name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
Std.Sat.AIG.Decl.rec
|
Std.Sat.AIG.Basic
|
{Ξ± : Type} β
{motive : Std.Sat.AIG.Decl Ξ± β Sort u} β
motive Std.Sat.AIG.Decl.false β
((idx : Ξ±) β motive (Std.Sat.AIG.Decl.atom idx)) β
((l r : Std.Sat.AIG.Fanin) β motive (Std.Sat.AIG.Decl.gate l r)) β (t : Std.Sat.AIG.Decl Ξ±) β motive t
|
_private.Lean.Server.Completion.CompletionInfoSelection.0.Lean.Server.Completion.findCompletionInfosAt.containsHoverPos
|
Lean.Server.Completion.CompletionInfoSelection
|
String.Pos.Raw β Lean.Elab.CompletionInfo β Bool
|
SeparationQuotient.instNormedAlgebra._proof_2
|
Mathlib.Analysis.Normed.Module.Basic
|
β (π : Type u_1) {E : Type u_2} [inst : NormedField π] [inst_1 : SeminormedRing E] [inst_2 : NormedAlgebra π E],
ContinuousConstSMul π E
|
Equiv.funSplitAt_apply
|
Mathlib.Logic.Equiv.Prod
|
β {Ξ± : Type u_9} [inst : DecidableEq Ξ±] (i : Ξ±) (Ξ² : Type u_10) (f : (j : Ξ±) β (fun a => Ξ²) j),
(Equiv.funSplitAt i Ξ²) f = (f i, fun j => f βj)
|
HurwitzZeta.completedHurwitzZetaEven_zero
|
Mathlib.NumberTheory.LSeries.RiemannZeta
|
β (s : β), HurwitzZeta.completedHurwitzZetaEven 0 s = completedRiemannZeta s
|
Turing.PartrecToTM2.K'.elim_update_aux
|
Mathlib.Computability.TMToPartrec
|
β {a b c d c' : List Turing.PartrecToTM2.Ξ'},
Function.update (Turing.PartrecToTM2.K'.elim a b c d) Turing.PartrecToTM2.K'.aux c' =
Turing.PartrecToTM2.K'.elim a b c' d
|
MeasureTheory.exp_llr
|
Mathlib.MeasureTheory.Measure.LogLikelihoodRatio
|
β {Ξ± : Type u_1} {mΞ± : MeasurableSpace Ξ±} (ΞΌ Ξ½ : MeasureTheory.Measure Ξ±) [MeasureTheory.SigmaFinite ΞΌ],
(fun x => Real.exp (MeasureTheory.llr ΞΌ Ξ½ x)) =α΅[Ξ½] fun x => if ΞΌ.rnDeriv Ξ½ x = 0 then 1 else (ΞΌ.rnDeriv Ξ½ x).toReal
|
Lean.Elab.Deriving.mkInhabitedInstanceHandler
|
Lean.Elab.Deriving.Inhabited
|
Array Lean.Name β Lean.Elab.Command.CommandElabM Bool
|
Finset.singleton_subset_coe._simp_1
|
Mathlib.Data.Finset.Insert
|
β {Ξ± : Type u_1} {s : Finset Ξ±} {a : Ξ±}, ({a} β βs) = ({a} β s)
|
Lean.Meta.Match.Overlaps.mk.sizeOf_spec
|
Lean.Meta.Match.MatcherInfo
|
β (map : Std.HashMap β (Std.TreeSet β compare)), sizeOf { map := map } = 1 + sizeOf map
|
CategoryTheory.Limits.BinaryBicone.inlCokernelCofork_Ο
|
Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
|
β {C : Type uC} [inst : CategoryTheory.Category.{uC', uC} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C]
{X Y : C} (c : CategoryTheory.Limits.BinaryBicone X Y), CategoryTheory.Limits.Cofork.Ο c.inlCokernelCofork = c.snd
|
CategoryTheory.Presheaf.IsSheaf.amalgamate_map_assoc
|
Mathlib.CategoryTheory.Sites.Sheaf
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] {J : CategoryTheory.GrothendieckTopology C} {A : Type uβ}
[inst_1 : CategoryTheory.Category.{vβ, uβ} A] {E : A} {X : C} {P : CategoryTheory.Functor Cα΅α΅ A}
(hP : CategoryTheory.Presheaf.IsSheaf J P) (S : J.Cover X) (x : (I : S.Arrow) β E βΆ P.obj (Opposite.op I.Y))
(hx :
β β¦Iβ Iβ : S.Arrowβ¦ (r : Iβ.Relation Iβ),
CategoryTheory.CategoryStruct.comp (x Iβ) (P.map r.gβ.op) =
CategoryTheory.CategoryStruct.comp (x Iβ) (P.map r.gβ.op))
(I : S.Arrow) {Z : A} (h : P.obj (Opposite.op I.Y) βΆ Z),
CategoryTheory.CategoryStruct.comp (hP.amalgamate S x hx) (CategoryTheory.CategoryStruct.comp (P.map I.f.op) h) =
CategoryTheory.CategoryStruct.comp (x I) h
|
_private.Init.Data.Range.Polymorphic.UInt.0.UInt64.instLawfulUpwardEnumerableLE._simp_1
|
Init.Data.Range.Polymorphic.UInt
|
β {x y : BitVec 64},
Std.PRange.UpwardEnumerable.LE { toBitVec := x } { toBitVec := y } = Std.PRange.UpwardEnumerable.LE x y
|
Aesop.BuilderName.forward
|
Aesop.Rule.Name
|
Aesop.BuilderName
|
Lean.Parser.Term.doContinue
|
