text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
|---|---|
{"mathlib_filename": "Mathlib.Init.Data.Ordering.Basic", "llama_tokens": 0}
|
|
[GOAL]
α β : Type u
m : Type u → Type v
x : OptionT m α
inst✝¹ : Monad m
f : α → β
inst✝ : LawfulMonad m
⊢ run (f <$> x) = Option.map f <$> run x
[PROOFSTEP]
rw [← bind_pure_comp _ x.run]
[GOAL]
α β : Type u
m : Type u → Type v
x : OptionT m α
inst✝¹ : Monad m
f : α → β
inst✝ : LawfulMonad m
⊢ run (f <$> x) = do
let a ← run x
pure (Option.map f a)
[PROOFSTEP]
change
x.run >>=
(fun
| some a => OptionT.run (pure (f a))
| none => pure none) =
_
[GOAL]
α β : Type u
m : Type u → Type v
x : OptionT m α
inst✝¹ : Monad m
f : α → β
inst✝ : LawfulMonad m
⊢ (do
let x ← run x
match x with
| some a => run (pure (f a))
| none => pure none) =
do
let a ← run x
pure (Option.map f a)
[PROOFSTEP]
apply bind_congr
[GOAL]
case h
α β : Type u
m : Type u → Type v
x : OptionT m α
inst✝¹ : Monad m
f : α → β
inst✝ : LawfulMonad m
⊢ ∀ (a : Option α),
(match a with
| some a => run (pure (f a))
| none => pure none) =
pure (Option.map f a)
[PROOFSTEP]
intro a
[GOAL]
case h
α β : Type u
m : Type u → Type v
x : OptionT m α
inst✝¹ : Monad m
f : α → β
inst✝ : LawfulMonad m
a : Option α
⊢ (match a with
| some a => run (pure (f a))
| none => pure none) =
pure (Option.map f a)
[PROOFSTEP]
cases a
[GOAL]
case h.none
α β : Type u
m : Type u → Type v
x : OptionT m α
inst✝¹ : Monad m
f : α → β
inst✝ : LawfulMonad m
⊢ (match none with
| some a => run (pure (f a))
| none => pure none) =
pure (Option.map f none)
[PROOFSTEP]
simp [Option.map, Option.bind]
[GOAL]
case h.some
α β : Type u
m : Type u → Type v
x : OptionT m α
inst✝¹ : Monad m
f : α → β
inst✝ : LawfulMonad m
val✝ : α
⊢ (match some val✝ with
| some a => run (pure (f a))
| none => pure none) =
pure (Option.map f (some val✝))
[PROOFSTEP]
simp [Option.map, Option.bind]
[GOAL]
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
⊢ ∀ {α : Type u} (x : OptionT m α), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ : Type u
x✝ : OptionT m α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
apply OptionT.ext
[GOAL]
case h
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ : Type u
x✝ : OptionT m α✝
⊢ OptionT.run (id <$> x✝) = OptionT.run x✝
[PROOFSTEP]
simp only [OptionT.run_map]
[GOAL]
case h
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ : Type u
x✝ : OptionT m α✝
⊢ Option.map id <$> OptionT.run x✝ = OptionT.run x✝
[PROOFSTEP]
rw [map_congr, id_map]
[GOAL]
case h
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ : Type u
x✝ : OptionT m α✝
⊢ ∀ (a : Option α✝), Option.map id a = id a
[PROOFSTEP]
intro a
[GOAL]
case h
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ : Type u
x✝ : OptionT m α✝
a : Option α✝
⊢ Option.map id a = id a
[PROOFSTEP]
cases a
[GOAL]
case h.none
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ : Type u
x✝ : OptionT m α✝
⊢ Option.map id none = id none
[PROOFSTEP]
rfl
[GOAL]
case h.some
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ : Type u
x✝ : OptionT m α✝
val✝ : α✝
⊢ Option.map id (some val✝) = id (some val✝)
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
⊢ ∀ {α β : Type u} (x : α) (f : α → OptionT m β), pure x >>= f = f x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ β✝ : Type u
x✝ : α✝
f✝ : α✝ → OptionT m β✝
⊢ pure x✝ >>= f✝ = f✝ x✝
[PROOFSTEP]
apply OptionT.ext
[GOAL]
case h
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ β✝ : Type u
x✝ : α✝
f✝ : α✝ → OptionT m β✝
⊢ OptionT.run (pure x✝ >>= f✝) = OptionT.run (f✝ x✝)
[PROOFSTEP]
simp
[GOAL]
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
⊢ ∀ {α β γ : Type u} (x : OptionT m α) (f : α → OptionT m β) (g : β → OptionT m γ),
x >>= f >>= g = x >>= fun x => f x >>= g
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ β✝ γ✝ : Type u
x✝ : OptionT m α✝
f✝ : α✝ → OptionT m β✝
g✝ : β✝ → OptionT m γ✝
⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
apply OptionT.ext
[GOAL]
case h
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ β✝ γ✝ : Type u
x✝ : OptionT m α✝
f✝ : α✝ → OptionT m β✝
g✝ : β✝ → OptionT m γ✝
⊢ OptionT.run (x✝ >>= f✝ >>= g✝) = OptionT.run (x✝ >>= fun x => f✝ x >>= g✝)
[PROOFSTEP]
simp only [OptionT.run_bind, bind_assoc]
[GOAL]
case h
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ β✝ γ✝ : Type u
x✝ : OptionT m α✝
f✝ : α✝ → OptionT m β✝
g✝ : β✝ → OptionT m γ✝
⊢ (do
let x ← OptionT.run x✝
let x ←
match x with
| some a => OptionT.run (f✝ a)
| none => pure none
match x with
| some a => OptionT.run (g✝ a)
| none => pure none) =
do
let x ← OptionT.run x✝
match x with
| some a => do
let x ← OptionT.run (f✝ a)
match x with
| some a => OptionT.run (g✝ a)
| none => pure none
| none => pure none
[PROOFSTEP]
rw [bind_congr]
[GOAL]
case h
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ β✝ γ✝ : Type u
x✝ : OptionT m α✝
f✝ : α✝ → OptionT m β✝
g✝ : β✝ → OptionT m γ✝
⊢ ∀ (a : Option α✝),
(do
let x ←
match a with
| some a => OptionT.run (f✝ a)
| none => pure none
match x with
| some a => OptionT.run (g✝ a)
| none => pure none) =
match a with
| some a => do
let x ← OptionT.run (f✝ a)
match x with
| some a => OptionT.run (g✝ a)
| none => pure none
| none => pure none
[PROOFSTEP]
intro a
[GOAL]
case h
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ β✝ γ✝ : Type u
x✝ : OptionT m α✝
f✝ : α✝ → OptionT m β✝
g✝ : β✝ → OptionT m γ✝
a : Option α✝
⊢ (do
let x ←
match a with
| some a => OptionT.run (f✝ a)
| none => pure none
match x with
| some a => OptionT.run (g✝ a)
| none => pure none) =
match a with
| some a => do
let x ← OptionT.run (f✝ a)
match x with
| some a => OptionT.run (g✝ a)
| none => pure none
| none => pure none
[PROOFSTEP]
cases a
[GOAL]
case h.none
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ β✝ γ✝ : Type u
x✝ : OptionT m α✝
f✝ : α✝ → OptionT m β✝
g✝ : β✝ → OptionT m γ✝
⊢ (do
let x ←
match none with
| some a => OptionT.run (f✝ a)
| none => pure none
match x with
| some a => OptionT.run (g✝ a)
| none => pure none) =
match none with
| some a => do
let x ← OptionT.run (f✝ a)
match x with
| some a => OptionT.run (g✝ a)
| none => pure none
| none => pure none
[PROOFSTEP]
simp
[GOAL]
case h.some
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α✝ β✝ γ✝ : Type u
x✝ : OptionT m α✝
f✝ : α✝ → OptionT m β✝
g✝ : β✝ → OptionT m γ✝
val✝ : α✝
⊢ (do
let x ←
match some val✝ with
| some a => OptionT.run (f✝ a)
| none => pure none
match x with
| some a => OptionT.run (g✝ a)
| none => pure none) =
match some val✝ with
| some a => do
let x ← OptionT.run (f✝ a)
match x with
| some a => OptionT.run (g✝ a)
| none => pure none
| none => pure none
[PROOFSTEP]
simp
|
{"mathlib_filename": "Mathlib.Init.Control.Lawful", "llama_tokens": 3649}
|
{"mathlib_filename": "Mathlib.Init.Control.Combinators", "llama_tokens": 0}
|
|
[GOAL]
a : ℤ
h₁ : a ≠ 0
h₂ : -a = 0
⊢ False
[PROOFSTEP]
have : -a = -0 := by rwa [Int.neg_zero]
[GOAL]
a : ℤ
h₁ : a ≠ 0
h₂ : -a = 0
⊢ -a = -0
[PROOFSTEP]
rwa [Int.neg_zero]
[GOAL]
a : ℤ
h₁ : a ≠ 0
h₂ : -a = 0
this : -a = -0
⊢ False
[PROOFSTEP]
have : a = 0 := Int.neg_eq_neg this
[GOAL]
a : ℤ
h₁ : a ≠ 0
h₂ : -a = 0
this✝ : -a = -0
this : a = 0
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
a b : ℤ
h₁ : 0 < a
h₂ : 0 < b
h : -a = b
⊢ False
[PROOFSTEP]
rw [← h] at h₂
[GOAL]
a b : ℤ
h₁ : 0 < a
h₂ : 0 < -a
h : -a = b
⊢ False
[PROOFSTEP]
exact absurd (le_of_lt h₁) (not_le_of_gt (Int.neg_of_neg_pos h₂))
[GOAL]
n : ℕ
⊢ 0 + ↑n = ofNat n
[PROOFSTEP]
rw [Int.zero_add, Int.coe_nat_eq]
[GOAL]
a b : ℤ
ha : 0 ≤ a
hb : 0 ≤ b
h✝ : natAbs a ≠ natAbs b
h : a = b
⊢ False
[PROOFSTEP]
have : (natAbs a : ℤ) = natAbs b := by rwa [ofNat_natAbs_eq_of_nonneg _ ha, ofNat_natAbs_eq_of_nonneg _ hb]
[GOAL]
a b : ℤ
ha : 0 ≤ a
hb : 0 ≤ b
h✝ : natAbs a ≠ natAbs b
h : a = b
⊢ ↑(natAbs a) = ↑(natAbs b)
[PROOFSTEP]
rwa [ofNat_natAbs_eq_of_nonneg _ ha, ofNat_natAbs_eq_of_nonneg _ hb]
[GOAL]
a b : ℤ
ha : 0 ≤ a
hb : 0 ≤ b
h✝ : natAbs a ≠ natAbs b
h : a = b
this : ↑(natAbs a) = ↑(natAbs b)
⊢ False
[PROOFSTEP]
injection this
[GOAL]
a b : ℤ
ha : 0 ≤ a
hb : 0 ≤ b
h✝ : natAbs a ≠ natAbs b
h : a = b
a_eq✝ : natAbs a = natAbs b
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
a b : ℤ
n m : ℕ
ha : 0 ≤ a
hb : 0 ≤ b
e1 : natAbs a = n
e2 : natAbs b = m
h : n ≠ m
⊢ natAbs a ≠ natAbs b
[PROOFSTEP]
rwa [e1, e2]
[GOAL]
n m : ℕ
x✝¹ : 0 ≤ ofNat n
x✝ : 0 ≤ ofNat m
⊢ natAbs (ofNat n + ofNat m) = natAbs (ofNat n) + natAbs (ofNat m)
[PROOFSTEP]
simp [natAbs_ofNat_core]
[GOAL]
n m : ℕ
x✝¹ : -[n+1] < 0
x✝ : -[m+1] < 0
⊢ natAbs (-[n+1] + -[m+1]) = natAbs -[n+1] + natAbs -[m+1]
[PROOFSTEP]
simp [natAbs_of_negSucc, Nat.succ_add, Nat.add_succ]
[GOAL]
a : ℤ
n : ℕ
h : natAbs a = n
⊢ natAbs (bit0 a) = bit0 n
[PROOFSTEP]
rw [← h]
[GOAL]
a : ℤ
n : ℕ
h : natAbs a = n
⊢ natAbs (bit0 a) = bit0 (natAbs a)
[PROOFSTEP]
apply Int.natAbs_bit0
[GOAL]
a : ℤ
h : 0 ≤ a
⊢ natAbs (bit0 a + 1) = bit0 (natAbs a) + natAbs 1
[PROOFSTEP]
rw [Int.natAbs_add_nonneg (Int.bit0_nonneg h) (le_of_lt Int.zero_lt_one), Int.natAbs_bit0]
[GOAL]
a : ℤ
n : ℕ
h₁ : 0 ≤ a
h₂ : natAbs a = n
⊢ natAbs (bit1 a) = bit1 n
[PROOFSTEP]
rw [← h₂]
[GOAL]
a : ℤ
n : ℕ
h₁ : 0 ≤ a
h₂ : natAbs a = n
⊢ natAbs (bit1 a) = bit1 (natAbs a)
[PROOFSTEP]
apply Int.natAbs_bit1_nonneg h₁
|
{"mathlib_filename": "Mathlib.Init.Data.Int.CompLemmas", "llama_tokens": 1464}
|
[GOAL]
x y : ℕ
⊢ gcd x y = if x = 0 then y else gcd (y % x) x
[PROOFSTEP]
cases x
[GOAL]
case zero
y : ℕ
⊢ gcd zero y = if zero = 0 then y else gcd (y % zero) zero
[PROOFSTEP]
simp [Nat.gcd_succ]
[GOAL]
case succ
y n✝ : ℕ
⊢ gcd (succ n✝) y = if succ n✝ = 0 then y else gcd (y % succ n✝) (succ n✝)
[PROOFSTEP]
simp [Nat.gcd_succ]
|
{"mathlib_filename": "Mathlib.Init.Data.Nat.GCD", "llama_tokens": 180}
|
{"mathlib_filename": "Mathlib.Init.Data.Bool.Basic", "llama_tokens": 0}
|
|
[GOAL]
α : Type u
β : Type v
γ : Type w
p : α → Prop
a : α
l : List α
x✝ : ∃ x, x ∈ a :: l ∧ p x
x : α
h : x ∈ a :: l
px : p x
⊢ p a ∨ ∃ x, x ∈ l ∧ p x
[PROOFSTEP]
simp only [find?, mem_cons] at h
[GOAL]
α : Type u
β : Type v
γ : Type w
p : α → Prop
a : α
l : List α
x✝ : ∃ x, x ∈ a :: l ∧ p x
x : α
px : p x
h : x = a ∨ x ∈ l
⊢ p a ∨ ∃ x, x ∈ l ∧ p x
[PROOFSTEP]
cases' h with h h
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
p : α → Prop
a : α
l : List α
x✝ : ∃ x, x ∈ a :: l ∧ p x
x : α
px : p x
h : x = a
⊢ p a ∨ ∃ x, x ∈ l ∧ p x
[PROOFSTEP]
cases h
[GOAL]
case inl.refl
α : Type u
β : Type v
γ : Type w
p : α → Prop
a : α
l : List α
x✝ : ∃ x, x ∈ a :: l ∧ p x
px : p a
⊢ p a ∨ ∃ x, x ∈ l ∧ p x
[PROOFSTEP]
exact Or.inl px
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
p : α → Prop
a : α
l : List α
x✝ : ∃ x, x ∈ a :: l ∧ p x
x : α
px : p x
h : x ∈ l
⊢ p a ∨ ∃ x, x ∈ l ∧ p x
[PROOFSTEP]
exact Or.inr ⟨x, h, px⟩
|
{"mathlib_filename": "Mathlib.Init.Data.List.Lemmas", "llama_tokens": 538}
|
[GOAL]
a b c d : Prop
p : ?m.25026
h : Decidable True
⊢ decide True = true
[PROOFSTEP]
simp
[GOAL]
a b c d : Prop
p : ?m.25099
h : Decidable False
⊢ decide False = false
[PROOFSTEP]
simp
[GOAL]
a b c d p : Prop
h : Decidable p
h₁ : p → Sort u
h₂ : ¬p → Sort u
h₃ : p
h₄ : h₁ h₃
⊢ h₁ h₃ = Decidable.recOn h h₂ h₁
[PROOFSTEP]
match h with
| .isTrue _ => rfl
[GOAL]
a b c d p : Prop
h : Decidable p
h₁ : p → Sort u
h₂ : ¬p → Sort u
h₃ : p
h₄ : h₁ h₃
h✝ : p
⊢ h₁ h₃ = Decidable.recOn (isTrue h✝) h₂ h₁
[PROOFSTEP]
rfl
[GOAL]
a b c d p : Prop
h : Decidable p
h₁ : p → Sort u
h₂ : ¬p → Sort u
h₃ : ¬p
h₄ : h₂ h₃
⊢ h₂ h₃ = Decidable.recOn h h₂ h₁
[PROOFSTEP]
match h with
| .isFalse _ => rfl
[GOAL]
a b c d p : Prop
h : Decidable p
h₁ : p → Sort u
h₂ : ¬p → Sort u
h₃ : ¬p
h₄ : h₂ h₃
h✝ : ¬p
⊢ h₂ h₃ = Decidable.recOn (isFalse h✝) h₂ h₁
[PROOFSTEP]
rfl
[GOAL]
a b c d : Prop
p✝ : ?m.26639
α : Sort u
p : α → α → Bool
h₁ : IsDecEq p
h₂ : IsDecRefl p
x y : α
hp : ¬p x y = true
hxy : x = y
⊢ ¬p y y = true
[PROOFSTEP]
rwa [hxy] at hp
[GOAL]
a b c✝ d : Prop
p : ?m.27547
c t e : Prop
inst✝ : Decidable c
h : if c then t else e
hc : c
⊢ t
[PROOFSTEP]
have := if_pos hc ▸ h
[GOAL]
a b c✝ d : Prop
p : ?m.27547
c t e : Prop
inst✝ : Decidable c
h : if c then t else e
hc : c
this : t
⊢ t
[PROOFSTEP]
exact this
[GOAL]
a b c✝ d : Prop
p : ?m.27609
c t e : Prop
inst✝ : Decidable c
h : if c then t else e
hnc : ¬c
⊢ e
[PROOFSTEP]
have := if_neg hnc ▸ h
[GOAL]
a b c✝ d : Prop
p : ?m.27609
c t e : Prop
inst✝ : Decidable c
h : if c then t else e
hnc : ¬c
this : e
⊢ e
[PROOFSTEP]
exact this
[GOAL]
a b✝ c d : Prop
p : ?m.29900
α : Sort v
β : α → Sort u
a₁ a₂ : α
b : (x : α) → β x
h : a₁ = a₂
⊢ HEq
(let x := a₁;
b x)
(let x := a₂;
b x)
[PROOFSTEP]
cases h
[GOAL]
case refl
a b✝ c d : Prop
p : ?m.29900
α : Sort v
β : α → Sort u
a₁ : α
b : (x : α) → β x
⊢ HEq
(let x := a₁;
b x)
(let x := a₁;
b x)
[PROOFSTEP]
rfl
[GOAL]
a✝ b c d : Prop
p : ?m.30034
α : Sort v
β : α → Sort u
a : α
b₁ b₂ : (x : α) → β x
h : ∀ (x : α), b₁ x = b₂ x
⊢ (let x := a;
b₁ x) =
let x := a;
b₂ x
[PROOFSTEP]
exact h _ ▸ rfl
[GOAL]
a b c d : Prop
p : ?m.30108
α : Sort v
β : Sort u
a₁ a₂ : α
b₁ b₂ : α → β
h₁ : a₁ = a₂
h₂ : ∀ (x : α), b₁ x = b₂ x
⊢ (let x := a₁;
b₁ x) =
let x := a₂;
b₂ x
[PROOFSTEP]
simp [h₁, h₂]
|
{"mathlib_filename": "Mathlib.Init.Logic", "llama_tokens": 1318}
|
[GOAL]
a b : ℕ
h : 0 < b
⊢ a + 0 < a + b
[PROOFSTEP]
apply Nat.add_lt_add_left
[GOAL]
case h
a b : ℕ
h : 0 < b
⊢ 0 < b
[PROOFSTEP]
assumption
[GOAL]
a : ℕ
this : 0 < a + 1
⊢ 0 < 1 + a
[PROOFSTEP]
simp [Nat.add_comm]
[GOAL]
a : ℕ
this : 0 < a + 1
⊢ 0 < a + 1
[PROOFSTEP]
assumption
|
{"mathlib_filename": "Mathlib.Init.Meta.WellFoundedTactics", "llama_tokens": 168}
|
{"mathlib_filename": "Mathlib.Init.Data.Int.DivMod", "llama_tokens": 0}
|
|
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed K
f : k →+* K
p : k[X]
h : Separable p
⊢ Splits f p
[PROOFSTEP]
convert IsSepClosed.splits_of_separable (p.map f) (Separable.map h)
[GOAL]
case a
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed K
f : k →+* K
p : k[X]
h : Separable p
⊢ Splits f p ↔ Splits (RingHom.id K) (map f p)
[PROOFSTEP]
simp [splits_map_iff]
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
⊢ ∃ z, z ^ n = x
[PROOFSTEP]
have hn' : 0 < n :=
Nat.pos_of_ne_zero <| fun h => by
rw [h, Nat.cast_zero] at hn
exact hn.out rfl
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
h : n = 0
⊢ False
[PROOFSTEP]
rw [h, Nat.cast_zero] at hn
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero 0
h : n = 0
⊢ False
[PROOFSTEP]
exact hn.out rfl
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
hn' : 0 < n
⊢ ∃ z, z ^ n = x
[PROOFSTEP]
have : degree (X ^ n - C x) ≠ 0 := by
rw [degree_X_pow_sub_C hn' x]
exact (WithBot.coe_lt_coe.2 hn').ne'
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
hn' : 0 < n
⊢ degree (X ^ n - ↑C x) ≠ 0
[PROOFSTEP]
rw [degree_X_pow_sub_C hn' x]
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
hn' : 0 < n
⊢ ↑n ≠ 0
[PROOFSTEP]
exact (WithBot.coe_lt_coe.2 hn').ne'
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
hn' : 0 < n
this : degree (X ^ n - ↑C x) ≠ 0
⊢ ∃ z, z ^ n = x
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
hn' : 0 < n
this : degree (X ^ n - ↑C x) ≠ 0
hx : x = 0
⊢ ∃ z, z ^ n = x
[PROOFSTEP]
exact ⟨0, by rw [hx, pow_eq_zero_iff hn']⟩
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
hn' : 0 < n
this : degree (X ^ n - ↑C x) ≠ 0
hx : x = 0
⊢ 0 ^ n = x
[PROOFSTEP]
rw [hx, pow_eq_zero_iff hn']
[GOAL]
case neg
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
hn' : 0 < n
this : degree (X ^ n - ↑C x) ≠ 0
hx : ¬x = 0
⊢ ∃ z, z ^ n = x
[PROOFSTEP]
obtain ⟨z, hz⟩ := exists_root _ this <| separable_X_pow_sub_C x hn.out hx
[GOAL]
case neg.intro
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
hn' : 0 < n
this : degree (X ^ n - ↑C x) ≠ 0
hx : ¬x = 0
z : k
hz : IsRoot (X ^ n - ↑C x) z
⊢ ∃ z, z ^ n = x
[PROOFSTEP]
use z
[GOAL]
case h
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
n : ℕ
hn : NeZero ↑n
hn' : 0 < n
this : degree (X ^ n - ↑C x) ≠ 0
hx : ¬x = 0
z : k
hz : IsRoot (X ^ n - ↑C x) z
⊢ z ^ n = x
[PROOFSTEP]
simpa [eval_C, eval_X, eval_pow, eval_sub, IsRoot.def, sub_eq_zero] using hz
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
x : k
h2 : NeZero 2
⊢ ∃ z, x = z * z
[PROOFSTEP]
rcases exists_pow_nat_eq x 2 with ⟨z, rfl⟩
[GOAL]
case intro
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
h2 : NeZero 2
z : k
⊢ ∃ z_1, z ^ 2 = z_1 * z_1
[PROOFSTEP]
exact ⟨z, sq z⟩
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
p : k[X]
hsep : Separable p
⊢ roots p = 0 ↔ p = ↑C (coeff p 0)
[PROOFSTEP]
refine' ⟨fun h => _, fun hp => by rw [hp, roots_C]⟩
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
p : k[X]
hsep : Separable p
hp : p = ↑C (coeff p 0)
⊢ roots p = 0
[PROOFSTEP]
rw [hp, roots_C]
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
p : k[X]
hsep : Separable p
h : roots p = 0
⊢ p = ↑C (coeff p 0)
[PROOFSTEP]
cases' le_or_lt (degree p) 0 with hd hd
[GOAL]
case inl
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
p : k[X]
hsep : Separable p
h : roots p = 0
hd : degree p ≤ 0
⊢ p = ↑C (coeff p 0)
[PROOFSTEP]
exact eq_C_of_degree_le_zero hd
[GOAL]
case inr
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
p : k[X]
hsep : Separable p
h : roots p = 0
hd : 0 < degree p
⊢ p = ↑C (coeff p 0)
[PROOFSTEP]
obtain ⟨z, hz⟩ := IsSepClosed.exists_root p hd.ne' hsep
[GOAL]
case inr.intro
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
p : k[X]
hsep : Separable p
h : roots p = 0
hd : 0 < degree p
z : k
hz : IsRoot p z
⊢ p = ↑C (coeff p 0)
[PROOFSTEP]
rw [← mem_roots (ne_zero_of_degree_gt hd), h] at hz
[GOAL]
case inr.intro
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed k
p : k[X]
hsep : Separable p
h : roots p = 0
hd : 0 < degree p
z : k
hz : z ∈ 0
⊢ p = ↑C (coeff p 0)
[PROOFSTEP]
simp at hz
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed K
f : k →+* K
p : k[X]
hp : degree p ≠ 0
hsep : Separable p
⊢ degree (map f p) ≠ 0
[PROOFSTEP]
rwa [degree_map_eq_of_injective f.injective]
[GOAL]
k : Type u
inst✝² : Field k
K : Type v
inst✝¹ : Field K
inst✝ : IsSepClosed K
f : k →+* K
p : k[X]
hp : degree p ≠ 0
hsep : Separable p
x : K
hx : IsRoot (map f p) x
⊢ eval₂ f x p = 0
[PROOFSTEP]
rwa [eval₂_eq_eval_map, ← IsRoot]
[GOAL]
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
⊢ IsSepClosed k
[PROOFSTEP]
refine ⟨fun p hsep ↦ Or.inr ?_⟩
[GOAL]
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
p : k[X]
hsep : Separable p
⊢ ∀ {g : k[X]}, Irreducible g → g ∣ map (RingHom.id k) p → degree g = 1
[PROOFSTEP]
intro q hq hdvd
[GOAL]
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
p : k[X]
hsep : Separable p
q : k[X]
hq : Irreducible q
hdvd : q ∣ map (RingHom.id k) p
⊢ degree q = 1
[PROOFSTEP]
simp only [map_id] at hdvd
[GOAL]
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
p : k[X]
hsep : Separable p
q : k[X]
hq : Irreducible q
hdvd : q ∣ p
⊢ degree q = 1
[PROOFSTEP]
have hlc : IsUnit (leadingCoeff q)⁻¹ := IsUnit.inv <| Ne.isUnit <| leadingCoeff_ne_zero.2 <| Irreducible.ne_zero hq
[GOAL]
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
p : k[X]
hsep : Separable p
q : k[X]
hq : Irreducible q
hdvd : q ∣ p
hlc : IsUnit (leadingCoeff q)⁻¹
⊢ degree q = 1
[PROOFSTEP]
have hsep' : Separable (q * C (leadingCoeff q)⁻¹) :=
Separable.mul (Separable.of_dvd hsep hdvd) ((separable_C _).2 hlc)
(by simpa only [← isCoprime_mul_unit_right_right (isUnit_C.2 hlc) q 1, one_mul] using isCoprime_one_right (x := q))
[GOAL]
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
p : k[X]
hsep : Separable p
q : k[X]
hq : Irreducible q
hdvd : q ∣ p
hlc : IsUnit (leadingCoeff q)⁻¹
⊢ IsCoprime q (↑C (leadingCoeff q)⁻¹)
[PROOFSTEP]
simpa only [← isCoprime_mul_unit_right_right (isUnit_C.2 hlc) q 1, one_mul] using isCoprime_one_right (x := q)
[GOAL]
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
p : k[X]
hsep : Separable p
q : k[X]
hq : Irreducible q
hdvd : q ∣ p
hlc : IsUnit (leadingCoeff q)⁻¹
hsep' : Separable (q * ↑C (leadingCoeff q)⁻¹)
⊢ degree q = 1
[PROOFSTEP]
have hirr' := hq
[GOAL]
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
p : k[X]
hsep : Separable p
q : k[X]
hq : Irreducible q
hdvd : q ∣ p
hlc : IsUnit (leadingCoeff q)⁻¹
hsep' : Separable (q * ↑C (leadingCoeff q)⁻¹)
hirr' : Irreducible q
⊢ degree q = 1
[PROOFSTEP]
rw [← irreducible_mul_isUnit (isUnit_C.2 hlc)] at hirr'
[GOAL]
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
p : k[X]
hsep : Separable p
q : k[X]
hq : Irreducible q
hdvd : q ∣ p
hlc : IsUnit (leadingCoeff q)⁻¹
hsep' : Separable (q * ↑C (leadingCoeff q)⁻¹)
hirr' : Irreducible (q * ↑C (leadingCoeff q)⁻¹)
⊢ degree q = 1
[PROOFSTEP]
obtain ⟨x, hx⟩ := H (q * C (leadingCoeff q)⁻¹) (monic_mul_leadingCoeff_inv hq.ne_zero) hirr' hsep'
[GOAL]
case intro
k : Type u
inst✝¹ : Field k
K : Type v
inst✝ : Field K
H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0
p : k[X]
hsep : Separable p
q : k[X]
hq : Irreducible q
hdvd : q ∣ p
hlc : IsUnit (leadingCoeff q)⁻¹
hsep' : Separable (q * ↑C (leadingCoeff q)⁻¹)
hirr' : Irreducible (q * ↑C (leadingCoeff q)⁻¹)
x : k
hx : eval x (q * ↑C (leadingCoeff q)⁻¹) = 0
⊢ degree q = 1
[PROOFSTEP]
exact degree_mul_leadingCoeff_inv q hq.ne_zero ▸ degree_eq_one_of_irreducible_of_root hirr' hx
[GOAL]
k : Type u
inst✝⁴ : Field k
K : Type v
inst✝³ : Field K
inst✝² : IsSepClosed k
inst✝¹ : Algebra k K
inst✝ : IsSeparable k K
⊢ Function.Surjective ↑(algebraMap k K)
[PROOFSTEP]
refine fun x => ⟨-(minpoly k x).coeff 0, ?_⟩
[GOAL]
k : Type u
inst✝⁴ : Field k
K : Type v
inst✝³ : Field K
inst✝² : IsSepClosed k
inst✝¹ : Algebra k K
inst✝ : IsSeparable k K
x : K
⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x
[PROOFSTEP]
have hq : (minpoly k x).leadingCoeff = 1 := minpoly.monic (IsSeparable.isIntegral k x)
[GOAL]
k : Type u
inst✝⁴ : Field k
K : Type v
inst✝³ : Field K
inst✝² : IsSepClosed k
inst✝¹ : Algebra k K
inst✝ : IsSeparable k K
x : K
hq : leadingCoeff (minpoly k x) = 1
⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x
[PROOFSTEP]
have hsep : (minpoly k x).Separable := IsSeparable.separable k x
[GOAL]
k : Type u
inst✝⁴ : Field k
K : Type v
inst✝³ : Field K
inst✝² : IsSepClosed k
inst✝¹ : Algebra k K
inst✝ : IsSeparable k K
x : K
hq : leadingCoeff (minpoly k x) = 1
hsep : Separable (minpoly k x)
⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x
[PROOFSTEP]
have h : (minpoly k x).degree = 1 :=
degree_eq_one_of_irreducible k (minpoly.irreducible (IsSeparable.isIntegral k x)) hsep
[GOAL]
k : Type u
inst✝⁴ : Field k
K : Type v
inst✝³ : Field K
inst✝² : IsSepClosed k
inst✝¹ : Algebra k K
inst✝ : IsSeparable k K
x : K
hq : leadingCoeff (minpoly k x) = 1
hsep : Separable (minpoly k x)
h : degree (minpoly k x) = 1
⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x
[PROOFSTEP]
have : aeval x (minpoly k x) = 0 := minpoly.aeval k x
[GOAL]
k : Type u
inst✝⁴ : Field k
K : Type v
inst✝³ : Field K
inst✝² : IsSepClosed k
inst✝¹ : Algebra k K
inst✝ : IsSeparable k K
x : K
hq : leadingCoeff (minpoly k x) = 1
hsep : Separable (minpoly k x)
h : degree (minpoly k x) = 1
this : ↑(aeval x) (minpoly k x) = 0
⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x
[PROOFSTEP]
rw [eq_X_add_C_of_degree_eq_one h, hq, C_1, one_mul, aeval_add, aeval_X, aeval_C, add_eq_zero_iff_eq_neg] at this
[GOAL]
k : Type u
inst✝⁴ : Field k
K : Type v
inst✝³ : Field K
inst✝² : IsSepClosed k
inst✝¹ : Algebra k K
inst✝ : IsSeparable k K
x : K
hq : leadingCoeff (minpoly k x) = 1
hsep : Separable (minpoly k x)
h : degree (minpoly k x) = 1
this : x = -↑(algebraMap k K) (coeff (minpoly k x) 0)
⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x
[PROOFSTEP]
exact (RingHom.map_neg (algebraMap k K) ((minpoly k x).coeff 0)).symm ▸ this.symm
[GOAL]
k : Type u
inst✝³ : Field k
K : Type v
inst✝² : Field K
inst✝¹ : Algebra k K
inst✝ : IsSepClosure k K
x : K
⊢ IsAlgebraic k x
[PROOFSTEP]
apply IsIntegral.isAlgebraic
[GOAL]
case a
k : Type u
inst✝³ : Field k
K : Type v
inst✝² : Field K
inst✝¹ : Algebra k K
inst✝ : IsSepClosure k K
x : K
⊢ IsIntegral k x
[PROOFSTEP]
exact IsSepClosure.separable.isIntegral' x
[GOAL]
k : Type u
inst✝³ : Field k
K : Type v
inst✝² : Field K
inst✝¹ : Algebra k K
inst✝ : IsSepClosure k K
x : K
⊢ Separable (minpoly k x)
[PROOFSTEP]
have : IsSeparable k K := IsSepClosure.separable
[GOAL]
k : Type u
inst✝³ : Field k
K : Type v
inst✝² : Field K
inst✝¹ : Algebra k K
inst✝ : IsSepClosure k K
x : K
this : IsSeparable k K
⊢ Separable (minpoly k x)
[PROOFSTEP]
exact IsSeparable.separable k x
|
{"mathlib_filename": "Mathlib.FieldTheory.IsSepClosed", "llama_tokens": 6437}
|
[GOAL]
n : ℕ
⊢ bodd (succ n) = !bodd n
[PROOFSTEP]
simp only [bodd, boddDiv2]
[GOAL]
n : ℕ
⊢ (match boddDiv2 n with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).fst =
!(boddDiv2 n).fst
[PROOFSTEP]
let ⟨b, m⟩ := boddDiv2 n
[GOAL]
n : ℕ
b : Bool
m : ℕ
⊢ (match (b, m) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).fst =
!(b, m).fst
[PROOFSTEP]
cases b
[GOAL]
case false
n m : ℕ
⊢ (match (false, m) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).fst =
!(false, m).fst
[PROOFSTEP]
rfl
[GOAL]
case true
n m : ℕ
⊢ (match (true, m) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).fst =
!(true, m).fst
[PROOFSTEP]
rfl
[GOAL]
m n : ℕ
⊢ bodd (m + n) = bxor (bodd m) (bodd n)
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
m : ℕ
⊢ bodd (m + zero) = bxor (bodd m) (bodd zero)
[PROOFSTEP]
simp
[GOAL]
case succ
m n : ℕ
IH : bodd (m + n) = bxor (bodd m) (bodd n)
⊢ bodd (m + succ n) = bxor (bodd m) (bodd (succ n))
[PROOFSTEP]
simp [add_succ, IH]
[GOAL]
case succ
m n : ℕ
IH : bodd (m + n) = bxor (bodd m) (bodd n)
⊢ (!bxor (bodd m) (bodd n)) = bxor (bodd m) !bodd n
[PROOFSTEP]
cases bodd m
[GOAL]
case succ.false
m n : ℕ
IH : bodd (m + n) = bxor (bodd m) (bodd n)
⊢ (!bxor false (bodd n)) = bxor false !bodd n
[PROOFSTEP]
cases bodd n
[GOAL]
case succ.true
m n : ℕ
IH : bodd (m + n) = bxor (bodd m) (bodd n)
⊢ (!bxor true (bodd n)) = bxor true !bodd n
[PROOFSTEP]
cases bodd n
[GOAL]
case succ.false.false
m n : ℕ
IH : bodd (m + n) = bxor (bodd m) (bodd n)
⊢ (!bxor false false) = bxor false !false
[PROOFSTEP]
rfl
[GOAL]
case succ.false.true
m n : ℕ
IH : bodd (m + n) = bxor (bodd m) (bodd n)
⊢ (!bxor false true) = bxor false !true
[PROOFSTEP]
rfl
[GOAL]
case succ.true.false
m n : ℕ
IH : bodd (m + n) = bxor (bodd m) (bodd n)
⊢ (!bxor true false) = bxor true !false
[PROOFSTEP]
rfl
[GOAL]
case succ.true.true
m n : ℕ
IH : bodd (m + n) = bxor (bodd m) (bodd n)
⊢ (!bxor true true) = bxor true !true
[PROOFSTEP]
rfl
[GOAL]
m n : ℕ
⊢ bodd (m * n) = (bodd m && bodd n)
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
m : ℕ
⊢ bodd (m * zero) = (bodd m && bodd zero)
[PROOFSTEP]
simp
[GOAL]
case succ
m n : ℕ
IH : bodd (m * n) = (bodd m && bodd n)
⊢ bodd (m * succ n) = (bodd m && bodd (succ n))
[PROOFSTEP]
simp [mul_succ, IH]
[GOAL]
case succ
m n : ℕ
IH : bodd (m * n) = (bodd m && bodd n)
⊢ bxor (bodd m && bodd n) (bodd m) = (bodd m && !bodd n)
[PROOFSTEP]
cases bodd m
[GOAL]
case succ.false
m n : ℕ
IH : bodd (m * n) = (bodd m && bodd n)
⊢ bxor (false && bodd n) false = (false && !bodd n)
[PROOFSTEP]
cases bodd n
[GOAL]
case succ.true
m n : ℕ
IH : bodd (m * n) = (bodd m && bodd n)
⊢ bxor (true && bodd n) true = (true && !bodd n)
[PROOFSTEP]
cases bodd n
[GOAL]
case succ.false.false
m n : ℕ
IH : bodd (m * n) = (bodd m && bodd n)
⊢ bxor (false && false) false = (false && !false)
[PROOFSTEP]
rfl
[GOAL]
case succ.false.true
m n : ℕ
IH : bodd (m * n) = (bodd m && bodd n)
⊢ bxor (false && true) false = (false && !true)
[PROOFSTEP]
rfl
[GOAL]
case succ.true.false
m n : ℕ
IH : bodd (m * n) = (bodd m && bodd n)
⊢ bxor (true && false) true = (true && !false)
[PROOFSTEP]
rfl
[GOAL]
case succ.true.true
m n : ℕ
IH : bodd (m * n) = (bodd m && bodd n)
⊢ bxor (true && true) true = (true && !true)
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ n % 2 = bif bodd n then 1 else 0
[PROOFSTEP]
have := congr_arg bodd (mod_add_div n 2)
[GOAL]
n : ℕ
this : bodd (n % 2 + 2 * (n / 2)) = bodd n
⊢ n % 2 = bif bodd n then 1 else 0
[PROOFSTEP]
simp [not] at this
[GOAL]
n : ℕ
this : bodd (n % 2) = bodd n
⊢ n % 2 = bif bodd n then 1 else 0
[PROOFSTEP]
have _ : ∀ b, and false b = false := by
intro b
cases b <;> rfl
[GOAL]
n : ℕ
this : bodd (n % 2) = bodd n
⊢ ∀ (b : Bool), (false && b) = false
[PROOFSTEP]
intro b
[GOAL]
n : ℕ
this : bodd (n % 2) = bodd n
b : Bool
⊢ (false && b) = false
[PROOFSTEP]
cases b
[GOAL]
case false
n : ℕ
this : bodd (n % 2) = bodd n
⊢ (false && false) = false
[PROOFSTEP]
rfl
[GOAL]
case true
n : ℕ
this : bodd (n % 2) = bodd n
⊢ (false && true) = false
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
this : bodd (n % 2) = bodd n
x✝ : ∀ (b : Bool), (false && b) = false
⊢ n % 2 = bif bodd n then 1 else 0
[PROOFSTEP]
have _ : ∀ b, bxor b false = b := by
intro b
cases b <;> rfl
[GOAL]
n : ℕ
this : bodd (n % 2) = bodd n
x✝ : ∀ (b : Bool), (false && b) = false
⊢ ∀ (b : Bool), bxor b false = b
[PROOFSTEP]
intro b
[GOAL]
n : ℕ
this : bodd (n % 2) = bodd n
x✝ : ∀ (b : Bool), (false && b) = false
b : Bool
⊢ bxor b false = b
[PROOFSTEP]
cases b
[GOAL]
case false
n : ℕ
this : bodd (n % 2) = bodd n
x✝ : ∀ (b : Bool), (false && b) = false
⊢ bxor false false = false
[PROOFSTEP]
rfl
[GOAL]
case true
n : ℕ
this : bodd (n % 2) = bodd n
x✝ : ∀ (b : Bool), (false && b) = false
⊢ bxor true false = true
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
this : bodd (n % 2) = bodd n
x✝¹ : ∀ (b : Bool), (false && b) = false
x✝ : ∀ (b : Bool), bxor b false = b
⊢ n % 2 = bif bodd n then 1 else 0
[PROOFSTEP]
rw [← this]
[GOAL]
n : ℕ
this : bodd (n % 2) = bodd n
x✝¹ : ∀ (b : Bool), (false && b) = false
x✝ : ∀ (b : Bool), bxor b false = b
⊢ n % 2 = bif bodd (n % 2) then 1 else 0
[PROOFSTEP]
cases' mod_two_eq_zero_or_one n with h h
[GOAL]
case inl
n : ℕ
this : bodd (n % 2) = bodd n
x✝¹ : ∀ (b : Bool), (false && b) = false
x✝ : ∀ (b : Bool), bxor b false = b
h : n % 2 = 0
⊢ n % 2 = bif bodd (n % 2) then 1 else 0
[PROOFSTEP]
rw [h]
[GOAL]
case inr
n : ℕ
this : bodd (n % 2) = bodd n
x✝¹ : ∀ (b : Bool), (false && b) = false
x✝ : ∀ (b : Bool), bxor b false = b
h : n % 2 = 1
⊢ n % 2 = bif bodd (n % 2) then 1 else 0
[PROOFSTEP]
rw [h]
[GOAL]
case inl
n : ℕ
this : bodd (n % 2) = bodd n
x✝¹ : ∀ (b : Bool), (false && b) = false
x✝ : ∀ (b : Bool), bxor b false = b
h : n % 2 = 0
⊢ 0 = bif bodd 0 then 1 else 0
[PROOFSTEP]
rfl
[GOAL]
case inr
n : ℕ
this : bodd (n % 2) = bodd n
x✝¹ : ∀ (b : Bool), (false && b) = false
x✝ : ∀ (b : Bool), bxor b false = b
h : n % 2 = 1
⊢ 1 = bif bodd 1 then 1 else 0
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
⊢ div2 (succ n) = bif bodd n then succ (div2 n) else div2 n
[PROOFSTEP]
simp only [bodd, boddDiv2, div2]
[GOAL]
n : ℕ
⊢ (match boddDiv2 n with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).snd =
bif (boddDiv2 n).fst then succ (boddDiv2 n).snd else (boddDiv2 n).snd
[PROOFSTEP]
cases' boddDiv2 n with fst snd
[GOAL]
case mk
n : ℕ
fst : Bool
snd : ℕ
⊢ (match (fst, snd) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).snd =
bif (fst, snd).fst then succ (fst, snd).snd else (fst, snd).snd
[PROOFSTEP]
cases fst
[GOAL]
case mk.false
n snd : ℕ
⊢ (match (false, snd) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).snd =
bif (false, snd).fst then succ (false, snd).snd else (false, snd).snd
case mk.true
n snd : ℕ
⊢ (match (true, snd) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).snd =
bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd
[PROOFSTEP]
case mk.false => simp
[GOAL]
n snd : ℕ
⊢ (match (false, snd) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).snd =
bif (false, snd).fst then succ (false, snd).snd else (false, snd).snd
[PROOFSTEP]
case mk.false => simp
[GOAL]
n snd : ℕ
⊢ (match (false, snd) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).snd =
bif (false, snd).fst then succ (false, snd).snd else (false, snd).snd
[PROOFSTEP]
simp
[GOAL]
case mk.true
n snd : ℕ
⊢ (match (true, snd) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).snd =
bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd
[PROOFSTEP]
case mk.true => simp
[GOAL]
n snd : ℕ
⊢ (match (true, snd) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).snd =
bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd
[PROOFSTEP]
case mk.true => simp
[GOAL]
n snd : ℕ
⊢ (match (true, snd) with
| (false, m) => (true, m)
| (true, m) => (false, succ m)).snd =
bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd
[PROOFSTEP]
simp
[GOAL]
n : ℕ
⊢ (bif bodd (succ n) then 1 else 0) + 2 * div2 (succ n) = succ n
[PROOFSTEP]
simp
[GOAL]
n : ℕ
⊢ (bif bodd n then 0 else 1) + (bif bodd n then succ (div2 n) else div2 n) * 2 = succ n
[PROOFSTEP]
refine' Eq.trans _ (congr_arg succ (bodd_add_div2 n))
[GOAL]
n : ℕ
⊢ (bif bodd n then 0 else 1) + (bif bodd n then succ (div2 n) else div2 n) * 2 =
succ ((bif bodd n then 1 else 0) + 2 * div2 n)
[PROOFSTEP]
cases bodd n
[GOAL]
case false
n : ℕ
⊢ (bif false then 0 else 1) + (bif false then succ (div2 n) else div2 n) * 2 =
succ ((bif false then 1 else 0) + 2 * div2 n)
[PROOFSTEP]
simp [cond, not]
[GOAL]
case true
n : ℕ
⊢ (bif true then 0 else 1) + (bif true then succ (div2 n) else div2 n) * 2 =
succ ((bif true then 1 else 0) + 2 * div2 n)
[PROOFSTEP]
simp [cond, not]
[GOAL]
case false
n : ℕ
⊢ 1 + div2 n * 2 = succ (div2 n * 2)
[PROOFSTEP]
rw [Nat.add_comm, Nat.add_succ]
[GOAL]
case true
n : ℕ
⊢ succ (div2 n) * 2 = succ (1 + div2 n * 2)
[PROOFSTEP]
rw [succ_mul, Nat.add_comm 1, Nat.add_succ]
[GOAL]
n : ℕ
⊢ div2 n = n / 2
[PROOFSTEP]
refine' Nat.eq_of_mul_eq_mul_left (by decide) (Nat.add_left_cancel (Eq.trans _ (Nat.mod_add_div n 2).symm))
[GOAL]
n : ℕ
⊢ 0 < 2
[PROOFSTEP]
decide
[GOAL]
n : ℕ
⊢ n % 2 + 2 * div2 n = n
[PROOFSTEP]
rw [mod_two_of_bodd, bodd_add_div2]
[GOAL]
n : ℕ
⊢ n + n = 0 + n + n
[PROOFSTEP]
rw [Nat.zero_add]
[GOAL]
b : Bool
n : ℕ
⊢ bit b n = 2 * n + bif b then 1 else 0
[PROOFSTEP]
cases b
[GOAL]
case false
n : ℕ
⊢ bit false n = 2 * n + bif false then 1 else 0
case true n : ℕ ⊢ bit true n = 2 * n + bif true then 1 else 0
[PROOFSTEP]
apply bit0_val
[GOAL]
case true
n : ℕ
⊢ bit true n = 2 * n + bif true then 1 else 0
[PROOFSTEP]
apply bit1_val
[GOAL]
⊢ ∀ (n : ℕ), shiftr 0 n = 0
[PROOFSTEP]
intro n
[GOAL]
n : ℕ
⊢ shiftr 0 n = 0
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
⊢ shiftr 0 zero = 0
case succ n : ℕ IH : shiftr 0 n = 0 ⊢ shiftr 0 (succ n) = 0
[PROOFSTEP]
case zero => rw [shiftr]
[GOAL]
⊢ shiftr 0 zero = 0
[PROOFSTEP]
case zero => rw [shiftr]
[GOAL]
⊢ shiftr 0 zero = 0
[PROOFSTEP]
rw [shiftr]
[GOAL]
case succ
n : ℕ
IH : shiftr 0 n = 0
⊢ shiftr 0 (succ n) = 0
[PROOFSTEP]
case succ =>
rw [shiftr, div2, IH]
rfl
[GOAL]
n : ℕ
IH : shiftr 0 n = 0
⊢ shiftr 0 (succ n) = 0
[PROOFSTEP]
case succ =>
rw [shiftr, div2, IH]
rfl
[GOAL]
n : ℕ
IH : shiftr 0 n = 0
⊢ shiftr 0 (succ n) = 0
[PROOFSTEP]
rw [shiftr, div2, IH]
[GOAL]
n : ℕ
IH : shiftr 0 n = 0
⊢ (boddDiv2 0).snd = 0
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
h : n ≠ 0
⊢ div2 n < n
[PROOFSTEP]
rw [div2_val]
[GOAL]
n : ℕ
h : n ≠ 0
⊢ n / 2 < n
[PROOFSTEP]
apply (div_lt_iff_lt_mul <| succ_pos 1).2
[GOAL]
n : ℕ
h : n ≠ 0
⊢ n < n * succ 1
[PROOFSTEP]
have := Nat.mul_lt_mul_of_pos_left (lt_succ_self 1) (lt_of_le_of_ne n.zero_le h.symm)
[GOAL]
n : ℕ
h : n ≠ 0
this : n * 1 < n * succ 1
⊢ n < n * succ 1
[PROOFSTEP]
rwa [Nat.mul_one] at this
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
n : ℕ
n0 : n = 0
⊢ C n
[PROOFSTEP]
simp [n0]
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
n : ℕ
n0 : n = 0
⊢ C 0
[PROOFSTEP]
exact z
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
n : ℕ
n0 : ¬n = 0
⊢ C n
[PROOFSTEP]
let n' := div2 n
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
n : ℕ
n0 : ¬n = 0
n' : ℕ := div2 n
⊢ C n
[PROOFSTEP]
have _x : bit (bodd n) n' = n := by apply bit_decomp n
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
n : ℕ
n0 : ¬n = 0
n' : ℕ := div2 n
⊢ bit (bodd n) n' = n
[PROOFSTEP]
apply bit_decomp n
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
n : ℕ
n0 : ¬n = 0
n' : ℕ := div2 n
_x : bit (bodd n) n' = n
⊢ C n
[PROOFSTEP]
rw [← _x]
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
n : ℕ
n0 : ¬n = 0
n' : ℕ := div2 n
_x : bit (bodd n) n' = n
⊢ C (bit (bodd n) n')
[PROOFSTEP]
exact f (bodd n) n' (binaryRec z f n')
[GOAL]
n : ℕ
n0 : ¬n = 0
n' : ℕ := div2 n
_x : bit (bodd n) n' = n
⊢ (invImage (fun a => sizeOf a) instWellFoundedRelation).1 n' n
[PROOFSTEP]
exact binaryRec_decreasing n0
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
⊢ binaryRec z f 0 = z
[PROOFSTEP]
rw [binaryRec]
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
⊢ (if n0 : 0 = 0 then Eq.mpr (_ : C 0 = C 0) z
else
let n' := div2 0;
let_fun _x := (_ : bit (bodd 0) (div2 0) = 0);
Eq.mpr (_ : C 0 = C (bit (bodd 0) n')) (f (bodd 0) n' (binaryRec z f n'))) =
z
[PROOFSTEP]
rfl
[GOAL]
b : Bool
n : ℕ
⊢ bodd (bit b n) = b
[PROOFSTEP]
rw [bit_val]
[GOAL]
b : Bool
n : ℕ
⊢ bodd (2 * n + bif b then 1 else 0) = b
[PROOFSTEP]
simp
[GOAL]
b : Bool
n : ℕ
⊢ bodd (bif b then 1 else 0) = b
[PROOFSTEP]
cases b
[GOAL]
case false
n : ℕ
⊢ bodd (bif false then 1 else 0) = false
[PROOFSTEP]
cases bodd n
[GOAL]
case true
n : ℕ
⊢ bodd (bif true then 1 else 0) = true
[PROOFSTEP]
cases bodd n
[GOAL]
case false.false
n : ℕ
⊢ bodd (bif false then 1 else 0) = false
[PROOFSTEP]
rfl
[GOAL]
case false.true
n : ℕ
⊢ bodd (bif false then 1 else 0) = false
[PROOFSTEP]
rfl
[GOAL]
case true.false
n : ℕ
⊢ bodd (bif true then 1 else 0) = true
[PROOFSTEP]
rfl
[GOAL]
case true.true
n : ℕ
⊢ bodd (bif true then 1 else 0) = true
[PROOFSTEP]
rfl
[GOAL]
b : Bool
n : ℕ
⊢ div2 (bit b n) = n
[PROOFSTEP]
rw [bit_val, div2_val, Nat.add_comm, add_mul_div_left, div_eq_of_lt, Nat.zero_add]
[GOAL]
b : Bool
n : ℕ
⊢ (bif b then 1 else 0) < 2
[PROOFSTEP]
cases b
[GOAL]
case H
b : Bool
n : ℕ
⊢ 0 < 2
[PROOFSTEP]
cases b
[GOAL]
case false
n : ℕ
⊢ (bif false then 1 else 0) < 2
[PROOFSTEP]
exact by decide
[GOAL]
n : ℕ
⊢ (bif false then 1 else 0) < 2
[PROOFSTEP]
decide
[GOAL]
case true
n : ℕ
⊢ (bif true then 1 else 0) < 2
[PROOFSTEP]
exact by decide
[GOAL]
n : ℕ
⊢ (bif true then 1 else 0) < 2
[PROOFSTEP]
decide
[GOAL]
case H.false
n : ℕ
⊢ 0 < 2
[PROOFSTEP]
exact by decide
[GOAL]
n : ℕ
⊢ 0 < 2
[PROOFSTEP]
decide
[GOAL]
case H.true
n : ℕ
⊢ 0 < 2
[PROOFSTEP]
exact by decide
[GOAL]
n : ℕ
⊢ 0 < 2
[PROOFSTEP]
decide
[GOAL]
b : Bool
m n k : ℕ
h : k + 1 ≤ n + 1
⊢ shiftl' b m (n + 1 - (k + 1)) = shiftr (shiftl' b m (n + 1)) (k + 1)
[PROOFSTEP]
simp [shiftl']
[GOAL]
b : Bool
m n k : ℕ
h : k + 1 ≤ n + 1
⊢ shiftl' b m (n - k) = shiftr (bit b (shiftl' b m n)) (k + 1)
[PROOFSTEP]
rw [Nat.add_comm, shiftr_add]
[GOAL]
b : Bool
m n k : ℕ
h : k + 1 ≤ n + 1
⊢ shiftl' b m (n - k) = shiftr (shiftr (bit b (shiftl' b m n)) 1) k
[PROOFSTEP]
simp [shiftr, div2_bit]
[GOAL]
b : Bool
m n k : ℕ
h : k + 1 ≤ n + 1
⊢ shiftl' b m (n - k) = shiftr (shiftl' b m n) k
[PROOFSTEP]
simp [shiftl'_sub, (Nat.le_of_succ_le_succ h)]
[GOAL]
m : ℕ
b : Bool
n : ℕ
⊢ testBit (bit b n) (succ m) = testBit n m
[PROOFSTEP]
have : bodd (shiftr (shiftr (bit b n) 1) m) = bodd (shiftr n m) :=
by
dsimp [shiftr]
rw [div2_bit]
[GOAL]
m : ℕ
b : Bool
n : ℕ
⊢ bodd (shiftr (shiftr (bit b n) 1) m) = bodd (shiftr n m)
[PROOFSTEP]
dsimp [shiftr]
[GOAL]
m : ℕ
b : Bool
n : ℕ
⊢ bodd (shiftr (div2 (bit b n)) m) = bodd (shiftr n m)
[PROOFSTEP]
rw [div2_bit]
[GOAL]
m : ℕ
b : Bool
n : ℕ
this : bodd (shiftr (shiftr (bit b n) 1) m) = bodd (shiftr n m)
⊢ testBit (bit b n) (succ m) = testBit n m
[PROOFSTEP]
rw [← shiftr_add, Nat.add_comm] at this
[GOAL]
m : ℕ
b : Bool
n : ℕ
this : bodd (shiftr (bit b n) (m + 1)) = bodd (shiftr n m)
⊢ testBit (bit b n) (succ m) = testBit n m
[PROOFSTEP]
exact this
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h : f false 0 z = z
b : Bool
n : ℕ
⊢ binaryRec z f (bit b n) = f b n (binaryRec z f n)
[PROOFSTEP]
rw [binaryRec]
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h : f false 0 z = z
b : Bool
n : ℕ
⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z
else
let n' := div2 (bit b n);
let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n);
Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) =
f b n (binaryRec z f n)
[PROOFSTEP]
by_cases h :
bit b n =
0
-- Note: this renames the original `h : f false 0 z = z` to `h'` and leaves `h : bit b n = 0`
[GOAL]
case pos
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h✝ : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z
else
let n' := div2 (bit b n);
let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n);
Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) =
f b n (binaryRec z f n)
case neg
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h✝ : f false 0 z = z
b : Bool
n : ℕ
h : ¬bit b n = 0
⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z
else
let n' := div2 (bit b n);
let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n);
Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) =
f b n (binaryRec z f n)
[PROOFSTEP]
case pos h' =>
simp [dif_pos h]
generalize binaryRec z f (bit b n) = e
revert e
have bf := bodd_bit b n
have n0 := div2_bit b n
rw [h] at bf n0
simp at bf n0
subst bf n0
rw [binaryRec_zero]
intros
rw [h']
rfl
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z
else
let n' := div2 (bit b n);
let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n);
Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) =
f b n (binaryRec z f n)
[PROOFSTEP]
case pos h' =>
simp [dif_pos h]
generalize binaryRec z f (bit b n) = e
revert e
have bf := bodd_bit b n
have n0 := div2_bit b n
rw [h] at bf n0
simp at bf n0
subst bf n0
rw [binaryRec_zero]
intros
rw [h']
rfl
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z
else
let n' := div2 (bit b n);
let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n);
Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) =
f b n (binaryRec z f n)
[PROOFSTEP]
simp [dif_pos h]
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
⊢ Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n)
[PROOFSTEP]
generalize binaryRec z f (bit b n) = e
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
e : C (bit b n)
⊢ Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n)
[PROOFSTEP]
revert e
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n)
[PROOFSTEP]
have bf := bodd_bit b n
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
bf : bodd (bit b n) = b
⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n)
[PROOFSTEP]
have n0 := div2_bit b n
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
bf : bodd (bit b n) = b
n0 : div2 (bit b n) = n
⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n)
[PROOFSTEP]
rw [h] at bf n0
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
bf : bodd 0 = b
n0 : div2 0 = n
⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n)
[PROOFSTEP]
simp at bf n0
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : bit b n = 0
bf : false = b
n0 : 0 = n
⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n)
[PROOFSTEP]
subst bf n0
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
h : bit false 0 = 0
⊢ C (bit false 0) → Eq.mpr (_ : C (bit false 0) = C 0) z = f false 0 (binaryRec z f 0)
[PROOFSTEP]
rw [binaryRec_zero]
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
h : bit false 0 = 0
⊢ C (bit false 0) → Eq.mpr (_ : C (bit false 0) = C 0) z = f false 0 z
[PROOFSTEP]
intros
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
h : bit false 0 = 0
e✝ : C (bit false 0)
⊢ Eq.mpr (_ : C (bit false 0) = C 0) z = f false 0 z
[PROOFSTEP]
rw [h']
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
h : bit false 0 = 0
e✝ : C (bit false 0)
⊢ Eq.mpr (_ : C (bit false 0) = C 0) z = z
[PROOFSTEP]
rfl
[GOAL]
case neg
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h✝ : f false 0 z = z
b : Bool
n : ℕ
h : ¬bit b n = 0
⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z
else
let n' := div2 (bit b n);
let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n);
Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) =
f b n (binaryRec z f n)
[PROOFSTEP]
case neg h' =>
simp [dif_neg h]
generalize
@id (C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n))))
(Eq.symm (bit_decomp (bit b n)) ▸ Eq.refl (C (bit b n))) =
e
revert e
rw [bodd_bit, div2_bit]
intros; rfl
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : ¬bit b n = 0
⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z
else
let n' := div2 (bit b n);
let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n);
Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) =
f b n (binaryRec z f n)
[PROOFSTEP]
case neg h' =>
simp [dif_neg h]
generalize
@id (C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n))))
(Eq.symm (bit_decomp (bit b n)) ▸ Eq.refl (C (bit b n))) =
e
revert e
rw [bodd_bit, div2_bit]
intros; rfl
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : ¬bit b n = 0
⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z
else
let n' := div2 (bit b n);
let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n);
Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) =
f b n (binaryRec z f n)
[PROOFSTEP]
simp [dif_neg h]
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : ¬bit b n = 0
⊢ Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n))))
(f (bodd (bit b n)) (div2 (bit b n)) (binaryRec z f (div2 (bit b n)))) =
f b n (binaryRec z f n)
[PROOFSTEP]
generalize
@id (C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n))))
(Eq.symm (bit_decomp (bit b n)) ▸ Eq.refl (C (bit b n))) =
e
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : ¬bit b n = 0
e : C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n)))
⊢ Eq.mpr e (f (bodd (bit b n)) (div2 (bit b n)) (binaryRec z f (div2 (bit b n)))) = f b n (binaryRec z f n)
[PROOFSTEP]
revert e
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : ¬bit b n = 0
⊢ ∀ (e : C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n)))),
Eq.mpr e (f (bodd (bit b n)) (div2 (bit b n)) (binaryRec z f (div2 (bit b n)))) = f b n (binaryRec z f n)
[PROOFSTEP]
rw [bodd_bit, div2_bit]
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : ¬bit b n = 0
⊢ ∀ (e : C (bit b n) = C (bit b n)), Eq.mpr e (f b n (binaryRec z f n)) = f b n (binaryRec z f n)
[PROOFSTEP]
intros
[GOAL]
C : ℕ → Sort u
z : C 0
f : (b : Bool) → (n : ℕ) → C n → C (bit b n)
h' : f false 0 z = z
b : Bool
n : ℕ
h : ¬bit b n = 0
e✝ : C (bit b n) = C (bit b n)
⊢ Eq.mpr e✝ (f b n (binaryRec z f n)) = f b n (binaryRec z f n)
[PROOFSTEP]
rfl
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
⊢ (binaryRec (bif f true false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) =
fun n => bif f false true then n else 0
[PROOFSTEP]
funext n
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
n : ℕ
⊢ binaryRec (bif f true false then bit false 0 else 0) (fun b n x => bit (f false b) (bif f false true then n else 0))
n =
bif f false true then n else 0
[PROOFSTEP]
apply bitCasesOn n
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
n : ℕ
⊢ ∀ (b : Bool) (n : ℕ),
binaryRec (bif f true false then bit false 0 else 0) (fun b n x => bit (f false b) (bif f false true then n else 0))
(bit b n) =
bif f false true then bit b n else 0
[PROOFSTEP]
intro b n
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ binaryRec (bif f true false then bit false 0 else 0) (fun b n x => bit (f false b) (bif f false true then n else 0))
(bit b n) =
bif f false true then bit b n else 0
[PROOFSTEP]
rw [binaryRec_eq]
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ bit (f false b) (bif f false true then n else 0) = bif f false true then bit b n else 0
[PROOFSTEP]
cases b
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit (f false false) (bif f false true then n else 0) = bif f false true then bit false n else 0
[PROOFSTEP]
try rw [h] <;> induction' fft : f false true <;> simp [cond]
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit (f false false) (bif f false true then n else 0) = bif f false true then bit false n else 0
[PROOFSTEP]
rw [h]
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit false (bif f false true then n else 0) = bif f false true then bit false n else 0
[PROOFSTEP]
induction' fft : f false true
[GOAL]
case h.false.false
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
x✝ : Bool
fft✝ : f false true = x✝
fft : f false true = false
⊢ bit false (bif false then n else 0) = bif false then bit false n else 0
[PROOFSTEP]
simp [cond]
[GOAL]
case h.false.true
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
x✝ : Bool
fft✝ : f false true = x✝
fft : f false true = true
⊢ bit false (bif true then n else 0) = bif true then bit false n else 0
[PROOFSTEP]
simp [cond]
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit (f false true) (bif f false true then n else 0) = bif f false true then bit true n else 0
[PROOFSTEP]
try rw [h] <;> induction' fft : f false true <;> simp [cond]
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit (f false true) (bif f false true then n else 0) = bif f false true then bit true n else 0
[PROOFSTEP]
rw [h]
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit (f false true) (bif f false true then n else 0) = bif f false true then bit true n else 0
[PROOFSTEP]
cases f false true
[GOAL]
case h.true.false
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit false (bif false then n else 0) = bif false then bit true n else 0
case h.true.true
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit true (bif true then n else 0) = bif true then bit true n else 0
[PROOFSTEP]
case h.true.false => simp
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit false (bif false then n else 0) = bif false then bit true n else 0
[PROOFSTEP]
case h.true.false => simp
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit false (bif false then n else 0) = bif false then bit true n else 0
[PROOFSTEP]
simp
[GOAL]
case h.true.true
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit true (bif true then n else 0) = bif true then bit true n else 0
[PROOFSTEP]
case h.true.true => simp
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit true (bif true then n else 0) = bif true then bit true n else 0
[PROOFSTEP]
case h.true.true => simp
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
n✝ n : ℕ
⊢ bit true (bif true then n else 0) = bif true then bit true n else 0
[PROOFSTEP]
simp
[GOAL]
case h.h
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ bit (f false false) (bif f false true then 0 else 0) = bif f true false then bit false 0 else 0
[PROOFSTEP]
rw [h, show cond (f false true) 0 0 = 0 by cases f false true <;> rfl,
show cond (f true false) (bit false 0) 0 = 0 by cases f true false <;> rfl]
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ (bif f false true then 0 else 0) = 0
[PROOFSTEP]
cases f false true
[GOAL]
case false
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ (bif false then 0 else 0) = 0
[PROOFSTEP]
rfl
[GOAL]
case true
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ (bif true then 0 else 0) = 0
[PROOFSTEP]
rfl
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ (bif f true false then bit false 0 else 0) = 0
[PROOFSTEP]
cases f true false
[GOAL]
case false
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ (bif false then bit false 0 else 0) = 0
[PROOFSTEP]
rfl
[GOAL]
case true
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ (bif true then bit false 0 else 0) = 0
[PROOFSTEP]
rfl
[GOAL]
case h.h
f : Bool → Bool → Bool
h : f false false = false
n✝ : ℕ
b : Bool
n : ℕ
⊢ bit false 0 = 0
[PROOFSTEP]
rfl
[GOAL]
f : Bool → Bool → Bool
n : ℕ
⊢ bitwise' f 0 n = bif f false true then n else 0
[PROOFSTEP]
unfold bitwise'
[GOAL]
f : Bool → Bool → Bool
n : ℕ
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) 0 n =
bif f false true then n else 0
[PROOFSTEP]
rw [binaryRec_zero]
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
⊢ bitwise' f m 0 = bif f true false then m else 0
[PROOFSTEP]
unfold bitwise'
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
bif f true false then m else 0
[PROOFSTEP]
apply bitCasesOn m
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
⊢ ∀ (b : Bool) (n : ℕ),
binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit b n) 0 =
bif f true false then bit b n else 0
[PROOFSTEP]
intros
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
b✝ : Bool
n✝ : ℕ
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit b✝ n✝) 0 =
bif f true false then bit b✝ n✝ else 0
[PROOFSTEP]
rw [binaryRec_eq, binaryRec_zero]
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
b✝ : Bool
n✝ : ℕ
⊢ (binaryRec (bif f true false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) =
fun n => bif f false true then n else 0
[PROOFSTEP]
exact bitwise'_bit_aux h
[GOAL]
f : Bool → Bool → Bool
⊢ bitwise' f 0 0 = 0
[PROOFSTEP]
rw [bitwise'_zero_left]
[GOAL]
f : Bool → Bool → Bool
⊢ (bif f false true then 0 else 0) = 0
[PROOFSTEP]
cases f false true
[GOAL]
case false
f : Bool → Bool → Bool
⊢ (bif false then 0 else 0) = 0
[PROOFSTEP]
rfl
[GOAL]
case true
f : Bool → Bool → Bool
⊢ (bif true then 0 else 0) = 0
[PROOFSTEP]
rfl
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
⊢ bitwise' f (bit a m) (bit b n) = bit (f a b) (bitwise' f m n)
[PROOFSTEP]
unfold bitwise'
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit a m)
(bit b n) =
bit (f a b)
(binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m n)
[PROOFSTEP]
rw [binaryRec_eq, binaryRec_eq]
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
⊢ bit (f a false)
(binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =
bif f true false then bit a m else 0
[PROOFSTEP]
induction' ftf : f true false
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ bit (f a false)
(binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =
bif false then bit a m else 0
case h.true
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ bit (f a false)
(binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =
bif true then bit a m else 0
[PROOFSTEP]
rw [show f a false = false by cases a <;> assumption]
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ f a false = false
[PROOFSTEP]
cases a
[GOAL]
case false
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ f false false = false
[PROOFSTEP]
assumption
[GOAL]
case true
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ f true false = false
[PROOFSTEP]
assumption
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ bit false
(binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =
bif false then bit a m else 0
case h.true
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ bit (f a false)
(binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =
bif true then bit a m else 0
[PROOFSTEP]
apply @congr_arg _ _ _ 0 (bit false)
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
0
case h.true
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ bit (f a false)
(binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =
bif true then bit a m else 0
[PROOFSTEP]
swap
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ bit (f a false)
(binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =
bif true then bit a m else 0
case h.false
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
0
[PROOFSTEP]
rw [show f a false = a by cases a <;> assumption]
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ f a false = a
[PROOFSTEP]
cases a
[GOAL]
case false
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ f false false = false
[PROOFSTEP]
assumption
[GOAL]
case true
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ f true false = true
[PROOFSTEP]
assumption
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ bit a
(binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) =
bif true then bit a m else 0
case h.false
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
0
[PROOFSTEP]
apply congr_arg (bit a)
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
m
case h.false
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
0
[PROOFSTEP]
all_goals {
apply bitCasesOn m
intro a m
rw [binaryRec_eq, binaryRec_zero]
· rfl
· rw [← bitwise'_bit_aux h, ftf]
}
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
m
[PROOFSTEP]
{ apply bitCasesOn m
intro a m
rw [binaryRec_eq, binaryRec_zero]
· rfl
· rw [← bitwise'_bit_aux h, ftf]
}
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
m
[PROOFSTEP]
apply bitCasesOn m
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
⊢ ∀ (b : Bool) (n : ℕ),
binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit b n) 0 =
bit b n
[PROOFSTEP]
intro a m
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
a✝ : Bool
m✝ : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
a : Bool
m : ℕ
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit a m) 0 =
bit a m
[PROOFSTEP]
rw [binaryRec_eq, binaryRec_zero]
[GOAL]
case h.true
f : Bool → Bool → Bool
h : f false false = false
a✝ : Bool
m✝ : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
a : Bool
m : ℕ
⊢ (bif true then bit a m else 0) = bit a m
[PROOFSTEP]
rfl
[GOAL]
case h.true.h
f : Bool → Bool → Bool
h : f false false = false
a✝ : Bool
m✝ : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = true
a : Bool
m : ℕ
⊢ (binaryRec (bif true then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) =
fun n => bif f false true then n else 0
[PROOFSTEP]
rw [← bitwise'_bit_aux h, ftf]
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
0
[PROOFSTEP]
{ apply bitCasesOn m
intro a m
rw [binaryRec_eq, binaryRec_zero]
· rfl
· rw [← bitwise'_bit_aux h, ftf]
}
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 =
0
[PROOFSTEP]
apply bitCasesOn m
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
⊢ ∀ (b : Bool) (n : ℕ),
binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit b n) 0 =
0
[PROOFSTEP]
intro a m
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
a✝ : Bool
m✝ : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
a : Bool
m : ℕ
⊢ binaryRec (fun n => bif f false true then n else 0)
(fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit a m) 0 =
0
[PROOFSTEP]
rw [binaryRec_eq, binaryRec_zero]
[GOAL]
case h.false
f : Bool → Bool → Bool
h : f false false = false
a✝ : Bool
m✝ : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
a : Bool
m : ℕ
⊢ (bif false then bit a m else 0) = 0
[PROOFSTEP]
rfl
[GOAL]
case h.false.h
f : Bool → Bool → Bool
h : f false false = false
a✝ : Bool
m✝ : ℕ
b : Bool
n : ℕ
x✝ : Bool
ftf✝ : f true false = x✝
ftf : f true false = false
a : Bool
m : ℕ
⊢ (binaryRec (bif false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) =
fun n => bif f false true then n else 0
[PROOFSTEP]
rw [← bitwise'_bit_aux h, ftf]
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
a : Bool
m : ℕ
b : Bool
n : ℕ
⊢ (binaryRec (bif f true false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) =
fun n => bif f false true then n else 0
[PROOFSTEP]
exact bitwise'_bit_aux h
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
⊢ bitwise' (Function.swap f) = Function.swap (bitwise' f)
[PROOFSTEP]
funext m n
[GOAL]
case h.h
f : Bool → Bool → Bool
h : f false false = false
m n : ℕ
⊢ bitwise' (Function.swap f) m n = Function.swap (bitwise' f) m n
[PROOFSTEP]
revert n
[GOAL]
case h.h
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
⊢ ∀ (n : ℕ), bitwise' (Function.swap f) m n = Function.swap (bitwise' f) m n
[PROOFSTEP]
dsimp [Function.swap]
[GOAL]
case h.h
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
⊢ ∀ (n : ℕ), bitwise' (fun y x => f x y) m n = bitwise' f n m
[PROOFSTEP]
apply binaryRec _ _ m
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
⊢ ∀ (n : ℕ), bitwise' (fun y x => f x y) 0 n = bitwise' f n 0
[PROOFSTEP]
intro n
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
⊢ ∀ (b : Bool) (n : ℕ),
(∀ (n_1 : ℕ), bitwise' (fun y x => f x y) n n_1 = bitwise' f n_1 n) →
∀ (n_1 : ℕ), bitwise' (fun y x => f x y) (bit b n) n_1 = bitwise' f n_1 (bit b n)
[PROOFSTEP]
intro n
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m n : ℕ
⊢ bitwise' (fun y x => f x y) 0 n = bitwise' f n 0
[PROOFSTEP]
rw [bitwise'_zero_left, bitwise'_zero_right]
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
m n : ℕ
⊢ f false false = false
[PROOFSTEP]
exact h
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
n : Bool
⊢ ∀ (n_1 : ℕ),
(∀ (n : ℕ), bitwise' (fun y x => f x y) n_1 n = bitwise' f n n_1) →
∀ (n_2 : ℕ), bitwise' (fun y x => f x y) (bit n n_1) n_2 = bitwise' f n_2 (bit n n_1)
[PROOFSTEP]
intros a ih m'
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
n : Bool
a : ℕ
ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a
m' : ℕ
⊢ bitwise' (fun y x => f x y) (bit n a) m' = bitwise' f m' (bit n a)
[PROOFSTEP]
apply bitCasesOn m'
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
n : Bool
a : ℕ
ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a
m' : ℕ
⊢ ∀ (b : Bool) (n_1 : ℕ), bitwise' (fun y x => f x y) (bit n a) (bit b n_1) = bitwise' f (bit b n_1) (bit n a)
[PROOFSTEP]
intro b n'
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
n : Bool
a : ℕ
ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a
m' : ℕ
b : Bool
n' : ℕ
⊢ bitwise' (fun y x => f x y) (bit n a) (bit b n') = bitwise' f (bit b n') (bit n a)
[PROOFSTEP]
rw [bitwise'_bit, bitwise'_bit, ih]
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
n : Bool
a : ℕ
ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a
m' : ℕ
b : Bool
n' : ℕ
⊢ f false false = false
[PROOFSTEP]
exact h
[GOAL]
case h
f : Bool → Bool → Bool
h : f false false = false
m : ℕ
n : Bool
a : ℕ
ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a
m' : ℕ
b : Bool
n' : ℕ
⊢ f false false = false
[PROOFSTEP]
exact h
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
m n k : ℕ
⊢ testBit (bitwise' f m n) k = f (testBit m k) (testBit n k)
[PROOFSTEP]
revert m n
[GOAL]
f : Bool → Bool → Bool
h : f false false = false
k : ℕ
⊢ ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k)
[PROOFSTEP]
induction' k with k IH
[GOAL]
case zero
f : Bool → Bool → Bool
h : f false false = false
⊢ ∀ (m n : ℕ), testBit (bitwise' f m n) zero = f (testBit m zero) (testBit n zero)
[PROOFSTEP]
intros m n
[GOAL]
case succ
f : Bool → Bool → Bool
h : f false false = false
k : ℕ
IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k)
⊢ ∀ (m n : ℕ), testBit (bitwise' f m n) (succ k) = f (testBit m (succ k)) (testBit n (succ k))
[PROOFSTEP]
intros m n
[GOAL]
case zero
f : Bool → Bool → Bool
h : f false false = false
m n : ℕ
⊢ testBit (bitwise' f m n) zero = f (testBit m zero) (testBit n zero)
[PROOFSTEP]
apply bitCasesOn m
[GOAL]
case succ
f : Bool → Bool → Bool
h : f false false = false
k : ℕ
IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k)
m n : ℕ
⊢ testBit (bitwise' f m n) (succ k) = f (testBit m (succ k)) (testBit n (succ k))
[PROOFSTEP]
apply bitCasesOn m
[GOAL]
case zero
f : Bool → Bool → Bool
h : f false false = false
m n : ℕ
⊢ ∀ (b : Bool) (n_1 : ℕ), testBit (bitwise' f (bit b n_1) n) zero = f (testBit (bit b n_1) zero) (testBit n zero)
[PROOFSTEP]
intros a m'
[GOAL]
case succ
f : Bool → Bool → Bool
h : f false false = false
k : ℕ
IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k)
m n : ℕ
⊢ ∀ (b : Bool) (n_1 : ℕ),
testBit (bitwise' f (bit b n_1) n) (succ k) = f (testBit (bit b n_1) (succ k)) (testBit n (succ k))
[PROOFSTEP]
intros a m'
[GOAL]
case zero
f : Bool → Bool → Bool
h : f false false = false
m n : ℕ
a : Bool
m' : ℕ
⊢ testBit (bitwise' f (bit a m') n) zero = f (testBit (bit a m') zero) (testBit n zero)
[PROOFSTEP]
apply bitCasesOn n
[GOAL]
case succ
f : Bool → Bool → Bool
h : f false false = false
k : ℕ
IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k)
m n : ℕ
a : Bool
m' : ℕ
⊢ testBit (bitwise' f (bit a m') n) (succ k) = f (testBit (bit a m') (succ k)) (testBit n (succ k))
[PROOFSTEP]
apply bitCasesOn n
[GOAL]
case zero
f : Bool → Bool → Bool
h : f false false = false
m n : ℕ
a : Bool
m' : ℕ
⊢ ∀ (b : Bool) (n : ℕ),
testBit (bitwise' f (bit a m') (bit b n)) zero = f (testBit (bit a m') zero) (testBit (bit b n) zero)
[PROOFSTEP]
intros b n'
[GOAL]
case succ
f : Bool → Bool → Bool
h : f false false = false
k : ℕ
IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k)
m n : ℕ
a : Bool
m' : ℕ
⊢ ∀ (b : Bool) (n : ℕ),
testBit (bitwise' f (bit a m') (bit b n)) (succ k) = f (testBit (bit a m') (succ k)) (testBit (bit b n) (succ k))
[PROOFSTEP]
intros b n'
[GOAL]
case zero
f : Bool → Bool → Bool
h : f false false = false
m n : ℕ
a : Bool
m' : ℕ
b : Bool
n' : ℕ
⊢ testBit (bitwise' f (bit a m') (bit b n')) zero = f (testBit (bit a m') zero) (testBit (bit b n') zero)
[PROOFSTEP]
rw [bitwise'_bit h]
[GOAL]
case succ
f : Bool → Bool → Bool
h : f false false = false
k : ℕ
IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k)
m n : ℕ
a : Bool
m' : ℕ
b : Bool
n' : ℕ
⊢ testBit (bitwise' f (bit a m') (bit b n')) (succ k) = f (testBit (bit a m') (succ k)) (testBit (bit b n') (succ k))
[PROOFSTEP]
rw [bitwise'_bit h]
[GOAL]
case zero
f : Bool → Bool → Bool
h : f false false = false
m n : ℕ
a : Bool
m' : ℕ
b : Bool
