image
unknown | text
string |
|---|---|
"iVBORw0KGgoAAAANSUhEUgAAAIAAAAAgCAAAAAD/SS/5AAAChklEQVR4nNVX3dWjIBC9355tgC0BSyAlYAl8JWAJWIKWACWsJUgJoQQpQUpgHxITQUw8u8nJ2fsUZga4mWF+/Ir4LH4mq7Yf+QPjJ+oygnXBA5RwRp4SeD2sGajgBAjuO0hFtxZxDYUxPsAT9RYzB9RtoVaLG3688u8Gl61rC90tK9J16Jt8zwsJ+LYaUkntoORqrThM/y4Cvql6kj5R40BUIpFAH95CwDWVYXrKCAAiffiCIJg3ELD1yfDxLFNpcADLLBlgjxLwbb38NLXZNQNsXVsxbiuEA5CnHbuI19jJs1kRvUgnAkx7aagpIKdSDo756TFGtZHteMCd7HTzKP0N7LjAVE1Qky7Ul6MoV0JX03H1fDhzvmTWDp4oVSqwx1H0QGhwuX95shyhaOdB9q+nQGlb9laKBHonCQD0v25PtniPnlVoq7ZIDqB0++KwSYwSAd/jUj/C3bocZdJNCn3VFgMEAeQKB4jnBMxSP/zir5BvW1GYNemrpkRBbpI+WPC8NBTSkC1Niy1aSrMszVKRAaKgUsCcGgLnzKZEANd7ZrCLeLoy2m/HIwf4VinS/jtT6NykQGBcCGjwq5jOTwjEOEqAJmoV4yyTHRI6xswFj3rB0ly90c9znetJ+iTkzoPorrn139D4s7yfekWhEHHAcQDDclzTHZoEqVZJQtJvDkD0g+AMsNYwNgyA6dJt2xBEBRZjPBMKTDHOQqfqo7iPAjzGuHNjLJXiDv2JB6tFbWsRgsoT5yCOlehiL+iUA9HAaB2jDxpNnQvEeiSQDKtB/OqCfGzcaUbLbMUfB9/mgsRXpLR5I/yn74JXfFW9dCz/LwmkIeA7Xe+Y+q/w9emv44+H4A80kS1se8cWGgAAAABJRU5ErkJggg=="
|
| \omega | \le \Omega
|
"iVBORw0KGgoAAAANSUhEUgAABaAAAABgCAAAAADOG4oHAAAWjklEQVR4nO2d67lsSteGn/ldXwJWCLVCMEMoIegQCIEQCIEQWgiE0EJoIXSF4P3RJ+pA0Wj2GvePfe3ZS52ewVBGnX5aEARBEHvk/75dAYIgCEIPOWiCIIidQg6aIAhip5CDJgiC2CnkoAmCIHYKOWiCIIidQg764DThn29XAQDqqvl2FQhi//wJpz0o5KAPjQj/5q74di0AxF7+7SoQxO5p3PxvOOWBJQd9ZOrf3L2UzrerQRCEFaws3fy3tk9ADvrA1F7jlu63a0EQhDW8dBvP3kOTgz4woXCo+0wQh8IpHRFaX00O+rjkNQLyzwRxLJwAtfWIDTno45ID0bfrMJEirr5dhX8Zkn8XBAA56P8+TQ33WB3o9M8p9f5MGCEhloTk3wnMRW072Y4c9GGpAP7tOkwijgUAQaOa34Hk3w0uYPspQw76sBxtZUiesoC8w9cg+feDY//0/v+qFSGIJ3non9H8PViv/z8DyX9MqAdNbEIdOxnAvl2NfxWS/6BQD5rYAnESgQMgIifxDUj+o0IOmtiCvLl/XCffrsi/Ccl/VCjEQWxBBdAI1fcg+Y8KOWhiCyoKgH4Tkv+okIMmNoAWsH0Vkv+wkINeG+/n2zXYAYI+sb8JyX9YVAddbFr+tqURdixulRo41qr0/xYk/2FRHfSErfAWYNvSCDvIKgSxC1QHHTix/FPurXag0balEXYsbpWjLUv/j0HyHxZNDDpI5TGFoqqeX0j56WdZaw+WRnyJpa2yh2MT/2FI/sOiWajCWCot2K9fYwxpDL7sfJ2h0vZL9R/f0+CIVslfG7XVApwN3aairgUAp9Oipgm0KexzrYDaCaZXppduQs12xjryT7h0pv5ryy/qz3adbFU4Lr2/r+/LfCDTpPiEgdI+y1Zp4/OnaGJWN+WXDMzmskepE4uzJZreEnumWoUP14UDfIFa6XjJHvHec+CezWlKzYPgXHu5Tc4VQKeR9pXppzPX7BMOI7+iv70eM/VfWf7s7ur9/tM04dHVL/Uuep2lziugwutlsxzG0j4hEWhiAUTvzJI8B5g/9ROgOikHs+ZoKrmSefzfOr91UausFwR9WycBihOQcBeiKor6FGTmZNzt9pLSCkgYdEa0zrVElc5IJqUz1uwjjiK/7iGy1WOm/qvKL7zaT9y6yosim+s3tS+V/uv27e8vK3TazKV9TCC3D04yOZOLw3SvdV+9ztX2oY/Zg55qlZEeNNbqwvWtUwJ4/JkBMBr73P8+yPBsndaItrm2rNdI62TddMaafcRR5Ff1n6THTP1Xk//mPkq9AL2MJzy6mkHCRh5UqF/rRAtg6Q70QGkfI49qpU45+RA/4eEs55MDKOReiZvV3tTMd8sKVlnl80KyTgOwx58BHzj4rWbd2tQxwO/bCGmNaJurpJB1sm46Y80+5RDyq/pP0mOm/qvJn9bs7m/cCFDmRdmhcdCV7Nne40M1/KXHKwZKG6Op4jiOK+tD1vLiMv029UQmJ2oKBxqD+1E90wj74wOrbIpknaZTSxdojLMXuuEacRJg58cfOiNa57pEMmPN9sji8qv6z9djlv5Lyt+kr0OdI6Cat95eE4OWN1Zp3gtFq8U70EOlDdLkjz5sCsYjm9dGWpTTJ4rFdeTLv+XI4gZ5JOeW1KmrXLw76kr0X2m+xqZzrbIxsnW6/XyempfPNd22nBo4736gxoi2uUrMSjZQs/2xgvyy/h/oMUf/ReXP3/7e4RWUUSs71MAJgN6Y5/kVwCp1kxc+Y6C0QaRQhT6iE3XbF+hDxMOUUALQ7c1hbQTddJYLHLWMfcWgM/VVpslkulXGY9ArxMsV6zCgfP5/BDg2mcimVI1onSvviWRfGa4XV3+TzeFA8usfIv2lMjP1X0t+p1NmBLi9rOfP4igAR34vrteBHihtiDAHfM4ZAFFVOdJqrHcc1jP6z0ih9JORiwhRCqSKGG6Qp9ttiS6mh4XFqQLQG6fWzs6YaZWtUazTdCRpAJvPmTwFoq4lVSPOyPWDZOaa7Y1V5Dc/RFP1+FD/j+WvReeZcQHrUGwfxWX7snd/z312MaMTOsxAaQNEgNsZFb26mlkVba8HPav/rJ/vzJzbfYJIqfzTFVAmTa7Wg+ZqDSL2eGffErf7xn5wcwCWWQgx3Sor96C1DVOsU3bu56vdBNaLo3wbyEa0z7XXFZtQGW0XTlOz2RxJfu1DZLhUYqb+K8mfdZ1S2fMXpX3eive4AtIaBfb6gU2fpDbCUGlmSkDyt770SX7n7aD1/vkace4nT8uVZRmVbXvLopcvcjWTczIE7X3ijOadECCQf9rOQV/c511wZtp3rwu1ejpmWGVVB21omGKdrHPfu9o7QubmQg1iSUYcz/V2jqLsJj3pFpXRphuq2VwOJb/uIRrWY6b+K8vfi2Pc5jpoZRZHAbi9r1nxHg29Tp6kNsZQaWZSJXifscFpLGGuCfaL018RJX7x957yx/O8tELx2zTh7/2KutbEdApEAFyumWkH8A33T22k6ER8cnD/KTy5rmZQJK8xtHjgzTyrrIahYap13rUUXu1kFh+1Ya0ZB5KMOJZrE/7J4TS/0g04WhlDuqGafYWt5dc/RGY9Zuq/uvy9kEY/K9d+7ZASg67kaM2k8GNuKNcUmZ1VWlNBXh7vRGFTmxKKU4VcqUHtiSwAXN9LRYbnkqI6vTh/UOcBABTgio3q6r4S0a+gydR3RP64bZ/bDdV4zOx0jeHpqardW9X0lBIevzg/cAHhsSurPDW2nIJZ+ecP74GFMTZMtc5z2+OqygVPLGocF4B6XceIFrnmMUoOIAmlGbwjlTGlG6rZI+Wc22Uu28sv6z90KWbr/wX539M4HLduhKX7l7v2kCNAkeV3cdu2/R0wOpj68/NKSzRBqpvuI+4e4ri5DGq49saeBV1f/+gicq9ty54fRK4mz+AZjHW0A8P8VX3la8P8UTNRtTuZtDjq8hDh5kZt25bq0qmL7aD0HKusGOIwNUy1jgOUZwBggTo+oOEMfbt479fhXLN38CfomWykMsZ0gzV7VG/q7XIs+SX9By+dq/8G8vOe6H0TRNYTRGQHfYY8uOQPrlJVK6XDNDtvXmmBZvyr5ZqQcASgvbnBjakBpeDthPynuBw8aNv24j+qoIlcXV9t0c/CiXR1G2Oias9EynSkEji3bvaonRw0jmw3oZpjlXUHCbUNU6xzA3BrOSxGMdq2vY8Daa3VM+Jwrt3ND27dp3SkMsZ0wzVr23bO7XIs+dWHyHzpTP23kH/IQV8d2yC0/MyqM/SYbrrCQswrTTvqGml+jADc3OA+htp/I147Joievloadis1dYleFb5CZ0VrL/gpieaZy4BbcP+Vq9173/aemGOVdR20rmGqdUrAuU9VsXpJ3lwYptz2jDicK+9+bHSf9JHKGNMN12wmx5JfeYgGLp2p/xbyKw66+0KLbLu98iChsmuZkMeilmS0NMPySG10SH+tF2QAj4C8N/JQdMrhnZD9SFNF/lq9yQKgVsrcaJtoEccIlKBXA7do7r9qNqwWttOm51plPYYb9uQeKXey+yYKo4Q1oJ8b3ythMNemgmGv4eHKmNMN1+w7bCy/UoT50pn6f0f+bpZJgNhqYwjZQQtZnlXHh4ZLE/nfz7cfCgIAiBgQdhfjSz7m+eeYCytE8JLZx7fOvK29vykidcCvhpPe9w6otFbLf3Qo98kGVpnIWMPuPMbtfR9Ix1cFpAWgbLMyNdfCeMsMV8acbkLNNuOb8g9fOlP/HcifRUj/eOM6ybM4atkAQyb5mKHSiqpY4qSe+3Cwc/6FCDsbnwigeKnDX4WOOei0M7WIswa51S4gSyMqgGmsUqHKnMf/fdCX38AqE7Fr2HPpWFYJhJexLOPny3uEwVzNWgxXZkhD65ptxjflH750pv5byd+f79F/qlzWiGr8WVJ3s1PnzjAA4rl528Kft6bS0j8nnBd8M7gRUHT6uw3gl28s14FWDe/UKcLgJpLrwduL35yUoqt73AUAajga8botfqO5GbeyiiWjDXtfBth9ZTcnwLWadDiYq7kHNFyZgZ6Tfc224qvyD186U/9N5HflF0HvqUpPjX8xDTh2kWLScsA8w30wILq0bdveMrboGJi5tCi5tS3Xj7hpB6R0o3O9zZL6kX+uGzaRRh/VcRDem7dx08y0S7YaJAzUKSbJa+DhplvmaD1IOMcqqw4SahumWKd/MtvwqObwOFDXiMO5Rj2tOn+MVMaYbvkBwnsBR5K/p//wpTP130T+pDuzQ147eLadvCyHOFi/V17XADhQwbX6vI317ybTAglzact307JekMMmMqHUoalYt7vpBCnkKfXWI3FdJqoGAEiqJpZWCtSv4xS0cSlmu13LllaxQtsw1Trv3+7ftQPjPLE8DiS6G/R0jTicq7GIkcqYqzZcs9clGixXIU1na/l7+g9fOlP/TeSXlwv2lpWF1uaSHHa/m3XlZ4C17TVo28RBULojHcSJc+jNpT1z0xcypwfdn7jc28mkvd0eGfcryqSCAulvzUw7f8KqnhezFqokyjRs59UkzSzotj1bbY/QzrPKqj1ofcNk60Qdk56HC0wgi5d17dg14nCu19781+6hpcOVMaYbqVnbtlsvVNle/q7+I5fO1H8b+dHf77T7RMqrzMzIPWi320kW4TkH3PtbRESBM7rptaGLZUpmLm0FkqpG/DwxNkibTjQ9ZtpdRnh/VacopN0HmF+grqRJWTN6mRNVu+PHKHrVqd8dj0oXKvQdkVvF2je1igWGhknW6W2/6vMK6ftgZ1FUfqfpmnGgqvvh0zXiQK4AGK+aRvfNNJzMmG6sZgBm3i7z+Vx+Sf/RRr71H7t0pv7byO8X79XddX9Uv9Bvf1pofpUc9s15z+C+uJc2AqJb8ArKGPq0c5lX2swedHtB5z137rzDro6+B33uh5jVVYJnSMHeC5bfkdWEI7U4eb2wr8bdV63Wl86xypo9aEPDJOv0tyy7Op3FowF6Hw+a1Qu3bvV6RjTn+rz2lbIbZxxJZkg3VrO5fFd+Sf/RRr71H9djpv6byH9+99Ov0qOnPz9At9uk8qxFLxsk/D4ilPi9sbXZ9dUxqzRrBy2f6s3R8coBnOdHB0+e/y6Zh3VlvTlquUB/ACKaE+GYCZfiGG+1Mr0nvjFLDz3DKms6aFPDWH/Itm+KqFMk+gtxNeNAWdeBd404kOsz5fM2urnvx3s0mT7dWM3m8l35Jf1HG/nW30KPmfpvIr/7cjfS7hT67UZLQA1NKrvZJSIPEweoUrcEUAF1tt6ipvVKqwXqAkDMn1M3q7oCEDfccR0AmZN6Zw6gCVkEoEJToY55NzoQha8oQtPEAlVxT/v8qQaAOHKfn0Ein35wxif0xmyr18eXshTwjnP2RFhF4zGYbe+BUUwN61gHqHMA1Xt9WFI0zyM/GgCdEFZY38+oe9GIpul8oXaNOJDrgwChV7oA6jAIUcfccW2SadON1ew7fCq/pP9oI9/62+gxU/9N5D//itgJAKQ5K8cvd17/6aI68ow5nLvBpW3b9iJtArJ0D3pWaVY9aA68VnPcfwHwCEw93q0lhxtFnJ1f/+wAvXfbjb2uVQWLVBEjbWhhJaSJdmc4T1mYaeOciwOABVEPXRdhslVW7EEbG/a2TscW3S/Xh6l7851awxKK99YMUXdMzJzrO0MOP4p8Vt7vMG6ZTE03WrPZfFX+vv7jjXzpb6nHTP23kP/GARYEDLzfMddtpNO2baD5WesBL2X5yDCSopnLO+gZpVmHOEa5nqNkcMLmedLmdN3g7fpIexrdXh9HV/Mcy5tmVYr+0Z1olRUdtLlhltbRnA02VNx0I17PUXJp2zYqX6Ktmm4yX5V/t/pvIf8l4pxHmo0ltfa4qC1XD43Fe5wyLzD9YNLJTC9N+5Euzd61grGRiITvF6n9MTKhSL6x8vvOOzJTmFfnO1lS1N35K0a2vQeGMDfMzjpNhWjCuvcZRnzeRlPnucxNtymfyr9f/beQf9rSAc3F6lLvF7knzthsf7YJpZUXjaTJtV26SgCQMYuNXx7kBV/8TLA5GELQd5wgk7ozQ/fnQvfAQtt3KA2zsk4K/SRKPXsx4pJ8VX7S/yNMDrqJPZSRU2/Te9q2tCk4Z5ws7+86ZufxqzZgcC/FCSxnFat3XBP++fn5+R3Y3URpmI11mhwTRjh3Y8Ql+ab8pP9naEMcKHIWJAAaAWd9l7ltaRNxk9Ab25oLACA87OOQz1os8tWztVWaX3DWVHXYmLr0moZZWCed8oG9GyNuzlryk/6foXPQec4fKm1xWOi2pU0nQFjZ3GGpuOyj9otsELu8VcYyaXBhgIjz1DdcqmvYqHXqIpoQY9yNERfnS/KT/h+iOmhxcl+7hazvMrctbRYBt+pAJnwnlf9oL+g7a1hlrGNURwyAk+QozB5CbdiYddybXfXu7MaIi/Ml+Un/D1Fi0OIUJS9jru4yB0trasvw2cpYfuBvNJo6yuch6BWtEvcOc/mN31Nv3PuQumOWUd+wZcMvezHiSuxd/v+6/tNRHHRvV5HVHbS5tNj781cAvz+e1dFdxJMFIhwrWiUouVuWblCWZcYcXvx9DUo9u2K1aTHmqmf7/COQ/EdDCXFUnTWJ648PmUvb9dzQPZN/3qtZxSr3LjljVcrhOByA/4trGrJ+p6kQgcEPLNCwfxiS/5ioIY7O/ysTHxcPOgyWRsxANFHy6Ylqq1jl+dy/c3OCApHfn9clYtfwEliiYf8wJP8xUXrQPH/PE+8/nHFdCwC/4CYjTsdcGjEPx2pO4DBbWcVthMPD3k8nx3Tg/RINI7qQ/AdAcdCR9xpIFQW6RzytEXQwl0Z8j8WtIvTxS4ZaOrUrhMlBEPMh+Y+LEuJgkfcMYsSNs/aqnm1LI+xY3Cq1fppXAxfdabTiRA5iDUj+46Iu9Q7Op7ACUJ9yt1x93Hbb0gg7VrCKLpeCO3nnFC7hOWude/rPQ/IfFM1eHPzC0p+fHw/nLVb1bFsaYcfyVtFkk+Y8DN9HwAnPJwexFiT/QdEt9XaiLfeT2rY0wo5lrVLBkWbXNjmqGjFLXsXUHqr7Pqh1QHMsF4XkPy76zZIIYgmqCpwDooY80FikjAV58O6zNZ6AzT7VhD0k//EhB02sSApwoIAyMZMhCsDi96oINmnPBsIKkv/wDGzYTxAf8vhmjtUjM/0oLBAF3oxjcAhbSP7jQz1oYlVyINft8ZuIkLlZfaKJXatC8h8c6kEflmM8WiJNoZ2pl7GTQInT5jX6pyD5d4rtvibkoA8L38dmrEPUAMAMM6lLeHCyOtT+I7EAJP9OmbBLKIU4DovLrI7n/ibnojGvFHfOXpi5Z8+lBf4rQfLvE1GBkYP+7+OnyPf9dDma6r1fKu7ZcxKehcokMGIZSP59UsC06bYKOejjEuUi9Y8RiX5RN7VbAQVzXYBnoeMyN6yTg7XisJD8O0CkYNbLwH7aNatCrErlIdjJ8lyvsjsb1Hv24HgJAOF9O2K6CTeC5N8BYY7SegtfctBHJg/hZ7vo/tg6aIL4txFh4Uw4+oBmcRyZ4OIWf2MxfiFBEDtAxH8Lt5wQ9ace9MHJ83oPJsyFS8fhEMQYP24waVCWHPThaegsT4I4CFOfVnLQBEEQO4Vi0ARBEDuFHDRBEMROIQdNEASxU8hBEwRB7BRy0ARBEDuFHDRBEMROIQdNEASxU/4HDoGDL56pFuAAAAAASUVORK5CYII="
|
\mathcal { Y } _ { 1 } ^ { \prime } ~ = ~ \mathcal { Y } _ { 1 } \cap { \mathrm { K e r } } ( \Lambda ) ^ { \perp } ~ = ~ \biggl \{ \eta \in \mathcal { Y } _ { 1 } ~ \bigg | ~ \int _ { \mathbb { R } ^ { 2 } } \eta ( R , Z ) R ~ \mathrm { d } R ~ \mathrm { d } Z = \int _ { \mathbb { R } ^ { 2 } } \eta ( R , Z ) Z ~ \mathrm { d } R ~ \mathrm { d } Z = 0 \biggr \} ~ .