Lean.Parser.Do
|
Lean.Parser.Parser
|
_private.Lean.Elab.Term.TermElabM.0.Lean.Elab.Term.useImplicitLambda
|
Lean.Elab.Term.TermElabM
|
Lean.Syntax β Option Lean.Expr β Lean.Elab.TermElabM Lean.Elab.Term.UseImplicitLambdaResult
|
CategoryTheory.Monad.ForgetCreatesColimits.coconePoint._proof_1
|
Mathlib.CategoryTheory.Monad.Limits
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {T : CategoryTheory.Monad C} {J : Type u_4}
[inst_1 : CategoryTheory.Category.{u_3, u_4} J] {D : CategoryTheory.Functor J T.Algebra}
(c : CategoryTheory.Limits.Cocone (D.comp T.forget)) (t : CategoryTheory.Limits.IsColimit c)
[inst_2 : CategoryTheory.Limits.PreservesColimit (D.comp T.forget) T.toFunctor],
CategoryTheory.CategoryStruct.comp (T.Ξ·.app c.pt) (CategoryTheory.Monad.ForgetCreatesColimits.lambda c t) =
CategoryTheory.CategoryStruct.id c.pt
|
_private.Mathlib.Algebra.Group.Subsemigroup.Membership.0.AddSubsemigroup.mem_biSup_of_directedOn.match_1_1
|
Mathlib.Algebra.Group.Subsemigroup.Membership
|
β {M : Type u_2} [inst : Add M] {ΞΉ : Type u_1} {p : ΞΉ β Prop} {K : ΞΉ β AddSubsemigroup M} {x : M}
(motive : (β i, p i β§ x β K i) β Prop) (x_1 : β i, p i β§ x β K i),
(β (i : ΞΉ) (hi' : p i) (hi : x β K i), motive β―) β motive x_1
|
Lean.Meta.CaseValuesSubgoal.noConfusion
|
Lean.Meta.Match.CaseValues
|
{P : Sort u} β {t t' : Lean.Meta.CaseValuesSubgoal} β t = t' β Lean.Meta.CaseValuesSubgoal.noConfusionType P t t'
|
TensorPower.gmonoid._proof_1
|
Mathlib.LinearAlgebra.TensorPower.Basic
|
β {R : Type u_1} {M : Type u_2} [inst : CommSemiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M]
(a : GradedMonoid fun i => TensorPower R i M), GradedMonoid.mk (0 β’ a.fst) (GradedMonoid.GMonoid.gnpowRec 0 a.snd) = 1
|
AlgebraicGeometry.ProjIsoSpecTopComponent.ToSpec.carrier._proof_2
|
Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme
|
β {A : Type u_1} {Ο : Type u_2} [inst : CommRing A] [inst_1 : SetLike Ο A] [inst_2 : AddSubgroupClass Ο A] {π : β β Ο}
[inst_3 : GradedRing π] {f : A},
Topology.IsOpenEmbedding β(CategoryTheory.ConcreteCategory.hom (ProjectiveSpectrum.basicOpen π f).inclusion')
|
Ordinal.ToType.mk._proof_3
|
Mathlib.SetTheory.Ordinal.Basic
|
β {o : Ordinal.{u_1}} (x : β(Set.Iio o)), βx β Set.Iio (Ordinal.type fun x1 x2 => x1 < x2)
|
List.hasDecEq.match_1
|
Init.Prelude
|
{Ξ± : Type u_1} β
(as bs : List Ξ±) β
(motive : Decidable (as = bs) β Sort u_2) β
(x : Decidable (as = bs)) β
((habs : as = bs) β motive (isTrue habs)) β ((nabs : Β¬as = bs) β motive (isFalse nabs)) β motive x
|
Mathlib.Linter.DupNamespaceLinter.initFn._@.Mathlib.Tactic.Linter.Lint.3996576634._hygCtx._hyg.2
|
Mathlib.Tactic.Linter.Lint
|
IO Unit
|
Finset.fold_const
|
Mathlib.Data.Finset.Fold
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {op : Ξ² β Ξ² β Ξ²} [hc : Std.Commutative op] [ha : Std.Associative op] {b : Ξ²}
{s : Finset Ξ±} [hd : Decidable (s = β
)] (c : Ξ²),
op c (op b c) = op b c β Finset.fold op b (fun x => c) s = if s = β
then b else op b c
|
MonadStateOf.casesOn
|
Init.Prelude
|
{Ο : Type u} β
{m : Type u β Type v} β
{motive : MonadStateOf Ο m β Sort u_1} β
(t : MonadStateOf Ο m) β
((get : m Ο) β
(set : Ο β m PUnit.{u + 1}) β
(modifyGet : {Ξ± : Type u} β (Ο β Ξ± Γ Ο) β m Ξ±) β
motive { get := get, set := set, modifyGet := modifyGet }) β
motive t
|
SemimoduleCat.hom_ext_iff
|
Mathlib.Algebra.Category.ModuleCat.Semi
|
β {R : Type u} [inst : Semiring R] {M N : SemimoduleCat R} {f g : M βΆ N},
f = g β SemimoduleCat.Hom.hom f = SemimoduleCat.Hom.hom g
|
Real.pow_mul_norm_iteratedFDeriv_fourier_le
|
Mathlib.Analysis.Fourier.FourierTransformDeriv
|
β {E : Type u_1} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace β E] {V : Type u_2} [inst_2 : NormedAddCommGroup V]