n' : ℕ
⊢ testBit (bit (f a b) (bitwise' f m' n')) zero = f (testBit (bit a m') zero) (testBit (bit b n') zero)
[PROOFSTEP]
simp [testBit_zero]
[GOAL]
case succ
f : Bool → Bool → Bool
h : f false false = false
k : ℕ
IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k)
m n : ℕ
a : Bool
m' : ℕ
b : Bool
n' : ℕ
⊢ testBit (bit (f a b) (bitwise' f m' n')) (succ k) = f (testBit (bit a m') (succ k)) (testBit (bit b n') (succ k))
[PROOFSTEP]
simp [testBit_succ, IH]
|
{"mathlib_filename": "Mathlib.Init.Data.Nat.Bitwise", "llama_tokens": 24222}
|
{"mathlib_filename": "Mathlib.Init.Data.Int.Basic", "llama_tokens": 0}
|
|
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ IsNoetherian K V ↔ Module.rank K V < ℵ₀
[PROOFSTEP]
let b := Basis.ofVectorSpace K V
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
⊢ IsNoetherian K V ↔ Module.rank K V < ℵ₀
[PROOFSTEP]
rw [← b.mk_eq_rank'', lt_aleph0_iff_set_finite]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
⊢ IsNoetherian K V ↔ Set.Finite (Basis.ofVectorSpaceIndex K V)
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
⊢ IsNoetherian K V → Set.Finite (Basis.ofVectorSpaceIndex K V)
[PROOFSTEP]
intro
[GOAL]
case mp
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
a✝ : IsNoetherian K V
⊢ Set.Finite (Basis.ofVectorSpaceIndex K V)
[PROOFSTEP]
exact finite_of_linearIndependent (Basis.ofVectorSpaceIndex.linearIndependent K V)
[GOAL]
case mpr
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
⊢ Set.Finite (Basis.ofVectorSpaceIndex K V) → IsNoetherian K V
[PROOFSTEP]
intro hbfinite
[GOAL]
case mpr
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
hbfinite : Set.Finite (Basis.ofVectorSpaceIndex K V)
⊢ IsNoetherian K V
[PROOFSTEP]
refine' @isNoetherian_of_linearEquiv K (⊤ : Submodule K V) V _ _ _ _ _ (LinearEquiv.ofTop _ rfl) (id _)
[GOAL]
case mpr
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
hbfinite : Set.Finite (Basis.ofVectorSpaceIndex K V)
⊢ IsNoetherian K { x // x ∈ ⊤ }
[PROOFSTEP]
refine' isNoetherian_of_fg_of_noetherian _ ⟨Set.Finite.toFinset hbfinite, _⟩
[GOAL]
case mpr
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V
hbfinite : Set.Finite (Basis.ofVectorSpaceIndex K V)
⊢ span K ↑(Set.Finite.toFinset hbfinite) = ⊤
[PROOFSTEP]
rw [Set.Finite.coe_toFinset, ← b.span_eq, Basis.coe_ofVectorSpace, Subtype.range_coe]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : IsNoetherian K V
⊢ ↑(Basis.ofVectorSpaceIndex K V) ≃ { x // x ∈ finsetBasisIndex K V }
[PROOFSTEP]
rw [coeSort_finsetBasisIndex]
[GOAL]
K : Type u
V : Type v
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : IsNoetherian K V
⊢ Set.range ↑(finsetBasis K V) = Basis.ofVectorSpaceIndex K V
[PROOFSTEP]
rw [finsetBasis, Basis.range_reindex, Basis.range_ofVectorSpace]
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ IsNoetherian K V ↔ Module.Finite K V
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ IsNoetherian K V → Module.Finite K V
[PROOFSTEP]
intro h
[GOAL]
case mp
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : IsNoetherian K V
⊢ Module.Finite K V
[PROOFSTEP]
exact
⟨⟨finsetBasisIndex K V, by
convert (finsetBasis K V).span_eq
simp⟩⟩
[GOAL]
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : IsNoetherian K V
⊢ span K ↑(finsetBasisIndex K V) = ⊤
[PROOFSTEP]
convert (finsetBasis K V).span_eq
[GOAL]
case h.e'_2.h.e'_6
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
h : IsNoetherian K V
⊢ ↑(finsetBasisIndex K V) = Set.range ↑(finsetBasis K V)
[PROOFSTEP]
simp
[GOAL]
case mpr
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
⊢ Module.Finite K V → IsNoetherian K V
[PROOFSTEP]
rintro ⟨s, hs⟩
[GOAL]
case mpr.mk.intro
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
s : Finset V
hs : span K ↑s = ⊤
⊢ IsNoetherian K V
[PROOFSTEP]
rw [IsNoetherian.iff_rank_lt_aleph0, ← rank_top, ← hs]
[GOAL]
case mpr.mk.intro
K : Type u
V : Type v
inst✝² : DivisionRing K
inst✝¹ : AddCommGroup V
inst✝ : Module K V
s : Finset V
hs : span K ↑s = ⊤
⊢ Module.rank K { x // x ∈ span K ↑s } < ℵ₀
[PROOFSTEP]
exact lt_of_le_of_lt (rank_span_le _) s.finite_toSet.lt_aleph0
|
{"mathlib_filename": "Mathlib.FieldTheory.Finiteness", "llama_tokens": 2188}
|
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝ : Mul β
⊢ let mul := Equiv.mul e;
α ≃* β
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝ : Mul β
mul✝ : Mul α := Equiv.mul e
⊢ α ≃* β
[PROOFSTEP]
exact
{ e with
map_mul' := fun x y => by
apply e.symm.injective
simp [mul_def] }
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝ : Mul β
mul✝ : Mul α := Equiv.mul e
x y : α
⊢ toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
(x * y) =
toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
x *
toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
y
[PROOFSTEP]
apply e.symm.injective
[GOAL]
case a
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝ : Mul β
mul✝ : Mul α := Equiv.mul e
x y : α
⊢ ↑e.symm
(toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
(x * y)) =
↑e.symm
(toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
x *
toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
y)
[PROOFSTEP]
simp [mul_def]
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝ : Mul β
b : β
⊢ ↑(MulEquiv.symm (mulEquiv e)) b = ↑e.symm b
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝ : Mul β
b : β
⊢ ↑(MulEquiv.symm (mulEquiv e)) b = ↑e.symm b
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
⊢ Sort ?u.112825
[PROOFSTEP]
let add := Equiv.add e
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
add : Add α := Equiv.add e
⊢ Sort ?u.112825
[PROOFSTEP]
let mul := Equiv.mul e
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
⊢ Sort ?u.112825
[PROOFSTEP]
exact α ≃+* β
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
⊢ let add := Equiv.add e;
let mul := Equiv.mul e;
α ≃+* β
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
add✝ : Add α := Equiv.add e
mul✝ : Mul α := Equiv.mul e
⊢ α ≃+* β
[PROOFSTEP]
exact
{
e with
map_add' := fun x y => by
apply e.symm.injective
simp [add_def]
map_mul' := fun x y => by
apply e.symm.injective
simp [mul_def] }
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
add✝ : Add α := Equiv.add e
mul✝ : Mul α := Equiv.mul e
x y : α
⊢ toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
(x * y) =
toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
x *
toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
y
[PROOFSTEP]
apply e.symm.injective
[GOAL]
case a
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
add✝ : Add α := Equiv.add e
mul✝ : Mul α := Equiv.mul e
x y : α
⊢ ↑e.symm
(toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
(x * y)) =
↑e.symm
(toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
x *
toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
y)
[PROOFSTEP]
simp [mul_def]
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
add✝ : Add α := Equiv.add e
mul✝ : Mul α := Equiv.mul e
x y : α
⊢ toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
(x + y) =
toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
x +
toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
y
[PROOFSTEP]
apply e.symm.injective
[GOAL]
case a
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
add✝ : Add α := Equiv.add e
mul✝ : Mul α := Equiv.mul e
x y : α
⊢ ↑e.symm
(toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
(x + y)) =
↑e.symm
(toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
x +
toFun
{ toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun),
right_inv := (_ : Function.RightInverse e.invFun e.toFun) }
y)
[PROOFSTEP]
simp [add_def]
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
b : β
⊢ Sort ?u.184035
[PROOFSTEP]
letI := Equiv.add e
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
b : β
this : Add α := Equiv.add e
⊢ Sort ?u.184035
[PROOFSTEP]
letI := Equiv.mul e
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
b : β
this✝ : Add α := Equiv.add e
this : Mul α := Equiv.mul e
⊢ Sort ?u.184035
[PROOFSTEP]
exact (ringEquiv e).symm b = e.symm b
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
b : β
⊢ ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e✝ e : α ≃ β
inst✝¹ : Add β
inst✝ : Mul β
b : β
⊢ ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semigroup β
⊢ Semigroup α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semigroup β
mul : Mul α := Equiv.mul e
⊢ Semigroup α
[PROOFSTEP]
apply e.injective.semigroup _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semigroup β
mul : Mul α := Equiv.mul e
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semigroup β
mul : Mul α := Equiv.mul e
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : SemigroupWithZero β
⊢ SemigroupWithZero α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : SemigroupWithZero β
mul : Mul α := Equiv.mul e
⊢ SemigroupWithZero α
[PROOFSTEP]
let zero := e.zero
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : SemigroupWithZero β
mul : Mul α := Equiv.mul e
zero : Zero α := Equiv.zero e
⊢ SemigroupWithZero α
[PROOFSTEP]
apply e.injective.semigroupWithZero _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : SemigroupWithZero β
mul : Mul α := Equiv.mul e
zero : Zero α := Equiv.zero e
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : SemigroupWithZero β
mul : Mul α := Equiv.mul e
zero : Zero α := Equiv.zero e
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : SemigroupWithZero β
mul : Mul α := Equiv.mul e
zero : Zero α := Equiv.zero e
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : SemigroupWithZero β
mul : Mul α := Equiv.mul e
zero : Zero α := Equiv.zero e
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemigroup β
⊢ CommSemigroup α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemigroup β
mul : Mul α := Equiv.mul e
⊢ CommSemigroup α
[PROOFSTEP]
apply e.injective.commSemigroup _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemigroup β
mul : Mul α := Equiv.mul e
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemigroup β
mul : Mul α := Equiv.mul e
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroClass β
⊢ MulZeroClass α
[PROOFSTEP]
let zero := e.zero
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroClass β
zero : Zero α := Equiv.zero e
⊢ MulZeroClass α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroClass β
zero : Zero α := Equiv.zero e
mul : Mul α := Equiv.mul e
⊢ MulZeroClass α
[PROOFSTEP]
apply e.injective.mulZeroClass _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroClass β
zero : Zero α := Equiv.zero e
mul : Mul α := Equiv.mul e
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroClass β
zero : Zero α := Equiv.zero e
mul : Mul α := Equiv.mul e
⊢ ∀ (a b : α), ↑e (a * b) = ↑e a * ↑e b
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroClass β
zero : Zero α := Equiv.zero e
mul : Mul α := Equiv.mul e
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroClass β
zero : Zero α := Equiv.zero e
mul : Mul α := Equiv.mul e
a✝ b✝ : α
⊢ ↑e (a✝ * b✝) = ↑e a✝ * ↑e b✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulOneClass β
⊢ MulOneClass α
[PROOFSTEP]
let one := e.one
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulOneClass β
one : One α := Equiv.one e
⊢ MulOneClass α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulOneClass β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ MulOneClass α
[PROOFSTEP]
apply e.injective.mulOneClass _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulOneClass β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulOneClass β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulOneClass β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulOneClass β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
⊢ MulZeroOneClass α
[PROOFSTEP]
let zero := e.zero
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
zero : Zero α := Equiv.zero e
⊢ MulZeroOneClass α
[PROOFSTEP]
let one := e.one
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
zero : Zero α := Equiv.zero e
one : One α := Equiv.one e
⊢ MulZeroOneClass α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
zero : Zero α := Equiv.zero e
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ MulZeroOneClass α
[PROOFSTEP]
apply e.injective.mulZeroOneClass _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
zero : Zero α := Equiv.zero e
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
zero : Zero α := Equiv.zero e
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
zero : Zero α := Equiv.zero e
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ ∀ (a b : α), ↑e (a * b) = ↑e a * ↑e b
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
zero : Zero α := Equiv.zero e
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
zero : Zero α := Equiv.zero e
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : MulZeroOneClass β
zero : Zero α := Equiv.zero e
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
a✝ b✝ : α
⊢ ↑e (a✝ * b✝) = ↑e a✝ * ↑e b✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
⊢ Monoid α
[PROOFSTEP]
let one := e.one
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
one : One α := Equiv.one e
⊢ Monoid α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ Monoid α
[PROOFSTEP]
let pow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ Monoid α
[PROOFSTEP]
apply e.injective.monoid _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Monoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
⊢ CommMonoid α
[PROOFSTEP]
let one := e.one
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
one : One α := Equiv.one e
⊢ CommMonoid α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ CommMonoid α
[PROOFSTEP]
let pow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ CommMonoid α
[PROOFSTEP]
apply e.injective.commMonoid _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommMonoid β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
pow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
⊢ Group α
[PROOFSTEP]
let one := e.one
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
⊢ Group α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ Group α
[PROOFSTEP]
let inv := e.Inv
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
⊢ Group α
[PROOFSTEP]
let div := e.div
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
⊢ Group α
[PROOFSTEP]
let npow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ Group α
[PROOFSTEP]
let zpow := e.pow ℤ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ Group α
[PROOFSTEP]
apply e.injective.group _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case inv
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x : α), ↑e x⁻¹ = (↑e x)⁻¹
[PROOFSTEP]
intros
[GOAL]
case div
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x y : α), ↑e (x / y) = ↑e x / ↑e y
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case zpow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x : α) (n : ℤ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case inv
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ : α
⊢ ↑e x✝⁻¹ = (↑e x✝)⁻¹
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case div
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ / y✝) = ↑e x✝ / ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zpow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Group β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ : α
n✝ : ℤ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
⊢ CommGroup α
[PROOFSTEP]
let one := e.one
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
⊢ CommGroup α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
⊢ CommGroup α
[PROOFSTEP]
let inv := e.Inv
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
⊢ CommGroup α
[PROOFSTEP]
let div := e.div
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
⊢ CommGroup α
[PROOFSTEP]
let npow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ CommGroup α
[PROOFSTEP]
let zpow := e.pow ℤ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ CommGroup α
[PROOFSTEP]
apply e.injective.commGroup _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case inv
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x : α), ↑e x⁻¹ = (↑e x)⁻¹
[PROOFSTEP]
intros
[GOAL]
case div
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x y : α), ↑e (x / y) = ↑e x / ↑e y
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case zpow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ∀ (x : α) (n : ℤ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case inv
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ : α
⊢ ↑e x✝⁻¹ = (↑e x✝)⁻¹
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case div
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ / y✝) = ↑e x✝ / ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zpow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommGroup β
one : One α := Equiv.one e
mul : Mul α := Equiv.mul e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
x✝ : α
n✝ : ℤ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
⊢ NonUnitalNonAssocSemiring α
[PROOFSTEP]
let zero := e.zero
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
⊢ NonUnitalNonAssocSemiring α
[PROOFSTEP]
let add := e.add
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
⊢ NonUnitalNonAssocSemiring α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
⊢ NonUnitalNonAssocSemiring α
[PROOFSTEP]
let nsmul := e.smul ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ NonUnitalNonAssocSemiring α
[PROOFSTEP]
apply e.injective.nonUnitalNonAssocSemiring _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
⊢ NonUnitalSemiring α
[PROOFSTEP]
let zero := e.zero
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
⊢ NonUnitalSemiring α
[PROOFSTEP]
let add := e.add
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
⊢ NonUnitalSemiring α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
⊢ NonUnitalSemiring α
[PROOFSTEP]
let nsmul := e.smul ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ NonUnitalSemiring α
[PROOFSTEP]
apply e.injective.nonUnitalSemiring _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : AddMonoidWithOne β
src✝¹ : AddMonoid α := Equiv.addMonoid e
src✝ : One α := Equiv.one e
⊢ ↑e (NatCast.natCast 0) = ↑e 0
[PROOFSTEP]
simp [zero_def]
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : AddMonoidWithOne β
src✝¹ : AddMonoid α := Equiv.addMonoid e
src✝ : One α := Equiv.one e
n : ℕ
⊢ ↑e (NatCast.natCast (n + 1)) = ↑e (NatCast.natCast n + 1)
[PROOFSTEP]
simp [add_def, one_def]
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : AddGroupWithOne β
src✝¹ : AddMonoidWithOne α := Equiv.addMonoidWithOne e
src✝ : AddGroup α := Equiv.addGroup e
n : ℕ
⊢ IntCast.intCast ↑n = ↑n
[PROOFSTEP]
simp only [Int.cast_ofNat]
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : AddGroupWithOne β
src✝¹ : AddMonoidWithOne α := Equiv.addMonoidWithOne e
src✝ : AddGroup α := Equiv.addGroup e
n : ℕ
⊢ ↑e.symm ↑n = ↑n
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
⊢ NonAssocSemiring α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
⊢ NonAssocSemiring α
[PROOFSTEP]
let add_monoid_with_one := e.addMonoidWithOne
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ NonAssocSemiring α
[PROOFSTEP]
apply e.injective.nonAssocSemiring _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ ∀ (n : ℕ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
n✝ : ℕ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
⊢ Semiring α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
⊢ Semiring α
[PROOFSTEP]
let add_monoid_with_one := e.addMonoidWithOne
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ Semiring α
[PROOFSTEP]
let npow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ Semiring α
[PROOFSTEP]
apply e.injective.semiring _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (n : ℕ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Semiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
n✝ : ℕ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
⊢ NonUnitalCommSemiring α
[PROOFSTEP]
let zero := e.zero
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
⊢ NonUnitalCommSemiring α
[PROOFSTEP]
let add := e.add
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
⊢ NonUnitalCommSemiring α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
⊢ NonUnitalCommSemiring α
[PROOFSTEP]
let nsmul := e.smul ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ NonUnitalCommSemiring α
[PROOFSTEP]
apply e.injective.nonUnitalCommSemiring _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommSemiring β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
nsmul : SMul ℕ α := Equiv.smul e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
⊢ CommSemiring α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
⊢ CommSemiring α
[PROOFSTEP]
let add_monoid_with_one := e.addMonoidWithOne
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
⊢ CommSemiring α
[PROOFSTEP]
let npow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ CommSemiring α
[PROOFSTEP]
apply e.injective.commSemiring _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (n : ℕ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommSemiring β
mul : Mul α := Equiv.mul e
add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
n✝ : ℕ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
⊢ NonUnitalNonAssocRing α
[PROOFSTEP]
let zero := e.zero
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
⊢ NonUnitalNonAssocRing α
[PROOFSTEP]
let add := e.add
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
⊢ NonUnitalNonAssocRing α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
⊢ NonUnitalNonAssocRing α
[PROOFSTEP]
let neg := e.Neg
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
⊢ NonUnitalNonAssocRing α
[PROOFSTEP]
let sub := e.sub
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
⊢ NonUnitalNonAssocRing α
[PROOFSTEP]
let nsmul := e.smul ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ NonUnitalNonAssocRing α
[PROOFSTEP]
let zsmul := e.smul ℤ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ NonUnitalNonAssocRing α
[PROOFSTEP]
apply e.injective.nonUnitalNonAssocRing _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x : α), ↑e (-x) = -↑e x
[PROOFSTEP]
intros
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ : α
⊢ ↑e (-x✝) = -↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalNonAssocRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ : α
n✝ : ℤ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
⊢ NonUnitalRing α
[PROOFSTEP]
let zero := e.zero
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
⊢ NonUnitalRing α
[PROOFSTEP]
let add := e.add
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
⊢ NonUnitalRing α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
⊢ NonUnitalRing α
[PROOFSTEP]
let neg := e.Neg
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
⊢ NonUnitalRing α
[PROOFSTEP]
let sub := e.sub
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
⊢ NonUnitalRing α
[PROOFSTEP]
let nsmul := e.smul ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ NonUnitalRing α
[PROOFSTEP]
let zsmul := e.smul ℤ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ NonUnitalRing α
[PROOFSTEP]
apply e.injective.nonUnitalRing _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x : α), ↑e (-x) = -↑e x
[PROOFSTEP]
intros
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case gsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ : α
⊢ ↑e (-x✝) = -↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case gsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ : α
n✝ : ℤ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
⊢ NonAssocRing α
[PROOFSTEP]
let add_group_with_one := e.addGroupWithOne
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
⊢ NonAssocRing α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ NonAssocRing α
[PROOFSTEP]
apply e.injective.nonAssocRing _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ∀ (x : α), ↑e (-x) = -↑e x
[PROOFSTEP]
intros
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case gsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ∀ (n : ℕ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ∀ (n : ℤ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
x✝ : α
⊢ ↑e (-x✝) = -↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
x✝ y✝ : α
⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case gsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
x✝ : α
n✝ : ℤ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
n✝ : ℕ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonAssocRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
mul : Mul α := Equiv.mul e
n✝ : ℤ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
⊢ Ring α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
⊢ Ring α
[PROOFSTEP]
let add_group_with_one := e.addGroupWithOne
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
⊢ Ring α
[PROOFSTEP]
let npow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ Ring α
[PROOFSTEP]
apply e.injective.ring _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α), ↑e (-x) = -↑e x
[PROOFSTEP]
intros
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (n : ℕ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (n : ℤ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
⊢ ↑e (-x✝) = -↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℤ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
n✝ : ℕ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Ring β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
n✝ : ℤ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
⊢ NonUnitalCommRing α
[PROOFSTEP]
let zero := e.zero
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
⊢ NonUnitalCommRing α
[PROOFSTEP]
let add := e.add
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
⊢ NonUnitalCommRing α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
⊢ NonUnitalCommRing α
[PROOFSTEP]
let neg := e.Neg
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
⊢ NonUnitalCommRing α
[PROOFSTEP]
let sub := e.sub
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
⊢ NonUnitalCommRing α
[PROOFSTEP]
let nsmul := e.smul ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
⊢ NonUnitalCommRing α
[PROOFSTEP]
let zsmul := e.smul ℤ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ NonUnitalCommRing α
[PROOFSTEP]
apply e.injective.nonUnitalCommRing _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x : α), ↑e (-x) = -↑e x
[PROOFSTEP]
intros
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ : α
⊢ ↑e (-x✝) = -↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ y✝ : α
⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : NonUnitalCommRing β
zero : Zero α := Equiv.zero e
add : Add α := Equiv.add e
mul : Mul α := Equiv.mul e
neg : Neg α := Equiv.Neg e
sub : Sub α := Equiv.sub e
nsmul : SMul ℕ α := Equiv.smul e ℕ
zsmul : SMul ℤ α := Equiv.smul e ℤ
x✝ : α
n✝ : ℤ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
⊢ CommRing α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
⊢ CommRing α
[PROOFSTEP]
let add_group_with_one := e.addGroupWithOne
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
⊢ CommRing α
[PROOFSTEP]
let npow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ CommRing α
[PROOFSTEP]
apply e.injective.commRing _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α), ↑e (-x) = -↑e x
[PROOFSTEP]
intros
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (n : ℕ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ∀ (n : ℤ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
⊢ ↑e (-x✝) = -↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ y✝ : α
⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℤ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
n✝ : ℕ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : CommRing β
mul : Mul α := Equiv.mul e
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
npow : Pow α ℕ := Equiv.pow e ℕ
n✝ : ℤ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
⊢ DivisionRing α
[PROOFSTEP]
let add_group_with_one := e.addGroupWithOne
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
⊢ DivisionRing α
[PROOFSTEP]
let inv := e.Inv
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
⊢ DivisionRing α
[PROOFSTEP]
let div := e.div
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
⊢ DivisionRing α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
⊢ DivisionRing α
[PROOFSTEP]
let npow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ DivisionRing α
[PROOFSTEP]
let zpow := e.pow ℤ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ DivisionRing α
[PROOFSTEP]
let rat_cast := e.RatCast
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
⊢ DivisionRing α
[PROOFSTEP]
let qsmul := e.smul ℚ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ DivisionRing α
[PROOFSTEP]
apply e.injective.divisionRing _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α), ↑e (-x) = -↑e x
[PROOFSTEP]
intros
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y
[PROOFSTEP]
intros
[GOAL]
case inv
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α), ↑e x⁻¹ = (↑e x)⁻¹
[PROOFSTEP]
intros
[GOAL]
case div
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x y : α), ↑e (x / y) = ↑e x / ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case qsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℚ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case zpow
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℤ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (n : ℕ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (n : ℤ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case rat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (n : ℚ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
⊢ ↑e (-x✝) = -↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ y✝ : α
⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case inv
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
⊢ ↑e x✝⁻¹ = (↑e x✝)⁻¹
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case div
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ y✝ : α
⊢ ↑e (x✝ / y✝) = ↑e x✝ / ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℤ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case qsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℚ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zpow
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℤ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
n✝ : ℕ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
n✝ : ℤ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case rat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : DivisionRing β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
n✝ : ℚ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
⊢ Field α
[PROOFSTEP]
let add_group_with_one := e.addGroupWithOne
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
⊢ Field α
[PROOFSTEP]
let neg := e.Neg
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
⊢ Field α
[PROOFSTEP]
let inv := e.Inv
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
⊢ Field α
[PROOFSTEP]
let div := e.div
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
⊢ Field α
[PROOFSTEP]
let mul := e.mul
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
⊢ Field α
[PROOFSTEP]
let npow := e.pow ℕ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
⊢ Field α
[PROOFSTEP]
let zpow := e.pow ℤ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
⊢ Field α
[PROOFSTEP]
let rat_cast := e.RatCast
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
⊢ Field α
[PROOFSTEP]
let qsmul := e.smul ℚ
[GOAL]
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ Field α
[PROOFSTEP]
apply e.injective.field _
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ↑e 0 = 0
[PROOFSTEP]
intros
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ↑e 1 = 1
[PROOFSTEP]
intros
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y
[PROOFSTEP]
intros
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y
[PROOFSTEP]
intros
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α), ↑e (-x) = -↑e x
[PROOFSTEP]
intros
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y
[PROOFSTEP]
intros
[GOAL]
case inv
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α), ↑e x⁻¹ = (↑e x)⁻¹
[PROOFSTEP]
intros
[GOAL]
case div
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x y : α), ↑e (x / y) = ↑e x / ↑e y
[PROOFSTEP]
intros
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case qsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℚ), ↑e (n • x) = n • ↑e x
[PROOFSTEP]
intros
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case zpow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (x : α) (n : ℤ), ↑e (x ^ n) = ↑e x ^ n
[PROOFSTEP]
intros
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (n : ℕ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (n : ℤ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case rat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ∀ (n : ℚ), ↑e ↑n = ↑n
[PROOFSTEP]
intros
[GOAL]
case zero
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ↑e 0 = 0
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case one
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
⊢ ↑e 1 = 1
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case add
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ y✝ : α
⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case mul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ y✝ : α
⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case neg
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
⊢ ↑e (-x✝) = -↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case sub
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ y✝ : α
⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case inv
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
⊢ ↑e x✝⁻¹ = (↑e x✝)⁻¹
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case div
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ y✝ : α
⊢ ↑e (x✝ / y✝) = ↑e x✝ / ↑e y✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℕ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℤ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case qsmul
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℚ
⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case npow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℕ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case zpow
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
x✝ : α
n✝ : ℤ
⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case nat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
n✝ : ℕ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case int_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
n✝ : ℤ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
case rat_cast
α : Type u
β : Type v
e : α ≃ β
inst✝ : Field β
add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e
neg : Neg α := Equiv.Neg e
inv : Inv α := Equiv.Inv e
div : Div α := Equiv.div e
mul : Mul α := Equiv.mul e
npow : Pow α ℕ := Equiv.pow e ℕ
zpow : Pow α ℤ := Equiv.pow e ℤ
rat_cast : RatCast α := Equiv.RatCast e
qsmul : SMul ℚ α := Equiv.smul e ℚ
n✝ : ℚ
⊢ ↑e ↑n✝ = ↑n✝
[PROOFSTEP]
exact e.apply_symm_apply _
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝¹ : Monoid R
e : α ≃ β
inst✝ : MulAction R β
src✝ : SMul R α := Equiv.smul e R
⊢ ∀ (b : α), 1 • b = b
[PROOFSTEP]
simp [smul_def]
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝¹ : Monoid R
e : α ≃ β
inst✝ : MulAction R β
src✝ : SMul R α := Equiv.smul e R
⊢ ∀ (x y : R) (b : α), (x * y) • b = x • y • b
[PROOFSTEP]
simp [smul_def, mul_smul]
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝¹ : Monoid R
e : α ≃ β
inst✝ : AddCommMonoid β
⊢ [inst : DistribMulAction R β] → DistribMulAction R α
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Monoid R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : DistribMulAction R β
⊢ DistribMulAction R α
[PROOFSTEP]
letI := Equiv.addCommMonoid e
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Monoid R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : DistribMulAction R β
this : AddCommMonoid α := Equiv.addCommMonoid e
⊢ DistribMulAction R α
[PROOFSTEP]
exact
({ Equiv.mulAction R e with
smul_zero := by simp [zero_def, smul_def]
smul_add := by simp [add_def, smul_def, smul_add] } :
DistribMulAction R α)
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Monoid R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : DistribMulAction R β
this : AddCommMonoid α := Equiv.addCommMonoid e
src✝ : MulAction R α := Equiv.mulAction R e
⊢ ∀ (a : R), a • 0 = 0
[PROOFSTEP]
simp [zero_def, smul_def]
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Monoid R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : DistribMulAction R β
this : AddCommMonoid α := Equiv.addCommMonoid e
src✝ : MulAction R α := Equiv.mulAction R e
⊢ ∀ (a : R) (x y : α), a • (x + y) = a • x + a • y
[PROOFSTEP]
simp [add_def, smul_def, smul_add]
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝¹ : Semiring R
e : α ≃ β
inst✝ : AddCommMonoid β
⊢ let addCommMonoid := Equiv.addCommMonoid e;
[inst : Module R β] → Module R α
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e
inst✝ : Module R β
⊢ Module R α
[PROOFSTEP]
exact
({ Equiv.distribMulAction R e with
zero_smul := by simp [smul_def, zero_smul, zero_def]
add_smul := by simp [add_def, smul_def, add_smul] } :
Module R α)
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e
inst✝ : Module R β
src✝ : DistribMulAction R α := Equiv.distribMulAction R e
⊢ ∀ (r s : R) (x : α), (r + s) • x = r • x + s • x
[PROOFSTEP]
simp [add_def, smul_def, add_smul]
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e
inst✝ : Module R β
src✝ : DistribMulAction R α := Equiv.distribMulAction R e
⊢ ∀ (x : α), 0 • x = 0
[PROOFSTEP]
simp [smul_def, zero_smul, zero_def]
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : Module R β
⊢ Sort ?u.508797
[PROOFSTEP]
let addCommMonoid := Equiv.addCommMonoid e
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : Module R β
addCommMonoid : AddCommMonoid α := Equiv.addCommMonoid e
⊢ Sort ?u.508797
[PROOFSTEP]
let module := Equiv.module R e
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : Module R β
addCommMonoid : AddCommMonoid α := Equiv.addCommMonoid e
module : Module R α := Equiv.module R e
⊢ Sort ?u.508797
[PROOFSTEP]
exact α ≃ₗ[R] β
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : Module R β
⊢ let addCommMonoid := Equiv.addCommMonoid e;
let module := Equiv.module R e;
α ≃ₗ[R] β
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : Module R β
addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e
module✝ : Module R α := Equiv.module R e
⊢ α ≃ₗ[R] β
[PROOFSTEP]
exact
{ Equiv.addEquiv e with
map_smul' := fun r x => by
apply e.symm.injective
simp
exact Iff.mpr (apply_eq_iff_eq_symm_apply _) rfl }
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : Module R β
addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e
module✝ : Module R α := Equiv.module R e
src✝ : let mul := Equiv.add e;
α ≃+ β :=
addEquiv e
r : R
x : α
⊢ AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (x y : α), toFun src✝.toEquiv (x + y) = toFun src✝.toEquiv x + toFun src✝.toEquiv y) }
(r • x) =
↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (x y : α), toFun src✝.toEquiv (x + y) = toFun src✝.toEquiv x + toFun src✝.toEquiv y) }
x
[PROOFSTEP]
apply e.symm.injective
[GOAL]
case a
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : Module R β
addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e
module✝ : Module R α := Equiv.module R e
src✝ : let mul := Equiv.add e;
α ≃+ β :=
addEquiv e
r : R
x : α
⊢ ↑e.symm
(AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (x y : α), toFun src✝.toEquiv (x + y) = toFun src✝.toEquiv x + toFun src✝.toEquiv y) }
(r • x)) =
↑e.symm
(↑(RingHom.id R) r •
AddHom.toFun
{ toFun := src✝.toFun,
map_add' := (_ : ∀ (x y : α), toFun src✝.toEquiv (x + y) = toFun src✝.toEquiv x + toFun src✝.toEquiv y) }
x)
[PROOFSTEP]
simp
[GOAL]
case a
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : Semiring R
e : α ≃ β
inst✝¹ : AddCommMonoid β
inst✝ : Module R β
addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e
module✝ : Module R α := Equiv.module R e
src✝ : let mul := Equiv.add e;
α ≃+ β :=
addEquiv e
r : R
x : α
⊢ ↑(addEquiv e).toEquiv (r • x) = r • ↑(addEquiv e).toEquiv x
[PROOFSTEP]
exact Iff.mpr (apply_eq_iff_eq_symm_apply _) rfl
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝¹ : CommSemiring R
e : α ≃ β
inst✝ : Semiring β
⊢ let semiring := Equiv.semiring e;
[inst : Algebra R β] → Algebra R α
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
⊢ Algebra R α
[PROOFSTEP]
fapply RingHom.toAlgebra'
[GOAL]
case i
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
⊢ R →+* α
[PROOFSTEP]
exact ((ringEquiv e).symm : β →+* α).comp (algebraMap R β)
[GOAL]
case h
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
⊢ ∀ (c : R) (x : (fun x => α) c),
↑(RingHom.comp (↑(RingEquiv.symm (ringEquiv e))) (algebraMap R β)) c * x =
x * ↑(RingHom.comp (↑(RingEquiv.symm (ringEquiv e))) (algebraMap R β)) c
[PROOFSTEP]
intro r x
[GOAL]
case h
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
r : R
x : α
⊢ ↑(RingHom.comp (↑(RingEquiv.symm (ringEquiv e))) (algebraMap R β)) r * x =
x * ↑(RingHom.comp (↑(RingEquiv.symm (ringEquiv e))) (algebraMap R β)) r
[PROOFSTEP]
simp only [Function.comp_apply, RingHom.coe_comp]
[GOAL]
case h
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
r : R
x : α
⊢ ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r) * x =
x * ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r)
[PROOFSTEP]
have p := ringEquiv_symm_apply e
[GOAL]
case h
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
r : R
x : α
p : ∀ (b : β), ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b
⊢ ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r) * x =
x * ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r)
[PROOFSTEP]
dsimp at p
[GOAL]
case h
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
r : R
x : α
p : ∀ (b : β), ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b
⊢ ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r) * x =
x * ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r)
[PROOFSTEP]
erw [p]
[GOAL]
case h
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
r : R
x : α
p : ∀ (b : β), ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b
⊢ ↑e.symm (↑(algebraMap R β) r) * x = x * ↑e.symm (↑(algebraMap R β) r)
[PROOFSTEP]
clear p
[GOAL]
case h
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
r : R
x : α
⊢ ↑e.symm (↑(algebraMap R β) r) * x = x * ↑e.symm (↑(algebraMap R β) r)
[PROOFSTEP]
apply (ringEquiv e).injective
[GOAL]
case h.a
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
r : R
x : α
⊢ ↑(ringEquiv e) (↑e.symm (↑(algebraMap R β) r) * x) = ↑(ringEquiv e) (x * ↑e.symm (↑(algebraMap R β) r))
[PROOFSTEP]
simp only [(ringEquiv e).map_mul]
[GOAL]
case h.a
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
semiring✝ : Semiring α := Equiv.semiring e
inst✝ : Algebra R β
r : R
x : α
⊢ ↑(ringEquiv e) (↑e.symm (↑(algebraMap R β) r)) * ↑(ringEquiv e) x =
↑(ringEquiv e) x * ↑(ringEquiv e) (↑e.symm (↑(algebraMap R β) r))
[PROOFSTEP]
simp [Algebra.commutes]
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
inst✝ : Algebra R β
⊢ Sort ?u.532380
[PROOFSTEP]
let semiring := Equiv.semiring e
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
inst✝ : Algebra R β
semiring : Semiring α := Equiv.semiring e
⊢ Sort ?u.532380
[PROOFSTEP]
let algebra := Equiv.algebra R e
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
inst✝ : Algebra R β
semiring : Semiring α := Equiv.semiring e
algebra : Algebra R α := Equiv.algebra R e
⊢ Sort ?u.532380
[PROOFSTEP]
exact α ≃ₐ[R] β
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
inst✝ : Algebra R β
⊢ let semiring := Equiv.semiring e;
let algebra := Equiv.algebra R e;
α ≃ₐ[R] β
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
inst✝ : Algebra R β
semiring✝ : Semiring α := Equiv.semiring e
algebra✝ : Algebra R α := Equiv.algebra R e
⊢ α ≃ₐ[R] β
[PROOFSTEP]
exact
{ Equiv.ringEquiv e with
commutes' := fun r => by
apply e.symm.injective
simp
rfl }
[GOAL]
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
inst✝ : Algebra R β
semiring✝ : Semiring α := Equiv.semiring e
algebra✝ : Algebra R α := Equiv.algebra R e
src✝ : let add := Equiv.add e;
let mul := Equiv.mul e;
α ≃+* β :=
ringEquiv e
r : R
⊢ toFun src✝.toEquiv (↑(algebraMap R α) r) = ↑(algebraMap R β) r
[PROOFSTEP]
apply e.symm.injective
[GOAL]
case a
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
inst✝ : Algebra R β
semiring✝ : Semiring α := Equiv.semiring e
algebra✝ : Algebra R α := Equiv.algebra R e
src✝ : let add := Equiv.add e;
let mul := Equiv.mul e;
α ≃+* β :=
ringEquiv e
r : R
⊢ ↑e.symm (toFun src✝.toEquiv (↑(algebraMap R α) r)) = ↑e.symm (↑(algebraMap R β) r)
[PROOFSTEP]
simp
[GOAL]
case a
α : Type u
β : Type v
e✝ : α ≃ β
R : Type u_1
inst✝² : CommSemiring R
e : α ≃ β
inst✝¹ : Semiring β
inst✝ : Algebra R β
semiring✝ : Semiring α := Equiv.semiring e
algebra✝ : Algebra R α := Equiv.algebra R e
src✝ : let add := Equiv.add e;
let mul := Equiv.mul e;
α ≃+* β :=
ringEquiv e
r : R
⊢ ↑(algebraMap R α) r = ↑e.symm (↑(algebraMap R β) r)
[PROOFSTEP]
rfl
|
{"mathlib_filename": "Mathlib.Logic.Equiv.TransferInstance", "llama_tokens": 65693}
|
[GOAL]
F : Type u_1
inst✝ : CommSemiring F
q : ℕ
f : F[X]
hf✝ : HasSeparableContraction q f
g : F[X]
hf : IsSeparableContraction q f g
⊢ ∃ m, natDegree g * q ^ m = natDegree f
[PROOFSTEP]
obtain ⟨m, rfl⟩ := hf.2
[GOAL]
case intro
F : Type u_1
inst✝ : CommSemiring F
q : ℕ
g : F[X]
m : ℕ
hf✝ : HasSeparableContraction q (↑(expand F (q ^ m)) g)
hf : IsSeparableContraction q (↑(expand F (q ^ m)) g) g
⊢ ∃ m_1, natDegree g * q ^ m_1 = natDegree (↑(expand F (q ^ m)) g)
[PROOFSTEP]
use m
[GOAL]
case h
F : Type u_1
inst✝ : CommSemiring F
q : ℕ
g : F[X]
m : ℕ
hf✝ : HasSeparableContraction q (↑(expand F (q ^ m)) g)
hf : IsSeparableContraction q (↑(expand F (q ^ m)) g) g
⊢ natDegree g * q ^ m = natDegree (↑(expand F (q ^ m)) g)
[PROOFSTEP]
rw [natDegree_expand]
[GOAL]
F : Type u_1
inst✝ : CommSemiring F
q : ℕ
f✝ : F[X]
hf✝ : HasSeparableContraction q f✝
f : F[X]
hf : HasSeparableContraction 1 f
⊢ degree hf = natDegree f
[PROOFSTEP]
let ⟨a, ha⟩ := hf.dvd_degree'
[GOAL]
F : Type u_1
inst✝ : CommSemiring F
q : ℕ
f✝ : F[X]
hf✝ : HasSeparableContraction q f✝
f : F[X]
hf : HasSeparableContraction 1 f
a : ℕ
ha : degree hf * 1 ^ a = natDegree f
⊢ degree hf = natDegree f
[PROOFSTEP]
rw [← ha, one_pow a, mul_one]
[GOAL]
F : Type u_1
inst✝ : Field F
q✝ : ℕ
f✝ : F[X]
hf : HasSeparableContraction q✝ f✝
q : ℕ
hF : ExpChar F q
f : F[X]
irred : Irreducible f
⊢ HasSeparableContraction q f
[PROOFSTEP]
cases hF
[GOAL]
case zero
F : Type u_1
inst✝¹ : Field F
q : ℕ
f✝ : F[X]
hf : HasSeparableContraction q f✝
f : F[X]
irred : Irreducible f
inst✝ : CharZero F
⊢ HasSeparableContraction 1 f
[PROOFSTEP]
exact ⟨f, irred.separable, ⟨0, by rw [pow_zero, expand_one]⟩⟩
[GOAL]
F : Type u_1
inst✝¹ : Field F
q : ℕ
f✝ : F[X]
hf : HasSeparableContraction q f✝
f : F[X]
irred : Irreducible f
inst✝ : CharZero F
⊢ ↑(expand F (1 ^ 0)) f = f
[PROOFSTEP]
rw [pow_zero, expand_one]
[GOAL]
case prime
F : Type u_1
inst✝ : Field F
q✝ : ℕ
f✝ : F[X]
hf : HasSeparableContraction q✝ f✝
q : ℕ
f : F[X]
irred : Irreducible f
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
⊢ HasSeparableContraction q f
[PROOFSTEP]
rcases exists_separable_of_irreducible q irred ‹q.Prime›.ne_zero with ⟨n, g, hgs, hge⟩
[GOAL]
case prime.intro.intro.intro
F : Type u_1
inst✝ : Field F
q✝ : ℕ
f✝ : F[X]
hf : HasSeparableContraction q✝ f✝
q : ℕ
f : F[X]
irred : Irreducible f
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
n : ℕ
g : F[X]
hgs : Separable g
hge : ↑(expand F (q ^ n)) g = f
⊢ HasSeparableContraction q f
[PROOFSTEP]
exact ⟨g, hgs, n, hge⟩
[GOAL]
F : Type u_1
inst✝¹ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
hq : NeZero q
inst✝ : CharP F q
g g' : F[X]
m m' : ℕ
h_expand : ↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g'
hg : Separable g
hg' : Separable g'
⊢ natDegree g = natDegree g'
[PROOFSTEP]
wlog hm : m ≤ m'
[GOAL]
case inr
F : Type u_1
inst✝¹ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
hq : NeZero q
inst✝ : CharP F q
g g' : F[X]
m m' : ℕ
h_expand : ↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g'
hg : Separable g
hg' : Separable g'
this :
∀ {F : Type u_1} [inst : Field F] (q : ℕ) {f : F[X]},
HasSeparableContraction q f →
∀ [hq : NeZero q] [inst_1 : CharP F q] (g g' : F[X]) (m m' : ℕ),
↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g' →
Separable g → Separable g' → m ≤ m' → natDegree g = natDegree g'
hm : ¬m ≤ m'
⊢ natDegree g = natDegree g'
[PROOFSTEP]
exact (this q hf g' g m' m h_expand.symm hg' hg (le_of_not_le hm)).symm
[GOAL]
F✝ : Type u_1
inst✝² : Field F✝
q✝ : ℕ
F : Type u_1
inst✝¹ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
hq : NeZero q
inst✝ : CharP F q
g g' : F[X]
m m' : ℕ
h_expand : ↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g'
hg : Separable g
hg' : Separable g'
hm : m ≤ m'
⊢ natDegree g = natDegree g'
[PROOFSTEP]
obtain ⟨s, rfl⟩ := exists_add_of_le hm
[GOAL]
case intro
F✝ : Type u_1
inst✝² : Field F✝
q✝ : ℕ
F : Type u_1
inst✝¹ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
hq : NeZero q
inst✝ : CharP F q
g g' : F[X]
m : ℕ
hg : Separable g
hg' : Separable g'
s : ℕ
h_expand : ↑(expand F (q ^ m)) g = ↑(expand F (q ^ (m + s))) g'
hm : m ≤ m + s
⊢ natDegree g = natDegree g'
[PROOFSTEP]
rw [pow_add, expand_mul, expand_inj (pow_pos (NeZero.pos q) m)] at h_expand
[GOAL]
case intro
F✝ : Type u_1
inst✝² : Field F✝
q✝ : ℕ
F : Type u_1
inst✝¹ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
hq : NeZero q
inst✝ : CharP F q
g g' : F[X]
m : ℕ
hg : Separable g
hg' : Separable g'
s : ℕ
h_expand : g = ↑(expand F (q ^ s)) g'
hm : m ≤ m + s
⊢ natDegree g = natDegree g'
[PROOFSTEP]
subst h_expand
[GOAL]
case intro
F✝ : Type u_1
inst✝² : Field F✝
q✝ : ℕ
F : Type u_1
inst✝¹ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
hq : NeZero q
inst✝ : CharP F q
g' : F[X]
m : ℕ
hg' : Separable g'
s : ℕ
hm : m ≤ m + s
hg : Separable (↑(expand F (q ^ s)) g')
⊢ natDegree (↑(expand F (q ^ s)) g') = natDegree g'
[PROOFSTEP]
rcases isUnit_or_eq_zero_of_separable_expand q s (NeZero.pos q) hg with (h | rfl)
[GOAL]
case intro.inl
F✝ : Type u_1
inst✝² : Field F✝
q✝ : ℕ
F : Type u_1
inst✝¹ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
hq : NeZero q
inst✝ : CharP F q
g' : F[X]
m : ℕ
hg' : Separable g'
s : ℕ
hm : m ≤ m + s
hg : Separable (↑(expand F (q ^ s)) g')
h : IsUnit g'
⊢ natDegree (↑(expand F (q ^ s)) g') = natDegree g'
[PROOFSTEP]
rw [natDegree_expand, natDegree_eq_zero_of_isUnit h, zero_mul]
[GOAL]
case intro.inr
F✝ : Type u_1
inst✝² : Field F✝
q✝ : ℕ
F : Type u_1
inst✝¹ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
hq : NeZero q
inst✝ : CharP F q
g' : F[X]
m : ℕ
hg' : Separable g'
hm : m ≤ m + 0
hg : Separable (↑(expand F (q ^ 0)) g')
⊢ natDegree (↑(expand F (q ^ 0)) g') = natDegree g'
[PROOFSTEP]
rw [natDegree_expand, pow_zero, mul_one]
[GOAL]
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
hF : ExpChar F q
g : F[X]
hg : IsSeparableContraction q f g
⊢ natDegree g = HasSeparableContraction.degree hf
[PROOFSTEP]
cases hF
[GOAL]
case zero
F : Type u_1
inst✝¹ : Field F
f g : F[X]
inst✝ : CharZero F
hf : HasSeparableContraction 1 f
hg : IsSeparableContraction 1 f g
⊢ natDegree g = HasSeparableContraction.degree hf
[PROOFSTEP]
rcases hg with ⟨_, m, hm⟩
[GOAL]
case zero.intro.intro
F : Type u_1
inst✝¹ : Field F
f g : F[X]
inst✝ : CharZero F
hf : HasSeparableContraction 1 f
left✝ : Separable g
m : ℕ
hm : ↑(expand F (1 ^ m)) g = f
⊢ natDegree g = HasSeparableContraction.degree hf
[PROOFSTEP]
rw [one_pow, expand_one] at hm
[GOAL]
case zero.intro.intro
F : Type u_1
inst✝¹ : Field F
f g : F[X]
inst✝ : CharZero F
hf : HasSeparableContraction 1 f
left✝ : Separable g
m : ℕ
hm : g = f
⊢ natDegree g = HasSeparableContraction.degree hf
[PROOFSTEP]
rw [hf.eq_degree, hm]
[GOAL]
case prime
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hg : IsSeparableContraction q f g
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
⊢ natDegree g = HasSeparableContraction.degree hf
[PROOFSTEP]
rcases hg with ⟨hg, m, hm⟩
[GOAL]
case prime.intro.intro
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
⊢ natDegree g = HasSeparableContraction.degree hf
[PROOFSTEP]
let g' := Classical.choose hf
[GOAL]
case prime.intro.intro
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
⊢ natDegree g = HasSeparableContraction.degree hf
[PROOFSTEP]
cases' (Classical.choose_spec hf).2 with m' hm'
[GOAL]
case prime.intro.intro.intro
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
m' : ℕ
hm' : ↑(expand F (q ^ m')) (choose hf) = f
⊢ natDegree g = HasSeparableContraction.degree hf
[PROOFSTEP]
haveI : Fact q.Prime := ⟨by assumption⟩
[GOAL]
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
m' : ℕ
hm' : ↑(expand F (q ^ m')) (choose hf) = f
⊢ Nat.Prime q
[PROOFSTEP]
assumption
[GOAL]
case prime.intro.intro.intro
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
m' : ℕ
hm' : ↑(expand F (q ^ m')) (choose hf) = f
this : Fact (Nat.Prime q)
⊢ natDegree g = HasSeparableContraction.degree hf
[PROOFSTEP]
apply contraction_degree_eq_or_insep q g g' m m'
[GOAL]
case prime.intro.intro.intro.h_expand
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
m' : ℕ
hm' : ↑(expand F (q ^ m')) (choose hf) = f
this : Fact (Nat.Prime q)
⊢ ↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g'
case prime.intro.intro.intro.hg
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
m' : ℕ
hm' : ↑(expand F (q ^ m')) (choose hf) = f
this : Fact (Nat.Prime q)
⊢ Separable g
case prime.intro.intro.intro.hg'
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
m' : ℕ
hm' : ↑(expand F (q ^ m')) (choose hf) = f
this : Fact (Nat.Prime q)
⊢ Separable g'
[PROOFSTEP]
rw [hm, hm']
[GOAL]
case prime.intro.intro.intro.hg
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
m' : ℕ
hm' : ↑(expand F (q ^ m')) (choose hf) = f
this : Fact (Nat.Prime q)
⊢ Separable g
case prime.intro.intro.intro.hg'
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
m' : ℕ
hm' : ↑(expand F (q ^ m')) (choose hf) = f
this : Fact (Nat.Prime q)
⊢ Separable g'
[PROOFSTEP]
exact hg
[GOAL]
case prime.intro.intro.intro.hg'
F : Type u_1
inst✝ : Field F
q : ℕ
f : F[X]
hf : HasSeparableContraction q f
g : F[X]
hprime✝ : Nat.Prime q
hchar✝ : CharP F q
hg : Separable g
m : ℕ
hm : ↑(expand F (q ^ m)) g = f
g' : F[X] := choose hf
m' : ℕ
hm' : ↑(expand F (q ^ m')) (choose hf) = f
this : Fact (Nat.Prime q)
⊢ Separable g'
[PROOFSTEP]
exact (Classical.choose_spec hf).1
|
{"mathlib_filename": "Mathlib.FieldTheory.SeparableDegree", "llama_tokens": 5613}
|
{"mathlib_filename": "Mathlib.Init.Classes.Order", "llama_tokens": 0}
|
|
[GOAL]
σ : Type u
K : Type v
inst✝ : Field K
I : Ideal (MvPolynomial σ K)
hI : I ≠ ⊤
⊢ Function.Injective ↑(RingHom.comp (Ideal.Quotient.mk I) C)
[PROOFSTEP]
refine' (injective_iff_map_eq_zero _).2 fun x hx => _
[GOAL]
σ : Type u
K : Type v
inst✝ : Field K
I : Ideal (MvPolynomial σ K)
hI : I ≠ ⊤
x : K
hx : ↑(RingHom.comp (Ideal.Quotient.mk I) C) x = 0
⊢ x = 0
[PROOFSTEP]
rw [RingHom.comp_apply, Ideal.Quotient.eq_zero_iff_mem] at hx
[GOAL]
σ : Type u
K : Type v
inst✝ : Field K
I : Ideal (MvPolynomial σ K)
hI : I ≠ ⊤
x : K
hx : ↑C x ∈ I
⊢ x = 0
[PROOFSTEP]
refine' _root_.by_contradiction fun hx0 => absurd (I.eq_top_iff_one.2 _) hI
[GOAL]
σ : Type u
K : Type v
inst✝ : Field K
I : Ideal (MvPolynomial σ K)
hI : I ≠ ⊤
x : K
hx : ↑C x ∈ I
hx0 : ¬x = 0
⊢ 1 ∈ I
[PROOFSTEP]
have := I.mul_mem_left (MvPolynomial.C x⁻¹) hx
[GOAL]
σ : Type u
K : Type v
inst✝ : Field K
I : Ideal (MvPolynomial σ K)
hI : I ≠ ⊤
x : K
hx : ↑C x ∈ I
hx0 : ¬x = 0
this : ↑C x⁻¹ * ↑C x ∈ I
⊢ 1 ∈ I
[PROOFSTEP]
rwa [← MvPolynomial.C.map_mul, inv_mul_cancel hx0, MvPolynomial.C_1] at this
[GOAL]
σ K : Type u
inst✝ : Field K
⊢ Module.rank K (MvPolynomial σ K) = Cardinal.mk (σ →₀ ℕ)
[PROOFSTEP]
rw [← Cardinal.lift_inj, ← (basisMonomials σ K).mk_eq_rank]
|
{"mathlib_filename": "Mathlib.FieldTheory.MvPolynomial", "llama_tokens": 670}
|
[GOAL]
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
⊢ Surjective fun v i => ↑(MvPolynomial.eval v) (ps i)
[PROOFSTEP]
have is_int : ∀ x : R, IsIntegral K x := fun x => isAlgebraic_iff_isIntegral.1 (alg x)
[GOAL]
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
⊢ Surjective fun v i => ↑(MvPolynomial.eval v) (ps i)
[PROOFSTEP]
classical
intro v
cases nonempty_fintype ι
let s : Finset R :=
(Finset.biUnion (univ : Finset ι) fun i => (ps i).support.image fun x => coeff x (ps i)) ∪ (univ : Finset ι).image v
have hv : ∀ i, v i ∈ Algebra.adjoin K (s : Set R) := fun j =>
Algebra.subset_adjoin (mem_union_right _ (mem_image.2 ⟨j, mem_univ _, rfl⟩))
have hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ (ps i).support → coeff k (ps i) ∈ Algebra.adjoin K (s : Set R) := fun i k hk =>
Algebra.subset_adjoin (mem_union_left _ (mem_biUnion.2 ⟨i, mem_univ _, mem_image_of_mem _ hk⟩))
letI := isNoetherian_adjoin_finset s fun x _ => is_int x
letI := Module.IsNoetherian.finite K (Algebra.adjoin K (s : Set R))
letI : Finite (Algebra.adjoin K (s : Set R)) :=
FiniteDimensional.finite_of_finite K
(Algebra.adjoin K (s : Set R))
-- The restriction of the polynomial map, `ps`, to the subalgebra generated by `s`
let res : (ι → Algebra.adjoin K (s : Set R)) → ι → Algebra.adjoin K (s : Set R) := fun x i =>
⟨eval (fun j : ι => (x j : R)) (ps i), eval_mem (hs₁ _) fun i => (x i).2⟩
have hres_inj : Injective res := by
intro x y hxy
ext i
simp only [Subtype.ext_iff, funext_iff] at hxy
exact congr_fun (hinj (funext hxy)) i
have hres_surj : Surjective res := Finite.injective_iff_surjective.1 hres_inj
cases' hres_surj fun i => ⟨v i, hv i⟩ with w hw
use fun i => w i
simpa only [Subtype.ext_iff, funext_iff] using hw
[GOAL]
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
⊢ Surjective fun v i => ↑(MvPolynomial.eval v) (ps i)
[PROOFSTEP]
intro v
[GOAL]
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
let s : Finset R :=
(Finset.biUnion (univ : Finset ι) fun i => (ps i).support.image fun x => coeff x (ps i)) ∪ (univ : Finset ι).image v
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
have hv : ∀ i, v i ∈ Algebra.adjoin K (s : Set R) := fun j =>
Algebra.subset_adjoin (mem_union_right _ (mem_image.2 ⟨j, mem_univ _, rfl⟩))
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
have hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ (ps i).support → coeff k (ps i) ∈ Algebra.adjoin K (s : Set R) := fun i k hk =>
Algebra.subset_adjoin (mem_union_left _ (mem_biUnion.2 ⟨i, mem_univ _, mem_image_of_mem _ hk⟩))
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
letI := isNoetherian_adjoin_finset s fun x _ => is_int x
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
letI := Module.IsNoetherian.finite K (Algebra.adjoin K (s : Set R))
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
letI : Finite (Algebra.adjoin K (s : Set R)) :=
FiniteDimensional.finite_of_finite K
(Algebra.adjoin K (s : Set R))
-- The restriction of the polynomial map, `ps`, to the subalgebra generated by `s`
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
let res : (ι → Algebra.adjoin K (s : Set R)) → ι → Algebra.adjoin K (s : Set R) := fun x i =>
⟨eval (fun j : ι => (x j : R)) (ps i), eval_mem (hs₁ _) fun i => (x i).2⟩
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } :=
fun x i =>
{ val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i),
property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) }
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
have hres_inj : Injective res := by
intro x y hxy
ext i
simp only [Subtype.ext_iff, funext_iff] at hxy
exact congr_fun (hinj (funext hxy)) i
[GOAL]
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } :=
fun x i =>
{ val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i),
property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) }
⊢ Injective res
[PROOFSTEP]
intro x y hxy
[GOAL]
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } :=
fun x i =>
{ val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i),
property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) }
x y : ι → { x // x ∈ Algebra.adjoin K ↑s }
hxy : res x = res y
⊢ x = y
[PROOFSTEP]
ext i
[GOAL]
case h.a
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } :=
fun x i =>
{ val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i),
property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) }
x y : ι → { x // x ∈ Algebra.adjoin K ↑s }
hxy : res x = res y
i : ι
⊢ ↑(x i) = ↑(y i)
[PROOFSTEP]
simp only [Subtype.ext_iff, funext_iff] at hxy
[GOAL]
case h.a
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } :=
fun x i =>
{ val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i),
property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) }
x y : ι → { x // x ∈ Algebra.adjoin K ↑s }
i : ι
hxy : ∀ (a : ι), ↑(MvPolynomial.eval fun j => ↑(x j)) (ps a) = ↑(MvPolynomial.eval fun j => ↑(y j)) (ps a)
⊢ ↑(x i) = ↑(y i)
[PROOFSTEP]
exact congr_fun (hinj (funext hxy)) i
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } :=
fun x i =>
{ val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i),
property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) }
hres_inj : Injective res
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
have hres_surj : Surjective res := Finite.injective_iff_surjective.1 hres_inj
[GOAL]
case intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } :=
fun x i =>
{ val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i),
property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) }
hres_inj : Injective res
hres_surj : Surjective res
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
cases' hres_surj fun i => ⟨v i, hv i⟩ with w hw
[GOAL]
case intro.intro
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } :=
fun x i =>
{ val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i),
property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) }
hres_inj : Injective res
hres_surj : Surjective res
w : ι → { x // x ∈ Algebra.adjoin K ↑s }
hw : res w = fun i => { val := v i, property := (_ : v i ∈ Algebra.adjoin K ↑s) }
⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v
[PROOFSTEP]
use fun i => w i
[GOAL]
case h
ι : Type u_1
K : Type u_2
R : Type u_3
inst✝⁴ : Field K
inst✝³ : Finite K
inst✝² : CommRing R
inst✝¹ : Finite ι
inst✝ : Algebra K R
alg : Algebra.IsAlgebraic K R
ps : ι → MvPolynomial ι R
hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i)
is_int : ∀ (x : R), IsIntegral K x
v : (i : ι) → (fun x => R) (ps i)
val✝ : Fintype ι
s : Finset R :=
(Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ
hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s
hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s
this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x
this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } :=
Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s }
this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s }
res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } :=
fun x i =>
{ val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i),
property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) }
hres_inj : Injective res
hres_surj : Surjective res
w : ι → { x // x ∈ Algebra.adjoin K ↑s }
hw : res w = fun i => { val := v i, property := (_ : v i ∈ Algebra.adjoin K ↑s) }
⊢ ((fun v i => ↑(MvPolynomial.eval v) (ps i)) fun i => ↑(w i)) = v
[PROOFSTEP]
simpa only [Subtype.ext_iff, funext_iff] using hw
|
{"mathlib_filename": "Mathlib.FieldTheory.AxGrothendieck", "llama_tokens": 10160}
|
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
⊢ restrictScalars F (normalClosure F K L) = ⨆ (x : K), adjoin F (rootSet (minpoly F x) L)
[PROOFSTEP]
classical
have hi : ∀ x : K, IsIntegral F x := fun x ↦ (isIntegral_algebraMap_iff (algebraMap K L).injective).mp (h.isIntegral _)
refine' le_antisymm (iSup_le _) (iSup_le fun x => adjoin_le_iff.mpr fun y hy => _)
· rintro f _ ⟨x, rfl⟩
refine' le_iSup (fun x => adjoin F ((minpoly F x).rootSet L)) x (subset_adjoin F ((minpoly F x).rootSet L) _)
rw [mem_rootSet_of_ne (minpoly.ne_zero (hi x)), AlgHom.toRingHom_eq_coe, AlgHom.coe_toRingHom,
Polynomial.aeval_algHom_apply, minpoly.aeval, map_zero]
· rw [Polynomial.rootSet, Finset.mem_coe, Multiset.mem_toFinset] at hy
let g := (algHomAdjoinIntegralEquiv F (hi x)).symm ⟨y, hy⟩
refine'
le_iSup (fun f : K →ₐ[F] L => f.fieldRange) ((g.liftNormal L).comp (toAlgHom F K L))
⟨x, (g.liftNormal_commutes L (AdjoinSimple.gen F x)).trans _⟩
rw [Algebra.id.map_eq_id, RingHom.id_apply]
-- Porting note: in mathlib3 this next `apply` closed the goal.
