context
stringlengths
130
6.32k
question
stringlengths
1.42k
1.58k
answer
stringlengths
2
496k
max_new_tokens
int64
2.05k
2.05k
answer_prefix
stringclasses
1 value
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:How many singers are there?
[["8"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What is the count of singers?
[["8"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:List the name of singers in ascending order of net worth.
[["Abigail Johnson"], ["Susanne Klatten"], ["Gina Rinehart"], ["Iris Fontbona"], ["Jacqueline Mars"], ["Alice Walton"], ["Christy Walton"], ["Liliane Bettencourt"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What are the names of singers ordered by ascending net worth?
[["Abigail Johnson"], ["Susanne Klatten"], ["Gina Rinehart"], ["Iris Fontbona"], ["Jacqueline Mars"], ["Alice Walton"], ["Christy Walton"], ["Liliane Bettencourt"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What are the birth year and citizenship of singers?
[["1944.0", "France"], ["1948.0", "United States"], ["1949.0", "United States"], ["1942.0", "Chile"], ["1940.0", "United States"], ["1953.0", "Australia"], ["1962.0", "Germany"], ["1961.0", "United States"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What are the birth years and citizenships of the singers?
[["1944.0", "France"], ["1948.0", "United States"], ["1949.0", "United States"], ["1942.0", "Chile"], ["1940.0", "United States"], ["1953.0", "Australia"], ["1962.0", "Germany"], ["1961.0", "United States"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"], ["3", "Alice Walton", "1949.0", "26.3", "United States"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:List the name of singers whose citizenship is not "France".
[["Christy Walton"], ["Alice Walton"], ["Iris Fontbona"], ["Jacqueline Mars"], ["Gina Rinehart"], ["Susanne Klatten"], ["Abigail Johnson"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What are the names of the singers who are not French citizens?
[["Christy Walton"], ["Alice Walton"], ["Iris Fontbona"], ["Jacqueline Mars"], ["Gina Rinehart"], ["Susanne Klatten"], ["Abigail Johnson"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Show the name of singers whose birth year is either 1948 or 1949?
[["Christy Walton"], ["Alice Walton"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What are the names of the singers whose birth years are either 1948 or 1949?
[["Christy Walton"], ["Alice Walton"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What is the name of the singer with the largest net worth?
[["Liliane Bettencourt"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What is the name of the singer who is worth the most?
[["Liliane Bettencourt"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Show different citizenship of singers and the number of singers of each citizenship.
[["Australia", "1"], ["Chile", "1"], ["France", "1"], ["Germany", "1"], ["United States", "4"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:For each citizenship, how many singers are from that country?
[["Australia", "1"], ["Chile", "1"], ["France", "1"], ["Germany", "1"], ["United States", "4"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Please show the most common citizenship of singers.
[["United States"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What is the most common singer citizenship ?
[["United States"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Show different citizenships and the maximum net worth of singers of each citizenship.
[["Australia", "17.0"], ["Chile", "17.4"], ["France", "30.0"], ["Germany", "14.3"], ["United States", "28.8"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:For each citizenship, what is the maximum net worth?
[["Australia", "17.0"], ["Chile", "17.4"], ["France", "30.0"], ["Germany", "14.3"], ["United States", "28.8"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["2", "Christy Walton", "1948.0", "28.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"], ["6", "All This Time", "6", "292000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"], ["5", "Yeah", "2", "300000.0", "1.0"], ["4", "Call on Me", "4", "335000.0", "1.0"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Show titles of songs and names of singers.
[["Do They Know It's Christmas", "Liliane Bettencourt"], ["F**k It [I Don't Want You Back]", "Liliane Bettencourt"], ["Cha Cha Slide", "Christy Walton"], ["Call on Me", "Iris Fontbona"], ["Yeah", "Christy Walton"], ["All This Time", "Gina Rinehart"], ["Left Outside Alone", "Jacqueline Mars"], ["Mysterious Girl", "Susanne Klatten"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["3", "Alice Walton", "1949.0", "26.3", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["6", "All This Time", "6", "292000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["4", "Call on Me", "4", "335000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"], ["5", "Yeah", "2", "300000.0", "1.0"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What are the song titles and singer names?