[inst_3 : InnerProductSpace β V] [inst_4 : FiniteDimensional β V] [inst_5 : MeasurableSpace V] [inst_6 : BorelSpace V]
{f : V β E} {K N : ββ},
ContDiff β (βN) f β
(β (k n : β),
βk β€ K β βn β€ N β MeasureTheory.Integrable (fun v => βvβ ^ k * βiteratedFDeriv β n f vβ) MeasureTheory.volume) β
β {k n : β},
βk β€ K β
βn β€ N β
β (w : V),
βwβ ^ n * βiteratedFDeriv β k (FourierTransform.fourier f) wβ β€
(2 * Real.pi) ^ k * (2 * βk + 2) ^ n *
β p β Finset.range (k + 1) ΓΛ’ Finset.range (n + 1), β« (v : V), βvβ ^ p.1 * βiteratedFDeriv β p.2 f vβ
|
ContinuousMap.toAEEqFunAddHom._proof_1
|
Mathlib.MeasureTheory.Function.AEEqFun
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : MeasurableSpace Ξ±] (ΞΌ : MeasureTheory.Measure Ξ±) [inst_1 : TopologicalSpace Ξ±]
[inst_2 : BorelSpace Ξ±] [inst_3 : TopologicalSpace Ξ²] [inst_4 : SecondCountableTopologyEither Ξ± Ξ²]
[inst_5 : TopologicalSpace.PseudoMetrizableSpace Ξ²] [inst_6 : AddGroup Ξ²] [inst_7 : IsTopologicalAddGroup Ξ²],
ContinuousMap.toAEEqFun ΞΌ 0 = ContinuousMap.toAEEqFun ΞΌ 0
|
SzemerediRegularity.increment.congr_simp
|
Mathlib.Combinatorics.SimpleGraph.Regularity.Increment
|
β {Ξ± : Type u_1} [inst : Fintype Ξ±] [inst_1 : DecidableEq Ξ±] {P P_1 : Finpartition Finset.univ} (e_P : P = P_1)
(hP : P.IsEquipartition) (G G_1 : SimpleGraph Ξ±),
G = G_1 β
β {inst_2 : DecidableRel G.Adj} [inst_3 : DecidableRel G_1.Adj] (Ξ΅ Ξ΅_1 : β),
Ξ΅ = Ξ΅_1 β SzemerediRegularity.increment hP G Ξ΅ = SzemerediRegularity.increment β― G_1 Ξ΅_1
|
SkewMonoidAlgebra.equivMapDomain._proof_1
|
Mathlib.Algebra.SkewMonoidAlgebra.Lift
|
β {k : Type u_3} {G : Type u_2} {H : Type u_1} [inst : AddCommMonoid k] (f : G β H) (l : SkewMonoidAlgebra k G) (a : H),
a β Finset.map f.toEmbedding l.support β Β¬l.coeff (f.symm a) = 0
|
ArchimedeanClass.FiniteElement._proof_1
|
Mathlib.Algebra.Order.Ring.StandardPart
|
β (K : Type u_1) [inst : LinearOrder K] [inst_1 : Field K] [IsOrderedRing K], IsOrderedAddMonoid K
|
Lean.Widget.WidgetSource.mk.noConfusion
|
Lean.Widget.UserWidget
|
{P : Sort u} β
{sourcetext sourcetext' : String} β
{ sourcetext := sourcetext } = { sourcetext := sourcetext' } β (sourcetext = sourcetext' β P) β P
|
Trivialization.coe_coordChangeL
|
Mathlib.Topology.VectorBundle.Basic
|
β {R : Type u_1} {B : Type u_2} {F : Type u_3} {E : B β Type u_4} [inst : Semiring R] [inst_1 : TopologicalSpace F]
[inst_2 : TopologicalSpace B] [inst_3 : TopologicalSpace (Bundle.TotalSpace F E)] [inst_4 : AddCommMonoid F]
[inst_5 : Module R F] [inst_6 : (x : B) β AddCommMonoid (E x)] [inst_7 : (x : B) β Module R (E x)]
(e e' : Trivialization F Bundle.TotalSpace.proj) [inst_8 : Trivialization.IsLinear R e]
[inst_9 : Trivialization.IsLinear R e'] {b : B} (hb : b β e.baseSet β© e'.baseSet),
β(Trivialization.coordChangeL R e e' b) =
β((Trivialization.linearEquivAt R e b β―).symm βͺβ«β Trivialization.linearEquivAt R e' b β―)
|
Lean.Grind.IntModule.OfNatModule.mk_le_mk
|
Init.Grind.Module.Envelope
|
β {Ξ± : Type u} [inst : Lean.Grind.NatModule Ξ±] [inst_1 : LE Ξ±] [inst_2 : Std.IsPreorder Ξ±]
[inst_3 : Lean.Grind.OrderedAdd Ξ±] {aβ aβ bβ bβ : Ξ±},
Lean.Grind.IntModule.OfNatModule.Q.mk (aβ, aβ) β€ Lean.Grind.IntModule.OfNatModule.Q.mk (bβ, bβ) β aβ + bβ β€ aβ + bβ
|
StructureGroupoid.id_mem_maximalAtlas
|
Mathlib.Geometry.Manifold.ChartedSpace
|
β {H : Type u} [inst : TopologicalSpace H] (G : StructureGroupoid H),
OpenPartialHomeomorph.refl H β StructureGroupoid.maximalAtlas H G
|
Array.mapIdx_mapIdx
|
Init.Data.Array.MapIdx
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} {xs : Array Ξ±} {f : β β Ξ± β Ξ²} {g : β β Ξ² β Ξ³},
Array.mapIdx g (Array.mapIdx f xs) = Array.mapIdx (fun i => g i β f i) xs
|
_private.Mathlib.Algebra.Star.Module.0.selfAdjointPart_comp_subtype_skewAdjoint.match_1_1
|
Mathlib.Algebra.Star.Module
|
β (R : Type u_2) {A : Type u_1} [inst : Semiring R] [inst_1 : StarMul R] [inst_2 : TrivialStar R]
[inst_3 : AddCommGroup A] [inst_4 : Module R A] [inst_5 : StarAddMonoid A] [inst_6 : StarModule R A]
(motive : β₯(skewAdjoint.submodule R A) β Prop) (x : β₯(skewAdjoint.submodule R A)),
(β (x : A) (hx : star x = -x), motive β¨x, hxβ©) β motive x
|
CategoryTheory.Sheaf.instPreservesFiniteLimitsFunctorOppositeSheafToPresheafOfHasFiniteLimits
|
Mathlib.CategoryTheory.Sites.Limits
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} {D : Type w}
[inst_1 : CategoryTheory.Category.{w', w} D] [CategoryTheory.Limits.HasFiniteLimits D],
CategoryTheory.Limits.PreservesFiniteLimits (CategoryTheory.sheafToPresheaf J D)
|
AddCon.addSubgroup_quotientAddGroupCon
|
Mathlib.GroupTheory.QuotientGroup.Defs
|
β {G : Type u_1} [inst : AddGroup G] (H : AddSubgroup G) [inst_1 : H.Normal], (QuotientAddGroup.con H).addSubgroup = H
|
ContinuousMultilinearMap.uniformContinuous_restrictScalars
|
Mathlib.Topology.Algebra.Module.Multilinear.Topology
|
β {π : Type u_1} {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} {F : Type u_4} [inst : NormedField π]
[inst_1 : (i : ΞΉ) β TopologicalSpace (E i)] [inst_2 : (i : ΞΉ) β AddCommGroup (E i)]
[inst_3 : (i : ΞΉ) β Module π (E i)] [inst_4 : AddCommGroup F] [inst_5 : Module π F] [inst_6 : UniformSpace F]
[inst_7 : IsUniformAddGroup F] (π' : Type u_5) [inst_8 : NontriviallyNormedField π'] [inst_9 : NormedAlgebra π' π]
[inst_10 : (i : ΞΉ) β Module π' (E i)] [inst_11 : β (i : ΞΉ), IsScalarTower π' π (E i)] [inst_12 : Module π' F]
[inst_13 : IsScalarTower π' π F] [β (i : ΞΉ), ContinuousSMul π (E i)],
UniformContinuous (ContinuousMultilinearMap.restrictScalars π')
|
BoxIntegral.unitPartition.prepartition_isHenstock
|
Mathlib.Analysis.BoxIntegral.UnitPartition
|
β {ΞΉ : Type u_1} (n : β) [inst : NeZero n] [inst_1 : Fintype ΞΉ] (B : BoxIntegral.Box ΞΉ),
(BoxIntegral.unitPartition.prepartition n B).IsHenstock
|
LowerSet.notMem_bot._simp_1
|
Mathlib.Order.UpperLower.CompleteLattice
|
β {Ξ± : Type u_1} [inst : LE Ξ±] {a : Ξ±}, (a β β₯) = False
|
Std.DHashMap.Equiv.constGet_eq
|
Std.Data.DHashMap.Lemmas
|
β {Ξ± : Type u} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {Ξ² : Type v} {mβ mβ : Std.DHashMap Ξ± fun x => Ξ²} [inst : EquivBEq Ξ±]
[inst_1 : LawfulHashable Ξ±] {k : Ξ±} (hk : k β mβ) (h : mβ.Equiv mβ),
Std.DHashMap.Const.get mβ k hk = Std.DHashMap.Const.get mβ k β―
|
CategoryTheory.NatTrans.removeOp._proof_2
|
Mathlib.CategoryTheory.Opposites
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {D : Type u_4}
[inst_1 : CategoryTheory.Category.{u_3, u_4} D] {F G : CategoryTheory.Functor C D} (Ξ± : F.op βΆ G.op) (X Y : C)
(f : X βΆ Y),
CategoryTheory.CategoryStruct.comp (G.map f) (Ξ±.app (Opposite.op Y)).unop =
CategoryTheory.CategoryStruct.comp (Ξ±.app (Opposite.op X)).unop (F.map f)
|
Lean.Widget.RpcEncodablePacket.msg._@.Lean.Server.FileWorker.WidgetRequests.1923616455._hygCtx._hyg.1
|
Lean.Server.FileWorker.WidgetRequests
|
Lean.Widget.RpcEncodablePacketβ β Lean.Json
|
_private.Init.Data.String.Basic.0.String.Slice.utf8ByteSize_slice._proof_1_2
|
Init.Data.String.Basic
|
β {s : String.Slice} {newStart newEnd : s.Pos},
Β¬s.startInclusive.offset.byteIdx + newEnd.offset.byteIdx -
(s.startInclusive.offset.byteIdx + newStart.offset.byteIdx) =
newEnd.offset.byteIdx - newStart.offset.byteIdx β
False
|
_private.Lean.Elab.DeclNameGen.0.Lean.Elab.Command.NameGen.mkBaseNameCore.visit'.eq_def
|
Lean.Elab.DeclNameGen
|
β (e : Lean.Expr) (omitTopForall : Bool),
Lean.Elab.Command.NameGen.mkBaseNameCore.visit'β e omitTopForall =
match e with
| Lean.Expr.const name us => do
modify fun st =>
{ seen := Lean.Elab.Command.NameGen.MkNameState.seenβ st,
consts := (Lean.Elab.Command.NameGen.MkNameState.constsβ st).insert name }
pure
(match name.eraseMacroScopes with
| pre.str str => str.capitalize
| x => "")
| f.app x =>
(fun x1 x2 => x1 ++ x2) <$> Lean.Elab.Command.NameGen.mkBaseNameCore.visitβ f <*>
Lean.Elab.Command.NameGen.mkBaseNameCore.visitβΒΉ x
| Lean.Expr.forallE binderName ty body binderInfo => do
let sty β Lean.Elab.Command.NameGen.mkBaseNameCore.visitβΒ² ty
if (omitTopForall && sty == "") = true then Lean.Elab.Command.NameGen.mkBaseNameCore.visitβΒ³ body true
else (fun x => "Forall" ++ sty ++ x) <$> Lean.Elab.Command.NameGen.mkBaseNameCore.visitββ΄ body
| Lean.Expr.sort Lean.Level.zero => pure "Prop"
| Lean.Expr.sort a.succ => pure "Type"
| Lean.Expr.sort u => pure "Sort"
| x => pure ""
|
DilationEquiv.coe_one
|
Mathlib.Topology.MetricSpace.DilationEquiv
|
β {X : Type u_1} [inst : PseudoEMetricSpace X], β1 = id
|
Std.TreeSet.getD_diff_of_mem_right
|
Std.Data.TreeSet.Lemmas
|
β {Ξ± : Type u} {cmp : Ξ± β Ξ± β Ordering} {tβ tβ : Std.TreeSet Ξ± cmp} [Std.TransCmp cmp] {k fallback : Ξ±},
k β tβ β (tβ \ tβ).getD k fallback = fallback
|
IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_nth_roots
|
Mathlib.NumberTheory.Cyclotomic.Basic
|
β {A : Type u} {B : Type v} [inst : CommRing A] [inst_1 : CommRing B] [inst_2 : Algebra A B] [inst_3 : IsDomain B]
{ΞΆ : B} {n : β} [NeZero n],
IsPrimitiveRoot ΞΆ n β
Algebra.adjoin A ((Polynomial.cyclotomic n A).rootSet B) = Algebra.adjoin A {b | β a β {n}, a β 0 β§ b ^ a = 1}
|
NumberField.IsCMField.complexConj_eq_self_iff
|
Mathlib.NumberTheory.NumberField.CMField
|
β (K : Type u_1) [inst : Field K] [inst_1 : CharZero K] [inst_2 : NumberField.IsCMField K]
[inst_3 : Algebra.IsIntegral β K] (x : K),
(NumberField.IsCMField.complexConj K) x = x β x β NumberField.maximalRealSubfield K
|
LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace
|
Mathlib.Algebra.Lie.Weights.Killing
|
β {K : Type u_2} {L : Type u_3} [inst : LieRing L] [inst_1 : Field K] [inst_2 : LieAlgebra K L]
[inst_3 : FiniteDimensional K L] {H : LieSubalgebra K L} [inst_4 : H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L]
[LieModule.IsTriangularizable K (β₯H) L] [inst_7 : CharZero K] (Ξ± : LieModule.Weight K (β₯H) L),
Disjoint LieModule.Weight.ker (LieIdeal.toLieSubalgebra K (β₯H) (LieAlgebra.corootSpace βΞ±)).toSubmodule
|
List.forM_nil
|
Init.Data.List.Control
|
β {m : Type u_1 β Type u_2} {Ξ± : Type u_3} [inst : Monad m] {f : Ξ± β m PUnit.{u_1 + 1}}, forM [] f = pure PUnit.unit
|
CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse._proof_2
|
Mathlib.CategoryTheory.Comma.Over.Basic
|
β {T : Type u_4} [inst : CategoryTheory.Category.{u_3, u_4} T] {D : Type u_2}
[inst_1 : CategoryTheory.Category.{u_1, u_2} D] (F : CategoryTheory.Functor T D) (Y : D) (X : T)
{Y_1 Z : CategoryTheory.CostructuredArrow ((CategoryTheory.Over.forget X).comp F) Y} (m : Y_1 βΆ Z),
CategoryTheory.CategoryStruct.comp (F.map m.left.left) Z.hom = Y_1.hom
|
Representation.invariants.eq_1
|
Mathlib.RepresentationTheory.Invariants
|
β {k : Type u_1} {G : Type u_2} {V : Type u_3} [inst : CommSemiring k] [inst_1 : Group G] [inst_2 : AddCommMonoid V]
[inst_3 : Module k V] (Ο : Representation k G V),
Ο.invariants = { carrier := {v | β (g : G), (Ο g) v = v}, add_mem' := β―, zero_mem' := β―, smul_mem' := β― }
|
PNat.XgcdType.mk.sizeOf_spec
|
Mathlib.Data.PNat.Xgcd
|
β (wp x y zp ap bp : β),