-- Now it can't find a proof by unification, so we have to do it ourselves.
apply PowerBasis.lift_gen
change aeval y (minpoly F (AdjoinSimple.gen F x)) = 0
exact minpoly_gen (hi x) ▸ aeval_eq_zero_of_mem_rootSet (Multiset.mem_toFinset.mpr hy)
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
⊢ restrictScalars F (normalClosure F K L) = ⨆ (x : K), adjoin F (rootSet (minpoly F x) L)
[PROOFSTEP]
have hi : ∀ x : K, IsIntegral F x := fun x ↦ (isIntegral_algebraMap_iff (algebraMap K L).injective).mp (h.isIntegral _)
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
⊢ restrictScalars F (normalClosure F K L) = ⨆ (x : K), adjoin F (rootSet (minpoly F x) L)
[PROOFSTEP]
refine' le_antisymm (iSup_le _) (iSup_le fun x => adjoin_le_iff.mpr fun y hy => _)
[GOAL]
case refine'_1
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
⊢ ∀ (i : K →ₐ[F] L), AlgHom.fieldRange i ≤ ⨆ (x : K), adjoin F (rootSet (minpoly F x) L)
[PROOFSTEP]
rintro f _ ⟨x, rfl⟩
[GOAL]
case refine'_1.intro
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
f : K →ₐ[F] L
x : K
⊢ ↑↑f x ∈ ⨆ (x : K), adjoin F (rootSet (minpoly F x) L)
[PROOFSTEP]
refine' le_iSup (fun x => adjoin F ((minpoly F x).rootSet L)) x (subset_adjoin F ((minpoly F x).rootSet L) _)
[GOAL]
case refine'_1.intro
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
f : K →ₐ[F] L
x : K
⊢ ↑↑f x ∈ rootSet (minpoly F x) L
[PROOFSTEP]
rw [mem_rootSet_of_ne (minpoly.ne_zero (hi x)), AlgHom.toRingHom_eq_coe, AlgHom.coe_toRingHom,
Polynomial.aeval_algHom_apply, minpoly.aeval, map_zero]
[GOAL]
case refine'_2
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
x : K
y : L
hy : y ∈ rootSet (minpoly F x) L
⊢ y ∈ ↑(restrictScalars F (normalClosure F K L))
[PROOFSTEP]
rw [Polynomial.rootSet, Finset.mem_coe, Multiset.mem_toFinset] at hy
[GOAL]
case refine'_2
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
x : K
y : L
hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x))
⊢ y ∈ ↑(restrictScalars F (normalClosure F K L))
[PROOFSTEP]
let g := (algHomAdjoinIntegralEquiv F (hi x)).symm ⟨y, hy⟩
[GOAL]
case refine'_2
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
x : K
y : L
hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x))
g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } :=
↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy }
⊢ y ∈ ↑(restrictScalars F (normalClosure F K L))
[PROOFSTEP]
refine'
le_iSup (fun f : K →ₐ[F] L => f.fieldRange) ((g.liftNormal L).comp (toAlgHom F K L))
⟨x, (g.liftNormal_commutes L (AdjoinSimple.gen F x)).trans _⟩
[GOAL]
case refine'_2
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
x : K
y : L
hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x))
g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } :=
↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy }
⊢ ↑(algebraMap L L) (↑g (AdjoinSimple.gen F x)) = y
[PROOFSTEP]
rw [Algebra.id.map_eq_id, RingHom.id_apply]
-- Porting note: in mathlib3 this next `apply` closed the goal.
-- Now it can't find a proof by unification, so we have to do it ourselves.
[GOAL]
case refine'_2
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
x : K
y : L
hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x))
g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } :=
↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy }
⊢ ↑g (AdjoinSimple.gen F x) = y
[PROOFSTEP]
apply PowerBasis.lift_gen
[GOAL]
case refine'_2.hy
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
x : K
y : L
hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x))
g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } :=
↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy }
⊢ ↑(aeval
↑(↑(Equiv.subtypeEquiv (Equiv.refl L)
(_ :
∀ (x_1 : L),
↑(aeval x_1) (minpoly F (adjoin.powerBasis (_ : IsIntegral F x)).gen) = 0 ↔
↑(Equiv.refl L) x_1 ∈
roots
(Polynomial.map (algebraMap F L)
(minpoly F (adjoin.powerBasis (_ : IsIntegral F x)).gen)))).symm
(↑(Equiv.subtypeEquiv (Equiv.refl L)
(_ :
∀ (x_1 : L),
x_1 ∈
roots
(Polynomial.map (algebraMap F L)
(minpoly F (adjoin.powerBasis (_ : IsIntegral F x)).gen)) ↔
↑(Equiv.refl L) x_1 ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x)))).symm
{ val := y, property := hy })))
(minpoly F (adjoin.powerBasis (_ : IsIntegral F x)).gen) =
0
[PROOFSTEP]
change aeval y (minpoly F (AdjoinSimple.gen F x)) = 0
[GOAL]
case refine'_2.hy
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
hi : ∀ (x : K), IsIntegral F x
x : K
y : L
hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x))
g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } :=
↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy }
⊢ ↑(aeval y) (minpoly F (AdjoinSimple.gen F x)) = 0
[PROOFSTEP]
exact minpoly_gen (hi x) ▸ aeval_eq_zero_of_mem_rootSet (Multiset.mem_toFinset.mpr hy)
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
⊢ Normal F { x // x ∈ normalClosure F K L }
[PROOFSTEP]
let ϕ := algebraMap K L
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
ϕ : K →+* L := algebraMap K L
⊢ Normal F { x // x ∈ normalClosure F K L }
[PROOFSTEP]
rw [← IntermediateField.restrictScalars_normal, restrictScalars_eq_iSup_adjoin]
-- Porting note: use the `(_)` trick to obtain an instance by unification.
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
ϕ : K →+* L := algebraMap K L
⊢ Normal F { x // x ∈ ⨆ (x : K), adjoin F (rootSet (minpoly F x) L) }
[PROOFSTEP]
apply IntermediateField.normal_iSup (h := _)
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
ϕ : K →+* L := algebraMap K L
⊢ ∀ (i : K), Normal F { x // x ∈ adjoin F (rootSet (minpoly F i) L) }
[PROOFSTEP]
intro x
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
ϕ : K →+* L := algebraMap K L
x : K
⊢ Normal F { x_1 // x_1 ∈ adjoin F (rootSet (minpoly F x) L) }
[PROOFSTEP]
apply Normal.of_isSplittingField (p := minpoly F x) (hFEp := _)
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : Algebra K L
inst✝ : IsScalarTower F K L
h : Normal F L
ϕ : K →+* L := algebraMap K L
x : K
⊢ IsSplittingField F { x_1 // x_1 ∈ adjoin F (rootSet (minpoly F x) L) } (minpoly F x)
[PROOFSTEP]
exact
adjoin_rootSet_isSplittingField
((minpoly.eq_of_algebraMap_eq ϕ.injective ((isIntegral_algebraMap_iff ϕ.injective).mp (h.isIntegral (ϕ x)))
rfl).symm ▸
h.splits _)
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁷ : Field F
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : Algebra F K
inst✝³ : Algebra F L
inst✝² : Algebra K L
inst✝¹ : IsScalarTower F K L
inst✝ : FiniteDimensional F K
⊢ FiniteDimensional F { x // x ∈ normalClosure F K L }
[PROOFSTEP]
haveI : ∀ f : K →ₐ[F] L, FiniteDimensional F f.fieldRange := fun f => f.toLinearMap.finiteDimensional_range
[GOAL]
F : Type u_1
K : Type u_2
L : Type u_3
inst✝⁷ : Field F
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : Algebra F K
inst✝³ : Algebra F L
inst✝² : Algebra K L
inst✝¹ : IsScalarTower F K L
inst✝ : FiniteDimensional F K
this : ∀ (f : K →ₐ[F] L), FiniteDimensional F { x // x ∈ AlgHom.fieldRange f }
⊢ FiniteDimensional F { x // x ∈ normalClosure F K L }
[PROOFSTEP]
apply IntermediateField.finiteDimensional_iSup_of_finite
|
{"mathlib_filename": "Mathlib.FieldTheory.NormalClosure", "llama_tokens": 5448}
|
[GOAL]
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x : A ⊗[R] L
⊢ ⁅x, x⁆ = 0
[PROOFSTEP]
simp only [bracket_def]
[GOAL]
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x : A ⊗[R] L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) x = 0
[PROOFSTEP]
refine' x.induction_on _ _ _
[GOAL]
case refine'_1
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x : A ⊗[R] L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) 0 = 0
[PROOFSTEP]
simp only [LinearMap.map_zero, eq_self_iff_true, LinearMap.zero_apply]
[GOAL]
case refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x : A ⊗[R] L
⊢ ∀ (x : A) (y : L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y)) (x ⊗ₜ[R] y) = 0
[PROOFSTEP]
intro a l
[GOAL]
case refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x : A ⊗[R] L
a : A
l : L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a ⊗ₜ[R] l)) (a ⊗ₜ[R] l) = 0
[PROOFSTEP]
simp only [bracket'_tmul, TensorProduct.tmul_zero, eq_self_iff_true, lie_self]
[GOAL]
case refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x : A ⊗[R] L
⊢ ∀ (x y : A ⊗[R] L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) x = 0 →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) y = 0 →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y)) (x + y) = 0
[PROOFSTEP]
intro z₁ z₂ h₁ h₂
[GOAL]
case refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (z₁ + z₂)) (z₁ + z₂) = 0
[PROOFSTEP]
suffices bracket' R A L z₁ z₂ + bracket' R A L z₂ z₁ = 0 by
rw [LinearMap.map_add, LinearMap.map_add, LinearMap.add_apply, LinearMap.add_apply, h₁, h₂, zero_add, add_zero,
add_comm, this]
[GOAL]
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
this : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₁ = 0
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (z₁ + z₂)) (z₁ + z₂) = 0
[PROOFSTEP]
rw [LinearMap.map_add, LinearMap.map_add, LinearMap.add_apply, LinearMap.add_apply, h₁, h₂, zero_add, add_zero,
add_comm, this]
[GOAL]
case refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₁ = 0
[PROOFSTEP]
refine' z₁.induction_on _ _ _
[GOAL]
case refine'_3.refine'_1
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) 0 = 0
[PROOFSTEP]
simp only [LinearMap.map_zero, add_zero, LinearMap.zero_apply]
[GOAL]
case refine'_3.refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
⊢ ∀ (x : A) (y : L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y)) z₂ +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) (x ⊗ₜ[R] y) =
0
[PROOFSTEP]
intro a₁ l₁
[GOAL]
case refine'_3.refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
a₁ : A
l₁ : L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z₂ +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) (a₁ ⊗ₜ[R] l₁) =
0
[PROOFSTEP]
refine' z₂.induction_on _ _ _
[GOAL]
case refine'_3.refine'_2.refine'_1
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
a₁ : A
l₁ : L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) 0 +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) (a₁ ⊗ₜ[R] l₁) =
0
[PROOFSTEP]
simp only [LinearMap.map_zero, add_zero, LinearMap.zero_apply]
[GOAL]
case refine'_3.refine'_2.refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
a₁ : A
l₁ : L
⊢ ∀ (x : A) (y : L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x ⊗ₜ[R] y) +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y)) (a₁ ⊗ₜ[R] l₁) =
0
[PROOFSTEP]
intro a₂ l₂
[GOAL]
case refine'_3.refine'_2.refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
a₁ : A
l₁ : L
a₂ : A
l₂ : L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂) +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (a₁ ⊗ₜ[R] l₁) =
0
[PROOFSTEP]
simp only [← lie_skew l₂ l₁, mul_comm a₁ a₂, TensorProduct.tmul_neg, bracket'_tmul, add_right_neg]
[GOAL]
case refine'_3.refine'_2.refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
a₁ : A
l₁ : L
⊢ ∀ (x y : A ⊗[R] L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) x +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) (a₁ ⊗ₜ[R] l₁) =
0 →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (a₁ ⊗ₜ[R] l₁) =
0 →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x + y) +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y)) (a₁ ⊗ₜ[R] l₁) =
0
[PROOFSTEP]
intro y₁ y₂ hy₁ hy₂
[GOAL]
case refine'_3.refine'_2.refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
a₁ : A
l₁ : L
y₁ y₂ : A ⊗[R] L
hy₁ :
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y₁ +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y₁) (a₁ ⊗ₜ[R] l₁) =
0
hy₂ :
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y₂ +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y₂) (a₁ ⊗ₜ[R] l₁) =
0
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (y₁ + y₂) +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (y₁ + y₂)) (a₁ ⊗ₜ[R] l₁) =
0
[PROOFSTEP]
simp only [hy₁, hy₂, add_add_add_comm, add_zero, LinearMap.add_apply, LinearMap.map_add]
[GOAL]
case refine'_3.refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
⊢ ∀ (x y : A ⊗[R] L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) x = 0 →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) y = 0 →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y)) z₂ +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) (x + y) =
0
[PROOFSTEP]
intro y₁ y₂ hy₁ hy₂
[GOAL]
case refine'_3.refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x z₁ z₂ : A ⊗[R] L
h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0
h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0
y₁ y₂ : A ⊗[R] L
hy₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y₁) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) y₁ = 0
hy₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y₂) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) y₂ = 0
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (y₁ + y₂)) z₂ +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) (y₁ + y₂) =
0
[PROOFSTEP]
simp only [add_add_add_comm, hy₁, hy₂, add_zero, LinearMap.add_apply, LinearMap.map_add]
[GOAL]
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
⊢ ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆
[PROOFSTEP]
simp only [bracket_def]
[GOAL]
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) z)
[PROOFSTEP]
refine' x.induction_on _ _ _
[GOAL]
case refine'_1
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) z)
[PROOFSTEP]
simp only [LinearMap.map_zero, add_zero, LinearMap.zero_apply]
[GOAL]
case refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
⊢ ∀ (x : A) (y_1 : L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y_1)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y_1)) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y_1)) z)
[PROOFSTEP]
intro a₁ l₁
[GOAL]
case refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z)
[PROOFSTEP]
refine' y.induction_on _ _ _
[GOAL]
case refine'_2.refine'_1
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) 0)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z)
[PROOFSTEP]
simp only [LinearMap.map_zero, add_zero, LinearMap.zero_apply]
[GOAL]
case refine'_2.refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
⊢ ∀ (x : A) (y : L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y)) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x ⊗ₜ[R] y)))
z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z)
[PROOFSTEP]
intro a₂ l₂
[GOAL]
case refine'_2.refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
a₂ : A
l₂ : L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z)
[PROOFSTEP]
refine' z.induction_on _ _ _
[GOAL]
case refine'_2.refine'_2.refine'_1
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
a₂ : A
l₂ : L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) 0) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
0 +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) 0)
[PROOFSTEP]
rw [LinearMap.map_zero, LinearMap.map_zero, LinearMap.map_zero, LinearMap.map_zero, add_zero]
[GOAL]
case refine'_2.refine'_2.refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
a₂ : A
l₂ : L
⊢ ∀ (x : A) (y : L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (x ⊗ₜ[R] y)) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
(x ⊗ₜ[R] y) +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x ⊗ₜ[R] y))
[PROOFSTEP]
intro a₃ l₃
[GOAL]
case refine'_2.refine'_2.refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
a₂ : A
l₂ : L
a₃ : A
l₃ : L
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (a₃ ⊗ₜ[R] l₃)) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
(a₃ ⊗ₜ[R] l₃) +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₃ ⊗ₜ[R] l₃))
[PROOFSTEP]
simp only [bracket'_tmul]
[GOAL]
case refine'_2.refine'_2.refine'_2
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
a₂ : A
l₂ : L
a₃ : A
l₃ : L
⊢ (a₁ * (a₂ * a₃)) ⊗ₜ[R] ⁅l₁, ⁅l₂, l₃⁆⁆ = (a₁ * a₂ * a₃) ⊗ₜ[R] ⁅⁅l₁, l₂⁆, l₃⁆ + (a₂ * (a₁ * a₃)) ⊗ₜ[R] ⁅l₂, ⁅l₁, l₃⁆⁆
[PROOFSTEP]
rw [mul_left_comm a₂ a₁ a₃, mul_assoc, leibniz_lie, TensorProduct.tmul_add]
[GOAL]
case refine'_2.refine'_2.refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
a₂ : A
l₂ : L
⊢ ∀ (x y : A ⊗[R] L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) x) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
x +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) x) →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) y) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
y +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y) →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (x + y)) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
(x + y) +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x + y))
[PROOFSTEP]
intro u₁ u₂ h₁ h₂
[GOAL]
case refine'_2.refine'_2.refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
a₂ : A
l₂ : L
u₁ u₂ : A ⊗[R] L
h₁ :
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) u₁) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
u₁ +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) u₁)
h₂ :
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) u₂) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
u₂ +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) u₂)
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (u₁ + u₂)) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂)))
(u₁ + u₂) +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (u₁ + u₂))
[PROOFSTEP]
rw [map_add, map_add, map_add, map_add, map_add, h₁, h₂, add_add_add_comm]
[GOAL]
case refine'_2.refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
⊢ ∀ (x y : A ⊗[R] L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) x))
z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y))
z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y)) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x + y)))
z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z)
[PROOFSTEP]
intro u₁ u₂ h₁ h₂
[GOAL]
case refine'_2.refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
a₁ : A
l₁ : L
u₁ u₂ : A ⊗[R] L
h₁ :
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) u₁)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z)
h₂ :
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) u₂)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z)
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂)) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L)
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (u₁ + u₂)))
z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂))
(↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z)
[PROOFSTEP]
rw [map_add, LinearMap.add_apply, LinearMap.add_apply, map_add, map_add, map_add, LinearMap.add_apply, h₁, h₂,
add_add_add_comm]
[GOAL]
case refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
⊢ ∀ (x y_1 : A ⊗[R] L),
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) z) →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y_1) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y_1) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y_1) z) →
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y_1)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y_1)) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y_1)) z)
[PROOFSTEP]
intro u₁ u₂ h₁ h₂
[GOAL]
case refine'_3
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z u₁ u₂ : A ⊗[R] L
h₁ :
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) z)
h₂ :
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) z)
⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) =
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂)) y)) z +
↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂)) z)
[PROOFSTEP]
rw [map_add, LinearMap.add_apply, LinearMap.add_apply, LinearMap.add_apply, map_add, map_add, LinearMap.add_apply, h₁,
h₂, add_add_add_comm]
[GOAL]
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
⊢ ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆
[PROOFSTEP]
simp only [bracket_def, LinearMap.add_apply, LinearMap.map_add]
[GOAL]
R : Type u
A : Type w
L : Type v
inst✝⁴ : CommRing R
inst✝³ : CommRing A
inst✝² : Algebra R A
inst✝¹ : LieRing L
inst✝ : LieAlgebra R L
x y z : A ⊗[R] L
⊢ ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆
[PROOFSTEP]
simp only [bracket_def, LinearMap.map_add]
|
{"mathlib_filename": "Mathlib.Algebra.Lie.BaseChange", "llama_tokens": 14217}
|
[GOAL]
F : Type u
K : Type v
A : Type w
inst✝¹⁰ : CommRing F
inst✝⁹ : Ring K
inst✝⁸ : AddCommGroup A
inst✝⁷ : Algebra F K
inst✝⁶ : Module K A
inst✝⁵ : Module F A
inst✝⁴ : IsScalarTower F K A
inst✝³ : StrongRankCondition F
inst✝² : StrongRankCondition K
inst✝¹ : Module.Free F K
inst✝ : Module.Free K A
⊢ lift (Module.rank F K) * lift (Module.rank K A) = lift (Module.rank F A)
[PROOFSTEP]
obtain ⟨_, b⟩ := Module.Free.exists_basis (R := F) (M := K)
[GOAL]
case intro.mk
F : Type u
K : Type v
A : Type w
inst✝¹⁰ : CommRing F
inst✝⁹ : Ring K
inst✝⁸ : AddCommGroup A
inst✝⁷ : Algebra F K
inst✝⁶ : Module K A
inst✝⁵ : Module F A
inst✝⁴ : IsScalarTower F K A
inst✝³ : StrongRankCondition F
inst✝² : StrongRankCondition K
inst✝¹ : Module.Free F K
inst✝ : Module.Free K A
fst✝ : Type v
b : Basis fst✝ F K
⊢ lift (Module.rank F K) * lift (Module.rank K A) = lift (Module.rank F A)
[PROOFSTEP]
obtain ⟨_, c⟩ := Module.Free.exists_basis (R := K) (M := A)
[GOAL]
case intro.mk.intro.mk
F : Type u
K : Type v
A : Type w
inst✝¹⁰ : CommRing F
inst✝⁹ : Ring K
inst✝⁸ : AddCommGroup A
inst✝⁷ : Algebra F K
inst✝⁶ : Module K A
inst✝⁵ : Module F A
inst✝⁴ : IsScalarTower F K A
inst✝³ : StrongRankCondition F
inst✝² : StrongRankCondition K
inst✝¹ : Module.Free F K
inst✝ : Module.Free K A
fst✝¹ : Type v
b : Basis fst✝¹ F K
fst✝ : Type w
c : Basis fst✝ K A
⊢ lift (Module.rank F K) * lift (Module.rank K A) = lift (Module.rank F A)
[PROOFSTEP]
rw [← (Module.rank F K).lift_id, ← b.mk_eq_rank, ← (Module.rank K A).lift_id, ← c.mk_eq_rank, ← lift_umax.{w, v}, ←
(b.smul c).mk_eq_rank, mk_prod, lift_mul, lift_lift, lift_lift, lift_lift, lift_lift, lift_umax.{v, w}]
[GOAL]
F✝ : Type u
K✝ : Type v
A✝ : Type w
inst✝²¹ : CommRing F✝
inst✝²⁰ : Ring K✝
inst✝¹⁹ : AddCommGroup A✝
inst✝¹⁸ : Algebra F✝ K✝
inst✝¹⁷ : Module K✝ A✝
inst✝¹⁶ : Module F✝ A✝
inst✝¹⁵ : IsScalarTower F✝ K✝ A✝
inst✝¹⁴ : StrongRankCondition F✝
inst✝¹³ : StrongRankCondition K✝
inst✝¹² : Module.Free F✝ K✝
inst✝¹¹ : Module.Free K✝ A✝
F : Type u
K A : Type v
inst✝¹⁰ : CommRing F
inst✝⁹ : Ring K
inst✝⁸ : AddCommGroup A
inst✝⁷ : Algebra F K
inst✝⁶ : Module K A
inst✝⁵ : Module F A
inst✝⁴ : IsScalarTower F K A
inst✝³ : StrongRankCondition F
inst✝² : StrongRankCondition K
inst✝¹ : Module.Free F K
inst✝ : Module.Free K A
⊢ Module.rank F K * Module.rank K A = Module.rank F A
[PROOFSTEP]
convert lift_rank_mul_lift_rank F K A
[GOAL]
case h.e'_2.h.e'_5
F✝ : Type u
K✝ : Type v
A✝ : Type w
inst✝²¹ : CommRing F✝
inst✝²⁰ : Ring K✝
inst✝¹⁹ : AddCommGroup A✝
inst✝¹⁸ : Algebra F✝ K✝
inst✝¹⁷ : Module K✝ A✝
inst✝¹⁶ : Module F✝ A✝
inst✝¹⁵ : IsScalarTower F✝ K✝ A✝
inst✝¹⁴ : StrongRankCondition F✝
inst✝¹³ : StrongRankCondition K✝
inst✝¹² : Module.Free F✝ K✝
inst✝¹¹ : Module.Free K✝ A✝
F : Type u
K A : Type v
inst✝¹⁰ : CommRing F
inst✝⁹ : Ring K
inst✝⁸ : AddCommGroup A
inst✝⁷ : Algebra F K
inst✝⁶ : Module K A
inst✝⁵ : Module F A
inst✝⁴ : IsScalarTower F K A
inst✝³ : StrongRankCondition F
inst✝² : StrongRankCondition K
inst✝¹ : Module.Free F K
inst✝ : Module.Free K A
⊢ Module.rank F K = lift (Module.rank F K)
[PROOFSTEP]
rw [lift_id]
[GOAL]
case h.e'_2.h.e'_6
F✝ : Type u
K✝ : Type v
A✝ : Type w
inst✝²¹ : CommRing F✝
inst✝²⁰ : Ring K✝
inst✝¹⁹ : AddCommGroup A✝
inst✝¹⁸ : Algebra F✝ K✝
inst✝¹⁷ : Module K✝ A✝
inst✝¹⁶ : Module F✝ A✝
inst✝¹⁵ : IsScalarTower F✝ K✝ A✝
inst✝¹⁴ : StrongRankCondition F✝
inst✝¹³ : StrongRankCondition K✝
inst✝¹² : Module.Free F✝ K✝
inst✝¹¹ : Module.Free K✝ A✝
F : Type u
K A : Type v
inst✝¹⁰ : CommRing F
inst✝⁹ : Ring K
inst✝⁸ : AddCommGroup A
inst✝⁷ : Algebra F K
inst✝⁶ : Module K A
inst✝⁵ : Module F A
inst✝⁴ : IsScalarTower F K A
inst✝³ : StrongRankCondition F
inst✝² : StrongRankCondition K
inst✝¹ : Module.Free F K
inst✝ : Module.Free K A
⊢ Module.rank K A = lift (Module.rank K A)
[PROOFSTEP]
rw [lift_id]
[GOAL]
case h.e'_3
F✝ : Type u
K✝ : Type v
A✝ : Type w
inst✝²¹ : CommRing F✝
inst✝²⁰ : Ring K✝
inst✝¹⁹ : AddCommGroup A✝
inst✝¹⁸ : Algebra F✝ K✝
inst✝¹⁷ : Module K✝ A✝
inst✝¹⁶ : Module F✝ A✝
inst✝¹⁵ : IsScalarTower F✝ K✝ A✝
inst✝¹⁴ : StrongRankCondition F✝
inst✝¹³ : StrongRankCondition K✝
inst✝¹² : Module.Free F✝ K✝
inst✝¹¹ : Module.Free K✝ A✝
F : Type u
K A : Type v
inst✝¹⁰ : CommRing F
inst✝⁹ : Ring K
inst✝⁸ : AddCommGroup A
inst✝⁷ : Algebra F K
inst✝⁶ : Module K A
inst✝⁵ : Module F A
inst✝⁴ : IsScalarTower F K A
inst✝³ : StrongRankCondition F
inst✝² : StrongRankCondition K
inst✝¹ : Module.Free F K
inst✝ : Module.Free K A
⊢ Module.rank F A = lift (Module.rank F A)
[PROOFSTEP]
rw [lift_id]
[GOAL]
F : Type u
K : Type v
A : Type w
inst✝¹² : CommRing F
inst✝¹¹ : Ring K
inst✝¹⁰ : AddCommGroup A
inst✝⁹ : Algebra F K
inst✝⁸ : Module K A
inst✝⁷ : Module F A
inst✝⁶ : IsScalarTower F K A
inst✝⁵ : StrongRankCondition F
inst✝⁴ : StrongRankCondition K
inst✝³ : Module.Free F K
inst✝² : Module.Free K A
inst✝¹ : Module.Finite F K
inst✝ : Module.Finite K A
⊢ finrank F K * finrank K A = finrank F A
[PROOFSTEP]
letI := nontrivial_of_invariantBasisNumber F
[GOAL]
F : Type u
K : Type v
A : Type w
inst✝¹² : CommRing F
inst✝¹¹ : Ring K
inst✝¹⁰ : AddCommGroup A
inst✝⁹ : Algebra F K
inst✝⁸ : Module K A
inst✝⁷ : Module F A
inst✝⁶ : IsScalarTower F K A
inst✝⁵ : StrongRankCondition F
inst✝⁴ : StrongRankCondition K
inst✝³ : Module.Free F K
inst✝² : Module.Free K A
inst✝¹ : Module.Finite F K
inst✝ : Module.Finite K A
this : Nontrivial F := nontrivial_of_invariantBasisNumber F
⊢ finrank F K * finrank K A = finrank F A
[PROOFSTEP]
let b := Module.Free.chooseBasis F K
[GOAL]
F : Type u
K : Type v
A : Type w
inst✝¹² : CommRing F
inst✝¹¹ : Ring K
inst✝¹⁰ : AddCommGroup A
inst✝⁹ : Algebra F K
inst✝⁸ : Module K A
inst✝⁷ : Module F A
inst✝⁶ : IsScalarTower F K A
inst✝⁵ : StrongRankCondition F
inst✝⁴ : StrongRankCondition K
inst✝³ : Module.Free F K
inst✝² : Module.Free K A
inst✝¹ : Module.Finite F K
inst✝ : Module.Finite K A
this : Nontrivial F := nontrivial_of_invariantBasisNumber F
b : Basis (Module.Free.ChooseBasisIndex F K) F K := Module.Free.chooseBasis F K
⊢ finrank F K * finrank K A = finrank F A
[PROOFSTEP]
let c := Module.Free.chooseBasis K A
[GOAL]
F : Type u
K : Type v
A : Type w
inst✝¹² : CommRing F
inst✝¹¹ : Ring K
inst✝¹⁰ : AddCommGroup A
inst✝⁹ : Algebra F K
inst✝⁸ : Module K A
inst✝⁷ : Module F A
inst✝⁶ : IsScalarTower F K A
inst✝⁵ : StrongRankCondition F
inst✝⁴ : StrongRankCondition K
inst✝³ : Module.Free F K
inst✝² : Module.Free K A
inst✝¹ : Module.Finite F K
inst✝ : Module.Finite K A
this : Nontrivial F := nontrivial_of_invariantBasisNumber F
b : Basis (Module.Free.ChooseBasisIndex F K) F K := Module.Free.chooseBasis F K
c : Basis (Module.Free.ChooseBasisIndex K A) K A := Module.Free.chooseBasis K A
⊢ finrank F K * finrank K A = finrank F A
[PROOFSTEP]
rw [finrank_eq_card_basis b, finrank_eq_card_basis c, finrank_eq_card_basis (b.smul c), Fintype.card_prod]
[GOAL]
F : Type u
K : Type v
A : Type w
inst✝⁶ : Field F
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup A
inst✝³ : Algebra F K
inst✝² : Module K A
inst✝¹ : Module F A
inst✝ : IsScalarTower F K A
hf : FiniteDimensional F A
b : Finset A
hb : span F ↑b = ⊤
⊢ restrictScalars F (span K ↑b) = restrictScalars F ⊤
[PROOFSTEP]
rw [Submodule.restrictScalars_top, eq_top_iff, ← hb, Submodule.span_le]
[GOAL]
F : Type u
K : Type v
A : Type w
inst✝⁶ : Field F
inst✝⁵ : DivisionRing K
inst✝⁴ : AddCommGroup A
inst✝³ : Algebra F K
inst✝² : Module K A
inst✝¹ : Module F A
inst✝ : IsScalarTower F K A
hf : FiniteDimensional F A
b : Finset A
hb : span F ↑b = ⊤
⊢ ↑b ⊆ ↑(restrictScalars F (span K ↑b))
[PROOFSTEP]
exact Submodule.subset_span
[GOAL]
F : Type u
K : Type v
A : Type w
inst✝⁷ : Field F
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup A
inst✝⁴ : Algebra F K
inst✝³ : Module K A
inst✝² : Module F A
inst✝¹ : IsScalarTower F K A
inst✝ : FiniteDimensional F K
⊢ finrank F K * finrank K A = finrank F A
[PROOFSTEP]
by_cases hA : FiniteDimensional K A
[GOAL]
case pos
F : Type u
K : Type v
A : Type w
inst✝⁷ : Field F
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup A
inst✝⁴ : Algebra F K
inst✝³ : Module K A
inst✝² : Module F A
inst✝¹ : IsScalarTower F K A
inst✝ : FiniteDimensional F K
hA : FiniteDimensional K A
⊢ finrank F K * finrank K A = finrank F A
[PROOFSTEP]
replace hA : FiniteDimensional K A := hA
[GOAL]
case pos
F : Type u
K : Type v
A : Type w
inst✝⁷ : Field F
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup A
inst✝⁴ : Algebra F K
inst✝³ : Module K A
inst✝² : Module F A
inst✝¹ : IsScalarTower F K A
inst✝ : FiniteDimensional F K
hA : FiniteDimensional K A
⊢ finrank F K * finrank K A = finrank F A
[PROOFSTEP]
rw [finrank_mul_finrank']
[GOAL]
case neg
F : Type u
K : Type v
A : Type w
inst✝⁷ : Field F
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup A
inst✝⁴ : Algebra F K
inst✝³ : Module K A
inst✝² : Module F A
inst✝¹ : IsScalarTower F K A
inst✝ : FiniteDimensional F K
hA : ¬FiniteDimensional K A
⊢ finrank F K * finrank K A = finrank F A
[PROOFSTEP]
rw [finrank_of_infinite_dimensional hA, mul_zero, finrank_of_infinite_dimensional]
[GOAL]
case neg
F : Type u
K : Type v
A : Type w
inst✝⁷ : Field F
inst✝⁶ : DivisionRing K
inst✝⁵ : AddCommGroup A
inst✝⁴ : Algebra F K
inst✝³ : Module K A
inst✝² : Module F A
inst✝¹ : IsScalarTower F K A
inst✝ : FiniteDimensional F K
hA : ¬FiniteDimensional K A
⊢ ¬FiniteDimensional F A
[PROOFSTEP]
exact mt (@right F K A _ _ _ _ _ _ _) hA
[GOAL]
F : Type u
K✝ : Type v
A✝ : Type w
inst✝⁹ : Field F
inst✝⁸ : DivisionRing K✝
inst✝⁷ : AddCommGroup A✝
inst✝⁶ : Algebra F K✝
inst✝⁵ : Module K✝ A✝
inst✝⁴ : Module F A✝
inst✝³ : IsScalarTower F K✝ A✝
A : Type u_1
inst✝² : Ring A
inst✝¹ : IsDomain A
inst✝ : Algebra F A
hp : Nat.Prime (finrank F A)
K : Subalgebra F A
⊢ K = ⊥ ∨ K = ⊤
[PROOFSTEP]
haveI : FiniteDimensional _ _ := finiteDimensional_of_finrank hp.pos
[GOAL]
F : Type u
K✝ : Type v
A✝ : Type w
inst✝⁹ : Field F
inst✝⁸ : DivisionRing K✝
inst✝⁷ : AddCommGroup A✝
inst✝⁶ : Algebra F K✝
inst✝⁵ : Module K✝ A✝
inst✝⁴ : Module F A✝
inst✝³ : IsScalarTower F K✝ A✝
A : Type u_1
inst✝² : Ring A
inst✝¹ : IsDomain A
inst✝ : Algebra F A
hp : Nat.Prime (finrank F A)
K : Subalgebra F A
this : FiniteDimensional F A
⊢ K = ⊥ ∨ K = ⊤
[PROOFSTEP]
letI := divisionRingOfFiniteDimensional F K
[GOAL]
F : Type u
K✝ : Type v
A✝ : Type w
inst✝⁹ : Field F
inst✝⁸ : DivisionRing K✝
inst✝⁷ : AddCommGroup A✝
inst✝⁶ : Algebra F K✝
inst✝⁵ : Module K✝ A✝
inst✝⁴ : Module F A✝
inst✝³ : IsScalarTower F K✝ A✝
A : Type u_1
inst✝² : Ring A
inst✝¹ : IsDomain A
inst✝ : Algebra F A
hp : Nat.Prime (finrank F A)
K : Subalgebra F A
this✝ : FiniteDimensional F A
this : DivisionRing { x // x ∈ K } := divisionRingOfFiniteDimensional F { x // x ∈ K }
⊢ K = ⊥ ∨ K = ⊤
[PROOFSTEP]
refine' (hp.eq_one_or_self_of_dvd _ ⟨_, (finrank_mul_finrank F K A).symm⟩).imp _ fun h => _
[GOAL]
case refine'_1
F : Type u
K✝ : Type v
A✝ : Type w
inst✝⁹ : Field F
inst✝⁸ : DivisionRing K✝
inst✝⁷ : AddCommGroup A✝
inst✝⁶ : Algebra F K✝
inst✝⁵ : Module K✝ A✝
inst✝⁴ : Module F A✝
inst✝³ : IsScalarTower F K✝ A✝
A : Type u_1
inst✝² : Ring A
inst✝¹ : IsDomain A
inst✝ : Algebra F A
hp : Nat.Prime (finrank F A)
K : Subalgebra F A
this✝ : FiniteDimensional F A
this : DivisionRing { x // x ∈ K } := divisionRingOfFiniteDimensional F { x // x ∈ K }
⊢ finrank F { x // x ∈ K } = 1 → K = ⊥
[PROOFSTEP]
exact Subalgebra.eq_bot_of_finrank_one
[GOAL]
case refine'_2
F : Type u
K✝ : Type v
A✝ : Type w
inst✝⁹ : Field F
inst✝⁸ : DivisionRing K✝
inst✝⁷ : AddCommGroup A✝
inst✝⁶ : Algebra F K✝
inst✝⁵ : Module K✝ A✝
inst✝⁴ : Module F A✝
inst✝³ : IsScalarTower F K✝ A✝
A : Type u_1
inst✝² : Ring A
inst✝¹ : IsDomain A
inst✝ : Algebra F A
hp : Nat.Prime (finrank F A)
K : Subalgebra F A
this✝ : FiniteDimensional F A
this : DivisionRing { x // x ∈ K } := divisionRingOfFiniteDimensional F { x // x ∈ K }
h : finrank F { x // x ∈ K } = finrank F A
⊢ K = ⊤
[PROOFSTEP]
exact Algebra.toSubmodule_eq_top.1 (eq_top_of_finrank_eq <| K.finrank_toSubmodule.trans h)
|
{"mathlib_filename": "Mathlib.FieldTheory.Tower", "llama_tokens": 5895}
|
[GOAL]
R : Type u_1
p : ℕ
inst✝³ : CommSemiring R
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
⊢ RingHom.comp (frobenius R p) ↑(RingEquiv.symm (frobeniusEquiv R p)) = RingHom.id R
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u_1
p : ℕ
inst✝³ : CommSemiring R
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
x✝ : R
⊢ ↑(RingHom.comp (frobenius R p) ↑(RingEquiv.symm (frobeniusEquiv R p))) x✝ = ↑(RingHom.id R) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
p : ℕ
inst✝³ : CommSemiring R
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
⊢ RingHom.comp (↑(RingEquiv.symm (frobeniusEquiv R p))) (frobenius R p) = RingHom.id R
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u_1
p : ℕ
inst✝³ : CommSemiring R
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
x✝ : R
⊢ ↑(RingHom.comp (↑(RingEquiv.symm (frobeniusEquiv R p))) (frobenius R p)) x✝ = ↑(RingHom.id R) x✝
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
p : ℕ
inst✝³ : CommSemiring R
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
f : R[X]
⊢ ↑(expand R p) f = map (↑(RingEquiv.symm (frobeniusEquiv R p))) f ^ p
[PROOFSTEP]
rw [← (f.map (S := R) (frobeniusEquiv R p).symm).expand_char p, map_expand, map_map, frobenius_comp_frobeniusEquiv_symm,
map_id]
[GOAL]
R : Type u_1
p : ℕ
inst✝³ : CommSemiring R
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
f : R[X]
⊢ ¬Irreducible (↑(expand R p) f)
[PROOFSTEP]
have hp : Fact p.Prime := inferInstance
[GOAL]
R : Type u_1
p : ℕ
inst✝³ : CommSemiring R
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
f : R[X]
hp : Fact (Nat.Prime p)
⊢ ¬Irreducible (↑(expand R p) f)
[PROOFSTEP]
rw [polynomial_expand_eq]
[GOAL]
R : Type u_1
p : ℕ
inst✝³ : CommSemiring R
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP R p
inst✝ : PerfectRing R p
f : R[X]
hp : Fact (Nat.Prime p)
⊢ ¬Irreducible (map (↑(RingEquiv.symm (frobeniusEquiv R p))) f ^ p)
[PROOFSTEP]
exact fun hf ↦ hf.not_unit $ (of_irreducible_pow hp.out.ne_one hf).pow p
[GOAL]
R : Type ?u.337703
p : ℕ
inst✝⁶ : CommSemiring R
inst✝⁵ : Fact (Nat.Prime p)
inst✝⁴ : CharP R p
inst✝³ : PerfectRing R p
S : Type ?u.337974
inst✝² : CommSemiring S
inst✝¹ : CharP S p
inst✝ : PerfectRing S p
⊢ PerfectRing (R × S) p
[PROOFSTEP]
constructor
[GOAL]
case bijective_frobenius
R : Type ?u.337703
p : ℕ
inst✝⁶ : CommSemiring R
inst✝⁵ : Fact (Nat.Prime p)
inst✝⁴ : CharP R p
inst✝³ : PerfectRing R p
S : Type ?u.337974
inst✝² : CommSemiring S
inst✝¹ : CharP S p
inst✝ : PerfectRing S p
⊢ Bijective ↑(frobenius (R × S) p)
[PROOFSTEP]
have : frobenius (R × S) p = Prod.map (frobenius R p) (frobenius S p) := by ext <;> simp [frobenius_def]
[GOAL]
R : Type ?u.337703
p : ℕ
inst✝⁶ : CommSemiring R
inst✝⁵ : Fact (Nat.Prime p)
inst✝⁴ : CharP R p
inst✝³ : PerfectRing R p
S : Type ?u.337974
inst✝² : CommSemiring S
inst✝¹ : CharP S p
inst✝ : PerfectRing S p
⊢ ↑(frobenius (R × S) p) = Prod.map ↑(frobenius R p) ↑(frobenius S p)
[PROOFSTEP]
ext
[GOAL]
case h.h₁
R : Type ?u.337703
p : ℕ
inst✝⁶ : CommSemiring R
inst✝⁵ : Fact (Nat.Prime p)
inst✝⁴ : CharP R p
inst✝³ : PerfectRing R p
S : Type ?u.337974
inst✝² : CommSemiring S
inst✝¹ : CharP S p
inst✝ : PerfectRing S p
x✝ : R × S
⊢ (↑(frobenius (R × S) p) x✝).fst = (Prod.map (↑(frobenius R p)) (↑(frobenius S p)) x✝).fst
[PROOFSTEP]
simp [frobenius_def]
[GOAL]
case h.h₂
R : Type ?u.337703
p : ℕ
inst✝⁶ : CommSemiring R
inst✝⁵ : Fact (Nat.Prime p)
inst✝⁴ : CharP R p
inst✝³ : PerfectRing R p
S : Type ?u.337974
inst✝² : CommSemiring S
inst✝¹ : CharP S p
inst✝ : PerfectRing S p
x✝ : R × S
⊢ (↑(frobenius (R × S) p) x✝).snd = (Prod.map (↑(frobenius R p)) (↑(frobenius S p)) x✝).snd
[PROOFSTEP]
simp [frobenius_def]
[GOAL]
case bijective_frobenius
R : Type ?u.337703
p : ℕ
inst✝⁶ : CommSemiring R
inst✝⁵ : Fact (Nat.Prime p)
inst✝⁴ : CharP R p
inst✝³ : PerfectRing R p
S : Type ?u.337974
inst✝² : CommSemiring S
inst✝¹ : CharP S p
inst✝ : PerfectRing S p
this : ↑(frobenius (R × S) p) = Prod.map ↑(frobenius R p) ↑(frobenius S p)
⊢ Bijective ↑(frobenius (R × S) p)
[PROOFSTEP]
rw [this]
[GOAL]
case bijective_frobenius
R : Type ?u.337703
p : ℕ
inst✝⁶ : CommSemiring R
inst✝⁵ : Fact (Nat.Prime p)
inst✝⁴ : CharP R p
inst✝³ : PerfectRing R p
S : Type ?u.337974
inst✝² : CommSemiring S
inst✝¹ : CharP S p
inst✝ : PerfectRing S p
this : ↑(frobenius (R × S) p) = Prod.map ↑(frobenius R p) ↑(frobenius S p)
⊢ Bijective (Prod.map ↑(frobenius R p) ↑(frobenius S p))
[PROOFSTEP]
exact Bijective.Prod_map (bijective_frobenius R p) (bijective_frobenius S p)
[GOAL]
K : Type u_1
p : ℕ
inst✝² : Field K
hp : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : PerfectRing K p
⊢ PerfectField K
[PROOFSTEP]
refine' PerfectField.mk $ fun hf ↦ _
[GOAL]
K : Type u_1
p : ℕ
inst✝² : Field K
hp : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : PerfectRing K p
f✝ : K[X]
hf : Irreducible f✝
⊢ Separable f✝
[PROOFSTEP]
rcases separable_or p hf with h | ⟨-, g, -, rfl⟩
[GOAL]
case inl
K : Type u_1
p : ℕ
inst✝² : Field K
hp : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : PerfectRing K p
f✝ : K[X]
hf : Irreducible f✝
h : Separable f✝
⊢ Separable f✝
[PROOFSTEP]
assumption
[GOAL]
case inr.intro.intro.intro
K : Type u_1
p : ℕ
inst✝² : Field K
hp : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : PerfectRing K p
g : K[X]
hf : Irreducible (↑(expand K p) g)
⊢ Separable (↑(expand K p) g)
[PROOFSTEP]
exfalso
[GOAL]
case inr.intro.intro.intro.h
K : Type u_1
p : ℕ
inst✝² : Field K
hp : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : PerfectRing K p
g : K[X]
hf : Irreducible (↑(expand K p) g)
⊢ False
[PROOFSTEP]
revert hf
[GOAL]
case inr.intro.intro.intro.h
K : Type u_1
p : ℕ
inst✝² : Field K
hp : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : PerfectRing K p
g : K[X]
⊢ Irreducible (↑(expand K p) g) → False
[PROOFSTEP]
simp
[GOAL]
K : Type ?u.469717
inst✝¹ : Field K
inst✝ : Finite K
⊢ PerfectField K
[PROOFSTEP]
obtain ⟨p, _instP⟩ := CharP.exists K
[GOAL]
case intro
K : Type ?u.469717
inst✝¹ : Field K
inst✝ : Finite K
p : ℕ
_instP : CharP K p
⊢ PerfectField K
[PROOFSTEP]
have : Fact p.Prime := ⟨CharP.char_is_prime K p⟩
[GOAL]
case intro
K : Type ?u.469717
inst✝¹ : Field K
inst✝ : Finite K
p : ℕ
_instP : CharP K p
this : Fact (Nat.Prime p)
⊢ PerfectField K
[PROOFSTEP]
exact PerfectRing.toPerfectField K p
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
⊢ PerfectRing K p
[PROOFSTEP]
refine' PerfectRing.ofSurjective _ _ $ fun y ↦ _
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
let f : K[X] := X ^ p - C y
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
let L := f.SplittingField
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
let ι := algebraMap K L
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
have hf_deg : f.degree ≠ 0 := by rw [degree_X_pow_sub_C hp.out.pos y, p.cast_ne_zero]; exact hp.out.ne_zero
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
⊢ degree f ≠ 0
[PROOFSTEP]
rw [degree_X_pow_sub_C hp.out.pos y, p.cast_ne_zero]
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
⊢ p ≠ 0
[PROOFSTEP]
exact hp.out.ne_zero
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
let a : L := f.rootOfSplits ι (SplittingField.splits f) hf_deg
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
have hfa : aeval a f = 0 := by rw [aeval_def, map_rootOfSplits _ (SplittingField.splits f) hf_deg]
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
⊢ ↑(aeval a) f = 0
[PROOFSTEP]
rw [aeval_def, map_rootOfSplits _ (SplittingField.splits f) hf_deg]
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
have ha_pow : a ^ p = ι y := by rwa [AlgHom.map_sub, aeval_X_pow, aeval_C, sub_eq_zero] at hfa
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
⊢ a ^ p = ↑ι y
[PROOFSTEP]
rwa [AlgHom.map_sub, aeval_X_pow, aeval_C, sub_eq_zero] at hfa
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
let g : K[X] := minpoly K a
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
suffices : (g.map ι).natDegree = 1
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
this : natDegree (map ι g) = 1
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
rw [g.natDegree_map, ← degree_eq_iff_natDegree_eq_of_pos Nat.one_pos] at this
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
this : degree g = ↑1
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
obtain ⟨a' : K, ha' : ι a' = a⟩ := minpoly.mem_range_of_degree_eq_one K a this
[GOAL]
case intro
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
this : degree g = ↑1
a' : K
ha' : ↑ι a' = a
⊢ ∃ a, ↑(frobenius K p) a = y
[PROOFSTEP]
refine' ⟨a', NoZeroSMulDivisors.algebraMap_injective K L _⟩
[GOAL]
case intro
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
this : degree g = ↑1
a' : K
ha' : ↑ι a' = a
⊢ ↑(algebraMap K L) (↑(frobenius K p) a') = ↑(algebraMap K L) y
[PROOFSTEP]
rw [RingHom.map_frobenius, ha', frobenius_def, ha_pow]
[GOAL]
case this
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
⊢ natDegree (map ι g) = 1
[PROOFSTEP]
have hg_dvd : g.map ι ∣ (X - C a) ^ p :=
by
convert Polynomial.map_dvd ι (minpoly.dvd K a hfa)
rw [sub_pow_char, Polynomial.map_sub, Polynomial.map_pow, map_X, map_C, ← ha_pow, map_pow]
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
⊢ map ι g ∣ (X - ↑C a) ^ p
[PROOFSTEP]
convert Polynomial.map_dvd ι (minpoly.dvd K a hfa)
[GOAL]
case h.e'_4
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
⊢ (X - ↑C a) ^ p = map ι f
[PROOFSTEP]
rw [sub_pow_char, Polynomial.map_sub, Polynomial.map_pow, map_X, map_C, ← ha_pow, map_pow]
[GOAL]
case this
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
hg_dvd : map ι g ∣ (X - ↑C a) ^ p
⊢ natDegree (map ι g) = 1
[PROOFSTEP]
have ha : IsIntegral K a := isIntegral_of_finite K a
[GOAL]
case this
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
hg_dvd : map ι g ∣ (X - ↑C a) ^ p
ha : IsIntegral K a
⊢ natDegree (map ι g) = 1
[PROOFSTEP]
have hg_pow : g.map ι = (X - C a) ^ (g.map ι).natDegree :=
by
obtain ⟨q, -, hq⟩ := (dvd_prime_pow (prime_X_sub_C a) p).mp hg_dvd
rw [eq_of_monic_of_associated ((minpoly.monic ha).map ι) ((monic_X_sub_C a).pow q) hq, natDegree_pow,
natDegree_X_sub_C, mul_one]
[GOAL]
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
hg_dvd : map ι g ∣ (X - ↑C a) ^ p
ha : IsIntegral K a
⊢ map ι g = (X - ↑C a) ^ natDegree (map ι g)
[PROOFSTEP]
obtain ⟨q, -, hq⟩ := (dvd_prime_pow (prime_X_sub_C a) p).mp hg_dvd
[GOAL]
case intro.intro
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
hg_dvd : map ι g ∣ (X - ↑C a) ^ p
ha : IsIntegral K a
q : ℕ
hq : Associated (map ι g) ((X - ↑C a) ^ q)
⊢ map ι g = (X - ↑C a) ^ natDegree (map ι g)
[PROOFSTEP]
rw [eq_of_monic_of_associated ((minpoly.monic ha).map ι) ((monic_X_sub_C a).pow q) hq, natDegree_pow, natDegree_X_sub_C,
mul_one]
[GOAL]
case this
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
hg_dvd : map ι g ∣ (X - ↑C a) ^ p
ha : IsIntegral K a
hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g)
⊢ natDegree (map ι g) = 1
[PROOFSTEP]
have hg_sep : (g.map ι).Separable := (separable_of_irreducible $ minpoly.irreducible ha).map
[GOAL]
case this
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
hg_dvd : map ι g ∣ (X - ↑C a) ^ p
ha : IsIntegral K a
hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g)
hg_sep : Separable (map ι g)
⊢ natDegree (map ι g) = 1
[PROOFSTEP]
rw [hg_pow] at hg_sep
[GOAL]
case this
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
hg_dvd : map ι g ∣ (X - ↑C a) ^ p
ha : IsIntegral K a
hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g)
hg_sep : Separable ((X - ↑C a) ^ natDegree (map ι g))
⊢ natDegree (map ι g) = 1
[PROOFSTEP]
refine' (Separable.of_pow (not_isUnit_X_sub_C a) _ hg_sep).2
[GOAL]
case this
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
hg_dvd : map ι g ∣ (X - ↑C a) ^ p
ha : IsIntegral K a
hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g)
hg_sep : Separable ((X - ↑C a) ^ natDegree (map ι g))
⊢ natDegree (map ι g) ≠ 0
[PROOFSTEP]
rw [g.natDegree_map ι, ← Nat.pos_iff_ne_zero, natDegree_pos_iff_degree_pos]
[GOAL]
case this
K : Type ?u.470721
inst✝² : Field K
inst✝¹ : PerfectField K
p : ℕ
hp : Fact (Nat.Prime p)
inst✝ : CharP K p
y : K
f : K[X] := X ^ p - ↑C y
L : Type ?u.470721 := SplittingField f
ι : K →+* L := algebraMap K L
hf_deg : degree f ≠ 0
a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg
hfa : ↑(aeval a) f = 0
ha_pow : a ^ p = ↑ι y
g : K[X] := minpoly K a
hg_dvd : map ι g ∣ (X - ↑C a) ^ p
ha : IsIntegral K a
hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g)
hg_sep : Separable ((X - ↑C a) ^ natDegree (map ι g))
⊢ 0 < degree g
[PROOFSTEP]
exact minpoly.degree_pos ha
|
{"mathlib_filename": "Mathlib.FieldTheory.Perfect", "llama_tokens": 10926}
|
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Finite F
inst✝ : Algebra (ZMod (ringChar F)) F
a : F
ha : a ≠ 0
⊢ ∃ b, ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0
[PROOFSTEP]
haveI : Fact (ringChar F).Prime := ⟨CharP.char_is_prime F _⟩
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Finite F
inst✝ : Algebra (ZMod (ringChar F)) F
a : F
ha : a ≠ 0
this : Fact (Nat.Prime (ringChar F))
⊢ ∃ b, ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0
[PROOFSTEP]
have htr := traceForm_nondegenerate (ZMod (ringChar F)) F a
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Finite F
inst✝ : Algebra (ZMod (ringChar F)) F
a : F
ha : a ≠ 0
this : Fact (Nat.Prime (ringChar F))
htr : (∀ (n : F), BilinForm.bilin (Algebra.traceForm (ZMod (ringChar F)) F) a n = 0) → a = 0
⊢ ∃ b, ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0
[PROOFSTEP]
simp_rw [Algebra.traceForm_apply] at htr
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Finite F
inst✝ : Algebra (ZMod (ringChar F)) F
a : F
ha : a ≠ 0
this : Fact (Nat.Prime (ringChar F))
htr : (∀ (n : F), ↑(Algebra.trace (ZMod (ringChar F)) F) (a * n) = 0) → a = 0
⊢ ∃ b, ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0
[PROOFSTEP]
by_contra' hf
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Finite F
inst✝ : Algebra (ZMod (ringChar F)) F
a : F
ha : a ≠ 0
this : Fact (Nat.Prime (ringChar F))
htr : (∀ (n : F), ↑(Algebra.trace (ZMod (ringChar F)) F) (a * n) = 0) → a = 0
hf : ∀ (b : F), ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) = 0
⊢ False
[PROOFSTEP]
exact ha (htr hf)
|
{"mathlib_filename": "Mathlib.FieldTheory.Finite.Trace", "llama_tokens": 771}
|
[GOAL]
R : Type u
A : Type v
inst✝³ : CommRing R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : IsDomain R
p : R[X]
a : A
h : ¬IsUnit (↑(aeval a) (Multiset.prod (Multiset.map (fun x => X - ↑C x) (roots p))))
⊢ ∃ k, k ∈ σ a ∧ eval k p = 0
[PROOFSTEP]
rw [← Multiset.prod_toList, AlgHom.map_list_prod] at h
[GOAL]
R : Type u
A : Type v
inst✝³ : CommRing R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : IsDomain R
p : R[X]
a : A
h : ¬IsUnit (List.prod (List.map (↑(aeval a)) (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p)))))
⊢ ∃ k, k ∈ σ a ∧ eval k p = 0
[PROOFSTEP]
replace h := mt List.prod_isUnit h
[GOAL]
R : Type u
A : Type v
inst✝³ : CommRing R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : IsDomain R
p : R[X]
a : A
h :
¬∀ (m : (fun x => A) (List.prod (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p))))),
m ∈ List.map (↑(aeval a)) (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p))) → IsUnit m
⊢ ∃ k, k ∈ σ a ∧ eval k p = 0
[PROOFSTEP]
simp only [not_forall, exists_prop, aeval_C, Multiset.mem_toList, List.mem_map, aeval_X, exists_exists_and_eq_and,
Multiset.mem_map, AlgHom.map_sub] at h
[GOAL]
R : Type u
A : Type v
inst✝³ : CommRing R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : IsDomain R
p : R[X]
a : A
h : ∃ a_1, a_1 ∈ roots p ∧ ¬IsUnit (a - ↑↑ₐ a_1)
⊢ ∃ k, k ∈ σ a ∧ eval k p = 0
[PROOFSTEP]
rcases h with ⟨r, r_mem, r_nu⟩
[GOAL]
case intro.intro
R : Type u
A : Type v
inst✝³ : CommRing R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : IsDomain R
p : R[X]
a : A
r : R
r_mem : r ∈ roots p
r_nu : ¬IsUnit (a - ↑↑ₐ r)
⊢ ∃ k, k ∈ σ a ∧ eval k p = 0
[PROOFSTEP]
exact ⟨r, by rwa [mem_iff, ← IsUnit.sub_iff], (mem_roots'.1 r_mem).2⟩
[GOAL]
R : Type u
A : Type v
inst✝³ : CommRing R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : IsDomain R
p : R[X]
a : A
r : R
r_mem : r ∈ roots p
r_nu : ¬IsUnit (a - ↑↑ₐ r)
⊢ r ∈ σ a
[PROOFSTEP]
rwa [mem_iff, ← IsUnit.sub_iff]
[GOAL]
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
⊢ (fun x => eval x p) '' σ a ⊆ σ (↑(aeval a) p)
[PROOFSTEP]
rintro _ ⟨k, hk, rfl⟩
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p)
[PROOFSTEP]
let q := C (eval k p) - p
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p
⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p)
[PROOFSTEP]
have hroot : IsRoot q k := by simp only [eval_C, eval_sub, sub_self, IsRoot.def]
[GOAL]
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p
⊢ IsRoot q k
[PROOFSTEP]
simp only [eval_C, eval_sub, sub_self, IsRoot.def]
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p
hroot : IsRoot q k
⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p)
[PROOFSTEP]
rw [← mul_div_eq_iff_isRoot, ← neg_mul_neg, neg_sub] at hroot
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p
hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q
hroot : (↑C k - X) * -(q / (X - ↑C k)) = q
⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p)
[PROOFSTEP]
have aeval_q_eq : ↑ₐ (eval k p) - aeval a p = aeval a q := by simp only [aeval_C, AlgHom.map_sub, sub_left_inj]
[GOAL]
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p
hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q
hroot : (↑C k - X) * -(q / (X - ↑C k)) = q
⊢ ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q
[PROOFSTEP]
simp only [aeval_C, AlgHom.map_sub, sub_left_inj]
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p
hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q
hroot : (↑C k - X) * -(q / (X - ↑C k)) = q
aeval_q_eq : ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q
⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p)
[PROOFSTEP]
rw [mem_iff, aeval_q_eq, ← hroot, aeval_mul]
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p
hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q
hroot : (↑C k - X) * -(q / (X - ↑C k)) = q
aeval_q_eq : ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q
⊢ ¬IsUnit (↑(aeval a) (↑C k - X) * ↑(aeval a) (-(q / (X - ↑C k))))
[PROOFSTEP]
have hcomm := (Commute.all (C k - X) (-(q / (X - C k)))).map (aeval a : 𝕜[X] →ₐ[𝕜] A)
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p
hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q
hroot : (↑C k - X) * -(q / (X - ↑C k)) = q
aeval_q_eq : ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q
hcomm : Commute (↑(aeval a) (↑C k - X)) (↑(aeval a) (-(q / (X - ↑C k))))
⊢ ¬IsUnit (↑(aeval a) (↑C k - X) * ↑(aeval a) (-(q / (X - ↑C k))))
[PROOFSTEP]
apply mt fun h => (hcomm.isUnit_mul_iff.mp h).1
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
p : 𝕜[X]
k : 𝕜
hk : k ∈ σ a
q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p
hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q
hroot : (↑C k - X) * -(q / (X - ↑C k)) = q
aeval_q_eq : ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q
hcomm : Commute (↑(aeval a) (↑C k - X)) (↑(aeval a) (-(q / (X - ↑C k))))
⊢ ¬IsUnit (↑(aeval a) (↑C k - X))
[PROOFSTEP]
simpa only [aeval_X, aeval_C, AlgHom.map_sub] using hk
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
⊢ σ (↑(aeval a) p) = (fun x => eval x p) '' σ a
[PROOFSTEP]
refine'
Set.eq_of_subset_of_subset (fun k hk => _)
(subset_polynomial_aeval a p)
-- write `C k - p` product of linear factors and a constant; show `C k - p ≠ 0`.
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hk : k ∈ σ (↑(aeval a) p)
⊢ k ∈ (fun x => eval x p) '' σ a
[PROOFSTEP]
have hprod := eq_prod_roots_of_splits_id (IsAlgClosed.splits (C k - p))
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hk : k ∈ σ (↑(aeval a) p)
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
⊢ k ∈ (fun x => eval x p) '' σ a
[PROOFSTEP]
have h_ne : C k - p ≠ 0 :=
ne_zero_of_degree_gt <| by rwa [degree_sub_eq_right_of_degree_lt (lt_of_le_of_lt degree_C_le hdeg)]
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hk : k ∈ σ (↑(aeval a) p)
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
⊢ ?m.286583 < degree (↑C k - p)
[PROOFSTEP]
rwa [degree_sub_eq_right_of_degree_lt (lt_of_le_of_lt degree_C_le hdeg)]
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hk : k ∈ σ (↑(aeval a) p)
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
h_ne : ↑C k - p ≠ 0
⊢ k ∈ (fun x => eval x p) '' σ a
[PROOFSTEP]
have lead_ne := leadingCoeff_ne_zero.mpr h_ne
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hk : k ∈ σ (↑(aeval a) p)
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
h_ne : ↑C k - p ≠ 0
lead_ne : leadingCoeff (↑C k - p) ≠ 0
⊢ k ∈ (fun x => eval x p) '' σ a
[PROOFSTEP]
have lead_unit := (Units.map ↑ₐ.toMonoidHom (Units.mk0 _ lead_ne)).isUnit
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hk : k ∈ σ (↑(aeval a) p)
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
h_ne : ↑C k - p ≠ 0
lead_ne : leadingCoeff (↑C k - p) ≠ 0
lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne))
⊢ k ∈ (fun x => eval x p) '' σ a
[PROOFSTEP]
have p_a_eq : aeval a (C k - p) = ↑ₐ k - aeval a p := by simp only [aeval_C, AlgHom.map_sub, sub_left_inj]
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hk : k ∈ σ (↑(aeval a) p)
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
h_ne : ↑C k - p ≠ 0
lead_ne : leadingCoeff (↑C k - p) ≠ 0
lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne))
⊢ ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p
[PROOFSTEP]
simp only [aeval_C, AlgHom.map_sub, sub_left_inj]
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hk : k ∈ σ (↑(aeval a) p)
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
h_ne : ↑C k - p ≠ 0
lead_ne : leadingCoeff (↑C k - p) ≠ 0
lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne))
p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p
⊢ k ∈ (fun x => eval x p) '' σ a
[PROOFSTEP]
rw [mem_iff, ← p_a_eq, hprod, aeval_mul, ((Commute.all _ _).map (aeval a : 𝕜[X] →ₐ[𝕜] A)).isUnit_mul_iff, aeval_C] at hk
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hk :
¬(IsUnit (↑↑ₐ (leadingCoeff (↑C k - p))) ∧
IsUnit (↑(aeval a) (Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))))))
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
h_ne : ↑C k - p ≠ 0
lead_ne : leadingCoeff (↑C k - p) ≠ 0
lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne))
p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p
⊢ k ∈ (fun x => eval x p) '' σ a
[PROOFSTEP]
replace hk := exists_mem_of_not_isUnit_aeval_prod (not_and.mp hk lead_unit)
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
h_ne : ↑C k - p ≠ 0
lead_ne : leadingCoeff (↑C k - p) ≠ 0
lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne))
p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p
hk : ∃ k_1, k_1 ∈ σ a ∧ eval k_1 (↑C k - p) = 0
⊢ k ∈ (fun x => eval x p) '' σ a
[PROOFSTEP]
rcases hk with ⟨r, r_mem, r_ev⟩
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
h_ne : ↑C k - p ≠ 0
lead_ne : leadingCoeff (↑C k - p) ≠ 0
lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne))
p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p
r : 𝕜
r_mem : r ∈ σ a
r_ev : eval r (↑C k - p) = 0
⊢ k ∈ (fun x => eval x p) '' σ a
[PROOFSTEP]
exact ⟨r, r_mem, symm (by simpa [eval_sub, eval_C, sub_eq_zero] using r_ev)⟩
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hdeg : 0 < degree p
k : 𝕜
hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))
h_ne : ↑C k - p ≠ 0
lead_ne : leadingCoeff (↑C k - p) ≠ 0
lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne))
p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p
r : 𝕜
r_mem : r ∈ σ a
r_ev : eval r (↑C k - p) = 0
⊢ k = (fun x => eval x p) r
[PROOFSTEP]
simpa [eval_sub, eval_C, sub_eq_zero] using r_ev
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hnon : Set.Nonempty (σ a)
⊢ σ (↑(aeval a) p) = (fun k => eval k p) '' σ a
[PROOFSTEP]
nontriviality A
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hnon : Set.Nonempty (σ a)
✝ : Nontrivial A
⊢ σ (↑(aeval a) p) = (fun k => eval k p) '' σ a
[PROOFSTEP]
refine' Or.elim (le_or_gt (degree p) 0) (fun h => _) (map_polynomial_aeval_of_degree_pos a p)
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hnon : Set.Nonempty (σ a)
✝ : Nontrivial A
h : degree p ≤ 0
⊢ σ (↑(aeval a) p) = (fun k => eval k p) '' σ a
[PROOFSTEP]
rw [eq_C_of_degree_le_zero h]
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
p : 𝕜[X]
hnon : Set.Nonempty (σ a)
✝ : Nontrivial A
h : degree p ≤ 0
⊢ σ (↑(aeval a) (↑C (coeff p 0))) = (fun k => eval k (↑C (coeff p 0))) '' σ a
[PROOFSTEP]
simp only [Set.image_congr, eval_C, aeval_C, scalar_eq, Set.Nonempty.image_const hnon]
[GOAL]
𝕜 : Type u
A : Type v
inst✝² : Field 𝕜
inst✝¹ : Ring A
inst✝ : Algebra 𝕜 A
a : A
n : ℕ
⊢ (fun x => x ^ n) '' σ a ⊆ σ (a ^ n)
[PROOFSTEP]
simpa only [eval_pow, eval_X, aeval_X_pow] using subset_polynomial_aeval a (X ^ n : 𝕜[X])
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
n : ℕ
hn : 0 < n
⊢ σ (a ^ n) = (fun x => x ^ n) '' σ a
[PROOFSTEP]
simpa only [aeval_X_pow, eval_pow, eval_X] using
map_polynomial_aeval_of_degree_pos a (X ^ n : 𝕜[X]) (by rwa [degree_X_pow, Nat.cast_pos])
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
n : ℕ
hn : 0 < n
⊢ 0 < degree (X ^ n)
[PROOFSTEP]
rwa [degree_X_pow, Nat.cast_pos]
[GOAL]
𝕜 : Type u
A : Type v
inst✝³ : Field 𝕜
inst✝² : Ring A
inst✝¹ : Algebra 𝕜 A
inst✝ : IsAlgClosed 𝕜
a : A
ha : Set.Nonempty (σ a)
n : ℕ
⊢ σ (a ^ n) = (fun x => x ^ n) '' σ a
[PROOFSTEP]
simpa only [aeval_X_pow, eval_pow, eval_X] using map_polynomial_aeval_of_nonempty a (X ^ n) ha
[GOAL]
𝕜 : Type u
A : Type v
inst✝⁴ : Field 𝕜
inst✝³ : Ring A
inst✝² : Algebra 𝕜 A
inst✝¹ : IsAlgClosed 𝕜
inst✝ : Nontrivial A
I : FiniteDimensional 𝕜 A
a : A
⊢ Set.Nonempty (σ a)
[PROOFSTEP]
obtain ⟨p, ⟨h_mon, h_eval_p⟩⟩ := isIntegral_of_noetherian (IsNoetherian.iff_fg.2 I) a
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝⁴ : Field 𝕜
inst✝³ : Ring A
inst✝² : Algebra 𝕜 A
inst✝¹ : IsAlgClosed 𝕜
inst✝ : Nontrivial A
I : FiniteDimensional 𝕜 A
a : A
p : 𝕜[X]
h_mon : Monic p
h_eval_p : eval₂ ↑ₐ a p = 0
⊢ Set.Nonempty (σ a)
[PROOFSTEP]
have nu : ¬IsUnit (aeval a p) := by rw [← aeval_def] at h_eval_p ; rw [h_eval_p]; simp
[GOAL]
𝕜 : Type u
A : Type v
inst✝⁴ : Field 𝕜
inst✝³ : Ring A
inst✝² : Algebra 𝕜 A
inst✝¹ : IsAlgClosed 𝕜
inst✝ : Nontrivial A
I : FiniteDimensional 𝕜 A
a : A
p : 𝕜[X]
h_mon : Monic p
h_eval_p : eval₂ ↑ₐ a p = 0
⊢ ¬IsUnit (↑(aeval a) p)
[PROOFSTEP]
rw [← aeval_def] at h_eval_p
[GOAL]
𝕜 : Type u
A : Type v
inst✝⁴ : Field 𝕜
inst✝³ : Ring A
inst✝² : Algebra 𝕜 A
inst✝¹ : IsAlgClosed 𝕜
inst✝ : Nontrivial A
I : FiniteDimensional 𝕜 A
a : A
p : 𝕜[X]
h_mon : Monic p
h_eval_p : ↑(aeval a) p = 0
⊢ ¬IsUnit (↑(aeval a) p)
[PROOFSTEP]
rw [h_eval_p]
[GOAL]
𝕜 : Type u
A : Type v
inst✝⁴ : Field 𝕜
inst✝³ : Ring A
inst✝² : Algebra 𝕜 A
inst✝¹ : IsAlgClosed 𝕜
inst✝ : Nontrivial A
I : FiniteDimensional 𝕜 A
a : A
p : 𝕜[X]
h_mon : Monic p
h_eval_p : ↑(aeval a) p = 0
⊢ ¬IsUnit 0
[PROOFSTEP]
simp
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝⁴ : Field 𝕜
inst✝³ : Ring A
inst✝² : Algebra 𝕜 A
inst✝¹ : IsAlgClosed 𝕜
inst✝ : Nontrivial A
I : FiniteDimensional 𝕜 A
a : A
p : 𝕜[X]
h_mon : Monic p
h_eval_p : eval₂ ↑ₐ a p = 0
nu : ¬IsUnit (↑(aeval a) p)
⊢ Set.Nonempty (σ a)
[PROOFSTEP]
rw [eq_prod_roots_of_monic_of_splits_id h_mon (IsAlgClosed.splits p)] at nu
[GOAL]
case intro.intro
𝕜 : Type u
A : Type v
inst✝⁴ : Field 𝕜
inst✝³ : Ring A
inst✝² : Algebra 𝕜 A
inst✝¹ : IsAlgClosed 𝕜
inst✝ : Nontrivial A
I : FiniteDimensional 𝕜 A
a : A
p : 𝕜[X]
h_mon : Monic p
h_eval_p : eval₂ ↑ₐ a p = 0
nu : ¬IsUnit (↑(aeval a) (Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots p))))
⊢ Set.Nonempty (σ a)
[PROOFSTEP]
obtain ⟨k, hk, _⟩ := exists_mem_of_not_isUnit_aeval_prod nu
[GOAL]
case intro.intro.intro.intro
𝕜 : Type u
A : Type v
inst✝⁴ : Field 𝕜
inst✝³ : Ring A
inst✝² : Algebra 𝕜 A
inst✝¹ : IsAlgClosed 𝕜
inst✝ : Nontrivial A
I : FiniteDimensional 𝕜 A
a : A
p : 𝕜[X]
h_mon : Monic p
h_eval_p : eval₂ ↑ₐ a p = 0
nu : ¬IsUnit (↑(aeval a) (Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots p))))
k : 𝕜
hk : k ∈ σ a
right✝ : eval k p = 0
⊢ Set.Nonempty (σ a)
[PROOFSTEP]
exact ⟨k, hk⟩
|
{"mathlib_filename": "Mathlib.FieldTheory.IsAlgClosed.Spectrum", "llama_tokens": 9596}
|
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
⊢ ∑ x : σ → K, ↑(eval x) f = 0
[PROOFSTEP]
haveI : DecidableEq K := Classical.decEq K
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
⊢ ∑ x : σ → K, ↑(eval x) f = 0
[PROOFSTEP]
calc
∑ x, eval x f = ∑ x : σ → K, ∑ d in f.support, f.coeff d * ∏ i, x i ^ d i := by simp only [eval_eq']
_ = ∑ d in f.support, ∑ x : σ → K, f.coeff d * ∏ i, x i ^ d i := sum_comm
_ = 0 := sum_eq_zero ?_
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
⊢ ∑ x : σ → K, ↑(eval x) f = ∑ x : σ → K, ∑ d in support f, coeff d f * ∏ i : σ, x i ^ ↑d i
[PROOFSTEP]
simp only [eval_eq']
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
⊢ ∀ (x : σ →₀ ℕ), x ∈ support f → ∑ x_1 : σ → K, coeff x f * ∏ i : σ, x_1 i ^ ↑x i = 0
[PROOFSTEP]
intro d hd
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0
[PROOFSTEP]
obtain ⟨i, hi⟩ : ∃ i, d i < q - 1
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
⊢ ∃ i, ↑d i < q - 1
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0
[PROOFSTEP]
exact f.exists_degree_lt (q - 1) h hd
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0
[PROOFSTEP]
calc
(∑ x : σ → K, f.coeff d * ∏ i, x i ^ d i) = f.coeff d * ∑ x : σ → K, ∏ i, x i ^ d i := mul_sum.symm
_ = 0 := (mul_eq_zero.mpr ∘ Or.inr) ?_
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
⊢ ∑ x : σ → K, ∏ i : σ, x i ^ ↑d i = 0
[PROOFSTEP]
calc
(∑ x : σ → K, ∏ i, x i ^ d i) =
∑ x₀ : { j // j ≠ i } → K, ∑ x : { x : σ → K // x ∘ (↑) = x₀ }, ∏ j, (x : σ → K) j ^ d j :=
(Fintype.sum_fiberwise _ _).symm
_ = 0 := Fintype.sum_eq_zero _ ?_
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
⊢ ∀ (a : { j // j ≠ i } → K), ∑ x : { x // x ∘ Subtype.val = a }, ∏ j : σ, ↑x j ^ ↑d j = 0
[PROOFSTEP]
intro x₀
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
⊢ ∑ x : { x // x ∘ Subtype.val = x₀ }, ∏ j : σ, ↑x j ^ ↑d j = 0
[PROOFSTEP]
let e : K ≃ { x // x ∘ ((↑) : _ → σ) = x₀ } := (Equiv.subtypeEquivCodomain _).symm
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
⊢ ∑ x : { x // x ∘ Subtype.val = x₀ }, ∏ j : σ, ↑x j ^ ↑d j = 0
[PROOFSTEP]
calc
(∑ x : { x : σ → K // x ∘ (↑) = x₀ }, ∏ j, (x : σ → K) j ^ d j) = ∑ a : K, ∏ j : σ, (e a : σ → K) j ^ d j :=
(e.sum_comp _).symm
_ = ∑ a : K, (∏ j, x₀ j ^ d j) * a ^ d i := (Fintype.sum_congr _ _ ?_)
_ = (∏ j, x₀ j ^ d j) * ∑ a : K, a ^ d i := by rw [mul_sum]
_ = 0 := by rw [sum_pow_lt_card_sub_one K _ hi, mul_zero]
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
⊢ ∑ a : K, (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * ∑ a : K, a ^ ↑d i
[PROOFSTEP]
rw [mul_sum]
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
⊢ (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * ∑ a : K, a ^ ↑d i = 0
[PROOFSTEP]
rw [sum_pow_lt_card_sub_one K _ hi, mul_zero]
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
⊢ ∀ (a : K), ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i
[PROOFSTEP]
intro a
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
a : K
⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i
[PROOFSTEP]
let e' : Sum { j // j = i } { j // j ≠ i } ≃ σ := Equiv.sumCompl _
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
a : K
e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i
⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i
[PROOFSTEP]
letI : Unique { j // j = i } :=
{ default := ⟨i, rfl⟩
uniq := fun ⟨j, h⟩ => Subtype.val_injective h }
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this✝ : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
a : K
e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i
this : Unique { j // j = i } :=
{ toInhabited := { default := { val := i, property := (_ : i = i) } },
uniq := (_ : ∀ (x : { j // j = i }), x = default) }
⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i
[PROOFSTEP]
calc
(∏ j : σ, (e a : σ → K) j ^ d j) = (e a : σ → K) i ^ d i * ∏ j : { j // j ≠ i }, (e a : σ → K) j ^ d j := by
rw [← e'.prod_comp, Fintype.prod_sum_type, univ_unique, prod_singleton]; rfl
_ = a ^ d i * ∏ j : { j // j ≠ i }, (e a : σ → K) j ^ d j := by rw [Equiv.subtypeEquivCodomain_symm_apply_eq]
_ = a ^ d i * ∏ j, x₀ j ^ d j :=
(congr_arg _ (Fintype.prod_congr _ _ ?_))
-- see below
_ = (∏ j, x₀ j ^ d j) * a ^ d i := mul_comm _ _
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this✝ : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
a : K
e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i
this : Unique { j // j = i } :=
{ toInhabited := { default := { val := i, property := (_ : i = i) } },
uniq := (_ : ∀ (x : { j // j = i }), x = default) }
⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = ↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j
[PROOFSTEP]
rw [← e'.prod_comp, Fintype.prod_sum_type, univ_unique, prod_singleton]
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this✝ : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
a : K
e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i
this : Unique { j // j = i } :=
{ toInhabited := { default := { val := i, property := (_ : i = i) } },
uniq := (_ : ∀ (x : { j // j = i }), x = default) }
⊢ ↑(↑e a) (↑e' (Sum.inl default)) ^ ↑d (↑e' (Sum.inl default)) *
∏ a₂ : { j // j ≠ i }, ↑(↑e a) (↑e' (Sum.inr a₂)) ^ ↑d (↑e' (Sum.inr a₂)) =
↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this✝ : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
a : K
e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i
this : Unique { j // j = i } :=
{ toInhabited := { default := { val := i, property := (_ : i = i) } },
uniq := (_ : ∀ (x : { j // j = i }), x = default) }
⊢ ↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j = a ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j
[PROOFSTEP]
rw [Equiv.subtypeEquivCodomain_symm_apply_eq]
[GOAL]
case intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this✝ : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
a : K
e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i
this : Unique { j // j = i } :=
{ toInhabited := { default := { val := i, property := (_ : i = i) } },
uniq := (_ : ∀ (x : { j // j = i }), x = default) }
⊢ ∀ (a_1 : { j // j ≠ i }), ↑(↑e a) ↑a_1 ^ ↑d ↑a_1 = x₀ a_1 ^ ↑d ↑a_1
[PROOFSTEP]
rintro ⟨j, hj⟩
[GOAL]
case intro.mk
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this✝ : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
a : K
e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i
this : Unique { j // j = i } :=
{ toInhabited := { default := { val := i, property := (_ : i = i) } },
uniq := (_ : ∀ (x : { j // j = i }), x = default) }
j : σ
hj : j ≠ i
⊢ ↑(↑e a) ↑{ val := j, property := hj } ^ ↑d ↑{ val := j, property := hj } =
x₀ { val := j, property := hj } ^ ↑d ↑{ val := j, property := hj }
[PROOFSTEP]
show (e a : σ → K) j ^ d j = x₀ ⟨j, hj⟩ ^ d j
[GOAL]
case intro.mk
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝³ : Fintype K
inst✝² : Field K
inst✝¹ : Fintype σ
inst✝ : DecidableEq σ
f : MvPolynomial σ K
h : totalDegree f < (q - 1) * Fintype.card σ
this✝ : DecidableEq K
d : σ →₀ ℕ
hd : d ∈ support f
i : σ
hi : ↑d i < q - 1
x₀ : { j // j ≠ i } → K
e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm
a : K
e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i
this : Unique { j // j = i } :=
{ toInhabited := { default := { val := i, property := (_ : i = i) } },
uniq := (_ : ∀ (x : { j // j = i }), x = default) }
j : σ
hj : j ≠ i
⊢ ↑(↑e a) j ^ ↑d j = x₀ { val := j, property := hj } ^ ↑d j
[PROOFSTEP]
rw [Equiv.subtypeEquivCodomain_symm_apply_ne]
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }
[PROOFSTEP]
have hq : 0 < q - 1 := by rw [← Fintype.card_units, Fintype.card_pos_iff]; exact ⟨1⟩
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
⊢ 0 < q - 1
[PROOFSTEP]
rw [← Fintype.card_units, Fintype.card_pos_iff]
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
⊢ Nonempty Kˣ
[PROOFSTEP]
exact ⟨1⟩
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }
[PROOFSTEP]
let S : Finset (σ → K) := {x ∈ univ | ∀ i ∈ s, eval x (f i) = 0}.toFinset
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }
[PROOFSTEP]
have hS : ∀ x : σ → K, x ∈ S ↔ ∀ i : ι, i ∈ s → eval x (f i) = 0 :=
by
intro x
simp only [Set.toFinset_setOf, mem_univ, true_and, mem_filter]
/- The polynomial `F = ∏ i in s, (1 - (f i)^(q - 1))` has the nice property
that it takes the value `1` on elements of `{x : σ → K // ∀ i ∈ s, (f i).eval x = 0}`
while it is `0` outside that locus.
Hence the sum of its values is equal to the cardinality of
`{x : σ → K // ∀ i ∈ s, (f i).eval x = 0}` modulo `p`. -/
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
⊢ ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
[PROOFSTEP]
intro x
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
x : σ → K
⊢ x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
[PROOFSTEP]
simp only [Set.toFinset_setOf, mem_univ, true_and, mem_filter]
/- The polynomial `F = ∏ i in s, (1 - (f i)^(q - 1))` has the nice property
that it takes the value `1` on elements of `{x : σ → K // ∀ i ∈ s, (f i).eval x = 0}`
while it is `0` outside that locus.
Hence the sum of its values is equal to the cardinality of
`{x : σ → K // ∀ i ∈ s, (f i).eval x = 0}` modulo `p`. -/
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }
[PROOFSTEP]
let F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }
[PROOFSTEP]
have hF : ∀ x, eval x F = if x ∈ S then 1 else 0 := by
intro x
calc
eval x F = ∏ i in s, eval x (1 - f i ^ (q - 1)) := eval_prod s _ x
_ = if x ∈ S then 1 else 0 := ?_
simp only [(eval x).map_sub, (eval x).map_pow, (eval x).map_one]
split_ifs with hx
· apply Finset.prod_eq_one
intro i hi
rw [hS] at hx
rw [hx i hi, zero_pow hq, sub_zero]
· obtain ⟨i, hi, hx⟩ : ∃ i : ι, i ∈ s ∧ eval x (f i) ≠ 0 := by simpa only [hS, not_forall, not_imp] using hx
apply Finset.prod_eq_zero hi
rw [pow_card_sub_one_eq_one (eval x (f i)) hx, sub_self]
-- In particular, we can now show:
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
⊢ ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
[PROOFSTEP]
intro x
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
⊢ ↑(eval x) F = if x ∈ S then 1 else 0
[PROOFSTEP]
calc
eval x F = ∏ i in s, eval x (1 - f i ^ (q - 1)) := eval_prod s _ x
_ = if x ∈ S then 1 else 0 := ?_
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
⊢ ∏ i in s, ↑(eval x) (1 - f i ^ (q - 1)) = if x ∈ S then 1 else 0
[PROOFSTEP]
simp only [(eval x).map_sub, (eval x).map_pow, (eval x).map_one]
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
⊢ ∏ x_1 in s, (1 - ↑(eval x) (f x_1) ^ (q - 1)) =
if x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} then 1 else 0
[PROOFSTEP]
split_ifs with hx
[GOAL]
case pos
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
hx : x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
⊢ ∏ x_1 in s, (1 - ↑(eval x) (f x_1) ^ (q - 1)) = 1
[PROOFSTEP]
apply Finset.prod_eq_one
[GOAL]
case pos.h
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
hx : x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
⊢ ∀ (x_1 : ι), x_1 ∈ s → 1 - ↑(eval x) (f x_1) ^ (q - 1) = 1
[PROOFSTEP]
intro i hi
[GOAL]
case pos.h
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
hx : x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
i : ι
hi : i ∈ s
⊢ 1 - ↑(eval x) (f i) ^ (q - 1) = 1
[PROOFSTEP]
rw [hS] at hx
[GOAL]
case pos.h
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
hx : ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
i : ι
hi : i ∈ s
⊢ 1 - ↑(eval x) (f i) ^ (q - 1) = 1
[PROOFSTEP]
rw [hx i hi, zero_pow hq, sub_zero]
[GOAL]
case neg
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
hx : ¬x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
⊢ ∏ x_1 in s, (1 - ↑(eval x) (f x_1) ^ (q - 1)) = 0
[PROOFSTEP]
obtain ⟨i, hi, hx⟩ : ∃ i : ι, i ∈ s ∧ eval x (f i) ≠ 0 := by simpa only [hS, not_forall, not_imp] using hx
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
hx : ¬x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
⊢ ∃ i, i ∈ s ∧ ↑(eval x) (f i) ≠ 0
[PROOFSTEP]
simpa only [hS, not_forall, not_imp] using hx
[GOAL]
case neg.intro.intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
hx✝ : ¬x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
i : ι
hi : i ∈ s
hx : ↑(eval x) (f i) ≠ 0
⊢ ∏ x_1 in s, (1 - ↑(eval x) (f x_1) ^ (q - 1)) = 0
[PROOFSTEP]
apply Finset.prod_eq_zero hi
[GOAL]
case neg.intro.intro
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
x : σ → K
hx✝ : ¬x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
i : ι
hi : i ∈ s
hx : ↑(eval x) (f i) ≠ 0
⊢ 1 - ↑(eval x) (f i) ^ (q - 1) = 0
[PROOFSTEP]
rw [pow_card_sub_one_eq_one (eval x (f i)) hx, sub_self]
-- In particular, we can now show:
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }
[PROOFSTEP]
have key : ∑ x, eval x F = Fintype.card { x : σ → K // ∀ i ∈ s, eval x (f i) = 0 }
[GOAL]
case key
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
⊢ ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }
[PROOFSTEP]
rw [Fintype.card_of_subtype S hS, card_eq_sum_ones, Nat.cast_sum, Nat.cast_one, ← Fintype.sum_extend_by_zero S,
sum_congr rfl fun x _ => hF x]
-- With these preparations under our belt, we will approach the main goal.
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }
[PROOFSTEP]
show p ∣ Fintype.card { x // ∀ i : ι, i ∈ s → eval x (f i) = 0 }
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }
[PROOFSTEP]
rw [← CharP.cast_eq_zero_iff K, ← key]
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
⊢ ∑ x : σ → K, ↑(eval x) F = 0
[PROOFSTEP]
show
(∑ x, eval x F) =
0
-- We are now ready to apply the main machine, proven before.
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
⊢ ∑ x : σ → K, ↑(eval x) F = 0
[PROOFSTEP]
apply F.sum_eval_eq_zero
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
⊢ totalDegree F < (q - 1) * Fintype.card σ
[PROOFSTEP]
show F.totalDegree < (q - 1) * Fintype.card σ
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
⊢ totalDegree F < (q - 1) * Fintype.card σ
[PROOFSTEP]
calc
F.totalDegree ≤ ∑ i in s, (1 - f i ^ (q - 1)).totalDegree := totalDegree_finset_prod s _
_ ≤ ∑ i in s, (q - 1) * (f i).totalDegree :=
(sum_le_sum fun i _ => ?_)
-- see ↓
_ = (q - 1) * ∑ i in s, (f i).totalDegree := mul_sum.symm
_ < (q - 1) * Fintype.card σ := by
rwa [mul_lt_mul_left hq]
-- Now we prove the remaining step from the preceding calculation
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
⊢ (q - 1) * ∑ i in s, totalDegree (f i) < (q - 1) * Fintype.card σ
[PROOFSTEP]
rwa [mul_lt_mul_left hq]
-- Now we prove the remaining step from the preceding calculation
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
i : ι
x✝ : i ∈ s
⊢ totalDegree (1 - f i ^ (q - 1)) ≤ (q - 1) * totalDegree (f i)
[PROOFSTEP]
show (1 - f i ^ (q - 1)).totalDegree ≤ (q - 1) * (f i).totalDegree
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
i : ι
x✝ : i ∈ s
⊢ totalDegree (1 - f i ^ (q - 1)) ≤ (q - 1) * totalDegree (f i)
[PROOFSTEP]
calc
(1 - f i ^ (q - 1)).totalDegree ≤ max (1 : MvPolynomial σ K).totalDegree (f i ^ (q - 1)).totalDegree :=
totalDegree_sub _ _
_ ≤ (f i ^ (q - 1)).totalDegree := by simp
_ ≤ (q - 1) * (f i).totalDegree := totalDegree_pow _ _
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
s : Finset ι
f : ι → MvPolynomial σ K
h : ∑ i in s, totalDegree (f i) < Fintype.card σ
hq : 0 < q - 1
S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0}
hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0
F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1))
hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0
key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 })
i : ι
x✝ : i ∈ s
⊢ max (totalDegree 1) (totalDegree (f i ^ (q - 1))) ≤ totalDegree (f i ^ (q - 1))
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁶ : Fintype K
inst✝⁵ : Field K
inst✝⁴ : Fintype σ
inst✝³ : DecidableEq σ
inst✝² : DecidableEq K
p : ℕ
inst✝¹ : CharP K p
inst✝ : Fintype ι
f : ι → MvPolynomial σ K
h : ∑ i : ι, totalDegree (f i) < Fintype.card σ
⊢ p ∣ Fintype.card { x // ∀ (i : ι), ↑(eval x) (f i) = 0 }
[PROOFSTEP]
simpa using char_dvd_card_solutions_of_sum_lt p h
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
f : MvPolynomial σ K
h : totalDegree f < Fintype.card σ
⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 }
[PROOFSTEP]
let F : Unit → MvPolynomial σ K := fun _ => f
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
f : MvPolynomial σ K
h : totalDegree f < Fintype.card σ
F : Unit → MvPolynomial σ K := fun x => f
⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 }
[PROOFSTEP]
have : (∑ i : Unit, (F i).totalDegree) < Fintype.card σ := h
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
f : MvPolynomial σ K
h : totalDegree f < Fintype.card σ
F : Unit → MvPolynomial σ K := fun x => f
this : ∑ i : Unit, totalDegree (F i) < Fintype.card σ
⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 }
[PROOFSTEP]
convert char_dvd_card_solutions_of_sum_lt p this
[GOAL]
case h.e'_4.h.h.e'_2.h.a
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
f : MvPolynomial σ K
h : totalDegree f < Fintype.card σ
F : Unit → MvPolynomial σ K := fun x => f
this : ∑ i : Unit, totalDegree (F i) < Fintype.card σ
x✝ : σ → K
⊢ ↑(eval x✝) f = 0 ↔ ∀ (i : Unit), i ∈ univ → ↑(eval x✝) (F i) = 0
[PROOFSTEP]
aesop
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
f₁ f₂ : MvPolynomial σ K
h : totalDegree f₁ + totalDegree f₂ < Fintype.card σ
⊢ p ∣ Fintype.card { x // ↑(eval x) f₁ = 0 ∧ ↑(eval x) f₂ = 0 }
[PROOFSTEP]
let F : Bool → MvPolynomial σ K := fun b => cond b f₂ f₁
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
f₁ f₂ : MvPolynomial σ K
h : totalDegree f₁ + totalDegree f₂ < Fintype.card σ
F : Bool → MvPolynomial σ K := fun b => bif b then f₂ else f₁
⊢ p ∣ Fintype.card { x // ↑(eval x) f₁ = 0 ∧ ↑(eval x) f₂ = 0 }
[PROOFSTEP]
have : (∑ b : Bool, (F b).totalDegree) < Fintype.card σ := (add_comm _ _).trans_lt h
[GOAL]
K : Type u_1
σ : Type u_2
ι : Type u_3
inst✝⁵ : Fintype K
inst✝⁴ : Field K
inst✝³ : Fintype σ
inst✝² : DecidableEq σ
inst✝¹ : DecidableEq K
p : ℕ
inst✝ : CharP K p
f₁ f₂ : MvPolynomial σ K
h : totalDegree f₁ + totalDegree f₂ < Fintype.card σ
F : Bool → MvPolynomial σ K := fun b => bif b then f₂ else f₁
this : ∑ b : Bool, totalDegree (F b) < Fintype.card σ
⊢ p ∣ Fintype.card { x // ↑(eval x) f₁ = 0 ∧ ↑(eval x) f₂ = 0 }
[PROOFSTEP]
simpa only [Bool.forall_bool] using char_dvd_card_solutions_of_fintype_sum_lt p this
|
{"mathlib_filename": "Mathlib.FieldTheory.ChevalleyWarning", "llama_tokens": 22756}
|
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
x : L
p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } :=
Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x)
⊢ x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)}
[PROOFSTEP]
dsimp
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
x : L
p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } :=
Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x)
⊢ x ∈
Polynomial.roots
(Polynomial.map (algebraMap R L)
↑(Classical.indefiniteDescription (fun x_1 => ¬x_1 = 0 ∧ ↑(Polynomial.aeval x) x_1 = 0)
(_ : _root_.IsAlgebraic R x)))
[PROOFSTEP]
have h : p.1.map (algebraMap R L) ≠ 0 :=
by
rw [Ne.def, ← Polynomial.degree_eq_bot,
Polynomial.degree_map_eq_of_injective (NoZeroSMulDivisors.algebraMap_injective R L), Polynomial.degree_eq_bot]
exact p.2.1
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
x : L
p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } :=
Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x)
⊢ Polynomial.map (algebraMap R L) ↑p ≠ 0
[PROOFSTEP]
rw [Ne.def, ← Polynomial.degree_eq_bot,
Polynomial.degree_map_eq_of_injective (NoZeroSMulDivisors.algebraMap_injective R L), Polynomial.degree_eq_bot]
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
x : L
p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } :=
Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x)
⊢ ¬↑p = 0
[PROOFSTEP]
exact p.2.1
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
x : L
p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } :=
Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x)
h : Polynomial.map (algebraMap R L) ↑p ≠ 0
⊢ x ∈
Polynomial.roots
(Polynomial.map (algebraMap R L)
↑(Classical.indefiniteDescription (fun x_1 => ¬x_1 = 0 ∧ ↑(Polynomial.aeval x) x_1 = 0)
(_ : _root_.IsAlgebraic R x)))
[PROOFSTEP]
erw [Polynomial.mem_roots h, Polynomial.IsRoot, Polynomial.eval_map, ← Polynomial.aeval_def, p.2.2]
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
x y : L
⊢ (fun x =>
let p :=
Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0)
(_ : _root_.IsAlgebraic R x);
{ fst := ↑p,
snd :=
{ val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)}) } })
x =
(fun x =>
let p :=
Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0)
(_ : _root_.IsAlgebraic R x);
{ fst := ↑p,
snd :=
{ val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)}) } })
y →
x = y
[PROOFSTEP]
intro h
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
x y : L
h :
(fun x =>
let p :=
Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0)
(_ : _root_.IsAlgebraic R x);
{ fst := ↑p,
snd :=
{ val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)}) } })
x =
(fun x =>
let p :=
Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0)
(_ : _root_.IsAlgebraic R x);
{ fst := ↑p,
snd :=
{ val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)}) } })
y
⊢ x = y
[PROOFSTEP]
simp at h
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
x y : L
h :
↑(Classical.indefiniteDescription (fun x_1 => ¬x_1 = 0 ∧ ↑(Polynomial.aeval x) x_1 = 0)
(_ : _root_.IsAlgebraic R x)) =
↑(Classical.indefiniteDescription (fun x => ¬x = 0 ∧ ↑(Polynomial.aeval y) x = 0) (_ : _root_.IsAlgebraic R y)) ∧
HEq
{ val := x,
property :=
(_ :
x ∈
{x_1 |
x_1 ∈
Polynomial.roots
(Polynomial.map (algebraMap R L)
↑(Classical.indefiniteDescription (fun x_2 => x_2 ≠ 0 ∧ ↑(Polynomial.aeval x) x_2 = 0)
(_ : _root_.IsAlgebraic R x)))}) }
{ val := y,
property :=
(_ :
y ∈
{x |
x ∈
Polynomial.roots
(Polynomial.map (algebraMap R L)
↑(Classical.indefiniteDescription (fun x => x ≠ 0 ∧ ↑(Polynomial.aeval y) x = 0)
(_ : _root_.IsAlgebraic R y)))}) }
⊢ x = y
[PROOFSTEP]
refine' (Subtype.heq_iff_coe_eq _).1 h.2
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
x y : L
h :
↑(Classical.indefiniteDescription (fun x_1 => ¬x_1 = 0 ∧ ↑(Polynomial.aeval x) x_1 = 0)
(_ : _root_.IsAlgebraic R x)) =
↑(Classical.indefiniteDescription (fun x => ¬x = 0 ∧ ↑(Polynomial.aeval y) x = 0) (_ : _root_.IsAlgebraic R y)) ∧
HEq
{ val := x,
property :=
(_ :
x ∈
{x_1 |
x_1 ∈
Polynomial.roots
(Polynomial.map (algebraMap R L)
↑(Classical.indefiniteDescription (fun x_2 => x_2 ≠ 0 ∧ ↑(Polynomial.aeval x) x_2 = 0)
(_ : _root_.IsAlgebraic R x)))}) }
{ val := y,
property :=
(_ :
y ∈
{x |
x ∈
Polynomial.roots
(Polynomial.map (algebraMap R L)
↑(Classical.indefiniteDescription (fun x => x ≠ 0 ∧ ↑(Polynomial.aeval y) x = 0)
(_ : _root_.IsAlgebraic R y)))}) }
⊢ ∀ (x_1 : L),
x_1 ∈
{x_2 |
x_2 ∈
Polynomial.roots
(Polynomial.map (algebraMap R L)
↑(Classical.indefiniteDescription (fun x_3 => x_3 ≠ 0 ∧ ↑(Polynomial.aeval x) x_3 = 0)
(_ : _root_.IsAlgebraic R x)))} ↔
x_1 ∈
{x |
x ∈
Polynomial.roots
(Polynomial.map (algebraMap R L)
↑(Classical.indefiniteDescription (fun x => x ≠ 0 ∧ ↑(Polynomial.aeval y) x = 0)
(_ : _root_.IsAlgebraic R y)))}
[PROOFSTEP]
simp only [h.1, iff_self_iff, forall_true_iff]
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
⊢ #((p : R[X]) × { x // x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) p) }) =
sum fun p => #↑{x | x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) p)}
[PROOFSTEP]
rw [← mk_sigma]
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
⊢ #((p : R[X]) × { x // x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) p) }) =
#((i : R[X]) × ↑{x | x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) i)})
[PROOFSTEP]
rfl
[GOAL]
R L : Type u
inst✝⁴ : CommRing R
inst✝³ : CommRing L
inst✝² : IsDomain L
inst✝¹ : Algebra R L
inst✝ : NoZeroSMulDivisors R L
halg : IsAlgebraic R L
⊢ max (max (max #R ℵ₀) ℵ₀) ℵ₀ = max #R ℵ₀
[PROOFSTEP]
simp only [max_assoc, max_comm ℵ₀, max_left_comm ℵ₀, max_self]
[GOAL]
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁵ : CommRing R
inst✝⁴ : Field K
inst✝³ : Algebra R K
inst✝² : Field L
inst✝¹ : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
inst✝ : IsAlgClosed K
hv : IsTranscendenceBasis R v
this : Nontrivial R := RingHom.domain_nontrivial (algebraMap R K)
⊢ IsAlgClosed K
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
⊢ K ≃+* L
[PROOFSTEP]
letI := isAlgClosure_of_transcendence_basis v hv
[GOAL]
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
⊢ K ≃+* L
[PROOFSTEP]
letI := isAlgClosure_of_transcendence_basis w hw
[GOAL]
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw
⊢ K ≃+* L
[PROOFSTEP]
have e : Algebra.adjoin R (Set.range v) ≃+* Algebra.adjoin R (Set.range w)
[GOAL]
case e
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw
⊢ { x // x ∈ Algebra.adjoin R (Set.range v) } ≃+* { x // x ∈ Algebra.adjoin R (Set.range w) }
[PROOFSTEP]
refine' hv.1.aevalEquiv.symm.toRingEquiv.trans _
[GOAL]
case e
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw
⊢ MvPolynomial ι R ≃+* { x // x ∈ Algebra.adjoin R (Set.range w) }
[PROOFSTEP]
refine' (AlgEquiv.ofAlgHom (MvPolynomial.rename e) (MvPolynomial.rename e.symm) _ _).toRingEquiv.trans _
[GOAL]
case e.refine'_1
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw
⊢ AlgHom.comp (MvPolynomial.rename ↑e) (MvPolynomial.rename ↑e.symm) = AlgHom.id R (MvPolynomial κ R)
[PROOFSTEP]
ext
[GOAL]
case e.refine'_1.hf.a
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw
i✝ : κ
m✝ : κ →₀ ℕ
⊢ MvPolynomial.coeff m✝ (↑(AlgHom.comp (MvPolynomial.rename ↑e) (MvPolynomial.rename ↑e.symm)) (MvPolynomial.X i✝)) =
MvPolynomial.coeff m✝ (↑(AlgHom.id R (MvPolynomial κ R)) (MvPolynomial.X i✝))
[PROOFSTEP]
simp
[GOAL]
case e.refine'_2
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw
⊢ AlgHom.comp (MvPolynomial.rename ↑e.symm) (MvPolynomial.rename ↑e) = AlgHom.id R (MvPolynomial ι R)
[PROOFSTEP]
ext
[GOAL]
case e.refine'_2.hf.a
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw
i✝ : ι
m✝ : ι →₀ ℕ
⊢ MvPolynomial.coeff m✝ (↑(AlgHom.comp (MvPolynomial.rename ↑e.symm) (MvPolynomial.rename ↑e)) (MvPolynomial.X i✝)) =
MvPolynomial.coeff m✝ (↑(AlgHom.id R (MvPolynomial ι R)) (MvPolynomial.X i✝))
[PROOFSTEP]
simp
[GOAL]
case e.refine'_3
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw
⊢ MvPolynomial κ R ≃+* { x // x ∈ Algebra.adjoin R (Set.range w) }
[PROOFSTEP]
exact hw.1.aevalEquiv.toRingEquiv
[GOAL]
R : Type u_1
L : Type u_2
K : Type u_3
inst✝⁶ : CommRing R
inst✝⁵ : Field K
inst✝⁴ : Algebra R K
inst✝³ : Field L
inst✝² : Algebra R L
ι : Type u_4
v : ι → K
κ : Type u_5
w : κ → L
hv✝ : AlgebraicIndependent R v
hw✝ : AlgebraicIndependent R w
inst✝¹ : IsAlgClosed K
inst✝ : IsAlgClosed L
e✝ : ι ≃ κ
hv : IsTranscendenceBasis R v
hw : IsTranscendenceBasis R w
this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv
this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw
e : { x // x ∈ Algebra.adjoin R (Set.range v) } ≃+* { x // x ∈ Algebra.adjoin R (Set.range w) }
⊢ K ≃+* L
[PROOFSTEP]
exact IsAlgClosure.equivOfEquiv K L e
[GOAL]
R L K : Type u
inst✝³ : CommRing R
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsAlgClosed K
ι : Type u
v : ι → K
hv✝ hv : IsTranscendenceBasis R v
⊢ max #{ x // x ∈ Algebra.adjoin R (Set.range v) } ℵ₀ = max #(MvPolynomial ι R) ℵ₀
[PROOFSTEP]
rw [Cardinal.eq.2 ⟨hv.1.aevalEquiv.toEquiv⟩]
[GOAL]
R L K : Type u
inst✝³ : CommRing R
inst✝² : Field K
inst✝¹ : Algebra R K
inst✝ : IsAlgClosed K
ι : Type u
v : ι → K
hv✝ hv : IsTranscendenceBasis R v
⊢ max (max (max #R #ι) ℵ₀) ℵ₀ = max (max #R #ι) ℵ₀
[PROOFSTEP]
simp [max_assoc]
[GOAL]
R L K : Type u
inst✝⁴ : CommRing R
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsAlgClosed K
ι : Type u
v : ι → K
hv✝ : IsTranscendenceBasis R v
inst✝ : Nontrivial R
hv : IsTranscendenceBasis R v
hR : #R ≤ ℵ₀
hK : ℵ₀ < #K
this : ℵ₀ ≤ #ι
⊢ max (max #R #ι) ℵ₀ = #ι
[PROOFSTEP]
rw [max_eq_left, max_eq_right]
[GOAL]
R L K : Type u
inst✝⁴ : CommRing R
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsAlgClosed K
ι : Type u
v : ι → K
hv✝ : IsTranscendenceBasis R v
inst✝ : Nontrivial R
hv : IsTranscendenceBasis R v
hR : #R ≤ ℵ₀
hK : ℵ₀ < #K
this : ℵ₀ ≤ #ι
⊢ #R ≤ #ι
[PROOFSTEP]
exact le_trans hR this
[GOAL]
R L K : Type u
inst✝⁴ : CommRing R
inst✝³ : Field K
inst✝² : Algebra R K
inst✝¹ : IsAlgClosed K
ι : Type u
v : ι → K
hv✝ : IsTranscendenceBasis R v
inst✝ : Nontrivial R
hv : IsTranscendenceBasis R v
hR : #R ≤ ℵ₀
hK : ℵ₀ < #K
this : ℵ₀ ≤ #ι
⊢ ℵ₀ ≤ max #R #ι
[PROOFSTEP]
exact le_max_of_le_right this
[GOAL]
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
inst✝¹ : CharZero K
inst✝ : CharZero L
hK : ℵ₀ < #K
hKL : #K = #L
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
cases' exists_isTranscendenceBasis ℤ (show Function.Injective (algebraMap ℤ K) from Int.cast_injective) with s hs
[GOAL]
case intro
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
inst✝¹ : CharZero K
inst✝ : CharZero L
hK : ℵ₀ < #K
hKL : #K = #L
s : Set K
hs : IsTranscendenceBasis ℤ Subtype.val
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
cases' exists_isTranscendenceBasis ℤ (show Function.Injective (algebraMap ℤ L) from Int.cast_injective) with t ht
[GOAL]
case intro.intro
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
inst✝¹ : CharZero K
inst✝ : CharZero L
hK : ℵ₀ < #K
hKL : #K = #L
s : Set K
hs : IsTranscendenceBasis ℤ Subtype.val
t : Set L
ht : IsTranscendenceBasis ℤ Subtype.val
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
have : #s = #t :=
by
rw [← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ hs (le_of_eq mk_int) hK, ←
cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ ht (le_of_eq mk_int), hKL]
rwa [← hKL]
[GOAL]
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
inst✝¹ : CharZero K
inst✝ : CharZero L
hK : ℵ₀ < #K
hKL : #K = #L
s : Set K
hs : IsTranscendenceBasis ℤ Subtype.val
t : Set L
ht : IsTranscendenceBasis ℤ Subtype.val
⊢ #↑s = #↑t
[PROOFSTEP]
rw [← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ hs (le_of_eq mk_int) hK, ←
cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ ht (le_of_eq mk_int), hKL]
[GOAL]
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
inst✝¹ : CharZero K
inst✝ : CharZero L
hK : ℵ₀ < #K
hKL : #K = #L
s : Set K
hs : IsTranscendenceBasis ℤ Subtype.val
t : Set L
ht : IsTranscendenceBasis ℤ Subtype.val
⊢ ℵ₀ < #L
[PROOFSTEP]
rwa [← hKL]
[GOAL]
case intro.intro
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
inst✝¹ : CharZero K
inst✝ : CharZero L
hK : ℵ₀ < #K
hKL : #K = #L
s : Set K
hs : IsTranscendenceBasis ℤ Subtype.val
t : Set L
ht : IsTranscendenceBasis ℤ Subtype.val
this : #↑s = #↑t
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
cases' Cardinal.eq.1 this with e
[GOAL]
case intro.intro.intro
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
inst✝¹ : CharZero K
inst✝ : CharZero L
hK : ℵ₀ < #K
hKL : #K = #L
s : Set K
hs : IsTranscendenceBasis ℤ Subtype.val
t : Set L
ht : IsTranscendenceBasis ℤ Subtype.val
this : #↑s = #↑t
e : ↑s ≃ ↑t
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
exact ⟨equivOfTranscendenceBasis _ _ e hs ht⟩
[GOAL]
K L : Type
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : IsAlgClosed K
inst✝³ : IsAlgClosed L
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
letI : Algebra (ZMod p) K := ZMod.algebra _ _
[GOAL]
K L : Type
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : IsAlgClosed K
inst✝³ : IsAlgClosed L
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
this : Algebra (ZMod p) K := ZMod.algebra K p
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
letI : Algebra (ZMod p) L := ZMod.algebra _ _
[GOAL]
K L : Type
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : IsAlgClosed K
inst✝³ : IsAlgClosed L
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
this✝ : Algebra (ZMod p) K := ZMod.algebra K p
this : Algebra (ZMod p) L := ZMod.algebra L p
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
cases'
exists_isTranscendenceBasis (ZMod p) (show Function.Injective (algebraMap (ZMod p) K) from RingHom.injective _) with s
hs
[GOAL]
case intro
K L : Type
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : IsAlgClosed K
inst✝³ : IsAlgClosed L
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
this✝ : Algebra (ZMod p) K := ZMod.algebra K p
this : Algebra (ZMod p) L := ZMod.algebra L p
s : Set K
hs : IsTranscendenceBasis (ZMod p) Subtype.val
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
cases'
exists_isTranscendenceBasis (ZMod p) (show Function.Injective (algebraMap (ZMod p) L) from RingHom.injective _) with t
ht
[GOAL]
case intro.intro
K L : Type
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : IsAlgClosed K
inst✝³ : IsAlgClosed L
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
this✝ : Algebra (ZMod p) K := ZMod.algebra K p
this : Algebra (ZMod p) L := ZMod.algebra L p
s : Set K
hs : IsTranscendenceBasis (ZMod p) Subtype.val
t : Set L
ht : IsTranscendenceBasis (ZMod p) Subtype.val
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
have : #s = #t :=
by
rw [← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ hs (lt_aleph0_of_finite (ZMod p)).le hK, ←
cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ ht (lt_aleph0_of_finite (ZMod p)).le, hKL]
rwa [← hKL]
[GOAL]
K L : Type
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : IsAlgClosed K
inst✝³ : IsAlgClosed L
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
this✝ : Algebra (ZMod p) K := ZMod.algebra K p
this : Algebra (ZMod p) L := ZMod.algebra L p
s : Set K
hs : IsTranscendenceBasis (ZMod p) Subtype.val
t : Set L
ht : IsTranscendenceBasis (ZMod p) Subtype.val
⊢ #↑s = #↑t
[PROOFSTEP]
rw [← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ hs (lt_aleph0_of_finite (ZMod p)).le hK, ←
cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ ht (lt_aleph0_of_finite (ZMod p)).le, hKL]
[GOAL]
K L : Type
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : IsAlgClosed K
inst✝³ : IsAlgClosed L
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
this✝ : Algebra (ZMod p) K := ZMod.algebra K p
this : Algebra (ZMod p) L := ZMod.algebra L p
s : Set K
hs : IsTranscendenceBasis (ZMod p) Subtype.val
t : Set L
ht : IsTranscendenceBasis (ZMod p) Subtype.val
⊢ ℵ₀ < #L
[PROOFSTEP]
rwa [← hKL]
[GOAL]
case intro.intro
K L : Type
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : IsAlgClosed K
inst✝³ : IsAlgClosed L
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
this✝¹ : Algebra (ZMod p) K := ZMod.algebra K p
this✝ : Algebra (ZMod p) L := ZMod.algebra L p
s : Set K
hs : IsTranscendenceBasis (ZMod p) Subtype.val
t : Set L
ht : IsTranscendenceBasis (ZMod p) Subtype.val
this : #↑s = #↑t
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
cases' Cardinal.eq.1 this with e
[GOAL]
case intro.intro.intro
K L : Type
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : IsAlgClosed K
inst✝³ : IsAlgClosed L
p : ℕ
inst✝² : Fact (Nat.Prime p)
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
this✝¹ : Algebra (ZMod p) K := ZMod.algebra K p
this✝ : Algebra (ZMod p) L := ZMod.algebra L p
s : Set K
hs : IsTranscendenceBasis (ZMod p) Subtype.val
t : Set L
ht : IsTranscendenceBasis (ZMod p) Subtype.val
this : #↑s = #↑t
e : ↑s ≃ ↑t
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
exact ⟨equivOfTranscendenceBasis _ _ e hs ht⟩
[GOAL]
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
p : ℕ
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
rcases CharP.char_is_prime_or_zero K p with (hp | hp)
[GOAL]
case inl
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
p : ℕ
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
hp : Nat.Prime p
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
haveI : Fact p.Prime := ⟨hp⟩
[GOAL]
case inl
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
p : ℕ
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
hp : Nat.Prime p
this : Fact (Nat.Prime p)
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
exact ringEquivOfCardinalEqOfCharP p hK hKL
[GOAL]
case inr
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
p : ℕ
inst✝¹ : CharP K p
inst✝ : CharP L p
hK : ℵ₀ < #K
hKL : #K = #L
hp : p = 0
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
simp only [hp] at *
[GOAL]
case inr
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
p : ℕ
hK : ℵ₀ < #K
hKL : #K = #L
inst✝¹ : CharP K 0
inst✝ : CharP L 0
hp : True
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
letI : CharZero K := CharP.charP_to_charZero K
[GOAL]
case inr
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
p : ℕ
hK : ℵ₀ < #K
hKL : #K = #L
inst✝¹ : CharP K 0
inst✝ : CharP L 0
hp : True
this : CharZero K := CharP.charP_to_charZero K
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
letI : CharZero L := CharP.charP_to_charZero L
[GOAL]
case inr
K L : Type
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : IsAlgClosed K
inst✝² : IsAlgClosed L
p : ℕ
hK : ℵ₀ < #K
hKL : #K = #L
inst✝¹ : CharP K 0
inst✝ : CharP L 0
hp : True
this✝ : CharZero K := CharP.charP_to_charZero K
this : CharZero L := CharP.charP_to_charZero L
⊢ Nonempty (K ≃+* L)
[PROOFSTEP]
exact ringEquivOfCardinalEqOfCharZero hK hKL
|
{"mathlib_filename": "Mathlib.FieldTheory.IsAlgClosed.Classification", "llama_tokens": 13233}
|
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
hp : p ∈ R[X]⁰
⊢ ↑(taylor r) p ∈ R[X]⁰
[PROOFSTEP]
rw [mem_nonZeroDivisors_iff]
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
hp : p ∈ R[X]⁰
⊢ ∀ (x : (fun x => R[X]) p), x * ↑(taylor r) p = 0 → x = 0
[PROOFSTEP]
intro x hx
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
hp : p ∈ R[X]⁰
x : R[X]
hx : x * ↑(taylor r) p = 0
⊢ x = 0
[PROOFSTEP]
have : x = taylor (r - r) x := by simp
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
hp : p ∈ R[X]⁰
x : R[X]
hx : x * ↑(taylor r) p = 0
⊢ x = ↑(taylor (r - r)) x
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
hp : p ∈ R[X]⁰
x : R[X]
hx : x * ↑(taylor r) p = 0
this : x = ↑(taylor (r - r)) x
⊢ x = 0
[PROOFSTEP]
rwa [this, sub_eq_add_neg, ← taylor_taylor, ← taylor_mul, LinearMap.map_eq_zero_iff _ (taylor_injective _),
mul_right_mem_nonZeroDivisors_eq_zero_iff hp, LinearMap.map_eq_zero_iff _ (taylor_injective _)] at hx
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
⊢ R[X]⁰ ≤
Submonoid.comap
{
toMonoidHom :=
{ toOneHom := { toFun := ↑(taylor r), map_one' := (_ : ↑(taylor r) 1 = ↑Polynomial.C 1) },
map_mul' := (_ : ∀ (p q : R[X]), ↑(taylor r) (p * q) = ↑(taylor r) p * ↑(taylor r) q) },
map_zero' := (_ : ↑(taylor r) 0 = 0),
map_add' := (_ : ∀ (x y : R[X]), ↑(taylor r) (x + y) = ↑(taylor r) x + ↑(taylor r) y) }
R[X]⁰
[PROOFSTEP]
exact taylor_mem_nonZeroDivisors r
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
⊢ ↑(laurentAux r) (↑(algebraMap R[X] (RatFunc R)) p) = ↑(algebraMap ((fun x => R[X]) p) (RatFunc R)) (↑(taylor r) p)
[PROOFSTEP]
rw [← mk_one, ← mk_one, mk_eq_div, laurentAux_div, mk_eq_div, taylor_one, map_one, map_one, map_one]
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
⊢ ↑(laurent r) X = X + ↑C r
[PROOFSTEP]
rw [← algebraMap_X, laurent_algebraMap, taylor_X, _root_.map_add, algebraMap_C]
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
x : R
⊢ ↑(laurent r) (↑C x) = ↑C x
[PROOFSTEP]
rw [← algebraMap_C, laurent_algebraMap, taylor_C]
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
⊢ ↑(laurent 0) f = f
[PROOFSTEP]
induction f using RatFunc.induction_on
[GOAL]
case f
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
p✝ q✝ : R[X]
hq✝ : q✝ ≠ 0
⊢ ↑(laurent 0) (↑(algebraMap R[X] (RatFunc R)) p✝ / ↑(algebraMap R[X] (RatFunc R)) q✝) =
↑(algebraMap R[X] (RatFunc R)) p✝ / ↑(algebraMap R[X] (RatFunc R)) q✝
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
⊢ ↑(laurent r) (↑(laurent s) f) = ↑(laurent (r + s)) f
[PROOFSTEP]
induction f using RatFunc.induction_on
[GOAL]
case f
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f : RatFunc R
p✝ q✝ : R[X]
hq✝ : q✝ ≠ 0
⊢ ↑(laurent r) (↑(laurent s) (↑(algebraMap R[X] (RatFunc R)) p✝ / ↑(algebraMap R[X] (RatFunc R)) q✝)) =
↑(laurent (r + s)) (↑(algebraMap R[X] (RatFunc R)) p✝ / ↑(algebraMap R[X] (RatFunc R)) q✝)
[PROOFSTEP]
simp_rw [laurent_div, taylor_taylor]
[GOAL]
R : Type u
inst✝ : CommRing R
hdomain : IsDomain R
r s : R
p q : R[X]
f x✝¹ x✝ : RatFunc R
h : ↑(laurent r) x✝¹ = ↑(laurent r) x✝
⊢ x✝¹ = x✝
[PROOFSTEP]
simpa [laurent_laurent] using congr_arg (laurent (-r)) h
|
{"mathlib_filename": "Mathlib.FieldTheory.Laurent", "llama_tokens": 1931}
|
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
⊢ fixingSubgroup ⊥ = ⊤
[PROOFSTEP]
ext f
[GOAL]
case h
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
f : L ≃ₐ[K] L
⊢ f ∈ fixingSubgroup ⊥ ↔ f ∈ ⊤
[PROOFSTEP]
refine' ⟨fun _ => Subgroup.mem_top _, fun _ => _⟩
[GOAL]
case h
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
f : L ≃ₐ[K] L
x✝ : f ∈ ⊤
⊢ f ∈ fixingSubgroup ⊥
[PROOFSTEP]
rintro ⟨x, hx : x ∈ (⊥ : IntermediateField K L)⟩
[GOAL]
case h.mk
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
f : L ≃ₐ[K] L
x✝ : f ∈ ⊤
x : L
hx : x ∈ ⊥
⊢ f • ↑{ val := x, property := hx } = ↑{ val := x, property := hx }
[PROOFSTEP]
rw [IntermediateField.mem_bot] at hx
[GOAL]
case h.mk
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
f : L ≃ₐ[K] L
x✝ : f ∈ ⊤
x : L
hx✝ : x ∈ ⊥
hx : x ∈ Set.range ↑(algebraMap K L)
⊢ f • ↑{ val := x, property := hx✝ } = ↑{ val := x, property := hx✝ }
[PROOFSTEP]
rcases hx with ⟨y, rfl⟩
[GOAL]
case h.mk.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
f : L ≃ₐ[K] L
x✝ : f ∈ ⊤
y : K
hx : ↑(algebraMap K L) y ∈ ⊥
⊢ f • ↑{ val := ↑(algebraMap K L) y, property := hx } = ↑{ val := ↑(algebraMap K L) y, property := hx }
[PROOFSTEP]
exact f.commutes y
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
E1 E2 : IntermediateField K L
h12 : E1 ≤ E2
⊢ fixingSubgroup E2 ≤ fixingSubgroup E1
[PROOFSTEP]
rintro σ hσ ⟨x, hx⟩
[GOAL]
case mk
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
E1 E2 : IntermediateField K L
h12 : E1 ≤ E2
σ : L ≃ₐ[K] L
hσ : σ ∈ fixingSubgroup E2
x : L
hx : x ∈ ↑E1
⊢ σ • ↑{ val := x, property := hx } = ↑{ val := x, property := hx }
[PROOFSTEP]
exact hσ ⟨x, h12 hx⟩
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
⊢ ∀ {x y : Set (L ≃ₐ[K] L)},
x ∈ (fun g => g.carrier) '' fixedByFinite K L →
y ∈ (fun g => g.carrier) '' fixedByFinite K L → ∃ z, z ∈ (fun g => g.carrier) '' fixedByFinite K L ∧ z ⊆ x ∩ y
[PROOFSTEP]
rintro X Y ⟨H1, ⟨E1, h_E1, rfl⟩, rfl⟩ ⟨H2, ⟨E2, h_E2, rfl⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
E1 : IntermediateField K L
h_E1 : E1 ∈ finiteExts K L
E2 : IntermediateField K L
h_E2 : E2 ∈ finiteExts K L
⊢ ∃ z,
z ∈ (fun g => g.carrier) '' fixedByFinite K L ∧
z ⊆
(fun g => g.carrier) (IntermediateField.fixingSubgroup E1) ∩
(fun g => g.carrier) (IntermediateField.fixingSubgroup E2)
[PROOFSTEP]
use(IntermediateField.fixingSubgroup (E1 ⊔ E2)).carrier
[GOAL]
case h
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
E1 : IntermediateField K L
h_E1 : E1 ∈ finiteExts K L
E2 : IntermediateField K L
h_E2 : E2 ∈ finiteExts K L
⊢ (IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ∈
(fun g => g.carrier) '' fixedByFinite K L ∧
(IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ⊆
(fun g => g.carrier) (IntermediateField.fixingSubgroup E1) ∩
(fun g => g.carrier) (IntermediateField.fixingSubgroup E2)
[PROOFSTEP]
refine' ⟨⟨_, ⟨_, finiteDimensional_sup E1 E2 h_E1 h_E2, rfl⟩, rfl⟩, _⟩
[GOAL]
case h
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
E1 : IntermediateField K L
h_E1 : E1 ∈ finiteExts K L
E2 : IntermediateField K L
h_E2 : E2 ∈ finiteExts K L
⊢ (IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ⊆
(fun g => g.carrier) (IntermediateField.fixingSubgroup E1) ∩
(fun g => g.carrier) (IntermediateField.fixingSubgroup E2)
[PROOFSTEP]
rw [Set.subset_inter_iff]
[GOAL]
case h
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
E1 : IntermediateField K L
h_E1 : E1 ∈ finiteExts K L
E2 : IntermediateField K L
h_E2 : E2 ∈ finiteExts K L
⊢ (IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ⊆
(fun g => g.carrier) (IntermediateField.fixingSubgroup E1) ∧
(IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ⊆
(fun g => g.carrier) (IntermediateField.fixingSubgroup E2)
[PROOFSTEP]
exact ⟨IntermediateField.fixingSubgroup.antimono le_sup_left, IntermediateField.fixingSubgroup.antimono le_sup_right⟩
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
U : Set (L ≃ₐ[K] L)
hU : U ∈ (galBasis K L).sets
⊢ U * U ⊆ U
[PROOFSTEP]
rcases hU with ⟨H, _, rfl⟩
[GOAL]
case intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
H : Subgroup (L ≃ₐ[K] L)
left✝ : H ∈ fixedByFinite K L
⊢ (fun g => g.carrier) H * (fun g => g.carrier) H ⊆ (fun g => g.carrier) H
[PROOFSTEP]
rintro x ⟨a, b, haH, hbH, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
H : Subgroup (L ≃ₐ[K] L)
left✝ : H ∈ fixedByFinite K L
a b : L ≃ₐ[K] L
haH : a ∈ (fun g => g.carrier) H
hbH : b ∈ (fun g => g.carrier) H
⊢ (fun x x_1 => x * x_1) a b ∈ (fun g => g.carrier) H
[PROOFSTEP]
exact H.mul_mem haH hbH
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
U : Set (L ≃ₐ[K] L)
hU : U ∈ (galBasis K L).sets
⊢ U ⊆ (fun x => x⁻¹) ⁻¹' U
[PROOFSTEP]
rcases hU with ⟨H, _, rfl⟩
[GOAL]
case intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
H : Subgroup (L ≃ₐ[K] L)
left✝ : H ∈ fixedByFinite K L
⊢ (fun g => g.carrier) H ⊆ (fun x => x⁻¹) ⁻¹' (fun g => g.carrier) H
[PROOFSTEP]
exact fun _ => H.inv_mem'
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
⊢ ∀ (x₀ : L ≃ₐ[K] L) {U : Set (L ≃ₐ[K] L)},
U ∈ (galBasis K L).sets → ∃ V, V ∈ (galBasis K L).sets ∧ V ⊆ (fun x => x₀ * x * x₀⁻¹) ⁻¹' U
[PROOFSTEP]
rintro σ U ⟨H, ⟨E, hE, rfl⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
⊢ ∃ V,
V ∈ (galBasis K L).sets ∧ V ⊆ (fun x => σ * x * σ⁻¹) ⁻¹' (fun g => g.carrier) (IntermediateField.fixingSubgroup E)
[PROOFSTEP]
let F : IntermediateField K L := E.map σ.symm.toAlgHom
[GOAL]
case intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
⊢ ∃ V,
V ∈ (galBasis K L).sets ∧ V ⊆ (fun x => σ * x * σ⁻¹) ⁻¹' (fun g => g.carrier) (IntermediateField.fixingSubgroup E)
[PROOFSTEP]
refine' ⟨F.fixingSubgroup.carrier, ⟨⟨F.fixingSubgroup, ⟨F, _, rfl⟩, rfl⟩, fun g hg => _⟩⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
⊢ F ∈ finiteExts K L
[PROOFSTEP]
have : FiniteDimensional K E := hE
[GOAL]
case intro.intro.intro.intro.refine'_1
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
this : FiniteDimensional K { x // x ∈ E }
⊢ F ∈ finiteExts K L
[PROOFSTEP]
apply im_finiteDimensional σ.symm
[GOAL]
case intro.intro.intro.intro.refine'_2
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
⊢ g ∈ (fun x => σ * x * σ⁻¹) ⁻¹' (fun g => g.carrier) (IntermediateField.fixingSubgroup E)
[PROOFSTEP]
change σ * g * σ⁻¹ ∈ E.fixingSubgroup
[GOAL]
case intro.intro.intro.intro.refine'_2
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
⊢ σ * g * σ⁻¹ ∈ IntermediateField.fixingSubgroup E
[PROOFSTEP]
rw [IntermediateField.mem_fixingSubgroup_iff]
[GOAL]
case intro.intro.intro.intro.refine'_2
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
⊢ ∀ (x : L), x ∈ E → ↑(σ * g * σ⁻¹) x = x
[PROOFSTEP]
intro x hx
[GOAL]
case intro.intro.intro.intro.refine'_2
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
⊢ ↑(σ * g * σ⁻¹) x = x
[PROOFSTEP]
change σ (g (σ⁻¹ x)) = x
[GOAL]
case intro.intro.intro.intro.refine'_2
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
⊢ ↑σ (↑g (↑σ⁻¹ x)) = x
[PROOFSTEP]
have h_in_F : σ⁻¹ x ∈ F := ⟨x, hx, by dsimp; rw [← AlgEquiv.invFun_eq_symm]; rfl⟩
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
⊢ ↑↑↑(AlgEquiv.symm σ) x = ↑σ⁻¹ x
[PROOFSTEP]
dsimp
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
⊢ ↑(AlgEquiv.symm σ) x = ↑σ⁻¹ x
[PROOFSTEP]
rw [← AlgEquiv.invFun_eq_symm]
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
⊢ Equiv.invFun σ.toEquiv x = ↑σ⁻¹ x
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.intro.intro.refine'_2
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
h_in_F : ↑σ⁻¹ x ∈ F
⊢ ↑σ (↑g (↑σ⁻¹ x)) = x
[PROOFSTEP]
have h_g_fix : g (σ⁻¹ x) = σ⁻¹ x :=
by
rw [Subgroup.mem_carrier, IntermediateField.mem_fixingSubgroup_iff F g] at hg
exact hg (σ⁻¹ x) h_in_F
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
h_in_F : ↑σ⁻¹ x ∈ F
⊢ ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x
[PROOFSTEP]
rw [Subgroup.mem_carrier, IntermediateField.mem_fixingSubgroup_iff F g] at hg
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : ∀ (x : L), x ∈ F → ↑g x = x
x : L
hx : x ∈ E
h_in_F : ↑σ⁻¹ x ∈ F
⊢ ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x
[PROOFSTEP]
exact hg (σ⁻¹ x) h_in_F
[GOAL]
case intro.intro.intro.intro.refine'_2
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
h_in_F : ↑σ⁻¹ x ∈ F
h_g_fix : ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x
⊢ ↑σ (↑g (↑σ⁻¹ x)) = x
[PROOFSTEP]
rw [h_g_fix]
[GOAL]
case intro.intro.intro.intro.refine'_2
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
h_in_F : ↑σ⁻¹ x ∈ F
h_g_fix : ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x
⊢ ↑σ (↑σ⁻¹ x) = x
[PROOFSTEP]
change σ (σ⁻¹ x) = x
[GOAL]
case intro.intro.intro.intro.refine'_2
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
σ : L ≃ₐ[K] L
E : IntermediateField K L
hE : E ∈ finiteExts K L
F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E
g : L ≃ₐ[K] L
hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier
x : L
hx : x ∈ E
h_in_F : ↑σ⁻¹ x ∈ F
h_g_fix : ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x
⊢ ↑σ (↑σ⁻¹ x) = x
[PROOFSTEP]
exact AlgEquiv.apply_symm_apply σ x
[GOAL]
K : Type u_1
L : Type u_2
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Algebra K L
E : IntermediateField K L
inst✝ : FiniteDimensional K { x // x ∈ E }
⊢ IsOpen ↑(fixingSubgroup E)
[PROOFSTEP]
have h_basis : E.fixingSubgroup.carrier ∈ galGroupBasis K L := ⟨E.fixingSubgroup, ⟨E, ‹_›, rfl⟩, rfl⟩
[GOAL]
K : Type u_1
L : Type u_2
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Algebra K L
E : IntermediateField K L
inst✝ : FiniteDimensional K { x // x ∈ E }
h_basis : (fixingSubgroup E).toSubmonoid.toSubsemigroup.carrier ∈ galGroupBasis K L
⊢ IsOpen ↑(fixingSubgroup E)
[PROOFSTEP]
have h_nhd := GroupFilterBasis.mem_nhds_one (galGroupBasis K L) h_basis
[GOAL]
K : Type u_1
L : Type u_2
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Algebra K L
E : IntermediateField K L
inst✝ : FiniteDimensional K { x // x ∈ E }
h_basis : (fixingSubgroup E).toSubmonoid.toSubsemigroup.carrier ∈ galGroupBasis K L
h_nhd : (fixingSubgroup E).toSubmonoid.toSubsemigroup.carrier ∈ 𝓝 1
⊢ IsOpen ↑(fixingSubgroup E)
[PROOFSTEP]
exact Subgroup.isOpen_of_mem_nhds _ h_nhd
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
let φ := f⁻¹ * g
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
cases' FunLike.exists_ne hfg with x hx
[GOAL]
case intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
have hφx : φ x ≠ x := by
apply ne_of_apply_ne f
change f (f.symm (g x)) ≠ f x
rw [AlgEquiv.apply_symm_apply f (g x), ne_comm]
exact hx
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
⊢ ↑φ x ≠ x
[PROOFSTEP]
apply ne_of_apply_ne f
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
⊢ ↑f (↑φ x) ≠ ↑f x
[PROOFSTEP]
change f (f.symm (g x)) ≠ f x
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
⊢ ↑f (↑(AlgEquiv.symm f) (↑g x)) ≠ ↑f x
[PROOFSTEP]
rw [AlgEquiv.apply_symm_apply f (g x), ne_comm]
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
⊢ ↑f x ≠ ↑g x
[PROOFSTEP]
exact hx
[GOAL]
case intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
let E : IntermediateField K L := IntermediateField.adjoin K { x }
[GOAL]
case intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
let h_findim : FiniteDimensional K E := IntermediateField.adjoin.finiteDimensional (h_int x)
[GOAL]
case intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
let H := E.fixingSubgroup
[GOAL]
case intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
have h_basis : (H : Set (L ≃ₐ[K] L)) ∈ galGroupBasis K L := ⟨H, ⟨E, ⟨h_findim, rfl⟩⟩, rfl⟩
[GOAL]
case intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
have h_nhd := GroupFilterBasis.mem_nhds_one (galGroupBasis K L) h_basis
[GOAL]
case intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
h_nhd : ↑H ∈ 𝓝 1
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
rw [mem_nhds_iff] at h_nhd
[GOAL]
case intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
h_nhd : ∃ t, t ⊆ ↑H ∧ IsOpen t ∧ 1 ∈ t
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
rcases h_nhd with ⟨W, hWH, hW_open, hW_1⟩
[GOAL]
case intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v
[PROOFSTEP]
refine'
⟨leftCoset f W, leftCoset g W,
⟨hW_open.leftCoset f, hW_open.leftCoset g, ⟨1, hW_1, mul_one _⟩, ⟨1, hW_1, mul_one _⟩, _⟩⟩
[GOAL]
case intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
⊢ Disjoint (leftCoset f W) (leftCoset g W)
[PROOFSTEP]
rw [Set.disjoint_left]
[GOAL]
case intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
⊢ ∀ ⦃a : L ≃ₐ[K] L⦄, a ∈ leftCoset f W → ¬a ∈ leftCoset g W
[PROOFSTEP]
rintro σ ⟨w1, hw1, h⟩ ⟨w2, hw2, rfl⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : (fun x => f * x) w1 = (fun x => g * x) w2
⊢ False
[PROOFSTEP]
rw [eq_inv_mul_iff_mul_eq.symm, ← mul_assoc, mul_inv_eq_iff_eq_mul.symm] at h
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : w1 * w2⁻¹ = f⁻¹ * g
⊢ False
[PROOFSTEP]
have h_in_H : w1 * w2⁻¹ ∈ H := H.mul_mem (hWH hw1) (H.inv_mem (hWH hw2))
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : w1 * w2⁻¹ = f⁻¹ * g
h_in_H : w1 * w2⁻¹ ∈ H
⊢ False
[PROOFSTEP]
rw [h] at h_in_H
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : w1 * w2⁻¹ = f⁻¹ * g
h_in_H : f⁻¹ * g ∈ H
⊢ False
[PROOFSTEP]
change φ ∈ E.fixingSubgroup at h_in_H
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : w1 * w2⁻¹ = f⁻¹ * g
h_in_H : φ ∈ IntermediateField.fixingSubgroup E
⊢ False
[PROOFSTEP]
rw [IntermediateField.mem_fixingSubgroup_iff] at h_in_H
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : w1 * w2⁻¹ = f⁻¹ * g
h_in_H : ∀ (x : L), x ∈ E → ↑φ x = x
⊢ False
[PROOFSTEP]
specialize h_in_H x
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : w1 * w2⁻¹ = f⁻¹ * g
h_in_H : x ∈ E → ↑φ x = x
⊢ False
[PROOFSTEP]
have hxE : x ∈ E := by
apply IntermediateField.subset_adjoin
apply Set.mem_singleton
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : w1 * w2⁻¹ = f⁻¹ * g
h_in_H : x ∈ E → ↑φ x = x
⊢ x ∈ E
[PROOFSTEP]
apply IntermediateField.subset_adjoin
[GOAL]
case a
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : w1 * w2⁻¹ = f⁻¹ * g
h_in_H : x ∈ E → ↑φ x = x
⊢ x ∈ {x}
[PROOFSTEP]
apply Set.mem_singleton
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
f g : L ≃ₐ[K] L
hfg : f ≠ g
φ : L ≃ₐ[K] L := f⁻¹ * g
x : L
hx : ↑f x ≠ ↑g x
hφx : ↑φ x ≠ x
E : IntermediateField K L := K⟮x⟯
h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x)
H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E
h_basis : ↑H ∈ galGroupBasis K L
W : Set (L ≃ₐ[K] L)
hWH : W ⊆ ↑H
hW_open : IsOpen W
hW_1 : 1 ∈ W
w1 : L ≃ₐ[K] L
hw1 : w1 ∈ W
w2 : L ≃ₐ[K] L
hw2 : w2 ∈ W
h : w1 * w2⁻¹ = f⁻¹ * g
h_in_H : x ∈ E → ↑φ x = x
hxE : x ∈ E
⊢ False
[PROOFSTEP]
exact hφx (h_in_H hxE)
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
⊢ IsTotallyDisconnected Set.univ
[PROOFSTEP]
apply isTotallyDisconnected_of_clopen_set
[GOAL]
case hX
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
⊢ Pairwise fun x y => ∃ U, IsClopen U ∧ x ∈ U ∧ ¬y ∈ U
[PROOFSTEP]
intro σ τ h_diff
[GOAL]
case hX
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
σ τ : L ≃ₐ[K] L
h_diff : σ ≠ τ
⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U
[PROOFSTEP]
have hστ : σ⁻¹ * τ ≠ 1 := by rwa [Ne.def, inv_mul_eq_one]
[GOAL]
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
σ τ : L ≃ₐ[K] L
h_diff : σ ≠ τ
⊢ σ⁻¹ * τ ≠ 1
[PROOFSTEP]
rwa [Ne.def, inv_mul_eq_one]
[GOAL]
case hX
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
σ τ : L ≃ₐ[K] L
h_diff : σ ≠ τ
hστ : σ⁻¹ * τ ≠ 1
⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U
[PROOFSTEP]
rcases FunLike.exists_ne hστ with ⟨x, hx : (σ⁻¹ * τ) x ≠ x⟩
[GOAL]
case hX.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
σ τ : L ≃ₐ[K] L
h_diff : σ ≠ τ
hστ : σ⁻¹ * τ ≠ 1
x : L
hx : ↑(σ⁻¹ * τ) x ≠ x
⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U
[PROOFSTEP]
let E := IntermediateField.adjoin K ({ x } : Set L)
[GOAL]
case hX.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
σ τ : L ≃ₐ[K] L
h_diff : σ ≠ τ
hστ : σ⁻¹ * τ ≠ 1
x : L
hx : ↑(σ⁻¹ * τ) x ≠ x
E : IntermediateField K L := K⟮x⟯
⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U
[PROOFSTEP]
haveI := IntermediateField.adjoin.finiteDimensional (h_int x)
[GOAL]
case hX.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
σ τ : L ≃ₐ[K] L
h_diff : σ ≠ τ
hστ : σ⁻¹ * τ ≠ 1
x : L
hx : ↑(σ⁻¹ * τ) x ≠ x
E : IntermediateField K L := K⟮x⟯
this : FiniteDimensional K { x_1 // x_1 ∈ K⟮x⟯ }
⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U
[PROOFSTEP]
refine'
⟨leftCoset σ E.fixingSubgroup, ⟨E.fixingSubgroup_isOpen.leftCoset σ, E.fixingSubgroup_isClosed.leftCoset σ⟩,
⟨1, E.fixingSubgroup.one_mem', mul_one σ⟩, _⟩
[GOAL]
case hX.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
σ τ : L ≃ₐ[K] L
h_diff : σ ≠ τ
hστ : σ⁻¹ * τ ≠ 1
x : L
hx : ↑(σ⁻¹ * τ) x ≠ x
E : IntermediateField K L := K⟮x⟯
this : FiniteDimensional K { x_1 // x_1 ∈ K⟮x⟯ }
⊢ ¬τ ∈ leftCoset σ ↑(IntermediateField.fixingSubgroup E)
[PROOFSTEP]
simp only [mem_leftCoset_iff, SetLike.mem_coe, IntermediateField.mem_fixingSubgroup_iff, not_forall]
[GOAL]
case hX.intro
K : Type u_1
L : Type u_2
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
h_int : Algebra.IsIntegral K L
σ τ : L ≃ₐ[K] L
h_diff : σ ≠ τ
hστ : σ⁻¹ * τ ≠ 1
x : L
hx : ↑(σ⁻¹ * τ) x ≠ x
E : IntermediateField K L := K⟮x⟯
this : FiniteDimensional K { x_1 // x_1 ∈ K⟮x⟯ }
⊢ ∃ x_1 x, ¬↑(σ⁻¹ * τ) x_1 = x_1
[PROOFSTEP]
exact ⟨x, IntermediateField.mem_adjoin_simple_self K x, hx⟩
|
{"mathlib_filename": "Mathlib.FieldTheory.KrullTopology", "llama_tokens": 17411}
|
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
⊢ ∃ α, F⟮α⟯ = ⊤
[PROOFSTEP]
obtain ⟨α, hα⟩ := @IsCyclic.exists_generator (Units E) _ _
[GOAL]
case intro
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
⊢ ∃ α, F⟮α⟯ = ⊤
[PROOFSTEP]
use α
[GOAL]
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
⊢ F⟮↑α⟯ = ⊤
[PROOFSTEP]
apply eq_top_iff.mpr
[GOAL]
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
⊢ ⊤ ≤ F⟮↑α⟯
[PROOFSTEP]
rintro x -
[GOAL]
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
⊢ x ∈ F⟮↑α⟯
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : x = 0
⊢ x ∈ F⟮↑α⟯
[PROOFSTEP]
rw [hx]
[GOAL]
case pos
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : x = 0
⊢ 0 ∈ F⟮↑α⟯
[PROOFSTEP]
exact F⟮α.val⟯.zero_mem
[GOAL]
case neg
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
⊢ x ∈ F⟮↑α⟯
[PROOFSTEP]
obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx))
[GOAL]
case neg.intro
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : (fun x x_1 => x ^ x_1) α n = Units.mk0 x hx
⊢ x ∈ F⟮↑α⟯
[PROOFSTEP]
simp only at hn
[GOAL]
case neg.intro
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : α ^ n = Units.mk0 x hx
⊢ x ∈ F⟮↑α⟯
[PROOFSTEP]
rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0], Units.val_zpow_eq_zpow_val]
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : α ^ n = Units.mk0 x hx
⊢ x = ↑(α ^ n)
[PROOFSTEP]
norm_cast
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : α ^ n = Units.mk0 x hx
⊢ x = ↑(α ^ n)
[PROOFSTEP]
rw [hn, Units.val_mk0]
[GOAL]
case neg.intro
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : Finite E
α : Eˣ
hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α
x : E
hx : ¬x = 0
n : ℤ
hn : α ^ n = Units.mk0 x hx
⊢ ↑α ^ n ∈ F⟮↑α⟯
[PROOFSTEP]
exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
⊢ ∃ c,
∀ (α' : E),
α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c
[PROOFSTEP]
let sf := (f.map ϕ).roots
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
⊢ ∃ c,
∀ (α' : E),
α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c
[PROOFSTEP]
let sg := (g.map ϕ).roots
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
⊢ ∃ c,
∀ (α' : E),
α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c
[PROOFSTEP]
let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
⊢ ∃ c,
∀ (α' : E),
α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c
[PROOFSTEP]
let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h
[GOAL]
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
s' : Finset F := Finset.preimage s ↑ϕ (_ : ∀ (x : F), x ∈ ↑ϕ ⁻¹' ↑s → ∀ (y : F), y ∈ ↑ϕ ⁻¹' ↑s → ↑ϕ x = ↑ϕ y → x = y)
⊢ ∃ c,
∀ (α' : E),
α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c
[PROOFSTEP]
obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s'
[GOAL]
case intro
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
s' : Finset F := Finset.preimage s ↑ϕ (_ : ∀ (x : F), x ∈ ↑ϕ ⁻¹' ↑s → ∀ (y : F), y ∈ ↑ϕ ⁻¹' ↑s → ↑ϕ x = ↑ϕ y → x = y)
c : F
hc : ¬c ∈ s'
⊢ ∃ c,
∀ (α' : E),
α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c
[PROOFSTEP]
simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc
[GOAL]
case intro
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
s' : Finset F := Finset.preimage s ↑ϕ (_ : ∀ (x : F), x ∈ ↑ϕ ⁻¹' ↑s → ∀ (y : F), y ∈ ↑ϕ ⁻¹' ↑s → ↑ϕ x = ↑ϕ y → x = y)
c : F
hc : ¬∃ a, a ∈ roots (Polynomial.map ϕ f) ∧ ∃ a_1, a_1 ∈ roots (Polynomial.map ϕ g) ∧ -(a - α) / (a_1 - β) = ↑ϕ c
⊢ ∃ c,
∀ (α' : E),
α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c
[PROOFSTEP]
push_neg at hc
[GOAL]
case intro
F : Type u_1
inst✝² : Field F
inst✝¹ : Infinite F
E : Type u_2
inst✝ : Field E
ϕ : F →+* E
α β : E
f g : F[X]
sf : Multiset E := roots (Polynomial.map ϕ f)
sg : Multiset E := roots (Polynomial.map ϕ g)
s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg)
s' : Finset F := Finset.preimage s ↑ϕ (_ : ∀ (x : F), x ∈ ↑ϕ ⁻¹' ↑s → ∀ (y : F), y ∈ ↑ϕ ⁻¹' ↑s → ↑ϕ x = ↑ϕ y → x = y)
c : F
hc :
∀ (a : E),
a ∈ roots (Polynomial.map ϕ f) → ∀ (a_1 : E), a_1 ∈ roots (Polynomial.map ϕ g) → -(a - α) / (a_1 - β) ≠ ↑ϕ c
⊢ ∃ c,
∀ (α' : E),
α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c
[PROOFSTEP]
exact ⟨c, hc⟩
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
have hα := IsSeparable.isIntegral F α
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
have hβ := IsSeparable.isIntegral F β
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
let f := minpoly F α
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
let g := minpoly F β
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
let ιFE := algebraMap F E
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
let ιEE' := algebraMap E (SplittingField (g.map ιFE))
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
let γ := α + c • β
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
suffices β_in_Fγ : β ∈ F⟮γ⟯
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
use γ
[GOAL]
case h
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ F⟮α, β⟯ = F⟮γ⟯
[PROOFSTEP]
apply le_antisymm
[GOAL]
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ F⟮α, β⟯ ≤ F⟮γ⟯
[PROOFSTEP]
rw [adjoin_le_iff]
[GOAL]
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ {α, β} ≤ ↑F⟮γ⟯
[PROOFSTEP]
have α_in_Fγ : α ∈ F⟮γ⟯ := by
rw [← add_sub_cancel α (c • β)]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ α ∈ F⟮γ⟯
[PROOFSTEP]
rw [← add_sub_cancel α (c • β)]
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ α + c • β - c • β ∈ F⟮γ⟯
[PROOFSTEP]
exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c)
[GOAL]
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fγ : α ∈ F⟮γ⟯
⊢ {α, β} ≤ ↑F⟮γ⟯
[PROOFSTEP]
exact fun x hx => by
-- Porting note: was `by cases hx <;> cases hx <;> cases hx <;> assumption`
cases' hx with hx hx
· rwa [← hx] at α_in_Fγ
· cases hx; norm_cast
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fγ : α ∈ F⟮γ⟯
x : E
hx : x ∈ {α, β}
⊢ x ∈ ↑F⟮γ⟯
[PROOFSTEP]
cases' hx with hx hx
[GOAL]
case inl
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fγ : α ∈ F⟮γ⟯
x : E
hx : x = α
⊢ x ∈ ↑F⟮γ⟯
[PROOFSTEP]
rwa [← hx] at α_in_Fγ
[GOAL]
case inr
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fγ : α ∈ F⟮γ⟯
x : E
hx : x ∈ {β}
⊢ x ∈ ↑F⟮γ⟯
[PROOFSTEP]
cases hx
[GOAL]
case inr.refl
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fγ : α ∈ F⟮γ⟯
⊢ β ∈ ↑F⟮γ⟯
[PROOFSTEP]
norm_cast
[GOAL]
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ F⟮γ⟯ ≤ F⟮α, β⟯
[PROOFSTEP]
rw [adjoin_simple_le_iff]
[GOAL]
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
⊢ γ ∈ F⟮α, β⟯
[PROOFSTEP]
have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F { α, β } (Set.mem_insert α { β })
[GOAL]
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fαβ : α ∈ F⟮α, β⟯
⊢ γ ∈ F⟮α, β⟯
[PROOFSTEP]
have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F { α, β } (Set.mem_insert_of_mem α rfl)
[GOAL]
case h.a
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
β_in_Fγ : β ∈ F⟮γ⟯
α_in_Fαβ : α ∈ F⟮α, β⟯
β_in_Fαβ : β ∈ F⟮α, β⟯
⊢ γ ∈ F⟮α, β⟯
[PROOFSTEP]
exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ)
[GOAL]
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
⊢ β ∈ F⟮γ⟯
[PROOFSTEP]
let p :=
EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X))
(g.map (algebraMap F F⟮γ⟯))
[GOAL]
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
⊢ β ∈ F⟮γ⟯
[PROOFSTEP]
let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE)
[GOAL]
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
⊢ β ∈ F⟮γ⟯
[PROOFSTEP]
have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ)
[GOAL]
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
⊢ β ∈ F⟮γ⟯
[PROOFSTEP]
have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero)
[GOAL]
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
⊢ β ∈ F⟮γ⟯
[PROOFSTEP]
suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β)
[GOAL]
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
⊢ β ∈ F⟮γ⟯
[PROOFSTEP]
have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) :=
by
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
⊢ β = ↑(algebraMap { x // x ∈ F⟮γ⟯ } E) (-coeff p 0 / coeff p 1)
[PROOFSTEP]
rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear]
-- Porting note: had to add `-map_add` to avoid going in the wrong direction.
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
⊢ β = -coeff (↑C (leadingCoeff h) * (X - ↑C β)) 0 / coeff (↑C (leadingCoeff h) * (X - ↑C β)) 1
[PROOFSTEP]
simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add]
-- Porting note: an alternative solution is:
-- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub,
-- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg,
-- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero,
-- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)]
[GOAL]
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
finale : β = ↑(algebraMap { x // x ∈ F⟮γ⟯ } E) (-coeff p 0 / coeff p 1)
⊢ β ∈ F⟮γ⟯
[PROOFSTEP]
rw [finale]
[GOAL]
case β_in_Fγ
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
finale : β = ↑(algebraMap { x // x ∈ F⟮γ⟯ } E) (-coeff p 0 / coeff p 1)
⊢ ↑(algebraMap { x // x ∈ F⟮γ⟯ } E) (-coeff p 0 / coeff p 1) ∈ F⟮γ⟯
[PROOFSTEP]
exact Subtype.mem (-p.coeff 0 / p.coeff 1)
[GOAL]
case p_linear
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
[PROOFSTEP]
have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map
[GOAL]
case p_linear
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
[PROOFSTEP]
have h_root : h.eval β = 0 := by
apply eval_gcd_eq_zero
·
rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def,
add_sub_cancel, minpoly.aeval]
· rw [eval_map, ← aeval_def, minpoly.aeval]
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
⊢ eval β h = 0
[PROOFSTEP]
apply eval_gcd_eq_zero
[GOAL]
case hf
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
⊢ eval β (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) = 0
[PROOFSTEP]
rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel,
minpoly.aeval]
[GOAL]
case hg
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
⊢ eval β (Polynomial.map ιFE g) = 0
[PROOFSTEP]
rw [eval_map, ← aeval_def, minpoly.aeval]
[GOAL]
case p_linear
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
[PROOFSTEP]
have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _)
[GOAL]
case p_linear
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
[PROOFSTEP]
have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β :=
by
intro x hx
rw [mem_roots_map h_ne_zero] at hx
specialize
hc (ιEE' γ - ιEE' (ιFE c) * x)
(by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
specialize
hc x
(by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
by_contra a
apply hc
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
ring
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
⊢ ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β
[PROOFSTEP]
intro x hx
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : x ∈ roots (Polynomial.map ιEE' h)
⊢ x = ↑ιEE' β
[PROOFSTEP]
rw [mem_roots_map h_ne_zero] at hx
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
⊢ x = ↑ιEE' β
[PROOFSTEP]
specialize
hc (ιEE' γ - ιEE' (ιFE c) * x)
(by
have f_root := root_left_of_root_gcd hx
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root)
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
⊢ ↑ιEE' γ - ↑ιEE' (↑ιFE c) * x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f)
[PROOFSTEP]
have f_root := root_left_of_root_gcd hx
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
f_root : eval₂ ιEE' x (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) = 0
⊢ ↑ιEE' γ - ↑ιEE' (↑ιFE c) * x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f)
[PROOFSTEP]
rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
f_root : eval₂ (RingHom.comp ιEE' ιFE) (↑ιEE' γ - ↑ιEE' (↑ιFE c) * x) f = 0
⊢ ↑ιEE' γ - ↑ιEE' (↑ιFE c) * x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f)
[PROOFSTEP]
exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
hc :
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
⊢ x = ↑ιEE' β
[PROOFSTEP]
specialize
hc x
(by
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
exact root_right_of_root_gcd hx)
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
hc :
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
⊢ x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g)
[PROOFSTEP]
rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map]
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
hc :
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
⊢ eval₂ ιEE' x (Polynomial.map ιFE (minpoly F β)) = 0
[PROOFSTEP]
exact root_right_of_root_gcd hx
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
⊢ x = ↑ιEE' β
[PROOFSTEP]
by_contra a
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
a : ¬x = ↑ιEE' β
⊢ False
[PROOFSTEP]
apply hc
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
a : ¬x = ↑ιEE' β
⊢ -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) = ↑(RingHom.comp ιEE' ιFE) c
[PROOFSTEP]
apply (div_eq_iff (sub_ne_zero.mpr a)).mpr
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
a : ¬x = ↑ιEE' β
⊢ -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) = ↑(RingHom.comp ιEE' ιFE) c * (x - ↑ιEE' β)
[PROOFSTEP]
simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply]
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
x : SplittingField (Polynomial.map ιFE g)
hx : eval₂ ιEE' x h = 0
hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
a : ¬x = ↑ιEE' β
⊢ -(↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) α +
↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) (↑(algebraMap F E) c) *
↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) β -
↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) (↑(algebraMap F E) c) * x -
↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) α) =
↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) (↑(algebraMap F E) c) *
(x - ↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) β)
[PROOFSTEP]
ring
[GOAL]
case p_linear
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β
⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β)
[PROOFSTEP]
rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots]
[GOAL]
case p_linear
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β
⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = h
[PROOFSTEP]
trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X])
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β
⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = EuclideanDomain.gcd ?p_linear.p_linear_1 ?p_linear.p_linear_2
[PROOFSTEP]
dsimp only
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β
⊢ Polynomial.map (algebraMap { x // x ∈ F⟮α + c • β⟯ } E)
(EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮α + c • β⟯ }) (minpoly F α))
(↑C (AdjoinSimple.gen F (α + c • β)) -
↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮α + c • β⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮α + c • β⟯ }) (minpoly F β))) =
EuclideanDomain.gcd ?p_linear.p_linear_1 ?p_linear.p_linear_2
[PROOFSTEP]
convert (gcd_map (algebraMap F⟮γ⟯ E)).symm
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β
⊢ EuclideanDomain.gcd
(Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E)
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮α + c • β⟯ }) (minpoly F α))
(↑C (AdjoinSimple.gen F (α + c • β)) -
↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮α + c • β⟯) } * X)))
(Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E)
(Polynomial.map (algebraMap F { x // x ∈ F⟮α + c • β⟯ }) (minpoly F β))) =
h
[PROOFSTEP]
simp [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq]
[GOAL]
F : Type u_1
inst✝⁴ : Field F
inst✝³ : Infinite F
E : Type u_2
inst✝² : Field E
ϕ : F →+* E
α β : E
inst✝¹ : Algebra F E
inst✝ : IsSeparable F E
hα : IsIntegral F α
hβ : IsIntegral F β
f : F[X] := minpoly F α
g : F[X] := minpoly F β
ιFE : F →+* E := algebraMap F E
ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g))
c : F
hc :
∀ (α' : SplittingField (Polynomial.map ιFE g)),
α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) →
∀ (β' : SplittingField (Polynomial.map ιFE g)),
β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) →
-(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c
γ : E := α + c • β
p : { x // x ∈ F⟮γ⟯ }[X] :=
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f)
(↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X))
(Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g)
h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g)
map_g_ne_zero : Polynomial.map ιFE g ≠ 0
h_ne_zero : h ≠ 0
h_sep : Separable h
h_root : eval β h = 0
h_splits : Splits ιEE' h
h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β
⊢ EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F E) (minpoly F α))
(↑C α + ↑C (c • β) -
↑C
(↑(algebraMap { x // x ∈ F⟮α + c • β⟯ } E)
{ val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮α + c • β⟯) }) *
X))
(Polynomial.map (algebraMap F E) (minpoly F β)) =
EuclideanDomain.gcd
(comp (Polynomial.map (algebraMap F E) (minpoly F α)) (↑C α + ↑C (c • β) - ↑C (↑(algebraMap F E) c) * X))
(Polynomial.map (algebraMap F E) (minpoly F β))
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
⊢ ∃ α, F⟮α⟯ = ⊤
[PROOFSTEP]
rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩)
[GOAL]
case inl
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
⊢ ∃ α, F⟮α⟯ = ⊤
[PROOFSTEP]
let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K
[GOAL]
case inl
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K
⊢ ∃ α, F⟮α⟯ = ⊤
[PROOFSTEP]
have base : P ⊥ := ⟨0, adjoin_zero⟩
[GOAL]
case inl
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K
base : P ⊥
⊢ ∃ α, F⟮α⟯ = ⊤
[PROOFSTEP]
have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) :=
by
intro K β hK
cases' hK with α hK
rw [← hK, adjoin_simple_adjoin_simple]
haveI : Infinite F := isEmpty_fintype.mp F_inf
cases' primitive_element_inf_aux F α β with γ hγ
exact ⟨γ, hγ.symm⟩
[GOAL]
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K
base : P ⊥
⊢ ∀ (K : IntermediateField F E) (x : E), P K → P (restrictScalars F { x // x ∈ K }⟮x⟯)
[PROOFSTEP]
intro K β hK
[GOAL]
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K
base : P ⊥
K : IntermediateField F E
β : E
hK : P K
⊢ P (restrictScalars F { x // x ∈ K }⟮β⟯)
[PROOFSTEP]
cases' hK with α hK
[GOAL]
case intro
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K
base : P ⊥
K : IntermediateField F E
β α : E
hK : F⟮α⟯ = K
⊢ P (restrictScalars F { x // x ∈ K }⟮β⟯)
[PROOFSTEP]
rw [← hK, adjoin_simple_adjoin_simple]
[GOAL]
case intro
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K
base : P ⊥
K : IntermediateField F E
β α : E
hK : F⟮α⟯ = K
⊢ P F⟮α, β⟯
[PROOFSTEP]
haveI : Infinite F := isEmpty_fintype.mp F_inf
[GOAL]
case intro
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K
base : P ⊥
K : IntermediateField F E
β α : E
hK : F⟮α⟯ = K
this : Infinite F
⊢ P F⟮α, β⟯
[PROOFSTEP]
cases' primitive_element_inf_aux F α β with γ hγ
[GOAL]
case intro.intro
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K
base : P ⊥
K : IntermediateField F E
β α : E
hK : F⟮α⟯ = K
this : Infinite F
γ : E
hγ : F⟮α, β⟯ = F⟮γ⟯
⊢ P F⟮α, β⟯
[PROOFSTEP]
exact ⟨γ, hγ.symm⟩
[GOAL]
case inl
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_inf : IsEmpty (Fintype F)
P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K
base : P ⊥
ih : ∀ (K : IntermediateField F E) (x : E), P K → P (restrictScalars F { x // x ∈ K }⟮x⟯)
⊢ ∃ α, F⟮α⟯ = ⊤
[PROOFSTEP]
exact induction_on_adjoin P base ih ⊤
[GOAL]
case inr.intro
F : Type u_1
E : Type u_2
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsSeparable F E
F_finite : Fintype F
⊢ ∃ α, F⟮α⟯ = ⊤
[PROOFSTEP]
exact exists_primitive_element_of_finite_bot F E
[GOAL]
F : Type u_1
E : Type u_2
K : Type u_3
inst✝⁷ : Field F
inst✝⁶ : Field E
inst✝⁵ : Field K
inst✝⁴ : IsAlgClosed K
inst✝³ : Algebra F E
inst✝² : FiniteDimensional F E
inst✝¹ : IsSeparable F E
inst✝ : Algebra F K
⊢ Fintype.card (E →ₐ[F] K) = finrank F E
[PROOFSTEP]
convert
(AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E) (IsSeparable.separable _ _)
(IsAlgClosed.splits_codomain _)).trans
(PowerBasis.finrank _).symm
|
{"mathlib_filename": "Mathlib.FieldTheory.PrimitiveElement", "llama_tokens": 42191}
|
[GOAL]
K : Type u_1
F : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
inst✝¹ : Field F
inst✝ : Algebra F K
⊢ Splits (algebraMap F K) (X ^ Fintype.card K - X)
[PROOFSTEP]
have h : (X ^ Fintype.card K - X : K[X]).natDegree = Fintype.card K :=
FiniteField.X_pow_card_sub_X_natDegree_eq K Fintype.one_lt_card
[GOAL]
K : Type u_1
F : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
inst✝¹ : Field F
inst✝ : Algebra F K
h : natDegree (X ^ Fintype.card K - X) = Fintype.card K
⊢ Splits (algebraMap F K) (X ^ Fintype.card K - X)
[PROOFSTEP]
rw [← splits_id_iff_splits, splits_iff_card_roots, Polynomial.map_sub, Polynomial.map_pow, map_X, h,
FiniteField.roots_X_pow_card_sub_X K, ← Finset.card_def, Finset.card_univ]
[GOAL]
K : Type u_1
F : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
inst✝¹ : Field F
inst✝ : Algebra F K
⊢ Algebra.adjoin F (rootSet (X ^ Fintype.card K - X) K) = ⊤
[PROOFSTEP]
classical
trans Algebra.adjoin F ((roots (X ^ Fintype.card K - X : K[X])).toFinset : Set K)
· simp only [rootSet, Polynomial.map_pow, map_X, Polynomial.map_sub]
· rw [FiniteField.roots_X_pow_card_sub_X, val_toFinset, coe_univ, Algebra.adjoin_univ]
[GOAL]
K : Type u_1
F : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
inst✝¹ : Field F
inst✝ : Algebra F K
⊢ Algebra.adjoin F (rootSet (X ^ Fintype.card K - X) K) = ⊤
[PROOFSTEP]
trans Algebra.adjoin F ((roots (X ^ Fintype.card K - X : K[X])).toFinset : Set K)
[GOAL]
K : Type u_1
F : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
inst✝¹ : Field F
inst✝ : Algebra F K
⊢ Algebra.adjoin F (rootSet (X ^ Fintype.card K - X) K) =
Algebra.adjoin F ↑(Multiset.toFinset (roots (X ^ Fintype.card K - X)))
[PROOFSTEP]
simp only [rootSet, Polynomial.map_pow, map_X, Polynomial.map_sub]
[GOAL]
K : Type u_1
F : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
inst✝¹ : Field F
inst✝ : Algebra F K
⊢ Algebra.adjoin F ↑(Multiset.toFinset (roots (X ^ Fintype.card K - X))) = ⊤
[PROOFSTEP]
rw [FiniteField.roots_X_pow_card_sub_X, val_toFinset, coe_univ, Algebra.adjoin_univ]
[GOAL]
K : Type u_1
inst✝¹ : Field K
p q : ℕ
inst✝ : CharP K p
h : p ∣ q
⊢ Separable (X ^ q - X)
[PROOFSTEP]
use 1, X ^ q - X - 1
[GOAL]
case h
K : Type u_1
inst✝¹ : Field K
p q : ℕ
inst✝ : CharP K p
h : p ∣ q
⊢ 1 * (X ^ q - X) + (X ^ q - X - 1) * ↑derivative (X ^ q - X) = 1
[PROOFSTEP]
rw [← CharP.cast_eq_zero_iff K[X] p] at h
[GOAL]
case h
K : Type u_1
inst✝¹ : Field K
p q : ℕ
inst✝ : CharP K p
h : ↑q = 0
⊢ 1 * (X ^ q - X) + (X ^ q - X - 1) * ↑derivative (X ^ q - X) = 1
[PROOFSTEP]
rw [derivative_sub, derivative_X_pow, derivative_X, C_eq_nat_cast, h]
[GOAL]
case h
K : Type u_1
inst✝¹ : Field K
p q : ℕ
inst✝ : CharP K p
h : ↑q = 0
⊢ 1 * (X ^ q - X) + (X ^ q - X - 1) * (0 * X ^ (q - 1) - 1) = 1
[PROOFSTEP]
ring
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
⊢ CharP (ZMod p) p
[PROOFSTEP]
infer_instance
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
⊢ FiniteDimensional (ZMod p) (GaloisField p n)
[PROOFSTEP]
dsimp only [GaloisField]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
⊢ FiniteDimensional (ZMod p) (SplittingField (X ^ p ^ n - X))
[PROOFSTEP]
infer_instance
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
⊢ Fintype (GaloisField p n)
[PROOFSTEP]
dsimp only [GaloisField]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
⊢ Fintype (SplittingField (X ^ p ^ n - X))
[PROOFSTEP]
exact FiniteDimensional.fintypeOfFintype (ZMod p) (GaloisField p n)
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
set g_poly := (X ^ p ^ n - X : (ZMod p)[X])
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
have hp : 1 < p := h_prime.out.one_lt
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
have aux : g_poly ≠ 0 := FiniteField.X_pow_card_pow_sub_X_ne_zero _ h hp
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
have key : Fintype.card (g_poly.rootSet (GaloisField p n)) = g_poly.natDegree :=
card_rootSet_eq_natDegree (galois_poly_separable p _ (dvd_pow (dvd_refl p) h))
(SplittingField.splits (X ^ p ^ n - X : (ZMod p)[X]))
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = natDegree g_poly
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
have nat_degree_eq : g_poly.natDegree = p ^ n := FiniteField.X_pow_card_pow_sub_X_natDegree_eq _ h hp
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = natDegree g_poly
nat_degree_eq : natDegree g_poly = p ^ n
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
rw [nat_degree_eq] at key
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n
nat_degree_eq : natDegree g_poly = p ^ n
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
suffices g_poly.rootSet (GaloisField p n) = Set.univ
by
simp_rw [this, ← Fintype.ofEquiv_card (Equiv.Set.univ _)] at key
rw [@card_eq_pow_finrank (ZMod p) _ _ _ _ _ (_), ZMod.card] at key
exact Nat.pow_right_injective (Nat.Prime.one_lt' p).out key
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n
nat_degree_eq : natDegree g_poly = p ^ n
this : rootSet g_poly (GaloisField p n) = Set.univ
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
simp_rw [this, ← Fintype.ofEquiv_card (Equiv.Set.univ _)] at key
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
nat_degree_eq : natDegree g_poly = p ^ n
this : rootSet g_poly (GaloisField p n) = Set.univ
key : Fintype.card (GaloisField p n) = p ^ n
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
rw [@card_eq_pow_finrank (ZMod p) _ _ _ _ _ (_), ZMod.card] at key
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
nat_degree_eq : natDegree g_poly = p ^ n
this : rootSet g_poly (GaloisField p n) = Set.univ
key✝ : Fintype.card (GaloisField p n) = p ^ n
key : p ^ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = p ^ n
⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n
[PROOFSTEP]
exact Nat.pow_right_injective (Nat.Prime.one_lt' p).out key
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n
nat_degree_eq : natDegree g_poly = p ^ n
⊢ rootSet g_poly (GaloisField p n) = Set.univ
[PROOFSTEP]
rw [Set.eq_univ_iff_forall]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n
nat_degree_eq : natDegree g_poly = p ^ n
⊢ ∀ (x : GaloisField p n), x ∈ rootSet g_poly (GaloisField p n)
[PROOFSTEP]
suffices
∀ (x) (hx : x ∈ (⊤ : Subalgebra (ZMod p) (GaloisField p n))),
x ∈ (X ^ p ^ n - X : (ZMod p)[X]).rootSet (GaloisField p n)
by simpa
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n
nat_degree_eq : natDegree g_poly = p ^ n
this : ∀ (x : GaloisField p n), x ∈ ⊤ → x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n)
⊢ ∀ (x : GaloisField p n), x ∈ rootSet g_poly (GaloisField p n)
[PROOFSTEP]
simpa
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n
nat_degree_eq : natDegree g_poly = p ^ n
⊢ ∀ (x : GaloisField p n), x ∈ ⊤ → x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n)
[PROOFSTEP]
rw [← SplittingField.adjoin_rootSet]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n
nat_degree_eq : natDegree g_poly = p ^ n
⊢ ∀ (x : GaloisField p n),
x ∈ Algebra.adjoin (ZMod p) (rootSet (X ^ p ^ n - X) (SplittingField (X ^ p ^ n - X))) →
x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n)
[PROOFSTEP]
simp_rw [Algebra.mem_adjoin_iff]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n
nat_degree_eq : natDegree g_poly = p ^ n
⊢ ∀ (x : GaloisField p n),
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod p) (GaloisField p n)) ∪
rootSet (X ^ p ^ n - X) (SplittingField (X ^ p ^ n - X))) →
x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n)
[PROOFSTEP]
intro x hx
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝¹ p : ℕ
h_prime : Fact (Nat.Prime p)
n✝ n : ℕ
h : n ≠ 0
g_poly : (ZMod p)[X] := X ^ p ^ n - X
hp : 1 < p
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n
nat_degree_eq : natDegree g_poly = p ^ n
x : GaloisField p n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod p) (GaloisField p n)) ∪ rootSet (X ^ p ^ n - X) (SplittingField (X ^ p ^ n - X)))
⊢ x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n)
[PROOFSTEP]
cases p
[GOAL]
case zero
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝¹ n✝ n : ℕ
h : n ≠ 0
h_prime : Fact (Nat.Prime Nat.zero)
g_poly : (ZMod Nat.zero)[X] := X ^ Nat.zero ^ n - X
hp : 1 < Nat.zero
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField Nat.zero n)) = Nat.zero ^ n
nat_degree_eq : natDegree g_poly = Nat.zero ^ n
x : GaloisField Nat.zero n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod Nat.zero) (GaloisField Nat.zero n)) ∪
rootSet (X ^ Nat.zero ^ n - X) (SplittingField (X ^ Nat.zero ^ n - X)))
⊢ x ∈ rootSet (X ^ Nat.zero ^ n - X) (GaloisField Nat.zero n)
case succ
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)
[PROOFSTEP]
cases hp
[GOAL]
case succ
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)
[PROOFSTEP]
refine Subring.closure_induction hx ?_ ?_ ?_ ?_ ?_ ?_
[GOAL]
case succ.refine_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x : GaloisField (Nat.succ n✝) n),
x ∈
Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)) →
x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)
[PROOFSTEP]
simp_rw [mem_rootSet_of_ne aux]
[GOAL]
case succ.refine_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ 0 ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)
[PROOFSTEP]
simp_rw [mem_rootSet_of_ne aux]
[GOAL]
case succ.refine_3
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ 1 ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)
[PROOFSTEP]
simp_rw [mem_rootSet_of_ne aux]
[GOAL]
case succ.refine_4
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x y : GaloisField (Nat.succ n✝) n),
x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) →
y ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) →
x + y ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)
[PROOFSTEP]
simp_rw [mem_rootSet_of_ne aux]
[GOAL]
case succ.refine_5
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x : GaloisField (Nat.succ n✝) n),
x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) →
-x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)
[PROOFSTEP]
simp_rw [mem_rootSet_of_ne aux]
[GOAL]
case succ.refine_6
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x y : GaloisField (Nat.succ n✝) n),
x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) →
y ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) →
x * y ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)
[PROOFSTEP]
simp_rw [mem_rootSet_of_ne aux]
[GOAL]
case succ.refine_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x : GaloisField (Nat.succ n✝) n),
x ∈
Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)) →
↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
rintro x (⟨r, rfl⟩ | hx)
[GOAL]
case succ.refine_1.inl.intro
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
r : ZMod (Nat.succ n✝)
⊢ ↑(aeval (↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) r)) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
simp only [map_sub, map_pow, aeval_X]
[GOAL]
case succ.refine_1.inl.intro
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
r : ZMod (Nat.succ n✝)
⊢ ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) r ^ Nat.succ n✝ ^ n -
↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) r =
0
[PROOFSTEP]
rw [← map_pow, ZMod.pow_card_pow, sub_self]
[GOAL]
case succ.refine_1.inr
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x✝ : GaloisField (Nat.succ n✝) n
hx✝ :
x✝ ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
x : GaloisField (Nat.succ n✝) n
hx : x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))
⊢ ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
dsimp only [GaloisField] at hx
[GOAL]
case succ.refine_1.inr
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x✝ : GaloisField (Nat.succ n✝) n
hx✝ :
x✝ ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
x : GaloisField (Nat.succ n✝) n
hx : x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))
⊢ ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
rwa [mem_rootSet_of_ne aux] at hx
[GOAL]
case succ.refine_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ↑(aeval 0) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
rw [← coeff_zero_eq_aeval_zero']
[GOAL]
case succ.refine_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) (coeff (X ^ Nat.succ n✝ ^ n - X) 0) = 0
[PROOFSTEP]
simp only [coeff_X_pow, coeff_X_zero, sub_zero, _root_.map_eq_zero, ite_eq_right_iff, one_ne_zero, coeff_sub]
[GOAL]
case succ.refine_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ 0 = Nat.succ n✝ ^ n → False
[PROOFSTEP]
intro hn
[GOAL]
case succ.refine_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
hn : 0 = Nat.succ n✝ ^ n
⊢ False
[PROOFSTEP]
exact Nat.not_lt_zero 1 (pow_eq_zero hn.symm ▸ hp)
[GOAL]
case succ.refine_3
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ↑(aeval 1) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
simp
[GOAL]
case succ.refine_4
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x y : GaloisField (Nat.succ n✝) n),
↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 →
↑(aeval y) (X ^ Nat.succ n✝ ^ n - X) = 0 → ↑(aeval (x + y)) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
simp only [aeval_X_pow, aeval_X, AlgHom.map_sub, add_pow_char_pow, sub_eq_zero]
[GOAL]
case succ.refine_4
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x y : GaloisField (Nat.succ n✝) n),
x ^ Nat.succ n✝ ^ n = x → y ^ Nat.succ n✝ ^ n = y → x ^ Nat.succ n✝ ^ n + y ^ Nat.succ n✝ ^ n = x + y
[PROOFSTEP]
intro x y hx hy
[GOAL]
case succ.refine_4
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x✝ : GaloisField (Nat.succ n✝) n
hx✝ :
x✝ ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
x y : GaloisField (Nat.succ n✝) n
hx : x ^ Nat.succ n✝ ^ n = x
hy : y ^ Nat.succ n✝ ^ n = y
⊢ x ^ Nat.succ n✝ ^ n + y ^ Nat.succ n✝ ^ n = x + y
[PROOFSTEP]
rw [hx, hy]
[GOAL]
case succ.refine_5
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x : GaloisField (Nat.succ n✝) n),
↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 → ↑(aeval (-x)) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
intro x hx
[GOAL]
case succ.refine_5
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x✝ : GaloisField (Nat.succ n✝) n
hx✝ :
x✝ ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
x : GaloisField (Nat.succ n✝) n
hx : ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0
⊢ ↑(aeval (-x)) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
simp only [sub_eq_zero, aeval_X_pow, aeval_X, AlgHom.map_sub, sub_neg_eq_add] at *
[GOAL]
case succ.refine_5
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : X ^ Nat.succ n✝ ^ n - X ≠ 0
key : Fintype.card ↑(rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree (X ^ Nat.succ n✝ ^ n - X) = Nat.succ n✝ ^ n
x✝ : GaloisField (Nat.succ n✝) n
hx✝ :
x✝ ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
x : GaloisField (Nat.succ n✝) n
hx : x ^ Nat.succ n✝ ^ n = x
⊢ (-x) ^ Nat.succ n✝ ^ n + x = 0
[PROOFSTEP]
rw [neg_pow, hx, CharP.neg_one_pow_char_pow]
[GOAL]
case succ.refine_5
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : X ^ Nat.succ n✝ ^ n - X ≠ 0
key : Fintype.card ↑(rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree (X ^ Nat.succ n✝ ^ n - X) = Nat.succ n✝ ^ n
x✝ : GaloisField (Nat.succ n✝) n
hx✝ :
x✝ ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
x : GaloisField (Nat.succ n✝) n
hx : x ^ Nat.succ n✝ ^ n = x
⊢ -1 * x + x = 0
[PROOFSTEP]
simp
[GOAL]
case succ.refine_6
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x y : GaloisField (Nat.succ n✝) n),
↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 →
↑(aeval y) (X ^ Nat.succ n✝ ^ n - X) = 0 → ↑(aeval (x * y)) (X ^ Nat.succ n✝ ^ n - X) = 0
[PROOFSTEP]
simp only [aeval_X_pow, aeval_X, AlgHom.map_sub, mul_pow, sub_eq_zero]
[GOAL]
case succ.refine_6
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x : GaloisField (Nat.succ n✝) n
hx :
x ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
⊢ ∀ (x y : GaloisField (Nat.succ n✝) n),
x ^ Nat.succ n✝ ^ n = x → y ^ Nat.succ n✝ ^ n = y → x ^ Nat.succ n✝ ^ n * y ^ Nat.succ n✝ ^ n = x * y
[PROOFSTEP]
intro x y hx hy
[GOAL]
case succ.refine_6
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝² n✝¹ n : ℕ
h : n ≠ 0
n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X
hp : 1 < Nat.succ n✝
aux : g_poly ≠ 0
key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n
nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n
x✝ : GaloisField (Nat.succ n✝) n
hx✝ :
x✝ ∈
Subring.closure
(Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪
rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)))
x y : GaloisField (Nat.succ n✝) n
hx : x ^ Nat.succ n✝ ^ n = x
hy : y ^ Nat.succ n✝ ^ n = y
⊢ x ^ Nat.succ n✝ ^ n * y ^ Nat.succ n✝ ^ n = x * y
[PROOFSTEP]
rw [hx, hy]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
h : n ≠ 0
⊢ Fintype.card (GaloisField p n) = p ^ n
[PROOFSTEP]
let b := IsNoetherian.finsetBasis (ZMod p) (GaloisField p n)
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
h : n ≠ 0
b : Basis { x // x ∈ IsNoetherian.finsetBasisIndex (ZMod p) (GaloisField p n) } (ZMod p) (GaloisField p n) :=
IsNoetherian.finsetBasis (ZMod p) (GaloisField p n)
⊢ Fintype.card (GaloisField p n) = p ^ n
[PROOFSTEP]
rw [Module.card_fintype b, ← FiniteDimensional.finrank_eq_card_basis b, ZMod.card, finrank p h]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
⊢ Splits (RingHom.id (ZMod p)) (X ^ p - X)
[PROOFSTEP]
have hp : 1 < p := h_prime.out.one_lt
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
hp : 1 < p
⊢ Splits (RingHom.id (ZMod p)) (X ^ p - X)
[PROOFSTEP]
have h1 : roots (X ^ p - X : (ZMod p)[X]) = Finset.univ.val :=
by
convert FiniteField.roots_X_pow_card_sub_X (ZMod p)
exact (ZMod.card p).symm
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
hp : 1 < p
⊢ roots (X ^ p - X) = univ.val
[PROOFSTEP]
convert FiniteField.roots_X_pow_card_sub_X (ZMod p)
[GOAL]
case h.e'_2.h.e'_4.h.h.e'_5.h.e'_6
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
hp : 1 < p
e_2✝ : ZMod.commRing p = EuclideanDomain.toCommRing
⊢ p = Fintype.card (ZMod p)
[PROOFSTEP]
exact (ZMod.card p).symm
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
hp : 1 < p
h1 : roots (X ^ p - X) = univ.val
⊢ Splits (RingHom.id (ZMod p)) (X ^ p - X)
[PROOFSTEP]
have h2 := FiniteField.X_pow_card_sub_X_natDegree_eq (ZMod p) hp
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
hp : 1 < p
h1 : roots (X ^ p - X) = univ.val
h2 : natDegree (X ^ p - X) = p
⊢ Splits (RingHom.id (ZMod p)) (X ^ p - X)
[PROOFSTEP]
cases p
[GOAL]
case zero
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝ n : ℕ
h_prime : Fact (Nat.Prime Nat.zero)
hp : 1 < Nat.zero
h1 : roots (X ^ Nat.zero - X) = univ.val
h2 : natDegree (X ^ Nat.zero - X) = Nat.zero
⊢ Splits (RingHom.id (ZMod Nat.zero)) (X ^ Nat.zero - X)
case succ
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝¹ n n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
hp : 1 < Nat.succ n✝
h1 : roots (X ^ Nat.succ n✝ - X) = univ.val
h2 : natDegree (X ^ Nat.succ n✝ - X) = Nat.succ n✝
⊢ Splits (RingHom.id (ZMod (Nat.succ n✝))) (X ^ Nat.succ n✝ - X)
[PROOFSTEP]
cases hp
[GOAL]
case succ
p : ℕ
inst✝ : Fact (Nat.Prime p)
n✝¹ n n✝ : ℕ
h_prime : Fact (Nat.Prime (Nat.succ n✝))
hp : 1 < Nat.succ n✝
h1 : roots (X ^ Nat.succ n✝ - X) = univ.val
h2 : natDegree (X ^ Nat.succ n✝ - X) = Nat.succ n✝
⊢ Splits (RingHom.id (ZMod (Nat.succ n✝))) (X ^ Nat.succ n✝ - X)
[PROOFSTEP]
rw [splits_iff_card_roots, h1, ← Finset.card_def, Finset.card_univ, h2, ZMod.card]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
⊢ X ^ p ^ 1 = X ^ Fintype.card (ZMod p)
[PROOFSTEP]
rw [pow_one, ZMod.card p]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
h : X ^ p ^ 1 = X ^ Fintype.card (ZMod p) :=
Eq.mpr (id (pow_one p ▸ Eq.refl (X ^ p ^ 1 = X ^ Fintype.card (ZMod p))))
(Eq.mpr (id (ZMod.card p ▸ Eq.refl (X ^ p = X ^ Fintype.card (ZMod p)))) (Eq.refl (X ^ p)))
⊢ IsSplittingField (ZMod p) (ZMod p) (X ^ p ^ 1 - X)
[PROOFSTEP]
rw [h]
[GOAL]
p✝ : ℕ
inst✝ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
h : X ^ p ^ 1 = X ^ Fintype.card (ZMod p) :=
Eq.mpr (id (pow_one p ▸ Eq.refl (X ^ p ^ 1 = X ^ Fintype.card (ZMod p))))
(Eq.mpr (id (ZMod.card p ▸ Eq.refl (X ^ p = X ^ Fintype.card (ZMod p)))) (Eq.refl (X ^ p)))
⊢ IsSplittingField (ZMod p) (ZMod p) (X ^ Fintype.card (ZMod p) - X)
[PROOFSTEP]
infer_instance
[GOAL]
p✝ : ℕ
inst✝⁷ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
K✝ : Type u_1
inst✝⁶ : Field K✝
inst✝⁵ : Fintype K✝
inst✝⁴ : Algebra (ZMod p) K✝
K : Type u_2
K' : Type u_3
inst✝³ : Field K
inst✝² : Field K'
inst✝¹ : Finite K'
inst✝ : Algebra K K'
⊢ IsGalois K K'
[PROOFSTEP]
cases nonempty_fintype K'
[GOAL]
case intro
p✝ : ℕ
inst✝⁷ : Fact (Nat.Prime p✝)
n✝ p : ℕ
h_prime : Fact (Nat.Prime p)
n : ℕ
K✝ : Type u_1
inst✝⁶ : Field K✝
inst✝⁵ : Fintype K✝
inst✝⁴ : Algebra (ZMod p) K✝
K : Type u_2
K' : Type u_3
inst✝³ : Field K
inst✝² : Field K'
inst✝¹ : Finite K'
inst✝ : Algebra K K'
val✝ : Fintype K'
⊢ IsGalois K K'
[PROOFSTEP]
obtain ⟨p, hp⟩ := CharP.exists K
[GOAL]
case intro.intro
p✝¹ : ℕ
inst✝⁷ : Fact (Nat.Prime p✝¹)
n✝ p✝ : ℕ
h_prime : Fact (Nat.Prime p✝)
n : ℕ
K✝ : Type u_1
inst✝⁶ : Field K✝
inst✝⁵ : Fintype K✝
inst✝⁴ : Algebra (ZMod p✝) K✝
K : Type u_2
K' : Type u_3
inst✝³ : Field K
inst✝² : Field K'
inst✝¹ : Finite K'
inst✝ : Algebra K K'
val✝ : Fintype K'
p : ℕ
hp : CharP K p
⊢ IsGalois K K'
[PROOFSTEP]
haveI : CharP K p := hp
[GOAL]
case intro.intro
p✝¹ : ℕ
inst✝⁷ : Fact (Nat.Prime p✝¹)
n✝ p✝ : ℕ
h_prime : Fact (Nat.Prime p✝)
n : ℕ
K✝ : Type u_1
inst✝⁶ : Field K✝
inst✝⁵ : Fintype K✝
inst✝⁴ : Algebra (ZMod p✝) K✝
K : Type u_2
K' : Type u_3
inst✝³ : Field K
inst✝² : Field K'
inst✝¹ : Finite K'
inst✝ : Algebra K K'
val✝ : Fintype K'
p : ℕ
hp : CharP K p
this : CharP K p
⊢ IsGalois K K'
[PROOFSTEP]
haveI : CharP K' p := charP_of_injective_algebraMap' K K' p
[GOAL]
case intro.intro
p✝¹ : ℕ
inst✝⁷ : Fact (Nat.Prime p✝¹)
n✝ p✝ : ℕ
h_prime : Fact (Nat.Prime p✝)
n : ℕ
K✝ : Type u_1
inst✝⁶ : Field K✝
inst✝⁵ : Fintype K✝
inst✝⁴ : Algebra (ZMod p✝) K✝
K : Type u_2
K' : Type u_3
inst✝³ : Field K
inst✝² : Field K'
inst✝¹ : Finite K'
inst✝ : Algebra K K'
val✝ : Fintype K'
p : ℕ
hp : CharP K p
this✝ : CharP K p
this : CharP K' p
⊢ IsGalois K K'
[PROOFSTEP]
exact
IsGalois.of_separable_splitting_field
(galois_poly_separable p (Fintype.card K')
(let ⟨n, _, hn⟩ := FiniteField.card K' p
hn.symm ▸ dvd_pow_self p n.ne_zero))
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
hKK' : Fintype.card K = Fintype.card K'
⊢ K ≃ₐ[ZMod p] K'
[PROOFSTEP]
have : CharP K p := by rw [← Algebra.charP_iff (ZMod p) K p]; exact ZMod.charP p
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
hKK' : Fintype.card K = Fintype.card K'
⊢ CharP K p
[PROOFSTEP]
rw [← Algebra.charP_iff (ZMod p) K p]
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
hKK' : Fintype.card K = Fintype.card K'
⊢ CharP (ZMod p) p
[PROOFSTEP]
exact ZMod.charP p
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
hKK' : Fintype.card K = Fintype.card K'
this : CharP K p
⊢ K ≃ₐ[ZMod p] K'
[PROOFSTEP]
have : CharP K' p := by rw [← Algebra.charP_iff (ZMod p) K' p]; exact ZMod.charP p
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
hKK' : Fintype.card K = Fintype.card K'
this : CharP K p
⊢ CharP K' p
[PROOFSTEP]
rw [← Algebra.charP_iff (ZMod p) K' p]
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
hKK' : Fintype.card K = Fintype.card K'
this : CharP K p
⊢ CharP (ZMod p) p
[PROOFSTEP]
exact ZMod.charP p
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
hKK' : Fintype.card K = Fintype.card K'
this✝ : CharP K p
this : CharP K' p
⊢ K ≃ₐ[ZMod p] K'
[PROOFSTEP]
choose n a hK using FiniteField.card K p
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
hKK' : Fintype.card K = Fintype.card K'
this✝ : CharP K p
this : CharP K' p
n : ℕ+
a : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
⊢ K ≃ₐ[ZMod p] K'
[PROOFSTEP]
choose n' a' hK' using FiniteField.card K' p
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
hKK' : Fintype.card K = Fintype.card K'
this✝ : CharP K p
this : CharP K' p
n : ℕ+
a : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
a' : Nat.Prime p
hK' : Fintype.card K' = p ^ ↑n'
⊢ K ≃ₐ[ZMod p] K'
[PROOFSTEP]
rw [hK, hK'] at hKK'
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
this✝ : CharP K p
this : CharP K' p
n : ℕ+
a : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hKK' : p ^ ↑n = p ^ ↑n'
a' : Nat.Prime p
hK' : Fintype.card K' = p ^ ↑n'
⊢ K ≃ₐ[ZMod p] K'
[PROOFSTEP]
have hGalK := GaloisField.algEquivGaloisField p n hK
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
this✝ : CharP K p
this : CharP K' p
n : ℕ+
a : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hKK' : p ^ ↑n = p ^ ↑n'
a' : Nat.Prime p
hK' : Fintype.card K' = p ^ ↑n'
hGalK : K ≃ₐ[ZMod p] GaloisField p ↑n
⊢ K ≃ₐ[ZMod p] K'
[PROOFSTEP]
have hK'Gal := (GaloisField.algEquivGaloisField p n' hK').symm
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
this✝ : CharP K p
this : CharP K' p
n : ℕ+
a : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hKK' : p ^ ↑n = p ^ ↑n'
a' : Nat.Prime p
hK' : Fintype.card K' = p ^ ↑n'
hGalK : K ≃ₐ[ZMod p] GaloisField p ↑n
hK'Gal : GaloisField p ↑n' ≃ₐ[ZMod p] K'
⊢ K ≃ₐ[ZMod p] K'
[PROOFSTEP]
rw [Nat.pow_right_injective h_prime.out.one_lt hKK'] at *
[GOAL]
p✝ : ℕ
inst✝⁶ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝⁵ : Field K
inst✝⁴ : Fintype K
K' : Type u_2
inst✝³ : Field K'
inst✝² : Fintype K'
p : ℕ
h_prime : Fact (Nat.Prime p)
inst✝¹ : Algebra (ZMod p) K
inst✝ : Algebra (ZMod p) K'
this✝ : CharP K p
this : CharP K' p
n : ℕ+
a : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hKK' : p ^ ↑n' = p ^ ↑n'
a' : Nat.Prime p
hK' : Fintype.card K' = p ^ ↑n'
hGalK : K ≃ₐ[ZMod p] GaloisField p ↑n'
hK'Gal : GaloisField p ↑n' ≃ₐ[ZMod p] K'
⊢ K ≃ₐ[ZMod p] K'
[PROOFSTEP]
exact AlgEquiv.trans hGalK hK'Gal
[GOAL]
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
n : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
⊢ K ≃+* K'
[PROOFSTEP]
choose p _char_p_K using CharP.exists K
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
⊢ K ≃+* K'
[PROOFSTEP]
choose p' _char_p'_K' using CharP.exists K'
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p'
⊢ K ≃+* K'
[PROOFSTEP]
choose n hp hK using FiniteField.card K p
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p'
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
⊢ K ≃+* K'
[PROOFSTEP]
choose n' hp' hK' using FiniteField.card K' p'
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p'
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
⊢ K ≃+* K'
[PROOFSTEP]
have hpp' : p = p' := by
by_contra hne
have h2 := Nat.coprime_pow_primes n n' hp hp' hne
rw [(Eq.congr hK hK').mp hKK', Nat.coprime_self, pow_eq_one_iff (PNat.ne_zero n')] at h2
exact Nat.Prime.ne_one hp' h2
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p'
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
⊢ p = p'
[PROOFSTEP]
by_contra hne
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p'
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
hne : ¬p = p'
⊢ False
[PROOFSTEP]
have h2 := Nat.coprime_pow_primes n n' hp hp' hne
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p'
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
hne : ¬p = p'
h2 : Nat.coprime (p ^ ↑n) (p' ^ ↑n')
⊢ False
[PROOFSTEP]
rw [(Eq.congr hK hK').mp hKK', Nat.coprime_self, pow_eq_one_iff (PNat.ne_zero n')] at h2
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p'
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
hne : ¬p = p'
h2 : p' = 1
⊢ False
[PROOFSTEP]
exact Nat.Prime.ne_one hp' h2
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p'
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
hpp' : p = p'
⊢ K ≃+* K'
[PROOFSTEP]
rw [← hpp'] at _char_p'_K'
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
hpp' : p = p'
⊢ K ≃+* K'
[PROOFSTEP]
haveI := fact_iff.2 hp
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
hpp' : p = p'
this : Fact (Nat.Prime p)
⊢ K ≃+* K'
[PROOFSTEP]
letI : Algebra (ZMod p) K := ZMod.algebra _ _
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
hpp' : p = p'
this✝ : Fact (Nat.Prime p)
this : Algebra (ZMod p) K := ZMod.algebra K p
⊢ K ≃+* K'
[PROOFSTEP]
letI : Algebra (ZMod p) K' := ZMod.algebra _ _
[GOAL]
p✝ : ℕ
inst✝⁴ : Fact (Nat.Prime p✝)
n✝ : ℕ
K : Type u_1
inst✝³ : Field K
inst✝² : Fintype K
K' : Type u_2
inst✝¹ : Field K'
inst✝ : Fintype K'
hKK' : Fintype.card K = Fintype.card K'
p : ℕ
_char_p_K : CharP K p
p' : ℕ
_char_p'_K' : CharP K' p
n : ℕ+
hp : Nat.Prime p
hK : Fintype.card K = p ^ ↑n
n' : ℕ+
hp' : Nat.Prime p'
hK' : Fintype.card K' = p' ^ ↑n'
hpp' : p = p'
this✝¹ : Fact (Nat.Prime p)
this✝ : Algebra (ZMod p) K := ZMod.algebra K p
this : Algebra (ZMod p) K' := ZMod.algebra K' p
⊢ K ≃+* K'
[PROOFSTEP]
exact ↑(algEquivOfCardEq p hKK')
|
{"mathlib_filename": "Mathlib.FieldTheory.Finite.GaloisField", "llama_tokens": 28707}
|
[GOAL]
σ : Type u_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
f : MvPolynomial σ (ZMod p)
⊢ ↑(frobenius (MvPolynomial σ (ZMod p)) p) f = ↑(expand p) f
[PROOFSTEP]
apply induction_on f
[GOAL]
case h_C
σ : Type u_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
f : MvPolynomial σ (ZMod p)
⊢ ∀ (a : ZMod p), ↑(frobenius (MvPolynomial σ (ZMod p)) p) (↑C a) = ↑(expand p) (↑C a)
[PROOFSTEP]
intro a
[GOAL]
case h_C
σ : Type u_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
f : MvPolynomial σ (ZMod p)
a : ZMod p
⊢ ↑(frobenius (MvPolynomial σ (ZMod p)) p) (↑C a) = ↑(expand p) (↑C a)
[PROOFSTEP]
rw [expand_C, frobenius_def, ← C_pow, ZMod.pow_card]
[GOAL]
case h_add
σ : Type u_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
f : MvPolynomial σ (ZMod p)
⊢ ∀ (p_1 q : MvPolynomial σ (ZMod p)),
↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 = ↑(expand p) p_1 →
↑(frobenius (MvPolynomial σ (ZMod p)) p) q = ↑(expand p) q →
↑(frobenius (MvPolynomial σ (ZMod p)) p) (p_1 + q) = ↑(expand p) (p_1 + q)
[PROOFSTEP]
simp only [AlgHom.map_add, RingHom.map_add]
[GOAL]
case h_add
σ : Type u_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
f : MvPolynomial σ (ZMod p)
⊢ ∀ (p_1 q : MvPolynomial σ (ZMod p)),
↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 = ↑(expand p) p_1 →
↑(frobenius (MvPolynomial σ (ZMod p)) p) q = ↑(expand p) q →
↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 + ↑(frobenius (MvPolynomial σ (ZMod p)) p) q =
↑(expand p) p_1 + ↑(expand p) q
[PROOFSTEP]
intro _ _ hf hg
[GOAL]
case h_add
σ : Type u_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
f p✝ q✝ : MvPolynomial σ (ZMod p)
hf : ↑(frobenius (MvPolynomial σ (ZMod p)) p) p✝ = ↑(expand p) p✝
hg : ↑(frobenius (MvPolynomial σ (ZMod p)) p) q✝ = ↑(expand p) q✝
⊢ ↑(frobenius (MvPolynomial σ (ZMod p)) p) p✝ + ↑(frobenius (MvPolynomial σ (ZMod p)) p) q✝ =
↑(expand p) p✝ + ↑(expand p) q✝
[PROOFSTEP]
rw [hf, hg]
[GOAL]
case h_X
σ : Type u_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
f : MvPolynomial σ (ZMod p)
⊢ ∀ (p_1 : MvPolynomial σ (ZMod p)) (n : σ),
↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 = ↑(expand p) p_1 →
↑(frobenius (MvPolynomial σ (ZMod p)) p) (p_1 * X n) = ↑(expand p) (p_1 * X n)
[PROOFSTEP]
simp only [expand_X, RingHom.map_mul, AlgHom.map_mul]
[GOAL]
case h_X
σ : Type u_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
f : MvPolynomial σ (ZMod p)
⊢ ∀ (p_1 : MvPolynomial σ (ZMod p)) (n : σ),
↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 = ↑(expand p) p_1 →
↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 * ↑(frobenius (MvPolynomial σ (ZMod p)) p) (X n) =
↑(expand p) p_1 * X n ^ p
[PROOFSTEP]
intro _ _ hf
[GOAL]
case h_X
σ : Type u_1
p : ℕ
inst✝ : Fact (Nat.Prime p)
f p✝ : MvPolynomial σ (ZMod p)
n✝ : σ
hf : ↑(frobenius (MvPolynomial σ (ZMod p)) p) p✝ = ↑(expand p) p✝
⊢ ↑(frobenius (MvPolynomial σ (ZMod p)) p) p✝ * ↑(frobenius (MvPolynomial σ (ZMod p)) p) (X n✝) =
↑(expand p) p✝ * X n✝ ^ p
[PROOFSTEP]
rw [hf, frobenius_def]
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
a : σ → K
⊢ ↑(eval a) (indicator a) = 1
[PROOFSTEP]
nontriviality
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
a : σ → K
✝ : Nontrivial ((fun x => K) (indicator a))
⊢ ↑(eval a) (indicator a) = 1
[PROOFSTEP]
have : 0 < Fintype.card K - 1 := tsub_pos_of_lt Fintype.one_lt_card
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
a : σ → K
✝ : Nontrivial ((fun x => K) (indicator a))
this : 0 < Fintype.card K - 1
⊢ ↑(eval a) (indicator a) = 1
[PROOFSTEP]
simp only [indicator, map_prod, map_sub, map_one, map_pow, eval_X, eval_C, sub_self, zero_pow this, sub_zero,
Finset.prod_const_one]
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
⊢ degrees (indicator c) ≤ ∑ s : σ, (Fintype.card K - 1) • {s}
[PROOFSTEP]
rw [indicator]
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
⊢ degrees (∏ n : σ, (1 - (X n - ↑C (c n)) ^ (Fintype.card K - 1))) ≤ ∑ s : σ, (Fintype.card K - 1) • {s}
[PROOFSTEP]
refine' le_trans (degrees_prod _ _) (Finset.sum_le_sum fun s _ => _)
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
s : σ
x✝ : s ∈ Finset.univ
⊢ degrees (1 - (X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s}
[PROOFSTEP]
refine' le_trans (degrees_sub _ _) _
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
s : σ
x✝ : s ∈ Finset.univ
⊢ degrees 1 ⊔ degrees ((X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s}
[PROOFSTEP]
rw [degrees_one, ← bot_eq_zero, bot_sup_eq]
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
s : σ
x✝ : s ∈ Finset.univ
⊢ degrees ((X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s}
[PROOFSTEP]
refine' le_trans (degrees_pow _ _) (nsmul_le_nsmul_of_le_right _ _)
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
s : σ
x✝ : s ∈ Finset.univ
⊢ degrees (X s - ↑C (c s)) ≤ {s}
[PROOFSTEP]
refine' le_trans (degrees_sub _ _) _
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
s : σ
x✝ : s ∈ Finset.univ
⊢ degrees (X s) ⊔ degrees (↑C (c s)) ≤ {s}
[PROOFSTEP]
rw [degrees_C, ← bot_eq_zero, sup_bot_eq]
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
s : σ
x✝ : s ∈ Finset.univ
⊢ degrees (X s) ≤ {s}
[PROOFSTEP]
exact degrees_X' _
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
⊢ indicator c ∈ restrictDegree σ K (Fintype.card K - 1)
[PROOFSTEP]
rw [mem_restrictDegree_iff_sup, indicator]
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
⊢ ∀ (i : σ), Multiset.count i (degrees (∏ n : σ, (1 - (X n - ↑C (c n)) ^ (Fintype.card K - 1)))) ≤ Fintype.card K - 1
[PROOFSTEP]
intro n
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n : σ
⊢ Multiset.count n (degrees (∏ n : σ, (1 - (X n - ↑C (c n)) ^ (Fintype.card K - 1)))) ≤ Fintype.card K - 1
[PROOFSTEP]
refine' le_trans (Multiset.count_le_of_le _ <| degrees_indicator _) (le_of_eq _)
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n : σ
⊢ Multiset.count n (∑ s : σ, (Fintype.card K - 1) • {s}) = Fintype.card K - 1
[PROOFSTEP]
simp_rw [← Multiset.coe_countAddMonoidHom, (Multiset.countAddMonoidHom n).map_sum, AddMonoidHom.map_nsmul,
Multiset.coe_countAddMonoidHom, nsmul_eq_mul, Nat.cast_id]
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n : σ
⊢ ∑ x : σ, (Fintype.card K - 1) * Multiset.count n {x} = Fintype.card K - 1
[PROOFSTEP]
trans
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n : σ
⊢ ∑ x : σ, (Fintype.card K - 1) * Multiset.count n {x} = ?m.190023
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n : σ
⊢ ?m.190023 = Fintype.card K - 1
K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ ℕ
[PROOFSTEP]
refine' Finset.sum_eq_single n _ _
[GOAL]
case refine'_1
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n : σ
⊢ ∀ (b : σ), b ∈ Finset.univ → b ≠ n → (Fintype.card K - 1) * Multiset.count n {b} = 0
[PROOFSTEP]
intro b _ ne
[GOAL]
case refine'_1
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n b : σ
a✝ : b ∈ Finset.univ
ne : b ≠ n
⊢ (Fintype.card K - 1) * Multiset.count n {b} = 0
[PROOFSTEP]
simp [Multiset.count_singleton, ne, if_neg (Ne.symm _)]
[GOAL]
case refine'_2
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n : σ
⊢ ¬n ∈ Finset.univ → (Fintype.card K - 1) * Multiset.count n {n} = 0
[PROOFSTEP]
intro h
[GOAL]
case refine'_2
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n : σ
h : ¬n ∈ Finset.univ
⊢ (Fintype.card K - 1) * Multiset.count n {n} = 0
[PROOFSTEP]
exact (h <| Finset.mem_univ _).elim
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : CommRing K
c : σ → K
n : σ
⊢ (Fintype.card K - 1) * Multiset.count n {n} = Fintype.card K - 1
[PROOFSTEP]
rw [Multiset.count_singleton_self, mul_one]
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : Field K
a b : σ → K
h : a ≠ b
⊢ ↑(eval a) (indicator b) = 0
[PROOFSTEP]
obtain ⟨i, hi⟩ : ∃ i, a i ≠ b i := by rwa [Ne, Function.funext_iff, not_forall] at h
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : Field K
a b : σ → K
h : a ≠ b
⊢ ∃ i, a i ≠ b i
[PROOFSTEP]
rwa [Ne, Function.funext_iff, not_forall] at h
[GOAL]
case intro
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : Field K
a b : σ → K
h : a ≠ b
i : σ
hi : a i ≠ b i
⊢ ↑(eval a) (indicator b) = 0
[PROOFSTEP]
simp only [indicator, map_prod, map_sub, map_one, map_pow, eval_X, eval_C, sub_self, Finset.prod_eq_zero_iff]
[GOAL]
case intro
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : Field K
a b : σ → K
h : a ≠ b
i : σ
hi : a i ≠ b i
⊢ ∃ a_1, a_1 ∈ Finset.univ ∧ 1 - (a a_1 - b a_1) ^ (Fintype.card K - 1) = 0
[PROOFSTEP]
refine' ⟨i, Finset.mem_univ _, _⟩
[GOAL]
case intro
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : Field K
a b : σ → K
h : a ≠ b
i : σ
hi : a i ≠ b i
⊢ 1 - (a i - b i) ^ (Fintype.card K - 1) = 0
[PROOFSTEP]
rw [FiniteField.pow_card_sub_one_eq_one, sub_self]
[GOAL]
case intro.ha
K : Type u_1
σ : Type u_2
inst✝² : Fintype K
inst✝¹ : Fintype σ
inst✝ : Field K
a b : σ → K
h : a ≠ b
i : σ
hi : a i ≠ b i
⊢ a i - b i ≠ 0
[PROOFSTEP]
rwa [Ne, sub_eq_zero]
[GOAL]
K : Type u_1
σ : Type u_2
inst✝ : CommSemiring K
p q : MvPolynomial σ K
⊢ (fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q
[PROOFSTEP]
ext x
[GOAL]
case h
K : Type u_1
σ : Type u_2
inst✝ : CommSemiring K
p q : MvPolynomial σ K
x : σ → K
⊢ (fun p e => ↑(eval e) p) (p + q) x = ((fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) x
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
σ : Type u_2
inst✝ : CommSemiring K
a : K
p : MvPolynomial σ K
⊢ AddHom.toFun
{ toFun := fun p e => ↑(eval e) p,
map_add' :=
(_ :
∀ (p q : MvPolynomial σ K),
(fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) }
(a • p) =
↑(RingHom.id K) a •
AddHom.toFun
{ toFun := fun p e => ↑(eval e) p,
map_add' :=
(_ :
∀ (p q : MvPolynomial σ K),
(fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) }
p
[PROOFSTEP]
ext e
[GOAL]
case h
K : Type u_1
σ : Type u_2
inst✝ : CommSemiring K
a : K
p : MvPolynomial σ K
e : σ → K
⊢ AddHom.toFun
{ toFun := fun p e => ↑(eval e) p,
map_add' :=
(_ :
∀ (p q : MvPolynomial σ K),
(fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) }
(a • p) e =
(↑(RingHom.id K) a •
AddHom.toFun
{ toFun := fun p e => ↑(eval e) p,
map_add' :=
(_ :
∀ (p q : MvPolynomial σ K),
(fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) }
p)
e
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
⊢ Submodule.map (evalₗ K σ) (restrictDegree σ K (Fintype.card K - 1)) = ⊤
[PROOFSTEP]
cases nonempty_fintype σ
[GOAL]
case intro
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
⊢ Submodule.map (evalₗ K σ) (restrictDegree σ K (Fintype.card K - 1)) = ⊤
[PROOFSTEP]
refine' top_unique (SetLike.le_def.2 fun e _ => mem_map.2 _)
[GOAL]
case intro
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
⊢ ∃ y, y ∈ restrictDegree σ K (Fintype.card K - 1) ∧ ↑(evalₗ K σ) y = e
[PROOFSTEP]
refine' ⟨∑ n : σ → K, e n • indicator n, _, _⟩
[GOAL]
case intro.refine'_1
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
⊢ ∑ n : σ → K, e n • indicator n ∈ restrictDegree σ K (Fintype.card K - 1)
[PROOFSTEP]
exact sum_mem fun c _ => smul_mem _ _ (indicator_mem_restrictDegree _)
[GOAL]
case intro.refine'_2
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
⊢ ↑(evalₗ K σ) (∑ n : σ → K, e n • indicator n) = e
[PROOFSTEP]
ext n
[GOAL]
case intro.refine'_2.h
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
n : σ → K
⊢ ↑(evalₗ K σ) (∑ n : σ → K, e n • indicator n) n = e n
[PROOFSTEP]
simp only [LinearMap.map_sum, @Finset.sum_apply (σ → K) (fun _ => K) _ _ _ _ _, Pi.smul_apply, LinearMap.map_smul]
[GOAL]
case intro.refine'_2.h
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
n : σ → K
⊢ ∑ x : σ → K, e x • ↑(evalₗ K σ) (indicator x) n = e n
[PROOFSTEP]
simp only [evalₗ_apply]
[GOAL]
case intro.refine'_2.h
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
n : σ → K
⊢ ∑ x : σ → K, e x • ↑(eval n) (indicator x) = e n
[PROOFSTEP]
trans
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
n : σ → K
⊢ ∑ x : σ → K, e x • ↑(eval n) (indicator x) = ?m.293169
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
n : σ → K
⊢ ?m.293169 = e n
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
n : σ → K
⊢ K
[PROOFSTEP]
refine' Finset.sum_eq_single n (fun b _ h => _) _
[GOAL]
case refine'_1
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝¹ : e ∈ ⊤
n b : σ → K
x✝ : b ∈ Finset.univ
h : b ≠ n
⊢ e b • ↑(eval n) (indicator b) = 0
[PROOFSTEP]
rw [eval_indicator_apply_eq_zero _ _ h.symm, smul_zero]
[GOAL]
case refine'_2
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
n : σ → K
⊢ ¬n ∈ Finset.univ → e n • ↑(eval n) (indicator n) = 0
[PROOFSTEP]
exact fun h => (h <| Finset.mem_univ n).elim
[GOAL]
K : Type u_1
σ : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : Finite σ
val✝ : Fintype σ
e : (σ → K) → K
x✝ : e ∈ ⊤
n : σ → K
⊢ e n • ↑(eval n) (indicator n) = e n
[PROOFSTEP]
rw [eval_indicator_apply_eq_one, smul_eq_mul, mul_one]
[GOAL]
σ K : Type u
inst✝¹ : Fintype K
inst✝ : CommRing K
m : ℕ
⊢ DecidablePred fun x => x ∈ {n | ∀ (i : σ), ↑n i ≤ m}
[PROOFSTEP]
simp only [Set.mem_setOf_eq]
[GOAL]
σ K : Type u
inst✝¹ : Fintype K
inst✝ : CommRing K
m : ℕ
⊢ DecidablePred fun n => ∀ (i : σ), ↑n i ≤ m
[PROOFSTEP]
infer_instance
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Fintype σ
⊢ Module.rank K (↑{s | ∀ (n : σ), ↑s n ≤ Fintype.card K - 1} →₀ K) = #↑{s | ∀ (n : σ), ↑s n ≤ Fintype.card K - 1}
[PROOFSTEP]
rw [rank_finsupp_self']
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Fintype σ
⊢ #↑{s | ∀ (n : σ), ↑s n ≤ Fintype.card K - 1} = #↑{s | ∀ (n : σ), s n < Fintype.card K}
[PROOFSTEP]
refine' Quotient.sound ⟨Equiv.subtypeEquiv Finsupp.equivFunOnFinite fun f => _⟩
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Fintype σ
f : σ →₀ ℕ
⊢ f ∈ {s | ∀ (n : σ), ↑s n ≤ Fintype.card K - 1} ↔ ↑Finsupp.equivFunOnFinite f ∈ {s | ∀ (n : σ), s n < Fintype.card K}
[PROOFSTEP]
refine' forall_congr' fun n => le_tsub_iff_right _
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Fintype σ
f : σ →₀ ℕ
n : σ
⊢ 1 ≤ Fintype.card K
[PROOFSTEP]
exact Fintype.card_pos_iff.2 ⟨0⟩
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Finite σ
⊢ FiniteDimensional K (R σ K)
[PROOFSTEP]
cases nonempty_fintype σ
[GOAL]
case intro
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Finite σ
val✝ : Fintype σ
⊢ FiniteDimensional K (R σ K)
[PROOFSTEP]
exact
IsNoetherian.iff_fg.1
(IsNoetherian.iff_rank_lt_aleph0.mpr <| by simpa only [rank_R] using Cardinal.nat_lt_aleph0 (Fintype.card (σ → K)))
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Finite σ
val✝ : Fintype σ
⊢ Module.rank K (R σ K) < ℵ₀
[PROOFSTEP]
simpa only [rank_R] using Cardinal.nat_lt_aleph0 (Fintype.card (σ → K))
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Finite σ
⊢ range (evalᵢ σ K) = ⊤
[PROOFSTEP]
rw [evalᵢ, LinearMap.range_comp, range_subtype]
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Finite σ
⊢ Submodule.map (evalₗ K σ) (restrictDegree σ K (Fintype.card K - 1)) = ⊤
[PROOFSTEP]
exact map_restrict_dom_evalₗ K σ
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Finite σ
⊢ ker (evalᵢ σ K) = ⊥
[PROOFSTEP]
cases nonempty_fintype σ
[GOAL]
case intro
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Finite σ
val✝ : Fintype σ
⊢ ker (evalᵢ σ K) = ⊥
[PROOFSTEP]
refine' (ker_eq_bot_iff_range_eq_top_of_finrank_eq_finrank _).mpr (range_evalᵢ σ K)
[GOAL]
case intro
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Finite σ
val✝ : Fintype σ
⊢ FiniteDimensional.finrank K (R σ K) = FiniteDimensional.finrank K ((σ → K) → K)
[PROOFSTEP]
rw [FiniteDimensional.finrank_fintype_fun_eq_card, finrank_R]
[GOAL]
σ K : Type u
inst✝² : Fintype K
inst✝¹ : Field K
inst✝ : Finite σ
p : MvPolynomial σ K
h : ∀ (v : σ → K), ↑(eval v) p = 0
hp : p ∈ restrictDegree σ K (Fintype.card K - 1)
p' : R σ K := { val := p, property := hp }
this : p' ∈ ker (evalᵢ σ K)
⊢ p' = 0
[PROOFSTEP]
rwa [ker_evalₗ, mem_bot] at this
|
{"mathlib_filename": "Mathlib.FieldTheory.Finite.Polynomial", "llama_tokens": 9837}
|
{"mathlib_filename": "Mathlib.Condensed.Abelian", "llama_tokens": 0}
|
|
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
⊢ fixedPoints M F = ↑(⨅ (m : M), FixedBy.subfield F m)
[PROOFSTEP]
ext z
[GOAL]
case h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
z : F
⊢ z ∈ fixedPoints M F ↔ z ∈ ↑(⨅ (m : M), FixedBy.subfield F m)
[PROOFSTEP]
simp [fixedPoints, FixedBy.subfield, iInf, Subfield.mem_sInf]
[GOAL]
case h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
z : F
⊢ (∀ (m : M), m • z = z) ↔
∀ (i : M),
z ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := fixedBy M F i,
mul_mem' := (_ : ∀ {a b : F}, a ∈ fixedBy M F i → b ∈ fixedBy M F i → i • (a * b) = a * b) },
one_mem' := (_ : i • 1 = 1) },
add_mem' :=
(_ :
∀ {a b : F},
a ∈
{
toSubsemigroup :=
{ carrier := fixedBy M F i,
mul_mem' :=
(_ : ∀ {a b : F}, a ∈ fixedBy M F i → b ∈ fixedBy M F i → i • (a * b) = a * b) },
one_mem' := (_ : i • 1 = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := fixedBy M F i,
mul_mem' :=
(_ : ∀ {a b : F}, a ∈ fixedBy M F i → b ∈ fixedBy M F i → i • (a * b) = a * b) },
one_mem' := (_ : i • 1 = 1) }.toSubsemigroup.carrier →
i • (a + b) = a + b),
zero_mem' := (_ : i • 0 = 0) }
[PROOFSTEP]
rfl
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m g : M
x : F
hx : x ∈ subfield M F
g' : M
⊢ g' • g • x = g • x
[PROOFSTEP]
rw [hx, hx]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m✝ m : M
f : { x // x ∈ subfield M F }
f' : F
⊢ m • (↑f * f') = ↑f * m • f'
[PROOFSTEP]
rw [smul_mul', f.prop m]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m✝ m : M
p : Polynomial { x // x ∈ subfield M F }
x : { x // x ∈ subfield M F }
⊢ m • ↑Polynomial.C x = ↑Polynomial.C x
[PROOFSTEP]
rw [Polynomial.smul_C, smul]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m✝ m : M
p✝ p q : Polynomial { x // x ∈ subfield M F }
ihp : m • p = p
ihq : m • q = q
⊢ m • (p + q) = p + q
[PROOFSTEP]
rw [smul_add, ihp, ihq]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m✝ m : M
p : Polynomial { x // x ∈ subfield M F }
n : ℕ
x : { x // x ∈ subfield M F }
x✝ : m • (↑Polynomial.C x * Polynomial.X ^ n) = ↑Polynomial.C x * Polynomial.X ^ n
⊢ m • (↑Polynomial.C x * Polynomial.X ^ (n + 1)) = ↑Polynomial.C x * Polynomial.X ^ (n + 1)
[PROOFSTEP]
rw [smul_mul', Polynomial.smul_C, smul, smul_pow', Polynomial.smul_X]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
⊢ Algebra { x // x ∈ subfield M F } F
[PROOFSTEP]
infer_instance
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s : Finset F
⊢ (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
[PROOFSTEP]
haveI : IsEmpty ((∅ : Finset F) : Set F) := by simp
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s : Finset F
⊢ IsEmpty ↑↑∅
[PROOFSTEP]
simp
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s : Finset F
this : IsEmpty ↑↑∅
⊢ (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
[PROOFSTEP]
refine' Finset.induction_on s (fun _ => linearIndependent_empty_type) fun a s has ih hs => _
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : LinearIndependent { x // x ∈ subfield G F } fun i => ↑i
⊢ LinearIndependent F fun i => ↑(toFun G F) ↑i
[PROOFSTEP]
rw [coe_insert] at hs ⊢
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : LinearIndependent { x // x ∈ subfield G F } fun i => ↑i
⊢ LinearIndependent F fun i => ↑(toFun G F) ↑i
[PROOFSTEP]
rw [linearIndependent_insert (mt mem_coe.1 has)] at hs
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
⊢ LinearIndependent F fun i => ↑(toFun G F) ↑i
[PROOFSTEP]
rw [linearIndependent_insert' (mt mem_coe.1 has)]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
⊢ (LinearIndependent F fun x => ↑(toFun G F) ↑x) ∧ ¬↑(toFun G F) a ∈ Submodule.span F (↑(toFun G F) '' ↑s)
[PROOFSTEP]
refine' ⟨ih hs.1, fun ha => _⟩
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
ha : ↑(toFun G F) a ∈ Submodule.span F (↑(toFun G F) '' ↑s)
⊢ False
[PROOFSTEP]
rw [Finsupp.mem_span_image_iff_total] at ha
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
ha : ∃ l, l ∈ Finsupp.supported F F ↑s ∧ ↑(Finsupp.total F (G → F) F ↑(toFun G F)) l = ↑(toFun G F) a
⊢ False
[PROOFSTEP]
rcases ha with ⟨l, hl, hla⟩
[GOAL]
case intro.intro
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ↑(Finsupp.total F (G → F) F ↑(toFun G F)) l = ↑(toFun G F) a
⊢ False
[PROOFSTEP]
rw [Finsupp.total_apply_of_mem_supported F hl] at hla
[GOAL]
case intro.intro
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
⊢ False
[PROOFSTEP]
suffices ∀ i ∈ s, l i ∈ FixedPoints.subfield G F
by
replace hla := (sum_apply _ _ fun i => l i • toFun G F i).symm.trans (congr_fun hla 1)
simp_rw [Pi.smul_apply, toFun_apply, one_smul] at hla
refine' hs.2 (hla ▸ Submodule.sum_mem _ fun c hcs => _)
change (⟨l c, this c hcs⟩ : FixedPoints.subfield G F) • c ∈ _
exact Submodule.smul_mem _ _ (Submodule.subset_span <| mem_coe.2 hcs)
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this✝ : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F
⊢ False
[PROOFSTEP]
replace hla := (sum_apply _ _ fun i => l i • toFun G F i).symm.trans (congr_fun hla 1)
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this✝ : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F
hla : ∑ c in s, (↑l c • ↑(toFun G F) c) 1 = ↑(toFun G F) a 1
⊢ False
[PROOFSTEP]
simp_rw [Pi.smul_apply, toFun_apply, one_smul] at hla
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this✝ : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F
hla : ∑ x in s, ↑l x • x = a
⊢ False
[PROOFSTEP]
refine' hs.2 (hla ▸ Submodule.sum_mem _ fun c hcs => _)
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this✝ : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F
hla : ∑ x in s, ↑l x • x = a
c : F
hcs : c ∈ s
⊢ ↑l c • c ∈ Submodule.span { x // x ∈ subfield G F } ↑s
[PROOFSTEP]
change (⟨l c, this c hcs⟩ : FixedPoints.subfield G F) • c ∈ _
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this✝ : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F
hla : ∑ x in s, ↑l x • x = a
c : F
hcs : c ∈ s
⊢ { val := ↑l c, property := (_ : ↑l c ∈ subfield G F) } • c ∈ Submodule.span { x // x ∈ subfield G F } ↑s
[PROOFSTEP]
exact Submodule.smul_mem _ _ (Submodule.subset_span <| mem_coe.2 hcs)
[GOAL]
case intro.intro
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
⊢ ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F
[PROOFSTEP]
intro i his g
[GOAL]
case intro.intro
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g : G
⊢ g • ↑l i = ↑l i
[PROOFSTEP]
refine'
eq_of_sub_eq_zero
(linearIndependent_iff'.1 (ih hs.1) s.attach (fun i => g • l i - l i) _ ⟨i, his⟩ (mem_attach _ _) : _)
[GOAL]
case intro.intro
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g : G
⊢ ∑ i in attach s, (fun i => g • ↑l ↑i - ↑l ↑i) i • ↑(toFun G F) ↑i = 0
[PROOFSTEP]
refine' (@sum_attach _ _ s _ fun i => (g • l i - l i) • MulAction.toFun G F i).trans _
[GOAL]
case intro.intro
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g : G
⊢ ∑ x in s, (g • ↑l x - ↑l x) • ↑(toFun G F) x = 0
[PROOFSTEP]
ext g'
[GOAL]
case intro.intro.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
⊢ Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g' = OfNat.ofNat 0 g'
[PROOFSTEP]
dsimp only
[GOAL]
case intro.intro.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
⊢ Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g' = OfNat.ofNat 0 g'
[PROOFSTEP]
conv_lhs =>
rw [sum_apply]
congr
·skip
· ext
rw [Pi.smul_apply, sub_smul, smul_eq_mul]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g'
[PROOFSTEP]
rw [sum_apply]
congr
·skip
· ext
rw [Pi.smul_apply, sub_smul, smul_eq_mul]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g'
[PROOFSTEP]
rw [sum_apply]
congr
·skip
· ext
rw [Pi.smul_apply, sub_smul, smul_eq_mul]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g'
[PROOFSTEP]
rw [sum_apply]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| ∑ c in s, ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g'
[PROOFSTEP]
congr
[GOAL]
case s
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| s
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g'
[PROOFSTEP]
·skip
[GOAL]
case s
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| s
[PROOFSTEP]
skip
[GOAL]
case s
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| s
[PROOFSTEP]
skip
[GOAL]
case s
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| s
[PROOFSTEP]
skip
[GOAL]
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g'
[PROOFSTEP]
· ext
rw [Pi.smul_apply, sub_smul, smul_eq_mul]
[GOAL]
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g'
[PROOFSTEP]
ext
rw [Pi.smul_apply, sub_smul, smul_eq_mul]
[GOAL]
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g'
[PROOFSTEP]
ext
rw [Pi.smul_apply, sub_smul, smul_eq_mul]
[GOAL]
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g'
[PROOFSTEP]
ext
[GOAL]
case f.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
x✝ : F
| ((g • ↑l x✝ - ↑l x✝) • ↑(toFun G F) x✝) g'
[PROOFSTEP]
rw [Pi.smul_apply, sub_smul, smul_eq_mul]
[GOAL]
case intro.intro.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
⊢ ∑ x in s, (g • ↑l x * ↑(toFun G F) x g' - ↑l x • ↑(toFun G F) x g') = OfNat.ofNat 0 g'
[PROOFSTEP]
rw [sum_sub_distrib, Pi.zero_apply, sub_eq_zero]
[GOAL]
case intro.intro.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
⊢ ∑ x in s, g • ↑l x * ↑(toFun G F) x g' = ∑ x in s, ↑l x • ↑(toFun G F) x g'
[PROOFSTEP]
conv_lhs =>
congr
·skip
· ext x
rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| ∑ x in s, g • ↑l x * ↑(toFun G F) x g'
[PROOFSTEP]
congr
·skip
· ext x
rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| ∑ x in s, g • ↑l x * ↑(toFun G F) x g'
[PROOFSTEP]
congr
·skip
· ext x
rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x]
[GOAL]
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| ∑ x in s, g • ↑l x * ↑(toFun G F) x g'
[PROOFSTEP]
congr
[GOAL]
case s
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| s
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun x => g • ↑l x * ↑(toFun G F) x g'
[PROOFSTEP]
·skip
[GOAL]
case s
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| s
[PROOFSTEP]
skip
[GOAL]
case s
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| s
[PROOFSTEP]
skip
[GOAL]
case s
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| s
[PROOFSTEP]
skip
[GOAL]
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun x => g • ↑l x * ↑(toFun G F) x g'
[PROOFSTEP]
· ext x
rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x]
[GOAL]
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun x => g • ↑l x * ↑(toFun G F) x g'
[PROOFSTEP]
ext x
rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x]
[GOAL]
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun x => g • ↑l x * ↑(toFun G F) x g'
[PROOFSTEP]
ext x
rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x]
[GOAL]
case f
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
| fun x => g • ↑l x * ↑(toFun G F) x g'
[PROOFSTEP]
ext x
[GOAL]
case f.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
x : F
| g • ↑l x * ↑(toFun G F) x g'
[PROOFSTEP]
rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x]
[GOAL]
case intro.intro.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
⊢ ∑ x in s, g • (↑l x * ↑(toFun G F) x (g⁻¹ * g')) = ∑ x in s, ↑l x • ↑(toFun G F) x g'
[PROOFSTEP]
show
(∑ x in s, g • (fun y => l y • MulAction.toFun G F y) x (g⁻¹ * g')) =
∑ x in s, (fun y => l y • MulAction.toFun G F y) x g'
[GOAL]
case intro.intro.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
⊢ ∑ x in s, g • (fun y => ↑l y • ↑(toFun G F) y) x (g⁻¹ * g') = ∑ x in s, (fun y => ↑l y • ↑(toFun G F) y) x g'
[PROOFSTEP]
rw [← smul_sum, ← sum_apply _ _ fun y => l y • toFun G F y, ← sum_apply _ _ fun y => l y • toFun G F y]
[GOAL]
case intro.intro.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
⊢ g • Finset.sum s (fun c => ↑l c • ↑(toFun G F) c) (g⁻¹ * g') = Finset.sum s (fun c => ↑l c • ↑(toFun G F) c) g'
[PROOFSTEP]
dsimp only
[GOAL]
case intro.intro.h
M : Type u
inst✝⁴ : Monoid M
G : Type u
inst✝³ : Group G
F : Type v
inst✝² : Field F
inst✝¹ : MulSemiringAction M F
inst✝ : MulSemiringAction G F
m : M
s✝ : Finset F
this : IsEmpty ↑↑∅
a : F
s : Finset F
has : ¬a ∈ s
ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i
hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s
l : F →₀ F
hl : l ∈ Finsupp.supported F F ↑s
hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a
i : F
his : i ∈ s
g g' : G
⊢ g • Finset.sum s (fun c => ↑l c • ↑(toFun G F) c) (g⁻¹ * g') = Finset.sum s (fun c => ↑l c • ↑(toFun G F) c) g'
[PROOFSTEP]
rw [hla, toFun_apply, toFun_apply, smul_smul, mul_inv_cancel_left]
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
⊢ Polynomial.Monic (minpoly G F x)
[PROOFSTEP]
simp only [minpoly, Polynomial.monic_toSubring]
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
⊢ Polynomial.Monic (prodXSubSmul G F x)
[PROOFSTEP]
exact prodXSubSmul.monic G F x
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
⊢ Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x (minpoly G F x) = 0
[PROOFSTEP]
rw [← prodXSubSmul.eval G F x, Polynomial.eval₂_eq_eval_map]
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
⊢ Polynomial.eval x (Polynomial.map (Subring.subtype (subfield G F).toSubring) (minpoly G F x)) =
Polynomial.eval x (prodXSubSmul G F x)
[PROOFSTEP]
simp only [minpoly, Polynomial.map_toSubring]
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
H : minpoly G F x = 1
this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x (minpoly G F x) = 0
⊢ 1 = 0
[PROOFSTEP]
rwa [H, Polynomial.eval₂_one] at this
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0
⊢ minpoly G F x ∣ f
[PROOFSTEP]
have : (subfield G F).subtype = (subfield G F).toSubring.subtype := rfl
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0
this : Subfield.subtype (subfield G F) = Subring.subtype (subfield G F).toSubring
⊢ minpoly G F x ∣ f
[PROOFSTEP]
have h :
Polynomial.map (MulSemiringActionHom.toRingHom (IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f =
Polynomial.map ((IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f :=
rfl
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0
this : Subfield.subtype (subfield G F) = Subring.subtype (subfield G F).toSubring
h :
Polynomial.map (MulSemiringActionHom.toRingHom (IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f =
Polynomial.map (↑(IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f
⊢ minpoly G F x ∣ f
[PROOFSTEP]
erw [← Polynomial.map_dvd_map' (Subfield.subtype <| FixedPoints.subfield G F), minpoly, this,
Polynomial.map_toSubring _ _, prodXSubSmul]
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0
this : Subfield.subtype (subfield G F) = Subring.subtype (subfield G F).toSubring
h :
Polynomial.map (MulSemiringActionHom.toRingHom (IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f =
Polynomial.map (↑(IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f
⊢ ∏ g : G ⧸ stabilizer G x, (Polynomial.X - ↑Polynomial.C (ofQuotientStabilizer G x g)) ∣
Polynomial.map (Subring.subtype (subfield G F).toSubring) f
[PROOFSTEP]
refine'
Fintype.prod_dvd_of_coprime (Polynomial.pairwise_coprime_X_sub_C <| MulAction.injective_ofQuotientStabilizer G x)
fun y => QuotientGroup.induction_on y fun g => _
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0
this : Subfield.subtype (subfield G F) = Subring.subtype (subfield G F).toSubring
h :
Polynomial.map (MulSemiringActionHom.toRingHom (IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f =
Polynomial.map (↑(IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f
y : G ⧸ stabilizer G x
g : G
⊢ Polynomial.X - ↑Polynomial.C (ofQuotientStabilizer G x ↑g) ∣
Polynomial.map (Subring.subtype (subfield G F).toSubring) f
[PROOFSTEP]
rw [Polynomial.dvd_iff_isRoot, Polynomial.IsRoot.def, MulAction.ofQuotientStabilizer_mk, Polynomial.eval_smul', ← this,
← Subfield.toSubring_subtype_eq_subtype, ← IsInvariantSubring.coe_subtypeHom' G (FixedPoints.subfield G F).toSubring,
h, ← MulSemiringActionHom.coe_polynomial, ← MulSemiringActionHom.map_smul, smul_polynomial,
MulSemiringActionHom.coe_polynomial, ← h, IsInvariantSubring.coe_subtypeHom', Polynomial.eval_map,
Subfield.toSubring_subtype_eq_subtype, hf, smul_zero]
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
⊢ f = 1 ∨ g = 1
[PROOFSTEP]
have hf2 : f ∣ minpoly G F x := by rw [← hfg]; exact dvd_mul_right _ _
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
⊢ f ∣ minpoly G F x
[PROOFSTEP]
rw [← hfg]
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
⊢ f ∣ f * g
[PROOFSTEP]
exact dvd_mul_right _ _
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
⊢ f = 1 ∨ g = 1
[PROOFSTEP]
have hg2 : g ∣ minpoly G F x := by rw [← hfg]; exact dvd_mul_left _ _
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
⊢ g ∣ minpoly G F x
[PROOFSTEP]
rw [← hfg]
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
⊢ g ∣ f * g
[PROOFSTEP]
exact dvd_mul_left _ _
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
hg2 : g ∣ minpoly G F x
⊢ f = 1 ∨ g = 1
[PROOFSTEP]
have := eval₂ G F x
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
hg2 : g ∣ minpoly G F x
this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x (minpoly G F x) = 0
⊢ f = 1 ∨ g = 1
[PROOFSTEP]
rw [← hfg, Polynomial.eval₂_mul, mul_eq_zero] at this
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
hg2 : g ∣ minpoly G F x
this :
Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0 ∨
Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0
⊢ f = 1 ∨ g = 1
[PROOFSTEP]
cases' this with this this
[GOAL]
case inl
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
hg2 : g ∣ minpoly G F x
this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0
⊢ f = 1 ∨ g = 1
[PROOFSTEP]
right
[GOAL]
case inl.h
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
hg2 : g ∣ minpoly G F x
this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0
⊢ g = 1
[PROOFSTEP]
have hf3 : f = minpoly G F x :=
Polynomial.eq_of_monic_of_associated hf (monic G F x) (associated_of_dvd_dvd hf2 <| @of_eval₂ G _ F _ _ _ x f this)
[GOAL]
case inl.h
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
hg2 : g ∣ minpoly G F x
this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0
hf3 : f = minpoly G F x
⊢ g = 1
[PROOFSTEP]
rwa [← mul_one (minpoly G F x), hf3, mul_right_inj' (monic G F x).ne_zero] at hfg
[GOAL]
case inr
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
hg2 : g ∣ minpoly G F x
this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0
⊢ f = 1 ∨ g = 1
[PROOFSTEP]
left
[GOAL]
case inr.h
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
hg2 : g ∣ minpoly G F x
this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0
⊢ f = 1
[PROOFSTEP]
have hg3 : g = minpoly G F x :=
Polynomial.eq_of_monic_of_associated hg (monic G F x) (associated_of_dvd_dvd hg2 <| @of_eval₂ G _ F _ _ _ x g this)
[GOAL]
case inr.h
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
f g : Polynomial { x // x ∈ subfield G F }
hf : Polynomial.Monic f
hg : Polynomial.Monic g
hfg : f * g = minpoly G F x
hf2 : f ∣ minpoly G F x
hg2 : g ∣ minpoly G F x
this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0
hg3 : g = minpoly G F x
⊢ f = 1
[PROOFSTEP]
rwa [← one_mul (minpoly G F x), hg3, mul_left_inj' (monic G F x).ne_zero] at hfg
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
x : F
⊢ IsIntegral { x // x ∈ subfield G F } x
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
x : F
val✝ : Fintype G
⊢ IsIntegral { x // x ∈ subfield G F } x
[PROOFSTEP]
exact ⟨minpoly G F x, minpoly.monic G F x, minpoly.eval₂ G F x⟩
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
x : F
s : Finset F
hs : LinearIndependent { x // x ∈ subfield G F } fun i => ↑i
⊢ card s ≤ Fintype.card G
[PROOFSTEP]
simpa only [rank_fun', Cardinal.mk_coe_finset, Finset.coe_sort_coe, Cardinal.lift_natCast, Cardinal.natCast_le] using
cardinal_lift_le_rank_of_linearIndependent' (linearIndependent_smul_of_linearIndependent G F hs)
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
x : F
⊢ Polynomial.Splits (RingHom.id F)
(Polynomial.map (algebraMap { x // x ∈ subfield G F } F) (_root_.minpoly { x // x ∈ subfield G F } x))
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
x : F
val✝ : Fintype G
⊢ Polynomial.Splits (RingHom.id F)
(Polynomial.map (algebraMap { x // x ∈ subfield G F } F) (_root_.minpoly { x // x ∈ subfield G F } x))
[PROOFSTEP]
rw [← minpoly_eq_minpoly, minpoly, coe_algebraMap, ← Subfield.toSubring_subtype_eq_subtype,
Polynomial.map_toSubring _ (subfield G F).toSubring, prodXSubSmul]
[GOAL]
case intro
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
x : F
val✝ : Fintype G
⊢ Polynomial.Splits (RingHom.id F)
(∏ g : G ⧸ stabilizer G x, (Polynomial.X - ↑Polynomial.C (ofQuotientStabilizer G x g)))
[PROOFSTEP]
exact Polynomial.splits_prod _ fun _ _ => Polynomial.splits_X_sub_C _
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
x : F
⊢ Polynomial.Separable (_root_.minpoly { x // x ∈ subfield G F } x)
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
x : F
val✝ : Fintype G
⊢ Polynomial.Separable (_root_.minpoly { x // x ∈ subfield G F } x)
[PROOFSTEP]
erw [← minpoly_eq_minpoly, ← Polynomial.separable_map (FixedPoints.subfield G F).subtype, minpoly,
Polynomial.map_toSubring _ (subfield G F).toSubring]
[GOAL]
case intro
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
x : F
val✝ : Fintype G
⊢ Polynomial.Separable (prodXSubSmul G F x)
[PROOFSTEP]
exact Polynomial.separable_prod_X_sub_C_iff.2 (injective_ofQuotientStabilizer G x)
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
⊢ FiniteDimensional { x // x ∈ subfield G F } F
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Finite G
val✝ : Fintype G
⊢ FiniteDimensional { x // x ∈ subfield G F } F
[PROOFSTEP]
exact
IsNoetherian.iff_fg.1 (IsNoetherian.iff_rank_lt_aleph0.2 <| (rank_le_card G F).trans_lt <| Cardinal.nat_lt_aleph0 _)
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
⊢ finrank { x // x ∈ subfield G F } F ≤ Fintype.card G
[PROOFSTEP]
rw [← Cardinal.natCast_le, finrank_eq_rank]
[GOAL]
M : Type u
inst✝⁵ : Monoid M
G : Type u
inst✝⁴ : Group G
F : Type v
inst✝³ : Field F
inst✝² : MulSemiringAction M F
inst✝¹ : MulSemiringAction G F
m : M
inst✝ : Fintype G
⊢ Module.rank { x // x ∈ subfield G F } F ≤ ↑(Fintype.card G)
[PROOFSTEP]
apply rank_le_card
[GOAL]
M : Type u
inst✝⁹ : Monoid M
G✝ : Type u
inst✝⁸ : Group G✝
F✝ : Type v
inst✝⁷ : Field F✝
inst✝⁶ : MulSemiringAction M F✝
inst✝⁵ : MulSemiringAction G✝ F✝
m : M
G : Type u
F : Type v
inst✝⁴ : Group G
inst✝³ : Field F
inst✝² : Finite G
inst✝¹ : MulSemiringAction G F
inst✝ : FaithfulSMul G F
⊢ Function.Bijective (MulSemiringAction.toAlgHom { x // x ∈ subfield G F } F)
[PROOFSTEP]
cases nonempty_fintype G
[GOAL]
case intro
M : Type u
inst✝⁹ : Monoid M
G✝ : Type u
inst✝⁸ : Group G✝
F✝ : Type v
inst✝⁷ : Field F✝
inst✝⁶ : MulSemiringAction M F✝
inst✝⁵ : MulSemiringAction G✝ F✝
m : M
G : Type u
F : Type v
inst✝⁴ : Group G
inst✝³ : Field F
inst✝² : Finite G
inst✝¹ : MulSemiringAction G F
inst✝ : FaithfulSMul G F
val✝ : Fintype G
⊢ Function.Bijective (MulSemiringAction.toAlgHom { x // x ∈ subfield G F } F)
[PROOFSTEP]
rw [Fintype.bijective_iff_injective_and_card]
[GOAL]
case intro
M : Type u
inst✝⁹ : Monoid M
G✝ : Type u
inst✝⁸ : Group G✝
F✝ : Type v
inst✝⁷ : Field F✝
inst✝⁶ : MulSemiringAction M F✝
inst✝⁵ : MulSemiringAction G✝ F✝
m : M
G : Type u
F : Type v
inst✝⁴ : Group G
inst✝³ : Field F
inst✝² : Finite G
inst✝¹ : MulSemiringAction G F
inst✝ : FaithfulSMul G F
val✝ : Fintype G
⊢ Function.Injective (MulSemiringAction.toAlgHom { x // x ∈ subfield G F } F) ∧
Fintype.card G = Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F)
[PROOFSTEP]
constructor
[GOAL]
case intro.left
M : Type u
inst✝⁹ : Monoid M
G✝ : Type u
inst✝⁸ : Group G✝
F✝ : Type v
inst✝⁷ : Field F✝
inst✝⁶ : MulSemiringAction M F✝
inst✝⁵ : MulSemiringAction G✝ F✝
m : M
G : Type u
F : Type v
inst✝⁴ : Group G
inst✝³ : Field F
inst✝² : Finite G
inst✝¹ : MulSemiringAction G F
inst✝ : FaithfulSMul G F
val✝ : Fintype G
⊢ Function.Injective (MulSemiringAction.toAlgHom { x // x ∈ subfield G F } F)
[PROOFSTEP]
exact MulSemiringAction.toAlgHom_injective _ F
[GOAL]
case intro.right
M : Type u
inst✝⁹ : Monoid M
G✝ : Type u
inst✝⁸ : Group G✝
F✝ : Type v
inst✝⁷ : Field F✝
inst✝⁶ : MulSemiringAction M F✝
inst✝⁵ : MulSemiringAction G✝ F✝
m : M
G : Type u
F : Type v
inst✝⁴ : Group G
inst✝³ : Field F
inst✝² : Finite G
inst✝¹ : MulSemiringAction G F
inst✝ : FaithfulSMul G F
val✝ : Fintype G
⊢ Fintype.card G = Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case intro.right.a
M : Type u
inst✝⁹ : Monoid M
G✝ : Type u
inst✝⁸ : Group G✝
F✝ : Type v
inst✝⁷ : Field F✝
inst✝⁶ : MulSemiringAction M F✝
inst✝⁵ : MulSemiringAction G✝ F✝
m : M
G : Type u
F : Type v
inst✝⁴ : Group G
inst✝³ : Field F
inst✝² : Finite G
inst✝¹ : MulSemiringAction G F
inst✝ : FaithfulSMul G F
val✝ : Fintype G
⊢ Fintype.card G ≤ Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F)
[PROOFSTEP]
exact Fintype.card_le_of_injective _ (MulSemiringAction.toAlgHom_injective _ F)
[GOAL]
case intro.right.a
M : Type u
inst✝⁹ : Monoid M
G✝ : Type u
inst✝⁸ : Group G✝
F✝ : Type v
inst✝⁷ : Field F✝
inst✝⁶ : MulSemiringAction M F✝
inst✝⁵ : MulSemiringAction G✝ F✝
m : M
G : Type u
F : Type v
inst✝⁴ : Group G
inst✝³ : Field F
inst✝² : Finite G
inst✝¹ : MulSemiringAction G F
inst✝ : FaithfulSMul G F
val✝ : Fintype G
⊢ Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F) ≤ Fintype.card G
[PROOFSTEP]
rw [← finrank_eq_card G F]
[GOAL]
case intro.right.a
M : Type u
inst✝⁹ : Monoid M
G✝ : Type u
inst✝⁸ : Group G✝
F✝ : Type v
inst✝⁷ : Field F✝
inst✝⁶ : MulSemiringAction M F✝
inst✝⁵ : MulSemiringAction G✝ F✝
m : M
G : Type u
F : Type v
inst✝⁴ : Group G
inst✝³ : Field F
inst✝² : Finite G
inst✝¹ : MulSemiringAction G F
inst✝ : FaithfulSMul G F
val✝ : Fintype G
⊢ Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F) ≤ finrank { x // x ∈ subfield G F } F
[PROOFSTEP]
exact LE.le.trans_eq (finrank_algHom _ F) (finrank_linear_map' _ _ _)
|
{"mathlib_filename": "Mathlib.FieldTheory.Fixed", "llama_tokens": 29522}
|
{"mathlib_filename": "Mathlib.Condensed.Basic", "llama_tokens": 0}
|
|
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
h : List.length [] = succ n
⊢ α
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
h : List.length [] = succ n
⊢ cons (head { val := [], property := h }) (tail { val := [], property := h }) = { val := [], property := h }
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
l : List α
h : List.length l = n
i : Fin n
⊢ ↑i < List.length l
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
l : List α
h : List.length l = n
i : Fin n
⊢ ↑i < n
[PROOFSTEP]
exact i.2
[GOAL]
α : Type u
β : Type v
φ : Type w
n✝ n m : ℕ
l₁ : List α
h₁ : List.length l₁ = n
l₂ : List α
h₂ : List.length l₂ = m
⊢ List.length (l₁ ++ l₂) = n + m
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
f : α → β
l : List α
h : List.length l = n
⊢ List.length (List.map f l) = n
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
f : α → β → φ
x : List α
property✝¹ : List.length x = n
y : List β
property✝ : List.length y = n
⊢ List.length (List.zipWith f x y) = n
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
φ : Type w
n i : ℕ
l : List α
p : List.length l = n
⊢ List.length (List.drop i l) = n - i
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
φ : Type w
n i : ℕ
l : List α
p : List.length l = n
⊢ List.length (List.take i l) = min i n
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
i : Fin n
l : List α
p : List.length l = n
⊢ List.length (List.removeNth l ↑i) = n - 1
[PROOFSTEP]
rw [l.length_removeNth]
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
i : Fin n
l : List α
p : List.length l = n
⊢ List.length l - 1 = n - 1
[PROOFSTEP]
rw [p]
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
i : Fin n
l : List α
p : List.length l = n
⊢ ↑i < List.length l
[PROOFSTEP]
rw [p]
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
i : Fin n
l : List α
p : List.length l = n
⊢ ↑i < n
[PROOFSTEP]
exact i.2
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
σ : Type
f : α → σ → σ × β
x : List α
px : List.length x = n
c : σ
res : σ × List β := List.mapAccumr f x c
⊢ List.length res.snd = n
[PROOFSTEP]
simp [*]
[GOAL]
α✝ : Type u
β✝ : Type v
φ✝ : Type w
n : ℕ
σ✝ α β σ φ : Type
f : α → β → σ → σ × φ
x : List α
px : List.length x = n
y : List β
py : List.length y = n
c : σ
res : σ × List φ := List.mapAccumr₂ f x y c
⊢ List.length res.snd = n
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
v : Vector α n
i : ℕ
fill : α
⊢ n - i + min n i = n
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
v : Vector α n
i : ℕ
fill : α
⊢ min n i + min (n - i) n = n
[PROOFSTEP]
by_cases h : i ≤ n
[GOAL]
case pos
α : Type u
β : Type v
φ : Type w
n : ℕ
v : Vector α n
i : ℕ
fill : α
h : i ≤ n
⊢ min n i + min (n - i) n = n
[PROOFSTEP]
have h₁ := Nat.sub_le n i
[GOAL]
case pos
α : Type u
β : Type v
φ : Type w
n : ℕ
v : Vector α n
i : ℕ
fill : α
h : i ≤ n
h₁ : n - i ≤ n
⊢ min n i + min (n - i) n = n
[PROOFSTEP]
rw [min_eq_right h]
[GOAL]
case pos
α : Type u
β : Type v
φ : Type w
n : ℕ
v : Vector α n
i : ℕ
fill : α
h : i ≤ n
h₁ : n - i ≤ n
⊢ i + min (n - i) n = n
[PROOFSTEP]
rw [min_eq_left h₁, ← add_tsub_assoc_of_le h, Nat.add_comm, add_tsub_cancel_right]
[GOAL]
case neg
α : Type u
β : Type v
φ : Type w
n : ℕ
v : Vector α n
i : ℕ
fill : α
h : ¬i ≤ n
⊢ min n i + min (n - i) n = n
[PROOFSTEP]
have h₁ := le_of_not_ge h
[GOAL]
case neg
α : Type u
β : Type v
φ : Type w
n : ℕ
v : Vector α n
i : ℕ
fill : α
h : ¬i ≤ n
h₁ : n ≤ i
⊢ min n i + min (n - i) n = n
[PROOFSTEP]
rw [min_eq_left h₁, tsub_eq_zero_iff_le.mpr h₁, zero_min, Nat.add_zero]
[GOAL]
α : Type u
β : Type v
φ : Type w
n : ℕ
a : α
v : Vector α n
⊢ toList (cons a v) = a :: toList v
[PROOFSTEP]
cases v
[GOAL]
case mk
α : Type u
β : Type v
φ : Type w
n : ℕ
a : α
val✝ : List α
property✝ : List.length val✝ = n
⊢ toList (cons a { val := val✝, property := property✝ }) = a :: toList { val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
φ : Type w
n✝ n m : ℕ
v : Vector α n
w : Vector α m
⊢ toList (append v w) = toList v ++ toList w
[PROOFSTEP]
cases v
[GOAL]
case mk
α : Type u
β : Type v
φ : Type w
n✝ n m : ℕ
w : Vector α m
val✝ : List α
property✝ : List.length val✝ = n
⊢ toList (append { val := val✝, property := property✝ } w) = toList { val := val✝, property := property✝ } ++ toList w
[PROOFSTEP]
cases w
[GOAL]
case mk.mk
α : Type u
β : Type v
φ : Type w
n✝ n m : ℕ
val✝¹ : List α
property✝¹ : List.length val✝¹ = n
val✝ : List α
property✝ : List.length val✝ = m
⊢ toList (append { val := val✝¹, property := property✝¹ } { val := val✝, property := property✝ }) =
toList { val := val✝¹, property := property✝¹ } ++ toList { val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
φ : Type w
n✝ n m : ℕ
v : Vector α m
⊢ toList (drop n v) = List.drop n (toList v)
[PROOFSTEP]
cases v
[GOAL]
case mk
α : Type u
β : Type v
φ : Type w
n✝ n m : ℕ
val✝ : List α
property✝ : List.length val✝ = m
⊢ toList (drop n { val := val✝, property := property✝ }) = List.drop n (toList { val := val✝, property := property✝ })
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
φ : Type w
n✝ n m : ℕ
v : Vector α m
⊢ toList (take n v) = List.take n (toList v)
[PROOFSTEP]
cases v
[GOAL]
case mk
α : Type u
β : Type v
φ : Type w
n✝ n m : ℕ
val✝ : List α
property✝ : List.length val✝ = m
⊢ toList (take n { val := val✝, property := property✝ }) = List.take n (toList { val := val✝, property := property✝ })
[PROOFSTEP]
rfl
|
{"mathlib_filename": "Mathlib.Data.Vector", "llama_tokens": 2695}
|
[GOAL]
R : Type u
inst✝² : CommSemiring R
S : Type v
inst✝¹ : CommSemiring S
inst✝ : Nontrivial R
⊢ ¬Separable 0
[PROOFSTEP]
rintro ⟨x, y, h⟩
[GOAL]
case intro.intro
R : Type u
inst✝² : CommSemiring R
S : Type v
inst✝¹ : CommSemiring S
inst✝ : Nontrivial R
x y : R[X]
h : x * 0 + y * ↑derivative 0 = 1
⊢ False
[PROOFSTEP]
simp only [derivative_zero, mul_zero, add_zero, zero_ne_one] at h
[GOAL]
R : Type u
inst✝² : CommSemiring R
S : Type v
inst✝¹ : CommSemiring S
inst✝ : Subsingleton R
f : R[X]
⊢ Separable f
[PROOFSTEP]
simp [Separable, IsCoprime]
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
a : R
⊢ Separable (X + ↑C a)
[PROOFSTEP]
rw [separable_def, derivative_add, derivative_X, derivative_C, add_zero]
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
a : R
⊢ IsCoprime (X + ↑C a) 1
[PROOFSTEP]
exact isCoprime_one_right
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
⊢ Separable X
[PROOFSTEP]
rw [separable_def, derivative_X]
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
⊢ IsCoprime X 1
[PROOFSTEP]
exact isCoprime_one_right
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
r : R
⊢ Separable (↑C r) ↔ IsUnit r
[PROOFSTEP]
rw [separable_def, derivative_C, isCoprime_zero_right, isUnit_C]
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f g : R[X]
h : Separable (f * g)
⊢ Separable f
[PROOFSTEP]
have := h.of_mul_left_left
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f g : R[X]
h : Separable (f * g)
this : IsCoprime f (↑derivative (f * g))
⊢ Separable f
[PROOFSTEP]
rw [derivative_mul] at this
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f g : R[X]
h : Separable (f * g)
this : IsCoprime f (↑derivative f * g + f * ↑derivative g)
⊢ Separable f
[PROOFSTEP]
exact IsCoprime.of_mul_right_left (IsCoprime.of_add_mul_left_right this)
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f g : R[X]
h : Separable (f * g)
⊢ Separable g
[PROOFSTEP]
rw [mul_comm] at h
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f g : R[X]
h : Separable (g * f)
⊢ Separable g
[PROOFSTEP]
exact h.of_mul_left
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f g : R[X]
hf : Separable f
hfg : g ∣ f
⊢ Separable g
[PROOFSTEP]
rcases hfg with ⟨f', rfl⟩
[GOAL]
case intro
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
g f' : R[X]
hf : Separable (g * f')
⊢ Separable g
[PROOFSTEP]
exact Separable.of_mul_left hf
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f g : R[X]
h : Separable (f * g)
⊢ IsCoprime f g
[PROOFSTEP]
have := h.of_mul_left_left
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f g : R[X]
h : Separable (f * g)
this : IsCoprime f (↑derivative (f * g))
⊢ IsCoprime f g
[PROOFSTEP]
rw [derivative_mul] at this
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f g : R[X]
h : Separable (f * g)
this : IsCoprime f (↑derivative f * g + f * ↑derivative g)
⊢ IsCoprime f g
[PROOFSTEP]
exact IsCoprime.of_mul_right_right (IsCoprime.of_add_mul_left_right this)
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f : R[X]
n : ℕ
h : Separable (f ^ (n + 2))
⊢ IsUnit f ∨ Separable f ∧ n + 2 = 1 ∨ n + 2 = 0
[PROOFSTEP]
rw [pow_succ, pow_succ] at h
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
f : R[X]
n : ℕ
h : Separable (f * (f * f ^ n))
⊢ IsUnit f ∨ Separable f ∧ n + 2 = 1 ∨ n + 2 = 0
[PROOFSTEP]
exact Or.inl (isCoprime_self.1 h.isCoprime.of_mul_right_left)
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p : R[X]
h : Separable p
f : R →+* S
a b : R[X]
H : a * p + b * ↑derivative p = 1
⊢ Polynomial.map f a * Polynomial.map f p + Polynomial.map f b * ↑derivative (Polynomial.map f p) = 1
[PROOFSTEP]
rw [derivative_map, ← Polynomial.map_mul, ← Polynomial.map_mul, ← Polynomial.map_add, H, Polynomial.map_one]
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
p q : R[X]
hp : Separable p
hq : q * q ∣ p
⊢ IsUnit q
[PROOFSTEP]
obtain ⟨p, rfl⟩ := hq
[GOAL]
case intro
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
q p : R[X]
hp : Separable (q * q * p)
⊢ IsUnit q
[PROOFSTEP]
apply isCoprime_self.mp
[GOAL]
case intro
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
q p : R[X]
hp : Separable (q * q * p)
⊢ IsCoprime q q
[PROOFSTEP]
have : IsCoprime (q * (q * p)) (q * (derivative q * p + derivative q * p + q * derivative p)) :=
by
simp only [← mul_assoc, mul_add]
dsimp only [Separable] at hp
convert hp using 1
rw [derivative_mul, derivative_mul]
ring
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
q p : R[X]
hp : Separable (q * q * p)
⊢ IsCoprime (q * (q * p)) (q * (↑derivative q * p + ↑derivative q * p + q * ↑derivative p))
[PROOFSTEP]
simp only [← mul_assoc, mul_add]
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
q p : R[X]
hp : Separable (q * q * p)
⊢ IsCoprime (q * q * p) (q * ↑derivative q * p + q * ↑derivative q * p + q * q * ↑derivative p)
[PROOFSTEP]
dsimp only [Separable] at hp
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
q p : R[X]
hp : IsCoprime (q * q * p) (↑derivative (q * q * p))
⊢ IsCoprime (q * q * p) (q * ↑derivative q * p + q * ↑derivative q * p + q * q * ↑derivative p)
[PROOFSTEP]
convert hp using 1
[GOAL]
case h.e'_4
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
q p : R[X]
hp : IsCoprime (q * q * p) (↑derivative (q * q * p))
⊢ q * ↑derivative q * p + q * ↑derivative q * p + q * q * ↑derivative p = ↑derivative (q * q * p)
[PROOFSTEP]
rw [derivative_mul, derivative_mul]
[GOAL]
case h.e'_4
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
q p : R[X]
hp : IsCoprime (q * q * p) (↑derivative (q * q * p))
⊢ q * ↑derivative q * p + q * ↑derivative q * p + q * q * ↑derivative p =
(↑derivative q * q + q * ↑derivative q) * p + q * q * ↑derivative p
[PROOFSTEP]
ring
[GOAL]
case intro
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
q p : R[X]
hp : Separable (q * q * p)
this : IsCoprime (q * (q * p)) (q * (↑derivative q * p + ↑derivative q * p + q * ↑derivative p))
⊢ IsCoprime q q
[PROOFSTEP]
exact IsCoprime.of_mul_right_left (IsCoprime.of_mul_left_left this)
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
p q : R[X]
hq : ¬IsUnit q
hsep : Separable p
⊢ multiplicity q p ≤ 1
[PROOFSTEP]
contrapose! hq
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
p q : R[X]
hsep : Separable p
hq : 1 < multiplicity q p
⊢ IsUnit q
[PROOFSTEP]
apply isUnit_of_self_mul_dvd_separable hsep
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
p q : R[X]
hsep : Separable p
hq : 1 < multiplicity q p
⊢ q * q ∣ p
[PROOFSTEP]
rw [← sq]
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
p q : R[X]
hsep : Separable p
hq : 1 < multiplicity q p
⊢ q ^ 2 ∣ p
[PROOFSTEP]
apply multiplicity.pow_dvd_of_le_multiplicity
[GOAL]
case a
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
p q : R[X]
hsep : Separable p
hq : 1 < multiplicity q p
⊢ ↑2 ≤ multiplicity q p
[PROOFSTEP]
have h : ⟨Part.Dom 1 ∧ Part.Dom 1, fun _ ↦ 2⟩ ≤ multiplicity q p := PartENat.add_one_le_of_lt hq
[GOAL]
case a
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
p q : R[X]
hsep : Separable p
hq : 1 < multiplicity q p
h : { Dom := 1.Dom ∧ 1.Dom, get := fun x => 2 } ≤ multiplicity q p
⊢ ↑2 ≤ multiplicity q p
[PROOFSTEP]
rw [and_self] at h
[GOAL]
case a
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q✝ : ℕ
p q : R[X]
hsep : Separable p
hq : 1 < multiplicity q p
h : { Dom := 1.Dom, get := fun x => 2 } ≤ multiplicity q p
⊢ ↑2 ≤ multiplicity q p
[PROOFSTEP]
exact h
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q : ℕ
p : R[X]
hsep : Separable p
⊢ Squarefree p
[PROOFSTEP]
rw [multiplicity.squarefree_iff_multiplicity_le_one p]
[GOAL]
R : Type u
inst✝¹ : CommSemiring R
S : Type v
inst✝ : CommSemiring S
p✝ q : ℕ
p : R[X]
hsep : Separable p
⊢ ∀ (x : R[X]), multiplicity x p ≤ 1 ∨ IsUnit x
[PROOFSTEP]
exact fun f => or_iff_not_imp_right.mpr fun hunit => multiplicity_le_one_of_separable hunit hsep
[GOAL]
R : Type u
inst✝ : CommRing R
x : R
⊢ Separable (X - ↑C x)
[PROOFSTEP]
simpa only [sub_eq_add_neg, C_neg] using separable_X_add_C (-x)
[GOAL]
R : Type u
inst✝ : CommRing R
f g : R[X]
hf : Separable f
hg : Separable g
h : IsCoprime f g
⊢ Separable (f * g)
[PROOFSTEP]
rw [separable_def, derivative_mul]
[GOAL]
R : Type u
inst✝ : CommRing R
f g : R[X]
hf : Separable f
hg : Separable g
h : IsCoprime f g
⊢ IsCoprime (f * g) (↑derivative f * g + f * ↑derivative g)
[PROOFSTEP]
exact ((hf.mul_right h).add_mul_left_right _).mul_left ((h.symm.mul_right hg).mul_add_right_right _)
[GOAL]
R : Type u
inst✝ : CommRing R
ι : Type u_1
f : ι → R[X]
s✝ : Finset ι
a : ι
s : Finset ι
has : ¬a ∈ s
ih :
(∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → x ≠ y → IsCoprime (f x) (f y)) →
(∀ (x : ι), x ∈ s → Separable (f x)) → Separable (∏ x in s, f x)
h1 : ∀ (x : ι), x ∈ insert a s → ∀ (y : ι), y ∈ insert a s → x ≠ y → IsCoprime (f x) (f y)
h2 : ∀ (x : ι), x ∈ insert a s → Separable (f x)
⊢ Separable (∏ x in insert a s, f x)
[PROOFSTEP]
simp_rw [Finset.forall_mem_insert, forall_and] at h1 h2
[GOAL]
R : Type u
inst✝ : CommRing R
ι : Type u_1
f : ι → R[X]
s✝ : Finset ι
a : ι
s : Finset ι
has : ¬a ∈ s
ih :
(∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → x ≠ y → IsCoprime (f x) (f y)) →
(∀ (x : ι), x ∈ s → Separable (f x)) → Separable (∏ x in s, f x)
h2 : Separable (f a) ∧ ∀ (x : ι), x ∈ s → Separable (f x)
h1 :
((a ≠ a → IsCoprime (f a) (f a)) ∧ ∀ (x : ι), x ∈ s → a ≠ x → IsCoprime (f a) (f x)) ∧
(∀ (x : ι), x ∈ s → x ≠ a → IsCoprime (f x) (f a)) ∧
∀ (x : ι), x ∈ s → ∀ (x_2 : ι), x_2 ∈ s → x ≠ x_2 → IsCoprime (f x) (f x_2)
⊢ Separable (∏ x in insert a s, f x)
[PROOFSTEP]
rw [prod_insert has]
[GOAL]
R : Type u
inst✝ : CommRing R
ι : Type u_1
f : ι → R[X]
s✝ : Finset ι
a : ι
s : Finset ι
has : ¬a ∈ s
ih :
(∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → x ≠ y → IsCoprime (f x) (f y)) →
(∀ (x : ι), x ∈ s → Separable (f x)) → Separable (∏ x in s, f x)
h2 : Separable (f a) ∧ ∀ (x : ι), x ∈ s → Separable (f x)
h1 :
((a ≠ a → IsCoprime (f a) (f a)) ∧ ∀ (x : ι), x ∈ s → a ≠ x → IsCoprime (f a) (f x)) ∧
(∀ (x : ι), x ∈ s → x ≠ a → IsCoprime (f x) (f a)) ∧
∀ (x : ι), x ∈ s → ∀ (x_2 : ι), x_2 ∈ s → x ≠ x_2 → IsCoprime (f x) (f x_2)
⊢ Separable (f a * ∏ x in s, f x)
[PROOFSTEP]
exact
h2.1.mul (ih h1.2.2 h2.2) (IsCoprime.prod_right fun i his => h1.1.2 i his <| Ne.symm <| ne_of_mem_of_not_mem his has)
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
ι : Type u_1
f : ι → R
s : Finset ι
hfs : Separable (∏ i in s, (X - ↑C (f i)))
x y : ι
hx : x ∈ s
hy : y ∈ s
hfxy : f x = f y
⊢ x = y
[PROOFSTEP]
by_contra hxy
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
ι : Type u_1
f : ι → R
s : Finset ι
hfs : Separable (∏ i in s, (X - ↑C (f i)))
x y : ι
hx : x ∈ s
hy : y ∈ s
hfxy : f x = f y
hxy : ¬x = y
⊢ False
[PROOFSTEP]
rw [← insert_erase hx, prod_insert (not_mem_erase _ _), ← insert_erase (mem_erase_of_ne_of_mem (Ne.symm hxy) hy),
prod_insert (not_mem_erase _ _), ← mul_assoc, hfxy, ← sq] at hfs
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
ι : Type u_1
f : ι → R
s : Finset ι
x y : ι
hfs : Separable ((X - ↑C (f y)) ^ 2 * ∏ x in Finset.erase (Finset.erase s x) y, (X - ↑C (f x)))
hx : x ∈ s
hy : y ∈ s
hfxy : f x = f y
hxy : ¬x = y
⊢ False
[PROOFSTEP]
cases (hfs.of_mul_left.of_pow (not_isUnit_X_sub_C _) two_ne_zero).2
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
s : Multiset R
hs : Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) s))
⊢ Multiset.Nodup s
[PROOFSTEP]
rw [Multiset.nodup_iff_ne_cons_cons]
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
s : Multiset R
hs : Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) s))
⊢ ∀ (a : R) (t : Multiset R), s ≠ a ::ₘ a ::ₘ t
[PROOFSTEP]
rintro a t rfl
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
a : R
t : Multiset R
hs : Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) (a ::ₘ a ::ₘ t)))
⊢ False
[PROOFSTEP]
refine' not_isUnit_X_sub_C a (isUnit_of_self_mul_dvd_separable hs _)
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
a : R
t : Multiset R
hs : Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) (a ::ₘ a ::ₘ t)))
⊢ (X - ↑C a) * (X - ↑C a) ∣ Multiset.prod (Multiset.map (fun a => X - ↑C a) (a ::ₘ a ::ₘ t))
[PROOFSTEP]
simpa only [Multiset.map_cons, Multiset.prod_cons] using mul_dvd_mul_left _ (dvd_mul_right _ _)
[GOAL]
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
⊢ Separable (X ^ n - ↑C ↑u)
[PROOFSTEP]
nontriviality R
[GOAL]
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
✝ : Nontrivial R
⊢ Separable (X ^ n - ↑C ↑u)
[PROOFSTEP]
rcases n.eq_zero_or_pos with (rfl | hpos)
[GOAL]
case inl
R : Type u
inst✝ : CommRing R
u : Rˣ
✝ : Nontrivial R
hn : IsUnit ↑0
⊢ Separable (X ^ 0 - ↑C ↑u)
[PROOFSTEP]
simp at hn
[GOAL]
case inr
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
✝ : Nontrivial R
hpos : n > 0
⊢ Separable (X ^ n - ↑C ↑u)
[PROOFSTEP]
apply (separable_def' (X ^ n - C (u : R))).2
[GOAL]
case inr
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
✝ : Nontrivial R
hpos : n > 0
⊢ ∃ a b, a * (X ^ n - ↑C ↑u) + b * ↑derivative (X ^ n - ↑C ↑u) = 1
[PROOFSTEP]
obtain ⟨n', hn'⟩ := hn.exists_left_inv
[GOAL]
case inr.intro
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
✝ : Nontrivial R
hpos : n > 0
n' : R
hn' : n' * ↑n = 1
⊢ ∃ a b, a * (X ^ n - ↑C ↑u) + b * ↑derivative (X ^ n - ↑C ↑u) = 1
[PROOFSTEP]
refine' ⟨-C ↑u⁻¹, C (↑u⁻¹ : R) * C n' * X, _⟩
[GOAL]
case inr.intro
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
✝ : Nontrivial R
hpos : n > 0
n' : R
hn' : n' * ↑n = 1
⊢ -↑C ↑u⁻¹ * (X ^ n - ↑C ↑u) + ↑C ↑u⁻¹ * ↑C n' * X * ↑derivative (X ^ n - ↑C ↑u) = 1
[PROOFSTEP]
rw [derivative_sub, derivative_C, sub_zero, derivative_pow X n, derivative_X, mul_one]
[GOAL]
case inr.intro
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
✝ : Nontrivial R
hpos : n > 0
n' : R
hn' : n' * ↑n = 1
⊢ -↑C ↑u⁻¹ * (X ^ n - ↑C ↑u) + ↑C ↑u⁻¹ * ↑C n' * X * (↑C ↑n * X ^ (n - 1)) = 1
[PROOFSTEP]
calc
-C ↑u⁻¹ * (X ^ n - C ↑u) + C ↑u⁻¹ * C n' * X * (↑n * X ^ (n - 1)) =
C (↑u⁻¹ * ↑u) - C ↑u⁻¹ * X ^ n + C ↑u⁻¹ * C (n' * ↑n) * (X * X ^ (n - 1)) :=
by
simp only [C.map_mul, C_eq_nat_cast]
ring
_ = 1 := by
simp only [Units.inv_mul, hn', C.map_one, mul_one, ← pow_succ, Nat.sub_add_cancel (show 1 ≤ n from hpos),
sub_add_cancel]
[GOAL]
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
✝ : Nontrivial R
hpos : n > 0
n' : R
hn' : n' * ↑n = 1
⊢ -↑C ↑u⁻¹ * (X ^ n - ↑C ↑u) + ↑C ↑u⁻¹ * ↑C n' * X * (↑n * X ^ (n - 1)) =
↑C (↑u⁻¹ * ↑u) - ↑C ↑u⁻¹ * X ^ n + ↑C ↑u⁻¹ * ↑C (n' * ↑n) * (X * X ^ (n - 1))
[PROOFSTEP]
simp only [C.map_mul, C_eq_nat_cast]
[GOAL]
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
✝ : Nontrivial R
hpos : n > 0
n' : R
hn' : n' * ↑n = 1
⊢ -↑C ↑u⁻¹ * (X ^ n - ↑C ↑u) + ↑C ↑u⁻¹ * ↑C n' * X * (↑n * X ^ (n - 1)) =
↑C ↑u⁻¹ * ↑C ↑u - ↑C ↑u⁻¹ * X ^ n + ↑C ↑u⁻¹ * (↑C n' * ↑n) * (X * X ^ (n - 1))
[PROOFSTEP]
ring
[GOAL]
R : Type u
inst✝ : CommRing R
n : ℕ
u : Rˣ
hn : IsUnit ↑n
✝ : Nontrivial R
hpos : n > 0
n' : R
hn' : n' * ↑n = 1
⊢ ↑C (↑u⁻¹ * ↑u) - ↑C ↑u⁻¹ * X ^ n + ↑C ↑u⁻¹ * ↑C (n' * ↑n) * (X * X ^ (n - 1)) = 1
[PROOFSTEP]
simp only [Units.inv_mul, hn', C.map_one, mul_one, ← pow_succ, Nat.sub_add_cancel (show 1 ≤ n from hpos),
sub_add_cancel]
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
p : R[X]
hsep : Separable p
x : R
⊢ rootMultiplicity x p ≤ 1
[PROOFSTEP]
by_cases hp : p = 0
[GOAL]
case pos
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
p : R[X]
hsep : Separable p
x : R
hp : p = 0
⊢ rootMultiplicity x p ≤ 1
[PROOFSTEP]
simp [hp]
[GOAL]
case neg
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
p : R[X]
hsep : Separable p
x : R
hp : ¬p = 0
⊢ rootMultiplicity x p ≤ 1
[PROOFSTEP]
rw [rootMultiplicity_eq_multiplicity, dif_neg hp, ← PartENat.coe_le_coe, PartENat.natCast_get, Nat.cast_one]
[GOAL]
case neg
R : Type u
inst✝¹ : CommRing R
inst✝ : Nontrivial R
p : R[X]
hsep : Separable p
x : R
hp : ¬p = 0
⊢ multiplicity (X - ↑C x) p ≤ 1
[PROOFSTEP]
exact multiplicity_le_one_of_separable (not_isUnit_X_sub_C _) hsep
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hsep : Separable p
x : R
⊢ Multiset.count x (roots p) ≤ 1
[PROOFSTEP]
rw [count_roots p]
[GOAL]
R : Type u
inst✝¹ : CommRing R
inst✝ : IsDomain R
p : R[X]
hsep : Separable p
x : R
⊢ rootMultiplicity x p ≤ 1
[PROOFSTEP]
exact rootMultiplicity_le_one_of_separable hsep x
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F[X]
hf : Irreducible f
h : ↑derivative f ≠ 0
g : F[X]
hg1 : g ∈ nonunits F[X]
_hg2 : g ≠ 0
x✝ : g ∣ f
hg4 : g ∣ ↑derivative f
p : F[X]
hg3 : f = g * p
u : F[X]ˣ
hu : ↑u = p
⊢ f ∣ ↑derivative f
[PROOFSTEP]
conv_lhs => rw [hg3, ← hu]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F[X]
hf : Irreducible f
h : ↑derivative f ≠ 0
g : F[X]
hg1 : g ∈ nonunits F[X]
_hg2 : g ≠ 0
x✝ : g ∣ f
hg4 : g ∣ ↑derivative f
p : F[X]
hg3 : f = g * p
u : F[X]ˣ
hu : ↑u = p
| f
[PROOFSTEP]
rw [hg3, ← hu]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F[X]
hf : Irreducible f
h : ↑derivative f ≠ 0
g : F[X]
hg1 : g ∈ nonunits F[X]
_hg2 : g ≠ 0
x✝ : g ∣ f
hg4 : g ∣ ↑derivative f
p : F[X]
hg3 : f = g * p
u : F[X]ˣ
hu : ↑u = p
| f
[PROOFSTEP]
rw [hg3, ← hu]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F[X]
hf : Irreducible f
h : ↑derivative f ≠ 0
g : F[X]
hg1 : g ∈ nonunits F[X]
_hg2 : g ≠ 0
x✝ : g ∣ f
hg4 : g ∣ ↑derivative f
p : F[X]
hg3 : f = g * p
u : F[X]ˣ
hu : ↑u = p
| f
[PROOFSTEP]
rw [hg3, ← hu]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F[X]
hf : Irreducible f
h : ↑derivative f ≠ 0
g : F[X]
hg1 : g ∈ nonunits F[X]
_hg2 : g ≠ 0
x✝ : g ∣ f
hg4 : g ∣ ↑derivative f
p : F[X]
hg3 : f = g * p
u : F[X]ˣ
hu : ↑u = p
⊢ g * ↑u ∣ ↑derivative f
[PROOFSTEP]
rwa [Units.mul_right_dvd]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F →+* K
p : F[X]
⊢ Separable (map f p) ↔ Separable p
[PROOFSTEP]
simp_rw [separable_def, derivative_map, isCoprime_map]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
ι : Type u_1
f : ι → F
s : Finset ι
H : ∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → f x = f y → x = y
⊢ Separable (∏ i in s, (X - ↑C (f i)))
[PROOFSTEP]
rw [← prod_attach]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
ι : Type u_1
f : ι → F
s : Finset ι
H : ∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → f x = f y → x = y
⊢ Separable (∏ x in attach s, (X - ↑C (f ↑x)))
[PROOFSTEP]
exact
separable_prod'
(fun x _hx y _hy hxy =>
@pairwise_coprime_X_sub_C _ _ { x // x ∈ s } (fun x => f x) (fun x y hxy => Subtype.eq <| H x.1 x.2 y.1 y.2 hxy) _
_ hxy)
fun _ _ => separable_X_sub_C
[GOAL]
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
ι : Type u_1
inst✝ : Fintype ι
f : ι → F
⊢ (∀ (x : ι), x ∈ univ → ∀ (y : ι), y ∈ univ → f x = f y → x = y) ↔ Function.Injective f
[PROOFSTEP]
simp_rw [mem_univ, true_imp_iff, Function.Injective]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
H : ↑derivative f = 0
⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F p) g = f
[PROOFSTEP]
rcases p.eq_zero_or_pos with (rfl | hp)
[GOAL]
case inl
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F[X]
hf : Irreducible f
H : ↑derivative f = 0
HF : CharP F 0
⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F 0) g = f
[PROOFSTEP]
haveI := CharP.charP_to_charZero F
[GOAL]
case inl
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F[X]
hf : Irreducible f
H : ↑derivative f = 0
HF : CharP F 0
this : CharZero F
⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F 0) g = f
[PROOFSTEP]
have := natDegree_eq_zero_of_derivative_eq_zero H
[GOAL]
case inl
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F[X]
hf : Irreducible f
H : ↑derivative f = 0
HF : CharP F 0
this✝ : CharZero F
this : natDegree f = 0
⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F 0) g = f
[PROOFSTEP]
have := (natDegree_pos_iff_degree_pos.mpr <| degree_pos_of_irreducible hf).ne'
[GOAL]
case inl
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
f : F[X]
hf : Irreducible f
H : ↑derivative f = 0
HF : CharP F 0
this✝¹ : CharZero F
this✝ : natDegree f = 0
this : natDegree f ≠ 0
⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F 0) g = f
[PROOFSTEP]
contradiction
[GOAL]
case inr
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
H : ↑derivative f = 0
hp : p > 0
⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F p) g = f
[PROOFSTEP]
haveI := isLocalRingHom_expand F hp
[GOAL]
case inr
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
H : ↑derivative f = 0
hp : p > 0
this : IsLocalRingHom ↑(expand F p)
⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F p) g = f
[PROOFSTEP]
exact
Or.inr
⟨by rw [separable_iff_derivative_ne_zero hf, Classical.not_not, H], contract p f,
of_irreducible_map (expand F p : F[X] →+* F[X]) (by rwa [← expand_contract p H hp.ne'] at hf ),
expand_contract p H hp.ne'⟩
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
H : ↑derivative f = 0
hp : p > 0
this : IsLocalRingHom ↑(expand F p)
⊢ ¬Separable f
[PROOFSTEP]
rw [separable_iff_derivative_ne_zero hf, Classical.not_not, H]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
H : ↑derivative f = 0
hp : p > 0
this : IsLocalRingHom ↑(expand F p)
⊢ Irreducible (↑↑(expand F p) (contract p f))
[PROOFSTEP]
rwa [← expand_contract p H hp.ne'] at hf
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : p ≠ 0
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
replace hp : p.Prime := (CharP.char_is_prime_or_zero F p).resolve_right hp
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : Nat.Prime p
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
induction' hn : f.natDegree using Nat.strong_induction_on with N ih generalizing f
[GOAL]
case h
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
N : ℕ
ih : ∀ (m : ℕ), m < N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
f : F[X]
hf : Irreducible f
hn : natDegree f = N
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
rcases separable_or p hf with (h | ⟨h1, g, hg, hgf⟩)
[GOAL]
case h.inl
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
N : ℕ
ih : ∀ (m : ℕ), m < N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
f : F[X]
hf : Irreducible f
hn : natDegree f = N
h : Separable f
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
refine' ⟨0, f, h, _⟩
[GOAL]
case h.inl
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
N : ℕ
ih : ∀ (m : ℕ), m < N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
f : F[X]
hf : Irreducible f
hn : natDegree f = N
h : Separable f
⊢ ↑(expand F (p ^ 0)) f = f
[PROOFSTEP]
rw [pow_zero, expand_one]
[GOAL]
case h.inr.intro.intro.intro
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
N : ℕ
ih : ∀ (m : ℕ), m < N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
f : F[X]
hf : Irreducible f
hn : natDegree f = N
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
cases' N with N
[GOAL]
case h.inr.intro.intro.intro.zero
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
ih :
∀ (m : ℕ),
m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.zero
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
rw [natDegree_eq_zero_iff_degree_le_zero, degree_le_zero_iff] at hn
[GOAL]
case h.inr.intro.intro.intro.zero
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
ih :
∀ (m : ℕ),
m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : f = ↑C (coeff f 0)
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
rw [hn, separable_C, isUnit_iff_ne_zero, Classical.not_not] at h1
[GOAL]
case h.inr.intro.intro.intro.zero
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : coeff f 0 = 0
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
ih :
∀ (m : ℕ),
m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : f = ↑C (coeff f 0)
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
have hf0 : f ≠ 0 := hf.ne_zero
[GOAL]
case h.inr.intro.intro.intro.zero
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : coeff f 0 = 0
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
ih :
∀ (m : ℕ),
m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : f = ↑C (coeff f 0)
hf0 : f ≠ 0
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
rw [h1, C_0] at hn
[GOAL]
case h.inr.intro.intro.intro.zero
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : coeff f 0 = 0
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
ih :
∀ (m : ℕ),
m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : f = 0
hf0 : f ≠ 0
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
exact absurd hn hf0
[GOAL]
case h.inr.intro.intro.intro.succ
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
have hg1 : g.natDegree * p = N.succ := by rwa [← natDegree_expand, hgf]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
⊢ natDegree g * p = Nat.succ N
[PROOFSTEP]
rwa [← natDegree_expand, hgf]
[GOAL]
case h.inr.intro.intro.intro.succ
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
hg1 : natDegree g * p = Nat.succ N
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
have hg2 : g.natDegree ≠ 0 := by
intro this
rw [this, zero_mul] at hg1
cases hg1
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
hg1 : natDegree g * p = Nat.succ N
⊢ natDegree g ≠ 0
[PROOFSTEP]
intro this
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
hg1 : natDegree g * p = Nat.succ N
this : natDegree g = 0
⊢ False
[PROOFSTEP]
rw [this, zero_mul] at hg1
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
hg1 : 0 = Nat.succ N
this : natDegree g = 0
⊢ False
[PROOFSTEP]
cases hg1
[GOAL]
case h.inr.intro.intro.intro.succ
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
hg1 : natDegree g * p = Nat.succ N
hg2 : natDegree g ≠ 0
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
have hg3 : g.natDegree < N.succ := by
rw [← mul_one g.natDegree, ← hg1]
exact Nat.mul_lt_mul_of_pos_left hp.one_lt hg2.bot_lt
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
hg1 : natDegree g * p = Nat.succ N
hg2 : natDegree g ≠ 0
⊢ natDegree g < Nat.succ N
[PROOFSTEP]
rw [← mul_one g.natDegree, ← hg1]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
hg1 : natDegree g * p = Nat.succ N
hg2 : natDegree g ≠ 0
⊢ natDegree g * 1 < natDegree g * p
[PROOFSTEP]
exact Nat.mul_lt_mul_of_pos_left hp.one_lt hg2.bot_lt
[GOAL]
case h.inr.intro.intro.intro.succ
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
g : F[X]
hg : Irreducible g
hgf : ↑(expand F p) g = f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
hg1 : natDegree g * p = Nat.succ N
hg2 : natDegree g ≠ 0
hg3 : natDegree g < Nat.succ N
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
rcases ih _ hg3 hg rfl with ⟨n, g, hg4, rfl⟩
[GOAL]
case h.inr.intro.intro.intro.succ.intro.intro.intro
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
n : ℕ
g : F[X]
hg4 : Separable g
hg : Irreducible (↑(expand F (p ^ n)) g)
hgf : ↑(expand F p) (↑(expand F (p ^ n)) g) = f
hg1 : natDegree (↑(expand F (p ^ n)) g) * p = Nat.succ N
hg2 : natDegree (↑(expand F (p ^ n)) g) ≠ 0
hg3 : natDegree (↑(expand F (p ^ n)) g) < Nat.succ N
⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
[PROOFSTEP]
refine' ⟨n + 1, g, hg4, _⟩
[GOAL]
case h.inr.intro.intro.intro.succ.intro.intro.intro
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f✝ : F[X]
hf✝ : Irreducible f✝
hp : Nat.Prime p
x✝ : ℕ
hn✝ : natDegree f✝ = x✝
f : F[X]
hf : Irreducible f
h1 : ¬Separable f
N : ℕ
ih :
∀ (m : ℕ),
m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f
hn : natDegree f = Nat.succ N
n : ℕ
g : F[X]
hg4 : Separable g
hg : Irreducible (↑(expand F (p ^ n)) g)
hgf : ↑(expand F p) (↑(expand F (p ^ n)) g) = f
hg1 : natDegree (↑(expand F (p ^ n)) g) * p = Nat.succ N
hg2 : natDegree (↑(expand F (p ^ n)) g) ≠ 0
hg3 : natDegree (↑(expand F (p ^ n)) g) < Nat.succ N
⊢ ↑(expand F (p ^ (n + 1))) g = f
[PROOFSTEP]
rw [← hgf, expand_expand, pow_succ]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
n : ℕ
hp : 0 < p
hf : Separable (↑(expand F (p ^ n)) f)
⊢ IsUnit f ∨ n = 0
[PROOFSTEP]
rw [or_iff_not_imp_right]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
n : ℕ
hp : 0 < p
hf : Separable (↑(expand F (p ^ n)) f)
⊢ ¬n = 0 → IsUnit f
[PROOFSTEP]
rintro hn : n ≠ 0
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
n : ℕ
hp : 0 < p
hf : Separable (↑(expand F (p ^ n)) f)
hn : n ≠ 0
⊢ IsUnit f
[PROOFSTEP]
have hf2 : derivative (expand F (p ^ n) f) = 0 := by
rw [derivative_expand, Nat.cast_pow, CharP.cast_eq_zero, zero_pow hn.bot_lt, zero_mul, mul_zero]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
n : ℕ
hp : 0 < p
hf : Separable (↑(expand F (p ^ n)) f)
hn : n ≠ 0
⊢ ↑derivative (↑(expand F (p ^ n)) f) = 0
[PROOFSTEP]
rw [derivative_expand, Nat.cast_pow, CharP.cast_eq_zero, zero_pow hn.bot_lt, zero_mul, mul_zero]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
n : ℕ
hp : 0 < p
hf : Separable (↑(expand F (p ^ n)) f)
hn : n ≠ 0
hf2 : ↑derivative (↑(expand F (p ^ n)) f) = 0
⊢ IsUnit f
[PROOFSTEP]
rw [separable_def, hf2, isCoprime_zero_right, isUnit_iff] at hf
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
n : ℕ
hp : 0 < p
hf : ∃ r, IsUnit r ∧ ↑C r = ↑(expand F (p ^ n)) f
hn : n ≠ 0
hf2 : ↑derivative (↑(expand F (p ^ n)) f) = 0
⊢ IsUnit f
[PROOFSTEP]
rcases hf with ⟨r, hr, hrf⟩
[GOAL]
case intro.intro
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
n : ℕ
hp : 0 < p
hn : n ≠ 0
hf2 : ↑derivative (↑(expand F (p ^ n)) f) = 0
r : F
hr : IsUnit r
hrf : ↑C r = ↑(expand F (p ^ n)) f
⊢ IsUnit f
[PROOFSTEP]
rw [eq_comm, expand_eq_C (pow_pos hp _)] at hrf
[GOAL]
case intro.intro
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
n : ℕ
hp : 0 < p
hn : n ≠ 0
hf2 : ↑derivative (↑(expand F (p ^ n)) f) = 0
r : F
hr : IsUnit r
hrf : f = ↑C r
⊢ IsUnit f
[PROOFSTEP]
rwa [hrf, isUnit_C]
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ : ℕ
g₁ : F[X]
hg₁ : Separable g₁
hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f
n₂ : ℕ
g₂ : F[X]
hg₂ : Separable g₂
hgf₂ : ↑(expand F (p ^ n₂)) g₂ = f
⊢ n₁ = n₂ ∧ g₁ = g₂
[PROOFSTEP]
revert g₁ g₂
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ n₂ : ℕ
⊢ ∀ (g₁ : F[X]),
Separable g₁ →
↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂
[PROOFSTEP]
clear! K
[GOAL]
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ n₂ : ℕ
⊢ ∀ (g₁ : F[X]),
Separable g₁ →
↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂
[PROOFSTEP]
wlog hn : n₁ ≤ n₂
[GOAL]
case inr
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ n₂ : ℕ
this :
∀ {F : Type u} [inst : Field F] (p : ℕ) [HF : CharP F p] {f : F[X]},
Irreducible f →
0 < p →
∀ (n₁ n₂ : ℕ),
n₁ ≤ n₂ →
∀ (g₁ : F[X]),
Separable g₁ →
↑(expand F (p ^ n₁)) g₁ = f →
∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂
hn : ¬n₁ ≤ n₂
⊢ ∀ (g₁ : F[X]),
Separable g₁ →
↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂
[PROOFSTEP]
intro g₁ hg₁ Hg₁ g₂ hg₂ Hg₂
[GOAL]
case inr
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ n₂ : ℕ
this :
∀ {F : Type u} [inst : Field F] (p : ℕ) [HF : CharP F p] {f : F[X]},
Irreducible f →
0 < p →
∀ (n₁ n₂ : ℕ),
n₁ ≤ n₂ →
∀ (g₁ : F[X]),
Separable g₁ →
↑(expand F (p ^ n₁)) g₁ = f →
∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂
hn : ¬n₁ ≤ n₂
g₁ : F[X]
hg₁ : Separable g₁
Hg₁ : ↑(expand F (p ^ n₁)) g₁ = f
g₂ : F[X]
hg₂ : Separable g₂
Hg₂ : ↑(expand F (p ^ n₂)) g₂ = f
⊢ n₁ = n₂ ∧ g₁ = g₂
[PROOFSTEP]
simpa only [eq_comm] using this p hf hp n₂ n₁ (le_of_not_le hn) g₂ hg₂ Hg₂ g₁ hg₁ Hg₁
[GOAL]
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ n₂ : ℕ
hn : n₁ ≤ n₂
⊢ ∀ (g₁ : F[X]),
Separable g₁ →
↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂
[PROOFSTEP]
have hf0 : f ≠ 0 := hf.ne_zero
[GOAL]
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ n₂ : ℕ
hn : n₁ ≤ n₂
hf0 : f ≠ 0
⊢ ∀ (g₁ : F[X]),
Separable g₁ →
↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂
[PROOFSTEP]
intros g₁ hg₁ hgf₁ g₂ hg₂ hgf₂
[GOAL]
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ n₂ : ℕ
hn : n₁ ≤ n₂
hf0 : f ≠ 0
g₁ : F[X]
hg₁ : Separable g₁
hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f
g₂ : F[X]
hg₂ : Separable g₂
hgf₂ : ↑(expand F (p ^ n₂)) g₂ = f
⊢ n₁ = n₂ ∧ g₁ = g₂
[PROOFSTEP]
rw [le_iff_exists_add] at hn
[GOAL]
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ n₂ : ℕ
hn : ∃ c, n₂ = n₁ + c
hf0 : f ≠ 0
g₁ : F[X]
hg₁ : Separable g₁
hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f
g₂ : F[X]
hg₂ : Separable g₂
hgf₂ : ↑(expand F (p ^ n₂)) g₂ = f
⊢ n₁ = n₂ ∧ g₁ = g₂
[PROOFSTEP]
rcases hn with ⟨k, rfl⟩
[GOAL]
case intro
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ : ℕ
hf0 : f ≠ 0
g₁ : F[X]
hg₁ : Separable g₁
hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f
g₂ : F[X]
hg₂ : Separable g₂
k : ℕ
hgf₂ : ↑(expand F (p ^ (n₁ + k))) g₂ = f
⊢ n₁ = n₁ + k ∧ g₁ = g₂
[PROOFSTEP]
rw [← hgf₁, pow_add, expand_mul, expand_inj (pow_pos hp n₁)] at hgf₂
[GOAL]
case intro
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ : ℕ
hf0 : f ≠ 0
g₁ : F[X]
hg₁ : Separable g₁
hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f
g₂ : F[X]
hg₂ : Separable g₂
k : ℕ
hgf₂ : ↑(expand F (p ^ k)) g₂ = g₁
⊢ n₁ = n₁ + k ∧ g₁ = g₂
[PROOFSTEP]
subst hgf₂
[GOAL]
case intro
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
f : F[X]
hf : Irreducible f
hp : 0 < p
n₁ : ℕ
hf0 : f ≠ 0
g₂ : F[X]
hg₂ : Separable g₂
k : ℕ
hg₁ : Separable (↑(expand F (p ^ k)) g₂)
hgf₁ : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂) = f
⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) g₂ = g₂
[PROOFSTEP]
subst hgf₁
[GOAL]
case intro
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
hp : 0 < p
n₁ : ℕ
g₂ : F[X]
hg₂ : Separable g₂
k : ℕ
hg₁ : Separable (↑(expand F (p ^ k)) g₂)
hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂))
hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂) ≠ 0
⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) g₂ = g₂
[PROOFSTEP]
rcases isUnit_or_eq_zero_of_separable_expand p k hp hg₁ with (h | rfl)
[GOAL]
case intro.inl
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
hp : 0 < p
n₁ : ℕ
g₂ : F[X]
hg₂ : Separable g₂
k : ℕ
hg₁ : Separable (↑(expand F (p ^ k)) g₂)
hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂))
hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂) ≠ 0
h : IsUnit g₂
⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) g₂ = g₂
[PROOFSTEP]
rw [isUnit_iff] at h
[GOAL]
case intro.inl
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
hp : 0 < p
n₁ : ℕ
g₂ : F[X]
hg₂ : Separable g₂
k : ℕ
hg₁ : Separable (↑(expand F (p ^ k)) g₂)
hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂))
hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂) ≠ 0
h : ∃ r, IsUnit r ∧ ↑C r = g₂
⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) g₂ = g₂
[PROOFSTEP]
rcases h with ⟨r, hr, rfl⟩
[GOAL]
case intro.inl.intro.intro
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
hp : 0 < p
n₁ k : ℕ
r : F
hr : IsUnit r
hg₂ : Separable (↑C r)
hg₁ : Separable (↑(expand F (p ^ k)) (↑C r))
hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) (↑C r)))
hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) (↑C r)) ≠ 0
⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) (↑C r) = ↑C r
[PROOFSTEP]
simp_rw [expand_C] at hf
[GOAL]
case intro.inl.intro.intro
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
hp : 0 < p
n₁ k : ℕ
r : F
hr : IsUnit r
hg₂ : Separable (↑C r)
hg₁ : Separable (↑(expand F (p ^ k)) (↑C r))
hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) (↑C r)) ≠ 0
hf : Irreducible (↑C r)
⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) (↑C r) = ↑C r
[PROOFSTEP]
exact absurd (isUnit_C.2 hr) hf.1
[GOAL]
case intro.inr
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
hp : 0 < p
n₁ : ℕ
g₂ : F[X]
hg₂ : Separable g₂
hg₁ : Separable (↑(expand F (p ^ 0)) g₂)
hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂))
hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂) ≠ 0
⊢ n₁ = n₁ + 0 ∧ ↑(expand F (p ^ 0)) g₂ = g₂
[PROOFSTEP]
rw [add_zero, pow_zero, expand_one]
[GOAL]
case intro.inr
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
hp : 0 < p
n₁ : ℕ
g₂ : F[X]
hg₂ : Separable g₂
hg₁ : Separable (↑(expand F (p ^ 0)) g₂)
hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂))
hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂) ≠ 0
⊢ n₁ = n₁ ∧ g₂ = g₂
[PROOFSTEP]
constructor
[GOAL]
case intro.inr.left
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
hp : 0 < p
n₁ : ℕ
g₂ : F[X]
hg₂ : Separable g₂
hg₁ : Separable (↑(expand F (p ^ 0)) g₂)
hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂))
hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂) ≠ 0
⊢ n₁ = n₁
[PROOFSTEP]
rfl
[GOAL]
case intro.inr.right
F✝ : Type u
inst✝¹ : Field F✝
p✝ : ℕ
F : Type u
inst✝ : Field F
p : ℕ
HF : CharP F p
hp : 0 < p
n₁ : ℕ
g₂ : F[X]
hg₂ : Separable g₂
hg₁ : Separable (↑(expand F (p ^ 0)) g₂)
hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂))
hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂) ≠ 0
⊢ g₂ = g₂
[PROOFSTEP]
rfl
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
n : ℕ
⊢ Separable (X ^ n - 1) ↔ ↑n ≠ 0
[PROOFSTEP]
refine' ⟨_, fun h => separable_X_pow_sub_C_unit 1 (IsUnit.mk0 (↑n) h)⟩
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
n : ℕ
⊢ Separable (X ^ n - 1) → ↑n ≠ 0
[PROOFSTEP]
rw [separable_def', derivative_sub, derivative_X_pow, derivative_one, sub_zero]
-- Suppose `(n : F) = 0`, then the derivative is `0`, so `X ^ n - 1` is a unit, contradiction.
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
n : ℕ
⊢ (∃ a b, a * (X ^ n - 1) + b * (↑C ↑n * X ^ (n - 1)) = 1) → ↑n ≠ 0
[PROOFSTEP]
rintro (h : IsCoprime _ _) hn'
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
n : ℕ
h : IsCoprime (X ^ n - 1) (↑C ↑n * X ^ (n - 1))
hn' : ↑n = 0
⊢ False
[PROOFSTEP]
rw [hn', C_0, zero_mul, isCoprime_zero_right] at h
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
n : ℕ
h : IsUnit (X ^ n - 1)
hn' : ↑n = 0
⊢ False
[PROOFSTEP]
exact not_isUnit_X_pow_sub_one F n h
[GOAL]
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : Algebra F K
p : F[X]
hsep : Separable p
hsplit : Splits (algebraMap F K) p
⊢ Fintype.card ↑(rootSet p K) = natDegree p
[PROOFSTEP]
simp_rw [rootSet_def, Finset.coe_sort_coe, Fintype.card_coe]
[GOAL]
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : Algebra F K
p : F[X]
hsep : Separable p
hsplit : Splits (algebraMap F K) p
⊢ card (Multiset.toFinset (roots (map (algebraMap F K) p))) = natDegree p
[PROOFSTEP]
rw [Multiset.toFinset_card_of_nodup, ← natDegree_eq_card_roots hsplit]
[GOAL]
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : Algebra F K
p : F[X]
hsep : Separable p
hsplit : Splits (algebraMap F K) p
⊢ Multiset.Nodup (roots (map (algebraMap F K) p))
[PROOFSTEP]
exact nodup_roots hsep.map
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
⊢ h = ↑C (leadingCoeff h) * (X - ↑C x)
[PROOFSTEP]
have h_ne_zero : h ≠ 0 := by
rintro rfl
exact not_separable_zero h_sep
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
⊢ h ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h_sep : Separable 0
h_root : eval x 0 = 0
h_splits : Splits i 0
h_roots : ∀ (y : K), y ∈ roots (map i 0) → y = ↑i x
⊢ False
[PROOFSTEP]
exact not_separable_zero h_sep
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ h = ↑C (leadingCoeff h) * (X - ↑C x)
[PROOFSTEP]
apply Polynomial.eq_X_sub_C_of_splits_of_single_root i h_splits
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ roots (map i h) = {↑i x}
[PROOFSTEP]
apply Finset.mk.inj
[GOAL]
case x
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ { val := roots (map i h), nodup := ?nodup } = { val := {↑i x}, nodup := ?nodup }
[PROOFSTEP]
change _ = {i x}
[GOAL]
case x
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ { val := roots (map i h), nodup := ?nodup } = {↑i x}
[PROOFSTEP]
rw [Finset.eq_singleton_iff_unique_mem]
[GOAL]
case x
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ ↑i x ∈ { val := roots (map i h), nodup := ?nodup } ∧
∀ (x_1 : K), x_1 ∈ { val := roots (map i h), nodup := ?nodup } → x_1 = ↑i x
case nodup
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ Multiset.Nodup (roots (map i h))
[PROOFSTEP]
constructor
[GOAL]
case x.left
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ ↑i x ∈ { val := roots (map i h), nodup := ?nodup }
[PROOFSTEP]
apply Finset.mem_mk.mpr
[GOAL]
case x.left
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ ↑i x ∈ roots (map i h)
[PROOFSTEP]
rw [mem_roots (show h.map i ≠ 0 from map_ne_zero h_ne_zero)]
[GOAL]
case x.left
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ IsRoot (map i h) (↑i x)
[PROOFSTEP]
rw [IsRoot.def, ← eval₂_eq_eval_map, eval₂_hom, h_root]
[GOAL]
case x.left
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ ↑i 0 = 0
[PROOFSTEP]
exact RingHom.map_zero i
[GOAL]
case nodup
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ Multiset.Nodup (roots (map i h))
[PROOFSTEP]
exact nodup_roots (Separable.map h_sep)
[GOAL]
case x.right
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i : F →+* K
x : F
h : F[X]
h_sep : Separable h
h_root : eval x h = 0
h_splits : Splits i h
h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x
h_ne_zero : h ≠ 0
⊢ ∀ (x_1 : K), x_1 ∈ { val := roots (map i h), nodup := (_ : Multiset.Nodup (roots (map i h))) } → x_1 = ↑i x
[PROOFSTEP]
exact h_roots
[GOAL]
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i✝ i : F →+* K
f : F[X]
sep : Separable f
sp : Splits i f
⊢ ∃ s, map i f = ↑C (↑i (leadingCoeff f)) * ∏ a in s, (X - ↑C a)
[PROOFSTEP]
obtain ⟨s, h⟩ := (splits_iff_exists_multiset _).1 sp
[GOAL]
case intro
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i✝ i : F →+* K
f : F[X]
sep : Separable f
sp : Splits i f
s : Multiset K
h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s)
⊢ ∃ s, map i f = ↑C (↑i (leadingCoeff f)) * ∏ a in s, (X - ↑C a)
[PROOFSTEP]
use s.toFinset
[GOAL]
case h
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i✝ i : F →+* K
f : F[X]
sep : Separable f
sp : Splits i f
s : Multiset K
h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s)
⊢ map i f = ↑C (↑i (leadingCoeff f)) * ∏ a in Multiset.toFinset s, (X - ↑C a)
[PROOFSTEP]
rw [h, Finset.prod_eq_multiset_prod, ← Multiset.toFinset_eq]
[GOAL]
case h
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i✝ i : F →+* K
f : F[X]
sep : Separable f
sp : Splits i f
s : Multiset K
h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s)
⊢ Multiset.Nodup s
[PROOFSTEP]
apply nodup_of_separable_prod
[GOAL]
case h.hs
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i✝ i : F →+* K
f : F[X]
sep : Separable f
sp : Splits i f
s : Multiset K
h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s)
⊢ Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) s))
[PROOFSTEP]
apply Separable.of_mul_right
[GOAL]
case h.hs.h
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i✝ i : F →+* K
f : F[X]
sep : Separable f
sp : Splits i f
s : Multiset K
h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s)
⊢ Separable (?h.hs.f * Multiset.prod (Multiset.map (fun a => X - ↑C a) s))
case h.hs.f
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i✝ i : F →+* K
f : F[X]
sep : Separable f
sp : Splits i f
s : Multiset K
h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s)
⊢ K[X]
[PROOFSTEP]
rw [← h]
[GOAL]
case h.hs.h
F : Type u
inst✝¹ : Field F
K : Type v
inst✝ : Field K
i✝ i : F →+* K
f : F[X]
sep : Separable f
sp : Splits i f
s : Multiset K
h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s)
⊢ Separable (map i f)
[PROOFSTEP]
exact sep.map
[GOAL]
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : CharZero F
f : F[X]
hf : Irreducible f
⊢ Separable f
[PROOFSTEP]
rw [separable_iff_derivative_ne_zero hf, Ne, ← degree_eq_bot, degree_derivative_eq]
[GOAL]
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : CharZero F
f : F[X]
hf : Irreducible f
⊢ ¬↑(natDegree f - 1) = ⊥
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
case hp
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : CharZero F
f : F[X]
hf : Irreducible f
⊢ 0 < natDegree f
[PROOFSTEP]
rw [pos_iff_ne_zero, Ne, natDegree_eq_zero_iff_degree_le_zero, degree_le_zero_iff]
[GOAL]
case hp
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : CharZero F
f : F[X]
hf : Irreducible f
⊢ ¬f = ↑C (coeff f 0)
[PROOFSTEP]
refine' fun hf1 => hf.not_unit _
[GOAL]
case hp
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : CharZero F
f : F[X]
hf : Irreducible f
hf1 : f = ↑C (coeff f 0)
⊢ IsUnit f
[PROOFSTEP]
rw [hf1, isUnit_C, isUnit_iff_ne_zero]
[GOAL]
case hp
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : CharZero F
f : F[X]
hf : Irreducible f
hf1 : f = ↑C (coeff f 0)
⊢ coeff f 0 ≠ 0
[PROOFSTEP]
intro hf2
[GOAL]
case hp
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : CharZero F
f : F[X]
hf : Irreducible f
hf1 : f = ↑C (coeff f 0)
hf2 : coeff f 0 = 0
⊢ False
[PROOFSTEP]
rw [hf2, C_0] at hf1
[GOAL]
case hp
F : Type u
inst✝² : Field F
K : Type v
inst✝¹ : Field K
inst✝ : CharZero F
f : F[X]
hf : Irreducible f
hf1 : f = 0
hf2 : coeff f 0 = 0
⊢ False
[PROOFSTEP]
exact absurd hf1 hf.ne_zero
[GOAL]
F : Type u_1
inst✝ : Field F
x : F
⊢ Separable (minpoly F x)
[PROOFSTEP]
rw [minpoly.eq_X_sub_C']
[GOAL]
F : Type u_1
inst✝ : Field F
x : F
⊢ Separable (X - ↑C x)
[PROOFSTEP]
exact separable_X_sub_C
[GOAL]
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field E
inst✝³ : Algebra F K
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : IsSeparable F E
x : K
⊢ IsIntegral F x ∧ Separable (minpoly F x)
[PROOFSTEP]
refine' (isSeparable_iff.1 h (algebraMap K E x)).imp isIntegral_tower_bot_of_isIntegral_field fun hs => _
[GOAL]
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field E
inst✝³ : Algebra F K
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : IsSeparable F E
x : K
hs : Separable (minpoly F (↑(algebraMap K E) x))
⊢ Separable (minpoly F x)
[PROOFSTEP]
obtain ⟨q, hq⟩ := minpoly.dvd F x ((aeval_algebraMap_eq_zero_iff _ _ _).mp (minpoly.aeval F ((algebraMap K E) x)))
[GOAL]
case intro
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field E
inst✝³ : Algebra F K
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : IsSeparable F E
x : K
hs : Separable (minpoly F (↑(algebraMap K E) x))
q : F[X]
hq : minpoly F (↑(algebraMap K E) x) = minpoly F x * q
⊢ Separable (minpoly F x)
[PROOFSTEP]
rw [hq] at hs
[GOAL]
case intro
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Field E
inst✝³ : Algebra F K
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : IsSeparable F E
x : K
q : F[X]
hs : Separable (minpoly F x * q)
hq : minpoly F (↑(algebraMap K E) x) = minpoly F x * q
⊢ Separable (minpoly F x)
[PROOFSTEP]
exact hs.of_mul_left
[GOAL]
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁹ : Field F
inst✝⁸ : Field K
inst✝⁷ : Field E
inst✝⁶ : Algebra F K
inst✝⁵ : Algebra F E
inst✝⁴ : Algebra K E
inst✝³ : IsScalarTower F K E
E' : Type u_4
inst✝² : Field E'
inst✝¹ : Algebra F E'
f : E →ₐ[F] E'
inst✝ : IsSeparable F E'
⊢ IsSeparable F E
[PROOFSTEP]
letI : Algebra E E' := RingHom.toAlgebra f.toRingHom
[GOAL]
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁹ : Field F
inst✝⁸ : Field K
inst✝⁷ : Field E
inst✝⁶ : Algebra F K
inst✝⁵ : Algebra F E
inst✝⁴ : Algebra K E
inst✝³ : IsScalarTower F K E
E' : Type u_4
inst✝² : Field E'
inst✝¹ : Algebra F E'
f : E →ₐ[F] E'
inst✝ : IsSeparable F E'
this : Algebra E E' := RingHom.toAlgebra ↑f
⊢ IsSeparable F E
[PROOFSTEP]
haveI : IsScalarTower F E E' := IsScalarTower.of_algebraMap_eq fun x => (f.commutes x).symm
[GOAL]
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁹ : Field F
inst✝⁸ : Field K
inst✝⁷ : Field E
inst✝⁶ : Algebra F K
inst✝⁵ : Algebra F E
inst✝⁴ : Algebra K E
inst✝³ : IsScalarTower F K E
E' : Type u_4
inst✝² : Field E'
inst✝¹ : Algebra F E'
f : E →ₐ[F] E'
inst✝ : IsSeparable F E'
this✝ : Algebra E E' := RingHom.toAlgebra ↑f
this : IsScalarTower F E E'
⊢ IsSeparable F E
[PROOFSTEP]
exact isSeparable_tower_bot_of_isSeparable F E E'
[GOAL]
R : Type u_1
S : Type u_2
T : Type u_3
inst✝⁵ : CommRing S
K : Type u_4
L : Type u_5
F : Type u_6
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field F
inst✝¹ : Algebra K S
inst✝ : Algebra K L
pb : PowerBasis K S
h_sep : Separable (minpoly K pb.gen)
h_splits : Splits (algebraMap K L) (minpoly K pb.gen)
⊢ Fintype.card (S →ₐ[K] L) = pb.dim
[PROOFSTEP]
let s := ((minpoly K pb.gen).map (algebraMap K L)).roots.toFinset
[GOAL]
R : Type u_1
S : Type u_2
T : Type u_3
inst✝⁵ : CommRing S
K : Type u_4
L : Type u_5
F : Type u_6
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field F
inst✝¹ : Algebra K S
inst✝ : Algebra K L
pb : PowerBasis K S
h_sep : Separable (minpoly K pb.gen)
h_splits : Splits (algebraMap K L) (minpoly K pb.gen)
s : Finset L := Multiset.toFinset (roots (Polynomial.map (algebraMap K L) (minpoly K pb.gen)))
⊢ Fintype.card (S →ₐ[K] L) = pb.dim
[PROOFSTEP]
let _ := (PowerBasis.AlgHom.fintype pb : Fintype (S →ₐ[K] L))
[GOAL]
R : Type u_1
S : Type u_2
T : Type u_3
inst✝⁵ : CommRing S
K : Type u_4
L : Type u_5
F : Type u_6
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field F
inst✝¹ : Algebra K S
inst✝ : Algebra K L
pb : PowerBasis K S
h_sep : Separable (minpoly K pb.gen)
h_splits : Splits (algebraMap K L) (minpoly K pb.gen)
s : Finset L := Multiset.toFinset (roots (Polynomial.map (algebraMap K L) (minpoly K pb.gen)))
x✝ : Fintype (S →ₐ[K] L) := PowerBasis.AlgHom.fintype pb
⊢ Fintype.card (S →ₐ[K] L) = pb.dim
[PROOFSTEP]
rw [Fintype.card_congr pb.liftEquiv', Fintype.card_of_subtype s (fun x => Multiset.mem_toFinset), ←
pb.natDegree_minpoly, natDegree_eq_card_roots h_splits, Multiset.toFinset_card_of_nodup]
[GOAL]
R : Type u_1
S : Type u_2
T : Type u_3
inst✝⁵ : CommRing S
K : Type u_4
L : Type u_5
F : Type u_6
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field F
inst✝¹ : Algebra K S
inst✝ : Algebra K L
pb : PowerBasis K S
h_sep : Separable (minpoly K pb.gen)
h_splits : Splits (algebraMap K L) (minpoly K pb.gen)
s : Finset L := Multiset.toFinset (roots (Polynomial.map (algebraMap K L) (minpoly K pb.gen)))
x✝ : Fintype (S →ₐ[K] L) := PowerBasis.AlgHom.fintype pb
⊢ Multiset.Nodup (roots (Polynomial.map (algebraMap K L) (minpoly K pb.gen)))
[PROOFSTEP]
exact nodup_roots ((separable_map (algebraMap K L)).mpr h_sep)
|
{"mathlib_filename": "Mathlib.FieldTheory.Separable", "llama_tokens": 33055}
|
[GOAL]
α✝ : Sort u_1
β : Sort u_2
α : Sort u_3
r : α → α → Prop
iseqv✝¹ : Equivalence r
p : α → α → Prop
iseqv✝ : Equivalence p
Eq : ∀ (a b : α), Setoid.r a b ↔ Setoid.r a b
⊢ { r := r, iseqv := iseqv✝¹ } = { r := p, iseqv := iseqv✝ }
[PROOFSTEP]
have : r = p := funext fun a ↦ funext fun b ↦ propext <| Eq a b
[GOAL]
α✝ : Sort u_1
β : Sort u_2
α : Sort u_3
r : α → α → Prop
iseqv✝¹ : Equivalence r
p : α → α → Prop
iseqv✝ : Equivalence p
Eq : ∀ (a b : α), Setoid.r a b ↔ Setoid.r a b
this : r = p
⊢ { r := r, iseqv := iseqv✝¹ } = { r := p, iseqv := iseqv✝ }
[PROOFSTEP]
subst this
[GOAL]
α✝ : Sort u_1
β : Sort u_2
α : Sort u_3
r : α → α → Prop
iseqv✝¹ iseqv✝ : Equivalence r
Eq : ∀ (a b : α), Setoid.r a b ↔ Setoid.r a b
⊢ { r := r, iseqv := iseqv✝¹ } = { r := r, iseqv := iseqv✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Sort u_1
β : Sort u_2
ra : α → α → Prop
rb : β → β → Prop
φ : Quot ra → Quot rb → Sort u_3
qa : Quot ra
qb : Quot rb
f : (a : α) → (b : β) → φ (mk ra a) (mk rb b)
ca : ∀ {b : β} {a₁ a₂ : α}, ra a₁ a₂ → HEq (f a₁ b) (f a₂ b)
cb : ∀ {a : α} {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a b₁) (f a b₂)
a₁ a₂ : α
pa : ra a₁ a₂
b : β
⊢ HEq (Quot.hrecOn (mk rb b) (f a₁) (_ : ∀ {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a₁ b₁) (f a₁ b₂))) (f a₁ b)
[PROOFSTEP]
simp [heq_self_iff_true]
[GOAL]
α : Sort u_1
β : Sort u_2
ra : α → α → Prop
rb : β → β → Prop
φ : Quot ra → Quot rb → Sort u_3
qa : Quot ra
qb : Quot rb
f : (a : α) → (b : β) → φ (mk ra a) (mk rb b)
ca : ∀ {b : β} {a₁ a₂ : α}, ra a₁ a₂ → HEq (f a₁ b) (f a₂ b)
cb : ∀ {a : α} {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a b₁) (f a b₂)
a₁ a₂ : α
pa : ra a₁ a₂
b : β
h₁ : HEq (Quot.hrecOn (mk rb b) (f a₁) (_ : ∀ {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a₁ b₁) (f a₁ b₂))) (f a₁ b)
⊢ HEq (f a₂ b) (Quot.hrecOn (mk rb b) (f a₂) (_ : ∀ {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a₂ b₁) (f a₂ b₂)))
[PROOFSTEP]
simp [heq_self_iff_true]
[GOAL]
α : Sort u_1
β : Sort u_2
s : Setoid α
x : α
y : Quotient s
⊢ Quotient.mk s x = y ↔ x ≈ out y
[PROOFSTEP]
refine' Iff.trans _ Quotient.eq
[GOAL]
α : Sort u_1
β : Sort u_2
s : Setoid α
x : α
y : Quotient s
⊢ Quotient.mk s x = y ↔ Quotient.mk s x = Quotient.mk s (out y)
[PROOFSTEP]
rw [Quotient.out_eq y]
[GOAL]
α : Sort u_1
β : Sort u_2
s : Setoid α
x : Quotient s
y : α
⊢ x = Quotient.mk s y ↔ out x ≈ y
[PROOFSTEP]
refine' Iff.trans _ Quotient.eq
[GOAL]
α : Sort u_1
β : Sort u_2
s : Setoid α
x : Quotient s
y : α
⊢ x = Quotient.mk s y ↔ Quotient.mk s (out x) = Quotient.mk s y
[PROOFSTEP]
rw [Quotient.out_eq x]
[GOAL]
α : Sort u_1
β : Sort u_2
s : Setoid α
x y : Quotient s
⊢ out x ≈ out y ↔ x = y
[PROOFSTEP]
rw [← Quotient.eq_mk_iff_out, Quotient.out_eq]
[GOAL]
α✝ : Sort u_1
β : Sort u_2
ι : Type u_3
α : ι → Type u_4
S : (i : ι) → Setoid (α i)
f : (i : ι) → Quotient (S i)
⊢ Setoid ((i : ι) → α i)
[PROOFSTEP]
infer_instance
[GOAL]
α✝ : Sort u_1
β : Sort u_2
ι : Type u_3
α : ι → Sort u_4
s : (i : ι) → Setoid (α i)
p : ((i : ι) → Quotient (s i)) → Prop
f : (i : ι) → Quotient (s i)
h : ∀ (a : (i : ι) → α i), p fun i => Quotient.mk (s i) (a i)
⊢ p f
[PROOFSTEP]
rw [← (funext fun i ↦ Quotient.out_eq (f i) : (fun i ↦ ⟦(f i).out⟧) = f)]
[GOAL]
α✝ : Sort u_1
β : Sort u_2
ι : Type u_3
α : ι → Sort u_4
s : (i : ι) → Setoid (α i)
p : ((i : ι) → Quotient (s i)) → Prop
f : (i : ι) → Quotient (s i)
h : ∀ (a : (i : ι) → α i), p fun i => Quotient.mk (s i) (a i)
⊢ p fun i => Quotient.mk (s i) (out (f i))
[PROOFSTEP]
apply h
|
{"mathlib_filename": "Mathlib.Data.Quot", "llama_tokens": 1904}
|
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : IsIntegral A x
⊢ Monic (minpoly A x)
[PROOFSTEP]
delta minpoly
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : IsIntegral A x
⊢ Monic
(if hx : IsIntegral A x then
WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx
else 0)
[PROOFSTEP]
rw [dif_pos hx]
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : IsIntegral A x
⊢ Monic
(WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx)
[PROOFSTEP]
exact (degree_lt_wf.min_mem _ hx).1
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x✝ : B
f : B →ₐ[A] B'
hf : Injective ↑f
x : B
⊢ minpoly A (↑f x) = minpoly A x
[PROOFSTEP]
refine' dif_ctx_congr (isIntegral_algHom_iff _ hf) (fun _ => _) fun _ => rfl
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x✝¹ : B
f : B →ₐ[A] B'
hf : Injective ↑f
x : B
x✝ : IsIntegral A x
⊢ WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A ((fun x => B') x)) (↑f x) x_1 = 0) (_ : IsIntegral A (↑f x)) =
WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) x✝
[PROOFSTEP]
simp_rw [← Polynomial.aeval_def, aeval_algHom, AlgHom.comp_apply, _root_.map_eq_zero_iff f hf]
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
⊢ ↑(Polynomial.aeval x) (minpoly A x) = 0
[PROOFSTEP]
delta minpoly
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
⊢ ↑(Polynomial.aeval x)
(if hx : IsIntegral A x then
WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx
else 0) =
0
[PROOFSTEP]
split_ifs with hx
[GOAL]
case pos
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : IsIntegral A x
⊢ ↑(Polynomial.aeval x)
(if hx : IsIntegral A x then
WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx
else 0) =
0
[PROOFSTEP]
rw [dif_pos hx]
[GOAL]
case pos
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : IsIntegral A x
⊢ ↑(Polynomial.aeval x)
(WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx) =
0
[PROOFSTEP]
exact (degree_lt_wf.min_mem _ hx).2
[GOAL]
case neg
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : ¬IsIntegral A x
⊢ ↑(Polynomial.aeval x)
(if hx : IsIntegral A x then
WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx
else 0) =
0
[PROOFSTEP]
rw [dif_neg hx]
[GOAL]
case neg
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : ¬IsIntegral A x
⊢ ↑(Polynomial.aeval x) 0 = 0
[PROOFSTEP]
exact aeval_zero _
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Nontrivial B
⊢ minpoly A x ≠ 1
[PROOFSTEP]
intro h
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Nontrivial B
h : minpoly A x = 1
⊢ False
[PROOFSTEP]
refine' (one_ne_zero : (1 : B) ≠ 0) _
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Nontrivial B
h : minpoly A x = 1
⊢ 1 = 0
[PROOFSTEP]
simpa using congr_arg (Polynomial.aeval x) h
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁷ : CommRing A
inst✝⁶ : Ring B
inst✝⁵ : Ring B'
inst✝⁴ : Algebra A B
inst✝³ : Algebra A B'
x : B
inst✝² : Nontrivial B
R : Type u_4
inst✝¹ : Semiring R
inst✝ : Nontrivial R
f : A →+* R
⊢ map f (minpoly A x) ≠ 1
[PROOFSTEP]
by_cases hx : IsIntegral A x
[GOAL]
case pos
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁷ : CommRing A
inst✝⁶ : Ring B
inst✝⁵ : Ring B'
inst✝⁴ : Algebra A B
inst✝³ : Algebra A B'
x : B
inst✝² : Nontrivial B
R : Type u_4
inst✝¹ : Semiring R
inst✝ : Nontrivial R
f : A →+* R
hx : IsIntegral A x
⊢ map f (minpoly A x) ≠ 1
[PROOFSTEP]
exact mt ((monic hx).eq_one_of_map_eq_one f) (ne_one A x)
[GOAL]
case neg
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁷ : CommRing A
inst✝⁶ : Ring B
inst✝⁵ : Ring B'
inst✝⁴ : Algebra A B
inst✝³ : Algebra A B'
x : B
inst✝² : Nontrivial B
R : Type u_4
inst✝¹ : Semiring R
inst✝ : Nontrivial R
f : A →+* R
hx : ¬IsIntegral A x
⊢ map f (minpoly A x) ≠ 1
[PROOFSTEP]
rw [eq_zero hx, Polynomial.map_zero]
[GOAL]
case neg
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁷ : CommRing A
inst✝⁶ : Ring B
inst✝⁵ : Ring B'
inst✝⁴ : Algebra A B
inst✝³ : Algebra A B'
x : B
inst✝² : Nontrivial B
R : Type u_4
inst✝¹ : Semiring R
inst✝ : Nontrivial R
f : A →+* R
hx : ¬IsIntegral A x
⊢ 0 ≠ 1
[PROOFSTEP]
exact zero_ne_one
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Nontrivial B
⊢ ¬IsUnit (minpoly A x)
[PROOFSTEP]
haveI : Nontrivial A := (algebraMap A B).domain_nontrivial
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Nontrivial B
this : Nontrivial A
⊢ ¬IsUnit (minpoly A x)
[PROOFSTEP]
by_cases hx : IsIntegral A x
[GOAL]
case pos
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Nontrivial B
this : Nontrivial A
hx : IsIntegral A x
⊢ ¬IsUnit (minpoly A x)
[PROOFSTEP]
exact mt (monic hx).eq_one_of_isUnit (ne_one A x)
[GOAL]
case neg
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Nontrivial B
this : Nontrivial A
hx : ¬IsIntegral A x
⊢ ¬IsUnit (minpoly A x)
[PROOFSTEP]
rw [eq_zero hx]
[GOAL]
case neg
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Nontrivial B
this : Nontrivial A
hx : ¬IsIntegral A x
⊢ ¬IsUnit 0
[PROOFSTEP]
exact not_isUnit_zero
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : degree (minpoly A x) = 1
⊢ x ∈ RingHom.range (algebraMap A B)
[PROOFSTEP]
have h : IsIntegral A x := by
by_contra h
rw [eq_zero h, degree_zero, ← WithBot.coe_one] at hx
exact ne_of_lt (show ⊥ < ↑1 from WithBot.bot_lt_coe 1) hx
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : degree (minpoly A x) = 1
⊢ IsIntegral A x
[PROOFSTEP]
by_contra h
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : degree (minpoly A x) = 1
h : ¬IsIntegral A x
⊢ False
[PROOFSTEP]
rw [eq_zero h, degree_zero, ← WithBot.coe_one] at hx
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : ⊥ = ↑1
h : ¬IsIntegral A x
⊢ False
[PROOFSTEP]
exact ne_of_lt (show ⊥ < ↑1 from WithBot.bot_lt_coe 1) hx
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : degree (minpoly A x) = 1
h : IsIntegral A x
⊢ x ∈ RingHom.range (algebraMap A B)
[PROOFSTEP]
have key := minpoly.aeval A x
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : degree (minpoly A x) = 1
h : IsIntegral A x
key : ↑(Polynomial.aeval x) (minpoly A x) = 0
⊢ x ∈ RingHom.range (algebraMap A B)
[PROOFSTEP]
rw [eq_X_add_C_of_degree_eq_one hx, (minpoly.monic h).leadingCoeff, C_1, one_mul, aeval_add, aeval_C, aeval_X, ←
eq_neg_iff_add_eq_zero, ← RingHom.map_neg] at key
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
hx : degree (minpoly A x) = 1
h : IsIntegral A x
key : x = ↑(algebraMap A B) (-coeff (minpoly A x) 0)
⊢ x ∈ RingHom.range (algebraMap A B)
[PROOFSTEP]
exact ⟨-(minpoly A x).coeff 0, key.symm⟩
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
⊢ degree (minpoly A x) ≤ degree p
[PROOFSTEP]
delta minpoly
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
⊢ degree
(if hx : IsIntegral A x then
WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx
else 0) ≤
degree p
[PROOFSTEP]
split_ifs with hx
[GOAL]
case pos
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hx : IsIntegral A x
⊢ degree
(WellFounded.min (_ : WellFounded fun p q => degree p < degree q)
(fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx) ≤
degree p
[PROOFSTEP]
exact le_of_not_lt (degree_lt_wf.not_lt_min _ hx ⟨pmonic, hp⟩)
[GOAL]
case neg
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hx : ¬IsIntegral A x
⊢ degree 0 ≤ degree p
[PROOFSTEP]
simp only [degree_zero, bot_le]
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
⊢ p = minpoly A x
[PROOFSTEP]
nontriviality A
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
⊢ p = minpoly A x
[PROOFSTEP]
have hx : IsIntegral A x := ⟨p, hm, hp⟩
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
⊢ p = minpoly A x
[PROOFSTEP]
obtain h | h := hl _ ((minpoly A x).degree_modByMonic_lt hm)
[GOAL]
case inl
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
⊢ p = minpoly A x
case inr
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : ↑(Polynomial.aeval x) (minpoly A x %ₘ p) ≠ 0
⊢ p = minpoly A x
[PROOFSTEP]
swap
[GOAL]
case inr
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : ↑(Polynomial.aeval x) (minpoly A x %ₘ p) ≠ 0
⊢ p = minpoly A x
[PROOFSTEP]
exact (h <| (aeval_modByMonic_eq_self_of_root hm hp).trans <| aeval A x).elim
[GOAL]
case inl
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
⊢ p = minpoly A x
[PROOFSTEP]
obtain ⟨r, hr⟩ := (dvd_iff_modByMonic_eq_zero hm).1 h
[GOAL]
case inl.intro
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hr : minpoly A x = p * r
⊢ p = minpoly A x
[PROOFSTEP]
rw [hr]
[GOAL]
case inl.intro
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hr : minpoly A x = p * r
⊢ p = p * r
[PROOFSTEP]
have hlead := congr_arg leadingCoeff hr
[GOAL]
case inl.intro
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hr : minpoly A x = p * r
hlead : leadingCoeff (minpoly A x) = leadingCoeff (p * r)
⊢ p = p * r
[PROOFSTEP]
rw [mul_comm, leadingCoeff_mul_monic hm, (monic hx).leadingCoeff] at hlead
[GOAL]
case inl.intro
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hr : minpoly A x = p * r
hlead : 1 = leadingCoeff r
⊢ p = p * r
[PROOFSTEP]
have : natDegree r ≤ 0 :=
by
have hr0 : r ≠ 0 := by
rintro rfl
exact ne_zero hx (mul_zero p ▸ hr)
apply_fun natDegree at hr
rw [hm.natDegree_mul' hr0] at hr
apply Nat.le_of_add_le_add_left
rw [add_zero]
exact hr.symm.trans_le (natDegree_le_natDegree <| min A x hm hp)
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hr : minpoly A x = p * r
hlead : 1 = leadingCoeff r
⊢ natDegree r ≤ 0
[PROOFSTEP]
have hr0 : r ≠ 0 := by
rintro rfl
exact ne_zero hx (mul_zero p ▸ hr)
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hr : minpoly A x = p * r
hlead : 1 = leadingCoeff r
⊢ r ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
hr : minpoly A x = p * 0
hlead : 1 = leadingCoeff 0
⊢ False
[PROOFSTEP]
exact ne_zero hx (mul_zero p ▸ hr)
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hr : minpoly A x = p * r
hlead : 1 = leadingCoeff r
hr0 : r ≠ 0
⊢ natDegree r ≤ 0
[PROOFSTEP]
apply_fun natDegree at hr
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hlead : 1 = leadingCoeff r
hr0 : r ≠ 0
hr : natDegree (minpoly A x) = natDegree (p * r)
⊢ natDegree r ≤ 0
[PROOFSTEP]
rw [hm.natDegree_mul' hr0] at hr
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hlead : 1 = leadingCoeff r
hr0 : r ≠ 0
hr : natDegree (minpoly A x) = natDegree p + natDegree r
⊢ natDegree r ≤ 0
[PROOFSTEP]
apply Nat.le_of_add_le_add_left
[GOAL]
case h
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hlead : 1 = leadingCoeff r
hr0 : r ≠ 0
hr : natDegree (minpoly A x) = natDegree p + natDegree r
⊢ ?a + natDegree r ≤ ?a + 0
case a
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hlead : 1 = leadingCoeff r
hr0 : r ≠ 0
hr : natDegree (minpoly A x) = natDegree p + natDegree r
⊢ ℕ
[PROOFSTEP]
rw [add_zero]
[GOAL]
case h
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hlead : 1 = leadingCoeff r
hr0 : r ≠ 0
hr : natDegree (minpoly A x) = natDegree p + natDegree r
⊢ ?h + natDegree r ≤ ?h
case h
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hlead : 1 = leadingCoeff r
hr0 : r ≠ 0
hr : natDegree (minpoly A x) = natDegree p + natDegree r
⊢ ℕ
[PROOFSTEP]
exact hr.symm.trans_le (natDegree_le_natDegree <| min A x hm hp)
[GOAL]
case inl.intro
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Ring B'
inst✝¹ : Algebra A B
inst✝ : Algebra A B'
x : B
p : A[X]
hm : Monic p
hp : ↑(Polynomial.aeval x) p = 0
hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0
✝ : Nontrivial A
hx : IsIntegral A x
h : minpoly A x %ₘ p = 0
r : A[X]
hr : minpoly A x = p * r
hlead : 1 = leadingCoeff r
this : natDegree r ≤ 0
⊢ p = p * r
[PROOFSTEP]
rw [eq_C_of_natDegree_le_zero this, ← Nat.eq_zero_of_le_zero this, ← leadingCoeff, ← hlead, C_1, mul_one]
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Subsingleton B
⊢ minpoly A x = 1
[PROOFSTEP]
nontriviality A
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Subsingleton B
✝ : Nontrivial A
⊢ minpoly A x = 1
[PROOFSTEP]
have := minpoly.min A x monic_one (Subsingleton.elim _ _)
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Subsingleton B
✝ : Nontrivial A
this : degree (minpoly A x) ≤ degree 1
⊢ minpoly A x = 1
[PROOFSTEP]
rw [degree_one] at this
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Subsingleton B
✝ : Nontrivial A
this : degree (minpoly A x) ≤ 0
⊢ minpoly A x = 1
[PROOFSTEP]
cases' le_or_lt (minpoly A x).degree 0 with h h
[GOAL]
case inl
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Subsingleton B
✝ : Nontrivial A
this : degree (minpoly A x) ≤ 0
h : degree (minpoly A x) ≤ 0
⊢ minpoly A x = 1
[PROOFSTEP]
rwa [(monic ⟨1, monic_one, by simp⟩ : (minpoly A x).Monic).degree_le_zero_iff_eq_one] at h
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Subsingleton B
✝ : Nontrivial A
this : degree (minpoly A x) ≤ 0
