| > 上述数据集为ABSA(Aspect-Based Sentiment Analysis)领域数据集,基本形式为从句子中抽取:方面术语、方面类别(术语类别)、术语在上下文中情感极性以及针对该术语的观点词,不同数据集抽取不同的信息,这点在jsonl文件的“instruction”键中有分别提到,在此我将其改造为了生成任务,需要模型按照一定格式生成抽取结果。 | |
| #### 以acos数据集中抽取的jsonl文件一条数据举例: | |
| ``` | |
| { | |
| "task_type": "generation", | |
| "dataset": "acos", | |
| "input": ["the computer has difficulty switching between tablet and computer ."], | |
| "output": "[['computer', 'laptop usability', 'negative', 'difficulty']]", | |
| "situation": "none", | |
| "label": "", | |
| "extra": "", | |
| "instruction": " | |
| Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. | |
| Input: A sentence | |
| Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: \"Null\" means that there is no occurrence in the sentence. | |
| Example: | |
| Sentence: \"Also it's not a true SSD drive in there but eMMC, which makes a difference.\" | |
| Output: [['SSD drive', 'hard_disc operation_performance', 'negative', 'NULL']]' | |
| " | |
| } | |
| ``` | |
| > 此处未设置label和extra,在instruction中以如上所示的字符串模板,并给出一个例子进行one-shot,ABSA领域数据集(absa-quad,acos,arts,aste-data-v2,mams,semeval-2014,semeval-2015,semeval-2016,towe)每个数据集对应instruction模板相同,内容有细微不同,且部分数据集存在同一数据集不同数据instruction内容不同的情况。 | |
| #### 原始数据集 | |
| - 数据[链接](https://github.com/xuuuluuu/Position-Aware-Tagging-for-ASTE) | |
| - Paper: [Position-Aware Tagging for Aspect Sentiment Triplet Extraction](https://arxiv.org/abs/2010.02609) | |
| - 说明:原始数据集由laptop14、restaurant14、restaurant15以及restaurant16四部分文件组成。 | |
| #### 当前SOTA | |
| *数据来自[Easy-to-Hard Learning for Information Extraction](https://arxiv.org/abs/2305.09193)* | |
| - 评价指标:F1 Score | |
| - SOTA模型:E2H-large | |
| - 在laptop14数据部分:**75.92** | |
| - 在restaurant14数据部分:**65.98** | |
| - 在restaurant15数据部分:**68.80** | |
| - 在restaurant16数据部分:**75.46** | |
| - 平均:**71.54** | |
| - Paper:[Easy-to-Hard Learning for Information Extraction](https://arxiv.org/pdf/2305.09193.pdf) | |
| - 说明:该论文来自[Google Scholar](https://scholar.google.com/scholar?as_ylo=2023&hl=zh-CN&as_sdt=2005&sciodt=0,5&cites=8596892198266513995&scipsc=)检索到的引用ASTE-data-v2原论文的论文之一,在比较2023年的一些论文工作后筛选了一个最优指标以及模型。 | |