|
"iVBORw0KGgoAAAANSUhEUgAAAkAAAABgCAAAAADQwpL1AAAN60lEQVR4nO1d25mjvBKs3W8T0AlBGwIbghwCGwITgiYEOwQcAg4BQoAQIAQRgs4DNwG6IGBg9jf1NGNjVGpare5WS/yQuHBhPX6eTeDCv41LgS5swqVAO6EqzmZwDn6dTeDfR50VVZ0hTM4mcgouC7QZpGbIgOBsHufgxxWF7YDsBuTvqUGXBdoDGd7WAl0KtAcygJ3N4SRcCrQD6uJtDdClQHsgw2WBLmxAgUuBLmzAG7tAlwLtgHd2gS4F2oLn3x8/fvwt3tkFupYy1qP4KBAFeN0ivLECXZnotXh+gCQMwO8KYOnZdM7CNYWtxPMDJGUAEOKNXaBLgVai+ATiQW3edgb7V32g+gFwciKBjxphOPzrr0D1mexNqKj3T76JAvkqxMcLKE70Oz4L4N7+XTn1Z9q74pHVQKhq4PGYkqofrwoII9+xIG0QnHNhvWInhADY8subZ8e/jo8DggBR90/gZDLpXdzJPjL/5OsxIZV3uhT73cauQJ7PdTU8FSIHCCdA+pWcbOAA8u4fuIhMepeAcs7Dc4fAlJQgLJdScACl132sCnTUQPdUCEFBcpkTkEOsowYEoN3ficuMT3tHQyGllGWA8zowIxW11jAC7l43svX9qIHuqxAhglJKKYJDrKMGsTqsIoeRnvYupm0vSwDJF7L0IVV2XUh9DYZFgQ4b6J4KcUczhKWITpoDImXWEi4bPe1dGA/fnDaHTUnl3byV76hARw10T4XIFd+Tn+MGUWXW4g4XaNY7lf1ZCmQWebqfD3TUQP8GCuEJgcEFKh2RrK13/KwwwEKK+z7rofMiHd3J0kia+inpWkwY2XAUpaYxJTZlG+JUDpzmRBuQe9uKQYH4EFg4EB3kvC5ndBglKWWjQEHbLmlcoFUmmp2bCNIgJYGvTexX4+vf9Z0vyz1mt/03QVUVgkkm2siozooCAGVDJvcrKJnxA0BJAXxk0SeQsmd1t12fAWTOrv5fc5OdoJFKhyqLlpDKXk8A/N59vygn3S9lPGrStfJRGS/nDAALimdsvGQNskeGgfqc0eja1xMAA55PlnQ6tz8lG4ICuHFaPOv0BaD+zHLb5dUN4HMFeuC+n/5opdI19NCo95zUZ9HRAgCQW2QdFR06U0R7eyosVzeeRuzrqtshujEzngiozsLnDACNhZRScAS9D7EzJTs6uxiUkgFQaGiRQJfwESTcjZBJKlJKKUKSa36iJxXT/iHLPHD0S0o5+EDxkJtPALC4bD/tfcQ07GMPQfaMy0RA7kKmBGOfUmE0gAMgfao0V1PxR4bEDAAIl02yPnLIWb8+wJY8nmUwSkVKKQKt/hhISaGs7Am6gGKnQHTwQjlIn+Ae2YWwNwnRjsnFnDQx3h3jhTw694tFACBQ5MEHL3tPSm4knCdNc3eufT4qGDTRAKd70bVJRYrAsDqqJSWlTJWoMiduDUL/s76dYOgaBZRcRdpfU+6XAhOkVctJSjedrws3klK7JIYgckdKewOadfdYbxdWwCoVEZikoiMlpRwP3KSLNs1o22Ig3SflMHOUIy9JpsMUwxZE2IwtCa1Zb0npSAUURi0USeWc80RKKUv1B4uD/mORYj4WFunPIgHapRKaNEBHqm1Vtfyhc1Q26qGugMSDYqoukJQyDdRvnHUjcKxSdzfq7srUe87XZAZJ5U3wQsY+4BJKp0DjbeR0if1ZIkC7VBJjrttct8FUwZfOZHlDMVLuFg33HbtAMlXuTBYYtyUKpJgdqnYpmvUvAkByKWUMci9lHk4VZgGlUzD3NvLB/twtTsYSAVqlIogxv2pygaQkI8FHLrsOKaUsgSGkVJ7K2AWSueqouddxlvQ/GRoQUBRgxKi/EomUMu8m/KmOnba05ACmfclJL+PENkktEKBdKtxslGekOqTjzxOXXUfbkE70YuwCjVC6l4CWDqD2z9EUNGMkaOf1sT7aouNZbgGlM5BjUqOVk4C3YNan4xagXSqCGBfbpqTysJ14RDAJZonDBKFpSHtRAsA4LYTOzN0SBSLqsuTw+OeMONr6vXyQOZ8ojJvSwUg561PlUdw+GKGmf6eBwghuAdqlEmtHlJYUbxNJZRBMRBg6qt7Q/Fpbxsjn2eEBibMmfIEC5UMDMZTEyIyRIF3UwIdBxScNuCkdipgClN8ZQBIe9Km+0fKBNcZxCtAhFV21v4FUTgAQFgQzi8hNc12LXwBe0C46IQPMey5DWj351rWc5liC10cNIIyHJZwZo2cNsAgACmbc/WOk9DQv7i1a7lmD+m8GyiPgCbAwxPOj/qzvAKzLZn6wS6UugOn6tIlUUGYFwKbr2QAC4GUlIWVsGLiNC2SMEu6uzB3cFigEICUHGMCGluaMKDqniA3jgU/nVxMly7Kyi+Fa5LTtUYnWmrpKF+dw0rNLJZk1uIZU6rgCUlLdopN0uEBSCtemggWPZ3CBIrWpGaMc/YVsUJFZEZCJ0vEKJGjXnxhtZ0o4JoMZXPQcUpkpxypSJeyG4heyCkw7TxWAbc8liZ71c2EFkQFF3U+RFCiK9u85oxeAdk6jwysFiun8aqIUHn72wd8KpNk425fdUFo5JgNfOKQym7dXkaK6Oyn4hUdzvsQcVhcIQPTERgVSjlcOALzav+eMCoC2H9Gs+7CeKZCJktbDW43M/FXnQzwy4E66q9tBSKtVm8/NcEilxnj8rydV277MTbGkwwWSUgbzJJPZYOlSNOHQgLLVSsOIDGZ0WKqLNcQ1lDxh7EDqvGLIiQ4bD5WEC4PBV1DhI0CHVBhGU+BaUrAnG36+TAO0MUC2Aw9C62hcgGxoQLGSGkb1YJNo+Oyvm1vOzZR2wasGWkM4Of5u17l0sVS2krJZoJ/GMM3hAjVXbLLIRT00UEOdzSaMRuW7XZ10lmk0fyulffBC37FioJ7NouptWC6VLyUlqSFMCwB7ErJ0hGFwxTix0gDFYEpnjFKdAWeaz1yUDgKGlUrSRzlKzLT8NravXVJhGHkga0nBuOwqpZTyF/gHXhpDUzst0BMIN2mvcj53VQG0G046RjMz+8owr6I3UDo4kViht4NKnPmCKVpZD6tUKICil+MWUlajLiXRLiE5skByUn6hV127btOhgTvU3OGUkWbHv74G2kDp4DyQsvHwjs6wCuJtHR30XFIZ54FWk4I9U/QTaDLbU7gNUIVok79RKUd7PaF6zlNGmmb+1sHceGymtA/Us8jQDfZHDUS7+kAuqYwf3lpShb6lHr8A/sBr/jBcWSC8tlpkJQv0qqDmDqeMKJ3OQR8Z0RxwZ6J0cCIxQB9V9gmX6gnQbVmzKVxSCQBkTP1vDalpNmkGKWWkcZadWSB39Q0cE0Q0NKDsRuq+SsaXjtuKoKsp/jYFQQHaOaKvNhD9Rx5wC9AuFTaa41aSik1poJLzWDblHDrBO10gndaN4eo/7d17jkn+b8qoHOmXCKGtKXZTOggxWr/hjsYNEeG0h0vgEqBLKvHoCa4kxQ1L7SUBEIimIlFTiRUC1vFsKkJT4Oh/iY5aPO/IlJFaO5YQdeXei9JRCNGkeptqg+Y0O3/ddimQSyqTisR1pAJDlqeZ+e6NAs38edE4tNQcZS3YA+Hof9JosCxDTUdmjCKEpZRSijgA0bf8jbZliBAAL5tqg5ITgK2olXQqkEsq0Ugiq0gJkxlpfFTW7soYbcJiijsbMEMIR+3VmFI6+88BULAAIJqjhGfbwjhBwBgFqGkjwwJKxyEO0EQvFACJVlX7uxXIIZXprowVpO6maqCmMpe1x7s8PxB7LVlnt+lZGnP8AGwLj38KBOmrAgl0Tv6cUf2qCgSUmWLKJZSORFUURQZEJKArg0CHAAG4pPL5QDqSrjep31WYGL7KQH+HSavj1HNP1ZKd6PaNla7DKX0ZHbw5XkopyztnjFvciMBRNe/Asq29VmjOt/QidbcKVXQ+kJR3vyBTbC9fT2B3WTwZ7UHJD3k3tIlpHAj41iDujpxMA1MvUiWxPgRORKdA/REHy8C3b6BxnYnuyWgPSl5QtgDog8JmjPid2r0/EpBy8sFyUsajPRqkSIbjXbjXBKA9+8kPTkvqx2gPSj5IAQR9uKEf0v7vDfgCxJPzpnxIRVb9idElEqWUsvQZLOY9+4vhtqRejPag5ANBuwC6yYdo26b2QoiDEI8P+fEgFVnTRPfm2z5QdO6iV6ArxfGEywWSfoz2oOSD+2DvEpMJcu1nOAq5etDYclIiDKxOaNnctFegfPkQLndYMuBwHpLswWgXSj6gSojIAW3CRq2XOxWCDyqznBRfpmfDS3dvWbTwnNPPBy2XXWlGUetOvh1jOaNdKHmg+KOkV6rfgO6Q4apy1JSfgd1JDW8s5KgWvoaxYtv3ySxJYy1ntAslD7yYkp6jQaGtO6ffoDRpht1JXa/9XoPxIdy3DLseGf5P4Zu8M/Ufw3zx5V3153rt9z449fW5p+JSoO3IHEWf/2lcPtBmFH9waAj4vXBZoM14feExVd8flwXaivp3bSyZeQNcFmgrHjU57kVT3w+XBdqI6k994Kvuvh8uC7QRH3X8zvpzKdBGfGZ+xeT/OVwKtAnPB39v/bl8oE3IbovrBf6ruBRoA4pb+O76c01hG3DpDy4LtAHFjSqvLajq9wzGLgu0FsWNqkcUfVgPU/7v4rJAK1HfkCrlkh/Zm66nXgVl61DfCv4Y/n1V77qeelmgVahvxeQT8d3K5w/C5QOtwVx/9j0/8x/CpUBr8DnVn/etab2msAubcFmgC5twKdCFTfg/V1i/sy5+Pm4AAAAASUVORK5CYII="
|
\langle \hat { T } \rangle + \hat { \beta } \langle \hat { \mathcal { O } } \rangle = - \frac { d } 2 \hat { \phi } ^ { 2 } + \mathcal { O } ( \hat { \phi } ^ { 3 } ) ~ ,
|
"iVBORw0KGgoAAAANSUhEUgAAAiAAAABgCAAAAAABJZaFAAAI6klEQVR4nO2d25WjOBCG/96zCSgFJgQmBDkEJgQ6BByCHQKEYIeAQmhCsEKAELQP5iKEJLAQnu499b0MPYYqlfgpXY0/FAjCzT9/uwDE94YEQnghgRBeSCCEFxII4YUEQnghgRBeSCCEFxII4YUEQnghgRBeSCCEFxII4YUEQnj59y1eugb8LY6I2LxFIPfPDrTv5GfyhiZG/vnTHe+FOIbjBXL9fU8Od0IcxeFNzEmwS3o62gtxFIdnEJE9iqN9EMdxeAa5ZUd7II7k8AxC+vjZ0EQZ4YUEQnghgRBeSCCEFxII4YUEQnghgRBeSCCEFxII4YUEQnghgRBeSCCEFxII4YUE8l6q3x8fH7/O386WE8t+EHEdjrL8WOcAUL3BRzBSxtiMP4Uo/zT8xuT52pW7rcawtSU+tWDaAFYuP3yZknOeAuCc8+WnX9xSgO9Djbzda0ML8YshV0qpL6DYbTaGrQ3x2e9PC+Ar2O2MwifGku2vqSNpMzB/PTzKh9+EFmKboH9GMrCdwotjaz0+h0Bqa2qJThknSR1J7q/Blq3cHj1EDvRqKnYHHsvWSnwugVwAS3sQmy/gsuPyR13vzv/r+B/QGkDtuVoPscSzUVBK3abDMOLZWktAdoHkERrJddJ9KizekuVa5q3/3B+DHmIyaane+wDGs7USn0Mg6Ttyf2l9+Nq6rlea9Z4NAtluzE05JvOga2vtOBmOa+040G5MW7747HW8kjjjwJFOfzw3v6uv57/ZlrbDLZAAYx52dKT1EFMtKxcA21OkmLZW4rNOlAng+G/jS6H7YDwFkuokiyJnuJ92fZs3qjFwVIFX6iHKZl6n6Y4SxbS1Fp/1i1PNXp9buM+CLCFOwLkoABS/u+Z62WE6qjEk6MTscZH3DshZVQBS9lE0HcDRNYKnbDxRD/EO7Q+5pzxxbVnim2EViFwXiBCW/3zpPpgGBCDLHACSyyeqXfc0qjEGzCrw3OQZmquQBU4C4BzABwDOK5Gm1b0YvekhNkA6/i2BPV9oj2lrGZ+Bo4lbG39av2/7YtM3Pz+feuM1tszT+TqpLxvzUAOZ9meZtL17pZTKej9tBl6WSinFcRtO1UM0b+KeUWJMW4v4DP5eE2N2DBpgWLPglo9fI6qx+fVV8mxD8iswPbwsgWxKAEjFPVte1kkgHxqfrtrVx4tpqzfi/sgmkAYLn40pmMuWrG1daHRd2IBZKnbpW8rprDHPmlW01dgSKZn/lCbpGGDJ6/IpydRa3Q2AbCjldV5iV4A6eoAv2FqyGp+JJauU0AegSqk29SUhN16Hhm99vkefn1z43tK4bTZm0hbLaSdjJipDUrZKKfV4loYPxWLD6ePZWsFmixeZntRfD/AFWwHxGdgyyKKPem82623GK6lPb9akdm2Q71Bj1XV9TFAI+fmZ8DQ3U8jMo6VEE0KvmtcDDLe1JT4DRxMzDz4TLGgcUL9wrq5K/f4ufOfj3a6cDjYbm1/1KXj9a62gaf1HQla43lyp2nYTOq0U925qAH0BunjB1rxcm+IzsAlEmBmE3RbnnK+L/8KuNxk2wDiBILTXiix8J8l0lqsqNxprOm3SApBy09tu0kcjpJDy9GDrJw/w66xE+XSpO8DdtsLim2OZSW3wjkEMjNrVJgeF3PvemY3GzqdZSk4fW7xWQFqUjzrtVidY2exw6Lt2Fdiut3JtthUUn4ElgzRAot+9M7Ace7w0sjKU/CQV+vyMACD7R+cKDA281fcqgcYcCcHokn1mDAD47ZdYu81aiCnrhpt1BYrRVUiAoba2xWdgEYhxQdNALPXAtyrkLoQEgIwbm0/T2VSqBCDy/goMLand9ypRjUEaj8P9aTmxiN5ADzGres02FbJRWWFlimlrGR/kucunXLMc2PDF1Fz4XF2dACwviiIB+HxVdb5dqACS5xRlzWZLyW7f7pnUrca4Zc16OebL5qul4+I6Lmo2zO0P6qlYeoiPfl9PmyKdVURA5W61FRSfUhzaDgBLHTNzrb8O3x1SoN8W2+YwglGzMTsHapYURcEBdpv+3+PbLZCtxrZVoLGjZtjAdUlbpVSO5FmXGdjzINdqVw+xBC5K3RJj+0FQ5W60FRSfUgyaApZ1/AAwv5OX8C0zBfqVC9Um5qMy26kCMPX17CvkujOPb7dAthrbVIHmhhqUl7SoC87bcSZwPCimg+W15XMC1pBDWOVusxUU3zMBjwpY9kGE0UcFGrDw9cJhEMbys7Gqml/l5zCR0QAp0odoupTPnIf4XjfW9w26Yc7JM7LsruCzT79S5A14nkAb1y8PAMxDRJ4Li6ewyl2xtSc+4JJ02tB5IbHlftQkfNNjMWm4hilVLSOWrpbY49u5aXndmFlL2unmE5YPTUcQ6w3Ijsp124oY35RBTkIBQHefFkJ7jcnwaRFjTU/OtMrLz8/k2YF2bWrw+XY+FuvG+l77OPx2P2BVhXLHdgstRDt7KtdtK2Z8o1QY+tUns89Sx9mgWsPs22jPOnfs2QjyvdnYahvdZmA7Y3emM0eZdnBIfKNAHkDeqvayGGyoYnljQ1isESulVJ08CwBHhzPI92ZjqxVYg+/dFD+GaCdS5dptxYhvbGIkUFUAwG+LSfDkhUUHJ8JsugCAP669c3seDvEd0RiL8FMEfYgOIlVuoK0N8Y0C4Y+7lGBJtmgS4/zenLwjtX2RvwCAjjvv6eu+IxpLo/QPfDPyMX/M75D4pk5q4ohDdoB4cReShTPgfk1B6li3D/IdbqzpAKCzjSAPIlLlbrQVFN9qy3YD9n6TVA1zf68Sx7fTmNlGTw/gu945EDPAY+L7eM+vUTanLt//zpTYnET9v/611hjxvUcg31MfxAbe8o4y0sfP5R0CIX38YN4gENLHT+Z4gUz6kGfbF3qJb83hAtHyh7ySQH4cRwuE2pcfzsE/rNycOsaGr+ju/Qo18Rc4WCDnDp1vrYr47tC72gkvb5pqJ34qlEEILyQQwgsJhPBCAiG8kEAILyQQwgsJhPBCAiG8kEAILyQQwgsJhPBCAiG8kEAILyQQwst/GCErreOAG1wAAAAASUVORK5CYII="
|
J _ { i } = \frac { 1 } { 2 } ( p _ { i } + p _ { i + 1 } ) \sin ( \theta _ { i } - \theta _ { i + 1 } ) ~ .
