Dataset Viewer
Auto-converted to Parquet Duplicate
image
imagewidth (px)
1.02k
1.02k
label
listlengths
1
7
Patient Age
int32
1
91
Patient Gender
stringclasses
2 values
View Position
stringclasses
2 values
Patient ID
int32
4
30.8k
[ "No Finding" ]
43
F
AP
19,466
[ "No Finding" ]
70
F
AP
18,109
[ "Infiltration", "Pneumonia" ]
39
F
AP
21,835
[ "Infiltration" ]
43
F
PA
25,194
[ "No Finding" ]
62
M
AP
6,973
[ "Atelectasis" ]
28
F
AP
12,515
[ "No Finding" ]
55
M
AP
28,014
[ "No Finding" ]
49
M
AP
14,616
[ "No Finding" ]
67
F
AP
12,640
[ "Nodule" ]
66
M
PA
18,591
[ "Pneumothorax" ]
26
M
AP
18,960
[ "Emphysema", "Pneumothorax" ]
62
M
AP
2,058
[ "Effusion" ]
37
M
AP
12,294
[ "Atelectasis", "Cardiomegaly", "Effusion", "Infiltration" ]
31
F
AP
19,643
[ "Consolidation", "Effusion" ]
42
M
AP
13,993
[ "No Finding" ]
31
M
AP
10,352
[ "Pneumothorax" ]
72
M
PA
12,020
[ "Infiltration" ]
56
F
AP
5,094
[ "No Finding" ]
33
M
AP
12,834
[ "No Finding" ]
57
F
AP
6,237
[ "Effusion" ]
35
M
AP
25,529
[ "Atelectasis", "Infiltration" ]
34
F
AP
27,464
[ "No Finding" ]
69
M
AP
9,530
[ "Edema", "Infiltration", "Pneumonia" ]
67
M
AP
11,583
[ "No Finding" ]
50
F
PA
15,191
[ "Infiltration" ]
61
M
AP
13,601
[ "Fibrosis" ]
40
F
PA
16,691
[ "Infiltration" ]
32
F
AP
28,765
[ "Infiltration" ]
67
F
PA
348
[ "Nodule", "Pneumothorax" ]
35
F
PA
17,324
[ "No Finding" ]
6
F
PA
16,484
[ "Nodule" ]
37
M
PA
8,626
[ "No Finding" ]
39
F
PA
3,986
[ "No Finding" ]
47
F
PA
2,617
[ "No Finding" ]
39
M
AP
29,054
[ "Atelectasis" ]
63
M
PA
17,039
[ "Mass" ]
36
M
AP
17,618
[ "No Finding" ]
14
M
AP
13,636
[ "No Finding" ]
41
F
PA
10,961
[ "Edema", "Infiltration", "Mass" ]
63
M
AP
27,556
[ "No Finding" ]
12
M
AP
30,419
[ "Consolidation" ]
46
M
PA
17,933
[ "Nodule", "Pleural_Thickening" ]
53
F
PA
4,488
[ "Effusion" ]
90
F
AP
22,566
[ "No Finding" ]
57
M
PA
21,975
[ "No Finding" ]
69
F
AP
18,404
[ "Cardiomegaly" ]
22
M
AP
4,843
[ "No Finding" ]
61
F
PA
28,498
[ "No Finding" ]
65
F
AP
8,875
[ "Cardiomegaly", "Consolidation" ]
72
M
AP
30,279
[ "Consolidation", "Effusion", "Infiltration" ]
58
M
PA
13,491
[ "Atelectasis" ]
59
M
AP
17,606
[ "Pneumonia" ]
50
F
AP
20,171
[ "Atelectasis" ]
45
F
PA
12,045
[ "Cardiomegaly" ]
70
M
AP
4,630
[ "No Finding" ]
44
F
AP
3,386
[ "Pneumothorax" ]
21
M
AP
27,725
[ "No Finding" ]
20
M
AP
22,651
[ "Mass", "Pleural_Thickening" ]
23
M
PA
1,170
[ "No Finding" ]
56
F
PA
17,704
[ "No Finding" ]
29
F
PA
28,044
[ "Emphysema" ]
20
M
AP
15,530
[ "Emphysema", "Infiltration" ]
52
F
AP
17,369
[ "No Finding" ]
56
F
AP
11,237
[ "No Finding" ]
75
F
PA
8,286
[ "Pneumothorax" ]
73
F
AP
27,213
[ "Atelectasis", "Effusion" ]
45
M
AP
21,610
[ "No Finding" ]
55
F
PA
26,589
[ "No Finding" ]
66
M
AP
16,103
[ "Pneumothorax" ]
59
F
PA
28,256
[ "Edema", "Effusion" ]
40
F
AP
12,863
[ "Pneumothorax" ]
42
F
AP
5,593
[ "No Finding" ]
71
M
AP
9,038
[ "Nodule" ]
49
M
PA
20,405
[ "No Finding" ]
7
F
PA
16,484
[ "Consolidation" ]
29
M
AP
26,132
[ "No Finding" ]
33
F
AP
2,587
[ "No Finding" ]
52
M
AP
9,081
[ "Infiltration" ]
58
F
AP
27,463
[ "No Finding" ]
45
F
AP
1,186
[ "Infiltration" ]
26
M
PA
18,960
[ "No Finding" ]
20
M
PA
15,530
[ "No Finding" ]
43
F
AP
4,688
[ "No Finding" ]
20
M
AP
15,530
[ "Mass" ]
52
F
AP
16,800
[ "Atelectasis", "Infiltration" ]
58
M
AP
27,726
[ "No Finding" ]
71
M
PA
9,996
[ "Edema", "Infiltration", "Mass" ]
46
M
PA
9,107
[ "Effusion" ]
63
M
AP
9,977
[ "No Finding" ]
59
M
AP
21,700
[ "Effusion" ]
50
M
PA
4,110
[ "Effusion" ]
59
M
AP
10,007
[ "Nodule" ]
43
F
PA
11,896
[ "Atelectasis" ]
60
M
AP
14,253
[ "Edema", "Infiltration", "Pneumonia" ]
33
M
AP
12,834
[ "Infiltration", "Nodule" ]
29
F
AP
19,605
[ "Infiltration", "Mass" ]
68
M
AP
20,928
[ "No Finding" ]
53
F
PA
24,825
[ "Infiltration", "Nodule" ]
57
M
PA
12,161
[ "Pleural_Thickening", "Pneumothorax" ]
47
M
PA
23,116
End of preview. Expand in Data Studio