[["Do They Know It's Christmas", "Liliane Bettencourt"], ["F**k It [I Don't Want You Back]", "Liliane Bettencourt"], ["Cha Cha Slide", "Christy Walton"], ["Call on Me", "Iris Fontbona"], ["Yeah", "Christy Walton"], ["All This Time", "Gina Rinehart"], ["Left Outside Alone", "Jacqueline Mars"], ["Mysterious Girl", "Susanne Klatten"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["6", "All This Time", "6", "292000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["5", "Yeah", "2", "300000.0", "1.0"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["4", "Call on Me", "4", "335000.0", "1.0"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Show distinct names of singers that have songs with sales more than 300000.
[["Liliane Bettencourt"], ["Christy Walton"], ["Iris Fontbona"]]
2,048
Answer:
Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["6", "All This Time", "6", "292000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["2", "Christy Walton", "1948.0", "28.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["5", "Yeah", "2", "300000.0", "1.0"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["3", "Alice Walton", "1949.0", "26.3", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"], ["4", "Call on Me", "4", "335000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:what are the different names of the singers that have sales more than 300000?
[["Liliane Bettencourt"], ["Christy Walton"], ["Iris Fontbona"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["3", "Alice Walton", "1949.0", "26.3", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["6", "All This Time", "6", "292000.0", "1.0"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"], ["5", "Yeah", "2", "300000.0", "1.0"], ["4", "Call on Me", "4", "335000.0", "1.0"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Show the names of singers that have more than one song.
[["Christy Walton"], ["Liliane Bettencourt"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["2", "Christy Walton", "1948.0", "28.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["6", "All This Time", "6", "292000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["3", "Alice Walton", "1949.0", "26.3", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"], ["4", "Call on Me", "4", "335000.0", "1.0"], ["5", "Yeah", "2", "300000.0", "1.0"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What are the names of the singers that have more than one songs?
[["Christy Walton"], ["Liliane Bettencourt"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"], ["6", "All This Time", "6", "292000.0", "1.0"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"], ["5", "Yeah", "2", "300000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["4", "Call on Me", "4", "335000.0", "1.0"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Show the names of singers and the total sales of their songs.
[["Christy Walton", "651421.0"], ["Gina Rinehart", "292000.0"], ["Iris Fontbona", "335000.0"], ["Jacqueline Mars", "275000.0"], ["Liliane Bettencourt", "1646407.0"], ["Susanne Klatten", "261000.0"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"], ["6", "All This Time", "6", "292000.0", "1.0"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["4", "Call on Me", "4", "335000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["5", "Yeah", "2", "300000.0", "1.0"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:For each singer name, what is the total sales for their songs?
[["Christy Walton", "651421.0"], ["Gina Rinehart", "292000.0"], ["Iris Fontbona", "335000.0"], ["Jacqueline Mars", "275000.0"], ["Liliane Bettencourt", "1646407.0"], ["Susanne Klatten", "261000.0"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["2", "Christy Walton", "1948.0", "28.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"], ["6", "All This Time", "6", "292000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"], ["5", "Yeah", "2", "300000.0", "1.0"], ["4", "Call on Me", "4", "335000.0", "1.0"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:List the name of singers that do not have any song.
[["Alice Walton"], ["Abigail Johnson"]]
2,048
Answer:
Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["1", "Do They Know It's Christmas", "1", "1094000.0", "1.0"], ["2", "F**k It (I Don't Want You Back)", "1", "552407.0", "1.0"], ["7", "Left Outside Alone", "5", "275000.0", "3.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["6", "All This Time", "6", "292000.0", "1.0"], ["8", "Mysterious Girl", "7", "261000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["3", "Cha Cha Slide", "2", "351421.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["3", "Alice Walton", "1949.0", "26.3", "United States"]]Table song: [["Song_ID", "Title", "Singer_ID", "Sales", "Highest_Position"], ["4", "Call on Me", "4", "335000.0", "1.0"], ["5", "Yeah", "2", "300000.0", "1.0"]]Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What is the sname of every sing that does not have any song?
[["Alice Walton"], ["Abigail Johnson"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Show the citizenship shared by singers with birth year before 1945 and after 1955.