|
"iVBORw0KGgoAAAANSUhEUgAAAKAAAABACAAAAAC44CNzAAADUElEQVR4nO2Y7X2rIBTGn97fXYCOQEfgjkBHsCOQEXQEM4KOoCPICGGEOIKMQD8kvsEJbYLtzQefTwYJ/D0vwOHF4bn1538DfKUdMFU7YKp2wFTtgKnaAVO1A6bq6QH/0s19ay3jQvwuDClHqYJgAMBy8vVv6oU6sLbHjkEfNYBNzrNGWyCLuMNqA0BK4hUZg3XOANlVHGoDPP3+rwfs+1t7C694O1qgfX8tbPiWMiua68N5Ax9VECfnnDsL0AFzYtllnhJgp4CF+gvLNgC7qpkmHThJOMyBngHMtwkJKBF8yKMa2ExVgRo3h6yujx0A9R3AHHIrwByYbcJAuEYAGAmJmCMBz0C5ESADn3/IJe1EAExGJgDJLOYShdkgf4HWgs+/BBBmcgYs+/iitzoFfBAZf7+MP7kOulRK5mrqjWC1pD0jQYXL/ZJYZm51c775vZ/oNw4LAmiPidYLDcYB9PHePPfaKEBbvLYCKGJjPazIoKYFa5jXSADWb3V5LgGkmzCMuIjsAawLQjA8bh1q0XBIqVGX/ucANpbd7BvHM02dCABr+sKqnEhnP1AV2OCccw3m9XMhP0Tig3VYRb330x9VUfuXb8FjjUsYZMyCsFYUMLKcxVWWQN8ea1mGPljznufdSCF9w/uuBS86McJpXpIc7WSjMP5+WqICDrXXuAbsa0x1yA/VI7EwyDhw8OJqDVgDU5KxDRgJmmicZggWtzWgufQZn5O9fG/WcATHiXUW64XV7MKaD4uvNg6N0Cu2tmIyCvFB/jIzMxly3TVFBEeUQUuP9amI+1750EAZWbxuFO4A9OztZWts9zIhYOttvr5TrAagI4A3rz5akDVntJIfgu7Z6nRgvooaah9dzZDNa3O2TV0i1zUJGz9FZd3YhqnKdQpB1bQGrKYRzmEB+JC6RXnTzA4QAC6EOcrlFwRVi7fViXE4SZ0UHpECH9w4prg+neZoGbgY37sS4V7nAQ78Ym+1FZ8bxOg0tXAKm1FOjF+93YGoJv0T0qAg8pyP/9lCOUTjXJNBTqZyzeKWYVDgedU1CiCmDW+3rDbRm6j71dfagMvsZgb3rTYWQkhiYSOv355JT38FvAOmagdM1Q6Yqh0wVTtgqnbAVO2AqfoEjCBYU+R14KAAAAAASUVORK5CYII="
|
\delta = 0 . 3
|
"iVBORw0KGgoAAAANSUhEUgAAAoAAAABACAAAAACv0ZliAAAM20lEQVR4nO1d2bWkOhKMnjMOyAVc4JmgNoE2gTZBZQLXBK4JlAkqEygTKBPAhJwPsaQ2ivXWO2eIn77FImVIoVRqo38RLlz4HP7zaQMu/H/jEuCFj+IS4IWP4hLghY/iEuCFj+IS4IWP4hLghY/iEuCFj+K/2199pvuyfiX73t+PvQx+iMLv8a8s35HMv6K+nrfxT23+oW1oiwT1xncNKshyVwLvoZVS0Zv7GfwEBSJia1VxNu/wM/XVMhtLKaUAcvsJPZExFywPeHsCAJJyvPKnM/+Wjvpv3x2S174mlTweX6XclcQbfN+RFJF7RzD4AQoAILrBXcz7oMfj1QFIReqZ9EP19Q1gcNLp6/4C4OSZGiKTU7c8YNUn34xXTIaJ0/LqFEj2t/1SAFm7O5k4EiAL3zmIwfkUiIwHdK9VACS/0CrB6llaNv1YfSWWUY2tJY6JksPMNLGCXRGAcDKtBZAfUeqtBNKd3eAMGsQ6rcMYnE2BiMICVA63OgGQKa3L3PMrP1ZfGgDXOYCEiNpCu09GBWhcYGpfcf2fsLPZgxwQp1VfBcCjTnQsg3MpEFFYgKnNrRZA2jubwnGOP1dfOSDYTw0gpzoXbiA4K0AhbL8JOMFrLWwXuQaFlI6acyA5qwtTgYojOprBqRSIKCjA1rmWAqJhP5iNO9iuJNsK21mVADIJBEYvUQEKZMrqgxtb1ESURgOr90i8smhTJ5Y5ENL25SOOZXAqBSIKCrBRSjE7SqtDVkA13dvBdiXZ0nFWysSjecBlxgRYA6qy+mDt5qf8mHAx6kCfWOPA7tBGJAQ8msGZFIgo3AXbSAFMlJTzYyvbtWRTu8HrBEBSBDOPCbACitYauxROJTZix2xUsE/MTaR6PCJFdTyD8ygYvBWg0yG3epLNHrYryVrl3RYJEPe9MQEqQFPK++DccucmztzqPloRct/NWf7D7RF6HM/gPAoGbwWo4QVKA3awXUuW+9oGZtIyVioxAUqgpYL3wQl358Yob0izFHm4T0wjodoGlFlWjM57HJM1Wuvx6hkMjqQQgC/ARmvN2pY7JGF3drBdS9bKSmZa9T1pW/BaMYgJEBD2/GHr+NsiPLPRmMfr8KwjEVGjCz6Jzr1qEfZU61GnAGuFY7gseUmeweA4CkE48upXs3LniWBHu5XtBrKlm1UGJERtPxSxfWFEgLWpMjn1wZXTgFLH19fSzL8rojoDIGITns4qOmdex0pvJcp+KWAIH8Zkc7C+5AwGUQpVJgCkfSDe6gEtEdHwoyGqS6WUlERUKymlsircFWBTZW6NJoj0tFvZbiAr3dhQADm1w1KcsNKICLAfcZQYnayyB+INnLBgWFtWpAVkDiANM6q11gBEX+jWPcTCWoU4vOikFVC1mkzXY8vlM7PnMAhTqFPIiqjOIDTPqvcUGHPu5/9BjRS5KpWAcBYU7I6qBWwnVALBNYrNbNeTbeDM2dQAyjaFLJtSuDcjAuxHHGwcLH2i9qBYqQwAVCPSmjJEPMFoUXBUJN02NmCVAKnWxAtHYQhfNXv8HAZBCuW4AtBPzLValwkAUbZERJUAIAvdENVaZwDq3iG1mbXo6gmQ4A46JAAIb755D9t1ZFlxs7yb1OhOuWlFBDiMOLLRLod6DiceoF6uSoqmb9PROdnSbQZzqY6klgtwMLi/k41SbNnj5zAIJVtbQ7mhg+QTuQrJ5FtaS0EZt8ITYO0Z2fd07laBPWxXkQ1s/MgBkfcpFK7QJ0p8O1b3QiIAQN6BewHgAVj7b14A+KYLDL9fjzIB0mfg/ognvM05UwrPLHAjn9n8E87mMeXxHG3nj57DIECh+wOMW8HU3+7L/BDVP93j24RYj1QLKwU5trjy0T1usZ1kATuE/v0EcH+V1vU9bNeQBe4vwL70BLrv3DCa20bGZFkNIh5jDOUIV8Dxs4OaTY9QYW6tOkVkrqDEjrUxG1NT4zEJJhrnMAhQUDxQalmXWQ05FHZGsAaRwxzGYJ6btj+2NVVtBY+72K4hy/ubHi0wdQGewRMlnsc04hj6YOn4Wq8oRkIm2qmVio7seUdoQ0fvrEY+MuVbYZgAz2EQoJBY8wcpqwBlIn8NbyjGLjSY3vdsliFdkXGnlqB2sF1F1toKPT00EsrhRI1hAcrxjWEcHH/PJfR+IUB7NvI7BwkwGQ1k60h8TfMcBj4FDSuCkvyXBDJq3CGD4ySYA/JsRngquE7g3NnBdg1Z0/PYUrbGHcIdNE2G8VNxU8SXAXh2eAHJwpMo7x9j4Vng3ceybN7g9RopTCEgXlhi3x4GPgXn2RToxh+VwP32J5sbYhnjI4USi87SWgJ4fs2mywyexRqywDcg7SSfAAaGr84ZSzCwQQirMpHdgXv+itrg4f1z8aD2uKNlrNQeU27PRe1oDwOfQgfgNsX3L35PVL/xlUaHGBMe4VqLakOU/3TGzLd4y3YNWTy8IQiegGAVEM2QCZBVGeQdeOSP5QKMjhy5RTMy2HtAcsyjb0RPTAXljuXD2MsA3viziOUqixtziKsROOvTI8m/FgrwLds1ZHEHhL148uROb6oWH6wL5v4uA3DvuqOE0VsUmmpBeLIAAHD7Fcfv0AuTb3hg5Nw9ozmvwgwDn8J8BSfA6+9mQx7MuTiQcLztVqwi291DDnDylPe4wVyA3N+JDMD96Qr3vZeIYsYNH1JiY0pi+Ev0BXAHkpHGOQx8CrNd/uuvSnG/zT0yk0g3ExklsO5tZ7uK7L2bTmOy98cY/DXTBU0C7F7c50oA96f73g5/ODvDe6CnTcbsBtu/pmj4TAZ20inifWH3JytKga/ZgVe8n7VDwNfNFTKT7Xa2q8h+A6mTFRfwzHiGC9COlHJhu8QJG/3VjBXRoGXuLI2OvGOKv3uOFXF7IbWb5/EMfAoSsMO8bvp1Q4m0AP7MGfIEknBudkR1/+Kj3oBst7FdQ/b59Bxg90S/qtZbsMADPu0cTZ/unmvHMkLd4/FwzGSBg5tCN2fgKiRD4mw08gVMX3o4iYFPQeTAnV/4O+rk+64B5Dm6P/H8A+PKAXbv+LIEcYf12na2a8g6mQ42WmOQFIiMu0aXktoToRUAb9NDcIHaTmZ0T4GVGfNn7q7+hCf2t2BcCBn3ZriHYs9hEKDQCGdlY3il7i+3qbeplK06Zez4o2PdMEVd1kRECZ8vrp0N0JvZriIb2HVtHa2EmYZu0+mpKfnRkgbOcp3wqsA85K3aRgj5O4jMldxbfhSHnelp0Ndb1q8IKDiT/ucwCFEorUWJbMi0FtNflm1wDiNO++AcU/p6KSHafhPNqO3E2d+3ne0Kst5WaDIaHa8ZZm3K+AUEOG3B6pGHjE+cNZXWbFwExn2+RGQWvxyjEgB5S430CB21I5rIFIYo2343bpkAiZPbGQzCFErmGPJ+O1ar2MXMWrkFkAy3bG36AkRNhXmiAgBRNETUKOHtL93MdgVZbys0Ge9lGZwrwW3zBKhNh50xI6pQoSrYO1StoQB7GXDPDYwDUY9Qgch2wC2ozIr8mJly+/YzGEQolAKpJiKqZVITkVaZwFiqjYnbs2E/AIAqzYatqrzdOAIcYqtyyHmCcCtsM9vlZL2t0GQ0Orm7Pj7ku/89AVbKgLcCFdgqwTdpTISklPa3ShqnzIio7Qel0kvTPbewD22ZDfITWemHlmcwiFFoc4FEygSmGSjAfDhtyjid+ioAulXIlEqRWO3GMcVE56K3ta1U1n/RJ/fpbma7nCzfODaaKKVkoswBpJFtVWs/UCkXnTPV8LvvtpBS5v4Rrfg3rLZDAdARM49nMEdBK6WqRSMso4i2VKqovTtWNWkppfvBgVgWm9kuJhv/Bt6E2q2M7QKc2aXDEDkNGMSeg+IxzH2t5XgGx1CIZ+g74+U4vb4qbAmgtgtw2bdGkuVO7QwHGPsqjMHRDA6icI4AT68vbyv0IuwQoPsNrhDK6NlGH7FPWO2B+6FEG0czOIjCSQI8ub78rdCLsEOA7LxtDOWKz9aqMz7v6O/PtXAsg6MonCTAk+vrTVHHsEeAVL4r8Hr550hCk5j7kb0ZVx/J4DAKZwnw3PpKZqLtGewSICn38JWLxU3ibUrb8HZgdhyDwyi0cUe1U4Bn1td8sBPHPgFSGZ4gWgud+gsVR2DBoOAgBkdRqHWRAUgL9ysYRLRfgCfWV75xDnenAKmWsJdNNkBLAN5CxRGIfpyc4QgGx1Fge0sCd3cL8LT62vz1t70CJNLZ3g+SVRDxI7i7UEopF0y+7mZwIgULkzq3T/acU1+Rb4DO2eE2tV+M3jp0j50HLSJnvn4Ouxn8EIVj/q+4f0d9ef9X3HYBXrhwAK7/rvXCR3EJ8MJHcQnwwkdxCfDCR3EJ8MJHcQnwwkdxCfDCR3EJ8MJHcQnwwkfxP9L/2d7nkW45AAAAAElFTkSuQmCC"
|
\mathcal { { N } } ( \mathbf { { r } } , t ) = \psi ( \mathbf { { r } } , t ) \exp [ i S ( \mathbf { { r } } , t ) / \hbar ]
|
"iVBORw0KGgoAAAANSUhEUgAAASAAAACACAAAAACOg+sGAAAJPklEQVR4nO1d7ZmiPBQ9+z7bQLaEbAlsCVgCloAlxBKgBCgBSoASSAlSAinhvj8SPhwUQkQHGc8fdQYwnLn35n4yvwgfTOG/717A1vEhaAYfgmbwIWgGH4Jm8CFoBj+MIHk6LDzj91PWsU2oPJXwF570cyQoP/6Jg+Wn/RyCUlZchLf4tJ+jYgUAsMWn/RwJcsRbS9BRwQNkxqBimXCokxTh2l9C74sEng+PJUQUgRM1HsCmT/HhL/ySratYebjvuJRZVVAShAAkAoAlBVS58gK2rWJpXk44LjwA5KkAAAkPgAd/bX62TFCdpmrygAhQh4wBUDVrXZyljuAcNqti5eFv7GVi5qgj9wGghOFHLnd0ZrBdgsqwKuY837TUm5bWMKBWIYDTry84P7COzapYGPL5g2KjUTn0wTkLALCvamZxpbvYLEE2NyVrfViqDFFpyABEa65jsypmg1JrlpLmc8pW5QbAmxNkNrk41G9UnKz/HW9NEIdUQMo8oAbUMZvdw+TcASNs1gbZwAfOgawTMHUO6zSZ50dBqoURvWsg9BoITAZPCQBhXsPL3LV8TQ33kwUreGsJQujXnAMIPcVntz03A/7eBKGlZXUHusNbG+lX4EPQDD4EzeDNbRAA4FDOWGjtagsnK70Hghjq+mkX3wNBIgfALmMHsAvS6rqUDiUfAG/uKPZHAeHcMYXTCnZhpAUHkE6no11TsbsgiCUAcJrOYMMtn78LguAHAOp46hDXrOLGCVKA1QaVMADxVDKDCzcl+7XhPukSZQxA+BYGJD0B8IsnrMLJtL8CVzc7vwP5ABCtv4wtS9Ai1H8BsOqRAsZNbNwG2YMLAOqRCtht3JKgpUnJjeCfBJA5dNlNYixB8vRn5e94ESJg3hlajBFB8b907T/Ci+ALAGrSGXLAiCC5foPEqyA4gHjlBpiRDfpbo3lPGwTkRwBeteo1v0qQquG9Kz8IAgBy3Z3sK0Hl+2oY2ohj1exZS1B9OgIApC6h5IfVt4NXgAkAOC09LT8eDud7tBIRUSPadz5w0Rkosb7b/gI4RBwXrTKsuvlbEBEVvKOKgRNFDAB/cKnfgwsAsGbBGRWDX1EjBmcNi9i/CDjLhP3RoXD9F0EGxdS/GutGafK2ys5XjBfiHAMIMuvj5UGFiT5Rv0Id1XAjJKKIqDAqlbXyKdaO8++Y/vUVmQNAZnv0hSEwbxkaIqLGuzr7PwCidw8HbuK7bmZaHGy3mKNibddVgBQAjtK/CiU0T0Fvo9sfvKeRJlPjsFx9NrDoGQIiEvCukk+GD2aqK+0r+bht1N8AOhCwXL43MOhgRAW8awuvC4e10g0k7SsguVtHiUzrR/OeU1OlnkX5mCVHgFka/4j1cYMngRMvuh/oijYRESXGrGWteaucNKxJPKtC3zSm7sfu4sECKz2Aj0IMJC+ER60EjWx0zuaGAMbI85yHy7skxyRM/M5KrJXUUdlyqHQwtJnqYjUREXnwDIfGPeQOAuSHBZH3uAQ9DLHMU+wQwB+eKPyKjASpdtbBdGYjdmnomx4KPd+WrWD1CUGUsQ5aF0OhFIMTNQW/AUCaGzORKurY3hO1hbydyFq/uVCdXBUMwPjPpSXI1C8NQepoqpBrzoTeYWL1Mg3i2nUgQSLol6PiUgSAtkEVwC7UxheVZzpJHGZCHYZCV0bhXD4sgL6BOmLmU+dA84LIh0cX0X1BkBFRFRK1jnVVzNY4v50g7rwAAbQmuvKTDLgQtQQ1HvQIKPPAOwoEEVXaseTGsfC3TpDQuuCCwQbcNJSZDd2EGk1rvr3rNv2GFURETata/lyM/80EVe71+ct1ACdMy5rpUWRRVMqyRPXFlj5/JnRdnHR1zAXl9UYizf7RJ+19wUZ7zQtmQlfFWTLnkTF5ffftPPrvGz/r8YKZ0DUhY108dEJ5FeBKME3XgCCpvgrQK2ZC18QDCoa6vilAw7pYOdKwV8yErohHFOzr3Xd0DQiSI4JeMRO6Hh5SsLEJaj/1GxsbuckJ0BAlEQEXosa3yNKx79vmH0skcOMYajQdMb0NGpug5TOhTkOhY6Q1AI/JOgGAXPIQQJ6yySD9IQVDXSO6stHdRtSRFt3IdC+aCXUcCh3j0q7NRDnIzBKmJMTGRRT3w4BLcJWDFB0XPUE385SXQtNSFa4OvAMihEIIEegkHtcRNBiulOArLBRsQR65D6l6gkTkNu2xPoKIiOjCL0REDXRlr6FgKlK2icEKWEs268zxFvukWUNEjYkK+/RFNkGQVQyWWQ/8VF25dYvTPqpgAE5MRzl9wxKbcNmtXET75jyJPidpyemrEbV/7bBrMynuZ+tsFKwRNg375kv71paNThzWMTdy0weI9d2CkIzB04mrSWDR1KbKe4dhowSdldEYVVsQdALkCgW59rtZPcz6Wwrda1F1tfWk39s93Kl22QeoVirms6E3sE0JSrvAqOwscy3DO470esIDwNT3OmyToM7w1Hm3c6W4JymBZ9enVtcOsew2CeoMauyX5qZUejdUX784O8AG/aCBwzIIfGOHdoo1sEmCOpyjtpVOxtn3DABskiDPKFnscWOC1cki1/IUbJIgxlHnQFpGAFQKyEM4Z2jKKUewPB0Oh5PbHJC7s/JECAAi9BqiCGAinA/DQ9PhdAtNwJKiEMypa26bBJEPwG+IiDwAFrneqWxaoL3Owqkxb6MEURZVo3dTEPdJTNrnnvgu4xVbJWhFtI0XXavqImzSSK8K2QW5vktUsg+C1Plffu93Zdc4yV0I2maosRBxrHB3OEP1jaXcYRZxBwTJc5Ac4ePGyBXnfWcKAF7/SAniGcv13Fn+dWh+9OC75XOmOyCIdYVQ/jWeHaUgl8dzOyAIXTvYnXBkIDbLA7p97GJT/57kwYzjLgjq2sFugd/9YIVdEDQpQKxPUJY/laC2Hexmd2nvPytg+RDHLox02w52s7vUZ6oMzGG+Q9Z+5cjwO9BM30U3PjY7JnALe1Cxmf8NKjz9aLO0dHmU4h5UrJx2b1hxSssAKnV6oPQeCJr777Isq3MFz+25UXt4juIfNM+7+A5skFTPfIrGHghy8G7ssQeC+DMJen8jPWwHewLe3UifWY2nEvTuKibjRwYQLPDuEvR0vLsEPR0fgmbwIWgGH4Jm8CFoBh+CZvA/WxzeSpuasuAAAAAASUVORK5CYII="
