|
|
import os
|
|
|
import tqdm
|
|
|
import cv2
|
|
|
import numpy as np
|
|
|
import pickle
|
|
|
|
|
|
|
|
|
root="/home/chentingwei/LoFi/lofi"
|
|
|
|
|
|
|
|
|
|
|
|
net = cv2.dnn.readNet("./model/yolov3.weights", "./model/yolov3.cfg")
|
|
|
|
|
|
layer_names = net.getLayerNames()
|
|
|
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
|
|
|
|
|
|
src_points = np.array([[0, 0], [180, 0], [0, 480], [180, 480]], dtype="float32")
|
|
|
dst_points = np.array([[222, 210], [374, 209], [65, 458], [495, 451]], dtype="float32")
|
|
|
|
|
|
|
|
|
M = cv2.getPerspectiveTransform(src_points, dst_points)
|
|
|
|
|
|
data=[]
|
|
|
|
|
|
def get_gt(img_path,net):
|
|
|
image = cv2.imread(img_path)
|
|
|
|
|
|
height, width, channels = image.shape
|
|
|
|
|
|
|
|
|
blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
|
|
|
net.setInput(blob)
|
|
|
outs = net.forward(output_layers)
|
|
|
|
|
|
|
|
|
class_ids = []
|
|
|
confidences = []
|
|
|
boxes = []
|
|
|
|
|
|
for out in outs:
|
|
|
for detection in out:
|
|
|
scores = detection[5:]
|
|
|
class_id = np.argmax(scores)
|
|
|
confidence = scores[class_id]
|
|
|
if confidence > 0.5:
|
|
|
center_x = int(detection[0] * width)
|
|
|
center_y = int(detection[1] * height)
|
|
|
w = int(detection[2] * width)
|
|
|
h = int(detection[3] * height)
|
|
|
x = int(center_x - w / 2)
|
|
|
y = int(center_y - h / 2)
|
|
|
boxes.append([x, y, w, h])
|
|
|
confidences.append(float(confidence))
|
|
|
class_ids.append(class_id)
|
|
|
|
|
|
|
|
|
if len(boxes) > 0:
|
|
|
max_confidence_idx = np.argmax(confidences)
|
|
|
boxes = [boxes[max_confidence_idx]]
|
|
|
x, y, w, h = boxes[0]
|
|
|
foot_position_image = (x + w // 2, y + h)
|
|
|
|
|
|
person_img_coords = np.array([[foot_position_image[0], foot_position_image[1]]],
|
|
|
dtype="float32")
|
|
|
actual_coords = cv2.perspectiveTransform(np.array([person_img_coords]), np.linalg.inv(M))
|
|
|
return actual_coords[0,0,0],actual_coords[0,0,1]
|
|
|
|
|
|
|
|
|
people_id=0
|
|
|
for people in os.listdir(root):
|
|
|
print(people)
|
|
|
path=os.path.join(root,people)
|
|
|
|
|
|
pbar = tqdm.tqdm(os.listdir(path))
|
|
|
|
|
|
x_list = []
|
|
|
y_list = []
|
|
|
img_path_list = []
|
|
|
time_list = []
|
|
|
|
|
|
for pic in pbar:
|
|
|
if "color" not in pic:
|
|
|
continue
|
|
|
|
|
|
|
|
|
timestamp = pic.split("_")
|
|
|
timestamp = timestamp[-1].split(".")
|
|
|
timestamp = timestamp[0]
|
|
|
timestamp = timestamp.split("-")
|
|
|
|
|
|
timestamp = float(timestamp[0]) * 60 * 60 * 100 + float(timestamp[1]) * 60 * 100 + float(timestamp[2]) * 100 + float(timestamp[3])
|
|
|
|
|
|
img_path = os.path.join(path, pic)
|
|
|
x, y = get_gt(img_path, net)
|
|
|
x_list.append(x)
|
|
|
y_list.append(y)
|
|
|
img_path_list.append(img_path)
|
|
|
time_list.append(timestamp)
|
|
|
|
|
|
data.append({
|
|
|
'timestamp': np.array(time_list),
|
|
|
'people_name': people,
|
|
|
'people': people_id,
|
|
|
'x': np.array(x_list),
|
|
|
'y': np.array(y_list),
|
|
|
'img_path': img_path_list
|
|
|
})
|
|
|
people_id += 1
|
|
|
|
|
|
output_file = './gt_data.pkl'
|
|
|
with open(output_file, 'wb') as f:
|
|
|
pickle.dump(data, f)
|
|
|
|