sizeOf { wp := wp, x := x, y := y, zp := zp, ap := ap, bp := bp } =
1 + sizeOf wp + sizeOf x + sizeOf y + sizeOf zp + sizeOf ap + sizeOf bp
|
CategoryTheory.ProjectiveResolution.quasiIso._autoParam
|
Mathlib.CategoryTheory.Preadditive.Projective.Resolution
|
Lean.Syntax
|
bihimp_comm
|
Mathlib.Order.SymmDiff
|
β {Ξ± : Type u_2} [inst : GeneralizedHeytingAlgebra Ξ±] (a b : Ξ±), bihimp a b = bihimp b a
|
mul_le_mul_of_nonpos_of_nonneg'
|
Mathlib.Algebra.Order.Ring.Unbundled.Basic
|
β {R : Type u} [inst : Semiring R] [inst_1 : Preorder R] {a b c d : R} [ExistsAddOfLE R] [PosMulMono R] [MulPosMono R]
[AddRightMono R] [AddRightReflectLE R], c β€ a β b β€ d β 0 β€ a β d β€ 0 β a * b β€ c * d
|
CategoryTheory.ShortComplex.Exact.isIso_imageToKernel
|
Mathlib.CategoryTheory.Abelian.Exact
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] [inst_1 : CategoryTheory.Abelian C]
(S : CategoryTheory.ShortComplex C), S.Exact β CategoryTheory.IsIso (imageToKernel S.f S.g β―)
|
Lean.KeyedDeclsAttribute.ExtensionState.declNames
|
Lean.KeyedDeclsAttribute
|
{Ξ³ : Type} β Lean.KeyedDeclsAttribute.ExtensionState Ξ³ β Lean.PHashSet Lean.Name
|
LinearMap.mem_submoduleImage._simp_1
|
Mathlib.Algebra.Module.Submodule.Range
|
β {R : Type u_1} {M : Type u_5} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {M' : Type u_10}
[inst_3 : AddCommMonoid M'] [inst_4 : Module R M'] {O : Submodule R M} {Ο : β₯O ββ[R] M'} {N : Submodule R M} {x : M'},
(x β Ο.submoduleImage N) = β y, β (yO : y β O), y β N β§ Ο β¨y, yOβ© = x
|
Lean.Meta.Grind.Arith.Cutsat.SymbolicIntInterval.isFinite
|
Lean.Meta.Tactic.Grind.Arith.Cutsat.ToIntInfo
|
Lean.Meta.Grind.Arith.Cutsat.SymbolicIntInterval β Bool
|
Lean.Server.Test.Runner.Client.InteractiveGoals.mk
|
Lean.Server.Test.Runner
|
Array Lean.Server.Test.Runner.Client.InteractiveGoal β Lean.Server.Test.Runner.Client.InteractiveGoals
|
SimpleGraph.Walk.support_toPath_subset
|
Mathlib.Combinatorics.SimpleGraph.Paths
|
β {V : Type u} {G : SimpleGraph V} [inst : DecidableEq V] {u v : V} (p : G.Walk u v), (βp.toPath).support β p.support
|
_private.Mathlib.LinearAlgebra.Pi.0.LinearMap.pi_eq_zero._simp_1_2
|
Mathlib.LinearAlgebra.Pi
|
β {Ξ± : Sort u} {Ξ² : Ξ± β Sort v} {f g : (x : Ξ±) β Ξ² x}, (f = g) = β (x : Ξ±), f x = g x
|
_private.Mathlib.Algebra.Homology.HomotopyCategory.HomComplex.0.CochainComplex.HomComplex.Cocycle.homOf._simp_1
|
Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
|
β {G : Type u_3} [inst : AddGroup G] {a b : G}, (a - b = 0) = (a = b)
|
_private.Init.Data.String.Decode.0.ByteArray.utf8DecodeChar?.val_assembleβ_le._proof_1_1
|
Init.Data.String.Decode
|
β {w : UInt8}, w.toNat < 128 β Β¬w.toNat β€ 127 β False
|
_private.Init.Data.List.Lemmas.0.List.length_pos_iff_exists_mem.match_1_1
|
Init.Data.List.Lemmas
|
β {Ξ± : Type u_1} {l : List Ξ±} (motive : (β a, a β l) β Prop) (x : β a, a β l),
(β (w : Ξ±) (h : w β l), motive β―) β motive x
|
_private.Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup.0.SubMulAction.fixingSubgroup_map_conj_eq._simp_1_2
|
Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup
|
β {G : Type u_1} [inst : DivInvMonoid G] (x : G), xβ»ΒΉ = x ^ (-1)
|
Fin.dfoldrM.loop._unsafe_rec
|
Batteries.Data.Fin.Basic
|
{m : Type u_1 β Type u_2} β
[Monad m] β
(n : β) β
(Ξ± : Fin (n + 1) β Type u_1) β
((i : Fin n) β Ξ± i.succ β m (Ξ± i.castSucc)) β (i : β) β (h : i < n + 1) β Ξ± β¨i, hβ© β m (Ξ± 0)
|
MeasureTheory.aecover_closedBall
|
Mathlib.MeasureTheory.Integral.IntegralEqImproper
|
β {Ξ± : Type u_1} {ΞΉ : Type u_2} [inst : MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} {l : Filter ΞΉ}
[inst_1 : PseudoMetricSpace Ξ±] [OpensMeasurableSpace Ξ±] {x : Ξ±} {r : ΞΉ β β},
Filter.Tendsto r l Filter.atTop β MeasureTheory.AECover ΞΌ l fun i => Metric.closedBall x (r i)
|
BitVec.twoPow
|
Init.Data.BitVec.Basic
|
(w : β) β β β BitVec w
|
_private.Init.Data.Array.Monadic.0.Array.foldlM_filterMap.match_1.eq_1
|
Init.Data.Array.Monadic
|
β {Ξ² : Type u_1} (motive : Option Ξ² β Sort u_2) (b : Ξ²) (h_1 : (b : Ξ²) β motive (some b)) (h_2 : Unit β motive none),
(match some b with
| some b => h_1 b
| none => h_2 ()) =
h_1 b
|
LocalSubring.noConfusion
|
Mathlib.RingTheory.LocalRing.LocalSubring
|
{P : Sort u} β
{R : Type u_1} β
{inst : CommRing R} β
{t : LocalSubring R} β
{R' : Type u_1} β
{inst' : CommRing R'} β
{t' : LocalSubring R'} β R = R' β inst β inst' β t β t' β LocalSubring.noConfusionType P t t'
|
_private.Batteries.Data.String.Legacy.0.String.Legacy.posOfAux._proof_1
|
Batteries.Data.String.Legacy
|
β (s : String) (stopPos pos : String.Pos.Raw),
pos < stopPos β stopPos.byteIdx - (String.Pos.Raw.next s pos).byteIdx < stopPos.byteIdx - pos.byteIdx
|
_private.Mathlib.MeasureTheory.Function.SimpleFunc.0.MeasureTheory.SimpleFunc.support_eq._simp_1_1
|
Mathlib.MeasureTheory.Function.SimpleFunc
|
β {ΞΉ : Type u_1} {M : Type u_3} [inst : Zero M] {f : ΞΉ β M} {x : ΞΉ}, (x β Function.support f) = (f x β 0)
|
List.pop_toArray
|
Init.Data.List.ToArray
|
β {Ξ± : Type u_1} (l : List Ξ±), l.toArray.pop = l.dropLast.toArray
|
groupCohomology.isoTwoCocycles_inv_comp_iCocycles
|
Mathlib.RepresentationTheory.Homological.GroupCohomology.LowDegree
|
β {k G : Type u} [inst : CommRing k] [inst_1 : Group G] (A : Rep k G),
CategoryTheory.CategoryStruct.comp (groupCohomology.isoCocyclesβ A).inv (groupCohomology.iCocycles A 2) =
CategoryTheory.CategoryStruct.comp (groupCohomology.shortComplexH2 A).moduleCatLeftHomologyData.i
(groupCohomology.cochainsIsoβ A).inv
|
monovaryOn_inv_left._simp_4
|
Mathlib.Algebra.Order.Monovary
|
β {ΞΉ : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : AddCommGroup Ξ±] [inst_1 : PartialOrder Ξ±] [IsOrderedAddMonoid Ξ±]
[inst_3 : PartialOrder Ξ²] {s : Set ΞΉ} {f : ΞΉ β Ξ±} {g : ΞΉ β Ξ²}, MonovaryOn (-f) g s = AntivaryOn f g s
|
_private.Lean.Util.Diff.0.Lean.Diff.diff.match_3
|
Lean.Util.Diff
|
{Ξ± : Type} β
(motive : MProd β (MProd β (Array (Lean.Diff.Action Γ Ξ±))) β Sort u_1) β
(r : MProd β (MProd β (Array (Lean.Diff.Action Γ Ξ±)))) β
((i j : β) β (out : Array (Lean.Diff.Action Γ Ξ±)) β motive β¨i, j, outβ©) β motive r
|
CategoryTheory.Abelian.extFunctorObj._proof_1
|
Mathlib.Algebra.Homology.DerivedCategory.Ext.Basic
|
β (n : β), n + 0 = n
|
_private.Mathlib.RingTheory.PolynomialAlgebra.0.PolyEquivTensor.left_inv._simp_1_3
|
Mathlib.RingTheory.PolynomialAlgebra
|
β {R : Type u} {A : Type w} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Algebra R A] (r : R) (x : A),
(algebraMap R A) r * x = r β’ x
|
Subgroup.toAddSubgroup._proof_2
|
Mathlib.Algebra.Group.Subgroup.Lattice
|
β {G : Type u_1} [inst : Group G] (x : AddSubgroup (Additive G)),
{
toAddSubmonoid :=
Submonoid.toAddSubmonoid
{ toSubmonoid := AddSubmonoid.toSubmonoid x.toAddSubmonoid, inv_mem' := β― }.toSubmonoid,
neg_mem' := β― } =
x
|
EuclideanGeometry.orthogonalProjection.congr_simp
|
Mathlib.Geometry.Euclidean.Projection
|
β {π : Type u_1} {V : Type u_2} {P : Type u_3} [inst : RCLike π] [inst_1 : NormedAddCommGroup V]
[inst_2 : InnerProductSpace π V] [inst_3 : PseudoMetricSpace P] [inst_4 : NormedAddTorsor V P]
(s : AffineSubspace π P) [inst_5 : Nonempty β₯s] [inst_6 : s.direction.HasOrthogonalProjection],
EuclideanGeometry.orthogonalProjection s = EuclideanGeometry.orthogonalProjection s
|
Tuple.comp_sort_eq_comp_iff_monotone
|
Mathlib.Data.Fin.Tuple.Sort
|