|
{ \psi _ { w - 1 } = \frac { 1 } { w } \sum _ { j = 0 } ^ { w - 1 } \gamma _ { j } }
|
"iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAAAAABWESUoAAAAjUlEQVR4nO2SQQ0DMQwEN2XgQggFUygFH4QrhFAohQuVHIQWQgMhgbB9Oo+ofVW6x+1zPfKuZAfiuy4/5ifwF6CGDgD9vuTBpSvpRpL6pLg5bnitO4CsWqObwc+dYdcmWKp0KbMIa7SNjI2PNIuoIrjtQBVknZVMhXyDjCw6NHdAAACFq1kbgHD+5GGAD4M9gA4hApH1AAAAAElFTkSuQmCC"
|
\Delta \theta
|
"iVBORw0KGgoAAAANSUhEUgAAAQAAAABACAAAAADQNvZiAAAE4klEQVR4nO2a23mrOBSF/8x3GtCUoClBKUEugVMCU4JcAi7BLsEuAUqAEkwJUILmgbtBIGPH5Ey8XsItey22pH2R+bD8bPy1tYCt8XbA1gK2xtsBWwvYGm8HbC1ga7wdMHMv2/3OXiZkK3zMVIKfGSp9nZRtMOeAD+B/XynPLYEQzMuEbIW5GcBF6JcJ2QqzDvgJeKfBrQVsjV/D0/1hcKqRMpAvlLMSD8i+iQGnC2QloARQZgDafPtQ+IhsO4IGiKvjqwEIivFT3w4rZS84wNojgH6SyK/EStmLQTBUQHK6Z0J+B3jLXs4CGuCPc4C3bM80+Id2hR6yN6kDcsfxFlh2QAkQPJPz9Nml7f2u7N/K97vPf3a7w+Mzzlf2r8UnEkBEy5aSqYtCja/9e1K9DJ3vui2HfH8ByEnMxP/dB1/Zi2kwBMTZI59MWh8noiJA9fLzFUxznAowqbX2er56ED5J9pylaxxJQHvJ8XRAgLjenNdHqUCkPkzTWCvbYalDsGI03DBwvr1QvXXx2Puvle2KAZECSA5wkUaMbifIVT1SckAHAOXfyGt98aIADmVN+gjNguwpOFxZL6YUQI0eieG4apgUVCNzhqAxpa21tgD5EI2H7CksZAFlDpDtb6NpVlda9+KSUbepGQyH+wTlrj4OwiWaPMkzReDKFQ7Zk5h3pY1hYmjOxtxe8kLQDqluKJoZ0E/ZTZRw0cQatJbDfs9D9hSWHFAA4NVXTkGPnknbo+oggtBaa4Ufi7XWWlOFS9NLoatlL1WCVSC5LczKpBw/uoycZuJ3k7sEWf1Vo6DV0DR/O9ZIAZFwFvu3sscWGixXgrXKDvkuh3S0/CZ/QhjG8O4NkzYEJK513tHsT6VIZbk/QXgEiOrFLRaGob09stDDeFIMS6rq5ay1tmiztGqLlzvR8gXN7L02S3ViyVY0hRZGYAqljIKod3+YJNyy3Rasx4aIgLplO3x2V1eW6qIelbJtHPZQDYkmH3cTCki4Rgp2Ko1i0e84st+Y0Ee20wLg1wsgCmutaod9EHzuQRO2DLo6OLamjtSF4PXYzLSORiPCWlp1oYiNJhgUjvOyRxbadxmeHrXWAkBprVNrrS0UQGht1MqJb8tZbxQSojgOCAtJlMZhnQIayVJr0U7SHo2oqxrdrJMqzZkmzC/LHllwOGAQySp3FqaOZKb30Npt4qsGkEdrUwkge548a0Bo04xrR5M2rtC9vJpGAll4yp60MOUAh+z4bI5dcxH4lRguW3H9hnEczzYsHc2xmbdisPbSppx2UrWyHRaspwNusMD7LHQ0Ydc3DHqDwHsquix4ZIEx8tVJYC1NUtcTCXIQ9qX3lqLLwqpN0VEf8zXoaPL6LfNDXW3t666p9FUystBhhQOctdtz0dHUFW35m7AavizZA+Qn3y9YRhZ6uH9tSs9O+0F0NAbEOTaiTZkaTBwb4f2j5chChxUOYMLMF6CjUehAgGqrnKvREgi8d0tGFno0dwtLV5dBa2nWbj91mLFwfwy4IJ76M8kiTfJw0J2zcLcD8hPODuSJ6NEkyIcd4Lbgtx/QIM/zQ6m8ttoewZAmoyz9NnhdmLVw11oyIFc2gutpAPFYEJizcN93gmX5ki+mXkQDvD+UfH8n+HbA1gK2xtsBWwvYGm8HbC1ga/x4B/wH5BHzEZAkqFgAAAAASUVORK5CYII="
|
\dot \mathbf { R } _ { j } = \omega \epsilon _ { j p 3 } \mathbf { R } _ { p }
|
"iVBORw0KGgoAAAANSUhEUgAAAMAAAABACAAAAABpBycDAAAEjElEQVR4nO1a3XG0OBBsX10CuhD0haAU5BDYEOQQtCGwIUAIEIIIAYUAIaAQ5h4kQOLH5zX4KFdtvxgWMVIz0zMj8Bvhd+OvqxdwFC8CV+NF4Gq8CFyNF4Gr8esJ/L04v3M+HjZcHTTuHskpF+KgwQ0sCVgLZwFAnmC898bGZ1I6pvITzKagNXIAw8bv30Jka1CAOGp4MAv7G2MMIA9OM6EDxHwmAX3QoECenP+0iJskGBXw2B/7FVgLnvywQaBpgL5ujk00TQhEymUAjhluEntYEyhvb6UDYB9vtzM4pB5wWM7/LCxE6oFUA4ZDD0EDXQbZHgzYhQRIpaffAFuKKCGggYJmESt/egRFotqOAdUhe+3KQEwgBzKiKAuJo/ORSiz8RxLqCh1P1+V554+GfMyd+SrBRwQ6AC1RRKAA2LG8zaMJh+xTj3aK6UKLoQqBW4hcMU9IAh0NUdxHtSAioEZFTAQ6YJF1n0QkgaHgUN3+UMNYS0S5ClFuxEAG3C9yWsZKAhS1EnbVP3AAjU5/u9vt9CC2moQG6N/DIVOKbwwZR74zIwDoP87nqQ/D4NADAIoPOL9Et0piEYF+33wE98zvFtBhRtU8Gp3tWe1v48DsAQmglBywYP5eW/pH22z0aLMzJILH5lYCgDoSQrEEqPjEmASbjgQRUVYRERtvMPDBl62zcESgQJhuItAi0cvTWFQBuasoM6encKSJqApJhcgEemsJxL2QEkCdeKcG5JG2euFxCZTbA8tp4HhLDqAGD/Hn/NUNCSSVuGXgA80e6NjB7jetAmQAbOahAVME6XlFw+wW7T23rgJpNypa0b/PYuxvThr2zYefPM7R4BfG2fmOGhhF32TholitJ9mR8bZ8/FF+I2nrkhUbe8p6L42uM0zfpxNGm7MUFlOP3MxBYqcI6sPlZmufuHRJpSUAxqTe7uT2cvnGFihthGhge52EnnKFAQyRKYiIxJS0tC/gYyPUxVaWe2JkGZp3CLOzTnR7F9ZI9wK4O3C9O9jDt/sN97cH97mmHS9KAHjEVn9yR5ZKoCzBqm1JTaNcDcmAWgLANPYRIjlEZN/Ekb1D4GtV+XMkEnAfHxBmjOn7PWyWbA8AkodCfnMAYBkHZlq1nRbMAOBWJNMswtEYU0kA2hhzZDtjjJGANB6VZmB6TIGVbHMf9G2QToWMiAZZFJBEWRH0wAYiMnK8r4AkGlTa0S4JxNwOvJpIHxLAs2Juq/lARai3o6oLlmktKiIFnY3arTjXOsvm1K+gtVh05FuvVX4YWhNlCIlmLHSD0T4RtXnkeFMUSeVr82pZyd7+/6+Ud8XdPxgYEP4cwiqN/jxyoITyb1jWlfVZXPN2uvYpxp7wBvYSAs76Lqc5+JIIuIiA9Qt3v9YDoSKVJ0jgGgKSWwc0jzM+QlyQhQBUt5twYO6ELzYX1AEAgHWcnVAFrvGAuwslgLsvBkfxYx3DPhQkEXWMn/Ed6xIR8xzob3u7g+dwRQgpW/e2zvQZ679IxFuvCL+Jq7LQafj1/2rwInA1XgSuxovA1XgRuBovAlfjX4u8dkheNCGnAAAAAElFTkSuQmCC"
|
\Phi = B _ { y } a v t
|
"iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAAAAACPAi4CAAAB3ElEQVR4nO2W0ZGbMBRFz2bSAFsCLSglkBLcAimBlAAl4BJ2S4hKCCVACaiEmw+BjYSESfYjMzu+f2B0uO++J+EX8TF9+eD6J+AJ+CyAr/EN17lh2D02ljnAS2o3/uyAuliuro5yzFtQQg3AvF7Nhjr1lFcyAweY1QBFS5U3kHRQAs3m+u7mnINpAszmxt3NOQd9EIGk33kDSQfD5qVXIjexUgALa2x2OlibA0wTsAxOd/Ryr0wEoyTN9VH+XrtR9hHwA3DDcf65EuxageNwgnIljAC9JKnl7VEF2gPuERyPYDaDASiXJpRhBDZR0z6DzRQMwePd67vtXrtHGYzAWvo8bn6oaSW18dbeAd6AqPSLJLWUkiRDewxoABMiW0lzsSzsKQL8DmAIzwKpHCW1a2fGtccZwLyJYLFkJKm6pVVwOQLsImi8daiWG1UYfDwHNuz++9VyAfK7OgJ0V2D65vvvJguYMgQYmwV890cBBF+Wy7rwsYNfWZ8HOv9tzMRwElD6rw0s582/ADI6W0J1e/MUxnke4HwIbrr1xSveCxnNxbIF+ttxlR7lrJpllqtoq50GyNBL6jHhYXEeMDfUfUMTnbPJvzgZOTsYEzf0bwBJ/f//iU/AE/BJAH8AP73KhkAVJScAAAAASUVORK5CYII="
|
E _ { 0 }
|
"iVBORw0KGgoAAAANSUhEUgAAAGAAAABACAAAAADAXy3SAAADK0lEQVR4nO2Y3XXjIBCFv+zZBmiBFmhBKUEtKCWwJdglKCXYJeASpBKkEqwS2Ac70gCjle3ED3sSXnwAMZeZufODXyLPHb+eLP8H4DsA/F7b6I8Y/0SA6XUC03wBQtRHBWC6ld07xgqAh2oH7vwkgABNjK2heQ7A2bCLMcbO0D4FoDJXuYP7tBu0ODgSrvSxoT6qHHsvl/Y6iV7ydD31ydQ45VD/ymCytf2fplURcpUO+QeucENnUAzX6IzQfHCuAefbEHwNBVmHKwXmz68/TkVQneyB2c1Alchz1GLa2g+xXQa8ARA+5BlILFJjFo06w8Jkv5zaAKilbzzgl71DPmOBs9gi9NV0PcJCHpuS7C1Jsj24hU+esSCrCtBLsSnAfqIRDJ3kVWgM+/EGgD4R2wPVLHAPMocnukIDhQqKCw5Ib9VgpUMSSpH6tUO6ZNXJHhg+JgOCJ9GSUPGc39CQU1UDqMHMkwpB+y678QFcjLEbxFG3DWAXO5wbqBelfXLjMHtDhkJmIw2AmeqtTVgfK3HBQXh3DsQAHBJhStE/AWZ8h76faLykaQ8zR20Hb++ESp61QF/LFQVgBJw5juB2LsnKU0r7S5wlZ+31/DKUOBiByrTAaNOs3+ef9ti8LsC0BXCJ48rD9FbuynHKFQB7mwYO8BZOK3Uwucq9ANN4OWZaKFNLfpXqX/s6QM9V8W0jFT6+D4Cd2zCS4uMxx1RMxGzZDSOdShcwikhZAegXw7rMSK74UrPQDQDzsYxJxiSxMJYapKVEBZgmcYecSS4JI4WlEwWx8kwXSDJygywxu+TAZXKuRWd2QzZNM/Kla5lrSFIPAhDjwch022zXgzrTqkW+dGRF84CfG/FyXwMIwQP4EBY9K8C0wyx0rm8ewCVd6oAotgqAaHgWvTvpq0HYuIXEPDHGHUlbWWqwPRpRH9uQ93GubB7vBRiyviUZnbJ5L4De4V5HU3jgAYCzWVVhSDuEBwFiWFWhymPgMYC4U5r0GGM8yIfDZwBWXmODUZ+8jwDERnufrzypHwKIjS2W2pUne/FOvm2MRSnTlkB5iH/1+P//s/sB+AYAfwGwc9Mbal7ZGAAAAABJRU5ErkJggg=="
|
\hat { R } ( t )
|
"iVBORw0KGgoAAAANSUhEUgAAAqAAAACACAAAAADxZIQGAAAP6UlEQVR4nO2dP7arOpbGv1erJ6BbPQJO1GEtneBF1YkYAl49AjwEGAIMAYZghoDyTqyo46PVHXRSa5U1BFUAxgKEsbENsq9+wX33cS2MxGf921t7/6Hh8bjLX7Z+AI/nGl6gHqfxAvU4jReox2m8QD1O4wXqcRovUI/TeIF6nMYL1OM0XqAep/EC9TiNF6jHabxAPU7jBepxmn/b+gGeTSkljcnWT+F5Fn98mD9oGlHsxXHrx/A8i08b4ksJJKLa+jE8z+LTBMoCgEBt/RieZ/Fpc9ADgIpEWz+G51ms34NW/MVfIPPaL5I+hrUFyr/SF3+DSg/0xV/hWY+VBZqG0Q976TeovKDy1Z20ZzXWFeg+L7KX3FgCUAqA2DPBy5d8h2cLVt0HrXbR4RX3FRXLM6kkMvxSAPBhm7u/M2sKVH2pn+AF95VVgjLN4l/k5wV392zKmttMlYpeoU+UCSBVjMIvjj6PNQXK8RJ9IiaAZIDf/fxA1lwkvcq+EwDgvvecQ+63foIlfIglSSgGKPgN+kk4V2Wx9UMs4BNs8VyBgwGVN8FPw7L3nAF9gEDLMAcPAKVeM8X1bMkHDPEsoGmW5oFItn6Sz6aUQbyooHyk4/gAgQZHkZBavO8ivpRAMp4+T1xenTyIAKgwZuEyN7Fy3np4pa56Pf4D/7Xit7lHHRS2y3Gm9TE43XhZa11Q4z4ncrz165e967rRSEb1D/tZdIdk9hPTddVrCvSv+HPFb3OQn4Rmo7dQBFprncS3Xda6CGJTJwdY3+vPWEsLBaqzg9ZaM7astNanbO4Tk3XVWq+5SPob/nPFb3OQIKvVdzrYa+ABANDypssq/ZbHwpzTCWoZGeU+lI8/bkvy4NyJz7qvTTQBgI9YxbtL52PVQbJjEKY98VQUAAhEv6ztskq/UWd9QVpeP9/vx06NMi2RLvPFfWz3TvHZNdJEEwD4iEWSq4iK7VsfKwMSx2XIku6ldW+/rzTLZVnyeOANU5VKIKS9L+A5EkufFSz0cxQpZzVEKhCivr94KQlKEV/tRCeaoMEL9FVInkGGWfyLDKURx+U+OEvU1mvYLquUJ6PT1FFU7frnW8oqyJ5q9aV12P65QJ4qjDJVJur7fMih7A0ebcNMNEGDF+iruOZjxQS/d0tRSWbrhvpT0DJnhUvWipAl4Awkyls/YGo+3U1baG8l0DR/8AbJa/z5rUz7WIlSJnebxYOa7y1jtzkqil1UW+Q5brW1fIBTlQEiwmUUv79zf6tF0ux+xRwr6nPSx4qHaVRfZNX9rd+fWC6zOqnCwWkrJYxvCCLOLQuacavdWoVHqc4/zutbChNN0PBWPei7YfGx4vlwjkhaTQ20bLvMmMzT2JwccLCLKZFkKv+Orhqf1vVXkAGgCKD4uWfozUHJ2TY90QQAvEBfB6ek8bFiF8XY5oiRBABOGCAJsV02CAqZfxsSFZSAy+7/SZaUIbOaTUkQAWUerTqIqGYOktPzE9rnoGZdzTYAsKqpk2He6PUxFEg0C3p2lJomFlvhESetNUu0/kFguzzklNDD+e9RPLYkDkxNWmsdF/qHaK11UN9ZDX22IS2xJB2Y1onWBbUauy4Yde21gdbrmjo3EGhdL3gjT+EnOCRHlh2Sy8s52d9TwX5OSay1PhHTrt5dHnPqBHigdTK+a0H7Ek1irU/N65+RypgjI4Q1f97/9oroEBex1QOh/7murv020Fqveaoz5M9YRat89iadb4wsK7JVKEYlKIG4Zd0quYyaj3Ew2+VrZZX1IzyPjd2Dr4wJBgBleUQl13RLrER8y6zXqGuvDdY9dvzv//zzvx+8hSyVEDOPrHYsQVU1O2/f7Cxn9VVvfG5JmiuEwPbe0unf3nzh6aJfCSUVjYE9SfJ4bzM0vYoquLfRB23wZoskwlh61fAAYB8kwK6ZaquLFzPf3OFemXtENg+Ma0bv2cLTSCAC/cUC8LjMQNf8nYp7PU2GbbCmQP/GH/ZmIvM/fl4dARwagRrjhdXtZ1VmlVFeGXwfkBUBAwjKTEpO5VKj/EoM2+DNetAbKAlF18cISs47kfNeX5vzoslh88skAGd19X1a9fDr3YdEhm3weQLlVJZAOzXnDMhJFcPi9vP7EHEGpWIICgKUy04WLePhadWsqXNuxudcpEOFMsviUACAFBT7GFxGdYK6/k31iUyUPC0CiAiUVsOdcLe59KAcsAyC1dxPgFxZeW4DPwBBtPsBwMHyjEQqcWEKuh2kFiojQE1A6ofOWK5PJ1DJbVuG1ew+HpXVdscpre6FjRJlFQGC7AvS2HzfYAr6Qpq3SIAnDLrr0gk0yCyvUFVX4nm2G4vRjt3cNz17g8Nq2m3/KyKAR0HYbIQqf2r+PbkM8bZXmF/rHM8bi/G8aact8HyBXrlGAClZFH3RSJG+24/nfbgskrhlCnp19D7P6pjNCdFCBbaGQFi7rIuaKgUA8tbtx7kFnWeWi0Ab03GPquuhxucTjVkdvS2xW4knLaeu/x4ScAAiCpoqyWbIlxS4+5iFZ3uMVTzNEex6KVzE+WDX+HyieZ4wmNuKAgDkPHnCCB9CICTXNjTJYZ+RCgWaExdBzHkERDnnfhb6hnTOIvKLHQhSaa6KwsatwB4Dvtqd2uUIT7vlv3VZ3fzLPl4rPKWqZESBUv7P32MCiIBg0u3H4zhdD8qRkeEw3vaM9vOJxsbipQedOrWn8jxbrQMjMQCkUYx9eDyvmvz66D3pBCooBcDbVZESDN1kz34+0bqxONVLfcvD2rulJaVIvjbcpPU8g26RxBkAIZv3qVIYybCs5xN75wlnOSa7V6VAnDox6PMefwTnHlRKisa9VBFgHwcS5rA4Pp9obiwap8Ksp/YAkgV79Zo56FT0SZ/3+CM4C7TZBa0ilJRCSFYyNKfyMDifeD51Z54nvPSl05EjYpWOYsC8Gp/3+P05C7RZ8kgGGQMla/pGKiIA5T7Juhjw8itolvKSAu1xZ2P4vzLsJzy3Bm95EDUtQZ/3+AM4z0ElAwAq0ghAFaUJAEQCaGPAB3mVxwAIUc2aPRI8bYdweds4GuPRyDU2pp1AfN7jT+C8D9rOJjklgPgugua1f9cEw/OJZ5Not7Govm9MkfnrBak6VTqIlymDdrIs8hjgr+i0PStiO9XJd1lrFKzEeNo48v8sb/XrD/mz95pKSWRgRp/0eY8/DZtHvegilURytE0zviBuN3HfZBO9GfWtsjhIin13W8kzFoUqLiu0IQqe+oWe9bEINA/QSSkbTRtHJw/zzUzcl+iT5ytl3Nq8FgRb9TiJ5dBcAlFJ0hoIo6EpZijH6jUptm9gHH3S5z3+PKynOrPLcfvZ49jbacESfTKAd6r7MOynOt9i+/ASfdL8kTQ2L2/h/BTeKsJyn3H0SZ/3+PNYU6D/j/975u0yDgiKkncurD7v8eexZmSRf+B/n3m7SO0iVQp6OSzt8x6/kgXZju87pWiNzPB+8UFNhtEnb4/J6RLL0xqvkhC5y3YchPcaWm4K6nGuxEQw17uj5i7n+RGWD7dm+nWC+7Idm3mM7yz5VB7Jdmy+74k6nFim9SHSWmtNLfp440USgLucpjeH1fI7Hy3fSp4ANBr7cxsBTe8s+VRYdgAAThDYsjBdo+dpZq9DG82VAxM+8O8t0DfjnmzH/WhS95V8LsuzHfc9zex1qGIAh+Y3YAsO9t4CdXxP/pFsx8PXe0/JJ7P0BzDKc2ypQxvNlQHnYK6Db3tvgTq9myRSGYqqyvtDMImPQbi/vKRLqt/ex6rwW/CwV/TGkk9GhH/sABEKEYZ3FSzTEuVu8GzDOoBTmaatZjkD8mo3CANy57T3EX6rPEn6J9O6IIUmwfjfCtbliambRqlHbXOwpoy5peSTWZQn6UQzfcr0KbAsY406aLBE65/gqLX+wUHHp2KQutGBCMvCRbMPeXj59Wi2Y3tA0wV5kjdhlOfYoFeHSzRXI5irgQMCTV08lsEedth7NNux7SzLojzJW2DxNDszqMMlmqsRzNXAAYF+qO/mlGcVz3tZtadS/VqiYd5Y0gUm8xwP6mBGc70EczVxQKCfyyPZjkcBTW8u6QLjPMcAbHW4RHM1grmaOLiKd3FKugCbZ1X5VRXDOamZ7dj46CCg6UxJ17B4mtnrcInmagRzNRvCQW+mduP58owP7vNtM8W1eFbxb1mPsnEj5gqAiAH59X253AtoOlfSOcaeZhN1uERzNYO5mg2xYN9hKX/Fn7d8rN016TJHGwb3e2zBXaLj4z3bME9Lj/xotuNeHuO5ki9kYbbjcZ7jiTrUwaGO2anNxh0nybHfEA56MzUuMPKrDT9aGevgee8YW6Ljav5cyoxHzRIezXZ8S0DTmxIib8SNeY7P0Vzb+XYTzNVoCOcWSZwLQaEED0QQYCbRyBC1Yxmq/QG9rCWzeUguxay5TpZBGAbrl6mExRc3S3NJYb7d+ZIOMjhNOVUH0tahuXKODtI1hGMC5WVMDrwsANEKxUw0ciUOU8NEouNhHhLeX1uaxV6ZrmZ5tuMHUh1vxjDP8T11MBti2cxkEfOmzpqedKJ1XGgdHJpLpqFwzv2zxlFrfWhmkaapkPbnP3X/OcxidgPjSmQbfvfTecQAazSEM9tMAgDy1j1cQjbRzIxEIxbvmCGma0zPN+Z6HpJZj5q1eLlz/Jo8MvswGsKNIZ6XAa0iCn6AoFDVEZwRyOCSaAQoJUFpxmGy3MaW6DjCXB4Ss5hZyvMIz/I0e7wvv5nJIb4gR61PidbsoLOTjgut46QZc1m763PNO6bDcI3p+8bUtPe5wRA/61Hj2Y41BZpMCPSIQmudFVqfoiIuklprfYiKg9Zak1agNGmmoEl05QuaiGFJoLXWBU7ZSZ8apdX9ag4FeinWK+VxgDWH+CivrPuYOQIuJRKAHJSICABErDEqtLPBkXeMPSGTPdGxQVNMyXSimL2UZzvWFCiNqtI2da4oujSe8uwF2V8vjLxj7MHwrYmOe4/Q7AY328CWYvZSnu1YdZFUiNSaT9YIg8wHq5OzbofeMVb7iT3RcXvF/IRi9mITHjWe7Vh1m4kcyM6yg3PuwAAgGQi4TTRi9Y4ZYU90DMx4pNk9ajxOsO4+KD2Sr3J0NVIAkFu3gmhz1eIdY8Ge6BiWNGQTxfqlPA6w8j4oqatcDud42S6nQtm9HtqwBOM4TNa7WxMdA5BXVz2XYv1SHgdY05tpGqGsJ8SAc6IR3Ogdc3aN6fvGDPOQDG3xdo8ajwu4IdArdIlGqmCxY9kwD4m4MbOTZ3ucscVP0SUaWR6HaZSHhHp9vg3OC9SSaORetstD4nkY54f4bkC+LxiqwQNzA8/mvIFAPb8z7g/xnt8aL1CP03iBepzGC9TjNF6gHqfxAvU4jReox2m8QD1O4wXqcRovUI/TeIF6nMYL1OM0XqAep/EC9TiNF6jHaf4FaOse9rr6uqsAAAAASUVORK5CYII="
|
h _ { \ell } ( x , t ) = \left \{ \begin{array} { c l c c } { \frac { x ^ { 2 } } { 1 - 6 k t } } & { \qquad x \geq 0 , ~ 0 \leq t < \frac { 1 } { 6 k } } & { \quad \mathrm { i f } \quad } & { \phi = 0 , } \\ { \frac { \phi ~ x ^ { 2 } } { e ^ { \phi t } ( \phi - 6 k ) + 6 k } } & { \qquad x \geq 0 , ~ t \geq 0 } & { \quad \mathrm { i f } \quad } & { \phi \geq 6 k , } \end{array} \right .
|
"iVBORw0KGgoAAAANSUhEUgAAAMAAAABACAAAAABpBycDAAAD8ElEQVR4nO2a4XWkIBDH/7mXBrgSuBK4EkgJpgRTgilBS3BLkBKgBClBS5AS5j64G12B3cjp+vLe/j7kJc7K8GcYGMi+EH42v47uwP/yFHA0TwFH8xRwNE8BAaxxO7QaYXsB7q96f9+81SjbC3iTmRObtxqHkqjzmKVAR11ao0kkCWhzyJiNi/TOpJA0hUQdNaleJk+GJLbOAYsfLsD8cAHOPrj/WwswiK+gld3W18goQL18btOcjQuwVXh/vuP7bteIiDpWML1q8YotowJD5I2hkEEXd3zf7RqIiGRLrYx5Dr8WFjAguguUQ1jA5FsTDZqo64io9c2xnhDR0F1+fJuIgAZF5IVGU1DA5LvhRI2kIZdEVHvmGK8A0J8AJvjdGX6XYAqcequdLQMfd9acf+M5rASMAMveAcM8cxQiIirA18ygNgOrQ8MSTgEpKNdai7L1TDWE1lqLnEjU1EETdRgo9803IwAgYysGWjTh586KUDM2hzCA660Xnx5SAih7OCtRQQIc9mszmcxRRgG3lu8VhLdh6wRyADbzrWfHnMOAKyYdA2TFC88c5RcAuI0qmEAK2E91LcspC7hqnN2j4xM4h8UfDlgAnF9qxZk5yisAGMxCP9s38pV57Y/Dh61tdW5cA4BVynXsvRfyy7GxAGC0BDIBYCp1Z+bbAq4czz6/9mhrlinwaVomPuaqhMj/VCjFxZd7Q5/hXEQt4zeZ41wiMD3R/odOUxKV878WEfJSwFQ1Q7/oF89UJr7eKDMoBsAU8JnMtwXcTYH+KorqsjpDLgUshvDE84AsqS5jOjrmAkAWGOeZ+baAqxQI5cD1JhQI0Yg3DioHoJbzqmfq3KfRcbSDd8wjr57j9Bww/LqrBgxQy8lhWKZKOOY59vje2khEAs2KbTiKxmLDbJGRztDMWh/qNqMGZdPRfcdzc7DSy1hDGHQOZOuK6TAF6sUTAVZqzIvJGnwgEqiJzo6j5feVOVjpEYdMu1Yhoo55jySW5dGgB6LrsRlHb/XFUZET5QWRZkR6isuQJwuQ/ovgiW19g1ClR0RF91XMrSRwzNvzPiJY6QEm44mH+lDdv1FBGORc6QGQ1WxnliLxVsJVgePJnldaoUrvQsqMLFoqvBd3TQFN1PrHISJKygHFApNl7xSITdAEAU6FDmS7pkCo0jvzsv67Eh9ggDXFdYn0ZroNbgXWkxABZgH0WJwz7K1j054kptUyidtlIfQotrrc3TMFbrKVgIf/Y+NCQhIH+S2i55x92SICzkC5GyvdrmwRgTfTfXg7/KPYQsBfJ3jo7vYhbJID5qAEBrZL4sN4ft3maJ4CjuYp4GieAo7mxwv4B9u0WIFmL+lrAAAAAElFTkSuQmCC"
|
\hat { I } = - \frac { 1 } { 4 } \int d ^ { 4 } x \hat { F } ^ { \mu \nu } \hat { F } _ { \mu \nu } ~ ,
|
"iVBORw0KGgoAAAANSUhEUgAABCAAAABACAAAAADuPFnwAAAPmElEQVR4nO1d0bWrqhad943bALcETgnuEkgJpgRTApagJWgJsQQtIZQQSwgl8D5iEhA06MHEZDs/zjjbkCULZ6YsWMA/Chs2bNjgxv/eXYENGzasF5tAbNiwYRCLCUS+lOENASHLd9fgtdhYOQ6bDwsJhPxplzG8ISyqw7tr8EJsrHwKiw/LCITcRcUihlcC+e4KzIRVb1Lj9yjEqlnZvLsCAFx8WEYg9it+En8P+fOhHXPxI6xrhfg1CrFmVpa7lUQ/fT4sIhCpzJYwuxLIXcLfXYd5iI57WyHqaiXUXBqrZmW7ml5pjw//AoAk+iXzrzEIibYF4si8XOWnvglhus987+BRgyd2ZROHullncMeSsBZd8Gqwyd5Hx13de1ggxZ71r60Bc0n5O1kZDn0+KKWU6QFTvui+V5tXLyTpF7S7djQ59gsN6/tpqAIednm/en+LOA5rzwmvBpvjfUYu1s1YFLTugTCXlJ/JSg7u7+HCMPjwLwBkEs11giMhDP5ancmmsfusKaxGjSmEzAFwBgBCtk1ZUm6+iRkHRHMtfYMQoz0vL7thkTdn+6LMRRL0leDl2BzvebOv+9eyn3SFne+5pPyVrAwKkw93qYgBTH85ntHX6npACy8ANGnKAFiarmoA1LhSEK2O0+yeT0opjotSqrbfm/NwJpl9saCTXnGe8Gqwyd6fYTsQk3OYKgfHPFJ+ICvX1IMw+PBwkwNzKmk9CgY32449+4Xrfpl9sXjyKIbtUnCljlDqHAVrfkZ7F87HhABLCIRXg033nttBRu34UawDM0n5eaxclUDofAguEPWQ4nMARiQWwY7j4n4hpRQZ/+0N2z1SROeaqiMBGwwYbzgXz0oopdQRejHGHt3O8ALh1WDTvT871IAO/HzejlACsXpWrkogdD4En+YsMRCMN+iN50YAqmeFunIjGLYbnwvyI0i6j0/W2L2F9OCTqpISPZJsmhagS8WW8xrsqfc0Ka18wgQfmtnhi09l5Zug8SG0QLQVcT8KKYDIGmrqDSYJ6So02oyjdpP6WAp5KTwehNc0dNkaasB5XV/OC2XfeDXYHO9je0VC/OUC8bGsfBPi5QSiHJpNtlXYkRfvkuonGLUrywOlzT5YGmvvRZRljE0YXp+GmQ323HtGrS4Ejb571dZ3szI8ND6EFohqqCkF+qLbWFccheC84me3Tf+kCScnsvsThv5C0Nep/swG8/De0V9gK1kLsBC+mpVLQOPDfWAiyCDlCUPDXREAY/j8CFiFiV7oNoJDRjOdRuxSRCdVQ6mMOOb2emAeCVWJu4GuTfr02xPh1WCzvK/Rn4pRdc/MWhBmkPIDWLmuQUqND4F7EBUIdX5gB2UlAG4WNoO9XSdifEyrx+wmvI4gAPA6DpJGWz0bmgoIrwab5z1D208kitaynHARfDcrl8CDD/86P2+FAASyCChFC0RJr4HbSkgQFlvZ7UM/ISsoaxog4iOFhOz+O7oyaswuBwCJhiE6jtnwhZDh0vWfYnqD9QqNeM+aqveYSCTEalcH3LCx8mV48MEtEOV1nFtCHEgcyyrPuZ6o2qYVjRnaJi16rGqGHkU/KBN7gB3JSKHS68f41G7ARXIV6GJDkhamN5irkNv7qLG6C1SsvwexsfJ1ePDhHnbo4d65rmMA9Ylekz0SIxIsCJJrhFKTAnq0d8JQsN8Lyo4ExA669GDv5BeUPbVbx37BtccYBBsYaAAQfgzCq8Fmeu9IA+RPMgPfBGMM4ptZubIxiAcf3D0ISsH+k5CH41UHeYmS3wSwPCDp5v5ZvTO+J4cGd42gTFZVg4RbYaEe7FUHr+78c7ssXFQw2FNdAF4NNtd7CjT2ByK8d+O9EuoeGBgrv7HydbjywS0QABA1KG9r6iltpeh8qg547MwTZcb+M4OEaAAgBQDZSoG4sOLErlC7u//Xpw297IbCK/uF3g02x3tq+8LyBdxrdqMfk8t0kxsrX4M7H4YFAkBzH0WhLbpHIQ+Alk5oSbP7rfAIykhUgVBniwnj6xODvRG7gdA8za8NCO8Gm+M9BV4yJNkf7rOrMQcbK18KPeow4iCmL7Rl9884zGgVerQ3GMlG+rcyIHItntKCvUvsH+w9teuF52MQtbUJSQcAwccgvByb7b2dXFDPyzdYGlYexLeycm1jEHc+jOZBuHS3mrM1lxS6qnMOcbA7tHqwR5Kh1TXT7X4ivBz7Wu/HsbHSE3L/vMz+Wc1GQwwH2nZO17AXvCU5RGl1P81CxKc772V3AG1qtI1AanQEo0CbLPVu08fAbWY02DTvvwvfw8qAkHubW0IKRPrgMN/3Z3V7mCwQwJTtv271ghEXUgCN1WRGIcco+1y7A5D9Rb1mdqEIJBDWbXo3dd9meoNN9P678D2sBIyB3SiavRpQ7rOemjVVhQgoW5okN6tRtjuNmpkqEPZmfz7oaar7nWoUanXnZF7JqIkY7zeWl90BRCejeCrM9gw1Htm7jfWx+/L0BvuA5Jvl8D2sBCKglIiuBkSOJJlHxby3V3mTN+yaQdbkaXm8fRix8Q1JpwrELPRT053P00x5z/TiO5LFQJlWR9NnL7uDMG2R2zMJjTmP18uxv/N+wzpZiQwQDVj3q23TsuRzOrNNZWyuLA8VrTuCM3YoH8cfZH9GkzKmCsQsNevPHzsnpoVRSAuT2h1qCiCJfnYnI9L0svuJ8HIstPczZx3H0I6ehWnvqDIX38tKetxXuZyxJ9HBCGrEQeip3oUQu/PtT567BeLq1ByBGO0zucI0KzUdjmfqXnUP4CC7NLSI53kx9pVBE0FAcZt1XxyzGmyS947fZniBED+jH1PHAQLz8M2szCqU05d9llLf+0zsZGysDMt2Mr1VOk5L566J8wSCRMK16Y5h08KsF+INornPLbG8NFJWX9uDcOQfLoWFexCOlK9Fjr0m8Zzxlzk3+mJWUgDVZIHI9d98u5PU7IQwIstbvETiyhaIe2tOHoNIDmi0c9BMBrh/Q/2grAEcDG0H+pzVo2wEVFrPyctuQETj56WEg5djf+d9/0fTLtFy9GXrmb+ZlaPiN4Cm1RM29hJFz4mowf30P7a3l+Hc+TB5w5iEGrv+mvIYOYdknCp8rXCajxa6fnD3jZj387IbENEy71kb8xvMz/vGtYEK+eR84G9mpZiRBFbpCRupQNK3QLQ2ia1tvIE7H6bvKFUA+UOQTZcJdWn1SBBW0qeFzDWUjfGJh92AiF41Cvp3Dfbc+9ZmnHjhXjhL4HtZWQHaWQttutvtduntTSXLNE1ToM33u1Tb4lKPSdr8yfY2YLZA3PnwEIgGtqN3aA3MCrTp7Y9D/0OHVssKpgY+XlXpfTdyWcGd62K8tI2G97IbEnH/TdQ2TdN0m6/I6/9DBCH+DTbTe4cavHIp+wT0Sfn7WCkOIPXdRvkDfizi6k/na3vI81wg3SFJ2sPPzWchNSkqjXNFb9U0HLBnm+58+BcAyhZoBADxwwCaoGkg5HUjvQxNAyGAXBIkFEBCDqXMKID2IOv/gENDbqfHsNJ8FLkEqhbAPnocyB6x5lpDUR7vhSSAlAGIzFY0qk5uq9S97IYGiURjkKHU3lTimgFX/+WL2L/B5nvfttaSgpfupucHi5S/kZWiKmXyyL5oDyAMJIl/uqnPSMmfFqk8A4j/iNvMhCH3pStE6Tkgegqi8UGp64Hp7AoA7Lo4DhG9fq790a2QuyQEMecR4d1SxvtaxktvxSMBANKli96PIrtEQHy5ZKRQSqku1fN2jF3vYLhaXyjJbuZ97E6Dz67WRe8At2vLdC3H9BaaDS/H/tL7vhtKqcLe6PrdsEj51aw0VnMygHaMIlzfYvt+2+JxPiDD7RTAx6pVrvl7hGPH8oteQcfJxg8+zN1orOac10opxbO61lrfc0FsERMg9vk1uR/F39vtw0cgLuRtm8N7OebpfWwdNOn72NaOz2VlXyC4UkpdjgnANcpdou5s2NNjFfzj7vy+YT83F7trx4zfamSohi0QjwYLvRPh0VGbv8K0RzEfPgKhEszom6wNF0dvgaz19N4wWD8rnQKhlCqAyPVSMgTibuNWD53MMRwHF8dGn8gWiAcfQp+sFVOx4FygXCQh2B/cOSH0YSjtMe1Ksre269L4XFYmHMKck2nLdLcb38vPgKt2bYXRnS00PgQ/3Tv0ObDGqKBY7lHEPluo0qR5USrEgijt88gbLHVE+UrwqawEmDmNU/78KcGL2t+AaxKmhJ0ZoUPjQ3CB4CTsS5aYI67LSfXZx3RGlsjAeinK1locKEu6+lNz/g6fykoA+tSu/Dm09Sl72t3TRcFRts1BxlaI6nwILhAkacOKNTMexZtn6wm3Tsb+NOTMEoMcgXbHWS0+m5V3hdgJ4jWProuClb0DHIDRfaR0PgQXCGQ0rFizh1g3c3YeDAvODs8LrRmOtcOytDXj2/DRrLxlNVUC3e4x1yuDIxH6rz+iaCQAmf73z04AwKFBYdRYmt0Mgw/hBQJFE1Ssk0cQJrBIhuQkFGK9h7Z7oM0zq8+Zy2/vQOBzWUlwO2ej1VZlNNq/DhiLArJr6vkeZ8X3AA4lCnPIqZdGa/BhAYFgcR4i4fgG8pg6KGFt7/Vy0GP6yVs37RNrOFKWoydVfwk+lZXRbbgjl6B3TajG78j0VOo4QS7QICNgtJT7kp56HGiNvXh7fPCbpp2ECw2bdRN1c7ZJP5/tPSicE9OfgcTRgnHgHIGVYt2sfORB1PWRAKyuu1TJDCAXpQqqlIpAaqXUJeEc9MyZutRHChT1Wam6jgDefSumpnGSca6UUjwiRubVFdRIlDD5sMiRrScSNJ3pwsGKOqNryfYr6Ozjed6Li0sfCvK5ejcJq2blQyCALoX8lonFCaK6uCoDJ4g4o5m6MIBdVA1QRgGuFEBY9EjFNhLfagZCOOfxLTHzojfF2Uj/6/HhHzW37zOG6lAH7bW2lRQRSd4eX3SovM5PWR/a0nFSwi7so1ox1szK9tDfpP4BWbUiSrqhIyG7gQhBR24s/3AzG66tpEBE2vI6m5/q81Z5rh2SavEhhPzZKMiHvmR/G46f2huag1/ESu6OG7uOysnoYOixl8WHBQYpASA5fvhs4C9Bmx5/S/8Bv4qVvB0YSi8biPRHT7Vq5KOzYfNhmRBjw4YNb0XaunafyLuNZvS04R0b229qoR7Ehg0b3omsdWVJdGkUhd6BGN+PbhOIDRu+EYUr7yNKABA9T+pxPoYbW4ixYcNXompcP/2mobE+/bF/kiW3CcSGDd+JUjw/su/wbBnOJhAbNnwp2ufL0J8W2QRiw4YNg9gGKTds2DCITSA2bNgwiP8DhjvASoPsk7gAAAAASUVORK5CYII="
|
\begin{array} { r l } { \mathrm { I n d } \big ( R F _ { 0 } R ^ { * } + ( \mathbf { 1 } - R R ^ { * } ) \big ) } & { { } ~ = ~ \mathrm { I n d } \big ( R F _ { 0 } R ^ { * } | _ { \mathrm { R a n } ( Q ) } \big ) } \end{array}
|
"iVBORw0KGgoAAAANSUhEUgAAAQAAAABACAAAAADQNvZiAAAGAklEQVR4nO1b4ZWzKhC9eec1wJbAlsCWYEpwSyAlkBJMCaYELQFL0NeBlqAlzPcDUBQTk+8lHM/ZvX9CAjjDZWYYwBwIPxv/RpZ3bvr/3vJgnfxdv9gEXIfIArdwiOwCh7SIK3AL/8QVN4DHFbiJyAQ0ccU9gMgEACK2wA1EtwAWV+AmoseAH07ArwvEFfcAYlvA3gwgugXsLQRED4I/nID9JYKRCdhfDPwNgrEt4MfHgB9OwK8LxBByPJRPtI5sAS8wgI/D4fBRAagOh8PhFNR3FU9Xun0dJswIophgyf9/Ri+AloiIciAP6xXUaj8BaK11nrruBnEJQPqChwhIU6iBPqxms/FNSGDY78H9nyO7wCsSwcY9pYMIF5VySG4JMf7H+MwPox6LV694SDdGkgYrdwEl1iIAgMp1K2aszSyg+f48mXP77+PxYY2G7852P2+2NTqcP78qoPr++C6B7vRxvD4sDKjgxt2sGFRXMjk1PX19HM+D62YJEPNenjvkLGXGv+bhJVmgnvlWzYT1xBbZfe/NoYmoT0UKbqQxqlnKccNtV6HgIilDvVIrXbFPIYs6sT8o4/pqqaJPQF1TZprxWSRdsqz9B0zjJ0o2BqJQE5GS1ELkoicNZLxeituAcI1rsLCWj6T0AjkRFXaOU6RElAdztFgFNEBEOcSj6vSMTYO+tQJN9aMYznui1rKZrC1ntwQChSnlCBdVPWlulSlsKwYADIHRLAjoAfJp3ITV3QykWFFp3pic7iiISMMoyeZGNUHXQVmPa5+0dLfJRLscqdRgPY12QC2Qaa15YDTLPADYnkhfQ+MytbEz7UJKrYo1Z0jc9Fg/zoyS9Xo6VidCuNmeympcxoWlrZjU7afMQEIR1ZnzrtzISIIZWiGgZw87gJuFzFiepYOkUHKNRO7Ej4OxIXfNcFomiZJ2WXZBbRpsq0eysykEMkAATFobspTngamtEKCWDnAnCHLzxQ7XjkShJUpXzNolgr11RWFC0ipZJL2I6pWZC2PFSlopRqE1oHXr19yw6jAR6i5qsWVZphteItG5tVmYbwJAdxEcSMtrmKbYFbgBE+YzMb1dy6HskJqq8ooTUrksd4Nbzm2v7gpktnvT8PFJC7Ub1+3K52oFBLCzyBY/6WAgC3SdIaVEMsoSCDal1VQQ9rswva1O5SkV1ZdOADQDhLCE+eUxiRmuNuXrynFEV4xJ0DhJFRPw0qDmlC+0WlrpWnZxGxw5ESnjFsoYpY2hYWTTLqQlpoX1Sw1OvdB2kdbWVr3QNis7Wx4jdT5W9v4+yHqqcqK4676IzmEe8EROQpSD95QxzSX1CiYlGglYMpk7D7VLueWhBpSQRC0SIlJ2IVNeDPHLOaCJajmGO+VopdyPCjmYVIrbiMEhtNZaJ/OtIAUE1I+nQAYZA0RBmgFMOY1uEOCiq1vKmVVdgmWmn85TNwHC2+r6ZTJ7GZ6HlclIBRFRIQAmWyKi1nN7SXMsCCi20vkAfbDg33QBdf/wQSCRKnej8adqMW1a+wvMWNkGs/sIFkHwsrbDvAsWbMk5GqxeAm2cCDbCi7aVp0i1UGr2baq83toI38X8QKRqXnBql6DD+r5849kDAFzMnrry+KvunaM0HgHydrObmBNQPm0AK+Cqu2C4skCd7v6lQNqdqsuxNN06j63uHnMDWHcccPco6C5mDvHUvvQm+gQJ5+FqunEi2KcMXNkYwDzF2L3YkYGbgJg+saX0MI8BxfCKQzumm4FNkzZdB91/OPNeoWwGuVoOodiQcgDDkPyNB7z/WLxXbnnUT5jXrSzg9Xg3AYoxs+f1EsFN1Pl0geCX34E3H4uXTVFgMIH98ZvRspR6rfwWvJNdA2nPPINt9i4Q4WJEARdT2t3VMKJcjnKFa4Xx7GBniHE1phguAIY9GkAUAphEVe3xFTkg0vsBiuO8x5ckgUgEMIXm+pqr4ZcjzvW45Ljs8B1BINorMjm68y5XwVgEJAmq/b0iB8R7SUoB+yQg2v8GT1fs8l+60QjoPvdJQLR3hLiKJek5xP7r7O4Q/V9je8MfRmR5CsE4jtoAAAAASUVORK5CYII="
|
\gamma = \omega _ { 0 } \sqrt { m _ { e f f } U _ { i } } / e E
|
"iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAAAAABWESUoAAAAoklEQVR4nO3TTRHDIBCG4Y9ODWAhFmJhLcQCFrCAha2ERgIWUguVQCR8vWTa5WfSe6d7g/c5MAM44nwuX/qPgKtdPNddpBX8jHoAkskS4nvTgOhTVgFmgd+GoJBkmmC7BceEqvcgAMoT0PYWdL0Bqes10L5XYNQtUCB03QAFsGwkWeIIKDADCDlHfx8BieW4Ll8dxNXPfr895mWyO+7/LwAAL6llhuQOhGsQAAAAAElFTkSuQmCC"
|
z
|
"iVBORw0KGgoAAAANSUhEUgAAASAAAABgCAAAAACYx/CEAAAHQklEQVR4nO1czZmrOBAs77fXPeiFoAmBCUEcNgDmuEccggjBhAAhWCGgEKzDC8AKwQrBewBswIB+DM8cqMuMsRuaotVqtco+3LFjDn992oGtYyfIgp0gC3aCLNgJsmAnyIKdIAt2gizYCbJgJ8iCnSALdoIs+PvTDrziX/PPZx2ITp0XGyTo938fdoB2Xxy21+74un7agy62l4Nk9GkPetgeQYraP/MHsT2CNPu0Bz1skKBtRdD2kvSv26c96GFz07xaM0dLYWjid4GXIVbGR3fr43fpdTUHrEmQUMWZ+bp87+ES0eLugTONLj6ft4N7Xd8P0fl+v3PiZdMfYvKHXogPvQnLvovU75HMQyVOHzNObupHtNCEAFokAIzfNNBl60Kim/9jQeVtMwOn53tNmdPJbtUJSVVV1TkibaSnfhHUI4iG3OsV1J/V6bM53DlLUrgRdL+fUA/ZGxpeLjh7OdQl6AzqZduAYcG0UaVOH3MmKMG1/qd5+LfI09nuLKYQVMRG0CFm45ALl4mS1ic0GhEA8+ObMfvTvFeCXgV62VlemeaZ5+AEMNk5QmZ8zrC1QlEtuxKTqAkvc34CTMxyQJ4sRj1sjaCFoQAJSE2uFECsFOCZR5wIEoJC8z/Rp1m6GVSnIKaE4AAuAWdwIeioKgIZXygyr+gMQFAzyKjey06EKJOw+lBmAl13IOgorgRgKE/r97K0Wx3dR94nyDzP0aYgRChXI0iWnABApCB42EXcEdQMmr71QeEilQHznAXsBJVoKwe9fhmwcIy2VRAkEkDIAvrLsxCydxRFexHkqwfQwr2ORxWkSsIBVQKUCb9zOLRcW35kun4ALUvQowqKaUUBfoF/jNqH2IMVtv4875aCMqUhYySWsRJDoRQAVHRKAYBEQEY9k7WdoFQAgMkhoc3KHLk1gxxvsXo9JIU6eQ4DO0En/KRGEW6+hV+RPgVNJn1ctSENgDHzzQovE4c66KQ1TQByVX6nnkI5OdMuvFIdA0ly7pWFukl6apVL6+xDJu6LQI2/4Y2VC9Ff9XaEX3OmG0ECQd3lJJP9DrHoE+a+z7J2pZ4AMDR4sZqbNMhByvO8l5xoP8e4n1Qv2v5/QSEMkfLsZ/TcWVUxrcIKHRPryiN7ZJM5aHXhiwTxTXOPHKR+QvkBqWgcnoaeKcGr0xcE5l/LNUNMl2XKgwtlcsm++XN8TrUfmuPt283x46NeWXuSD0JDUJm/wQ8AbvJn/TbVfmiOayI7xzP5+OAzR2dLzYsBGNSXbQ7SR3UObwerH1o45+JeDjJfpmpfHpP2P7X+aJvEkIXHBlAavr1VwG03qwbv7k7yzmWja6gDK+JZKBbsKBEElUWhaxAD9szSG5JOqcemfqcO4vI4M80KSWDGV3rZ4Pggg6QzK1DJ9aMOXyhHB2iAXu1i0xbNHYJYpMTkvZQogDwbW40pOShO034xP+dsgmhhgoQuIAMUJ307qtt76C41mJpsN0jDAUSjBIkhBdRrqESqWai8jLAgiUvOAcYzO0GzdhdkzZuOIk7JgZnVrNtJjofD4XA45HH9t3HwEUKDCNLHH6ezEkZyzRhjUfmlAF23r+wr0nk73T4ct53VRlIgQzZlnihG2yWk3W7uERQTUo6UHSO9JMJUs1XBfsU33ADAEPszm7cTbQi6RZBMAUCJNfYNWROY/WZQdR5lsxyrINvNHUJNPQ+r0qlzNWOn4BdBQKlhdLXGPEybIRbe6xhIXGCOhVOoz9k9NnCcIkgTEIAtKAPq4G2CBhIXZw3QnN0zmp0IkgzJ6ZQkuaPLfmB1Zgzut/YlLu4aIDc7pyHWNLJY7OiyH2g9wQcrg/oSF3cNkJudjz5onSEGCsneaQb1JS7uGiA3OxeC2ppgJYIiGFjr6PFeEvAicbmM2rVwtnvAhaBW1STWaRnXIlBLjh7tJdXezUpc3pbGuBDU+J6bdcQLhEhYlUHNLYz0s+e1uc7SmCm4zWIAIMtVyiA0IRQ8y/clLgByN/3GwE7mWTbW7nGIIE1JxozEWvwgkooGN4NUO2paiQvJuUuZOLCb1A45RJBk6QmkcO+p+oJAhfc6BhKXqHBcDg3sJrVD/Qga7ZXr1Fc664kI+oWgUImLI17seIJxcUmXoDRXbi2YPsS79DHolxEWLnEJs5vUDnWHGOVmZDGhLZzlOnk3vqjzEJtWzrwNeZSjHeVuB/8W4fX7g9f5vYag75gNwHDx+xLXLMADDW90ZHOml6RJxeKXPDXfQJXBO/odRNv4uQWSlK+LhcG3fSp+jD02f1T8k/p9h3MUFOLTOz6T2qHhNM+viceSS7PrEk1GuoHfo5jSDr0UisRntnyvR/0Am98b8kJmIEC9V42T2qFt/PLCt/q8GxPaoW18X4x+UKzQYqJW2QhBn3ZgGtsgaKFctga2kYM2jO39ftDGsBNkwU6QBTtBFuwEWbATZMFOkAU7QRbsBFmwE2TBTpAFO0EW7ARZ8D/Af/0+R2LIfAAAAABJRU5ErkJggg=="
|
\left \{ \begin{array} { c } { \alpha } \\ { \beta } \end{array} \right \} \equiv \pm \sqrt \frac { 1 - B _ { 3 } ^ { 2 } } { 1 + B _ { 1 } ^ { 2 } - B _ { 3 } ^ { 2 } } ,
|
"iVBORw0KGgoAAAANSUhEUgAAAEAAAAAgCAAAAACH9iFYAAABDklEQVR4nO2UwXHDIBBFvzJugBZogZSwKQGVQErAJagFpwS7BFyCKAGVIJXwc0BIjO1oNONLDtqLFv7y5rM7qCHei483zx+AAwAAOO2uvEUlBhiGvNR63ue+6E0XrtqRbj7nZmEnIKmOpEegXEaSo/QPgJQ2AU6R5NiN9CRJuRalAIxAFupzQMiwyt4uaVOe8/1rfdjnuKQBABA/PSIGdDbXtn1p4TqFu1kbrvEQE24uYGrb3gDAt6sqihXxGy0I0PnjSLJD1bDFQbQrNE5LKgAAk00ZDADwY2qLM6ivqfIki8kOPMkLarOlIoBp4xIBgaRViaRFeAFISszfUySDtl7nOSuMldAcf+UD8C8Av8bN1y/U1clCAAAAAElFTkSuQmCC"
|
\tau = 6 7
|
"iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAAAAACPAi4CAAACTklEQVR4nO2XwZXcIAyG/8nbBkgJtEBKICWQEmiBKcFbgl2CUwIuwS7BlIBLUA5mQGA2b/P2koO5GIP5JIT0M/MgfK19++L6G3ADbkBqb+3A8jsoK/+BQFWLFgBW+nx7VHqw/ZIKk9hbK4e4GM5DnDYKQ0Tr0FqxpvS9P5/KnU8OWIG956XFmJerV39IHQ4wUL31Iwb2SbZh4VsA4DrrV7AN6GIjKhFrgAfmDuD8LtuwjKxrgOuGwLENUAR/c5grgG2TgogoCsnePOCbuZLKYYFalmmpj/v9sDxNgWNZXp8IE6Zs1Js02oRBIkdgdynDc1BXqJyJTxwTrACGyoHth1qziwHPTTtA5lL5fuxl23OvBlx9srI5aI25xGAD1CXjQ53/AboaUNhYEJvJc0k12LEROIBNLgGdtkG2ZXnwLRTA8+ezBwidTWZA5d6EqwCcHlzGsqQFdjqYN1vGOeASJsU8YO5plzxQHLCg9eCAyIDAJo/3LfUkB2wXwAaFkiO5TJzI+RIhStpYaKJdl5KNELkaI6uKQZScNKw4JFR0iqXrCJsBHvpVIUTMrGcKAgCGqQsp7BnAk35li0gXlREQlWDPsEVQDFMKV1T4JVxERLQzMSEikiIWgGTBUpW0ua5S5okE2JnXe6PuSnSvuhSdBBjZDoam6KNUkS5tF+doAhgmnab1eRWdC0clKpLXLD4AUX09rk30iIjGtC/QQESanZsHnPn8BY8I7SRbTx6id8N9CBjRXom+E7KP25vQ7S+ajjT+pT3ufyw34Ab8J4A/I0k5h6XHxH8AAAAASUVORK5CYII="
|
f _ { i } ( t )
|