[["United States"]]
2,048
Answer:
Table singer: [["Singer_ID", "Name", "Birth_Year", "Net_Worth_Millions", "Citizenship"], ["2", "Christy Walton", "1948.0", "28.8", "United States"], ["7", "Susanne Klatten", "1962.0", "14.3", "Germany"], ["8", "Abigail Johnson", "1961.0", "12.7", "United States"], ["3", "Alice Walton", "1949.0", "26.3", "United States"], ["5", "Jacqueline Mars", "1940.0", "17.8", "United States"], ["1", "Liliane Bettencourt", "1944.0", "30.0", "France"], ["6", "Gina Rinehart", "1953.0", "17.0", "Australia"], ["4", "Iris Fontbona", "1942.0", "17.4", "Chile"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What are the citizenships that are shared by singers with a birth year before 1945 and after 1955?
[["United States"]]
2,048
Answer:
Table Other_Available_Features: [["feature_id", "feature_type_code", "feature_name", "feature_description"], ["3", "Amenity", "Pool", "Swimming Pool."], ["2", "Amenity", "AirCon", "Air Conditioning."], ["4", "Security", "BurglarAlarm", "Burglar Alarm"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:How many available features are there in total?
[["3"]]
2,048
Answer:
Table Other_Available_Features: [["feature_id", "feature_type_code", "feature_name", "feature_description"], ["2", "Amenity", "AirCon", "Air Conditioning."]]Table Ref_Feature_Types: [["feature_type_code", "feature_type_name"], ["Amenity", "Amenity, eg Pool."]]Table Other_Available_Features: [["feature_id", "feature_type_code", "feature_name", "feature_description"], ["3", "Amenity", "Pool", "Swimming Pool."]]Table Ref_Feature_Types: [["feature_type_code", "feature_type_name"], ["Security", "Securiyt, eg Burglar Alarm."]]Table Other_Available_Features: [["feature_id", "feature_type_code", "feature_name", "feature_description"], ["4", "Security", "BurglarAlarm", "Burglar Alarm"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What is the feature type name of feature AirCon?
[["Amenity, eg Pool."]]
2,048
Answer:
Table Ref_Property_Types: [["property_type_code", "property_type_description"], ["House", "House, Bungalow, etc."], ["Apartment", "Apartment, Flat, Condo, etc."]]Table Properties: [["property_id", "property_type_code", "date_on_market", "date_sold", "property_name", "property_address", "room_count", "vendor_requested_price", "buyer_offered_price", "agreed_selling_price", "apt_feature_1", "apt_feature_2", "apt_feature_3", "fld_feature_1", "fld_feature_2", "fld_feature_3", "hse_feature_1", "hse_feature_2", "hse_feature_3", "oth_feature_1", "oth_feature_2", "oth_feature_3", "shp_feature_1", "shp_feature_2", "shp_feature_3", "other_property_details"], ["12", "Apartment", "2016-05-24 09:57:45", "1980-07-08 16:13:17", "ten tower", "743 Ephraim Greens\nAnniemouth, HI 47084-3853", "5", "305.0", "2.0", "456840888.16", "qui", "autem", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["1", "House", "1991-06-21 23:52:10", "1979-05-13 16:58:06", "park", "4745 Emerson Stravenue Suite 829\nSouth Garret, IN 16772-5682", "7", "372652.2909", "1.68", "4201.8", "aut", "suscipit", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["9", "Apartment", "1978-05-15 10:53:37", "1971-04-14 03:23:49", "longacre", "107 Roob Courts\nErdmanburgh, IA 42926-0873", "5", "2219.6778", "3520911.5258", "3344706.5755", "enim", "sit", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["10", "Apartment", "2003-12-25 16:13:19", "1997-01-07 19:52:45", "renoir", "084 Lakin Vista Apt. 394\nFishertown, MA 16876", "9", "77172926.3", "1.5509", "244353758.1824", "consequatur", "vero", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"]]Table Ref_Property_Types: [["property_type_code", "property_type_description"], ["Shop", "Shop, Retail Outlet."]]Table Properties: [["property_id", "property_type_code", "date_on_market", "date_sold", "property_name", "property_address", "room_count", "vendor_requested_price", "buyer_offered_price", "agreed_selling_price", "apt_feature_1", "apt_feature_2", "apt_feature_3", "fld_feature_1", "fld_feature_2", "fld_feature_3", "hse_feature_1", "hse_feature_2", "hse_feature_3", "oth_feature_1", "oth_feature_2", "oth_feature_3", "shp_feature_1", "shp_feature_2", "shp_feature_3", "other_property_details"], ["6", "Shop", "1994-02-14 