Datasets:
image
imagewidth (px) 1.02k
1.02k
| label
listlengths 1
7
| Patient Age
int32 1
91
| Patient Gender
stringclasses 2
values | View Position
stringclasses 2
values | Patient ID
int32 4
30.8k
|
|---|---|---|---|---|---|
[
"No Finding"
] | 43
|
F
|
AP
| 19,466
|
|
[
"No Finding"
] | 70
|
F
|
AP
| 18,109
|
|
[
"Infiltration",
"Pneumonia"
] | 39
|
F
|
AP
| 21,835
|
|
[
"Infiltration"
] | 43
|
F
|
PA
| 25,194
|
|
[
"No Finding"
] | 62
|
M
|
AP
| 6,973
|
|
[
"Atelectasis"
] | 28
|
F
|
AP
| 12,515
|
|
[
"No Finding"
] | 55
|
M
|
AP
| 28,014
|
|
[
"No Finding"
] | 49
|
M
|
AP
| 14,616
|
|
[
"No Finding"
] | 67
|
F
|
AP
| 12,640
|
|
[
"Nodule"
] | 66
|
M
|
PA
| 18,591
|
|
[
"Pneumothorax"
] | 26
|
M
|
AP
| 18,960
|
|
[
"Emphysema",
"Pneumothorax"
] | 62
|
M
|
AP
| 2,058
|
|
[
"Effusion"
] | 37
|
M
|
AP
| 12,294
|
|
[
"Atelectasis",
"Cardiomegaly",
"Effusion",
"Infiltration"
] | 31
|
F
|
AP
| 19,643
|
|
[
"Consolidation",
"Effusion"
] | 42
|
M
|
AP
| 13,993
|
|
[
"No Finding"
] | 31
|
M
|
AP
| 10,352
|
|
[
"Pneumothorax"
] | 72
|
M
|
PA
| 12,020
|
|
[
"Infiltration"
] | 56
|
F
|
AP
| 5,094
|
|
[
"No Finding"
] | 33
|
M
|
AP
| 12,834
|
|
[
"No Finding"
] | 57
|
F
|
AP
| 6,237
|
|
[
"Effusion"
] | 35
|
M
|
AP
| 25,529
|
|
[
"Atelectasis",
"Infiltration"
] | 34
|
F
|
AP
| 27,464
|
|
[
"No Finding"
] | 69
|
M
|
AP
| 9,530
|
|
[
"Edema",
"Infiltration",
"Pneumonia"
] | 67
|
M
|
AP
| 11,583
|
|
[
"No Finding"
] | 50
|
F
|
PA
| 15,191
|
|
[
"Infiltration"
] | 61
|
M
|
AP
| 13,601
|
|
[
"Fibrosis"
] | 40
|
F
|
PA
| 16,691
|
|
[
"Infiltration"
] | 32
|
F
|
AP
| 28,765
|
|
[
"Infiltration"
] | 67
|
F
|
PA
| 348
|
|
[
"Nodule",
"Pneumothorax"
] | 35
|
F
|
PA
| 17,324
|
|
[
"No Finding"
] | 6
|
F
|
PA
| 16,484
|
|
[
"Nodule"
] | 37
|
M
|
PA
| 8,626
|
|
[
"No Finding"
] | 39
|
F
|
PA
| 3,986
|
|
[
"No Finding"
] | 47
|
F
|
PA
| 2,617
|
|
[
"No Finding"
] | 39
|
M
|
AP
| 29,054
|
|
[
"Atelectasis"
] | 63
|
M
|
PA
| 17,039
|
|
[
"Mass"
] | 36
|
M
|
AP
| 17,618
|
|
[
"No Finding"
] | 14
|
M
|
AP
| 13,636
|
|
[
"No Finding"
] | 41
|
F
|
PA
| 10,961
|
|
[
"Edema",
"Infiltration",
"Mass"
] | 63
|
M
|
AP
| 27,556
|
|
[
"No Finding"
] | 12
|
M
|
AP
| 30,419
|
|
[
"Consolidation"
] | 46
|
M
|
PA
| 17,933
|
|
[
"Nodule",
"Pleural_Thickening"
] | 53
|
F
|
PA
| 4,488
|
|
[
"Effusion"
] | 90
|
F
|
AP
| 22,566
|
|
[
"No Finding"
] | 57
|
M
|
PA
| 21,975
|
|
[
"No Finding"
] | 69
|
F
|
AP
| 18,404
|
|
[
"Cardiomegaly"
] | 22
|
M
|
AP
| 4,843
|
|
[
"No Finding"
] | 61
|
F
|
PA
| 28,498
|
|
[
"No Finding"
] | 65
|
F
|
AP
| 8,875
|
|
[
"Cardiomegaly",