"iVBORw0KGgoAAAANSUhEUgAAAuAAAABACAAAAAB+Np0SAAALSklEQVR4nO2d65mkoBKGvznPSYATAhsCGwITghMCEwIdgh2ChmCHoCFoCBoChlDnhzdU7Ja+zMw6vH+mmwWhygKKAnrfCIHAcfnPdzcgEHglwcADhyYYeODQBAMPHJpg4IFDEww8cGiCgQcOTTDwwKEJBh44NMHAfxdF+90t+GKCgf8q/r7/ab67DV9LMPBfRYU2GHjguAhAfHcbvpZg4L8KhYh9dxu+lmDgv4oI8rub8MX897sbEPgyTo2QgqdVm/yiUfwtXHj4NbwNH/JfNIyHEfz3ELdcvudV9avWmQcYwZsGnH93I34M17VxPkXZFzbmB/C4gVfL8aBi181tVWAvzey5TVq1ldbnS9sCKnHm+Uk8W0/3aKP52yKL9rT2p1KdAACR6r8X5+6viDcKPBpFad4/Zpu/xcf/Th9/Uivl8v6nulJgP9Xfk12S8bZC8xeloRjpxZnn5/B0Pd2lDc5eFQc/vf1v0dzm7S11532MqhBCfA6PboGiKBps64oeImfK2N81T4ioZHpMUVCZ3C7gQy1EOasM0IaIqASSjTw/hBfo6S5taAjfpu+jnirtUWAvqckIYUizSa4c8kr2xww8gZp9V/1bSVD3KTGkXcmygB9GMPt96UGFGZBv5PkZvERP92ijhKbXoMDnrWOvqsowSaT41P+vVvSQgZeMz8eliIiMIKqH91OC1VTyrQLeFYJZ5eXQdbU9Ec3z/AhepKd7tDHZ/pPJMX90jLHzemIyHcmJtfVKaDJimopeZuCGz6elutOlyoiG7iwQE2m1UcAfZU9HGCSTs4lXXZ2yvoGX6ekObYhXGTgJRPZXfudcXauFD71+mVIgoZqNz3+ZgeuFl6W7ipKIqB9ENDiRYfVGgW3KjfdQW+NECWTdJzZTZo2XDVP38bCenqiN1/X9ZDZkZ3e+hIQBEFJPrLu61BollYj771cN3LXR014aAJwDbaqvbHqlmEecKg0AYC2KLqE5IwFOim8U2KL4bKC7uE9zacHUuLXMeXMeWlQNEYGmhR0Os/N4s1d2Hx7U0zdqw4fo1KZTrC6FcNXaNEXDY1SXooKQ69De5RPQ6maoN27fa5F8OqtYsjJ5Y88R4oormCwXzrLrs1pS0j1XQhAl4zNWBTbImGbdzFR2ElhTrp7GiXGcW7p/+n73b6/sPjyop+dq44XemwabPGfnqzYAAF1LSK0Y1iOvYdgRIpC6C6WoPq+fi1IysMRQHQEyil1FBtRyFtLdHMkVReBElAMJJVOLVwXcGFb2fmQMmeSK2b0wxjgzuVdV8zx+7Jfdh8f09GRtvNDA69nA6XRGTQxAMG2IqHSMrnqXhUhNnQsuuzHBy8DLsQ+JWyFTDszHuFwSEcXIezdQgs8ClqsCbkxGJCCJFIuJiEycWXVgXMuMI0ACaGP5alYeLzxk79GuOXH5ih7T05O18cr1dwQMjrNjdB6aCVGPH5f/ynfFB6QmohIxGR4ReRq4AHpN33Qo1g3UUV7HUH3RHJBS1NcKbGEATcrV8HxcVk+rKpKAtWVi5fHDQ/aeXQb+sJ6eqY1XGvjkHCWbTqIl21ov9STENbrIYYKs3ynzWWSmFVS/lyuBCn7ElzNYonABi4qiABrlNIGbVIBIU1ycBwz6lZmYTtHkVSudeby4Q3blWuXc3gv31NMztZHfbNz9SN6kXc1nbCwUK4w3LgqsLl8066RtVPPJRfLBl2HFBUsDB4YCHPC+nxpFANKqQPvORAVRojhVPHbFTgqXDQ5qKQB8Rpfmsirpth6x+e19qkYwLqN1ohgqvUP2e08xeugJz9TGi9Gfl4YDKJqtcFmDMcTTrJtWAedVkU0LjqvPPIo/xQ0Bl3PEuJtmbk30y8IdGRMSyPojESWLyXCX03V1do/ARGSYa6/AXet2nhyAyokoTyQgO+c2AxDleZ3nmg3eiJfsPjymJ3qqNl7LsD0fbS5h9LTi1Ws30GkTjo2e3iUxQhIpZjxcFLtX+fonPSyTf8Ej4AIW4SNWYDp1TK7cNRkNEd4KbZOzKE3jhy9XSYAn3Qd1OhepBoAI4BkADhn9xUkBT5Hdh716wlO18VqYOqeaoblga9StJiVXwHL+Yy4XZXuAZsn7KY6r96ttmht4YVVa3De7STQVIgAVIpYKBYBfHPnUFd+paQDNoFKky069x7me5bH9OnnuPQ8rUciiLSTuk71xOTJilxnu1dNTteF02DY8tntQ5/aikIJtvVxrFHH44ALIfPqwSD64yv9cz7ScI8bhXmwsafNhYlkWnh7CDBFJZKRyIqJYXi+wIuu9BbE4oUZEOW5H8GZ5MisMnA+f7UTZx068ZO+5M4oyFN6np2dqw+mwOT22+4jAr50jNJMbWDuaXvpEUYiIKEZ544TkXPf59JJzyyWlWkveBX5KMb5B7n5xg3xyDOaK+GqBNYOtJWtr2RMCnOWx9w6i4WidlTjq3Ev26eG3DfxRPT1TG2RJZvnDU2q5sUWzkxzIr5wjtNri3KxwrjNW2AcMFTPXw4TzGz1inNHaTyAZ0xlvGqQAqvdqDB0Ie/prx/son213fYgNHvW5iRwFrlH18YyI4QLMIhqOtfeKWZ4pMNV8XHjOFomTnF6y96jcwbJ9j+rpmdqYOWzjo2YeG9oCAKqPjztWIpIjTbdihDMXvFi74IBCuqNS+/ZOzN/tr45Wz+1d9ZOEEYu9KMPAiUqmp8452w2Jhw6ZoD8Ul/SPnq6t7N0+obFzK6AkSqyRS4+bMdvM8jAwrbXWkYBMpsRuesxjDj483Ed2Hx7V0zO14XTYnB4bx9oj2kECXNluV5NkGlBE5bz59Z4TQGbm2xhmb4GtW70wcCPAdF0nfGWLGsgMtxONbQdZX0BjuCRleExElE3nds3mBu6cctR3zcBiZc9bDkd0hZ2nBvqzl4qjP+VknZrgapLIR3YfHtTTM7XhdticHhuwo/OsMezaskBOzywBaM0WSo2BZdLi+ZkWQBRPfai0tbVu9dI9HM7TqeVoZQAl5weQZreUNNNaK9YdpOlqFkprYe8aL681bWBt9JYcsC1rffVvzSyPPTgNQ/SQuDwx4SO7D4/p6ZnaIDlO2XUEXq5STTTYugS7x8Bd4e0J22PQwDR7zlOV3jwPPriOzE6aXs261Y7jsnmcueaYaLUqMMyejOpYaz0vmGmdmM0C+8gXZz9vn4LSiwOl9p0AYScatuzu+2X34Yl6elAbbofN7bGV8V2rTZPvfcV17upA2dIzv73jVlq6W7V69yaX4VgtcTPfO9reBZaNYLePC8/zSGvMMMMAMiQmOzcsXbL78CI9+WvD6bBteWzsaQeG/ci05F4GbrNq9W4Dl7Fc3+aNfW9OexeYE+1Ypc7zsHlIXM4Txb6T407ZfXiNnvy14XTY3B5bLV51//6VrFu918CVpMyxRkx8rxZ4F5g1gt3eB5jnqe2hN+oFmBJz7DHcDdl9eIWe/LXhdtjcHttuT+NHsW71HgMv8zxihoiDrQJlOY/8hjbvAiO1kDfjdMs8iWWYaohBWYk3netrsvvwdD3dow23w+btsf1T7DDwBOhuumQAT5LFSGZ8R2TvAmPBHXG6RR4j0IXjTK450P3cjhGTVde4PjRfl92HZ+vpDm1sOGzeHts/xT4D72O2CQD58343agtjH+YRUVxbiby3VT1YsJt/VnYnTofN22P7t9jjokzhHJMfTf5bHEp2p8Pm5bH9exzg98EDO2nfK4hEAG1VXBqo7nh5+15h+NHw5g+Gn2A5CsHAfwvth3WCS3ARcSuVR51Zn84AWx0X+5cJBh44NOG/EQwcmmDggUMTDDxwaIKBBw5NMPDAoQkGHjg0wcADhyYYeODQBAMPHJpg4IFD83/Bs8pkmmPSuQAAAABJRU5ErkJggg=="
|
\sigma _ { x } ( \mathcal { H } ( - \kappa ) ^ { n } ) _ { B R } \sigma _ { x } = ( \mathcal { H } ( \kappa ) ^ { n } ) _ { B R } ^ { \dag } , \quad \forall ~ n \in \mathbb { N } ,
|
"iVBORw0KGgoAAAANSUhEUgAAACAAAAAgCAAAAABWESUoAAAAt0lEQVR4nMWSUREDIQxE9+oAC1igErBAJfQk9CS0FmqhEkACWEACFtLPC8lBZ/rR5m9Dhn3ZyUKY1+nD+3cDdUtMkS4Lv4ujH6y57mL5zxbTgXLZzmvX6TfMvlHEnXXEgG9EkccgcngGAxS4IUMNkAMHURu0MQMRZTgudQ4Jfh6UQNAWPYJmEAiaQSBoBomgLASCYpAInCE9ALwQMLIAIjXjegduAdOac1l4sqteqy3+ZoTDD87+DRjmWSXRBi9oAAAAAElFTkSuQmCC"
|
j
|
"iVBORw0KGgoAAAANSUhEUgAAA0AAAACgCAAAAAAApFOBAAAjH0lEQVR4nO1d65mrPK9dc56vAe8S/JbgXYJTAlMCKcEpISkBSoASoAQoAUrAJfj84GYDTsBcJpnN+jWTyXDxkmxZkqUvhRMnTrji/376AU6c+GScCnTixAqcCnTixAqcCnTixAqcCnTixAqcCnTixAqcCvS7UH59xT/9DP8UTgX6XYhBvZ9+hn8K//vpB/gXkN8A4M4AAN8SALvvdKsQ3uH3/LehTuyOKgAAUf+SccAvdrpTAhRH3/PfxteZynMELilACgIAeNzan7bHNeTJ0ff8t3HugQ5BCQ+y2d1LeHvJsuwsuOPu+Y/jVKAjIEvqAZ0wO8ly+n25SQDl7XK5lQDk7fIdmt8JQfwt73niNX7ahvwnEIFXaLcnDInDJXwA8JUSAACqVAAACIwvMfhb3vPEa+y+ApXbhCVCucllfgg5GPGAEADKHGz5Fa6hiAhCXB9+FBCUaXgVSXvJ7jY5/P6X1fc0sAmPn83iNPbVz4QDlfZ7cRdCBJX1+9brgIjl//U24AhUAhCllArAll+gYIFSHEyQRCnFAZ9kqrtkC1+/9Op76hjy6HiVz2ZxErsqUOUD8Lshq4JmGiR+tPBKhQ+Q+8aPdxyATClaG1xCM7OWgYIgUqo24yKlVAZw7e8V0S26be5ZX9jk0RkfzuIk9lSgjAGsjT5UgREhX6xDCduEwx9BBiilBOCpemVwQoE2rsNRK0TUBXqUUkoF+iqxzT3rS+k8rsMnsziNHRUoI+gmvqixzZmIisintQ6JbMnlKgawzxz7O3xVK0ChVBfqXIoEIPX7o7mGAPT5nOvrzDb3VMrkcTU+mMVp7KdAFW3HPfEJAFA/aGksgjosQZfoUMU2JPJQePVCwYG7SsxtywKIdr0p2h88QBu/ArqrbZt7Kp3HTfC5LE5jPwXitYGeCQqAePehqmR3XuvQ7MmxIKbJ8jGgtWRHAFcCnuNVeKsgQbvwEEMxBOjm91Qdj5vhY1mcxm4KFACkKAQFwIUtCJEIBoDdZ+pQBGPK/RQUra+TAIVnkR5h9ZO24kvay4hGkxJTEoluz8265xwEANk2i+5DWbRgLwWqCCAUBRPRc4u3igSd7WTdejY8BlH7fgIQtpBm8kqBMrSXaTXJ3AJFxkZn1j1noNphvTiWxWKN/6TF3SrEeymQAEilsnlzVzF3ikuADwypi1YEC4BYI28CAEiiQxBNge6tJFetJnFjJvcMO23ePec8e+u52A5HspjwVQ6UBpk9mX3xeaBwOiI9nEBDwCdzw9907s05TxHyud9+F8RtIhr1YmkdExFKQKb6oR3u/e1/KdtxitFcowQYcKvVrIyhxwle3nMRjwYuafsTYWBgiw/wbcPinBcoryno8PkdQINHGAoxeaGlyljMukyAKcXnPRyN4Onrvjeqfr4N8MQgigAMdwcBuhWItm/eWW4AqsqvY6sDF8Lre7rzmAy2a3RpVHwbFme8QESArVIfBECnhNZhcW/2sMC9tjP4xMBzTO1rtPd0XMIrmKGPT4DfP3JFALu4ecBw2CrSKlDRpe3QdvQYgC75gBpaMuee7jwSNJfMEg4HRjZi8dULBADZzlthuZqDAiXtc7dK4I8GvpgeofUKZGH0nUF1tfCfTb0VwWi1EK0CRWj2OBnahIMIAG0GMjEuPOue7jwybQVJ4LBL2obFFy8Qbao/Ng3aQoGq0cDfR7bIVhAfaMPNxoQRlz3zWFVJ911/uWPLnUdAsxd9DA9VvMY2LD5/gYJsLYN3gI6mCofjDKPtHxltI1OArM2ft9/819Zt8jwAuOofsWc7YMLbQTaOos6EM485oLklCIDS4dbrWXz+AlcJsa0MCo7yNvxwk/NA/vCDFKvPn1jAUBP4O3EnaOvptEiSOcV0wgnpX46ZPJbQHacu7rS9WNReIE5B7MFpNwRAOJwrNlEgrszSJCl2UyBC6sv/TlABAA9dthifM5LxJjUPZvKYQ1ebHAviEA32YlF7gcfY/74a1Aceg892OZGawjam8e3yfXtIIL46zkAMkL/wXGOD2pN0ffW1IYyjqNvBwuNYgRavQruzmOYTC+pq+fOAePDY6wsrPuTIxpCYVqDwUS+ADx8PV8YpgPzjYqmzEfyVQH5bWAMxBFu94s/n0TDsyhjgS1egXVg0XiAG2OipVssfJ1LGg3908EYYzo9i4hIcUw6QygPgR0Xiud5YqdqB82mRoCWohWCh+8jjLglfjjxm0H3t0995hW1YfPICGEePt5A/D8PE9tUrUDjxWYkJ21lecpCEAZT/V7rtPbtLLf+XL+tf3qyypIhzANds0T9F6+87m0dj0yOvaU2qAyZYXMOS8QIxRk++ifyxeOg9XKNAOYB0uKkCLF7NW94NNQ/dnQz8sdxr+lEI/sLBiFuDZTxqXuw8DiVY4EDltiyOX2BiY7aJ/DEAqXHhNQo08ok/QxwCUVtUBOu8dL/XiQCAiQeAh7eTG3MCi3ishfMvwEgKgPnO3ovtWBy/QA4MSkluI3/bKhAjKGdPIzeA63c+2A/wZobaM9xTByNuDRbxCNm4r3IAIGLTZiqOLI1fYGyjbSN/BEPFX6NAdw7I/6YnkqGCxyX6WHn5IsL+DIsdPj+I/PncbjtDVxtxmz+NFUt4rB9M3AHINA3ltxe4MLkti+MXGM0HW8kfkYNrr3UikOB7+vPB7zG0ss3lCgvukxRIugULmXgcvkLP5bEODnEAIJ7nX2RcakulzOk8frZn0fYCDbaSPzakdHUgdd4SLmPtmzLfLVHh14Bs4FhbhNmmmL4/Zz6Qt26pr6+vP5efS7N6+gJbyp+pQusDqbPs1m7aan9pXkAzcij/db0Jmb3QwTPEDyA6vJvC3P2HIX0MQNzwlsTh4QunjsELGCpik7/1AnhQi0cjgTfvc3ypdwUoBWSOkEQzht9xirtY/+Im5LNAnMRJXtuUniHyG2iw7pFWI5dDBWpnZI4QdKbeW1jcjSWb/DkI4GDx2kWBaDncxRkJvJoXnvhxCuEDkI+HvBSvbWMJp/X3gxJQv6WtnWma7pLyZsWYx+FZBiPUKucvQBYWd2PJJn8OAjjYFm6STCovpu1LR24Q3UMSygEFDADInf3ikz4LcEutG6B81u47/OMqh695HCqQEW+xPV5+uSxOj3VD9wJ0sMjZ5W+hAI6GdpMVKE4XLAryBm2mkmW3nPJ8TmxtOr3kJT4mDpQ+gMCiJpy+3uunN/d9/Bwexwqkm0YctZFnnMObWDgtLK5lqXsBao9rmfK3XAD3MOGGaslSoBwKQTtRfRvLt5bZK2fNryWmfKu/BvIKWIOTr+239LHGCprBo8x16StjaN6txr3wXQJA1ZM0sTLtxGJfcGu8dk7L30IBHGc4OJhwIy2Vw4Vv8pRv82+P1NfDWL1PR8azTGjHPdCn4FraNkAzUF4v+QJTYPTBDB7NM3ZXAH4rdLms+SsIQHQvIhejKWETFp+8wITxOS1/CwVQWznTr6+vm9MKNDIRRvF2huFpD5YCoQ8gvPlkYAM0X7zJ1nSReTrIuzBfgfzeFegRg5h+Npk3dIcxAP+ZCSf/gxDk71wTzoVHw2aTtxSaureimA8TTCcWzk1YfPIC/GHmrFnlb0oAn8jfIEm1hMuxiMAsxxV5GHQaVBWGLSwSALRQhQ9fcb2KC+oaTVnAQNpPAwZ73SuMTmT8ImQYVbgRbRErQfHq5I0olNbE4RVceKyA9nmqgALgfZkavy4WV9AZLbQ2YfHZC8A8D2SVvykBfCJ/rC+SlKE+Qr70qauAAIwPFHRQU4mN6n55AFB3aoJW0qhPAzG6ZzKrYmf4Vc0xTEz1zvG6oci66S7gQ2iKNVOBnHgsPADgnPP6ECrVtZ0ClVIRIUYZx4BzzoeFHbdg8fkLeIMnt8ifRQBt8mdUhKzvttiEezzwOprJc+Tm7jOQKSDJ3UcMkO5PKcAZUJa5NG1Wm4GcY0HWyafhloMON0D9xr4Ps5QjT8HyowEuPMr/tEdihBnCK0tQkj5Slhi2WVmWwPCltmDx+Qt4sSmBFvmzCuC0/Ok+kya0tFiB7nO2uPwBpIbpS5I4B/WIbnQCyAHPB4D4O86L9lOZW3dzOfaqOPfzCMNxCo9Ww6Lf7o4HZ3lypguP5JmbOQXKLwCD7Oy793csjluw+PwFPFoi1L5hkb9pAbTKX6r5TFp/wsqF1AJqt3GZvnp3FdOVr1mmCRApVSRJkgzrV27Zr/PNUJBxnYCK9UVAxbO62j1m74Hm4AmPQwhARN7YNEsmaqsewGJgqzhsyN+0ANrkr4A2tkHNzE4KJKB3jNZR6Q/RV0xv+0m3PxdNeY3BOP+u7mYm2EhYq4ijFz9mG1ITmyqQncep+2aqGGvLfaxTh7DIp7dZhvxZBNAmf57+e1PjfycFKmArmBzoq15kPHT3vryedT3DyaOUUsqH0cXjN8FaRrORyGrmq2+qQHYeR6h