02:27:13", "1995-01-31 11:18:42", "high line", "6837 Darien Views Apt. 475\nSouth Maraview, KS 77770", "9", "2573.0", "0.0", "476919.3", "sed", "culpa", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["2", "House", "1990-05-25 23:01:51", "1990-11-14 19:16:38", "the cole", "098 Tremaine Highway Suite 569\nSouth Wilford, NJ 46587-3537", "1", "661536468.4429", "8.7122", "21769471.8328", "est", "est", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"]]Table Ref_Property_Types: [["property_type_code", "property_type_description"], ["Field", "Field, Meadow."]]Table Properties: [["property_id", "property_type_code", "date_on_market", "date_sold", "property_name", "property_address", "room_count", "vendor_requested_price", "buyer_offered_price", "agreed_selling_price", "apt_feature_1", "apt_feature_2", "apt_feature_3", "fld_feature_1", "fld_feature_2", "fld_feature_3", "hse_feature_1", "hse_feature_2", "hse_feature_3", "oth_feature_1", "oth_feature_2", "oth_feature_3", "shp_feature_1", "shp_feature_2", "shp_feature_3", "other_property_details"], ["7", "Shop", "1996-09-16 22:04:27", "1998-09-15 05:26:22", "avalon", "092 Paucek Highway Apt. 772\nEast Erika, IA 61358", "8", "150045.7568", "296733.0", "2794972.2495", "quos", "est", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["13", "Other", "2000-08-07 06:59:14", "1973-02-24 02:56:06", "chelsea", "60845 Else Highway Apt. 826\nSouth Dougfort, CO 43200-4258", "2", "2198735.095", "0.0", "44132.4621", "fuga", "aut", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["15", "Apartment", "1993-08-04 10:49:04", "1984-02-01 19:54:54", "parc coliseum", "986 Hagenes Drives\nDraketon, UT 83411-3393", "3", "331.0", "27537286.0", "2574.0", "aut", "iusto", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["11", "Other", "1981-08-23 05:40:38", "1997-11-07 20:22:05", "murray hill", "2088 Bashirian Fork Suite 337\nFaustinoport, MT 16771-9320", "2", "6713620.9", "13991131.434", "170766.472", "et", "est", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["3", "Other", "1986-11-26 04:12:18", "1981-06-26 21:28:28", "prism", "062 Micaela Court Apt. 707\nMargretville, WV 51628-3617", "8", "1337.0", "11375259.502", "5.0", "ut", "et", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["14", "Other", "1986-12-31 10:05:32", "1987-12-07 07:41:27", "wall street", "1474 Dibbert Fields Suite 055\nSouth Renee, IN 58286-3097", "7", "78.7208", "2449185.2", "0.0", "et", "eos", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:Show the property type descriptions of properties belonging to that code.
[["Apartment, Flat, Condo, etc."], ["Field, Meadow."], ["House, Bungalow, etc."], ["Other, to be determined."], ["Shop, Retail Outlet."]]
2,048
Answer:
Table Properties: [["property_id", "property_type_code", "date_on_market", "date_sold", "property_name", "property_address", "room_count", "vendor_requested_price", "buyer_offered_price", "agreed_selling_price", "apt_feature_1", "apt_feature_2", "apt_feature_3", "fld_feature_1", "fld_feature_2", "fld_feature_3", "hse_feature_1", "hse_feature_2", "hse_feature_3", "oth_feature_1", "oth_feature_2", "oth_feature_3", "shp_feature_1", "shp_feature_2", "shp_feature_3", "other_property_details"], ["10", "Apartment", "2003-12-25 16:13:19", "1997-01-07 19:52:45", "renoir", "084 Lakin Vista Apt. 394\nFishertown, MA 16876", "9", "77172926.3", "1.5509", "244353758.1824", "consequatur", "vero", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["12", "Apartment", "2016-05-24 09:57:45", "1980-07-08 16:13:17", "ten tower", "743 Ephraim Greens\nAnniemouth, HI 47084-3853", "5", "305.0", "2.0", "456840888.16", "qui", "autem", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["9", "Apartment", "1978-05-15 10:53:37", "1971-04-14 03:23:49", "longacre", "107 Roob Courts\nErdmanburgh, IA 42926-0873", "5", "2219.6778", "3520911.5258", "3344706.5755", "enim", "sit", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["8", "Apartment", "1976-06-10 20:25:38", "2001-11-09 04:37:33", "vogue", "24365 Ulices Run\nHomenicktown, MD 