β {n : β} {Ξ± : Type u_1} [inst : LinearOrder Ξ±] {f : Fin n β Ξ±} {Ο : Equiv.Perm (Fin n)},
f β βΟ = f β β(Tuple.sort f) β Monotone (f β βΟ)
|
Lean.Meta.Grind.Arith.Cutsat.DvdCnstrProof.cooperβ
|
Lean.Meta.Tactic.Grind.Arith.Cutsat.Types
|
Lean.Meta.Grind.Arith.Cutsat.CooperSplit β Lean.Meta.Grind.Arith.Cutsat.DvdCnstrProof
|
_private.Std.Sync.Channel.0.Std.CloseableChannel.Bounded.State.casesOn
|
Std.Sync.Channel
|
{Ξ± : Type} β
{motive : Std.CloseableChannel.Bounded.Stateβ Ξ± β Sort u} β
(t : Std.CloseableChannel.Bounded.StateβΒΉ Ξ±) β
((producers : Std.Queue (IO.Promise Bool)) β
(consumers : Std.Queue (Std.CloseableChannel.Bounded.Consumerβ Ξ±)) β
(capacity : β) β
(buf : Vector (IO.Ref (Option Ξ±)) capacity) β
(bufCount sendIdx : β) β
(hsend : sendIdx < capacity) β
(recvIdx : β) β
(hrecv : recvIdx < capacity) β
(closed : Bool) β
motive
{ producers := producers, consumers := consumers, capacity := capacity, buf := buf,
bufCount := bufCount, sendIdx := sendIdx, hsend := hsend, recvIdx := recvIdx,
hrecv := hrecv, closed := closed }) β
motive t
|
_private.Mathlib.Topology.MetricSpace.Infsep.0.Set.Finite.infsep._simp_1_3
|
Mathlib.Topology.MetricSpace.Infsep
|
β {Ξ± : Type u} {s : Set Ξ±} {a : Ξ±} (hs : s.Finite), (a β hs.toFinset) = (a β s)
|
LinearMap.IsReflective.coroot._proof_1
|
Mathlib.LinearAlgebra.RootSystem.OfBilinear
|
β {R : Type u_1} {M : Type u_2} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M]
(B : M ββ[R] M ββ[R] R) {x : M} (hx : B.IsReflective x) (a b : M), Exists.choose β― = Exists.choose β― + Exists.choose β―
|
CompactlySupportedContinuousMap.noConfusionType
|
Mathlib.Topology.ContinuousMap.CompactlySupported
|
Sort u β
{Ξ± : Type u_5} β
{Ξ² : Type u_6} β
[inst : TopologicalSpace Ξ±] β
[inst_1 : Zero Ξ²] β
[inst_2 : TopologicalSpace Ξ²] β
CompactlySupportedContinuousMap Ξ± Ξ² β
{Ξ±' : Type u_5} β
{Ξ²' : Type u_6} β
[inst' : TopologicalSpace Ξ±'] β
[inst'_1 : Zero Ξ²'] β
[inst'_2 : TopologicalSpace Ξ²'] β CompactlySupportedContinuousMap Ξ±' Ξ²' β Sort u
|
Std.Broadcast.Sync.send
|
Std.Sync.Broadcast
|
{Ξ± : Type} β Std.Broadcast.Sync Ξ± β Ξ± β IO β
|
_private.Mathlib.FieldTheory.Finite.Basic.0.FiniteField.exists_root_sum_quadratic._simp_1_2
|
Mathlib.FieldTheory.Finite.Basic
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : DecidableEq Ξ²] {f : Ξ± β Ξ²} {s : Finset Ξ±} {b : Ξ²},
(b β Finset.image f s) = β a β s, f a = b
|
WeierstrassCurve.Projective.add
|
Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Point
|
{R : Type r} β [CommRing R] β WeierstrassCurve.Projective R β (Fin 3 β R) β (Fin 3 β R) β Fin 3 β R
|
List.lex_nil
|
Init.Data.List.Basic
|
β {Ξ± : Type u} {lt : Ξ± β Ξ± β Bool} [inst : BEq Ξ±] {as : List Ξ±}, as.lex [] lt = false
|
Subring.unop_sup
|
Mathlib.Algebra.Ring.Subring.MulOpposite
|
β {R : Type u_2} [inst : Ring R] (Sβ Sβ : Subring Rα΅α΅α΅), (Sβ β Sβ).unop = Sβ.unop β Sβ.unop
|
Surreal.addCommGroup._proof_2
|
Mathlib.SetTheory.Surreal.Basic
|
β (a : Surreal), 0 + a = a
|
_private.Mathlib.Tactic.Translate.Core.0.Mathlib.Tactic.Translate.declAbstractNestedProofs._sparseCasesOn_1
|
Mathlib.Tactic.Translate.Core
|
{motive : Lean.ConstantInfo β Sort u} β
(t : Lean.ConstantInfo) β
((val : Lean.DefinitionVal) β motive (Lean.ConstantInfo.defnInfo val)) β
(Nat.hasNotBit 2 t.ctorIdx β motive t) β motive t
|
_private.Lean.Elab.DeclNameGen.0.Lean.Elab.Command.NameGen.MkNameState.mk.injEq
|
Lean.Elab.DeclNameGen
|
β (seen : Lean.ExprSet) (consts : Lean.NameSet) (seen_1 : Lean.ExprSet) (consts_1 : Lean.NameSet),
({ seen := seen, consts := consts } = { seen := seen_1, consts := consts_1 }) = (seen = seen_1 β§ consts = consts_1)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.