Datasets:
metadata
license: apache-2.0
task_categories:
- visual-question-answering
language:
- en
tags:
- vision
- question-answering
- multimodal
size_categories:
- 1K<n<10K
RealXBench
RealXBench is a comprehensive visual question answering benchmark dataset containing 194 high-quality image-question-answer triplets.
Dataset Structure
Each example contains:
- query: The question about the image (in English)
- answer: The ground truth answer(s), with multiple answers separated by "or"
- image: The corresponding image file
Usage
from datasets import load_dataset
dataset = load_dataset("glowol/RealXBench")
Citation
If you use this dataset, please cite:
@dataset{realxbench2024,
title={RealXBench: A Real-World Visual Question Answering Benchmark},
author={},
year={2024},
}