do
{
/*
If there is anything on the stack then pop it off.
*/
if (level > 0)
{
level--;
directory=directory_stack[level].directory;
entry=directory_stack[level].entry;
tag_offset=directory_stack[level].offset;
}
if ((directory < exif) || (directory > (exif+length-2)))
break;
/*
Determine how many entries there are in the current IFD.
*/
number_entries=(size_t) ReadPropertyUnsignedShort(endian,directory);
for ( ; entry < number_entries; entry++)
{
unsigned char
*p,
*q;
size_t
format;
ssize_t
number_bytes,
components;
q=(unsigned char *) (directory+(12*entry)+2);
if (q > (exif+length-12))
break; /* corrupt EXIF */
if (GetValueFromSplayTree(exif_resources,q) == q)
break;
(void) AddValueToSplayTree(exif_resources,q,q);
tag_value=(size_t) ReadPropertyUnsignedShort(endian,q)+tag_offset;
format=(size_t) ReadPropertyUnsignedShort(endian,q+2);
if (format >= (sizeof(tag_bytes)/sizeof(*tag_bytes)))
break;
if (format == 0)
break; /* corrupt EXIF */
components=(ssize_t) ReadPropertySignedLong(endian,q+4);
if (components < 0)
break; /* corrupt EXIF */
number_bytes=(size_t) components*tag_bytes[format];
if (number_bytes < components)
break; /* prevent overflow */
if (number_bytes <= 4)
p=q+8;
else
{
ssize_t
dir_offset;
/*
The directory entry contains an offset.
*/
dir_offset=(ssize_t) ReadPropertySignedLong(endian,q+8);
if ((dir_offset < 0) || (size_t) dir_offset >= length)
continue;
if (((size_t) dir_offset+number_bytes) < (size_t) dir_offset)
continue; /* prevent overflow */
if (((size_t) dir_offset+number_bytes) > length)
continue;
p=(unsigned char *) (exif+dir_offset);
}
if ((all != 0) || (tag == (size_t) tag_value))
{
char
buffer[MaxTextExtent],
*value;
if ((p < exif) || (p > (exif+length-tag_bytes[format])))
break;
value=(char *) NULL;
*buffer='\0';
switch (format)
{
case EXIF_FMT_BYTE:
case EXIF_FMT_UNDEFINED:
{
value=(char *) NULL;
if (~((size_t) number_bytes) >= 1)
value=(char *) AcquireQuantumMemory((size_t) number_bytes+1UL,
sizeof(*value));
if (value != (char *) NULL)
{
for (i=0; i < (ssize_t) number_bytes; i++)
{
value[i]='.';
if (isprint((int) p[i]) != 0)
value[i]=(char) p[i];
}
value[i]='\0';
}
break;
}
case EXIF_FMT_SBYTE:
{
EXIFMultipleValues(1,"%.20g",(double) (*(signed char *) p1));
break;
}
case EXIF_FMT_SSHORT:
{
EXIFMultipleValues(2,"%hd",ReadPropertySignedShort(endian,p1));
break;
}
case EXIF_FMT_USHORT:
{
EXIFMultipleValues(2,"%hu",ReadPropertyUnsignedShort(endian,p1));
break;
}
case EXIF_FMT_ULONG:
{
EXIFMultipleValues(4,"%.20g",(double)
ReadPropertyUnsignedLong(endian,p1));
break;
}
case EXIF_FMT_SLONG:
{
EXIFMultipleValues(4,"%.20g",(double)
ReadPropertySignedLong(endian,p1));
break;
}
case EXIF_FMT_URATIONAL:
{
EXIFMultipleFractions(8,"%.20g/%.20g",(double)
ReadPropertyUnsignedLong(endian,p1),(double)
ReadPropertyUnsignedLong(endian,p1+4));
break;
}
case EXIF_FMT_SRATIONAL:
{
EXIFMultipleFractions(8,"%.20g/%.20g",(double)
ReadPropertySignedLong(endian,p1),(double)
ReadPropertySignedLong(endian,p1+4));
break;
}
case EXIF_FMT_SINGLE:
{
EXIFMultipleValues(4,"%f",(double) *(float *) p1);
break;
}
case EXIF_FMT_DOUBLE:
{
EXIFMultipleValues(8,"%f",*(double *) p1);
break;
}
case EXIF_FMT_STRING:
default:
{
if ((p < exif) || (p > (exif+length-number_bytes)))
break;
value=(char *) NULL;
if (~((size_t) number_bytes) >= 1)
value=(char *) AcquireQuantumMemory((size_t) number_bytes+1UL,
sizeof(*value));
if (value != (char *) NULL)
{
ssize_t
i;
for (i=0; i < (ssize_t) number_bytes; i++)
{
value[i]='.';
if ((isprint((int) p[i]) != 0) || (p[i] == '\0'))
value[i]=(char) p[i];
}
value[i]='\0';
}
break;
}
}
if (value != (char *) NULL)
{
char
*key;
const char
*p;
key=AcquireString(property);
switch (all)
{
case 1:
{
const char
*description;
ssize_t
i;
description="unknown";
for (i=0; ; i++)
{
if (EXIFTag[i].tag == 0)
break;
if (EXIFTag[i].tag == tag_value)
{
description=EXIFTag[i].description;
break;
}
}
(void) FormatLocaleString(key,MaxTextExtent,"%s",
description);
if (level == 2)
(void) SubstituteString(&key,"exif:","exif:thumbnail:");
break;
}
case 2:
{
if (tag_value < 0x10000)
(void) FormatLocaleString(key,MaxTextExtent,"#%04lx",
(unsigned long) tag_value);
else
if (tag_value < 0x20000)
(void) FormatLocaleString(key,MaxTextExtent,"@%04lx",
(unsigned long) (tag_value & 0xffff));
else
(void) FormatLocaleString(key,MaxTextExtent,"unknown");
break;
}
default:
{
if (level == 2)
(void) SubstituteString(&key,"exif:","exif:thumbnail:");
}
}
p=(const char *) NULL;
if (image->properties != (void *) NULL)
p=(const char *) GetValueFromSplayTree((SplayTreeInfo *)
image->properties,key);
if (p == (const char *) NULL)
(void) SetImageProperty((Image *) image,key,value);
value=DestroyString(value);
key=DestroyString(key);
status=MagickTrue;
}
}
if ((tag_value == TAG_EXIF_OFFSET) ||
(tag_value == TAG_INTEROP_OFFSET) || (tag_value == TAG_GPS_OFFSET))
{
ssize_t
offset;
offset=(ssize_t) ReadPropertySignedLong(endian,p);
if (((size_t) offset < length) && (level < (MaxDirectoryStack-2)))
{
ssize_t
tag_offset1;
tag_offset1=(ssize_t) ((tag_value == TAG_GPS_OFFSET) ? 0x10000 :
0);
directory_stack[level].directory=directory;
entry++;
directory_stack[level].entry=entry;
directory_stack[level].offset=tag_offset;
level++;
/*
Check for duplicate tag.
*/
for (i=0; i < level; i++)
if (directory_stack[i].directory == (exif+tag_offset1))
break;
if (i < level)
break; /* duplicate tag */
directory_stack[level].directory=exif+offset;
directory_stack[level].offset=tag_offset1;
directory_stack[level].entry=0;
level++;
if ((directory+2+(12*number_entries)+4) > (exif+length))
break;
offset=(ssize_t) ReadPropertySignedLong(endian,directory+2+(12*
number_entries));
if ((offset != 0) && ((size_t) offset < length) &&
(level < (MaxDirectoryStack-2)))
{
directory_stack[level].directory=exif+offset;
directory_stack[level].entry=0;
directory_stack[level].offset=tag_offset1;
level++;
}
}
break;
}
}
} while (level > 0);
exif_resources=DestroySplayTree(exif_resources);
return(status);
}
|
292096308156704952246887123009503225331
|
property.c
|
122751008107964047346147343124174074065
|
CWE-704
|
CVE-2022-32547
|
In ImageMagick, there is load of misaligned address for type 'double', which requires 8 byte alignment and for type 'float', which requires 4 byte alignment at MagickCore/property.c. Whenever crafted or untrusted input is processed by ImageMagick, this causes a negative impact to application availability or other problems related to undefined behavior.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-32547
|
217,569
|
ImageMagick6
|
dc070da861a015d3c97488fdcca6063b44d47a7b
|
https://github.com/ImageMagick/ImageMagick6
|
https://github.com/ImageMagick/ImageMagick6/commit/dc070da861a015d3c97488fdcca6063b44d47a7b
|
https://github.com/ImageMagick/ImageMagick/pull/5034
| 0
|
static MagickBooleanType GetEXIFProperty(const Image *image,
const char *property)
{
#define MaxDirectoryStack 16
#define EXIF_DELIMITER "\n"
#define EXIF_NUM_FORMATS 12
#define EXIF_FMT_BYTE 1
#define EXIF_FMT_STRING 2
#define EXIF_FMT_USHORT 3
#define EXIF_FMT_ULONG 4
#define EXIF_FMT_URATIONAL 5
#define EXIF_FMT_SBYTE 6
#define EXIF_FMT_UNDEFINED 7
#define EXIF_FMT_SSHORT 8
#define EXIF_FMT_SLONG 9
#define EXIF_FMT_SRATIONAL 10
#define EXIF_FMT_SINGLE 11
#define EXIF_FMT_DOUBLE 12
#define TAG_EXIF_OFFSET 0x8769
#define TAG_GPS_OFFSET 0x8825
#define TAG_INTEROP_OFFSET 0xa005
#define EXIFMultipleValues(size,format,arg) \
{ \
ssize_t \
component; \
\
size_t \
length; \
\
unsigned char \
*p1; \
\
length=0; \
p1=p; \
for (component=0; component < components; component++) \
{ \
length+=FormatLocaleString(buffer+length,MaxTextExtent-length, \
format", ",arg); \
if (length >= (MaxTextExtent-1)) \
length=MaxTextExtent-1; \
p1+=size; \
} \
if (length > 1) \
buffer[length-2]='\0'; \
value=AcquireString(buffer); \
}
#define EXIFMultipleFractions(size,format,arg1,arg2) \
{ \
ssize_t \
component; \
\
size_t \
length; \
\
unsigned char \
*p1; \
\
length=0; \
p1=p; \
for (component=0; component < components; component++) \
{ \
length+=FormatLocaleString(buffer+length,MaxTextExtent-length, \
format", ",(arg1),(arg2)); \
if (length >= (MaxTextExtent-1)) \
length=MaxTextExtent-1; \
p1+=size; \
} \
if (length > 1) \
buffer[length-2]='\0'; \
value=AcquireString(buffer); \
}
typedef struct _DirectoryInfo
{
const unsigned char
*directory;
size_t
entry;
ssize_t
offset;
} DirectoryInfo;
typedef struct _TagInfo
{
size_t
tag;
const char
description[36];
} TagInfo;
static const TagInfo
EXIFTag[] =
{
{ 0x001, "exif:InteroperabilityIndex" },
{ 0x002, "exif:InteroperabilityVersion" },
{ 0x100, "exif:ImageWidth" },
{ 0x101, "exif:ImageLength" },
{ 0x102, "exif:BitsPerSample" },
{ 0x103, "exif:Compression" },
{ 0x106, "exif:PhotometricInterpretation" },
{ 0x10a, "exif:FillOrder" },
{ 0x10d, "exif:DocumentName" },
{ 0x10e, "exif:ImageDescription" },
{ 0x10f, "exif:Make" },
{ 0x110, "exif:Model" },
{ 0x111, "exif:StripOffsets" },
{ 0x112, "exif:Orientation" },
{ 0x115, "exif:SamplesPerPixel" },
{ 0x116, "exif:RowsPerStrip" },
{ 0x117, "exif:StripByteCounts" },
{ 0x11a, "exif:XResolution" },
{ 0x11b, "exif:YResolution" },
{ 0x11c, "exif:PlanarConfiguration" },
{ 0x11d, "exif:PageName" },
{ 0x11e, "exif:XPosition" },
{ 0x11f, "exif:YPosition" },
{ 0x118, "exif:MinSampleValue" },
{ 0x119, "exif:MaxSampleValue" },
{ 0x120, "exif:FreeOffsets" },
{ 0x121, "exif:FreeByteCounts" },
{ 0x122, "exif:GrayResponseUnit" },
{ 0x123, "exif:GrayResponseCurve" },
{ 0x124, "exif:T4Options" },
{ 0x125, "exif:T6Options" },
{ 0x128, "exif:ResolutionUnit" },
{ 0x12d, "exif:TransferFunction" },
{ 0x131, "exif:Software" },
{ 0x132, "exif:DateTime" },
{ 0x13b, "exif:Artist" },
{ 0x13e, "exif:WhitePoint" },
{ 0x13f, "exif:PrimaryChromaticities" },
{ 0x140, "exif:ColorMap" },
{ 0x141, "exif:HalfToneHints" },
{ 0x142, "exif:TileWidth" },
{ 0x143, "exif:TileLength" },
{ 0x144, "exif:TileOffsets" },
{ 0x145, "exif:TileByteCounts" },
{ 0x14a, "exif:SubIFD" },
{ 0x14c, "exif:InkSet" },
{ 0x14d, "exif:InkNames" },
{ 0x14e, "exif:NumberOfInks" },
{ 0x150, "exif:DotRange" },
{ 0x151, "exif:TargetPrinter" },
{ 0x152, "exif:ExtraSample" },
{ 0x153, "exif:SampleFormat" },
{ 0x154, "exif:SMinSampleValue" },
{ 0x155, "exif:SMaxSampleValue" },
{ 0x156, "exif:TransferRange" },
{ 0x157, "exif:ClipPath" },
{ 0x158, "exif:XClipPathUnits" },
{ 0x159, "exif:YClipPathUnits" },
{ 0x15a, "exif:Indexed" },
{ 0x15b, "exif:JPEGTables" },
{ 0x15f, "exif:OPIProxy" },
{ 0x200, "exif:JPEGProc" },
{ 0x201, "exif:JPEGInterchangeFormat" },
{ 0x202, "exif:JPEGInterchangeFormatLength" },
{ 0x203, "exif:JPEGRestartInterval" },
{ 0x205, "exif:JPEGLosslessPredictors" },
{ 0x206, "exif:JPEGPointTransforms" },
{ 0x207, "exif:JPEGQTables" },
{ 0x208, "exif:JPEGDCTables" },
{ 0x209, "exif:JPEGACTables" },
{ 0x211, "exif:YCbCrCoefficients" },
{ 0x212, "exif:YCbCrSubSampling" },
{ 0x213, "exif:YCbCrPositioning" },
{ 0x214, "exif:ReferenceBlackWhite" },
{ 0x2bc, "exif:ExtensibleMetadataPlatform" },
{ 0x301, "exif:Gamma" },
{ 0x302, "exif:ICCProfileDescriptor" },
{ 0x303, "exif:SRGBRenderingIntent" },
{ 0x320, "exif:ImageTitle" },
{ 0x5001, "exif:ResolutionXUnit" },
{ 0x5002, "exif:ResolutionYUnit" },
{ 0x5003, "exif:ResolutionXLengthUnit" },
{ 0x5004, "exif:ResolutionYLengthUnit" },
{ 0x5005, "exif:PrintFlags" },
{ 0x5006, "exif:PrintFlagsVersion" },
{ 0x5007, "exif:PrintFlagsCrop" },
{ 0x5008, "exif:PrintFlagsBleedWidth" },
{ 0x5009, "exif:PrintFlagsBleedWidthScale" },
{ 0x500A, "exif:HalftoneLPI" },
{ 0x500B, "exif:HalftoneLPIUnit" },
{ 0x500C, "exif:HalftoneDegree" },
{ 0x500D, "exif:HalftoneShape" },
{ 0x500E, "exif:HalftoneMisc" },
{ 0x500F, "exif:HalftoneScreen" },
{ 0x5010, "exif:JPEGQuality" },
{ 0x5011, "exif:GridSize" },
{ 0x5012, "exif:ThumbnailFormat" },
{ 0x5013, "exif:ThumbnailWidth" },
{ 0x5014, "exif:ThumbnailHeight" },
{ 0x5015, "exif:ThumbnailColorDepth" },
{ 0x5016, "exif:ThumbnailPlanes" },
{ 0x5017, "exif:ThumbnailRawBytes" },
{ 0x5018, "exif:ThumbnailSize" },
{ 0x5019, "exif:ThumbnailCompressedSize" },
{ 0x501a, "exif:ColorTransferFunction" },
{ 0x501b, "exif:ThumbnailData" },
{ 0x5020, "exif:ThumbnailImageWidth" },
{ 0x5021, "exif:ThumbnailImageHeight" },
{ 0x5022, "exif:ThumbnailBitsPerSample" },
{ 0x5023, "exif:ThumbnailCompression" },
{ 0x5024, "exif:ThumbnailPhotometricInterp" },
{ 0x5025, "exif:ThumbnailImageDescription" },
{ 0x5026, "exif:ThumbnailEquipMake" },
{ 0x5027, "exif:ThumbnailEquipModel" },
{ 0x5028, "exif:ThumbnailStripOffsets" },
{ 0x5029, "exif:ThumbnailOrientation" },
{ 0x502a, "exif:ThumbnailSamplesPerPixel" },
{ 0x502b, "exif:ThumbnailRowsPerStrip" },
{ 0x502c, "exif:ThumbnailStripBytesCount" },
{ 0x502d, "exif:ThumbnailResolutionX" },
{ 0x502e, "exif:ThumbnailResolutionY" },
{ 0x502f, "exif:ThumbnailPlanarConfig" },
{ 0x5030, "exif:ThumbnailResolutionUnit" },
{ 0x5031, "exif:ThumbnailTransferFunction" },
{ 0x5032, "exif:ThumbnailSoftwareUsed" },
{ 0x5033, "exif:ThumbnailDateTime" },
{ 0x5034, "exif:ThumbnailArtist" },
{ 0x5035, "exif:ThumbnailWhitePoint" },
{ 0x5036, "exif:ThumbnailPrimaryChromaticities" },
{ 0x5037, "exif:ThumbnailYCbCrCoefficients" },
{ 0x5038, "exif:ThumbnailYCbCrSubsampling" },
{ 0x5039, "exif:ThumbnailYCbCrPositioning" },
{ 0x503A, "exif:ThumbnailRefBlackWhite" },
{ 0x503B, "exif:ThumbnailCopyRight" },
{ 0x5090, "exif:LuminanceTable" },
{ 0x5091, "exif:ChrominanceTable" },
{ 0x5100, "exif:FrameDelay" },
{ 0x5101, "exif:LoopCount" },
{ 0x5110, "exif:PixelUnit" },
{ 0x5111, "exif:PixelPerUnitX" },
{ 0x5112, "exif:PixelPerUnitY" },
{ 0x5113, "exif:PaletteHistogram" },
{ 0x1000, "exif:RelatedImageFileFormat" },
{ 0x1001, "exif:RelatedImageLength" },
{ 0x1002, "exif:RelatedImageWidth" },
{ 0x800d, "exif:ImageID" },
{ 0x80e3, "exif:Matteing" },
{ 0x80e4, "exif:DataType" },
{ 0x80e5, "exif:ImageDepth" },
{ 0x80e6, "exif:TileDepth" },
{ 0x828d, "exif:CFARepeatPatternDim" },
{ 0x828e, "exif:CFAPattern2" },
{ 0x828f, "exif:BatteryLevel" },
{ 0x8298, "exif:Copyright" },
{ 0x829a, "exif:ExposureTime" },
{ 0x829d, "exif:FNumber" },
{ 0x83bb, "exif:IPTC/NAA" },
{ 0x84e3, "exif:IT8RasterPadding" },
{ 0x84e5, "exif:IT8ColorTable" },
{ 0x8649, "exif:ImageResourceInformation" },
{ 0x8769, "exif:ExifOffset" }, /* specs as "Exif IFD Pointer"? */
{ 0x8773, "exif:InterColorProfile" },
{ 0x8822, "exif:ExposureProgram" },
{ 0x8824, "exif:SpectralSensitivity" },
{ 0x8825, "exif:GPSInfo" }, /* specs as "GPSInfo IFD Pointer"? */
{ 0x8827, "exif:PhotographicSensitivity" },
{ 0x8828, "exif:OECF" },
{ 0x8829, "exif:Interlace" },
{ 0x882a, "exif:TimeZoneOffset" },
{ 0x882b, "exif:SelfTimerMode" },
{ 0x8830, "exif:SensitivityType" },
{ 0x8831, "exif:StandardOutputSensitivity" },
{ 0x8832, "exif:RecommendedExposureIndex" },
{ 0x8833, "exif:ISOSpeed" },
{ 0x8834, "exif:ISOSpeedLatitudeyyy" },
{ 0x8835, "exif:ISOSpeedLatitudezzz" },
{ 0x9000, "exif:ExifVersion" },
{ 0x9003, "exif:DateTimeOriginal" },
{ 0x9004, "exif:DateTimeDigitized" },
{ 0x9010, "exif:OffsetTime" },
{ 0x9011, "exif:OffsetTimeOriginal" },
{ 0x9012, "exif:OffsetTimeDigitized" },
{ 0x9101, "exif:ComponentsConfiguration" },
{ 0x9102, "exif:CompressedBitsPerPixel" },
{ 0x9201, "exif:ShutterSpeedValue" },
{ 0x9202, "exif:ApertureValue" },
{ 0x9203, "exif:BrightnessValue" },
{ 0x9204, "exif:ExposureBiasValue" },
{ 0x9205, "exif:MaxApertureValue" },
{ 0x9206, "exif:SubjectDistance" },
{ 0x9207, "exif:MeteringMode" },
{ 0x9208, "exif:LightSource" },
{ 0x9209, "exif:Flash" },
{ 0x920a, "exif:FocalLength" },
{ 0x920b, "exif:FlashEnergy" },
{ 0x920c, "exif:SpatialFrequencyResponse" },
{ 0x920d, "exif:Noise" },
{ 0x9214, "exif:SubjectArea" },
{ 0x9290, "exif:SubSecTime" },
{ 0x9291, "exif:SubSecTimeOriginal" },
{ 0x9292, "exif:SubSecTimeDigitized" },
{ 0x9211, "exif:ImageNumber" },
{ 0x9212, "exif:SecurityClassification" },
{ 0x9213, "exif:ImageHistory" },
{ 0x9214, "exif:SubjectArea" },
{ 0x9215, "exif:ExposureIndex" },
{ 0x9216, "exif:TIFF-EPStandardID" },
{ 0x927c, "exif:MakerNote" },
{ 0x9286, "exif:UserComment" },
{ 0x9290, "exif:SubSecTime" },
{ 0x9291, "exif:SubSecTimeOriginal" },
{ 0x9292, "exif:SubSecTimeDigitized" },
{ 0x9400, "exif:Temperature" },
{ 0x9401, "exif:Humidity" },
{ 0x9402, "exif:Pressure" },
{ 0x9403, "exif:WaterDepth" },
{ 0x9404, "exif:Acceleration" },
{ 0x9405, "exif:CameraElevationAngle" },
{ 0x9C9b, "exif:WinXP-Title" },
{ 0x9C9c, "exif:WinXP-Comments" },
{ 0x9C9d, "exif:WinXP-Author" },
{ 0x9C9e, "exif:WinXP-Keywords" },
{ 0x9C9f, "exif:WinXP-Subject" },
{ 0xa000, "exif:FlashPixVersion" },
{ 0xa001, "exif:ColorSpace" },
{ 0xa002, "exif:PixelXDimension" },
{ 0xa003, "exif:PixelYDimension" },
{ 0xa004, "exif:RelatedSoundFile" },
{ 0xa005, "exif:InteroperabilityOffset" },
{ 0xa20b, "exif:FlashEnergy" },
{ 0xa20c, "exif:SpatialFrequencyResponse" },
{ 0xa20d, "exif:Noise" },
{ 0xa20e, "exif:FocalPlaneXResolution" },
{ 0xa20f, "exif:FocalPlaneYResolution" },
{ 0xa210, "exif:FocalPlaneResolutionUnit" },
{ 0xa214, "exif:SubjectLocation" },
{ 0xa215, "exif:ExposureIndex" },
{ 0xa216, "exif:TIFF/EPStandardID" },
{ 0xa217, "exif:SensingMethod" },
{ 0xa300, "exif:FileSource" },
{ 0xa301, "exif:SceneType" },
{ 0xa302, "exif:CFAPattern" },
{ 0xa401, "exif:CustomRendered" },
{ 0xa402, "exif:ExposureMode" },
{ 0xa403, "exif:WhiteBalance" },
{ 0xa404, "exif:DigitalZoomRatio" },
{ 0xa405, "exif:FocalLengthIn35mmFilm" },
{ 0xa406, "exif:SceneCaptureType" },
{ 0xa407, "exif:GainControl" },
{ 0xa408, "exif:Contrast" },
{ 0xa409, "exif:Saturation" },
{ 0xa40a, "exif:Sharpness" },
{ 0xa40b, "exif:DeviceSettingDescription" },
{ 0xa40c, "exif:SubjectDistanceRange" },
{ 0xa420, "exif:ImageUniqueID" },
{ 0xa430, "exif:CameraOwnerName" },
{ 0xa431, "exif:BodySerialNumber" },
{ 0xa432, "exif:LensSpecification" },
{ 0xa433, "exif:LensMake" },
{ 0xa434, "exif:LensModel" },
{ 0xa435, "exif:LensSerialNumber" },
{ 0xc4a5, "exif:PrintImageMatching" },
{ 0xa500, "exif:Gamma" },
{ 0xc640, "exif:CR2Slice" },
{ 0x10000, "exif:GPSVersionID" },
{ 0x10001, "exif:GPSLatitudeRef" },
{ 0x10002, "exif:GPSLatitude" },
{ 0x10003, "exif:GPSLongitudeRef" },
{ 0x10004, "exif:GPSLongitude" },
{ 0x10005, "exif:GPSAltitudeRef" },
{ 0x10006, "exif:GPSAltitude" },
{ 0x10007, "exif:GPSTimeStamp" },
{ 0x10008, "exif:GPSSatellites" },
{ 0x10009, "exif:GPSStatus" },
{ 0x1000a, "exif:GPSMeasureMode" },
{ 0x1000b, "exif:GPSDop" },
{ 0x1000c, "exif:GPSSpeedRef" },
{ 0x1000d, "exif:GPSSpeed" },
{ 0x1000e, "exif:GPSTrackRef" },
{ 0x1000f, "exif:GPSTrack" },
{ 0x10010, "exif:GPSImgDirectionRef" },
{ 0x10011, "exif:GPSImgDirection" },
{ 0x10012, "exif:GPSMapDatum" },
{ 0x10013, "exif:GPSDestLatitudeRef" },
{ 0x10014, "exif:GPSDestLatitude" },
{ 0x10015, "exif:GPSDestLongitudeRef" },
{ 0x10016, "exif:GPSDestLongitude" },
{ 0x10017, "exif:GPSDestBearingRef" },
{ 0x10018, "exif:GPSDestBearing" },
{ 0x10019, "exif:GPSDestDistanceRef" },
{ 0x1001a, "exif:GPSDestDistance" },
{ 0x1001b, "exif:GPSProcessingMethod" },
{ 0x1001c, "exif:GPSAreaInformation" },
{ 0x1001d, "exif:GPSDateStamp" },
{ 0x1001e, "exif:GPSDifferential" },
{ 0x1001f, "exif:GPSHPositioningError" },
{ 0x00000, "" }
}; /* http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf */
const StringInfo
*profile;
const unsigned char
*directory,
*exif;
DirectoryInfo
directory_stack[MaxDirectoryStack];
EndianType
endian;
MagickBooleanType
status;
ssize_t
i;
size_t
entry,
length,
number_entries,
tag,
tag_value;
SplayTreeInfo
*exif_resources;
ssize_t
all,
id,
level,
offset,
tag_offset;
static int
tag_bytes[] = {0, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 4, 8};
/*
If EXIF data exists, then try to parse the request for a tag.
*/
profile=GetImageProfile(image,"exif");
if (profile == (const StringInfo *) NULL)
return(MagickFalse);
if ((property == (const char *) NULL) || (*property == '\0'))
return(MagickFalse);
while (isspace((int) ((unsigned char) *property)) != 0)
property++;
if (strlen(property) <= 5)
return(MagickFalse);
all=0;
tag=(~0UL);
switch (*(property+5))
{
case '*':
{
/*
Caller has asked for all the tags in the EXIF data.
*/
tag=0;
all=1; /* return the data in description=value format */
break;
}
case '!':
{
tag=0;
all=2; /* return the data in tagid=value format */
break;
}
case '#':
case '@':
{
int
c;
size_t
n;
/*
Check for a hex based tag specification first.
*/
tag=(*(property+5) == '@') ? 1UL : 0UL;
property+=6;
n=strlen(property);
if (n != 4)
return(MagickFalse);
/*
Parse tag specification as a hex number.
*/
n/=4;
do
{
for (i=(ssize_t) n-1L; i >= 0; i--)
{
c=(*property++);
tag<<=4;
if ((c >= '0') && (c <= '9'))
tag|=(c-'0');
else
if ((c >= 'A') && (c <= 'F'))
tag|=(c-('A'-10));
else
if ((c >= 'a') && (c <= 'f'))
tag|=(c-('a'-10));
else
return(MagickFalse);
}
} while (*property != '\0');
break;
}
default:
{
/*
Try to match the text with a tag name instead.
*/
for (i=0; ; i++)
{
if (EXIFTag[i].tag == 0)
break;
if (LocaleCompare(EXIFTag[i].description,property) == 0)
{
tag=(size_t) EXIFTag[i].tag;
break;
}
}
break;
}
}
if (tag == (~0UL))
return(MagickFalse);
length=GetStringInfoLength(profile);
if (length < 6)
return(MagickFalse);
exif=GetStringInfoDatum(profile);
while (length != 0)
{
if (ReadPropertyByte(&exif,&length) != 0x45)
continue;
if (ReadPropertyByte(&exif,&length) != 0x78)
continue;
if (ReadPropertyByte(&exif,&length) != 0x69)
continue;
if (ReadPropertyByte(&exif,&length) != 0x66)
continue;
if (ReadPropertyByte(&exif,&length) != 0x00)
continue;
if (ReadPropertyByte(&exif,&length) != 0x00)
continue;
break;
}
if (length < 16)
return(MagickFalse);
id=(ssize_t) ReadPropertySignedShort(LSBEndian,exif);
endian=LSBEndian;
if (id == 0x4949)
endian=LSBEndian;
else
if (id == 0x4D4D)
endian=MSBEndian;
else
return(MagickFalse);
if (ReadPropertyUnsignedShort(endian,exif+2) != 0x002a)
return(MagickFalse);
/*
This the offset to the first IFD.
*/
offset=(ssize_t) ReadPropertySignedLong(endian,exif+4);
if ((offset < 0) || (size_t) offset >= length)
return(MagickFalse);
/*
Set the pointer to the first IFD and follow it were it leads.
*/
status=MagickFalse;
directory=exif+offset;
level=0;
entry=0;
tag_offset=0;
exif_resources=NewSplayTree((int (*)(const void *,const void *)) NULL,
(void *(*)(void *)) NULL,(void *(*)(void *)) NULL);
do
{
/*
If there is anything on the stack then pop it off.
*/
if (level > 0)
{
level--;
directory=directory_stack[level].directory;
entry=directory_stack[level].entry;
tag_offset=directory_stack[level].offset;
}
if ((directory < exif) || (directory > (exif+length-2)))
break;
/*
Determine how many entries there are in the current IFD.
*/
number_entries=(size_t) ReadPropertyUnsignedShort(endian,directory);
for ( ; entry < number_entries; entry++)
{
unsigned char
*p,
*q;
size_t
format;
ssize_t
number_bytes,
components;
q=(unsigned char *) (directory+(12*entry)+2);
if (q > (exif+length-12))
break; /* corrupt EXIF */
if (GetValueFromSplayTree(exif_resources,q) == q)
break;
(void) AddValueToSplayTree(exif_resources,q,q);
tag_value=(size_t) ReadPropertyUnsignedShort(endian,q)+tag_offset;
format=(size_t) ReadPropertyUnsignedShort(endian,q+2);
if (format >= (sizeof(tag_bytes)/sizeof(*tag_bytes)))
break;
if (format == 0)
break; /* corrupt EXIF */
components=(ssize_t) ReadPropertySignedLong(endian,q+4);
if (components < 0)
break; /* corrupt EXIF */
number_bytes=(size_t) components*tag_bytes[format];
if (number_bytes < components)
break; /* prevent overflow */
if (number_bytes <= 4)
p=q+8;
else
{
ssize_t
dir_offset;
/*
The directory entry contains an offset.
*/
dir_offset=(ssize_t) ReadPropertySignedLong(endian,q+8);
if ((dir_offset < 0) || (size_t) dir_offset >= length)
continue;
if (((size_t) dir_offset+number_bytes) < (size_t) dir_offset)
continue; /* prevent overflow */
if (((size_t) dir_offset+number_bytes) > length)
continue;
p=(unsigned char *) (exif+dir_offset);
}
if ((all != 0) || (tag == (size_t) tag_value))
{
char
buffer[MaxTextExtent],
*value;
if ((p < exif) || (p > (exif+length-tag_bytes[format])))
break;
value=(char *) NULL;
*buffer='\0';
switch (format)
{
case EXIF_FMT_BYTE:
case EXIF_FMT_UNDEFINED:
{
value=(char *) NULL;
if (~((size_t) number_bytes) >= 1)
value=(char *) AcquireQuantumMemory((size_t) number_bytes+1UL,
sizeof(*value));
if (value != (char *) NULL)
{
for (i=0; i < (ssize_t) number_bytes; i++)
{
value[i]='.';
if (isprint((int) p[i]) != 0)
value[i]=(char) p[i];
}
value[i]='\0';
}
break;
}
case EXIF_FMT_SBYTE:
{
EXIFMultipleValues(1,"%.20g",(double) (*(signed char *) p1));
break;
}
case EXIF_FMT_SSHORT:
{
EXIFMultipleValues(2,"%hd",ReadPropertySignedShort(endian,p1));
break;
}
case EXIF_FMT_USHORT:
{
EXIFMultipleValues(2,"%hu",ReadPropertyUnsignedShort(endian,p1));
break;
}
case EXIF_FMT_ULONG:
{
EXIFMultipleValues(4,"%.20g",(double)
ReadPropertyUnsignedLong(endian,p1));
break;
}
case EXIF_FMT_SLONG:
{
EXIFMultipleValues(4,"%.20g",(double)
ReadPropertySignedLong(endian,p1));
break;
}
case EXIF_FMT_URATIONAL:
{
EXIFMultipleFractions(8,"%.20g/%.20g",(double)
ReadPropertyUnsignedLong(endian,p1),(double)
ReadPropertyUnsignedLong(endian,p1+4));
break;
}
case EXIF_FMT_SRATIONAL:
{
EXIFMultipleFractions(8,"%.20g/%.20g",(double)
ReadPropertySignedLong(endian,p1),(double)
ReadPropertySignedLong(endian,p1+4));
break;
}
case EXIF_FMT_SINGLE:
{
EXIFMultipleValues(4,"%.20g",(double)
ReadPropertySignedLong(endian,p1));
break;
}
case EXIF_FMT_DOUBLE:
{
EXIFMultipleValues(8,"%.20g",(double)
ReadPropertySignedLong(endian,p1));
break;
}
case EXIF_FMT_STRING:
default:
{
if ((p < exif) || (p > (exif+length-number_bytes)))
break;
value=(char *) NULL;
if (~((size_t) number_bytes) >= 1)
value=(char *) AcquireQuantumMemory((size_t) number_bytes+1UL,
sizeof(*value));
if (value != (char *) NULL)
{
ssize_t
i;
for (i=0; i < (ssize_t) number_bytes; i++)
{
value[i]='.';
if ((isprint((int) p[i]) != 0) || (p[i] == '\0'))
value[i]=(char) p[i];
}
value[i]='\0';
}
break;
}
}
if (value != (char *) NULL)
{
char
*key;
const char
*p;
key=AcquireString(property);
switch (all)
{
case 1:
{
const char
*description;
ssize_t
i;
description="unknown";
for (i=0; ; i++)
{
if (EXIFTag[i].tag == 0)
break;
if (EXIFTag[i].tag == tag_value)
{
description=EXIFTag[i].description;
break;
}
}
(void) FormatLocaleString(key,MaxTextExtent,"%s",
description);
if (level == 2)
(void) SubstituteString(&key,"exif:","exif:thumbnail:");
break;
}
case 2:
{
if (tag_value < 0x10000)
(void) FormatLocaleString(key,MaxTextExtent,"#%04lx",
(unsigned long) tag_value);
else
if (tag_value < 0x20000)
(void) FormatLocaleString(key,MaxTextExtent,"@%04lx",
(unsigned long) (tag_value & 0xffff));
else
(void) FormatLocaleString(key,MaxTextExtent,"unknown");
break;
}
default:
{
if (level == 2)
(void) SubstituteString(&key,"exif:","exif:thumbnail:");
}
}
p=(const char *) NULL;
if (image->properties != (void *) NULL)
p=(const char *) GetValueFromSplayTree((SplayTreeInfo *)
image->properties,key);
if (p == (const char *) NULL)
(void) SetImageProperty((Image *) image,key,value);
value=DestroyString(value);
key=DestroyString(key);
status=MagickTrue;
}
}
if ((tag_value == TAG_EXIF_OFFSET) ||
(tag_value == TAG_INTEROP_OFFSET) || (tag_value == TAG_GPS_OFFSET))
{
ssize_t
offset;
offset=(ssize_t) ReadPropertySignedLong(endian,p);
if (((size_t) offset < length) && (level < (MaxDirectoryStack-2)))
{
ssize_t
tag_offset1;
tag_offset1=(ssize_t) ((tag_value == TAG_GPS_OFFSET) ? 0x10000 :
0);
directory_stack[level].directory=directory;
entry++;
directory_stack[level].entry=entry;
directory_stack[level].offset=tag_offset;
level++;
/*
Check for duplicate tag.
*/
for (i=0; i < level; i++)
if (directory_stack[i].directory == (exif+tag_offset1))
break;
if (i < level)
break; /* duplicate tag */
directory_stack[level].directory=exif+offset;
directory_stack[level].offset=tag_offset1;
directory_stack[level].entry=0;
level++;
if ((directory+2+(12*number_entries)+4) > (exif+length))
break;
offset=(ssize_t) ReadPropertySignedLong(endian,directory+2+(12*
number_entries));
if ((offset != 0) && ((size_t) offset < length) &&
(level < (MaxDirectoryStack-2)))
{
directory_stack[level].directory=exif+offset;
directory_stack[level].entry=0;
directory_stack[level].offset=tag_offset1;
level++;
}
}
break;
}
}
} while (level > 0);
exif_resources=DestroySplayTree(exif_resources);
return(status);
}
|
75422468811560646183620950160304672170
|
property.c
|
320426917520707901134127411021604962567
|
CWE-704
|
CVE-2022-32547
|
In ImageMagick, there is load of misaligned address for type 'double', which requires 8 byte alignment and for type 'float', which requires 4 byte alignment at MagickCore/property.c. Whenever crafted or untrusted input is processed by ImageMagick, this causes a negative impact to application availability or other problems related to undefined behavior.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-32547
|
194,989
|
ImageMagick6
|
450949ed017f009b399c937cf362f0058eacc5fa
|
https://github.com/ImageMagick/ImageMagick6
|
https://github.com/ImageMagick/ImageMagick6/commit/450949ed017f009b399c937cf362f0058eacc5fa
|
Pull request: https://github.com/ImageMagick/ImageMagick/pull/4963
| 1
|
static MagickBooleanType ReadPSDChannelPixels(Image *image,
const size_t channels,const ssize_t row,const ssize_t type,
const unsigned char *pixels,ExceptionInfo *exception)
{
Quantum
pixel;
const unsigned char
*p;
IndexPacket
*indexes;
PixelPacket
*q;
ssize_t
x;
size_t
packet_size;
unsigned short
nibble;
p=pixels;
q=GetAuthenticPixels(image,0,row,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
return MagickFalse;
indexes=GetAuthenticIndexQueue(image);
packet_size=GetPSDPacketSize(image);
for (x=0; x < (ssize_t) image->columns; x++)
{
if (packet_size == 1)
pixel=ScaleCharToQuantum(*p++);
else
if (packet_size == 2)
{
p=PushShortPixel(MSBEndian,p,&nibble);
pixel=ScaleShortToQuantum(nibble);
}
else
{
MagickFloatType
nibble;
p=PushFloatPixel(MSBEndian,p,&nibble);
pixel=ClampToQuantum((MagickRealType)QuantumRange*nibble);
}
if (image->depth > 1)
{
SetPSDPixel(image,channels,type,packet_size,pixel,q,indexes,x);
q++;
}
else
{
ssize_t
bit,
number_bits;
number_bits=(ssize_t) image->columns-x;
if (number_bits > 8)
number_bits=8;
for (bit=0; bit < number_bits; bit++)
{
SetPSDPixel(image,channels,type,packet_size,(((unsigned char) pixel)
& (0x01 << (7-bit))) != 0 ? 0 : QuantumRange,q++,indexes,x++);
}
if (x != (ssize_t) image->columns)
x--;
continue;
}
}
return(SyncAuthenticPixels(image,exception));
}
|
50584299779312396054491404176852470969
|
psd.c
|
159316916509494023086155162326374999236
|
CWE-190
|
CVE-2022-32545
|
A vulnerability was found in ImageMagick, causing an outside the range of representable values of type 'unsigned char' at coders/psd.c, when crafted or untrusted input is processed. This leads to a negative impact to application availability or other problems related to undefined behavior.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-32545
|
218,785
|
ImageMagick6
|
450949ed017f009b399c937cf362f0058eacc5fa
|
https://github.com/ImageMagick/ImageMagick6
|
https://github.com/ImageMagick/ImageMagick6/commit/450949ed017f009b399c937cf362f0058eacc5fa
|
Pull request: https://github.com/ImageMagick/ImageMagick/pull/4963
| 0
|
static MagickBooleanType ReadPSDChannelPixels(Image *image,
const size_t channels,const ssize_t row,const ssize_t type,
const unsigned char *pixels,ExceptionInfo *exception)
{
Quantum
pixel;
const unsigned char
*p;
IndexPacket
*indexes;
PixelPacket
*q;
ssize_t
x;
size_t
packet_size;
unsigned short
nibble;
p=pixels;
q=GetAuthenticPixels(image,0,row,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
return MagickFalse;
indexes=GetAuthenticIndexQueue(image);
packet_size=GetPSDPacketSize(image);
for (x=0; x < (ssize_t) image->columns; x++)
{
if (packet_size == 1)
pixel=ScaleCharToQuantum(*p++);
else
if (packet_size == 2)
{
p=PushShortPixel(MSBEndian,p,&nibble);
pixel=ScaleShortToQuantum(nibble);
}
else
{
MagickFloatType
nibble;
p=PushFloatPixel(MSBEndian,p,&nibble);
pixel=ClampToQuantum((MagickRealType)QuantumRange*nibble);
}
if (image->depth > 1)
{
SetPSDPixel(image,channels,type,packet_size,pixel,q,indexes,x);
q++;
}
else
{
ssize_t
bit,
number_bits;
number_bits=(ssize_t) image->columns-x;
if (number_bits > 8)
number_bits=8;
for (bit=0; bit < number_bits; bit++)
{
SetPSDPixel(image,channels,type,packet_size,
(((unsigned char) ((ssize_t) pixel)) & (0x01 << (7-bit))) != 0 ? 0 :
QuantumRange,q++,indexes,x++);
}
if (x != (ssize_t) image->columns)
x--;
continue;
}
}
return(SyncAuthenticPixels(image,exception));
}
|
177518249272594340059836567736761123364
|
psd.c
|
226732625250511916284298083592366716300
|
CWE-190
|
CVE-2022-32545
|
A vulnerability was found in ImageMagick, causing an outside the range of representable values of type 'unsigned char' at coders/psd.c, when crafted or untrusted input is processed. This leads to a negative impact to application availability or other problems related to undefined behavior.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-32545
|
194,994
|
tensorflow
|
c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd
|
Fix memory leak when a graph node is invalid.
If a graph node is invalid but a kernel is created then we set the kernel back to `nullptr` but we forget to delete it. Hence, we get a memory leak.
PiperOrigin-RevId: 408968108
Change-Id: I1d8a9d0d8988ed5e08be8b9f2004ce1b4cd11b7c
| 1
|
Status ImmutableExecutorState::Initialize(const Graph& graph) {
TF_RETURN_IF_ERROR(gview_.Initialize(&graph));
// Build the information about frames in this subgraph.
ControlFlowInfo cf_info;
TF_RETURN_IF_ERROR(BuildControlFlowInfo(&graph, &cf_info));
for (auto& it : cf_info.unique_frame_names) {
EnsureFrameInfo(it)->nodes =
absl::make_unique<std::vector<const NodeItem*>>();
}
root_frame_info_ = frame_info_[""].get();
pending_ids_.resize(gview_.num_nodes());
// Preprocess every node in the graph to create an instance of op
// kernel for each node.
requires_control_flow_ = false;
for (const Node* n : graph.nodes()) {
if (IsSink(n)) continue;
if (IsSwitch(n) || IsMerge(n) || IsEnter(n) || IsExit(n)) {
requires_control_flow_ = true;
} else if (IsRecv(n)) {
// A Recv node from a different device may produce dead tensors from
// non-local control-flow nodes.
//
// TODO(mrry): Track whether control flow was present in the
// pre-partitioned graph, and enable the caller (e.g.
// `DirectSession`) to relax this constraint.
string send_device;
string recv_device;
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "send_device", &send_device));
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "recv_device", &recv_device));
if (send_device != recv_device) {
requires_control_flow_ = true;
}
}
const int id = n->id();
const string& frame_name = cf_info.frame_names[id];
FrameInfo* frame_info = EnsureFrameInfo(frame_name);
NodeItem* item = gview_.node(id);
item->node_id = id;
item->input_start = frame_info->total_inputs;
frame_info->total_inputs += n->num_inputs();
Status s = params_.create_kernel(n->properties(), &item->kernel);
if (!s.ok()) {
item->kernel = nullptr;
s = AttachDef(s, *n);
return s;
}
CHECK(item->kernel);
item->kernel_is_async = (item->kernel->AsAsync() != nullptr);
item->is_merge = IsMerge(n);
item->is_any_consumer_merge_or_control_trigger = false;
for (const Node* consumer : n->out_nodes()) {
if (IsMerge(consumer) || IsControlTrigger(consumer)) {
item->is_any_consumer_merge_or_control_trigger = true;
break;
}
}
const Tensor* const_tensor = item->kernel->const_tensor();
if (const_tensor) {
// Hold onto a shallow copy of the constant tensor in `*this` so that the
// reference count does not drop to 1. This prevents the constant tensor
// from being forwarded, and its buffer reused.
const_tensors_.emplace_back(*const_tensor);
}
item->const_tensor = const_tensor;
item->is_noop = (item->kernel->type_string_view() == "NoOp");
item->is_enter = IsEnter(n);
if (item->is_enter) {
bool is_constant_enter;
TF_RETURN_IF_ERROR(
GetNodeAttr(n->attrs(), "is_constant", &is_constant_enter));
item->is_constant_enter = is_constant_enter;
string frame_name;
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "frame_name", &frame_name));
FrameInfo* frame_info = frame_info_[frame_name].get();
int parallel_iterations;
TF_RETURN_IF_ERROR(
GetNodeAttr(n->attrs(), "parallel_iterations", ¶llel_iterations));
if (frame_info->parallel_iterations == -1) {
frame_info->parallel_iterations = parallel_iterations;
} else if (frame_info->parallel_iterations != parallel_iterations) {
LOG(WARNING) << "Loop frame \"" << frame_name
<< "\" had two different values for parallel_iterations: "
<< frame_info->parallel_iterations << " vs. "
<< parallel_iterations << ".";
}
if (enter_frame_info_.size() <= id) {
enter_frame_info_.resize(id + 1);
}
enter_frame_info_[id] = frame_info;
} else {
item->is_constant_enter = false;
}
item->is_exit = IsExit(n);
item->is_control_trigger = IsControlTrigger(n);
item->is_source = IsSource(n);
item->is_enter_exit_or_next_iter =
(IsEnter(n) || IsExit(n) || IsNextIteration(n));
item->is_transfer_node = IsTransferNode(n);
item->is_initialization_op = IsInitializationOp(n);
item->is_recv_or_switch = IsRecv(n) || IsSwitch(n);
item->is_next_iteration = IsNextIteration(n);
item->is_distributed_communication = IsDistributedCommunication(n);
// Compute the maximum values we'll store for this node in the
// pending counts data structure, and allocate a handle in
// that frame's pending counts data structure that has enough
// space to store these maximal count values.
size_t max_pending, max_dead;
GetMaxPendingCounts(n, &max_pending, &max_dead);
pending_ids_[id] =
frame_info->pending_counts_layout.CreateHandle(max_pending, max_dead);
// See if this node is a root node, and if so, add item to root_nodes_.
if (n->in_edges().empty()) {
root_nodes_.push_back(item);
}
// Initialize static information about the frames in the graph.
frame_info->nodes->push_back(item);
if (item->is_enter) {
string enter_name;
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "frame_name", &enter_name));
EnsureFrameInfo(enter_name)->input_count++;
}
// Record information about whether each output of the op is used.
std::unique_ptr<bool[]> outputs_required(new bool[n->num_outputs()]);
std::fill(&outputs_required[0], &outputs_required[n->num_outputs()], false);
int32_t unused_outputs = n->num_outputs();
for (const Edge* e : n->out_edges()) {
if (IsSink(e->dst())) continue;
if (e->src_output() >= 0) {
if (!outputs_required[e->src_output()]) {
--unused_outputs;
outputs_required[e->src_output()] = true;
}
}
}
if (unused_outputs > 0) {
for (int i = 0; i < n->num_outputs(); ++i) {
if (!outputs_required[i]) {
metrics::RecordUnusedOutput(n->type_string());
}
}
item->outputs_required = std::move(outputs_required);
}
}
// Rewrite each `EdgeInfo::input_slot` member to refer directly to the input
// location.
for (const Node* n : graph.nodes()) {
if (IsSink(n)) continue;
const int id = n->id();
NodeItem* item = gview_.node(id);
for (EdgeInfo& e : item->mutable_output_edges()) {
const int dst_id = e.dst_id;
NodeItem* dst_item = gview_.node(dst_id);
e.input_slot += dst_item->input_start;
}
}
// Initialize PendingCounts only after pending_ids_[node.id] is initialized
// for all nodes.
InitializePending(&graph, cf_info);
return gview_.SetAllocAttrs(&graph, params_.device);
}
|
105248557138287586060572648585871722551
|
immutable_executor_state.cc
|
234046012522402227954780787024760975669
|
CWE-401
|
CVE-2022-23578
|
Tensorflow is an Open Source Machine Learning Framework. If a graph node is invalid, TensorFlow can leak memory in the implementation of `ImmutableExecutorState::Initialize`. Here, we set `item->kernel` to `nullptr` but it is a simple `OpKernel*` pointer so the memory that was previously allocated to it would leak. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23578
|
218,852
|
tensorflow
|
c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd
|
Fix memory leak when a graph node is invalid.
If a graph node is invalid but a kernel is created then we set the kernel back to `nullptr` but we forget to delete it. Hence, we get a memory leak.
PiperOrigin-RevId: 408968108
Change-Id: I1d8a9d0d8988ed5e08be8b9f2004ce1b4cd11b7c
| 0
|
Status ImmutableExecutorState::Initialize(const Graph& graph) {
TF_RETURN_IF_ERROR(gview_.Initialize(&graph));
// Build the information about frames in this subgraph.
ControlFlowInfo cf_info;
TF_RETURN_IF_ERROR(BuildControlFlowInfo(&graph, &cf_info));
for (auto& it : cf_info.unique_frame_names) {
EnsureFrameInfo(it)->nodes =
absl::make_unique<std::vector<const NodeItem*>>();
}
root_frame_info_ = frame_info_[""].get();
pending_ids_.resize(gview_.num_nodes());
// Preprocess every node in the graph to create an instance of op
// kernel for each node.
requires_control_flow_ = false;
for (const Node* n : graph.nodes()) {
if (IsSink(n)) continue;
if (IsSwitch(n) || IsMerge(n) || IsEnter(n) || IsExit(n)) {
requires_control_flow_ = true;
} else if (IsRecv(n)) {
// A Recv node from a different device may produce dead tensors from
// non-local control-flow nodes.
//
// TODO(mrry): Track whether control flow was present in the
// pre-partitioned graph, and enable the caller (e.g.
// `DirectSession`) to relax this constraint.
string send_device;
string recv_device;
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "send_device", &send_device));
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "recv_device", &recv_device));
if (send_device != recv_device) {
requires_control_flow_ = true;
}
}
const int id = n->id();
const string& frame_name = cf_info.frame_names[id];
FrameInfo* frame_info = EnsureFrameInfo(frame_name);
NodeItem* item = gview_.node(id);
item->node_id = id;
item->input_start = frame_info->total_inputs;
frame_info->total_inputs += n->num_inputs();
Status s = params_.create_kernel(n->properties(), &item->kernel);
if (!s.ok()) {
params_.delete_kernel(item->kernel);
item->kernel = nullptr;
s = AttachDef(s, *n);
return s;
}
CHECK(item->kernel);
item->kernel_is_async = (item->kernel->AsAsync() != nullptr);
item->is_merge = IsMerge(n);
item->is_any_consumer_merge_or_control_trigger = false;
for (const Node* consumer : n->out_nodes()) {
if (IsMerge(consumer) || IsControlTrigger(consumer)) {
item->is_any_consumer_merge_or_control_trigger = true;
break;
}
}
const Tensor* const_tensor = item->kernel->const_tensor();
if (const_tensor) {
// Hold onto a shallow copy of the constant tensor in `*this` so that the
// reference count does not drop to 1. This prevents the constant tensor
// from being forwarded, and its buffer reused.
const_tensors_.emplace_back(*const_tensor);
}
item->const_tensor = const_tensor;
item->is_noop = (item->kernel->type_string_view() == "NoOp");
item->is_enter = IsEnter(n);
if (item->is_enter) {
bool is_constant_enter;
TF_RETURN_IF_ERROR(
GetNodeAttr(n->attrs(), "is_constant", &is_constant_enter));
item->is_constant_enter = is_constant_enter;
string frame_name;
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "frame_name", &frame_name));
FrameInfo* frame_info = frame_info_[frame_name].get();
int parallel_iterations;
TF_RETURN_IF_ERROR(
GetNodeAttr(n->attrs(), "parallel_iterations", ¶llel_iterations));
if (frame_info->parallel_iterations == -1) {
frame_info->parallel_iterations = parallel_iterations;
} else if (frame_info->parallel_iterations != parallel_iterations) {
LOG(WARNING) << "Loop frame \"" << frame_name
<< "\" had two different values for parallel_iterations: "
<< frame_info->parallel_iterations << " vs. "
<< parallel_iterations << ".";
}
if (enter_frame_info_.size() <= id) {
enter_frame_info_.resize(id + 1);
}
enter_frame_info_[id] = frame_info;
} else {
item->is_constant_enter = false;
}
item->is_exit = IsExit(n);
item->is_control_trigger = IsControlTrigger(n);
item->is_source = IsSource(n);
item->is_enter_exit_or_next_iter =
(IsEnter(n) || IsExit(n) || IsNextIteration(n));
item->is_transfer_node = IsTransferNode(n);
item->is_initialization_op = IsInitializationOp(n);
item->is_recv_or_switch = IsRecv(n) || IsSwitch(n);
item->is_next_iteration = IsNextIteration(n);
item->is_distributed_communication = IsDistributedCommunication(n);
// Compute the maximum values we'll store for this node in the
// pending counts data structure, and allocate a handle in
// that frame's pending counts data structure that has enough
// space to store these maximal count values.
size_t max_pending, max_dead;
GetMaxPendingCounts(n, &max_pending, &max_dead);
pending_ids_[id] =
frame_info->pending_counts_layout.CreateHandle(max_pending, max_dead);
// See if this node is a root node, and if so, add item to root_nodes_.
if (n->in_edges().empty()) {
root_nodes_.push_back(item);
}
// Initialize static information about the frames in the graph.
frame_info->nodes->push_back(item);
if (item->is_enter) {
string enter_name;
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "frame_name", &enter_name));
EnsureFrameInfo(enter_name)->input_count++;
}
// Record information about whether each output of the op is used.
std::unique_ptr<bool[]> outputs_required(new bool[n->num_outputs()]);
std::fill(&outputs_required[0], &outputs_required[n->num_outputs()], false);
int32_t unused_outputs = n->num_outputs();
for (const Edge* e : n->out_edges()) {
if (IsSink(e->dst())) continue;
if (e->src_output() >= 0) {
if (!outputs_required[e->src_output()]) {
--unused_outputs;
outputs_required[e->src_output()] = true;
}
}
}
if (unused_outputs > 0) {
for (int i = 0; i < n->num_outputs(); ++i) {
if (!outputs_required[i]) {
metrics::RecordUnusedOutput(n->type_string());
}
}
item->outputs_required = std::move(outputs_required);
}
}
// Rewrite each `EdgeInfo::input_slot` member to refer directly to the input
// location.
for (const Node* n : graph.nodes()) {
if (IsSink(n)) continue;
const int id = n->id();
NodeItem* item = gview_.node(id);
for (EdgeInfo& e : item->mutable_output_edges()) {
const int dst_id = e.dst_id;
NodeItem* dst_item = gview_.node(dst_id);
e.input_slot += dst_item->input_start;
}
}
// Initialize PendingCounts only after pending_ids_[node.id] is initialized
// for all nodes.
InitializePending(&graph, cf_info);
return gview_.SetAllocAttrs(&graph, params_.device);
}
|
156764801773187472412077288460661715117
|
immutable_executor_state.cc
|
208458315060777566057381971058447382110
|
CWE-401
|
CVE-2022-23578
|
Tensorflow is an Open Source Machine Learning Framework. If a graph node is invalid, TensorFlow can leak memory in the implementation of `ImmutableExecutorState::Initialize`. Here, we set `item->kernel` to `nullptr` but it is a simple `OpKernel*` pointer so the memory that was previously allocated to it would leak. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23578
|
194,996
|
tensorflow
|
4f38b1ac8e42727e18a2f0bde06d3bee8e77b250
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/4f38b1ac8e42727e18a2f0bde06d3bee8e77b250
|
Prevent null dereference read in `GetInitOp`.
We have a map of maps. We test that the key exists in the first map but then we don't have any validation that this also means the second map has the needed key. In the scenarios where this is not the case, we'll dereference a nullptr, if we don't have this check
PiperOrigin-RevId: 408739325
Change-Id: If9bb7ed759aba1f3b56a34913f209508dbaf65ce
| 1
|
Status GetInitOp(const string& export_dir, const MetaGraphDef& meta_graph_def,
string* init_op_name) {
const auto& sig_def_map = meta_graph_def.signature_def();
const auto& init_op_sig_it =
meta_graph_def.signature_def().find(kSavedModelInitOpSignatureKey);
if (init_op_sig_it != sig_def_map.end()) {
*init_op_name = init_op_sig_it->second.outputs()
.find(kSavedModelInitOpSignatureKey)
->second.name();
return Status::OK();
}
const auto& collection_def_map = meta_graph_def.collection_def();
string init_op_collection_key;
if (collection_def_map.find(kSavedModelMainOpKey) !=
collection_def_map.end()) {
init_op_collection_key = kSavedModelMainOpKey;
} else {
init_op_collection_key = kSavedModelLegacyInitOpKey;
}
const auto init_op_it = collection_def_map.find(init_op_collection_key);
if (init_op_it != collection_def_map.end()) {
if (init_op_it->second.node_list().value_size() != 1) {
return errors::FailedPrecondition(
strings::StrCat("Expected exactly one main op in : ", export_dir));
}
*init_op_name = init_op_it->second.node_list().value(0);
}
return Status::OK();
}
|
90320046309155279319769139363770698236
|
loader_util.cc
|
223638670651747648145854147173893848422
|
CWE-476
|
CVE-2022-23577
|
Tensorflow is an Open Source Machine Learning Framework. The implementation of `GetInitOp` is vulnerable to a crash caused by dereferencing a null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23577
|
218,933
|
tensorflow
|
4f38b1ac8e42727e18a2f0bde06d3bee8e77b250
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/4f38b1ac8e42727e18a2f0bde06d3bee8e77b250
|
Prevent null dereference read in `GetInitOp`.
We have a map of maps. We test that the key exists in the first map but then we don't have any validation that this also means the second map has the needed key. In the scenarios where this is not the case, we'll dereference a nullptr, if we don't have this check
PiperOrigin-RevId: 408739325
Change-Id: If9bb7ed759aba1f3b56a34913f209508dbaf65ce
| 0
|
Status GetInitOp(const string& export_dir, const MetaGraphDef& meta_graph_def,
string* init_op_name) {
const auto& sig_def_map = meta_graph_def.signature_def();
const auto& init_op_sig_it =
meta_graph_def.signature_def().find(kSavedModelInitOpSignatureKey);
if (init_op_sig_it != sig_def_map.end()) {
const auto& sig_def_outputs = init_op_sig_it->second.outputs();
const auto& sig_def_outputs_it =
sig_def_outputs.find(kSavedModelInitOpSignatureKey);
if (sig_def_outputs_it == sig_def_outputs.end()) {
return errors::FailedPrecondition("Could not find output ",
kSavedModelInitOpSignatureKey);
}
*init_op_name = sig_def_outputs_it->second.name();
return Status::OK();
}
const auto& collection_def_map = meta_graph_def.collection_def();
string init_op_collection_key;
if (collection_def_map.find(kSavedModelMainOpKey) !=
collection_def_map.end()) {
init_op_collection_key = kSavedModelMainOpKey;
} else {
init_op_collection_key = kSavedModelLegacyInitOpKey;
}
const auto init_op_it = collection_def_map.find(init_op_collection_key);
if (init_op_it != collection_def_map.end()) {
if (init_op_it->second.node_list().value_size() != 1) {
return errors::FailedPrecondition(
strings::StrCat("Expected exactly one main op in : ", export_dir));
}
*init_op_name = init_op_it->second.node_list().value(0);
}
return Status::OK();
}
|
120370294428908534368713689048437773064
|
loader_util.cc
|
225205642200693417259460288987767726126
|
CWE-476
|
CVE-2022-23577
|
Tensorflow is an Open Source Machine Learning Framework. The implementation of `GetInitOp` is vulnerable to a crash caused by dereferencing a null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23577
|
194,998
|
tensorflow
|
240655511cd3e701155f944a972db71b6c0b1bb6
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6
|
Eliminate `CHECK`-fails from `IsSimplifiableReshape` via `MakeShape(<invalid shape>)`
PiperOrigin-RevId: 409166738
Change-Id: I7f0a3590b8acae3f3e3e2fe636e1f5ef285693cf
| 1
|
Status ConstantFolding::IsSimplifiableReshape(
const NodeDef& node, const GraphProperties& properties) const {
if (!IsReshape(node)) {
return errors::Internal("Node ", node.name(), " is not a Reshape node");
}
if (2 > node.input_size()) {
return errors::Internal("Node ", node.name(),
" must have at most 2 inputs but has ",
node.input_size());
}
const NodeDef* new_shape = node_map_->GetNode(node.input(1));
if (!IsReallyConstant(*new_shape)) {
return errors::Internal("Node ", node.name(), " has shape ",
new_shape->DebugString(),
" which is not a constant");
}
TensorVector outputs;
auto outputs_cleanup = gtl::MakeCleanup([&outputs] {
for (const auto& output : outputs) {
delete output.tensor;
}
});
Status s = EvaluateNode(*new_shape, TensorVector(), &outputs);
if (!s.ok()) {
return errors::Internal("Could not evaluate node ", node.name());
}
if (outputs.size() != 1) {
return errors::Internal("Node ", node.name(),
" must have exactly 1 output but has ",
outputs.size());
}
const std::vector<OpInfo::TensorProperties>& props =
properties.GetInputProperties(node.name());
if (props.empty()) {
return errors::Internal("Node ", node.name(), " has no properties");
}
const OpInfo::TensorProperties& prop = props[0];
if (prop.dtype() == DT_INVALID) {
return errors::Internal("Node ", node.name(), " has property ",
prop.DebugString(), " with invalid dtype");
}
const PartialTensorShape shape(prop.shape());
if (!shape.IsFullyDefined()) {
return errors::Internal("Node ", node.name(), " has property ",
prop.DebugString(), " with shape ",
shape.DebugString(), " which is not fully defined");
}
PartialTensorShape new_dims;
if (outputs[0]->dtype() == DT_INT32) {
std::vector<int32> shp;
for (int i = 0; i < outputs[0]->NumElements(); ++i) {
int32_t dim = outputs[0]->flat<int32>()(i);
shp.push_back(dim);
}
TF_CHECK_OK(TensorShapeUtils::MakeShape(shp, &new_dims));
} else {
std::vector<int64_t> shp;
for (int i = 0; i < outputs[0]->NumElements(); ++i) {
int64_t dim = outputs[0]->flat<int64_t>()(i);
shp.push_back(dim);
}
TF_CHECK_OK(TensorShapeUtils::MakeShape(shp, &new_dims));
}
if (!shape.IsCompatibleWith(new_dims)) {
return errors::Internal("Expected shape ", shape.DebugString(),
"to be compatible with ", new_dims.DebugString());
}
return Status::OK();
}
|
122664089420988233915419567191040959656
|
constant_folding.cc
|
35061507297230918846503076104140700863
|
CWE-617
|
CVE-2022-23581
|
Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `IsSimplifiableReshape` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23581
|
219,032
|
tensorflow
|
240655511cd3e701155f944a972db71b6c0b1bb6
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6
|
Eliminate `CHECK`-fails from `IsSimplifiableReshape` via `MakeShape(<invalid shape>)`
PiperOrigin-RevId: 409166738
Change-Id: I7f0a3590b8acae3f3e3e2fe636e1f5ef285693cf
| 0
|
Status ConstantFolding::IsSimplifiableReshape(
const NodeDef& node, const GraphProperties& properties) const {
if (!IsReshape(node)) {
return errors::Internal("Node ", node.name(), " is not a Reshape node");
}
if (2 > node.input_size()) {
return errors::Internal("Node ", node.name(),
" must have at most 2 inputs but has ",
node.input_size());
}
const NodeDef* new_shape = node_map_->GetNode(node.input(1));
if (!IsReallyConstant(*new_shape)) {
return errors::Internal("Node ", node.name(), " has shape ",
new_shape->DebugString(),
" which is not a constant");
}
TensorVector outputs;
auto outputs_cleanup = gtl::MakeCleanup([&outputs] {
for (const auto& output : outputs) {
delete output.tensor;
}
});
Status s = EvaluateNode(*new_shape, TensorVector(), &outputs);
if (!s.ok()) {
return errors::Internal("Could not evaluate node ", node.name());
}
if (outputs.size() != 1) {
return errors::Internal("Node ", node.name(),
" must have exactly 1 output but has ",
outputs.size());
}
const std::vector<OpInfo::TensorProperties>& props =
properties.GetInputProperties(node.name());
if (props.empty()) {
return errors::Internal("Node ", node.name(), " has no properties");
}
const OpInfo::TensorProperties& prop = props[0];
if (prop.dtype() == DT_INVALID) {
return errors::Internal("Node ", node.name(), " has property ",
prop.DebugString(), " with invalid dtype");
}
const PartialTensorShape shape(prop.shape());
if (!shape.IsFullyDefined()) {
return errors::Internal("Node ", node.name(), " has property ",
prop.DebugString(), " with shape ",
shape.DebugString(), " which is not fully defined");
}
PartialTensorShape new_dims;
if (outputs[0]->dtype() == DT_INT32) {
std::vector<int32> shp;
for (int i = 0; i < outputs[0]->NumElements(); ++i) {
int32_t dim = outputs[0]->flat<int32>()(i);
shp.push_back(dim);
}
s = TensorShapeUtils::MakeShape(shp, &new_dims);
if (!s.ok()) return s;
} else {
std::vector<int64_t> shp;
for (int i = 0; i < outputs[0]->NumElements(); ++i) {
int64_t dim = outputs[0]->flat<int64_t>()(i);
shp.push_back(dim);
}
s = TensorShapeUtils::MakeShape(shp, &new_dims);
if (!s.ok()) return s;
}
if (!shape.IsCompatibleWith(new_dims)) {
return errors::Internal("Expected shape ", shape.DebugString(),
"to be compatible with ", new_dims.DebugString());
}
return Status::OK();
}
|
262760907526734396914090099303096262406
|
constant_folding.cc
|
271606694375277711450004865336349725435
|
CWE-617
|
CVE-2022-23581
|
Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `IsSimplifiableReshape` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23581
|
195,017
|
gpac
|
ad18ece95fa064efc0995c4ab2c985f77fb166ec
|
https://github.com/gpac/gpac
|
https://github.com/gpac/gpac/commit/ad18ece95fa064efc0995c4ab2c985f77fb166ec
|
fixed #1904
| 1
|
u32 GetHintFormat(GF_TrackBox *trak)
{
GF_HintMediaHeaderBox *hmhd = (GF_HintMediaHeaderBox *)trak->Media->information->InfoHeader;
if (hmhd->type != GF_ISOM_BOX_TYPE_HMHD)
return 0;
if (!hmhd || !hmhd->subType) {
GF_Box *a = (GF_Box *)gf_list_get(trak->Media->information->sampleTable->SampleDescription->child_boxes, 0);
if (!hmhd) return a ? a->type : 0;
if (a) hmhd->subType = a->type;
return hmhd->subType;
}
return hmhd->subType;
}
|
91218268849686441388880855658517990203
|
hint_track.c
|
60176895274654779679144452624639678766
|
CWE-476
|
CVE-2021-40576
|
The binary MP4Box in Gpac 1.0.1 has a null pointer dereference vulnerability in the gf_isom_get_payt_count function in hint_track.c, which allows attackers to cause a denial of service.
|
https://nvd.nist.gov/vuln/detail/CVE-2021-40576
|
219,912
|
gpac
|
ad18ece95fa064efc0995c4ab2c985f77fb166ec
|
https://github.com/gpac/gpac
|
https://github.com/gpac/gpac/commit/ad18ece95fa064efc0995c4ab2c985f77fb166ec
|
fixed #1904
| 0
|
u32 GetHintFormat(GF_TrackBox *trak)
{
GF_HintMediaHeaderBox *hmhd = (GF_HintMediaHeaderBox *)trak->Media->information->InfoHeader;
if (!hmhd || (hmhd->type != GF_ISOM_BOX_TYPE_HMHD))
return 0;
if (!hmhd || !hmhd->subType) {
GF_Box *a = (GF_Box *)gf_list_get(trak->Media->information->sampleTable->SampleDescription->child_boxes, 0);
if (!hmhd) return a ? a->type : 0;
if (a) hmhd->subType = a->type;
return hmhd->subType;
}
return hmhd->subType;
}
|
240641657114030682383886931707833033482
|
hint_track.c
|
28976036322661795345788739460485147148
|
CWE-476
|
CVE-2021-40576
|
The binary MP4Box in Gpac 1.0.1 has a null pointer dereference vulnerability in the gf_isom_get_payt_count function in hint_track.c, which allows attackers to cause a denial of service.
|
https://nvd.nist.gov/vuln/detail/CVE-2021-40576
|
195,019
|
tensorflow
|
6b5adc0877de832b2a7c189532dbbbc64622eeb6
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/6b5adc0877de832b2a7c189532dbbbc64622eeb6
|
Prevent `CHECK`-fail when building reference tensor.
The tensor constructor does not allow reference dtypes, as these should not show up explicitly. However, when passed these invalid types instead of building an invalid object the constructor crashes via a `CHECK`-fail. We have a static builder that properly handles this case but is not applicable given current usage.
Instead, before calling the constructor, we can check that the dtype is not a reference type and return an error otherwise, given that the dtype is user controlled so malicious users can trigger denial of service.
PiperOrigin-RevId: 409662503
Change-Id: I5892f831fde7f276cd7ab34519cf6b8061c71a59
| 1
|
Status ConstantFolding::EvaluateOneFoldable(const NodeDef& node,
std::vector<NodeDef>* outputs,
bool* result_too_large) {
TensorVector inputs;
TensorVector output_tensors;
auto inputs_cleanup = gtl::MakeCleanup([&inputs, &output_tensors] {
for (const auto& input : inputs) {
delete input.tensor;
}
for (const auto& output : output_tensors) {
if (output.tensor) {
delete output.tensor;
}
}
});
size_t total_inputs_size = 0;
for (const auto& input : node.input()) {
const TensorId input_tensor = ParseTensorName(input);
if (input_tensor.index() < 0) {
// Control dependency
break;
}
const NodeDef* input_node = node_map_->GetNode(input);
if (!IsReallyConstant(*input_node)) {
return Status(error::INVALID_ARGUMENT,
strings::StrCat("Can't fold ", node.name(), ", its ", input,
" isn't constant"));
}
TF_RETURN_IF_ERROR(CheckAttrExists(*input_node, "value"));
const TensorProto& raw_val = input_node->attr().at("value").tensor();
if (raw_val.dtype() == DT_INVALID) {
return Status(
error::INVALID_ARGUMENT,
strings::StrCat("A tensor in the input node, with TensorId of ",
input_tensor.ToString(),
" has a dtype of DT_INVALID."));
}
Tensor* value = new Tensor(raw_val.dtype(), raw_val.tensor_shape());
if (!value->FromProto(raw_val)) {
delete (value);
return errors::InvalidArgument("Unable to make Tensor from proto for ",
node.name(), " with shape ",
raw_val.tensor_shape().DebugString());
}
inputs.emplace_back(value);
total_inputs_size += value->TotalBytes();
}
TF_RETURN_IF_ERROR(EvaluateNode(node, inputs, &output_tensors));
if (output_tensors.empty()) {
return Status(error::INVALID_ARGUMENT, "Expected at least one output.");
}
outputs->resize(output_tensors.size());
for (size_t i = 0; i < output_tensors.size(); i++) {
string node_name = OptimizedNodeName(node, "-folded");
if (output_tensors.size() > 1) {
node_name = strings::StrCat(node_name, "-", i);
}
if (output_tensors[i].tensor) {
Status s = CreateNodeDef(node_name, output_tensors[i], &outputs->at(i),
total_inputs_size);
if (!s.ok()) {
*result_too_large = true;
return s;
}
} else {
// Create an empty NodeDef to identify dead outputs (e.g. the output of a
// switch that's not selected by the switch predicate).
outputs->at(i) = NodeDef();
}
}
return Status::OK();
}
|
33937240667530924395323323412961833143
|
constant_folding.cc
|
221573695858123615640237954647315751120
|
CWE-617
|
CVE-2022-23588
|
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that Grappler optimizer would attempt to build a tensor using a reference `dtype`. This would result in a crash due to a `CHECK`-fail in the `Tensor` constructor as reference types are not allowed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23588
|
219,931
|
tensorflow
|
6b5adc0877de832b2a7c189532dbbbc64622eeb6
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/6b5adc0877de832b2a7c189532dbbbc64622eeb6
|
Prevent `CHECK`-fail when building reference tensor.
The tensor constructor does not allow reference dtypes, as these should not show up explicitly. However, when passed these invalid types instead of building an invalid object the constructor crashes via a `CHECK`-fail. We have a static builder that properly handles this case but is not applicable given current usage.
Instead, before calling the constructor, we can check that the dtype is not a reference type and return an error otherwise, given that the dtype is user controlled so malicious users can trigger denial of service.
PiperOrigin-RevId: 409662503
Change-Id: I5892f831fde7f276cd7ab34519cf6b8061c71a59
| 0
|
Status ConstantFolding::EvaluateOneFoldable(const NodeDef& node,
std::vector<NodeDef>* outputs,
bool* result_too_large) {
TensorVector inputs;
TensorVector output_tensors;
auto inputs_cleanup = gtl::MakeCleanup([&inputs, &output_tensors] {
for (const auto& input : inputs) {
delete input.tensor;
}
for (const auto& output : output_tensors) {
if (output.tensor) {
delete output.tensor;
}
}
});
size_t total_inputs_size = 0;
for (const auto& input : node.input()) {
const TensorId input_tensor = ParseTensorName(input);
if (input_tensor.index() < 0) {
// Control dependency
break;
}
const NodeDef* input_node = node_map_->GetNode(input);
if (!IsReallyConstant(*input_node)) {
return Status(error::INVALID_ARGUMENT,
strings::StrCat("Can't fold ", node.name(), ", its ", input,
" isn't constant"));
}
TF_RETURN_IF_ERROR(CheckAttrExists(*input_node, "value"));
const TensorProto& raw_val = input_node->attr().at("value").tensor();
if (raw_val.dtype() == DT_INVALID) {
return Status(
error::INVALID_ARGUMENT,
strings::StrCat("A tensor in the input node, with TensorId of ",
input_tensor.ToString(),
" has a dtype of DT_INVALID."));
}
if (IsRefType(raw_val.dtype())) {
return errors::InvalidArgument(
"Not allowed to construct a tensor with reference dtype, got ",
DataTypeString(raw_val.dtype()));
}
Tensor* value = new Tensor(raw_val.dtype(), raw_val.tensor_shape());
if (!value->FromProto(raw_val)) {
delete (value);
return errors::InvalidArgument("Unable to make Tensor from proto for ",
node.name(), " with shape ",
raw_val.tensor_shape().DebugString());
}
inputs.emplace_back(value);
total_inputs_size += value->TotalBytes();
}
TF_RETURN_IF_ERROR(EvaluateNode(node, inputs, &output_tensors));
if (output_tensors.empty()) {
return Status(error::INVALID_ARGUMENT, "Expected at least one output.");
}
outputs->resize(output_tensors.size());
for (size_t i = 0; i < output_tensors.size(); i++) {
string node_name = OptimizedNodeName(node, "-folded");
if (output_tensors.size() > 1) {
node_name = strings::StrCat(node_name, "-", i);
}
if (output_tensors[i].tensor) {
Status s = CreateNodeDef(node_name, output_tensors[i], &outputs->at(i),
total_inputs_size);
if (!s.ok()) {
*result_too_large = true;
return s;
}
} else {
// Create an empty NodeDef to identify dead outputs (e.g. the output of a
// switch that's not selected by the switch predicate).
outputs->at(i) = NodeDef();
}
}
return Status::OK();
}
|
111779981092160670584101984885423453823
|
constant_folding.cc
|
271606694375277711450004865336349725435
|
CWE-617
|
CVE-2022-23588
|
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that Grappler optimizer would attempt to build a tensor using a reference `dtype`. This would result in a crash due to a `CHECK`-fail in the `Tensor` constructor as reference types are not allowed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23588
|
195,022
|
glewlwyd
|
125281f1c0d4b6a8b49f7e55a757205a2ef01fbe
|
https://github.com/babelouest/glewlwyd
|
https://github.com/babelouest/glewlwyd/commit/125281f1c0d4b6a8b49f7e55a757205a2ef01fbe
|
Fix update session when auth fail
| 1
|
int callback_glewlwyd_user_auth (const struct _u_request * request, struct _u_response * response, void * user_data) {
struct config_elements * config = (struct config_elements *)user_data;
json_t * j_param = ulfius_get_json_body_request(request, NULL), * j_result = NULL;
const char * ip_source = get_ip_source(request);
char * issued_for = get_client_hostname(request);
char * session_uid, expires[129];
time_t now;
struct tm ts;
time(&now);
now += GLEWLWYD_DEFAULT_SESSION_EXPIRATION_COOKIE;
gmtime_r(&now, &ts);
strftime(expires, 128, "%a, %d %b %Y %T %Z", &ts);
if (j_param != NULL) {
if (json_string_length(json_object_get(j_param, "username"))) {
if (json_object_get(j_param, "scheme_type") == NULL || 0 == o_strcmp(json_string_value(json_object_get(j_param, "scheme_type")), "password")) {
if (json_string_length(json_object_get(j_param, "password"))) {
j_result = auth_check_user_credentials(config, json_string_value(json_object_get(j_param, "username")), json_string_value(json_object_get(j_param, "password")));
if (check_result_value(j_result, G_OK)) {
if ((session_uid = get_session_id(config, request)) == NULL) {
session_uid = generate_session_id();
}
if (user_session_update(config, session_uid, u_map_get_case(request->map_header, "user-agent"), issued_for, json_string_value(json_object_get(j_param, "username")), NULL, 1) != G_OK) {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error user_session_update (1)");
response->status = 500;
} else {
ulfius_add_cookie_to_response(response, config->session_key, session_uid, expires, 0, config->cookie_domain, "/", config->cookie_secure, 0);
y_log_message(Y_LOG_LEVEL_INFO, "Event - User '%s' authenticated with password", json_string_value(json_object_get(j_param, "username")));
}
o_free(session_uid);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_VALID, 1, NULL);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_VALID_SCHEME, 1, "scheme_type", "password", NULL);
} else {
if (check_result_value(j_result, G_ERROR_UNAUTHORIZED)) {
y_log_message(Y_LOG_LEVEL_WARNING, "Security - Authorization invalid for username %s at IP Address %s", json_string_value(json_object_get(j_param, "username")), ip_source);
}
if ((session_uid = get_session_id(config, request)) != NULL && user_session_update(config, session_uid, u_map_get_case(request->map_header, "user-agent"), issued_for, json_string_value(json_object_get(j_param, "username")), NULL, 1) != G_OK) {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error user_session_update (2)");
}
o_free(session_uid);
response->status = 401;
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_INVALID, 1, NULL);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_INVALID_SCHEME, 1, "scheme_type", "password", NULL);
}
json_decref(j_result);
} else if (json_object_get(j_param, "password") != NULL && !json_is_string(json_object_get(j_param, "password"))) {
ulfius_set_string_body_response(response, 400, "password must be a string");
} else {
session_uid = get_session_id(config, request);
j_result = get_users_for_session(config, session_uid);
if (check_result_value(j_result, G_OK)) {
// Refresh username to set as default
if (user_session_update(config, u_map_get(request->map_cookie, config->session_key), u_map_get_case(request->map_header, "user-agent"), issued_for, json_string_value(json_object_get(j_param, "username")), NULL, 0) != G_OK) {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error user_session_update (3)");
response->status = 500;
} else {
ulfius_add_cookie_to_response(response, config->session_key, session_uid, expires, 0, config->cookie_domain, "/", config->cookie_secure, 0);
}
} else if (check_result_value(j_result, G_ERROR_NOT_FOUND)) {
response->status = 401;
} else {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error get_users_for_session");
response->status = 500;
}
o_free(session_uid);
json_decref(j_result);
}
} else {
if (json_string_length(json_object_get(j_param, "scheme_type")) && json_string_length(json_object_get(j_param, "scheme_name")) && json_is_object(json_object_get(j_param, "value"))) {
j_result = auth_check_user_scheme(config, json_string_value(json_object_get(j_param, "scheme_type")), json_string_value(json_object_get(j_param, "scheme_name")), json_string_value(json_object_get(j_param, "username")), json_object_get(j_param, "value"), request);
if (check_result_value(j_result, G_ERROR_PARAM)) {
ulfius_set_string_body_response(response, 400, "bad scheme response");
} else if (check_result_value(j_result, G_ERROR_UNAUTHORIZED)) {
y_log_message(Y_LOG_LEVEL_WARNING, "Security - Authorization invalid for username %s at IP Address %s", json_string_value(json_object_get(j_param, "username")), ip_source);
response->status = 401;
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_INVALID, 1, NULL);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_INVALID_SCHEME, 1, "scheme_type", json_string_value(json_object_get(j_param, "scheme_type")), "scheme_name", json_string_value(json_object_get(j_param, "scheme_name")), NULL);
} else if (check_result_value(j_result, G_ERROR_NOT_FOUND)) {
response->status = 404;
} else if (check_result_value(j_result, G_OK)) {
if ((session_uid = get_session_id(config, request)) == NULL) {
session_uid = generate_session_id();
}
if (user_session_update(config, session_uid, u_map_get_case(request->map_header, "user-agent"), issued_for, json_string_value(json_object_get(j_param, "username")), json_string_value(json_object_get(j_param, "scheme_name")), 1) != G_OK) {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error user_session_update (4)");
response->status = 500;
} else {
ulfius_add_cookie_to_response(response, config->session_key, session_uid, expires, 0, config->cookie_domain, "/", config->cookie_secure, 0);
y_log_message(Y_LOG_LEVEL_INFO, "Event - User '%s' authenticated with scheme '%s/%s'", json_string_value(json_object_get(j_param, "username")), json_string_value(json_object_get(j_param, "scheme_type")), json_string_value(json_object_get(j_param, "scheme_name")));
}
o_free(session_uid);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_VALID, 1, NULL);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_VALID_SCHEME, 1, "scheme_type", json_string_value(json_object_get(j_param, "scheme_type")), "scheme_name", json_string_value(json_object_get(j_param, "scheme_name")), NULL);
} else {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error auth_check_user_scheme");
response->status = 500;
}
json_decref(j_result);
} else {
ulfius_set_string_body_response(response, 400, "scheme_type, scheme_name and value are mandatory");
}
}
} else {
if (json_string_length(json_object_get(j_param, "scheme_type")) && json_string_length(json_object_get(j_param, "scheme_name")) && json_is_object(json_object_get(j_param, "value"))) {
j_result = auth_check_identify_scheme(config, json_string_value(json_object_get(j_param, "scheme_type")), json_string_value(json_object_get(j_param, "scheme_name")), json_object_get(j_param, "value"), request);
if (check_result_value(j_result, G_ERROR_PARAM)) {
ulfius_set_string_body_response(response, 400, "bad scheme response");
} else if (check_result_value(j_result, G_ERROR_UNAUTHORIZED)) {
y_log_message(Y_LOG_LEVEL_WARNING, "Security - Authorization invalid for username <UNKNOWN> at IP Address %s", ip_source);
response->status = 401;
} else if (check_result_value(j_result, G_ERROR_NOT_FOUND)) {
response->status = 404;
} else if (check_result_value(j_result, G_OK)) {
if ((session_uid = get_session_id(config, request)) == NULL) {
session_uid = generate_session_id();
}
if (user_session_update(config, session_uid, u_map_get_case(request->map_header, "user-agent"), issued_for, json_string_value(json_object_get(j_result, "username")), json_string_value(json_object_get(j_param, "scheme_name")), 1) != G_OK) {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error user_session_update (4)");
response->status = 500;
} else {
ulfius_add_cookie_to_response(response, config->session_key, session_uid, expires, 0, config->cookie_domain, "/", config->cookie_secure, 0);
y_log_message(Y_LOG_LEVEL_INFO, "Event - User '%s' authenticated with scheme '%s/%s'", json_string_value(json_object_get(j_result, "username")), json_string_value(json_object_get(j_param, "scheme_type")), json_string_value(json_object_get(j_param, "scheme_name")));
}
o_free(session_uid);
} else {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error auth_check_user_scheme");
response->status = 500;
}
json_decref(j_result);
} else {
ulfius_set_string_body_response(response, 400, "username is mandatory");
}
}
} else {
ulfius_set_string_body_response(response, 400, "Input parameters must be in JSON format");
}
json_decref(j_param);
o_free(issued_for);
return U_CALLBACK_CONTINUE;
}
|
236114269060053642565806917047085397848
|
webservice.c
|
249878395356016662912854745569339968395
|
CWE-287
|
CVE-2021-45379
|
Glewlwyd 2.0.0, fixed in 2.6.1 is affected by an incorrect access control vulnerability. One user can attempt to log in as another user without its password.
|
https://nvd.nist.gov/vuln/detail/CVE-2021-45379
|
219,947
|
glewlwyd
|
125281f1c0d4b6a8b49f7e55a757205a2ef01fbe
|
https://github.com/babelouest/glewlwyd
|
https://github.com/babelouest/glewlwyd/commit/125281f1c0d4b6a8b49f7e55a757205a2ef01fbe
|
Fix update session when auth fail
| 0
|
int callback_glewlwyd_user_auth (const struct _u_request * request, struct _u_response * response, void * user_data) {
struct config_elements * config = (struct config_elements *)user_data;
json_t * j_param = ulfius_get_json_body_request(request, NULL), * j_result = NULL;
const char * ip_source = get_ip_source(request);
char * issued_for = get_client_hostname(request);
char * session_uid, expires[129];
time_t now;
struct tm ts;
time(&now);
now += GLEWLWYD_DEFAULT_SESSION_EXPIRATION_COOKIE;
gmtime_r(&now, &ts);
strftime(expires, 128, "%a, %d %b %Y %T %Z", &ts);
if (j_param != NULL) {
if (json_string_length(json_object_get(j_param, "username"))) {
if (json_object_get(j_param, "scheme_type") == NULL || 0 == o_strcmp(json_string_value(json_object_get(j_param, "scheme_type")), "password")) {
if (json_string_length(json_object_get(j_param, "password"))) {
j_result = auth_check_user_credentials(config, json_string_value(json_object_get(j_param, "username")), json_string_value(json_object_get(j_param, "password")));
if (check_result_value(j_result, G_OK)) {
if ((session_uid = get_session_id(config, request)) == NULL) {
session_uid = generate_session_id();
}
if (user_session_update(config, session_uid, u_map_get_case(request->map_header, "user-agent"), issued_for, json_string_value(json_object_get(j_param, "username")), NULL, 1) != G_OK) {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error user_session_update (1)");
response->status = 500;
} else {
ulfius_add_cookie_to_response(response, config->session_key, session_uid, expires, 0, config->cookie_domain, "/", config->cookie_secure, 0);
y_log_message(Y_LOG_LEVEL_INFO, "Event - User '%s' authenticated with password", json_string_value(json_object_get(j_param, "username")));
}
o_free(session_uid);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_VALID, 1, NULL);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_VALID_SCHEME, 1, "scheme_type", "password", NULL);
} else {
if (check_result_value(j_result, G_ERROR_UNAUTHORIZED)) {
y_log_message(Y_LOG_LEVEL_WARNING, "Security - Authorization invalid for username %s at IP Address %s", json_string_value(json_object_get(j_param, "username")), ip_source);
}
response->status = 401;
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_INVALID, 1, NULL);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_INVALID_SCHEME, 1, "scheme_type", "password", NULL);
}
json_decref(j_result);
} else if (json_object_get(j_param, "password") != NULL && !json_is_string(json_object_get(j_param, "password"))) {
ulfius_set_string_body_response(response, 400, "password must be a string");
} else {
session_uid = get_session_id(config, request);
j_result = get_users_for_session(config, session_uid);
if (check_result_value(j_result, G_OK)) {
// Refresh username to set as default
if (user_session_update(config, u_map_get(request->map_cookie, config->session_key), u_map_get_case(request->map_header, "user-agent"), issued_for, json_string_value(json_object_get(j_param, "username")), NULL, 0) != G_OK) {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error user_session_update (3)");
response->status = 500;
} else {
ulfius_add_cookie_to_response(response, config->session_key, session_uid, expires, 0, config->cookie_domain, "/", config->cookie_secure, 0);
}
} else if (check_result_value(j_result, G_ERROR_NOT_FOUND)) {
response->status = 401;
} else {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error get_users_for_session");
response->status = 500;
}
o_free(session_uid);
json_decref(j_result);
}
} else {
if (json_string_length(json_object_get(j_param, "scheme_type")) && json_string_length(json_object_get(j_param, "scheme_name")) && json_is_object(json_object_get(j_param, "value"))) {
j_result = auth_check_user_scheme(config, json_string_value(json_object_get(j_param, "scheme_type")), json_string_value(json_object_get(j_param, "scheme_name")), json_string_value(json_object_get(j_param, "username")), json_object_get(j_param, "value"), request);
if (check_result_value(j_result, G_ERROR_PARAM)) {
ulfius_set_string_body_response(response, 400, "bad scheme response");
} else if (check_result_value(j_result, G_ERROR_UNAUTHORIZED)) {
y_log_message(Y_LOG_LEVEL_WARNING, "Security - Authorization invalid for username %s at IP Address %s", json_string_value(json_object_get(j_param, "username")), ip_source);
response->status = 401;
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_INVALID, 1, NULL);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_INVALID_SCHEME, 1, "scheme_type", json_string_value(json_object_get(j_param, "scheme_type")), "scheme_name", json_string_value(json_object_get(j_param, "scheme_name")), NULL);
} else if (check_result_value(j_result, G_ERROR_NOT_FOUND)) {
response->status = 404;
} else if (check_result_value(j_result, G_OK)) {
if ((session_uid = get_session_id(config, request)) == NULL) {
session_uid = generate_session_id();
}
if (user_session_update(config, session_uid, u_map_get_case(request->map_header, "user-agent"), issued_for, json_string_value(json_object_get(j_param, "username")), json_string_value(json_object_get(j_param, "scheme_name")), 1) != G_OK) {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error user_session_update (4)");
response->status = 500;
} else {
ulfius_add_cookie_to_response(response, config->session_key, session_uid, expires, 0, config->cookie_domain, "/", config->cookie_secure, 0);
y_log_message(Y_LOG_LEVEL_INFO, "Event - User '%s' authenticated with scheme '%s/%s'", json_string_value(json_object_get(j_param, "username")), json_string_value(json_object_get(j_param, "scheme_type")), json_string_value(json_object_get(j_param, "scheme_name")));
}
o_free(session_uid);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_VALID, 1, NULL);
glewlwyd_metrics_increment_counter_va(config, GLWD_METRICS_AUTH_USER_VALID_SCHEME, 1, "scheme_type", json_string_value(json_object_get(j_param, "scheme_type")), "scheme_name", json_string_value(json_object_get(j_param, "scheme_name")), NULL);
} else {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error auth_check_user_scheme");
response->status = 500;
}
json_decref(j_result);
} else {
ulfius_set_string_body_response(response, 400, "scheme_type, scheme_name and value are mandatory");
}
}
} else {
if (json_string_length(json_object_get(j_param, "scheme_type")) && json_string_length(json_object_get(j_param, "scheme_name")) && json_is_object(json_object_get(j_param, "value"))) {
j_result = auth_check_identify_scheme(config, json_string_value(json_object_get(j_param, "scheme_type")), json_string_value(json_object_get(j_param, "scheme_name")), json_object_get(j_param, "value"), request);
if (check_result_value(j_result, G_ERROR_PARAM)) {
ulfius_set_string_body_response(response, 400, "bad scheme response");
} else if (check_result_value(j_result, G_ERROR_UNAUTHORIZED)) {
y_log_message(Y_LOG_LEVEL_WARNING, "Security - Authorization invalid for username <UNKNOWN> at IP Address %s", ip_source);
response->status = 401;
} else if (check_result_value(j_result, G_ERROR_NOT_FOUND)) {
response->status = 404;
} else if (check_result_value(j_result, G_OK)) {
if ((session_uid = get_session_id(config, request)) == NULL) {
session_uid = generate_session_id();
}
if (user_session_update(config, session_uid, u_map_get_case(request->map_header, "user-agent"), issued_for, json_string_value(json_object_get(j_result, "username")), json_string_value(json_object_get(j_param, "scheme_name")), 1) != G_OK) {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error user_session_update (4)");
response->status = 500;
} else {
ulfius_add_cookie_to_response(response, config->session_key, session_uid, expires, 0, config->cookie_domain, "/", config->cookie_secure, 0);
y_log_message(Y_LOG_LEVEL_INFO, "Event - User '%s' authenticated with scheme '%s/%s'", json_string_value(json_object_get(j_result, "username")), json_string_value(json_object_get(j_param, "scheme_type")), json_string_value(json_object_get(j_param, "scheme_name")));
}
o_free(session_uid);
} else {
y_log_message(Y_LOG_LEVEL_ERROR, "callback_glewlwyd_user_auth - Error auth_check_user_scheme");
response->status = 500;
}
json_decref(j_result);
} else {
ulfius_set_string_body_response(response, 400, "username is mandatory");
}
}
} else {
ulfius_set_string_body_response(response, 400, "Input parameters must be in JSON format");
}
json_decref(j_param);
o_free(issued_for);
return U_CALLBACK_CONTINUE;
}
|
155113792370707223407331204609439430532
|
webservice.c
|
287798817606377336444620654835011177393
|
CWE-287
|
CVE-2021-45379
|
Glewlwyd 2.0.0, fixed in 2.6.1 is affected by an incorrect access control vulnerability. One user can attempt to log in as another user without its password.
|
https://nvd.nist.gov/vuln/detail/CVE-2021-45379
|
195,023
|
tensorflow
|
a68f68061e263a88321c104a6c911fe5598050a8
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/a68f68061e263a88321c104a6c911fe5598050a8
|
Replace faulty overflow check with a builder for `TensorShape`.
Prevents an integer overflow that was not caught before.
PiperOrigin-RevId: 415381595
Change-Id: I76585ddedc912bd9f4a390aeafa8e2ced1a28863
| 1
|
void Compute(OpKernelContext* context) override {
const Tensor* input_indices;
const Tensor* input_values;
const Tensor* input_shape;
SparseTensorsMap* map;
OP_REQUIRES_OK(context, context->input("sparse_indices", &input_indices));
OP_REQUIRES_OK(context, context->input("sparse_values", &input_values));
OP_REQUIRES_OK(context, context->input("sparse_shape", &input_shape));
OP_REQUIRES_OK(context, GetMap(context, true /* is_writing */, &map));
OP_REQUIRES(context, TensorShapeUtils::IsMatrix(input_indices->shape()),
errors::InvalidArgument(
"Input indices should be a matrix but received shape ",
input_indices->shape().DebugString()));
OP_REQUIRES(context, TensorShapeUtils::IsVector(input_values->shape()),
errors::InvalidArgument(
"Input values should be a vector but received shape ",
input_values->shape().DebugString()));
OP_REQUIRES(context, TensorShapeUtils::IsVector(input_shape->shape()),
errors::InvalidArgument(
"Input shape should be a vector but received shape ",
input_shape->shape().DebugString()));
OP_REQUIRES(
context,
input_values->shape().dim_size(0) == input_indices->shape().dim_size(0),
errors::InvalidArgument(
"Number of values must match first dimension of indices. ", "Got ",
input_values->shape().dim_size(0),
" values, indices shape: ", input_indices->shape().DebugString()));
OP_REQUIRES(
context,
input_shape->shape().dim_size(0) == input_indices->shape().dim_size(1),
errors::InvalidArgument(
"Number of dimensions must match second dimension of indices. ",
"Got ", input_shape->shape().dim_size(0),
" dimensions, indices shape: ",
input_indices->shape().DebugString()));
int rank = input_shape->NumElements();
OP_REQUIRES(
context, rank > 1,
errors::InvalidArgument(
"Rank of input SparseTensor should be > 1, but saw rank: ", rank));
auto input_shape_vec = input_shape->vec<int64_t>();
int new_num_elements = 1;
bool overflow_ocurred = false;
for (int i = 0; i < input_shape_vec.size(); i++) {
new_num_elements =
MultiplyWithoutOverflow(new_num_elements, input_shape_vec(i));
if (new_num_elements < 0) {
overflow_ocurred = true;
break;
}
}
OP_REQUIRES(
context, !overflow_ocurred,
errors::Internal("Encountered overflow from large input shape."));
TensorShape tensor_input_shape(input_shape_vec);
gtl::InlinedVector<int64_t, 8> std_order(rank);
std::iota(std_order.begin(), std_order.end(), 0);
SparseTensor input_st;
OP_REQUIRES_OK(context, SparseTensor::Create(*input_indices, *input_values,
tensor_input_shape, std_order,
&input_st));
const int64_t N = input_shape_vec(0);
Tensor sparse_handles(DT_INT64, TensorShape({N}));
auto sparse_handles_t = sparse_handles.vec<int64_t>();
OP_REQUIRES_OK(context, input_st.IndicesValid());
// We can generate the output shape proto string now, for all
// minibatch entries.
TensorShape output_shape;
OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape(
input_shape_vec.data() + 1,
input_shape->NumElements() - 1, &output_shape));
// Get groups by minibatch dimension
std::unordered_set<int64_t> visited;
sparse::GroupIterable minibatch = input_st.group({0});
for (const auto& subset : minibatch) {
const int64_t b = subset.group()[0];
visited.insert(b);
OP_REQUIRES(
context, b > -1 && b < N,
errors::InvalidArgument(
"Received unexpected column 0 value in input SparseTensor: ", b,
" < 0 or >= N (= ", N, ")"));
const auto indices = subset.indices();
const auto values = subset.values<T>();
const int64_t num_entries = values.size();
Tensor output_indices = Tensor(DT_INT64, {num_entries, rank - 1});
Tensor output_values = Tensor(DataTypeToEnum<T>::value, {num_entries});
auto output_indices_t = output_indices.matrix<int64_t>();
auto output_values_t = output_values.vec<T>();
for (int i = 0; i < num_entries; ++i) {
for (int d = 1; d < rank; ++d) {
output_indices_t(i, d - 1) = indices(i, d);
}
output_values_t(i) = values(i);
}
SparseTensor st_i;
OP_REQUIRES_OK(context,
SparseTensor::Create(output_indices, output_values,
output_shape, &st_i));
int64_t handle;
OP_REQUIRES_OK(context, map->AddSparseTensor(context, st_i, &handle));
sparse_handles_t(b) = handle;
}
// Fill in any gaps; we must provide an empty ST for batch entries
// the grouper didn't find.
if (visited.size() < N) {
Tensor empty_indices(DT_INT64, {0, rank - 1});
Tensor empty_values(DataTypeToEnum<T>::value, {0});
SparseTensor empty_st;
OP_REQUIRES_OK(context, SparseTensor::Create(empty_indices, empty_values,
output_shape, &empty_st));
for (int64_t b = 0; b < N; ++b) {
// We skipped this batch entry.
if (visited.find(b) == visited.end()) {
int64_t handle;
OP_REQUIRES_OK(context,
map->AddSparseTensor(context, empty_st, &handle));
sparse_handles_t(b) = handle;
}
}
}
context->set_output(0, sparse_handles);
}
|
160387063214720131730960354923232758630
|
sparse_tensors_map_ops.cc
|
224775123349374780251651202891389866533
|
CWE-190
|
CVE-2022-23568
|
Tensorflow is an Open Source Machine Learning Framework. The implementation of `AddManySparseToTensorsMap` is vulnerable to an integer overflow which results in a `CHECK`-fail when building new `TensorShape` objects (so, an assert failure based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23568
|
220,021
|
tensorflow
|
a68f68061e263a88321c104a6c911fe5598050a8
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/a68f68061e263a88321c104a6c911fe5598050a8
|
Replace faulty overflow check with a builder for `TensorShape`.
Prevents an integer overflow that was not caught before.
PiperOrigin-RevId: 415381595
Change-Id: I76585ddedc912bd9f4a390aeafa8e2ced1a28863
| 0
|
void Compute(OpKernelContext* context) override {
const Tensor* input_indices;
const Tensor* input_values;
const Tensor* input_shape;
SparseTensorsMap* map;
OP_REQUIRES_OK(context, context->input("sparse_indices", &input_indices));
OP_REQUIRES_OK(context, context->input("sparse_values", &input_values));
OP_REQUIRES_OK(context, context->input("sparse_shape", &input_shape));
OP_REQUIRES_OK(context, GetMap(context, true /* is_writing */, &map));
OP_REQUIRES(context, TensorShapeUtils::IsMatrix(input_indices->shape()),
errors::InvalidArgument(
"Input indices should be a matrix but received shape ",
input_indices->shape().DebugString()));
OP_REQUIRES(context, TensorShapeUtils::IsVector(input_values->shape()),
errors::InvalidArgument(
"Input values should be a vector but received shape ",
input_values->shape().DebugString()));
OP_REQUIRES(context, TensorShapeUtils::IsVector(input_shape->shape()),
errors::InvalidArgument(
"Input shape should be a vector but received shape ",
input_shape->shape().DebugString()));
OP_REQUIRES(
context,
input_values->shape().dim_size(0) == input_indices->shape().dim_size(0),
errors::InvalidArgument(
"Number of values must match first dimension of indices. ", "Got ",
input_values->shape().dim_size(0),
" values, indices shape: ", input_indices->shape().DebugString()));
OP_REQUIRES(
context,
input_shape->shape().dim_size(0) == input_indices->shape().dim_size(1),
errors::InvalidArgument(
"Number of dimensions must match second dimension of indices. ",
"Got ", input_shape->shape().dim_size(0),
" dimensions, indices shape: ",
input_indices->shape().DebugString()));
int rank = input_shape->NumElements();
OP_REQUIRES(
context, rank > 1,
errors::InvalidArgument(
"Rank of input SparseTensor should be > 1, but saw rank: ", rank));
auto input_shape_vec = input_shape->vec<int64_t>();
TensorShape tensor_input_shape;
OP_REQUIRES_OK(context, TensorShape::BuildTensorShape(input_shape_vec,
&tensor_input_shape));
gtl::InlinedVector<int64_t, 8> std_order(rank);
std::iota(std_order.begin(), std_order.end(), 0);
SparseTensor input_st;
OP_REQUIRES_OK(context, SparseTensor::Create(*input_indices, *input_values,
tensor_input_shape, std_order,
&input_st));
const int64_t N = input_shape_vec(0);
Tensor sparse_handles(DT_INT64, TensorShape({N}));
auto sparse_handles_t = sparse_handles.vec<int64_t>();
OP_REQUIRES_OK(context, input_st.IndicesValid());
// We can generate the output shape proto string now, for all
// minibatch entries.
TensorShape output_shape;
OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape(
input_shape_vec.data() + 1,
input_shape->NumElements() - 1, &output_shape));
// Get groups by minibatch dimension
std::unordered_set<int64_t> visited;
sparse::GroupIterable minibatch = input_st.group({0});
for (const auto& subset : minibatch) {
const int64_t b = subset.group()[0];
visited.insert(b);
OP_REQUIRES(
context, b > -1 && b < N,
errors::InvalidArgument(
"Received unexpected column 0 value in input SparseTensor: ", b,
" < 0 or >= N (= ", N, ")"));
const auto indices = subset.indices();
const auto values = subset.values<T>();
const int64_t num_entries = values.size();
Tensor output_indices = Tensor(DT_INT64, {num_entries, rank - 1});
Tensor output_values = Tensor(DataTypeToEnum<T>::value, {num_entries});
auto output_indices_t = output_indices.matrix<int64_t>();
auto output_values_t = output_values.vec<T>();
for (int i = 0; i < num_entries; ++i) {
for (int d = 1; d < rank; ++d) {
output_indices_t(i, d - 1) = indices(i, d);
}
output_values_t(i) = values(i);
}
SparseTensor st_i;
OP_REQUIRES_OK(context,
SparseTensor::Create(output_indices, output_values,
output_shape, &st_i));
int64_t handle;
OP_REQUIRES_OK(context, map->AddSparseTensor(context, st_i, &handle));
sparse_handles_t(b) = handle;
}
// Fill in any gaps; we must provide an empty ST for batch entries
// the grouper didn't find.
if (visited.size() < N) {
Tensor empty_indices(DT_INT64, {0, rank - 1});
Tensor empty_values(DataTypeToEnum<T>::value, {0});
SparseTensor empty_st;
OP_REQUIRES_OK(context, SparseTensor::Create(empty_indices, empty_values,
output_shape, &empty_st));
for (int64_t b = 0; b < N; ++b) {
// We skipped this batch entry.
if (visited.find(b) == visited.end()) {
int64_t handle;
OP_REQUIRES_OK(context,
map->AddSparseTensor(context, empty_st, &handle));
sparse_handles_t(b) = handle;
}
}
}
context->set_output(0, sparse_handles);
}
|
294930600730557371611113946400120075396
|
sparse_tensors_map_ops.cc
|
5591389034837291700501932002893322459
|
CWE-190
|
CVE-2022-23568
|
Tensorflow is an Open Source Machine Learning Framework. The implementation of `AddManySparseToTensorsMap` is vulnerable to an integer overflow which results in a `CHECK`-fail when building new `TensorShape` objects (so, an assert failure based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23568
|
195,026
|
linux
|
ab0fc21bc7105b54bafd85bd8b82742f9e68898a
|
https://github.com/torvalds/linux
|
https://github.com/torvalds/linux/commit/ab0fc21bc7105b54bafd85bd8b82742f9e68898a
|
Revert "NFSv4: Handle the special Linux file open access mode"
This reverts commit 44942b4e457beda00981f616402a1a791e8c616e.
After secondly opening a file with O_ACCMODE|O_DIRECT flags,
nfs4_valid_open_stateid() will dereference NULL nfs4_state when lseek().
Reproducer:
1. mount -t nfs -o vers=4.2 $server_ip:/ /mnt/
2. fd = open("/mnt/file", O_ACCMODE|O_DIRECT|O_CREAT)
3. close(fd)
4. fd = open("/mnt/file", O_ACCMODE|O_DIRECT)
5. lseek(fd)
Reported-by: Lyu Tao <[email protected]>
Signed-off-by: ChenXiaoSong <[email protected]>
Signed-off-by: Trond Myklebust <[email protected]>
| 1
|
nfs4_file_open(struct inode *inode, struct file *filp)
{
struct nfs_open_context *ctx;
struct dentry *dentry = file_dentry(filp);
struct dentry *parent = NULL;
struct inode *dir;
unsigned openflags = filp->f_flags;
struct iattr attr;
int err;
/*
* If no cached dentry exists or if it's negative, NFSv4 handled the
* opens in ->lookup() or ->create().
*
* We only get this far for a cached positive dentry. We skipped
* revalidation, so handle it here by dropping the dentry and returning
* -EOPENSTALE. The VFS will retry the lookup/create/open.
*/
dprintk("NFS: open file(%pd2)\n", dentry);
err = nfs_check_flags(openflags);
if (err)
return err;
if ((openflags & O_ACCMODE) == 3)
return nfs_open(inode, filp);
/* We can't create new files here */
openflags &= ~(O_CREAT|O_EXCL);
parent = dget_parent(dentry);
dir = d_inode(parent);
ctx = alloc_nfs_open_context(file_dentry(filp), filp->f_mode, filp);
err = PTR_ERR(ctx);
if (IS_ERR(ctx))
goto out;
attr.ia_valid = ATTR_OPEN;
if (openflags & O_TRUNC) {
attr.ia_valid |= ATTR_SIZE;
attr.ia_size = 0;
filemap_write_and_wait(inode->i_mapping);
}
inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr, NULL);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
switch (err) {
default:
goto out_put_ctx;
case -ENOENT:
case -ESTALE:
case -EISDIR:
case -ENOTDIR:
case -ELOOP:
goto out_drop;
}
}
if (inode != d_inode(dentry))
goto out_drop;
nfs_file_set_open_context(filp, ctx);
nfs_fscache_open_file(inode, filp);
err = 0;
out_put_ctx:
put_nfs_open_context(ctx);
out:
dput(parent);
return err;
out_drop:
d_drop(dentry);
err = -EOPENSTALE;
goto out_put_ctx;
}
|
67846125552854891508125900978071958871
|
nfs4file.c
|
109456154040292488452120321326967957719
|
CWE-909
|
CVE-2022-24448
|
An issue was discovered in fs/nfs/dir.c in the Linux kernel before 5.16.5. If an application sets the O_DIRECTORY flag, and tries to open a regular file, nfs_atomic_open() performs a regular lookup. If a regular file is found, ENOTDIR should occur, but the server instead returns uninitialized data in the file descriptor.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-24448
|
220,100
|
linux
|
ab0fc21bc7105b54bafd85bd8b82742f9e68898a
|
https://github.com/torvalds/linux
|
https://github.com/torvalds/linux/commit/ab0fc21bc7105b54bafd85bd8b82742f9e68898a
|
Revert "NFSv4: Handle the special Linux file open access mode"
This reverts commit 44942b4e457beda00981f616402a1a791e8c616e.
After secondly opening a file with O_ACCMODE|O_DIRECT flags,
nfs4_valid_open_stateid() will dereference NULL nfs4_state when lseek().
Reproducer:
1. mount -t nfs -o vers=4.2 $server_ip:/ /mnt/
2. fd = open("/mnt/file", O_ACCMODE|O_DIRECT|O_CREAT)
3. close(fd)
4. fd = open("/mnt/file", O_ACCMODE|O_DIRECT)
5. lseek(fd)
Reported-by: Lyu Tao <[email protected]>
Signed-off-by: ChenXiaoSong <[email protected]>
Signed-off-by: Trond Myklebust <[email protected]>
| 0
|
nfs4_file_open(struct inode *inode, struct file *filp)
{
struct nfs_open_context *ctx;
struct dentry *dentry = file_dentry(filp);
struct dentry *parent = NULL;
struct inode *dir;
unsigned openflags = filp->f_flags;
struct iattr attr;
int err;
/*
* If no cached dentry exists or if it's negative, NFSv4 handled the
* opens in ->lookup() or ->create().
*
* We only get this far for a cached positive dentry. We skipped
* revalidation, so handle it here by dropping the dentry and returning
* -EOPENSTALE. The VFS will retry the lookup/create/open.
*/
dprintk("NFS: open file(%pd2)\n", dentry);
err = nfs_check_flags(openflags);
if (err)
return err;
if ((openflags & O_ACCMODE) == 3)
openflags--;
/* We can't create new files here */
openflags &= ~(O_CREAT|O_EXCL);
parent = dget_parent(dentry);
dir = d_inode(parent);
ctx = alloc_nfs_open_context(file_dentry(filp), filp->f_mode, filp);
err = PTR_ERR(ctx);
if (IS_ERR(ctx))
goto out;
attr.ia_valid = ATTR_OPEN;
if (openflags & O_TRUNC) {
attr.ia_valid |= ATTR_SIZE;
attr.ia_size = 0;
filemap_write_and_wait(inode->i_mapping);
}
inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr, NULL);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
switch (err) {
default:
goto out_put_ctx;
case -ENOENT:
case -ESTALE:
case -EISDIR:
case -ENOTDIR:
case -ELOOP:
goto out_drop;
}
}
if (inode != d_inode(dentry))
goto out_drop;
nfs_file_set_open_context(filp, ctx);
nfs_fscache_open_file(inode, filp);
err = 0;
out_put_ctx:
put_nfs_open_context(ctx);
out:
dput(parent);
return err;
out_drop:
d_drop(dentry);
err = -EOPENSTALE;
goto out_put_ctx;
}
|
272987829557105540879962051296017178836
|
nfs4file.c
|
19160442996144037090827134285929888626
|
CWE-909
|
CVE-2022-24448
|
An issue was discovered in fs/nfs/dir.c in the Linux kernel before 5.16.5. If an application sets the O_DIRECTORY flag, and tries to open a regular file, nfs_atomic_open() performs a regular lookup. If a regular file is found, ENOTDIR should occur, but the server instead returns uninitialized data in the file descriptor.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-24448
|
195,028
|
tensorflow
|
ab51e5b813573dc9f51efa335aebcf2994125ee9
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/ab51e5b813573dc9f51efa335aebcf2994125ee9
|
Prevent memory leak in decoding PNG images.
PiperOrigin-RevId: 409300653
Change-Id: I6182124c545989cef80cefd439b659095920763b
| 1
|
void DecodePngV2(OpKernelContext* context, StringPiece input) {
int channel_bits = (data_type_ == DataType::DT_UINT8) ? 8 : 16;
png::DecodeContext decode;
OP_REQUIRES(
context, png::CommonInitDecode(input, channels_, channel_bits, &decode),
errors::InvalidArgument("Invalid PNG. Failed to initialize decoder."));
// Verify that width and height are not too large:
// - verify width and height don't overflow int.
// - width can later be multiplied by channels_ and sizeof(uint16), so
// verify single dimension is not too large.
// - verify when width and height are multiplied together, there are a few
// bits to spare as well.
const int width = static_cast<int>(decode.width);
const int height = static_cast<int>(decode.height);
const int64_t total_size =
static_cast<int64_t>(width) * static_cast<int64_t>(height);
if (width != static_cast<int64_t>(decode.width) || width <= 0 ||
width >= (1LL << 27) || height != static_cast<int64_t>(decode.height) ||
height <= 0 || height >= (1LL << 27) || total_size >= (1LL << 29)) {
OP_REQUIRES(context, false,
errors::InvalidArgument("PNG size too large for int: ",
decode.width, " by ", decode.height));
}
Tensor* output = nullptr;
// By the existing API, we support decoding PNG with `DecodeGif` op.
// We need to make sure to return 4-D shapes when using `DecodeGif`.
if (op_type_ == "DecodeGif") {
OP_REQUIRES_OK(
context,
context->allocate_output(
0, TensorShape({1, height, width, decode.channels}), &output));
} else {
OP_REQUIRES_OK(
context,
context->allocate_output(
0, TensorShape({height, width, decode.channels}), &output));
}
if (op_type_ == "DecodeBmp") {
// TODO(b/171060723): Only DecodeBmp as op_type_ is not acceptable here
// because currently `decode_(jpeg|png|gif)` ops can decode any one of
// jpeg, png or gif but not bmp. Similarly, `decode_bmp` cannot decode
// anything but bmp formats. This behavior needs to be revisited. For more
// details, please refer to the bug.
OP_REQUIRES(context, false,
errors::InvalidArgument(
"Trying to decode PNG format using DecodeBmp op. Use "
"`decode_png` or `decode_image` instead."));
} else if (op_type_ == "DecodeAndCropJpeg") {
OP_REQUIRES(context, false,
errors::InvalidArgument(
"DecodeAndCropJpeg operation can run on JPEG only, but "
"detected PNG."));
}
if (data_type_ == DataType::DT_UINT8) {
OP_REQUIRES(
context,
png::CommonFinishDecode(
reinterpret_cast<png_bytep>(output->flat<uint8>().data()),
decode.channels * width * sizeof(uint8), &decode),
errors::InvalidArgument("Invalid PNG data, size ", input.size()));
} else if (data_type_ == DataType::DT_UINT16) {
OP_REQUIRES(
context,
png::CommonFinishDecode(
reinterpret_cast<png_bytep>(output->flat<uint16>().data()),
decode.channels * width * sizeof(uint16), &decode),
errors::InvalidArgument("Invalid PNG data, size ", input.size()));
} else if (data_type_ == DataType::DT_FLOAT) {
// `png::CommonFinishDecode` does not support `float`. First allocate
// uint16 buffer for the image and decode in uint16 (lossless). Wrap the
// buffer in `unique_ptr` so that we don't forget to delete the buffer.
std::unique_ptr<uint16[]> buffer(
new uint16[height * width * decode.channels]);
OP_REQUIRES(
context,
png::CommonFinishDecode(reinterpret_cast<png_bytep>(buffer.get()),
decode.channels * width * sizeof(uint16),
&decode),
errors::InvalidArgument("Invalid PNG data, size ", input.size()));
// Convert uint16 image data to desired data type.
// Use eigen threadpooling to speed up the copy operation.
const auto& device = context->eigen_device<Eigen::ThreadPoolDevice>();
TTypes<uint16, 3>::UnalignedConstTensor buf(buffer.get(), height, width,
decode.channels);
float scale = 1. / std::numeric_limits<uint16>::max();
// Fill output tensor with desired dtype.
output->tensor<float, 3>().device(device) = buf.cast<float>() * scale;
}
}
|
67814436772398534036630434647873886403
|
decode_image_op.cc
|
283519422605879710361255065504339887165
|
CWE-401
|
CVE-2022-23585
|
Tensorflow is an Open Source Machine Learning Framework. When decoding PNG images TensorFlow can produce a memory leak if the image is invalid. After calling `png::CommonInitDecode(..., &decode)`, the `decode` value contains allocated buffers which can only be freed by calling `png::CommonFreeDecode(&decode)`. However, several error case in the function implementation invoke the `OP_REQUIRES` macro which immediately terminates the execution of the function, without allowing for the memory free to occur. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23585
|
220,168
|
tensorflow
|
ab51e5b813573dc9f51efa335aebcf2994125ee9
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/ab51e5b813573dc9f51efa335aebcf2994125ee9
|
Prevent memory leak in decoding PNG images.
PiperOrigin-RevId: 409300653
Change-Id: I6182124c545989cef80cefd439b659095920763b
| 0
|
void DecodePngV2(OpKernelContext* context, StringPiece input) {
int channel_bits = (data_type_ == DataType::DT_UINT8) ? 8 : 16;
png::DecodeContext decode;
OP_REQUIRES(
context, png::CommonInitDecode(input, channels_, channel_bits, &decode),
errors::InvalidArgument("Invalid PNG. Failed to initialize decoder."));
// If we reach this point, then there is data in `decode` which must be
// freed by the time we end execution in this function. We cannot call
// `png::CommonFreeDecode()` before an `OP_REQUIRES` because if
// `OP_REQUIRES` constraint is satisfied then the data would be freed
// prematurely. Instead, let's use a `Cleanup` object.
auto cleanup = gtl::MakeCleanup([&decode]() {
std::cerr << "Cleanup called...\n";
png::CommonFreeDecode(&decode);
});
// Verify that width and height are not too large:
// - verify width and height don't overflow int.
// - width can later be multiplied by channels_ and sizeof(uint16), so
// verify single dimension is not too large.
// - verify when width and height are multiplied together, there are a few
// bits to spare as well.
const int width = static_cast<int>(decode.width);
const int height = static_cast<int>(decode.height);
const int64_t total_size =
static_cast<int64_t>(width) * static_cast<int64_t>(height);
if (width != static_cast<int64_t>(decode.width) || width <= 0 ||
width >= (1LL << 27) || height != static_cast<int64_t>(decode.height) ||
height <= 0 || height >= (1LL << 27) || total_size >= (1LL << 29)) {
OP_REQUIRES(context, false,
errors::InvalidArgument("PNG size too large for int: ",
decode.width, " by ", decode.height));
}
Tensor* output = nullptr;
// By the existing API, we support decoding PNG with `DecodeGif` op.
// We need to make sure to return 4-D shapes when using `DecodeGif`.
if (op_type_ == "DecodeGif") {
OP_REQUIRES_OK(
context,
context->allocate_output(
0, TensorShape({1, height, width, decode.channels}), &output));
} else {
OP_REQUIRES_OK(
context,
context->allocate_output(
0, TensorShape({height, width, decode.channels}), &output));
}
if (op_type_ == "DecodeBmp") {
// TODO(b/171060723): Only DecodeBmp as op_type_ is not acceptable here
// because currently `decode_(jpeg|png|gif)` ops can decode any one of
// jpeg, png or gif but not bmp. Similarly, `decode_bmp` cannot decode
// anything but bmp formats. This behavior needs to be revisited. For more
// details, please refer to the bug.
OP_REQUIRES(context, false,
errors::InvalidArgument(
"Trying to decode PNG format using DecodeBmp op. Use "
"`decode_png` or `decode_image` instead."));
} else if (op_type_ == "DecodeAndCropJpeg") {
OP_REQUIRES(context, false,
errors::InvalidArgument(
"DecodeAndCropJpeg operation can run on JPEG only, but "
"detected PNG."));
}
if (data_type_ == DataType::DT_UINT8) {
OP_REQUIRES(
context,
png::CommonFinishDecode(
reinterpret_cast<png_bytep>(output->flat<uint8>().data()),
decode.channels * width * sizeof(uint8), &decode),
errors::InvalidArgument("Invalid PNG data, size ", input.size()));
} else if (data_type_ == DataType::DT_UINT16) {
OP_REQUIRES(
context,
png::CommonFinishDecode(
reinterpret_cast<png_bytep>(output->flat<uint16>().data()),
decode.channels * width * sizeof(uint16), &decode),
errors::InvalidArgument("Invalid PNG data, size ", input.size()));
} else if (data_type_ == DataType::DT_FLOAT) {
// `png::CommonFinishDecode` does not support `float`. First allocate
// uint16 buffer for the image and decode in uint16 (lossless). Wrap the
// buffer in `unique_ptr` so that we don't forget to delete the buffer.
std::unique_ptr<uint16[]> buffer(
new uint16[height * width * decode.channels]);
OP_REQUIRES(
context,
png::CommonFinishDecode(reinterpret_cast<png_bytep>(buffer.get()),
decode.channels * width * sizeof(uint16),
&decode),
errors::InvalidArgument("Invalid PNG data, size ", input.size()));
// Convert uint16 image data to desired data type.
// Use eigen threadpooling to speed up the copy operation.
const auto& device = context->eigen_device<Eigen::ThreadPoolDevice>();
TTypes<uint16, 3>::UnalignedConstTensor buf(buffer.get(), height, width,
decode.channels);
float scale = 1. / std::numeric_limits<uint16>::max();
// Fill output tensor with desired dtype.
output->tensor<float, 3>().device(device) = buf.cast<float>() * scale;
}
}
|
183944225263640230240348550837981668390
|
decode_image_op.cc
|
140340118421060830961361158847913918052
|
CWE-401
|
CVE-2022-23585
|
Tensorflow is an Open Source Machine Learning Framework. When decoding PNG images TensorFlow can produce a memory leak if the image is invalid. After calling `png::CommonInitDecode(..., &decode)`, the `decode` value contains allocated buffers which can only be freed by calling `png::CommonFreeDecode(&decode)`. However, several error case in the function implementation invoke the `OP_REQUIRES` macro which immediately terminates the execution of the function, without allowing for the memory free to occur. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23585
|
195,029
|
tensorflow
|
c99d98cd189839dcf51aee94e7437b54b31f8abd
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/c99d98cd189839dcf51aee94e7437b54b31f8abd
|
Handle invalid inputs instead of crashing.
PiperOrigin-RevId: 409549744
Change-Id: I7f5935b34b53f7e426a5462fcc027bdbf5dcda24
| 1
|
void Node::RunForwardTypeInference() {
VLOG(4) << "Forward type inference: " << props_->node_def.DebugString();
if (props_->fwd_type_fn == nullptr) {
return;
}
std::vector<Node*> input_nodes(props_->input_types.size(), nullptr);
std::vector<int> input_idx(props_->input_types.size(), 0);
for (const auto& edge : in_edges_) {
if (edge->IsControlEdge()) {
continue;
}
DCHECK(edge->dst_input() < input_nodes.size()) << DebugString();
int i = edge->dst_input();
input_nodes.at(i) = edge->src();
input_idx.at(i) = edge->src_output();
}
// Note: technically, we could use a very generic type when some of the inputs
// are unknown. But there is an expectation that a node will have complete
// inputs soon, so updating intermediate types is largely unnecessary.
for (const auto* node : input_nodes) {
if (node == nullptr) {
// Incomplete inputs, bail.
ClearTypeInfo();
return;
}
}
static FullTypeDef* no_type = new FullTypeDef();
std::vector<std::reference_wrapper<const FullTypeDef>> input_types;
for (int i = 0; i < input_nodes.size(); i++) {
const auto* node = input_nodes[i];
if (node->def().has_experimental_type()) {
const auto& node_t = node->def().experimental_type();
if (node_t.type_id() != TFT_UNSET) {
int ix = input_idx[i];
DCHECK(ix < node_t.args_size())
<< "input " << i << " should have an output " << ix
<< " but instead only has " << node_t.args_size()
<< " outputs: " << node_t.DebugString();
input_types.emplace_back(node_t.args(ix));
} else {
input_types.emplace_back(*no_type);
}
} else {
// Incomplete inputs, bail.
ClearTypeInfo();
return;
}
}
const auto infer_type = props_->fwd_type_fn(input_types);
const FullTypeDef infer_typedef = infer_type.ValueOrDie();
if (infer_typedef.type_id() != TFT_UNSET) {
MaybeCopyOnWrite();
*(props_->node_def.mutable_experimental_type()) = infer_typedef;
}
}
|
285691869172413131662679092330979772991
|
graph.cc
|
172099243927919341591512227523808328051
|
CWE-125
|
CVE-2022-23592
|
Tensorflow is an Open Source Machine Learning Framework. TensorFlow's type inference can cause a heap out of bounds read as the bounds checking is done in a `DCHECK` (which is a no-op during production). An attacker can control the `input_idx` variable such that `ix` would be larger than the number of values in `node_t.args`. The fix will be included in TensorFlow 2.8.0. This is the only affected version.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23592
|
220,201
|
tensorflow
|
c99d98cd189839dcf51aee94e7437b54b31f8abd
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/c99d98cd189839dcf51aee94e7437b54b31f8abd
|
Handle invalid inputs instead of crashing.
PiperOrigin-RevId: 409549744
Change-Id: I7f5935b34b53f7e426a5462fcc027bdbf5dcda24
| 0
|
void Node::RunForwardTypeInference() {
VLOG(4) << "Forward type inference: " << props_->node_def.DebugString();
if (props_->fwd_type_fn == nullptr) {
return;
}
std::vector<Node*> input_nodes(props_->input_types.size(), nullptr);
std::vector<int> input_idx(props_->input_types.size(), 0);
for (const auto& edge : in_edges_) {
if (edge->IsControlEdge()) {
continue;
}
DCHECK(edge->dst_input() < input_nodes.size()) << DebugString();
int i = edge->dst_input();
input_nodes.at(i) = edge->src();
input_idx.at(i) = edge->src_output();
}
// Note: technically, we could use a very generic type when some of the inputs
// are unknown. But there is an expectation that a node will have complete
// inputs soon, so updating intermediate types is largely unnecessary.
for (const auto* node : input_nodes) {
if (node == nullptr) {
// Incomplete inputs, bail.
ClearTypeInfo();
return;
}
}
static FullTypeDef* no_type = new FullTypeDef();
std::vector<std::reference_wrapper<const FullTypeDef>> input_types;
for (int i = 0; i < input_nodes.size(); i++) {
const auto* node = input_nodes[i];
if (node->def().has_experimental_type()) {
const auto& node_t = node->def().experimental_type();
if (node_t.type_id() != TFT_UNSET) {
int ix = input_idx[i];
if (ix >= node_t.args_size()) {
LOG(WARNING) << name() << " has bad type information: input " << i
<< " should have an output " << ix
<< " but instead only has " << node_t.args_size()
<< " outputs: " << node_t.DebugString()
<< "\nThis indicates either "
"a bug in op registration or a corrupted graph.";
ClearTypeInfo();
return;
}
input_types.emplace_back(node_t.args(ix));
} else {
input_types.emplace_back(*no_type);
}
} else {
// Incomplete inputs, bail.
ClearTypeInfo();
return;
}
}
const auto infer_type = props_->fwd_type_fn(input_types);
const FullTypeDef infer_typedef = infer_type.ValueOrDie();
if (infer_typedef.type_id() != TFT_UNSET) {
MaybeCopyOnWrite();
*(props_->node_def.mutable_experimental_type()) = infer_typedef;
}
}
|
208747443072046126472677622190312892089
|
graph.cc
|
252683577168046425270820661985512954953
|
CWE-125
|
CVE-2022-23592
|
Tensorflow is an Open Source Machine Learning Framework. TensorFlow's type inference can cause a heap out of bounds read as the bounds checking is done in a `DCHECK` (which is a no-op during production). An attacker can control the `input_idx` variable such that `ix` would be larger than the number of values in `node_t.args`. The fix will be included in TensorFlow 2.8.0. This is the only affected version.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23592
|
195,038
|
mruby
|
27d1e0132a0804581dca28df042e7047fd27eaa8
|
https://github.com/mruby/mruby
|
https://github.com/mruby/mruby/commit/27d1e0132a0804581dca28df042e7047fd27eaa8
|
array.c: fix `mrb_ary_shift_m` initialization bug.
The `ARY_PTR` and `ARY_LEN` may be modified in `mrb_get_args`.
| 1
|
mrb_ary_shift_m(mrb_state *mrb, mrb_value self)
{
struct RArray *a = mrb_ary_ptr(self);
mrb_int len = ARY_LEN(a);
mrb_int n;
mrb_value val;
if (mrb_get_args(mrb, "|i", &n) == 0) {
return mrb_ary_shift(mrb, self);
};
ary_modify_check(mrb, a);
if (len == 0 || n == 0) return mrb_ary_new(mrb);
if (n < 0) mrb_raise(mrb, E_ARGUMENT_ERROR, "negative array shift");
if (n > len) n = len;
val = mrb_ary_new_from_values(mrb, n, ARY_PTR(a));
if (ARY_SHARED_P(a)) {
L_SHIFT:
a->as.heap.ptr+=n;
a->as.heap.len-=n;
return val;
}
if (len > ARY_SHIFT_SHARED_MIN) {
ary_make_shared(mrb, a);
goto L_SHIFT;
}
else if (len == n) {
ARY_SET_LEN(a, 0);
}
else {
mrb_value *ptr = ARY_PTR(a);
mrb_int size = len-n;
while (size--) {
*ptr = *(ptr+n);
++ptr;
}
ARY_SET_LEN(a, len-n);
}
return val;
}
|
88987793594626442814152795226896894437
|
array.c
|
131985777969528154957566525214352537878
|
CWE-476
|
CVE-2021-4188
|
mruby is vulnerable to NULL Pointer Dereference
|
https://nvd.nist.gov/vuln/detail/CVE-2021-4188
|
220,442
|
mruby
|
27d1e0132a0804581dca28df042e7047fd27eaa8
|
https://github.com/mruby/mruby
|
https://github.com/mruby/mruby/commit/27d1e0132a0804581dca28df042e7047fd27eaa8
|
array.c: fix `mrb_ary_shift_m` initialization bug.
The `ARY_PTR` and `ARY_LEN` may be modified in `mrb_get_args`.
| 0
|
mrb_ary_shift_m(mrb_state *mrb, mrb_value self)
{
mrb_int n;
if (mrb_get_args(mrb, "|i", &n) == 0) {
return mrb_ary_shift(mrb, self);
}
struct RArray *a = mrb_ary_ptr(self);
mrb_int len = ARY_LEN(a);
mrb_value val;
ary_modify_check(mrb, a);
if (len == 0 || n == 0) return mrb_ary_new(mrb);
if (n < 0) mrb_raise(mrb, E_ARGUMENT_ERROR, "negative array shift");
if (n > len) n = len;
val = mrb_ary_new_from_values(mrb, n, ARY_PTR(a));
if (ARY_SHARED_P(a)) {
L_SHIFT:
a->as.heap.ptr+=n;
a->as.heap.len-=n;
return val;
}
if (len > ARY_SHIFT_SHARED_MIN) {
ary_make_shared(mrb, a);
goto L_SHIFT;
}
else if (len == n) {
ARY_SET_LEN(a, 0);
}
else {
mrb_value *ptr = ARY_PTR(a);
mrb_int size = len-n;
while (size--) {
*ptr = *(ptr+n);
++ptr;
}
ARY_SET_LEN(a, len-n);
}
return val;
}
|
336824346603495353101799104649854425750
|
array.c
|
295526445825727607536544634773604768998
|
CWE-476
|
CVE-2021-4188
|
mruby is vulnerable to NULL Pointer Dereference
|
https://nvd.nist.gov/vuln/detail/CVE-2021-4188
|
195,039
|
tensorflow
|
e7f497570abb6b4ae5af4970620cd880e4c0c904
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904
|
Fix segfault on OOM in Conv2D.
PiperOrigin-RevId: 404655317
Change-Id: I33588dbd3f5d0fef980e3c908bf5515a9ee09ce7
| 1
|
void operator()(OpKernelContext* ctx, const Tensor& input,
const Tensor& filter, int row_stride, int col_stride,
int row_dilation, int col_dilation, const Padding& padding,
const std::vector<int64_t>& explicit_paddings, Tensor* output,
TensorFormat data_format) {
DCHECK(data_format == FORMAT_NHWC)
<< "Grouped conv implementation only "
"supports NHWC tensor format for now.";
const int64_t in_depth = input.dim_size(3);
const int64_t patch_depth = filter.dim_size(2);
const int64_t num_groups = in_depth / patch_depth;
// Shuffle input/filter tensors to have group as a leading dimension.
std::array<int64_t, 5> shuffle({3, 0, 1, 2, 4});
// Compute pre shuffle dimemnsions.
auto pre_shuffle = [&](const Tensor& tensor) -> std::array<int64, 5> {
return {tensor.dim_size(0), tensor.dim_size(1), tensor.dim_size(2),
num_groups, tensor.dim_size(3) / num_groups};
};
// Compute post shuffle dimemnsions.
auto post_shuffle = [&](const Tensor& tensor) -> std::array<int64, 5> {
return {num_groups, tensor.dim_size(0), tensor.dim_size(1),
tensor.dim_size(2), tensor.dim_size(3) / num_groups};
};
auto& device = ctx->eigen_device<CPUDevice>();
absl::BlockingCounter shuffles_completed(2);
auto on_shuffled = [&]() { shuffles_completed.DecrementCount(); };
// Shuffle input into temporary tensor.
Tensor input_shuffled(input.dtype(), TensorShape(post_shuffle(input)));
input_shuffled.tensor<T, 5>().device(device, on_shuffled) =
input.shaped<T, 5>(pre_shuffle(input)).shuffle(shuffle);
// Shuffle filter into temporary tensor.
Tensor filter_shuffled(filter.dtype(), TensorShape(post_shuffle(filter)));
filter_shuffled.tensor<T, 5>().device(device, on_shuffled) =
filter.shaped<T, 5>(pre_shuffle(filter)).shuffle(shuffle);
// Wait for the completion of input/filter shuffles.
shuffles_completed.Wait();
// Write group convolution results into temporary output tensor.
Tensor output_shuffled(output->dtype(), TensorShape(post_shuffle(*output)));
for (int64_t i = 0; i < num_groups; ++i) {
// TODO(ezhulenev): Run this loop using `parallelFor` (regular parallelFor
// will lead to deadlock, SpatialConvolution has to use async Eigen
// assignment). This requires small changes to Eigen to support async
// exeuction for tensor chipping operation.
// TODO(ezhulenev): Grouped convolution should also support 1x1 filter
// optimization.
auto input_slice = input_shuffled.tensor<T, 5>().template chip<0>(i);
auto filter_slice = filter_shuffled.tensor<T, 5>().template chip<0>(i);
auto output_slice = output_shuffled.tensor<T, 5>().template chip<0>(i);
if (padding == EXPLICIT) {
functor::SpatialConvolution<CPUDevice, T>()(
ctx->eigen_device<CPUDevice>(), output_slice, input_slice,
filter_slice, row_stride, col_stride, row_dilation, col_dilation,
static_cast<int>(explicit_paddings[2]),
static_cast<int>(explicit_paddings[3]),
static_cast<int>(explicit_paddings[4]),
static_cast<int>(explicit_paddings[5]));
} else {
functor::SpatialConvolution<CPUDevice, T>()(
ctx->eigen_device<CPUDevice>(), output_slice, input_slice,
filter_slice, row_stride, col_stride, row_dilation, col_dilation,
BrainPadding2EigenPadding(padding));
}
}
// Shuffle temporary output back into pre-shuffled shape.
std::array<int64_t, 5> rev_shuffle({1, 2, 3, 0, 4});
output->shaped<T, 5>(pre_shuffle(*output)).device(device) =
output_shuffled.tensor<T, 5>().shuffle(rev_shuffle);
}
|
257618220779157714024325768166416151732
|
conv_ops.cc
|
252300068611383622428481854806618645318
|
CWE-354
|
CVE-2021-41206
|
TensorFlow is an open source platform for machine learning. In affected versions several TensorFlow operations are missing validation for the shapes of the tensor arguments involved in the call. Depending on the API, this can result in undefined behavior and segfault or `CHECK`-fail related crashes but in some scenarios writes and reads from heap populated arrays are also possible. We have discovered these issues internally via tooling while working on improving/testing GPU op determinism. As such, we don't have reproducers and there will be multiple fixes for these issues. These fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2021-41206
|
220,449
|
tensorflow
|
e7f497570abb6b4ae5af4970620cd880e4c0c904
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904
|
Fix segfault on OOM in Conv2D.
PiperOrigin-RevId: 404655317
Change-Id: I33588dbd3f5d0fef980e3c908bf5515a9ee09ce7
| 0
|
void operator()(OpKernelContext* ctx, const Tensor& input,
const Tensor& filter, int row_stride, int col_stride,
int row_dilation, int col_dilation, const Padding& padding,
const std::vector<int64_t>& explicit_paddings, Tensor* output,
TensorFormat data_format) {
DCHECK(data_format == FORMAT_NHWC)
<< "Grouped conv implementation only "
"supports NHWC tensor format for now.";
const int64_t in_depth = input.dim_size(3);
const int64_t patch_depth = filter.dim_size(2);
const int64_t num_groups = in_depth / patch_depth;
// Shuffle input/filter tensors to have group as a leading dimension.
std::array<int64_t, 5> shuffle({3, 0, 1, 2, 4});
// Compute pre shuffle dimemnsions.
auto pre_shuffle = [&](const Tensor& tensor) -> std::array<int64, 5> {
return {tensor.dim_size(0), tensor.dim_size(1), tensor.dim_size(2),
num_groups, tensor.dim_size(3) / num_groups};
};
// Compute post shuffle dimemnsions.
auto post_shuffle = [&](const Tensor& tensor) -> std::array<int64, 5> {
return {num_groups, tensor.dim_size(0), tensor.dim_size(1),
tensor.dim_size(2), tensor.dim_size(3) / num_groups};
};
auto& device = ctx->eigen_device<CPUDevice>();
absl::BlockingCounter shuffles_completed(2);
auto on_shuffled = [&]() { shuffles_completed.DecrementCount(); };
// Shuffle input into temporary tensor.
Tensor input_shuffled;
OP_REQUIRES_OK(
ctx, ctx->allocate_temp(input.dtype(), TensorShape(post_shuffle(input)),
&input_shuffled));
input_shuffled.tensor<T, 5>().device(device, on_shuffled) =
input.shaped<T, 5>(pre_shuffle(input)).shuffle(shuffle);
// Shuffle filter into temporary tensor.
Tensor filter_shuffled;
OP_REQUIRES_OK(ctx, ctx->allocate_temp(filter.dtype(),
TensorShape(post_shuffle(filter)),
&filter_shuffled));
filter_shuffled.tensor<T, 5>().device(device, on_shuffled) =
filter.shaped<T, 5>(pre_shuffle(filter)).shuffle(shuffle);
// Wait for the completion of input/filter shuffles.
shuffles_completed.Wait();
// Write group convolution results into temporary output tensor.
Tensor output_shuffled;
OP_REQUIRES_OK(ctx, ctx->allocate_temp(output->dtype(),
TensorShape(post_shuffle(*output)),
&output_shuffled));
for (int64_t i = 0; i < num_groups; ++i) {
// TODO(ezhulenev): Run this loop using `parallelFor` (regular parallelFor
// will lead to deadlock, SpatialConvolution has to use async Eigen
// assignment). This requires small changes to Eigen to support async
// exeuction for tensor chipping operation.
// TODO(ezhulenev): Grouped convolution should also support 1x1 filter
// optimization.
auto input_slice = input_shuffled.tensor<T, 5>().template chip<0>(i);
auto filter_slice = filter_shuffled.tensor<T, 5>().template chip<0>(i);
auto output_slice = output_shuffled.tensor<T, 5>().template chip<0>(i);
if (padding == EXPLICIT) {
functor::SpatialConvolution<CPUDevice, T>()(
ctx->eigen_device<CPUDevice>(), output_slice, input_slice,
filter_slice, row_stride, col_stride, row_dilation, col_dilation,
static_cast<int>(explicit_paddings[2]),
static_cast<int>(explicit_paddings[3]),
static_cast<int>(explicit_paddings[4]),
static_cast<int>(explicit_paddings[5]));
} else {
functor::SpatialConvolution<CPUDevice, T>()(
ctx->eigen_device<CPUDevice>(), output_slice, input_slice,
filter_slice, row_stride, col_stride, row_dilation, col_dilation,
BrainPadding2EigenPadding(padding));
}
}
// Shuffle temporary output back into pre-shuffled shape.
std::array<int64_t, 5> rev_shuffle({1, 2, 3, 0, 4});
output->shaped<T, 5>(pre_shuffle(*output)).device(device) =
output_shuffled.tensor<T, 5>().shuffle(rev_shuffle);
}
|
52476148530312265483336987277784785500
|
conv_ops.cc
|
162425470101834995272420301327894414264
|
CWE-354
|
CVE-2021-41206
|
TensorFlow is an open source platform for machine learning. In affected versions several TensorFlow operations are missing validation for the shapes of the tensor arguments involved in the call. Depending on the API, this can result in undefined behavior and segfault or `CHECK`-fail related crashes but in some scenarios writes and reads from heap populated arrays are also possible. We have discovered these issues internally via tooling while working on improving/testing GPU op determinism. As such, we don't have reproducers and there will be multiple fixes for these issues. These fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2021-41206
|
195,040
|
tensorflow
|
e21af685e1828f7ca65038307df5cc06de4479e8
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/e21af685e1828f7ca65038307df5cc06de4479e8
|
Fix Null-pointer dereference in BuildXlaCompilationCache
If ConfigProto is not used, then use the default settings which is to allow all devices.
PiperOrigin-RevId: 420391800
Change-Id: I88161ad7042990aef678e77b597a2fb2c8f815be
| 1
|
Status BuildXlaCompilationCache(DeviceBase* device, FunctionLibraryRuntime* flr,
const XlaPlatformInfo& platform_info,
XlaCompilationCache** cache) {
if (platform_info.xla_device_metadata()) {
*cache = new XlaCompilationCache(
platform_info.xla_device_metadata()->client(),
platform_info.xla_device_metadata()->jit_device_type());
return Status::OK();
}
auto platform =
se::MultiPlatformManager::PlatformWithId(platform_info.platform_id());
if (!platform.ok()) {
return platform.status();
}
StatusOr<xla::Compiler*> compiler_for_platform =
xla::Compiler::GetForPlatform(platform.ValueOrDie());
if (!compiler_for_platform.ok()) {
// In some rare cases (usually in unit tests with very small clusters) we
// may end up transforming an XLA cluster with at least one GPU operation
// (which would normally force the cluster to be compiled using XLA:GPU)
// into an XLA cluster with no GPU operations (i.e. containing only CPU
// operations). Such a cluster can fail compilation (in way that
// MarkForCompilation could not have detected) if the CPU JIT is not linked
// in.
//
// So bail out of _XlaCompile in this case, and let the executor handle the
// situation for us.
const Status& status = compiler_for_platform.status();
if (status.code() == error::NOT_FOUND) {
return errors::Unimplemented("Could not find compiler for platform ",
platform.ValueOrDie()->Name(), ": ",
status.ToString());
}
}
xla::LocalClientOptions client_options;
client_options.set_platform(platform.ValueOrDie());
client_options.set_intra_op_parallelism_threads(
device->tensorflow_cpu_worker_threads()->num_threads);
string allowed_gpus =
flr->config_proto()->gpu_options().visible_device_list();
TF_ASSIGN_OR_RETURN(absl::optional<std::set<int>> gpu_ids,
ParseVisibleDeviceList(allowed_gpus));
client_options.set_allowed_devices(gpu_ids);
auto client = xla::ClientLibrary::GetOrCreateLocalClient(client_options);
if (!client.ok()) {
return client.status();
}
const XlaOpRegistry::DeviceRegistration* registration;
if (!XlaOpRegistry::GetCompilationDevice(platform_info.device_type().type(),
®istration)) {
return errors::InvalidArgument("No JIT device registered for ",
platform_info.device_type().type());
}
*cache = new XlaCompilationCache(
client.ValueOrDie(), DeviceType(registration->compilation_device_name));
return Status::OK();
}
|
179065639871904945359341382009364285020
|
xla_platform_info.cc
|
171804916137745205288117058026592469555
|
CWE-476
|
CVE-2022-23595
|
Tensorflow is an Open Source Machine Learning Framework. When building an XLA compilation cache, if default settings are used, TensorFlow triggers a null pointer dereference. In the default scenario, all devices are allowed, so `flr->config_proto` is `nullptr`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23595
|
220,463
|
tensorflow
|
e21af685e1828f7ca65038307df5cc06de4479e8
|
https://github.com/tensorflow/tensorflow
|
https://github.com/tensorflow/tensorflow/commit/e21af685e1828f7ca65038307df5cc06de4479e8
|
Fix Null-pointer dereference in BuildXlaCompilationCache
If ConfigProto is not used, then use the default settings which is to allow all devices.
PiperOrigin-RevId: 420391800
Change-Id: I88161ad7042990aef678e77b597a2fb2c8f815be
| 0
|
Status BuildXlaCompilationCache(DeviceBase* device, FunctionLibraryRuntime* flr,
const XlaPlatformInfo& platform_info,
XlaCompilationCache** cache) {
if (platform_info.xla_device_metadata()) {
*cache = new XlaCompilationCache(
platform_info.xla_device_metadata()->client(),
platform_info.xla_device_metadata()->jit_device_type());
return Status::OK();
}
auto platform =
se::MultiPlatformManager::PlatformWithId(platform_info.platform_id());
if (!platform.ok()) {
return platform.status();
}
StatusOr<xla::Compiler*> compiler_for_platform =
xla::Compiler::GetForPlatform(platform.ValueOrDie());
if (!compiler_for_platform.ok()) {
// In some rare cases (usually in unit tests with very small clusters) we
// may end up transforming an XLA cluster with at least one GPU operation
// (which would normally force the cluster to be compiled using XLA:GPU)
// into an XLA cluster with no GPU operations (i.e. containing only CPU
// operations). Such a cluster can fail compilation (in way that
// MarkForCompilation could not have detected) if the CPU JIT is not linked
// in.
//
// So bail out of _XlaCompile in this case, and let the executor handle the
// situation for us.
const Status& status = compiler_for_platform.status();
if (status.code() == error::NOT_FOUND) {
return errors::Unimplemented("Could not find compiler for platform ",
platform.ValueOrDie()->Name(), ": ",
status.ToString());
}
}
xla::LocalClientOptions client_options;
client_options.set_platform(platform.ValueOrDie());
client_options.set_intra_op_parallelism_threads(
device->tensorflow_cpu_worker_threads()->num_threads);
if (flr->config_proto()) {
string allowed_gpus =
flr->config_proto()->gpu_options().visible_device_list();
TF_ASSIGN_OR_RETURN(absl::optional<std::set<int>> gpu_ids,
ParseVisibleDeviceList(allowed_gpus));
client_options.set_allowed_devices(gpu_ids);
}
auto client = xla::ClientLibrary::GetOrCreateLocalClient(client_options);
if (!client.ok()) {
return client.status();
}
const XlaOpRegistry::DeviceRegistration* registration;
if (!XlaOpRegistry::GetCompilationDevice(platform_info.device_type().type(),
®istration)) {
return errors::InvalidArgument("No JIT device registered for ",
platform_info.device_type().type());
}
*cache = new XlaCompilationCache(
client.ValueOrDie(), DeviceType(registration->compilation_device_name));
return Status::OK();
}
|
150487232572114145456611052017035566512
|
xla_platform_info.cc
|
318276067980065095571736754899104138947
|
CWE-476
|
CVE-2022-23595
|
Tensorflow is an Open Source Machine Learning Framework. When building an XLA compilation cache, if default settings are used, TensorFlow triggers a null pointer dereference. In the default scenario, all devices are allowed, so `flr->config_proto` is `nullptr`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
|
https://nvd.nist.gov/vuln/detail/CVE-2022-23595
|
PrimeVul-Paired Original Test Dataset
Overview
This dataset contains the original paired test split from the PrimeVul dataset, provided for reproducibility purposes. The data is sourced from the paper "PrimeVul: Vulnerability Detection with Code Language Models: How Far Are We?" and includes both the default (single functions) and paired (vulnerable/non-vulnerable pairs) configurations.
Citation
If you use this dataset, please cite the original PrimeVul paper:
@article{primevul2024,
title={PrimeVul: Vulnerability Detection with Code Language Models: How Far Are We?},
author={[Authors from the original paper]},
journal={arXiv preprint arXiv:2403.18624},
year={2024},
url={https://arxiv.org/abs/2403.18624}
}
Dataset Configurations
- Description: Paired vulnerability detection dataset with before/after patch pairs
- Size: 870 test samples
- Format: Each sample represents either the vulnerable or patched version of a function
- Fields:
idx: Unique sample identifierproject: Source project namecommit_id: Git commit hashtarget: Binary label (0=non-vulnerable, 1=vulnerable)func: Source code functionfunc_hash: Function hashcwe: Common Weakness Enumeration categoriescve: CVE identifier (if applicable)project_url: Source project repository URLcommit_url: Direct link to the commit- Additional metadata fields
Data Source
The original JSONL files are available from the PrimeVul authors at:
- Google Drive: https://drive.google.com/drive/folders/19iLaNDS0z99N8kB_jBRTmDLehwZBolMY
- GitHub Repository: https://github.com/DLVulDet/PrimeVul
Data Format
This dataset provides the test splits in Parquet format for easy loading with HuggingFace datasets. The original data was in JSONL format and has been converted while preserving all original fields and values.
Usage
from datasets import load_dataset
# Login using e.g. `huggingface-cli login` to access this dataset
ds = load_dataset("Code-TREAT/PrimeVul-Paired_original")
Purpose
This dataset is provided by the Code-TREAT project to ensure reproducibility and consistency in vulnerability detection research. By providing the exact test splits used in evaluations, researchers can:
- Reproduce results from papers using this dataset
- Compare methods fairly using identical test data
- Validate new approaches against established benchmarks
License
Please refer to the original PrimeVul repository for licensing information: https://github.com/DLVulDet/PrimeVul
Acknowledgments
We thank the authors of PrimeVul for making their dataset publicly available and for their contributions to vulnerability detection research.
Contact
For questions about this dataset distribution, please refer to the original PrimeVul repository or the Code-TREAT project.
- Downloads last month
- 27