5pSOFm1g4D2HRUhvbkD+LAFrkL9BrY4tmYHYprFjXcJyq81IbnfovrUmZGklVDECeQpgbUsgQ2Lpe65tgsqqHjvx1mG972Hkconk8Nvp+OnruY1ik9ybrwIQhfxYBnJa//KbFh9MHAh/Y7ziDCJGnU4Sn+o63j/2G2ovlEgzIvxENPTWPmtJfCPn0PCVgDNy4Odt9L8eKlcchmpQYL0YqgJi3kibz0RmHg1j0cS0v0dC9YsjftABOy1/6LbVh5qKt+rLpsqlBTOwdVW0TdKZa347iTjRTIQASdSds1ACjwLx99Dsh8biolFKF4FwUSqlKcG9sFT0579IMl9YRdTx9a0bbpiaclccRvIYaAJkKeo6T0T72OBYD9NF57eb91mhaACflTwBkalx3U6CKTtaevAOg7ZP5ABVCCE4BLfzmA5xOWcn887IQfADwW5mntQ2+vKGO0rrcbxNInQsLjyO0mx8fIFTTGTH69wNZTChAA30fY8ifRQDH8lcFFOCTHY12UyCVYWoT57WCpOpGZ+2CqE9JFFSwiQ5MAmBbd4zeGT5ERADlw48CAiQBRDKMks9C7d+qXmfJbKxAFh6HKNp3Kogxxw9aiaujWQyoKUi6/NkEcCx/GcAtg7qfAjm3qKwAoZLxvLdty8tDULBAKQ4mSKKU4oBPMqWSYc7ZHFQAVQV7OQIVcVrfnmDhuFdC6BJLBruEw1nMHDq4juTvbu2nt6MCqQAgDhXEIyBSamTDic/TnxoUpLb5RWP8P23baAUByIsRqCIhKAAiRLThKuTIo1JqvHB+AIsW+bNgTwVSCbEvfXbUYSwBZEp1ih/RcVDoM9BvW3mzn46cMikjAvjPG4sanojld7Bf14lHpdRw4fwIFiflz4pdFUhVLt1k6zBWBgiVkUbSokHm7wch6XJK2rEY76tnofq55spOPNbQF87PYHFK/uzYV4GUqu6Lk54aJw0BeOfNqfxPc1936CLcRfuD94HpSA481tAXzs9gcUr+nnx79+dZiozX3aIS4m55vxM6r1jQLjzEwYfwufjBhdMJC+Xv633L1cjfUTzkj2yKzdweSDiA9FIXZz/x3pgnfwdVJnXBr1CfJi8EANrCt+lvebVfjnkk7ZRMeqJFl0spW036kazQEzvhVKCdUbbJi3F7MLMuhXn71W32/h2cCrQzuhWo06QSkPK6qgLiibfBG++BfgXKsi1h0a1ALMcfIoNfWxrl38K5Au2LbsOTd23RBACS/M5jTf8e3tiN/bnI8xIgvs2NI/NfW1jo38OpQJvjFpfgSEHu5yrz+3Eq0Ob4AksIykuJOe2aTnw2zj3QDogIQL2zX9i/gFOBNodSFAC4S8HdE5+GU4H2QvqLi3if6HAq0E6QMfievrby6+u0EN8AZyDVHfkN6Eqy1Z0D+yzra8ksrYK3QQx6LnBP8JScDXEqkDuodwUQN+HRWwq/81vLWzxo87E1wq4M4EGS8mF4Qs622Pt80q8GR98D4K53A/D2Lt2UdEesqwDoiixk/GXhhH8GVnI2xbkHWoMSXtfZVsLrlpxrzPddfxCDN0Em4nMAYe3xYxzkfkafANjJ2RanAq2ALLVoj3aA8Rr6O+uPDDUX3zGS8mmwkbMxTgVagRSUA2ndG7DvanYLvQAA4nl9DUZX/b7cJIDydrncSgDydvkeXCoE6fdbx0jKp8FCzubYxzL8NyAgVNuTrega40RNF5mIOJRPnFlNm2n1YiLwCu2WiG1b1/eDMU3O5thdgYptKhkF71iOjyPo6vQGbb3rql8CXCpBzaqmnemFsQ6SlClsQu5O1E6Ssz12VqCEm4wWdyGEw4glRhfydwGQKUXr1UG06qKVB3WoPzqvmravC8RBkjLGkFzHq+xE7SQ5O9xmrwsrpVTlA+j7CVRBE5oniwvsFf6K+sx7IQNU11uTb1jS/VU17YroNztIUoYYkOuMnajdjZwB9lSgjAFdl6LKPMO8WIcStgldW+IOX9W1rwulXEvfTuBlNe1An/mPkpQBDHLXYRdq9yJniB0VKNOamUeNz4iJqIj8OlBBxKICtxV7t/ZAXi3VHLirZMNqoy+raRslZ4+SFBM6uauxB7V7kTPEfgpU0XaIk/pwM/WDlt0iqKMVdIkOVWxDzrYArT1eEcCV2LDr2qtq2oXRQusoSTHQk7vN5bandi9yhthPgXhtt2d1xxrvPlSV7M5rHZo9ZxbEaV++F4o2BkCAwtvwyV5V0xZG65qjJGX4iE4+ehs2p3Y3cobYTYECgBSFoAC4sMUmEsEAMHv/LxMR3qmvQdR6vAQgFsRf7B3eG5nsmrqJRpMSU7qIbs8dJik6AoBsaytuTa0rOYuxlwJVBBCKgonouXFbRYLO9r1uPfGtgmiltQCGjQyfwd6Qu363rAv6tFc1t0CRsdE5TFI0VDuYAhtT60rOYvwPKLU0Ed5lPKTp6KMleEgQgYi8TGwknncv515VpEjTdyksHbdZM9SLuwryM8DFAwAxTgulYX/8+1U17RieNqpdkor/QChHGSs7krstNqbWlZzlUCrrT06y3gkatJ+5+UV32q68UaP7qt/KB1j0tnWugvkPGdBOwX475kG7s6a1p7peyos6NNSCdouTh4nu30eR24s+4VwIhwyFTal9QU7VPmxzx6z9fbnMNoubD4y6owevm3JaEWDKocp7ONq709f9Efi9XVURU6hfoV58zCEIOgXqGrN3lhuAqvKbW5guhDlqfAS5yWBFootVaFNqX5BTBfX61DqwquYIokNKRGsdEozTMoT7IsInJkOll6BztNUruPUX3R4U2oTvL+Te0/+5RkUaBSq6tB3aDhMD0CUfUIOVWWp8CLkEze2zhMOBpi2pfU2OfgpRqcaz47IetwokJh5fzGv0PYFiejDWK5CFvE/DlBEnGgWKWsMi68Q+AkCbEUsMcZinxoeQy7QVJAGWHwE9ltqBECZO9pvqFSibMKCp8xx1H1koW8G9XfRbYcKIy564oaqk+6rv4Kw6hFxAsy19h/n8WGq5qUB3NIdQlqI9UMcYkOeGGZuWzmUYUmCn+ukcv6Lgp+cBwFX/iD05CUc6V4BxFHUujiA3BzRnFwEw27fa4EepTYG701HE7kSqh+Hjx8z5cH2KvTyHDDVXn447QVtQp0WSzKimE4I4VLM6gNwSbQMxwK2H5bHUmq+fpuBuVcI6BfIBGOeGZbhmjtpLgQipL//poAIAHrrAsDmFGGOnmgcHkJtDV5scQxF9jWOpNUfxATjWAusUiHiA1Ac5dq9Mm8I2fPHt8n17SCC+Ok42DJC/oea04MDAiJuBPIeL5B9A7liBFq9CP0dtmkI4zvh9YUUvBlKNnXDYICqXcwdFYlqBwkdtFz98PJwEoblu/i7JCGsQ/JVAfls28YVgTkS/Inc+tzZyDcOujNGV3ZqPn6P25p5Z0Vfl8SgQ9xu/MjfmKHn7c43j69d3t3DcLpf/vr5SyOvX3z+GMY8SwyUSAOT3tYQfFYknHw9nG4/gd2yCpoy415Dcbd55Su6Y2+XkmkvOFS4m0aHUEvTdM8IcwrmYUe+QM6MFZpygYl7RePta96fgFEBS0Xs1OO+lKCbS9yoGkKz7u2vmoICTw37OABwNBhwW+nhC7gS3i8lVAXq/deV1TC9+xglq96FOC/xUFM5BMT0bu4DuyTfjBF3ujT7KygMSHig11IfJl/P7UfXdlEApVb+4Q87UOypQnYF1zAGEJ+ROc7uMXOWjDQ5lggDMJQpooXZ3BRLucX3zOANDHyGLjJhWhi5LhGrRLgH4vlKKD8Rg6uUi9I8psCx3TEfitnq9owI1J4OOOeFkJdfC7SJym9UUYBww0laXwELt3gpUkTVZrHp3Bv8KhE2ibmzsASWAxmz2Hoi1DVecAIji18GJ2yB3/uDN4qatYPOFviJbjPSe5gCu2fRft4WVXDu388mFbPYuOQAQsWnjlWXUyee7qAmxu0lXFzYAQ4srdHmMlZmIUaCzcA1LGdPGI8amfQQtt2NYJ3AJCvz8obqlym81ELIhBfvBSq6F2yXkavN5FfkAPKesmE2otR9XHIx1+8TFOitar41N/C5aEBLD20MTEbR1dcwHssnScM6NoVVzLlfEWX9V6wEmcNRabCXXzu1scuvgEAcA4gUZQXzR/ibTmUk9P0Ptdd3hQKO4fJ+NFA8WYX6vx7hMc9PVONP7J2OtY6jMd0tU+ECQXRvZ9bCSa+V2QZ163YvNfCBvE4e+vr7+XN417FACSFPHJLgGRoc6j5ZISwrkeTD6pozTvGTELVTczVDtL40Cadlg1DEZ6QfwwkyYj/gBRAe1U3hG7ipuAcCYEhl6JU3i8Nj9Ll+wZZIAbmCrWteZLR69BxDegZAOV4jyEcK7e0B6gQOMXN28T+el3hWgFJA5QhLNGGnH2cz+1Jtpw3LIa5vSM0B+Ax1PYSthJXclt6i9KqYCdUUXEILOnCIs1O5EHU8BIMxXeRAw2MG20YJRreKAtCe6Em2jJyz7Lzraf3r6nYi+V+TNFraaeRzE8eTTzAE4FtYjZPc9SkjayJ3mdgG5Zhh14I6O5r+KhdqdqOMAVxVdO9Bmgy3KgTJFKAfWVHiVJJu/ENPRYRDdOAiN6ap1KJA7+xUnfRbglto2QPmsHXX4Z1HysoXchdxOkDs8DJRD2z5ZXiW/XJYm0u6BR7m2vNCgS7eXAjFPPfOd5W1oqsvS2Qsgb9CsYll25hzPMcMIL+Hkgdg0DrQN0gcQTOsJp6+zpdPbUmt2ktxNuB0rkG6vczShM+0cXpqOs4kt1O5InQzhr/T9DVo8egSI86EPLpSgrcg3LfPMBMMBGCZmqZakuhN7+6mWxCtnTbvTuYwfCHkFbBFH//6qU3B6We7bmiR3KbdT5EqjcF0ZQ3O5Nu6F78vlcvnbT5BTC9Ox1DIAN0kXLEBpOjHBDxSIeIC8DkPPumjP8elPHuhtbv5IfT0037tvZDzLXWOo3yfjWoK57l/L6yVfPgiT5C7ldopc84zdFejn9byp9VgQgGgrHRfjyeNwavNwnIWdX/5+fd2Qf/93+fqrTSXh3/8ej7//PboP0q+vr9vIhIMXAvkzrZyzTWEYHuxgKRD6AMKbTwbLffPFm2wNGpmn9pqZZX108d2R5yVAhkeqNDxiENPRJvN6YgljAP4zE07+ByHI3+VL0AtyZ21Bx+QaNpu8pdBmhnaCzCVYoGnHlOv4cGolxqdDCCtzIAzvHPLykA1F8lLefQDpNdbfosTYk0ExTm9M0DnI7oKCKxV4StkdNRWGrpcEAC1U4cPv/G5KqbpmoFIqCxhI+2nAYE9/wfvUJrVD0HoGINasygyjsjWiqWIlpigYfLVQWhOH+Zi4so3bBeRWQFuAqwooAN5n8vh1pmpBZ7TQOpZaAdswA7x2InZVyCvWfrMg7ZGCDACfKC4vplyrftsA6c4qAdwLFqksEQQgIkjGT8FGF/EAoG7KBM1d3edRGo0ymdVFmeGtWpxYUA9XQa2O+amGOF770lk3rwV8CG2sHRRoitwpbheRW3gAwDnndY4q1ScGClRKRYTo2fcB55yP0vEPpjYYTQQtOgEt2knO678pupe3KFAxWTUvYiC+EFRU9cGeoMmoJMBUAuA4plPVXw+UivSGuXeACyE8ZiYgMmuyafBydn4HTDeW0+BPlCHrmgj04ZixuaWpjIMCTZI7we0Sciv98diglU0FUJXwQf+56TX2YGr7PoBDQNMRoZRSmXb6Jml/LmoFHO6BQMVUwRbPK8sUNCMAAlEy8jwMzB/mEXyAJHEO6pFBq4Ec8HwAiL/jvGg/lbnVnZBjr4pzW6LxvPKHxTEfhuMUnrj7au9YGY/COqfrJLkT3C4hlzxzM6dA+QUgMF727v2dcBccTC1L7DuuITXaJxxIPaB3uu+j3tRuzjJ9oe6NHF/bE9RaXiRJkgxNoC1bc+4OYZlSCzJeCSrWRfjFvOOGDivQNnhC7hACEJE3Ms2SqZXtbajtHw5d+8xk9Neg5mvgxt4Knj6jGjBiBmWJtoOQXhSsDg7Fl8vl8jD/O5bTDpy3hIwxXertW8ITg69+95GRdJY//+dgJ3eEHPC8+yjNbSod/3OobUpLAQFGcaCt4MPmFI2hiYfZOYr2H1NaRxn5IFKSAqM817fFtWSTmTq3HIi/DPz57rNyZD47/fJnYCd3hBRgoBSDEKScUKA3pnZwOJsCwK1EwLGbAlF/UAqzQ65FqfV4dGrkTzEAeQqRmJIkQ2Dr1mh7QV5jlkwpQvqY+FBD/uYL0BNyh2hehQ2/P7HGvjO1TAsdN6+UPlAfQxw5ETaCCJFPduxLdYXukw9CTbFyCQbk34iG0cRHzd5HwKY/8vvFP2ojFI4m+vs7TNJWcodoErW8GKkAYt6Mx9Qa+87U+o+ys0HT+mQ1F17DxF47MTG1T6ydf92OsurufyeaDyEAEnUnbBRDKeBezWdjJB4XlVKqEJyLQilVCe7pARBfDyca/2knqh4Y3rsetnZjbwULuSN4DV8AMhV0xCdjd8Gm1L4k5zlGTgSVkZaSjAweczcFquhkEOQOgLaa4QNUCCE4BbRImw/wyVp379Mh1QcAv5Vw2nYdDbQvOHuUtKbSWwdSt4KF3BFok6HgA4TqwcjRf29J7UtynqFKIoAmiVJFIgCvjiRnpE4qScyIsNpRgVSGKSeu176U6mqJAeDC7JtLBZsI4gsMAnI/Bh8iIoDy4UcBAZIAItFrDYlGHKLlFdIKgCtVvc58+UEFspA7RNGOSEF0w0NfYxtsSe1Lcp4iQb0Zr/WvO/tZCUo4p2TUV3bHA5mBW4FXVQFCJeNJyvV626NggVIcTJBEKcUBn2R1aLv5QtTkGURkeZmmCqCqYC9ftSKuTba3wEIyKiE0ySPDncOW1L4kxxVZMpHXtKcCqQAYnQ2fgQiIlBrZcOJt9KcGRWMOt3VW+x6NVb9DdjDkCEBevGoVCUEBECGiH1qFHMlVamKN3Z7aJ+RsjF1LAiQE4IsJFkDRRvG7aSuisO3Kfwa9N4Q3ahJ1VormJ3DIjoxed6A3HBHL77AJ3MhVarTG7kDtM3I2xr7DP7dSiAEOqpTKAKEy0rx1NEjy/Xn0uYh4mTq6ENVndFF2IlcpNVhj96B2R3KG2Hv+qu6LjZjGH0MA3llAlf8m7usO3XGZrjSs9wl54pvCgVyl1GCN3YPaA8nZK5DaYnnRk5zXwdXoW+b39r/J5lXS1qLLF+hSKNJPyBPfFK4VbTwu+2D6HtQeSM7eCrQcrDHwefHWxUM6jtq6XKn8kFzIN8DeJ7cPJOf9FKjDO6tPk24EAG3p2vTNn/gfwpHk7JRM+uvRpUPKlqy3zwH9d3AkOacCuaFsMz7jNjO/thZuP9On/YSOI8k5FcgNqWZl0/YHKa+PRdV2T+yCI8l54z3QO6M/SttNcizHHyKDj+nR8ntxKDnnCuSEzqbOu257AgBJTkfcz+NQcr7esOr6h0Lm/1oc6IOwGzmnAp04sQKnCXfixAqcCnTixAqcCnTixAqcCnTixAqcCnTixAqcCnTixAqcCnTixAr8P2Y/ZwdO+nbBAAAAAElFTkSuQmCC"
|
\begin{array} { r l r } { \mathbb { E } \left ( \widehat { \bar { q } _ { B _ { k } } } \right ) } & { = } & { \frac { N } { m } \sum _ { i = 1 } ^ { m / N } \mathbb { E } \left ( { B _ { k } } _ { i } \right ) = \mathbb { E } ( q _ { B _ { k } } ) , } \\ { \mathrm { V a r } \left ( \widehat { \bar { q } _ { B _ { k } } } \right ) } & { = } & { \frac { N ^ { 2 } } { m ^ { 2 } } \sum _ { i = 1 } ^ { m / N } \mathrm { V a r } \left ( { B _ { k } } _ { i } \right ) = \frac { N } { m } V _ { \mathrm { n o } } , } \end{array}
|
"iVBORw0KGgoAAAANSUhEUgAAAEAAAAAgCAAAAACH9iFYAAABV0lEQVR4nO2VwXmEIBBG3+ZLA7RAStiUQAumhFgCKUFLICUsJUAJsYRQgpRADomKiLvm20sOmRMw/zxHmRlPifvs4c74PwB43HPYoct2gyUKoc4VYarbKDKPkz9i9bER7gGaDG0AoZQChDsIcFluDoRJKaVRg/g8BBhlBpCIKXMNr4cAOvs6BvTskDAeADiQM6DJYzRcbgNGSaNnADQrtF6La4XUB2HmjQe5uCQMa3EF4HsuYt6FElDYFhBbtFq2oRZ1FdAGqa9F3AJYm7/A7wGxRdda5jDgJZ67qvAgoPeY9ck6HV8elPOgR7wBEOAp6A4E+OVStndSACLRZ2JATQsABlDriALgpoV9x30/WXkfp2uJFllWRbUbU9LVbtTQFcLbgCTBzCxRdHPaHaqLXZ5pbSMJ1oPZFNlOBg3M42+pTGE2wj2AygBp1BJAvpYDMaV0+v838gXq0X1LybESDQAAAABJRU5ErkJggg=="
|
4 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.