"Consolidation"
] | 72
|
M
|
AP
| 30,279
|
|
[
"Consolidation",
"Effusion",
"Infiltration"
] | 58
|
M
|
PA
| 13,491
|
|
[
"Atelectasis"
] | 59
|
M
|
AP
| 17,606
|
|
[
"Pneumonia"
] | 50
|
F
|
AP
| 20,171
|
|
[
"Atelectasis"
] | 45
|
F
|
PA
| 12,045
|
|
[
"Cardiomegaly"
] | 70
|
M
|
AP
| 4,630
|
|
[
"No Finding"
] | 44
|
F
|
AP
| 3,386
|
|
[
"Pneumothorax"
] | 21
|
M
|
AP
| 27,725
|
|
[
"No Finding"
] | 20
|
M
|
AP
| 22,651
|
|
[
"Mass",
"Pleural_Thickening"
] | 23
|
M
|
PA
| 1,170
|
|
[
"No Finding"
] | 56
|
F
|
PA
| 17,704
|
|
[
"No Finding"
] | 29
|
F
|
PA
| 28,044
|
|
[
"Emphysema"
] | 20
|
M
|
AP
| 15,530
|
|
[
"Emphysema",
"Infiltration"
] | 52
|
F
|
AP
| 17,369
|
|
[
"No Finding"
] | 56
|
F
|
AP
| 11,237
|
|
[
"No Finding"
] | 75
|
F
|
PA
| 8,286
|
|
[
"Pneumothorax"
] | 73
|
F
|
AP
| 27,213
|
|
[
"Atelectasis",
"Effusion"
] | 45
|
M
|
AP
| 21,610
|
|
[
"No Finding"
] | 55
|
F
|
PA
| 26,589
|
|
[
"No Finding"
] | 66
|
M
|
AP
| 16,103
|
|
[
"Pneumothorax"
] | 59
|
F
|
PA
| 28,256
|
|
[
"Edema",
"Effusion"
] | 40
|
F
|
AP
| 12,863
|
|
[
"Pneumothorax"
] | 42
|
F
|
AP
| 5,593
|
|
[
"No Finding"
] | 71
|
M
|
AP
| 9,038
|
|
[
"Nodule"
] | 49
|
M
|
PA
| 20,405
|
|
[
"No Finding"
] | 7
|
F
|
PA
| 16,484
|
|
[
"Consolidation"
] | 29
|
M
|
AP
| 26,132
|
|
[
"No Finding"
] | 33
|
F
|
AP
| 2,587
|
|
[
"No Finding"
] | 52
|
M
|
AP
| 9,081
|
|
[
"Infiltration"
] | 58
|
F
|
AP
| 27,463
|
|
[
"No Finding"
] | 45
|
F
|
AP
| 1,186
|
|
[
"Infiltration"
] | 26
|
M
|
PA
| 18,960
|
|
[
"No Finding"
] | 20
|
M
|
PA
| 15,530
|
|
[
"No Finding"
] | 43
|
F
|
AP
| 4,688
|
|
[
"No Finding"
] | 20
|
M
|
AP
| 15,530
|
|
[
"Mass"
] | 52
|
F
|
AP
| 16,800
|
|
[
"Atelectasis",
"Infiltration"
] | 58
|
M
|
AP
| 27,726
|
|
[
"No Finding"
] | 71
|
M
|
PA
| 9,996
|
|
[
"Edema",
"Infiltration",
"Mass"
] | 46
|
M
|
PA
| 9,107
|
|
[
"Effusion"
] | 63
|
M
|
AP
| 9,977
|
|
[
"No Finding"
] | 59
|
M
|
AP
| 21,700
|
|
[
"Effusion"
] | 50
|
M
|
PA
| 4,110
|
|
[
"Effusion"
] | 59
|
M
|
AP
| 10,007
|
|
[
"Nodule"
] | 43
|
F
|
PA
| 11,896
|
|
[
"Atelectasis"
] | 60
|
M
|
AP
| 14,253
|
|
[
"Edema",
"Infiltration",
"Pneumonia"
] | 33
|
M
|
AP
| 12,834
|
|
[
"Infiltration",
"Nodule"
] | 29
|
F
|
AP
| 19,605
|
|
[
"Infiltration",
"Mass"
] | 68
|
M
|
AP
| 20,928
|
|
[
"No Finding"
] | 53
|
F
|
PA
| 24,825
|
|
[
"Infiltration",
"Nodule"
] | 57
|
M
|
PA
| 12,161
|
|
[
"Pleural_Thickening",
"Pneumothorax"
] | 47
|
M
|
PA
| 23,116
|
NIH Chest X-ray Federated Learning Dataset
Federated learning splits designed for the [Cold Start:] Distributed AI Hack Berlin 2025.