88485-6198", "9", "13.4715", "0.0", "0.0", "fuga", "odio", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["5", "Apartment", "2016-05-06 16:53:39", "2012-08-19 07:36:57", "parc east", "2765 Schulist Stream\nLindmouth, UT 03391-3817", "5", "983.8596", "10.1067", "1.0012", "quo", "sequi", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["3", "Other", "1986-11-26 04:12:18", "1981-06-26 21:28:28", "prism", "062 Micaela Court Apt. 707\nMargretville, WV 51628-3617", "8", "1337.0", "11375259.502", "5.0", "ut", "et", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["1", "House", "1991-06-21 23:52:10", "1979-05-13 16:58:06", "park", "4745 Emerson Stravenue Suite 829\nSouth Garret, IN 16772-5682", "7", "372652.2909", "1.68", "4201.8", "aut", "suscipit", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["15", "Apartment", "1993-08-04 10:49:04", "1984-02-01 19:54:54", "parc coliseum", "986 Hagenes Drives\nDraketon, UT 83411-3393", "3", "331.0", "27537286.0", "2574.0", "aut", "iusto", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["13", "Other", "2000-08-07 06:59:14", "1973-02-24 02:56:06", "chelsea", "60845 Else Highway Apt. 826\nSouth Dougfort, CO 43200-4258", "2", "2198735.095", "0.0", "44132.4621", "fuga", "aut", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["2", "House", "1990-05-25 23:01:51", "1990-11-14 19:16:38", "the cole", "098 Tremaine Highway Suite 569\nSouth Wilford, NJ 46587-3537", "1", "661536468.4429", "8.7122", "21769471.8328", "est", "est", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["7", "Shop", "1996-09-16 22:04:27", "1998-09-15 05:26:22", "avalon", "092 Paucek Highway Apt. 772\nEast Erika, IA 61358", "8", "150045.7568", "296733.0", "2794972.2495", "quos", "est", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["14", "Other", "1986-12-31 10:05:32", "1987-12-07 07:41:27", "wall street", "1474 Dibbert Fields Suite 055\nSouth Renee, IN 58286-3097", "7", "78.7208", "2449185.2", "0.0", "et", "eos", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["4", "Field", "2017-09-14 15:49:23", "2003-02-27 18:17:11", "riverside", "49578 Ayden Mountains\nNew Russellhaven, UT 46626", "6", "192374065.8", "15.17", "4514.807", "nesciunt", "adipisci", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["6", "Shop", "1994-02-14 02:27:13", "1995-01-31 11:18:42", "high line", "6837 Darien Views Apt. 475\nSouth Maraview, KS 77770", "9", "2573.0", "0.0", "476919.3", "sed", "culpa", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"], ["11", "Other", "1981-08-23 05:40:38", "1997-11-07 20:22:05", "murray hill", "2088 Bashirian Fork Suite 337\nFaustinoport, MT 16771-9320", "2", "6713620.9", "13991131.434", "170766.472", "et", "est", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None", "None"]]
You are a question-answering model specialized in tabular data. I will provide a table in a list-of-lists format (where the first row is the header) and a single natural language question.You must return the exact table cells that directly answer the provided question. Important guidelines: - Your response must be an array of arrays of strings. - If the question requests an aggregation (average, sum, count, etc.), return ONLY the aggregated value(s), formatted as a list containing one tuple. - The answer must contain ONLY values from the provided table or the aggregated value explicitly requested. - Do NOT include headers or column names in your answer. - Do NOT include explanations or reasoning in your answer. - Do NOT repeat these instructions in your answer. - Examples Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "Show all information about each employee" Answer: [ ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"] ] Table: [["Employee_ID", "Name", "Department", "Salary"], ["101", "Alice", "HR", "50000"], ["102", "Bob", "Engineering", "75000"], ["103", "Charlie", "Marketing", "60000"]] Question: "What is the average salary?" Answer: [["61666.67"]] Question:What are the names of properties that are either houses or apartments with more than 1 room?
[["longacre"], ["parc coliseum"], ["parc east"], ["park"], ["renoir"], ["ten tower"], ["the cole"], ["vogue"]]
2,048
Answer: