Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Balanced Accuracy Metrics for 🤗 Evaluate

A minimal, production-ready set of balanced accuracy metrics for imbalanced vision/NLP tasks, implemented as plain Python scripts that you can load with evaluate from a dataset-type repo on the Hugging Face Hub.

What this is

Three drop‑in metrics that focus on fair evaluation under class imbalance:

  • balanced_accuracy.pybinary & multiclass balanced accuracy with options for sample_weight, threshold="auto" (Youden’s J), ignore_index, adjusted, class_mask, return_per_class, and support_per_class.
  • balanced_accuracy_multilabel.pymultilabel balanced accuracy with average={"macro","weighted","micro"}, threshold="auto" (per label), sample_weight, class_mask, ignore_index, and support_per_label.
  • balanced_topk_accuracy.pybalanced top‑k accuracy (macro top‑k recall across classes) with sample_weight, multiple k values, and class masking.

Why it’s useful

  • Works without packaging: just download the script and load via evaluate.
  • Designed for long‑tail / imbalanced setups; supports masking, weighting, and chance‑adjustment.
  • Clear error messages and reason fields for edge cases.

Requirements & Installation

Install the minimal dependencies (Python ≥3.9 recommended):

pip install --upgrade pip
pip install evaluate datasets huggingface_hub numpy

Windows note: You may see a symlink warning from huggingface_hub. It only affects caching and can be ignored. To silence it, set HF_HUB_DISABLE_SYMLINKS_WARNING=1 or enable Windows Developer Mode.


Repository Layout

This project is intentionally lightweight—each metric is a single Python file living in a dataset‑type Hub repo:

balanced_accuracy.py
balanced_accuracy_multilabel.py
balanced_topk_accuracy.py
README.md

All three metrics are loadable from the Hub via hf_hub_download(...) + evaluate.load(local_path, module_type="metric") — no installation step required.


Quickstart

0) Common helper

from huggingface_hub import hf_hub_download
import evaluate

REPO = "OliverOnHF/balanced-accuracy"   # dataset-type repo
REV  = "main"                           # or a specific commit hash for reproducibility

def load_metric_from_hf(filename):
    path = hf_hub_download(REPO, filename, repo_type="dataset", revision=REV)
    return evaluate.load(path, module_type="metric")

1) Binary & Multiclass — balanced_accuracy.py

m = load_metric_from_hf("balanced_accuracy.py")

# Binary (labels)
print(m.compute(references=[0,1,1,0], predictions=[0,1,0,0], task="binary"))
# → {'balanced_accuracy': 0.75}

# Binary (probabilities) + automatic threshold search (Youden’s J)
print(m.compute(references=[0,1,1,0],
                predictions=[0.2, 0.9, 0.1, 0.3],
                task="binary", threshold="auto"))
# → {'balanced_accuracy': 0.75, 'optimal_threshold': 0.6}

# Multiclass (macro BA) with per-class recall & sample_weight
print(m.compute(references=[0,1,2,1],
                predictions=[0,2,2,1],
                task="multiclass", num_classes=3,
                return_per_class=True,
                sample_weight=[1, 0.5, 1, 1]))
# → {'balanced_accuracy': 0.888888..., 'per_class_recall': [1.0, 0.6666..., 1.0], 'support_per_class': [1.0, 1.5, 1.0]}

# Class masking (e.g., tail classes only)
print(m.compute(references=[0,1,2,1], predictions=[0,2,2,1],
                task="multiclass", num_classes=3,
                class_mask=[1,2], return_per_class=True))

Key arguments

  • task: "binary" or "multiclass" (default "binary")
  • threshold: float in (0,1) or "auto" (binary probabilities only). If predictions are 0/1 labels, threshold is ignored.
  • num_classes: for multiclass; inferred if not set (when labels are 0..K‑1).
  • sample_weight: per‑sample weights; confusion counts become weighted sums.
  • ignore_index: skip samples where reference == ignore_index.
  • adjusted: chance‑corrected BA (2*BA-1 for binary; (BA-1/K)/(1-1/K) for multiclass).
  • class_mask: compute macro‑BA over a subset of classes.
  • return_per_class: also return per‑class recalls; support_per_class is count or weighted sum (if sample_weight is provided).