The dataset is based on the NIH Chest X-ray14 dataset, which contains ~112,000 X-ray images from 30,805 unique patients, and models a federated learning scenario with non-IID characteristics across three hospitals, plus an out-of-distribution test set.
Dataset Description
The data was partitioned using a scoring algorithm that creates non-IID distributions:
- Patient-level splitting: Each patient appears in only one hospital/split
- Demographic biasing: Age and sex distributions vary across hospitals
- Equipment simulation: AP/PA view ratios differ by hospital type
- Pathology concentration: Each hospital has characteristic disease patterns
- Train/eval/test split: 80/10/10 split within each hospital (patient-disjoint)
See the preparation script for implementation details.
Data Distribution
We partitioned the chest X-rays into hospital silos that reflect real-world data heterogeneity:
Hospital A (Portable Inpatient): 42,093 train, 5,490 eval
- Demographics: Elderly males (age 60+)
- Equipment: AP (anterior-posterior) view dominant
- Common findings: Fluid-related conditions (Effusion, Edema, Atelectasis)
Hospital B (Outpatient Clinic): 21,753 train, 2,860 eval
- Demographics: Younger females (age 20-65)
- Equipment: PA (posterior-anterior) view dominant
- Common findings: Nodules, masses, pneumothorax
Hospital C (Mixed with Rare Conditions): 20,594 train, 2,730 eval
- Demographics: Mixed age and sex
- Equipment: PA view preferred
- Common findings: Rare conditions (Hernia, Fibrosis, Emphysema)
Test Sets
The dataset includes 4 test sets:
- test_A: In-distribution test for Hospital A
- test_B: In-distribution test for Hospital B
- test_C: In-distribution test for Hospital C
- test_D: Out-of-distribution ICU/Critical Care data (age extremes, multi-morbidity)
All splits are patient-disjoint to prevent data leakage.
Usage
from datasets import load_dataset
# Load Hospital A data
hospital_a = load_dataset("exalsius/NIH-Chest-XRay-Federated", "hospital_a")
# Returns: DatasetDict({'train': Dataset, 'eval': Dataset})
# Load Hospital B
hospital_b = load_dataset("exalsius/NIH-Chest-XRay-Federated", "hospital_b")
# Returns: DatasetDict({'train': Dataset, 'eval': Dataset})
# Load Hospital C
hospital_c = load_dataset("exalsius/NIH-Chest-XRay-Federated", "hospital_c")
# Returns: DatasetDict({'train': Dataset, 'eval': Dataset})
# Load test sets
test_data = load_dataset("exalsius/NIH-Chest-XRay-Federated", "test")
# Returns: DatasetDict({'test_a': Dataset, 'test_b': Dataset, 'test_c': Dataset, 'test_d': Dataset})
Original NIH Dataset
@article{wang2017chestxray,
title={ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on
Weakly-Supervised Classification and Localization of Common Thorax Diseases},
author={Wang, Xiaosong and Peng, Yifan and Lu, Le and Lu, Zhiyong and
Bagheri, Mohammadhadi and Summers, Ronald M},
journal={CVPR},
year={2017}
}
- Downloads last month
- 4