NIH Chest X-ray Federated Learning Dataset

Federated learning splits designed for the [Cold Start:] Distributed AI Hack Berlin 2025.

The dataset is based on the NIH Chest X-ray14 dataset, which contains ~112,000 X-ray images from 30,805 unique patients, and models a federated learning scenario with non-IID characteristics across three hospitals, plus an out-of-distribution test set.

Dataset Description

The data was partitioned using a scoring algorithm that creates non-IID distributions:

  1. Patient-level splitting: Each patient appears in only one hospital/split
  2. Demographic biasing: Age and sex distributions vary across hospitals
  3. Equipment simulation: AP/PA view ratios differ by hospital type
  4. Pathology concentration: Each hospital has characteristic disease patterns
  5. Train/eval/test split: 80/10/10 split within each hospital (patient-disjoint)

See the preparation script for implementation details.

Data Distribution

We partitioned the chest X-rays into hospital silos that reflect real-world data heterogeneity:

  • Hospital A (Portable Inpatient): 42,093 train, 5,490 eval

    • Demographics: Elderly males (age 60+)
    • Equipment: AP (anterior-posterior) view dominant
    • Common findings: Fluid-related conditions (Effusion, Edema, Atelectasis)
  • Hospital B (Outpatient Clinic): 21,753 train, 2,860 eval

    • Demographics: Younger females (age 20-65)
    • Equipment: PA (posterior-anterior) view dominant
    • Common findings: Nodules, masses, pneumothorax
  • Hospital C (Mixed with Rare Conditions): 20,594 train, 2,730 eval

    • Demographics: Mixed age and sex
    • Equipment: PA view preferred
    • Common findings: Rare conditions (Hernia, Fibrosis, Emphysema)

Test Sets

The dataset includes 4 test sets:

  • test_A: In-distribution test for Hospital A
  • test_B: In-distribution test for Hospital B
  • test_C: In-distribution test for Hospital C
  • test_D: Out-of-distribution ICU/Critical Care data (age extremes, multi-morbidity)

All splits are patient-disjoint to prevent data leakage.

Usage

from datasets import load_dataset

# Load Hospital A data
hospital_a = load_dataset("exalsius/NIH-Chest-XRay-Federated", "hospital_a")
# Returns: DatasetDict({'train': Dataset, 'eval': Dataset})

# Load Hospital B
hospital_b = load_dataset("exalsius/NIH-Chest-XRay-Federated", "hospital_b")
# Returns: DatasetDict({'train': Dataset, 'eval': Dataset})

# Load Hospital C
hospital_c = load_dataset("exalsius/NIH-Chest-XRay-Federated", "hospital_c")
# Returns: DatasetDict({'train': Dataset, 'eval': Dataset})

# Load test sets
test_data = load_dataset("exalsius/NIH-Chest-XRay-Federated", "test")
# Returns: DatasetDict({'test_a': Dataset, 'test_b': Dataset, 'test_c': Dataset, 'test_d': Dataset})

Original NIH Dataset

@article{wang2017chestxray,
  title={ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on
         Weakly-Supervised Classification and Localization of Common Thorax Diseases},
  author={Wang, Xiaosong and Peng, Yifan and Lu, Le and Lu, Zhiyong and
          Bagheri, Mohammadhadi and Summers, Ronald M},
  journal={CVPR},
  year={2017}
}
Downloads last month
4