2) Multilabel — balanced_accuracy_multilabel.py

m = load_metric_from_hf("balanced_accuracy_multilabel.py")

y_true = [[1,0,1],
          [0,1,0]]
y_pred = [[1,0,0],
          [0,1,1]]

# Labels (0/1)
print(m.compute(references=y_true, predictions=y_pred, return_per_label=True))
# → {'balanced_accuracy': 0.6666..., 'per_label_ba': [1.0, 1.0, 0.0], 'support_per_label': [1, 1, 1]}

# Probabilities + per-label automatic threshold
probs = [[0.9,0.2,0.1],
         [0.1,0.8,0.7]]
print(m.compute(references=y_true, predictions=probs,
                from_probas=True, threshold="auto"))
# → {'balanced_accuracy': 0.8333..., 'per_label_thresholds': [0.5, 0.5, ~0.7]}

# Weighted / micro / class_mask
print(m.compute(references=y_true, predictions=y_pred,
                average="micro",
                sample_weight=[1.0, 0.5],
                class_mask=[0,2]))

Key arguments

  • from_probas: if True, predictions are probabilities in [0,1]; else must be 0/1 labels.
  • threshold: float in (0,1) or "auto" (when from_probas=True; "auto" selects a threshold per label).
  • average: "macro" | "weighted" | "micro"
    • macro: average BA across labels;
    • weighted: weighted by each label’s positive support;
    • micro: pool TP/TN/FP/FN across all labels then compute BA.
  • class_mask: evaluate only the specified label indices.
  • return_per_label: additionally return per_label_ba and support_per_label.

3) Balanced Top‑K Accuracy — balanced_topk_accuracy.py

import numpy as np
m = load_metric_from_hf("balanced_topk_accuracy.py")

scores = np.array([[0.7,  0.2, 0.1],
                   [0.1,  0.3, 0.6],
                   [0.05, 0.05,0.9],
                   [0.05, 0.9, 0.05]])
y_true = [0,1,2,1]

# top-1 (macro recall across classes)
print(m.compute(references=y_true, predictions=scores, k=1, return_per_class=True))
# → {'balanced_topk_accuracy': 0.8333..., 'per_class_recall': [1.0, 0.5, 1.0]}

# multiple k at once
print(m.compute(references=y_true, predictions=scores, k_list=[1,2], return_per_class=True))
# → {'balanced_topk_accuracy': {1: 0.8333..., 2: 1.0}, 'per_class_recall': {1: [...], 2: [...]}}

# with sample_weight and class_mask
print(m.compute(references=y_true, predictions=scores, k=1,
                sample_weight=[1,0.5,1,1], class_mask=[0,1,2]))

Intuition: For each class c, compute recall@k among samples of class c, then macro‑average across classes (optionally over a masked subset).


Expected Outputs (Sanity Check)

These should match what you get locally:

# Binary BA
{'balanced_accuracy': 0.75}

# Binary BA with auto threshold (probs: [0.2, 0.9, 0.1, 0.3])
{'balanced_accuracy': 0.75, 'optimal_threshold': 0.6}

# Multiclass BA with weights
{'balanced_accuracy': 0.888888..., 'per_class_recall': [1.0, 0.6666..., 1.0], 'support_per_class': [1.0, 1.5, 1.0]}

# Multilabel BA (labels)
{'balanced_accuracy': 0.6666..., 'per_label_ba': [1.0, 1.0, 0.0], 'support_per_label': [1, 1, 1]}

# Multilabel BA (probs + auto thresholds)
{'balanced_accuracy': 0.8333..., 'per_label_thresholds': [0.5, 0.5, ~0.7]}

# Balanced top-1 and top-2
{'balanced_topk_accuracy': 0.8333..., 'per_class_recall': [1.0, 0.5, 1.0]}
{'balanced_topk_accuracy': {1: 0.8333..., 2: 1.0}, 'per_class_recall': {1: [...], 2: [...]}}

API Reference (TL;DR)

balanced_accuracy.py (binary/multiclass)

  • Args:
    predictions, references, task={"binary","multiclass"}, num_classes=None,
    adjusted=False, zero_division=0.0, threshold=None|"auto" (binary prob),
    ignore_index=None, return_per_class=False, class_mask=None, sample_weight=None
  • Returns:
    {"balanced_accuracy": float} + optional {"optimal_threshold": float} (binary, auto) +
    optional {"per_class_recall": list[float], "support_per_class": list[int|float]} (multiclass).

balanced_accuracy_multilabel.py

  • Args:
    predictions, references, from_probas=False, threshold=0.5|"auto",
    zero_division=0.0, average="macro"|"weighted"|"micro", class_mask=None,
    ignore_index=None, return_per_label=False, sample_weight=None
  • Returns:
    {"balanced_accuracy": float} + optional {"per_label_thresholds": list[float]} (auto) +
    optional {"per_label_ba": list[float], "support_per_label": list[int]}.

balanced_topk_accuracy.py

  • Args:
    predictions (N,K), references (N), k=1 or k_list=[...], class_mask=None,
    sample_weight=None, zero_division=0.0, return_per_class=False
  • Returns:
    {"balanced_topk_accuracy": float | dict[int,float]} + optional {"per_class_recall": ...}.

Error Messages & Special Reasons

Friendly messages you may encounter by design:

  • Length/shape: “Mismatch in the number of predictions …” / “Multilabel expects 2D arrays …”
  • NaN/Inf: “predictions contains NaN/Inf.”
  • Binary:
    • labels not in {0,1} → “For binary with label predictions, values must be 0/1.”
    • probs not in [0,1] → “For binary with probabilities, predictions must be in [0,1].”
  • Multiclass: label out of range → “predictions/references must be in [0,K‑1] …”
  • Multilabel: average invalid / prob or label value invalid / shape mismatch
  • Top‑k: invalid k / label out of range
  • Reasoned NaN:
    • {"reason": "empty_after_ignore_index"} — all samples were ignored
    • {"reason": "empty_class_mask_after_filtering"} — class/label mask removed everything

Reproducible Smoke Test

Copy into test_all.py and run:

from huggingface_hub import hf_hub_download
import evaluate, numpy as np

REPO, REV = "OliverOnHF/balanced-accuracy", "main"
def load(fname): return evaluate.load(hf_hub_download(REPO, fname, repo_type="dataset", revision=REV), module_type="metric")

# 1) binary & multiclass
mba = load("balanced_accuracy.py")
print(mba.compute(references=[0,1,1,0], predictions=[0,1,0,0], task="binary"))
print(mba.compute(references=[0,1,1,0], predictions=[0.2,0.9,0.1,0.3], task="binary", threshold="auto"))
print(mba.compute(references=[0,1,2,1], predictions=[0,2,2,1], task="multiclass", num_classes=3, return_per_class=True, sample_weight=[1,0.5,1,1]))

# 2) multilabel
mml = load("balanced_accuracy_multilabel.py")
y_true = [[1,0,1],[0,1,0]]; y_pred = [[1,0,0],[0,1,1]]; probs = [[0.9,0.2,0.1],[0.1,0.8,0.7]]
print(mml.compute(references=y_true, predictions=y_pred, return_per_label=True))
print(mml.compute(references=y_true, predictions=probs, from_probas=True, threshold="auto"))

# 3) top-k
mtk = load("balanced_topk_accuracy.py")
scores = np.array([[0.7,0.2,0.1],[0.1,0.3,0.6],[0.05,0.05,0.9],[0.05,0.9,0.05]]); y_true = [0,1,2,1]
print(mtk.compute(references=y_true, predictions=scores, k=1, return_per_class=True))
print(mtk.compute(references=y_true, predictions=scores, k_list=[1,2], return_per_class=True))

Tips

  • Pin revision to a commit hash for exact reproducibility.
  • support_per_class / support_per_label are counts when unweighted; if sample_weight is provided they become effective weight sums (floats).
  • For extreme long‑tail distributions, combine class_mask with per‑class analysis for stable reporting.

License

MIT (suggested). If you need a specific license, add a root LICENSE file.

Downloads last month
9