h : degree (minpoly A x) ≤ 0
⊢ eval₂ (algebraMap A B) x 1 = 0
[PROOFSTEP]
simp
[GOAL]
case inr
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁵ : CommRing A
inst✝⁴ : Ring B
inst✝³ : Ring B'
inst✝² : Algebra A B
inst✝¹ : Algebra A B'
x : B
inst✝ : Subsingleton B
✝ : Nontrivial A
this : degree (minpoly A x) ≤ 0
h : 0 < degree (minpoly A x)
⊢ minpoly A x = 1
[PROOFSTEP]
exact (this.not_lt h).elim
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝³ : CommRing A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
hx : IsIntegral A x
⊢ 0 < natDegree (minpoly A x)
[PROOFSTEP]
rw [pos_iff_ne_zero]
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝³ : CommRing A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
hx : IsIntegral A x
⊢ natDegree (minpoly A x) ≠ 0
[PROOFSTEP]
intro ndeg_eq_zero
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝³ : CommRing A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
hx : IsIntegral A x
ndeg_eq_zero : natDegree (minpoly A x) = 0
⊢ False
[PROOFSTEP]
have eq_one : minpoly A x = 1 := by
rw [eq_C_of_natDegree_eq_zero ndeg_eq_zero]
convert C_1 (R := A)
simpa only [ndeg_eq_zero.symm] using (monic hx).leadingCoeff
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝³ : CommRing A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
hx : IsIntegral A x
ndeg_eq_zero : natDegree (minpoly A x) = 0
⊢ minpoly A x = 1
[PROOFSTEP]
rw [eq_C_of_natDegree_eq_zero ndeg_eq_zero]
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝³ : CommRing A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
hx : IsIntegral A x
ndeg_eq_zero : natDegree (minpoly A x) = 0
⊢ ↑C (coeff (minpoly A x) 0) = 1
[PROOFSTEP]
convert C_1 (R := A)
[GOAL]
case h.e'_2.h.e'_6
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝³ : CommRing A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
hx : IsIntegral A x
ndeg_eq_zero : natDegree (minpoly A x) = 0
⊢ coeff (minpoly A x) 0 = 1
[PROOFSTEP]
simpa only [ndeg_eq_zero.symm] using (monic hx).leadingCoeff
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝³ : CommRing A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
hx : IsIntegral A x
ndeg_eq_zero : natDegree (minpoly A x) = 0
eq_one : minpoly A x = 1
⊢ False
[PROOFSTEP]
simpa only [eq_one, AlgHom.map_one, one_ne_zero] using aeval A x
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A
hf : Injective ↑(algebraMap A B)
⊢ minpoly A (↑(algebraMap A B) a) = X - ↑C a
[PROOFSTEP]
nontriviality A
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A
hf : Injective ↑(algebraMap A B)
✝ : Nontrivial A
⊢ minpoly A (↑(algebraMap A B) a) = X - ↑C a
[PROOFSTEP]
refine' (unique' A _ (monic_X_sub_C a) _ _).symm
[GOAL]
case refine'_1
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A
hf : Injective ↑(algebraMap A B)
✝ : Nontrivial A
⊢ ↑(Polynomial.aeval (↑(algebraMap A B) a)) (X - ↑C a) = 0
[PROOFSTEP]
rw [map_sub, aeval_C, aeval_X, sub_self]
[GOAL]
case refine'_2
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A
hf : Injective ↑(algebraMap A B)
✝ : Nontrivial A
⊢ ∀ (q : A[X]), degree q < degree (X - ↑C a) → q = 0 ∨ ↑(Polynomial.aeval (↑(algebraMap A B) a)) q ≠ 0
[PROOFSTEP]
simp_rw [or_iff_not_imp_left]
[GOAL]
case refine'_2
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A
hf : Injective ↑(algebraMap A B)
✝ : Nontrivial A
⊢ ∀ (q : A[X]), degree q < degree (X - ↑C a) → ¬q = 0 → ↑(Polynomial.aeval (↑(algebraMap A B) a)) q ≠ 0
[PROOFSTEP]
intro q hl h0
[GOAL]
case refine'_2
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A
hf : Injective ↑(algebraMap A B)
✝ : Nontrivial A
q : A[X]
hl : degree q < degree (X - ↑C a)
h0 : ¬q = 0
⊢ ↑(Polynomial.aeval (↑(algebraMap A B) a)) q ≠ 0
[PROOFSTEP]
rw [← natDegree_lt_natDegree_iff h0, natDegree_X_sub_C, Nat.lt_one_iff] at hl
[GOAL]
case refine'_2
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A
hf : Injective ↑(algebraMap A B)
✝ : Nontrivial A
q : A[X]
hl : natDegree q = 0
h0 : ¬q = 0
⊢ ↑(Polynomial.aeval (↑(algebraMap A B) a)) q ≠ 0
[PROOFSTEP]
rw [eq_C_of_natDegree_eq_zero hl] at h0 ⊢
[GOAL]
case refine'_2
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A
hf : Injective ↑(algebraMap A B)
✝ : Nontrivial A
q : A[X]
hl : natDegree q = 0
h0 : ¬↑C (coeff q 0) = 0
⊢ ↑(Polynomial.aeval (↑(algebraMap A B) a)) (↑C (coeff q 0)) ≠ 0
[PROOFSTEP]
rwa [aeval_C, map_ne_zero_iff _ hf, ← C_ne_zero]
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A[X]
hx : IsIntegral A x
hamonic : Monic a
hdvd : DvdNotUnit a (minpoly A x)
⊢ ↑(Polynomial.aeval x) a ≠ 0
[PROOFSTEP]
refine' fun ha => (min A x hamonic ha).not_lt (degree_lt_degree _)
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A[X]
hx : IsIntegral A x
hamonic : Monic a
hdvd : DvdNotUnit a (minpoly A x)
ha : ↑(Polynomial.aeval x) a = 0
⊢ natDegree a < natDegree (minpoly A x)
[PROOFSTEP]
obtain ⟨_, c, hu, he⟩ := hdvd
[GOAL]
case intro.intro.intro
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A[X]
hx : IsIntegral A x
hamonic : Monic a
ha : ↑(Polynomial.aeval x) a = 0
left✝ : a ≠ 0
c : A[X]
hu : ¬IsUnit c
he : minpoly A x = a * c
⊢ natDegree a < natDegree (minpoly A x)
[PROOFSTEP]
have hcm := hamonic.of_mul_monic_left (he.subst <| monic hx)
[GOAL]
case intro.intro.intro
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A[X]
hx : IsIntegral A x
hamonic : Monic a
ha : ↑(Polynomial.aeval x) a = 0
left✝ : a ≠ 0
c : A[X]
hu : ¬IsUnit c
he : minpoly A x = a * c
hcm : Monic c
⊢ natDegree a < natDegree (minpoly A x)
[PROOFSTEP]
rw [he, hamonic.natDegree_mul hcm]
-- TODO: port Nat.lt_add_of_zero_lt_left from lean3 core
[GOAL]
case intro.intro.intro
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A[X]
hx : IsIntegral A x
hamonic : Monic a
ha : ↑(Polynomial.aeval x) a = 0
left✝ : a ≠ 0
c : A[X]
hu : ¬IsUnit c
he : minpoly A x = a * c
hcm : Monic c
⊢ natDegree a < natDegree a + natDegree c
[PROOFSTEP]
apply lt_add_of_pos_right
[GOAL]
case intro.intro.intro.h
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A[X]
hx : IsIntegral A x
hamonic : Monic a
ha : ↑(Polynomial.aeval x) a = 0
left✝ : a ≠ 0
c : A[X]
hu : ¬IsUnit c
he : minpoly A x = a * c
hcm : Monic c
⊢ 0 < natDegree c
[PROOFSTEP]
refine (lt_of_not_le fun h => hu ?_)
[GOAL]
case intro.intro.intro.h
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A[X]
hx : IsIntegral A x
hamonic : Monic a
ha : ↑(Polynomial.aeval x) a = 0
left✝ : a ≠ 0
c : A[X]
hu : ¬IsUnit c
he : minpoly A x = a * c
hcm : Monic c
h : natDegree c ≤ 0
⊢ IsUnit c
[PROOFSTEP]
rw [eq_C_of_natDegree_le_zero h, ← Nat.eq_zero_of_le_zero h, ← leadingCoeff, hcm.leadingCoeff, C_1]
[GOAL]
case intro.intro.intro.h
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝² : CommRing A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
a : A[X]
hx : IsIntegral A x
hamonic : Monic a
ha : ↑(Polynomial.aeval x) a = 0
left✝ : a ≠ 0
c : A[X]
hu : ¬IsUnit c
he : minpoly A x = a * c
hcm : Monic c
h : natDegree c ≤ 0
⊢ IsUnit 1
[PROOFSTEP]
exact isUnit_one
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Algebra A B
x : B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
hx : IsIntegral A x
⊢ Irreducible (minpoly A x)
[PROOFSTEP]
refine' (irreducible_of_monic (monic hx) <| ne_one A x).2 fun f g hf hg he => _
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Algebra A B
x : B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
hx : IsIntegral A x
f g : A[X]
hf : Monic f
hg : Monic g
he : f * g = minpoly A x
⊢ f = 1 ∨ g = 1
[PROOFSTEP]
rw [← hf.isUnit_iff, ← hg.isUnit_iff]
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Algebra A B
x : B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
hx : IsIntegral A x
f g : A[X]
hf : Monic f
hg : Monic g
he : f * g = minpoly A x
⊢ IsUnit f ∨ IsUnit g
[PROOFSTEP]
by_contra' h
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Algebra A B
x : B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
hx : IsIntegral A x
f g : A[X]
hf : Monic f
hg : Monic g
he : f * g = minpoly A x
h : ¬IsUnit f ∧ ¬IsUnit g
⊢ False
[PROOFSTEP]
have heval := congr_arg (Polynomial.aeval x) he
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Algebra A B
x : B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
hx : IsIntegral A x
f g : A[X]
hf : Monic f
hg : Monic g
he : f * g = minpoly A x
h : ¬IsUnit f ∧ ¬IsUnit g
heval : ↑(Polynomial.aeval x) (f * g) = ↑(Polynomial.aeval x) (minpoly A x)
⊢ False
[PROOFSTEP]
rw [aeval A x, aeval_mul, mul_eq_zero] at heval
[GOAL]
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Algebra A B
x : B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
hx : IsIntegral A x
f g : A[X]
hf : Monic f
hg : Monic g
he : f * g = minpoly A x
h : ¬IsUnit f ∧ ¬IsUnit g
heval : ↑(Polynomial.aeval x) f = 0 ∨ ↑(Polynomial.aeval x) g = 0
⊢ False
[PROOFSTEP]
cases' heval with heval heval
[GOAL]
case inl
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Algebra A B
x : B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
hx : IsIntegral A x
f g : A[X]
hf : Monic f
hg : Monic g
he : f * g = minpoly A x
h : ¬IsUnit f ∧ ¬IsUnit g
heval : ↑(Polynomial.aeval x) f = 0
⊢ False
[PROOFSTEP]
exact aeval_ne_zero_of_dvdNotUnit_minpoly hx hf ⟨hf.ne_zero, g, h.2, he.symm⟩ heval
[GOAL]
case inr
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Algebra A B
x : B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
hx : IsIntegral A x
f g : A[X]
hf : Monic f
hg : Monic g
he : f * g = minpoly A x
h : ¬IsUnit f ∧ ¬IsUnit g
heval : ↑(Polynomial.aeval x) g = 0
⊢ False
[PROOFSTEP]
refine' aeval_ne_zero_of_dvdNotUnit_minpoly hx hg ⟨hg.ne_zero, f, h.1, _⟩ heval
[GOAL]
case inr
A : Type u_1
B : Type u_2
B' : Type u_3
inst✝⁴ : CommRing A
inst✝³ : Ring B
inst✝² : Algebra A B
x : B
inst✝¹ : IsDomain A
inst✝ : IsDomain B
hx : IsIntegral A x
f g : A[X]
hf : Monic f
hg : Monic g
he : f * g = minpoly A x
h : ¬IsUnit f ∧ ¬IsUnit g
heval : ↑(Polynomial.aeval x) g = 0
⊢ minpoly A x = g * f
[PROOFSTEP]
rw [mul_comm, he]
|
{"mathlib_filename": "Mathlib.FieldTheory.Minpoly.Basic", "llama_tokens": 17725}
|
{"mathlib_filename": "Mathlib.Data.Bracket", "llama_tokens": 0}
|
|
{"mathlib_filename": "Mathlib.Data.SProd", "llama_tokens": 0}
|
|
[GOAL]
B : Type u_1
F : Type u_2
E : B → Type u_3
x x' : B
h : x = x'
b : E x
⊢ mk' F x' (cast (_ : E x = E x') b) = { proj := x, snd := b }
[PROOFSTEP]
subst h
[GOAL]
B : Type u_1
F : Type u_2
E : B → Type u_3
x : B
b : E x
⊢ mk' F x (cast (_ : E x = E x) b) = { proj := x, snd := b }
[PROOFSTEP]
rfl
[GOAL]
B : Type u_1
F : Type u_2
E : B → Type u_3
b : B
y y' : E b
⊢ mk' F b y = mk' F b y' ↔ y = y'
[PROOFSTEP]
simp [TotalSpace.ext_iff]
[GOAL]
B : Type u_1
F : Type u_2
E : B → Type u_3
b : B
⊢ range (mk b) = proj ⁻¹' {b}
[PROOFSTEP]
apply Subset.antisymm
[GOAL]
case h₁
B : Type u_1
F : Type u_2
E : B → Type u_3
b : B
⊢ range (mk b) ⊆ proj ⁻¹' {b}
[PROOFSTEP]
rintro _ ⟨x, rfl⟩
[GOAL]
case h₁.intro
B : Type u_1
F : Type u_2
E : B → Type u_3
b : B
x : E b
⊢ { proj := b, snd := x } ∈ proj ⁻¹' {b}
[PROOFSTEP]
rfl
[GOAL]
case h₂
B : Type u_1
F : Type u_2
E : B → Type u_3
b : B
⊢ proj ⁻¹' {b} ⊆ range (mk b)
[PROOFSTEP]
rintro ⟨_, x⟩ rfl
[GOAL]
case h₂.mk
B : Type u_1
F : Type u_2
E : B → Type u_3
proj✝ : B
x : E proj✝
⊢ { proj := proj✝, snd := x } ∈ range (mk { proj := proj✝, snd := x }.proj)
[PROOFSTEP]
exact ⟨x, rfl⟩
|
{"mathlib_filename": "Mathlib.Data.Bundle", "llama_tokens": 632}
|
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β
x : α
⊢ x ∈ Dom f ↔ ∃ y, y ∈ f x
[PROOFSTEP]
simp [Dom, Part.dom_iff_mem]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
x✝ : (p : α → Prop) × (Subtype p → β)
p : α → Prop
f : Subtype p → β
⊢ (fun f => { fst := fun a => (f a).Dom, snd := asSubtype f })
((fun f x => { Dom := Sigma.fst f x, get := fun h => Sigma.snd f { val := x, property := h } })
{ fst := p, snd := f }) =
{ fst := p, snd := f }
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
x✝ : (p : α → Prop) × (Subtype p → β)
p : α → Prop
f : Subtype p → β
⊢ { fst := fun a => p a, snd := asSubtype fun x => { Dom := p x, get := fun h => f { val := x, property := h } } } =
{ fst := p, snd := f }
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β
s : Set α
h : s ⊆ Dom f
a : α
b : β
⊢ b ∈ restrict f h a ↔ a ∈ s ∧ b ∈ f a
[PROOFSTEP]
simp [restrict]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α → β
s : Set α
a : α
b : β
⊢ b ∈ res f s a ↔ a ∈ s ∧ f a = b
[PROOFSTEP]
simp [res, @eq_comm _ b]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α → β
a : α
b : β
⊢ (∃ x, f a = b) ↔ f a = b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
α✝ : Type ?u.16924
f : α →. α✝
⊢ id <$> f = f
[PROOFSTEP]
funext a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
α✝ : Type ?u.16924
f : α →. α✝
a : α
⊢ (id <$> f) a = f a
[PROOFSTEP]
dsimp [Functor.map, PFun.map]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
α✝ : Type ?u.16924
f : α →. α✝
a : α
⊢ Part.map id (f a) = f a
[PROOFSTEP]
cases f a
[GOAL]
case h.mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
α✝ : Type ?u.16924
f : α →. α✝
a : α
Dom✝ : Prop
get✝ : Dom✝ → α✝
⊢ Part.map id { Dom := Dom✝, get := get✝ } = { Dom := Dom✝, get := get✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
⊢ (f a).Dom
[PROOFSTEP]
let ⟨h₁, h₂⟩ := Part.mem_assert_iff.1 h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁
⊢ (f a).Dom
[PROOFSTEP]
rw [WellFounded.fixFEq] at h₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ :
b ∈
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' =>
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')
⊢ (f a).Dom
[PROOFSTEP]
exact h₂.fst.fst
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
let ⟨h₁, h₂⟩ := Part.mem_assert_iff.1 h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
rw [WellFounded.fixFEq] at h₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ :
b ∈
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' =>
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
simp at h₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ :
∃ h,
b ∈
match e : Part.get (f a) h with
| Sum.inl b => Part.some b
| Sum.inr a' =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun y x => Sum.inr y ∈ f x) a')
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
cases' h₂ with h₂ h₃
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ : (f a).Dom
h₃ :
b ∈
match e : Part.get (f a) h₂ with
| Sum.inl b => Part.some b
| Sum.inr a' =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun y x => Sum.inr y ∈ f x) a')
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
split at h₃
[GOAL]
case intro.h_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ : (f a).Dom
b✝ : β
heq✝ : Part.get (f a) h₂ = Sum.inl b✝
h₃ : b ∈ Part.some b✝
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
case intro.h_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ : (f a).Dom
a'✝ : α
heq✝ : Part.get (f a) h₂ = Sum.inr a'✝
h₃ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a'✝ (_ : Acc (fun y x => Sum.inr y ∈ f x) a'✝)
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
next e => simp at h₃ ; subst b; refine' Or.inl ⟨h₂, e⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ : (f a).Dom
b✝ : β
e : Part.get (f a) h₂ = Sum.inl b✝
h₃ : b ∈ Part.some b✝
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
simp at h₃
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ : (f a).Dom
b✝ : β
e : Part.get (f a) h₂ = Sum.inl b✝
h₃ : b = b✝
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
subst b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ : (f a).Dom
b✝ : β
e : Part.get (f a) h₂ = Sum.inl b✝
h : b✝ ∈ fix f a
⊢ Sum.inl b✝ ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b✝ ∈ fix f a'
[PROOFSTEP]
refine' Or.inl ⟨h₂, e⟩
[GOAL]
case intro.h_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ : (f a).Dom
a'✝ : α
heq✝ : Part.get (f a) h₂ = Sum.inr a'✝
h₃ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a'✝ (_ : Acc (fun y x => Sum.inr y ∈ f x) a'✝)
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
next e => exact Or.inr ⟨_, ⟨_, e⟩, Part.mem_assert _ h₃⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : b ∈ fix f a
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ : (f a).Dom
a'✝ : α
e : Part.get (f a) h₂ = Sum.inr a'✝
h₃ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a'✝ (_ : Acc (fun y x => Sum.inr y ∈ f x) a'✝)
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
exact Or.inr ⟨_, ⟨_, e⟩, Part.mem_assert _ h₃⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
⊢ b ∈ fix f a
[PROOFSTEP]
simp [fix]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h : Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
⊢ ∃ h,
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h
[PROOFSTEP]
rcases h with (⟨h₁, h₂⟩ | ⟨a', h, h₃⟩)
[GOAL]
case inl.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
⊢ ∃ h,
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h
[PROOFSTEP]
refine' ⟨⟨_, fun y h' => _⟩, _⟩
[GOAL]
case inl.intro.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
y : α
h' : Sum.inr y ∈ f a
⊢ Acc (fun x y => Sum.inr x ∈ f y) y
[PROOFSTEP]
injection Part.mem_unique ⟨h₁, h₂⟩ h'
[GOAL]
case inl.intro.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
⊢ b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a (_ : Acc (fun x y => Sum.inr x ∈ f y) a)
[PROOFSTEP]
rw [WellFounded.fixFEq]
-- Porting note: used to be simp [h₁, h₂]
[GOAL]
case inl.intro.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
⊢ b ∈
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' =>
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')
[PROOFSTEP]
apply Part.mem_assert h₁
[GOAL]
case inl.intro.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
⊢ b ∈
match e : Part.get (f a) h₁ with
| Sum.inl b => Part.some b
| Sum.inr a' =>
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')
[PROOFSTEP]
split
[GOAL]
case inl.intro.refine'_2.h_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
b✝ : β
heq✝ : Part.get (f a) h₁ = Sum.inl b✝
⊢ b ∈ Part.some b✝
case inl.intro.refine'_2.h_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
a'✝ : α
heq✝ : Part.get (f a) h₁ = Sum.inr a'✝
⊢ b ∈
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝)
[PROOFSTEP]
next e => injection h₂.symm.trans e with h; simp [h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
b✝ : β
e : Part.get (f a) h₁ = Sum.inl b✝
⊢ b ∈ Part.some b✝
[PROOFSTEP]
injection h₂.symm.trans e with h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
b✝ : β
e : Part.get (f a) h₁ = Sum.inl b✝
h : b = b✝
⊢ b ∈ Part.some b✝
[PROOFSTEP]
simp [h]
[GOAL]
case inl.intro.refine'_2.h_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
a'✝ : α
heq✝ : Part.get (f a) h₁ = Sum.inr a'✝
⊢ b ∈
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝)
[PROOFSTEP]
next e => injection h₂.symm.trans e
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inl b
a'✝ : α
e : Part.get (f a) h₁ = Sum.inr a'✝
⊢ b ∈
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝)
[PROOFSTEP]
injection h₂.symm.trans e
[GOAL]
case inr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h : Sum.inr a' ∈ f a
h₃ : b ∈ fix f a'
⊢ ∃ h,
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h
[PROOFSTEP]
simp [fix] at h₃
[GOAL]
case inr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h : Sum.inr a' ∈ f a
h₃ :
∃ h,
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h
⊢ ∃ h,
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h
[PROOFSTEP]
cases' h₃ with h₃ h₄
[GOAL]
case inr.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h : Sum.inr a' ∈ f a
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
⊢ ∃ h,
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h
[PROOFSTEP]
refine' ⟨⟨_, fun y h' => _⟩, _⟩
[GOAL]
case inr.intro.intro.intro.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h : Sum.inr a' ∈ f a
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
y : α
h' : Sum.inr y ∈ f a
⊢ Acc (fun x y => Sum.inr x ∈ f y) y
[PROOFSTEP]
injection Part.mem_unique h h' with e
[GOAL]
case inr.intro.intro.intro.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h : Sum.inr a' ∈ f a
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
y : α
h' : Sum.inr y ∈ f a
e : a' = y
⊢ Acc (fun x y => Sum.inr x ∈ f y) y
[PROOFSTEP]
exact e ▸ h₃
[GOAL]
case inr.intro.intro.intro.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h : Sum.inr a' ∈ f a
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
⊢ b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a (_ : Acc (fun x y => Sum.inr x ∈ f y) a)
[PROOFSTEP]
cases' h with h₁ h₂
[GOAL]
case inr.intro.intro.intro.refine'_2.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inr a'
⊢ b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a (_ : Acc (fun x y => Sum.inr x ∈ f y) a)
[PROOFSTEP]
rw [WellFounded.fixFEq]
-- Porting note: used to be simp [h₁, h₂, h₄]
[GOAL]
case inr.intro.intro.intro.refine'_2.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inr a'
⊢ b ∈
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a'_1 =>
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'_1 (_ : ∃ h, Part.get (f a) h = Sum.inr a'_1)
[PROOFSTEP]
apply Part.mem_assert h₁
[GOAL]
case inr.intro.intro.intro.refine'_2.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inr a'
⊢ b ∈
match e : Part.get (f a) h₁ with
| Sum.inl b => Part.some b
| Sum.inr a'_1 =>
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'_1 (_ : ∃ h, Part.get (f a) h = Sum.inr a'_1)
[PROOFSTEP]
split
[GOAL]
case inr.intro.intro.intro.refine'_2.intro.h_1
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inr a'
b✝ : β
heq✝ : Part.get (f a) h₁ = Sum.inl b✝
⊢ b ∈ Part.some b✝
case inr.intro.intro.intro.refine'_2.intro.h_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inr a'
a'✝ : α
heq✝ : Part.get (f a) h₁ = Sum.inr a'✝
⊢ b ∈
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝)
[PROOFSTEP]
next e => injection h₂.symm.trans e
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inr a'
b✝ : β
e : Part.get (f a) h₁ = Sum.inl b✝
⊢ b ∈ Part.some b✝
[PROOFSTEP]
injection h₂.symm.trans e
[GOAL]
case inr.intro.intro.intro.refine'_2.intro.h_2
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inr a'
a'✝ : α
heq✝ : Part.get (f a) h₁ = Sum.inr a'✝
⊢ b ∈
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝)
[PROOFSTEP]
next e => injection h₂.symm.trans e; subst a'; exact h₄
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inr a'
a'✝ : α
e : Part.get (f a) h₁ = Sum.inr a'✝
⊢ b ∈
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝)
[PROOFSTEP]
injection h₂.symm.trans e
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
a' : α
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' h₃
h₁ : (f a).Dom
h₂ : Part.get (f a) h₁ = Sum.inr a'
a'✝ : α
e : Part.get (f a) h₁ = Sum.inr a'✝
val_eq✝ : a' = a'✝
⊢ b ∈
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝)
[PROOFSTEP]
subst a'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a : α
b : β
h₁ : (f a).Dom
a'✝ : α
e : Part.get (f a) h₁ = Sum.inr a'✝
h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'✝
h₄ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a'✝ h₃
h₂ : Part.get (f a) h₁ = Sum.inr a'✝
⊢ b ∈
(fun y p =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun y x => Sum.inr y ∈ f x) y))
a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝)
[PROOFSTEP]
exact h₄
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
b : β
a : α
hb : Sum.inl b ∈ f a
⊢ b ∈ fix f a
[PROOFSTEP]
rw [PFun.mem_fix_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
b : β
a : α
hb : Sum.inl b ∈ f a
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
exact Or.inl hb
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a a' : α
ha' : Sum.inr a' ∈ f a
⊢ fix f a = fix f a'
[PROOFSTEP]
ext b
[GOAL]
case H
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a a' : α
ha' : Sum.inr a' ∈ f a
b : β
⊢ b ∈ fix f a ↔ b ∈ fix f a'
[PROOFSTEP]
constructor
[GOAL]
case H.mp
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a a' : α
ha' : Sum.inr a' ∈ f a
b : β
⊢ b ∈ fix f a → b ∈ fix f a'
[PROOFSTEP]
intro h
[GOAL]
case H.mp
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a a' : α
ha' : Sum.inr a' ∈ f a
b : β
h : b ∈ fix f a
⊢ b ∈ fix f a'
[PROOFSTEP]
obtain h' | ⟨a, h', e'⟩ := mem_fix_iff.1 h
[GOAL]
case H.mp.inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a a' : α
ha' : Sum.inr a' ∈ f a
b : β
h : b ∈ fix f a
h' : Sum.inl b ∈ f a
⊢ b ∈ fix f a'
[PROOFSTEP]
cases Part.mem_unique ha' h'
[GOAL]
case H.mp.inr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a✝ a' : α
ha' : Sum.inr a' ∈ f a✝
b : β
h : b ∈ fix f a✝
a : α
h' : Sum.inr a ∈ f a✝
e' : b ∈ fix f a
⊢ b ∈ fix f a'
[PROOFSTEP]
cases Part.mem_unique ha' h'
[GOAL]
case H.mp.inr.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a a' : α
ha' : Sum.inr a' ∈ f a
b : β
h : b ∈ fix f a
h' : Sum.inr a' ∈ f a
e' : b ∈ fix f a'
⊢ b ∈ fix f a'
[PROOFSTEP]
exact e'
[GOAL]
case H.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a a' : α
ha' : Sum.inr a' ∈ f a
b : β
⊢ b ∈ fix f a' → b ∈ fix f a
[PROOFSTEP]
intro h
[GOAL]
case H.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a a' : α
ha' : Sum.inr a' ∈ f a
b : β
h : b ∈ fix f a'
⊢ b ∈ fix f a
[PROOFSTEP]
rw [PFun.mem_fix_iff]
[GOAL]
case H.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
a a' : α
ha' : Sum.inr a' ∈ f a
b : β
h : b ∈ fix f a'
⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a'
[PROOFSTEP]
exact Or.inr ⟨a', ha', h⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β ⊕ α
b : β
a a' : α
hb : b ∈ fix f a
ha' : Sum.inr a' ∈ f a
⊢ b ∈ fix f a'
[PROOFSTEP]
rwa [← fix_fwd_eq ha']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
⊢ C a
[PROOFSTEP]
have h₂ := (Part.mem_assert_iff.1 h).snd
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
h₂ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a (_ : Acc (fun x y => Sum.inr x ∈ f y) a)
⊢ C a
[PROOFSTEP]
revert h₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
⊢ b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a (_ : Acc (fun x y => Sum.inr x ∈ f y) a) →
C a
[PROOFSTEP]
generalize_proofs h₁
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
⊢ b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁ →
C a
[PROOFSTEP]
intro h₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁
⊢ C a
[PROOFSTEP]
clear h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a
h₂ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁
⊢ C a
[PROOFSTEP]
induction' h₁ with a ha IH
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a✝ : α
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a✝
h₂✝ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a✝ h₁
a : α
ha : ∀ (y : α), Sum.inr y ∈ f a → Acc (fun x y => Sum.inr x ∈ f y) y
IH :
(y : α) →
(a : Sum.inr y ∈ f a) →
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc ?m.29240 y) →
C y
h₂ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a (_ : Acc (fun x y => Sum.inr x ∈ f y) a)
⊢ C a
[PROOFSTEP]
have h : b ∈ f.fix a := Part.mem_assert_iff.2 ⟨⟨a, ha⟩, h₂⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a✝ : α
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
h₁ : Acc (fun x y => Sum.inr x ∈ f y) a✝
h₂✝ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a✝ h₁
a : α
ha : ∀ (y : α), Sum.inr y ∈ f a → Acc (fun x y => Sum.inr x ∈ f y) y
IH :
(y : α) →
(a : Sum.inr y ∈ f a) →
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc ?m.29240 y) →
C y
h₂ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a (_ : Acc (fun x y => Sum.inr x ∈ f y) a)
h : b ∈ fix f a
⊢ C a
[PROOFSTEP]
exact H a h fun a' fa' => IH a' fa' (Part.mem_assert_iff.1 (fix_fwd h fa')).snd
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
⊢ fixInduction h H = H a h fun a' h' => fixInduction (_ : b ∈ fix f a') H
[PROOFSTEP]
unfold fixInduction
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
⊢ (let_fun h₂ :=
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a (_ : Acc (fun x y => Sum.inr x ∈ f y) a));
Acc.rec (motive := fun {a} h₁ =>
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁ →
C a)
(fun a ha IH h₂ =>
let_fun h :=
(_ :
b ∈
Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h);
H a h fun a' fa' =>
IH a' fa'
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')))
(_ : Acc (fun x y => Sum.inr x ∈ f y) a) h₂) =
H a h fun a' h' =>
let_fun h₂ :=
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'));
Acc.rec (motive := fun {a} h₁ =>
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁ →
(fun x => C x) a)
(fun a ha IH h₂ =>
let_fun h :=
(_ :
b ∈
Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h);
H a h fun a' fa' =>
IH a' fa'
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')))
(_ : Acc (fun x y => Sum.inr x ∈ f y) a') h₂
[PROOFSTEP]
generalize (Part.mem_assert_iff.1 h).fst = ha
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
ha : Acc (fun x y => Sum.inr x ∈ f y) a
⊢ (let_fun h₂ :=
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a (_ : Acc (fun x y => Sum.inr x ∈ f y) a));
Acc.rec (motive := fun {a} h₁ =>
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁ →
C a)
(fun a ha IH h₂ =>
let_fun h :=
(_ :
b ∈
Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h);
H a h fun a' fa' =>
IH a' fa'
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')))
ha h₂) =
H a h fun a' h' =>
let_fun h₂ :=
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'));
Acc.rec (motive := fun {a} h₁ =>
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁ →
(fun x => C x) a)
(fun a ha IH h₂ =>
let_fun h :=
(_ :
b ∈
Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h);
H a h fun a' fa' =>
IH a' fa'
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')))
(_ : Acc (fun x y => Sum.inr x ∈ f y) a') h₂
[PROOFSTEP]
induction ha
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a'
x✝ : α
h✝ : ∀ (y : α), Sum.inr y ∈ f x✝ → Acc (fun x y => Sum.inr x ∈ f y) y
h_ih✝ :
∀ (y : α) (a : Sum.inr y ∈ f x✝) (h : b ∈ fix f y),
(let_fun h₂ :=
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
y (_ : Acc (fun x y => Sum.inr x ∈ f y) y));
Acc.rec (motive := fun {a} h₁ =>
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁ →
C a)
(fun a ha IH h₂ =>
let_fun h :=
(_ :
b ∈
Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h);
H a h fun a' fa' =>
IH a' fa'
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')))
(_ : Acc ?m.30282 y) h₂) =
H y h fun a' h' =>
let_fun h₂ :=
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'));
Acc.rec (motive := fun {a} h₁ =>
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁ →
(fun x => C x) a)
(fun a ha IH h₂ =>
let_fun h :=
(_ :
b ∈
Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h);
H a h fun a' fa' =>
IH a' fa'
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')))
(_ : Acc (fun x y => Sum.inr x ∈ f y) a') h₂
h : b ∈ fix f x✝
⊢ (let_fun h₂ :=
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
x✝ (_ : Acc (fun x y => Sum.inr x ∈ f y) x✝));
Acc.rec (motive := fun {a} h₁ =>
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁ →
C a)
(fun a ha IH h₂ =>
let_fun h :=
(_ :
b ∈
Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h);
H a h fun a' fa' =>
IH a' fa'
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')))
(_ : Acc (fun x y => Sum.inr x ∈ f y) x✝) h₂) =
H x✝ h fun a' h' =>
let_fun h₂ :=
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'));
Acc.rec (motive := fun {a} h₁ =>
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h₁ →
(fun x => C x) a)
(fun a ha IH h₂ =>
let_fun h :=
(_ :
b ∈
Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h =>
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a h);
H a h fun a' fa' =>
IH a' fa'
(_ :
b ∈
WellFounded.fixF
(fun a IH =>
Part.assert (f a).Dom fun hf =>
match e : Part.get (f a) hf with
| Sum.inl b => Part.some b
| Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a'))
a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')))
(_ : Acc (fun x y => Sum.inr x ∈ f y) a') h₂
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
⊢ C a
[PROOFSTEP]
refine' fixInduction h fun a' h ih => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h✝ : b ∈ fix f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
a' : α
h : b ∈ fix f a'
ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a''
⊢ C a'
[PROOFSTEP]
rcases e : (f a').get (dom_of_mem_fix h) with b' | a''
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h✝ : b ∈ fix f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
a' : α
h : b ∈ fix f a'
ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a''
b' : β
e : Part.get (f a') (_ : (f a').Dom) = Sum.inl b'
⊢ C a'
[PROOFSTEP]
replace e : _ ∈ f a' := ⟨_, e⟩
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h✝ : b ∈ fix f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
a' : α
h : b ∈ fix f a'
ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a''
a'' : α
e : Part.get (f a') (_ : (f a').Dom) = Sum.inr a''
⊢ C a'
[PROOFSTEP]
replace e : _ ∈ f a' := ⟨_, e⟩
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h✝ : b ∈ fix f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
a' : α
h : b ∈ fix f a'
ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a''
b' : β
e : Sum.inl b' ∈ f a'
⊢ C a'
[PROOFSTEP]
apply hbase
[GOAL]
case inl.a
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h✝ : b ∈ fix f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
a' : α
h : b ∈ fix f a'
ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a''
b' : β
e : Sum.inl b' ∈ f a'
⊢ Sum.inl b ∈ f a'
[PROOFSTEP]
convert e
[GOAL]
case h.e'_4.h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h✝ : b ∈ fix f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
a' : α
h : b ∈ fix f a'
ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a''
b' : β
e : Sum.inl b' ∈ f a'
⊢ b = b'
[PROOFSTEP]
exact Part.mem_unique h (fix_stop e)
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h✝ : b ∈ fix f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
a' : α
h : b ∈ fix f a'
ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a''
a'' : α
e : Sum.inr a'' ∈ f a'
⊢ C a'
[PROOFSTEP]
exact hind _ _ (fix_fwd h e) e (ih _ e)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
fa : Sum.inl b ∈ f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
⊢ fixInduction' h hbase hind = hbase a fa
[PROOFSTEP]
unfold fixInduction'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
fa : Sum.inl b ∈ f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
⊢ (fixInduction h fun a' h ih =>
Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a') (Part.get (f a') (_ : (f a').Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b');
hbase a' (_ : Sum.inl b ∈ f a'))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a'');
hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e))
(_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) =
hbase a fa
[PROOFSTEP]
rw [fixInduction_spec]
-- Porting note: the explicit motive required because `simp` behaves differently
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
fa : Sum.inl b ∈ f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
⊢ Sum.casesOn (motive := fun x => Part.get (f a) (_ : (f a).Dom) = x → C a) (Part.get (f a) (_ : (f a).Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inl b');
hbase a (_ : Sum.inl b ∈ f a))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inr a'');
hind a a'' (_ : b ∈ fix f a'') e
((fun a' h' =>
fixInduction (_ : b ∈ fix f a') fun a' h ih =>
Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a')
(Part.get (f a') (_ : (f a').Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b');
hbase a' (_ : Sum.inl b ∈ f a'))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a'');
hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e))
(_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom)))
a'' e))
(_ : Part.get (f a) (_ : (f a).Dom) = Part.get (f a) (_ : (f a).Dom)) =
hbase a fa
[PROOFSTEP]
refine'
Eq.rec (motive := fun x e =>
Sum.casesOn (motive := fun y => (f a).get (dom_of_mem_fix h) = y → C a) x _ _
(Eq.trans (Part.get_eq_of_mem fa (dom_of_mem_fix h)) e) =
hbase a fa)
_ (Part.get_eq_of_mem fa (dom_of_mem_fix h)).symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a : α
h : b ∈ fix f a
fa : Sum.inl b ∈ f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
⊢ (fun x e =>
Sum.casesOn (motive := fun y => Part.get (f a) (_ : (f a).Dom) = y → C a) x
(fun val =>
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inl b');
hbase a (_ : Sum.inl b ∈ f a))
val)
(fun val =>
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inr a'');
hind a a'' (_ : b ∈ fix f a'') e
((fun a' h' =>
fixInduction (_ : b ∈ fix f a') fun a' h ih =>
Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a')
(Part.get (f a') (_ : (f a').Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b');
hbase a' (_ : Sum.inl b ∈ f a'))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a'');
hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e))
(_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom)))
a'' e))
val)
(_ : Part.get (f a) (_ : (f a).Dom) = x) =
hbase a fa)
(Sum.inl b) (_ : Sum.inl b = Sum.inl b)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a a' : α
h : b ∈ fix f a
h' : b ∈ fix f a'
fa : Sum.inr a' ∈ f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
⊢ fixInduction' h hbase hind = hind a a' h' fa (fixInduction' h' hbase hind)
[PROOFSTEP]
unfold fixInduction'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a a' : α
h : b ∈ fix f a
h' : b ∈ fix f a'
fa : Sum.inr a' ∈ f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
⊢ (fixInduction h fun a' h ih =>
Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a') (Part.get (f a') (_ : (f a').Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b');
hbase a' (_ : Sum.inl b ∈ f a'))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a'');
hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e))
(_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) =
hind a a' h' fa
(fixInduction h' fun a' h ih =>
Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → (fun x => C x) a')
(Part.get (f a') (_ : (f a').Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b');
hbase a' (_ : Sum.inl b ∈ f a'))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a'');
hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e))
(_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom)))
[PROOFSTEP]
rw [fixInduction_spec]
-- Porting note: the explicit motive required because `simp` behaves differently
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a a' : α
h : b ∈ fix f a
h' : b ∈ fix f a'
fa : Sum.inr a' ∈ f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
⊢ Sum.casesOn (motive := fun x => Part.get (f a) (_ : (f a).Dom) = x → C a) (Part.get (f a) (_ : (f a).Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inl b');
hbase a (_ : Sum.inl b ∈ f a))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inr a'');
hind a a'' (_ : b ∈ fix f a'') e
((fun a' h' =>
fixInduction (_ : b ∈ fix f a') fun a' h ih =>
Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a')
(Part.get (f a') (_ : (f a').Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b');
hbase a' (_ : Sum.inl b ∈ f a'))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a'');
hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e))
(_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom)))
a'' e))
(_ : Part.get (f a) (_ : (f a).Dom) = Part.get (f a) (_ : (f a).Dom)) =
hind a a' h' fa
(fixInduction h' fun a' h ih =>
Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → (fun x => C x) a')
(Part.get (f a') (_ : (f a').Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b');
hbase a' (_ : Sum.inl b ∈ f a'))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a'');
hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e))
(_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom)))
[PROOFSTEP]
refine'
Eq.rec (motive := fun x e =>
Sum.casesOn (motive := fun y => (f a).get (dom_of_mem_fix h) = y → C a) x _ _
(Eq.trans (Part.get_eq_of_mem fa (dom_of_mem_fix h)) e) =
_)
_ (Part.get_eq_of_mem fa (dom_of_mem_fix h)).symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
C : α → Sort u_7
f : α →. β ⊕ α
b : β
a a' : α
h : b ∈ fix f a
h' : b ∈ fix f a'
fa : Sum.inr a' ∈ f a
hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final
hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀
⊢ (fun x e =>
Sum.casesOn (motive := fun y => Part.get (f a) (_ : (f a).Dom) = y → C a) x
(fun val =>
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inl b');
hbase a (_ : Sum.inl b ∈ f a))
val)
(fun val =>
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inr a'');
hind a a'' (_ : b ∈ fix f a'') e
((fun a' h' =>
fixInduction (_ : b ∈ fix f a') fun a' h ih =>
Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a')
(Part.get (f a') (_ : (f a').Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b');
hbase a' (_ : Sum.inl b ∈ f a'))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a'');
hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e))
(_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom)))
a'' e))
val)
(_ : Part.get (f a) (_ : (f a).Dom) = x) =
hind a a' h' fa
(fixInduction h' fun a' h ih =>
Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → (fun x => C x) a')
(Part.get (f a') (_ : (f a').Dom))
(fun b' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b');
hbase a' (_ : Sum.inl b ∈ f a'))
(fun a'' e =>
let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a'');
hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e))
(_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))))
(Sum.inr a') (_ : Sum.inr a' = Sum.inr a')
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β
⊢ preimage f Set.univ = Dom f
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β
x✝ : α
⊢ x✝ ∈ preimage f Set.univ ↔ x✝ ∈ Dom f
[PROOFSTEP]
simp [mem_preimage, mem_dom]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set β
⊢ preimage (↑f) s = f ⁻¹' s
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set β
x✝ : α
⊢ x✝ ∈ preimage (↑f) s ↔ x✝ ∈ f ⁻¹' s
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set α
t : Set β
x : α
⊢ x ∈ core (res f s) t ↔ x ∈ s → f x ∈ t
[PROOFSTEP]
simp [mem_core, mem_res]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set α
t : Set β
⊢ core (res f s) t = sᶜ ∪ f ⁻¹' t
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set α
t : Set β
x : α
⊢ x ∈ core (res f s) t ↔ x ∈ sᶜ ∪ f ⁻¹' t
[PROOFSTEP]
rw [mem_core_res]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set α
t : Set β
x : α
⊢ x ∈ s → f x ∈ t ↔ x ∈ sᶜ ∪ f ⁻¹' t
[PROOFSTEP]
by_cases h : x ∈ s
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set α
t : Set β
x : α
h : x ∈ s
⊢ x ∈ s → f x ∈ t ↔ x ∈ sᶜ ∪ f ⁻¹' t
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set α
t : Set β
x : α
h : ¬x ∈ s
⊢ x ∈ s → f x ∈ t ↔ x ∈ sᶜ ∪ f ⁻¹' t
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set β
⊢ core (↑f) s = f ⁻¹' s
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α → β
s : Set β
x : α
⊢ x ∈ core (↑f) s ↔ x ∈ f ⁻¹' s
[PROOFSTEP]
simp [core_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
s : Set β
⊢ core f s = preimage f s ∪ (Dom f)ᶜ
[PROOFSTEP]
rw [preimage_eq, Set.union_distrib_right, Set.union_comm (Dom f), Set.compl_union_self, Set.inter_univ,
Set.union_eq_self_of_subset_right (f.compl_dom_subset_core s)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
s : Set β
⊢ asSubtype f ⁻¹' s = Subtype.val ⁻¹' preimage f s
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
s : Set β
x : ↑(Dom f)
⊢ x ∈ asSubtype f ⁻¹' s ↔ x ∈ Subtype.val ⁻¹' preimage f s
[PROOFSTEP]
simp only [Set.mem_preimage, Set.mem_setOf_eq, PFun.asSubtype, PFun.mem_preimage]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
s : Set β
x : ↑(Dom f)
⊢ fn f ↑x (_ : ↑x ∈ Dom f) ∈ s ↔ ∃ y, y ∈ s ∧ y ∈ f ↑x
[PROOFSTEP]
show f.fn x.val _ ∈ s ↔ ∃ y ∈ s, y ∈ f x.val
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
s : Set β
x : ↑(Dom f)
⊢ fn f ↑x (_ : ↑x ∈ Dom f) ∈ s ↔ ∃ y, y ∈ s ∧ y ∈ f ↑x
[PROOFSTEP]
exact
Iff.intro (fun h => ⟨_, h, Part.get_mem _⟩) fun ⟨y, ys, fxy⟩ =>
have : f.fn x.val x.property ∈ f x.val := Part.get_mem _
Part.mem_unique fxy this ▸ ys
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
p : β → Prop
f : α → β
a : α
b : Subtype p
⊢ b ∈ toSubtype p f a ↔ ↑b = f a
[PROOFSTEP]
rw [toSubtype_apply, Part.mem_mk_iff, exists_subtype_mk_eq_iff, eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
x✝¹ : α
x✝ : β
⊢ x✝ ∈ comp (PFun.id β) f x✝¹ ↔ x✝ ∈ f x✝¹
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
x✝¹ : α
x✝ : β
⊢ x✝ ∈ comp f (PFun.id α) x✝¹ ↔ x✝ ∈ f x✝¹
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
⊢ Dom (comp f g) = preimage g (Dom f)
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
x✝ : α
⊢ x✝ ∈ Dom (comp f g) ↔ x✝ ∈ preimage g (Dom f)
[PROOFSTEP]
simp_rw [mem_preimage, mem_dom, comp_apply, Part.mem_bind_iff, ← exists_and_right]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
x✝ : α
⊢ (∃ y a, a ∈ g x✝ ∧ y ∈ f a) ↔ ∃ y x, x ∈ f y ∧ y ∈ g x✝
[PROOFSTEP]
rw [exists_comm]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
x✝ : α
⊢ (∃ b a, b ∈ g x✝ ∧ a ∈ f b) ↔ ∃ y x, x ∈ f y ∧ y ∈ g x✝
[PROOFSTEP]
simp_rw [and_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
s : Set γ
⊢ preimage (comp f g) s = preimage g (preimage f s)
[PROOFSTEP]
ext
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
s : Set γ
x✝ : α
⊢ x✝ ∈ preimage (comp f g) s ↔ x✝ ∈ preimage g (preimage f s)
[PROOFSTEP]
simp_rw [mem_preimage, comp_apply, Part.mem_bind_iff, ← exists_and_right, ← exists_and_left]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
s : Set γ
x✝ : α
⊢ (∃ y x, y ∈ s ∧ x ∈ g x✝ ∧ y ∈ f x) ↔ ∃ y x, (x ∈ s ∧ x ∈ f y) ∧ y ∈ g x✝
[PROOFSTEP]
rw [exists_comm]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
s : Set γ
x✝ : α
⊢ (∃ b a, a ∈ s ∧ b ∈ g x✝ ∧ a ∈ f b) ↔ ∃ y x, (x ∈ s ∧ x ∈ f y) ∧ y ∈ g x✝
[PROOFSTEP]
simp_rw [and_assoc, and_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
a : Part α
⊢ Part.bind a (comp f g) = Part.bind (Part.bind a g) f
[PROOFSTEP]
ext c
[GOAL]
case H
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
a : Part α
c : γ
⊢ c ∈ Part.bind a (comp f g) ↔ c ∈ Part.bind (Part.bind a g) f
[PROOFSTEP]
simp_rw [Part.mem_bind_iff, comp_apply, Part.mem_bind_iff, ← exists_and_right, ← exists_and_left]
[GOAL]
case H
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
a : Part α
c : γ
⊢ (∃ a_1 x, a_1 ∈ a ∧ x ∈ g a_1 ∧ c ∈ f x) ↔ ∃ a_1 x, (x ∈ a ∧ a_1 ∈ g x) ∧ c ∈ f a_1
[PROOFSTEP]
rw [exists_comm]
[GOAL]
case H
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : β →. γ
g : α →. β
a : Part α
c : γ
⊢ (∃ b a_1, a_1 ∈ a ∧ b ∈ g a_1 ∧ c ∈ f b) ↔ ∃ a_1 x, (x ∈ a ∧ a_1 ∈ g x) ∧ c ∈ f a_1
[PROOFSTEP]
simp_rw [and_assoc]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : γ →. δ
g : β →. γ
h : α →. β
x✝¹ : α
x✝ : δ
⊢ x✝ ∈ comp (comp f g) h x✝¹ ↔ x✝ ∈ comp f (comp g h) x✝¹
[PROOFSTEP]
simp only [comp_apply, Part.bind_comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
g : β → γ
f : α → β
x✝¹ : α
x✝ : γ
⊢ x✝ ∈ ↑(g ∘ f) x✝¹ ↔ x✝ ∈ comp (↑g) (↑f) x✝¹
[PROOFSTEP]
simp only [coe_val, comp_apply, Function.comp, Part.bind_some]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
g : α →. γ
x : α
y : β × γ
⊢ y ∈ prodLift f g x ↔ y.fst ∈ f x ∧ y.snd ∈ g x
[PROOFSTEP]
trans ∃ hp hq, (f x).get hp = y.1 ∧ (g x).get hq = y.2
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
g : α →. γ
x : α
y : β × γ
⊢ y ∈ prodLift f g x ↔ ∃ hp hq, Part.get (f x) hp = y.fst ∧ Part.get (g x) hq = y.snd
[PROOFSTEP]
simp only [prodLift, Part.mem_mk_iff, And.exists, Prod.ext_iff]
-- Porting note: was just `[exists_and_left, exists_and_right]`
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ f : α →. β
g : α →. γ
x : α
y : β × γ
⊢ (∃ hp hq, Part.get (f x) hp = y.fst ∧ Part.get (g x) hq = y.snd) ↔ y.fst ∈ f x ∧ y.snd ∈ g x
[PROOFSTEP]
simp only [exists_and_left, exists_and_right, (· ∈ ·), Part.Mem]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α →. γ
g : β →. δ
x : α × β
y : γ × δ
⊢ y ∈ prodMap f g x ↔ y.fst ∈ f x.fst ∧ y.snd ∈ g x.snd
[PROOFSTEP]
trans ∃ hp hq, (f x.1).get hp = y.1 ∧ (g x.2).get hq = y.2
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α →. γ
g : β →. δ
x : α × β
y : γ × δ
⊢ y ∈ prodMap f g x ↔ ∃ hp hq, Part.get (f x.fst) hp = y.fst ∧ Part.get (g x.snd) hq = y.snd
[PROOFSTEP]
simp only [prodMap, Part.mem_mk_iff, And.exists, Prod.ext_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α →. γ
g : β →. δ
x : α × β
y : γ × δ
⊢ (∃ hp hq, Part.get (f x.fst) hp = y.fst ∧ Part.get (g x.snd) hq = y.snd) ↔ y.fst ∈ f x.fst ∧ y.snd ∈ g x.snd
[PROOFSTEP]
simp only [exists_and_left, exists_and_right, (· ∈ ·), Part.Mem]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f✝ : α →. β
f : α →. γ
g : β →. δ
a : α × β
⊢ ∀ (b : γ × δ), b ∈ prodLift (comp f ↑Prod.fst) (comp g ↑Prod.snd) a ↔ b ∈ prodMap f g a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
ε : Type u_5
ι : Type u_6
f : α →. β
x✝¹ x✝ : α × β
⊢ x✝ ∈ prodMap (PFun.id α) (PFun.id β) x✝¹ ↔ x✝ ∈ PFun.id (α × β) x✝¹
[PROOFSTEP]
simp [eq_comm]
|
{"mathlib_filename": "Mathlib.Data.PFun", "llama_tokens": 36850}
|
[GOAL]
α : Type u_1
β : Type u_2
q₁ q₂ : Semiquot α
⊢ q₁ = q₂ ↔ q₁.s = q₂.s
[PROOFSTEP]
refine' ⟨congr_arg _, fun h => _⟩
[GOAL]
α : Type u_1
β : Type u_2
q₁ q₂ : Semiquot α
h : q₁.s = q₂.s
⊢ q₁ = q₂
[PROOFSTEP]
cases' q₁ with _ v₁
[GOAL]
case mk'
α : Type u_1
β : Type u_2
q₂ : Semiquot α
s✝ : Set α
v₁ : Trunc ↑s✝
h : { s := s✝, val := v₁ }.s = q₂.s
⊢ { s := s✝, val := v₁ } = q₂
[PROOFSTEP]
cases' q₂ with _ v₂
[GOAL]
case mk'.mk'
α : Type u_1
β : Type u_2
s✝¹ : Set α
v₁ : Trunc ↑s✝¹
s✝ : Set α
v₂ : Trunc ↑s✝
h : { s := s✝¹, val := v₁ }.s = { s := s✝, val := v₂ }.s
⊢ { s := s✝¹, val := v₁ } = { s := s✝, val := v₂ }
[PROOFSTEP]
congr
[GOAL]
case mk'.mk'.h.e_3
α : Type u_1
β : Type u_2
s✝¹ : Set α
v₁ : Trunc ↑s✝¹
s✝ : Set α
v₂ : Trunc ↑s✝
h : { s := s✝¹, val := v₁ }.s = { s := s✝, val := v₂ }.s
⊢ HEq v₁ v₂
[PROOFSTEP]
exact Subsingleton.helim (congrArg Trunc (congrArg Set.Elem h)) v₁ v₂
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
s : Set α
h : q.s ⊆ s
⊢ blur s q = blur' q h
[PROOFSTEP]
unfold blur
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
s : Set α
h : q.s ⊆ s
⊢ blur' q (_ : q.s ⊆ s ∪ q.s) = blur' q h
[PROOFSTEP]
congr
[GOAL]
case e_s
α : Type u_1
β : Type u_2
q : Semiquot α
s : Set α
h : q.s ⊆ s
⊢ s ∪ q.s = s
[PROOFSTEP]
exact Set.union_eq_self_of_subset_right h
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
f : α → β
h : ∀ (a : α), a ∈ q → ∀ (b : α), b ∈ q → f a = f b
a : α
aq : a ∈ q
⊢ liftOn q f h = f a
[PROOFSTEP]
revert h
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
f : α → β
a : α
aq : a ∈ q
⊢ ∀ (h : ∀ (a : α), a ∈ q → ∀ (b : α), b ∈ q → f a = f b), liftOn q f h = f a
[PROOFSTEP]
rw [eq_mk_of_mem aq]
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
f : α → β
a : α
aq : a ∈ q
⊢ ∀ (h : ∀ (a_1 : α), a_1 ∈ mk aq → ∀ (b : α), b ∈ mk aq → f a_1 = f b), liftOn (mk aq) f h = f a
[PROOFSTEP]
intro
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
f : α → β
a : α
aq : a ∈ q
h✝ : ∀ (a_1 : α), a_1 ∈ mk aq → ∀ (b : α), b ∈ mk aq → f a_1 = f b
⊢ liftOn (mk aq) f h✝ = f a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
f : α → Semiquot β
b : β
⊢ b ∈ bind q f ↔ ∃ a, a ∈ q ∧ b ∈ f a
[PROOFSTEP]
simp_rw [← exists_prop]
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
f : α → Semiquot β
b : β
⊢ b ∈ bind q f ↔ ∃ a _h, b ∈ f a
[PROOFSTEP]
exact Set.mem_iUnion₂
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type ?u.6544
q : Semiquot α
⊢ ∀ (a : α), a ∈ id <$> q ↔ a ∈ q
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
α β : Type ?u.6544
x : α
f : α → Semiquot β
⊢ ∀ (a : β), a ∈ pure x >>= f ↔ a ∈ f x
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
α β γ : Type ?u.6544
s : Semiquot α
f : α → Semiquot β
g : β → Semiquot γ
⊢ ∀ (a : γ), a ∈ s >>= f >>= g ↔ a ∈ s >>= fun x => f x >>= g
[PROOFSTEP]
simp only [bind_def, mem_bind]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
α β γ : Type ?u.6544
s : Semiquot α
f : α → Semiquot β
g : β → Semiquot γ
⊢ ∀ (a : γ), (∃ a_1, (∃ a, a ∈ s ∧ a_1 ∈ f a) ∧ a ∈ g a_1) ↔ ∃ a_1, a_1 ∈ s ∧ ∃ a_2, a_2 ∈ f a_1 ∧ a ∈ g a_2
[PROOFSTEP]
exact fun c => ⟨fun ⟨b, ⟨a, as, bf⟩, cg⟩ => ⟨a, as, b, bf, cg⟩, fun ⟨a, as, b, bf, cg⟩ => ⟨b, ⟨a, as, bf⟩, cg⟩⟩
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
α β : Type ?u.6544
f : α → β
s : Semiquot α
⊢ ∀ (a : β),
(a ∈ do
let y ← s
pure (f y)) ↔
a ∈ f <$> s
[PROOFSTEP]
simp [eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
p : IsPure q
⊢ get q p ∈ q
[PROOFSTEP]
let ⟨a, h⟩ := exists_mem q
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
p : IsPure q
a : α
h : a ∈ q
⊢ get q p ∈ q
[PROOFSTEP]
unfold get
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
p : IsPure q
a : α
h : a ∈ q
⊢ liftOn q id p ∈ q
[PROOFSTEP]
rw [liftOn_ofMem q _ _ a h]
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
p : IsPure q
a : α
h : a ∈ q
⊢ id a ∈ q
[PROOFSTEP]
exact h
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
p : IsPure q
a : α
⊢ a ∈ q ↔ a ∈ pure (get q p)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
q : Semiquot α
p : IsPure q
a : α
⊢ a ∈ q ↔ a = get q p
[PROOFSTEP]
exact ⟨fun h => p _ h _ (get_mem _), fun e => e.symm ▸ get_mem _⟩
[GOAL]
α : Type u_1
β : Type u_2
a b : α
ab : b ∈ pure a
c : α
ac : c ∈ pure a
⊢ b = c
[PROOFSTEP]
rw [mem_pure] at ab ac
[GOAL]
α : Type u_1
β : Type u_2
a b : α
ab : b = a
c : α
ac : c = a
⊢ b = c
[PROOFSTEP]
rwa [← ac] at ab
[GOAL]
α : Type u_1
β : Type u_2
s t : Semiquot α
h : IsPure t
st : s ≤ t
⊢ t ≤ s
[PROOFSTEP]
rw [eq_pure h, eq_pure (h.mono st)]
[GOAL]
α : Type u_1
β : Type u_2
s t : Semiquot α
h : IsPure t
st : s ≤ t
⊢ pure (get t h) ≤ pure (get s (_ : IsPure s))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
s t : Semiquot α
h : IsPure t
st : s ≤ t
⊢ get t h = get s (_ : IsPure s)
[PROOFSTEP]
exact h _ (get_mem _) _ (st <| get_mem _)
|
{"mathlib_filename": "Mathlib.Data.Semiquot", "llama_tokens": 2750}
|
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : F[X]
inst✝ : IsSplittingField F L f
⊢ Splits (algebraMap K L) (Polynomial.map (algebraMap F K) f)
[PROOFSTEP]
rw [splits_map_iff, ← IsScalarTower.algebraMap_eq]
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : F[X]
inst✝ : IsSplittingField F L f
⊢ Splits (algebraMap F L) f
[PROOFSTEP]
exact splits L f
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : F[X]
inst✝ : IsSplittingField F L f
⊢ Subalgebra.restrictScalars F (Algebra.adjoin K (rootSet (Polynomial.map (algebraMap F K) f) L)) =
Subalgebra.restrictScalars F ⊤
[PROOFSTEP]
rw [rootSet, map_map, ← IsScalarTower.algebraMap_eq, Subalgebra.restrictScalars_top, eq_top_iff, ← adjoin_rootSet L f,
Algebra.adjoin_le_iff]
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : F[X]
inst✝ : IsSplittingField F L f
⊢ rootSet f L ⊆
↑(Subalgebra.restrictScalars F (Algebra.adjoin K ↑(Multiset.toFinset (roots (Polynomial.map (algebraMap F L) f)))))
[PROOFSTEP]
exact fun x hx => @Algebra.subset_adjoin K _ _ _ _ _ _ hx
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : K[X]
inst✝ : IsSplittingField K L f
h : Splits (RingHom.id K) f
⊢ ⊤ = ⊥
[PROOFSTEP]
rw [eq_bot_iff, ← adjoin_rootSet L f, rootSet, roots_map (algebraMap K L) h, Algebra.adjoin_le_iff]
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : K[X]
inst✝ : IsSplittingField K L f
h : Splits (RingHom.id K) f
⊢ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f))) ⊆ ↑⊥
[PROOFSTEP]
intro y hy
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : K[X]
inst✝ : IsSplittingField K L f
h : Splits (RingHom.id K) f
y : L
hy : y ∈ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f)))
⊢ y ∈ ↑⊥
[PROOFSTEP]
rw [Multiset.toFinset_map, Finset.mem_coe, Finset.mem_image] at hy
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : K[X]
inst✝ : IsSplittingField K L f
h : Splits (RingHom.id K) f
y : L
hy✝ : y ∈ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f)))
hy : ∃ a, a ∈ Multiset.toFinset (roots f) ∧ ↑(algebraMap K L) a = y
⊢ y ∈ ↑⊥
[PROOFSTEP]
obtain ⟨x : K, -, hxy : algebraMap K L x = y⟩ := hy
[GOAL]
case intro.intro
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : K[X]
inst✝ : IsSplittingField K L f
h : Splits (RingHom.id K) f
y : L
hy : y ∈ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f)))
x : K
hxy : ↑(algebraMap K L) x = y
⊢ y ∈ ↑⊥
[PROOFSTEP]
rw [← hxy]
[GOAL]
case intro.intro
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : K[X]
inst✝ : IsSplittingField K L f
h : Splits (RingHom.id K) f
y : L
hy : y ∈ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f)))
x : K
hxy : ↑(algebraMap K L) x = y
⊢ ↑(algebraMap K L) x ∈ ↑⊥
[PROOFSTEP]
exact SetLike.mem_coe.2 <| Subalgebra.algebraMap_mem _ _
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : K[X]
inst✝ : IsSplittingField K L f
h : ⊤ = ⊥
⊢ Splits
(RingEquiv.toRingHom
(RingEquiv.trans (RingEquiv.ofBijective (algebraMap K L) (_ : Function.Bijective ↑(algebraMap K L)))
(RingEquiv.symm (RingEquiv.ofBijective (algebraMap K L) (_ : Function.Bijective ↑(algebraMap K L))))))
f
[PROOFSTEP]
rw [RingEquiv.toRingHom_trans]
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁷ : Field K
inst✝⁶ : Field L
inst✝⁵ : Field F
inst✝⁴ : Algebra K L
inst✝³ : Algebra F K
inst✝² : Algebra F L
inst✝¹ : IsScalarTower F K L
f : K[X]
inst✝ : IsSplittingField K L f
h : ⊤ = ⊥
⊢ Splits
(RingHom.comp
(RingEquiv.toRingHom
(RingEquiv.symm (RingEquiv.ofBijective (algebraMap K L) (_ : Function.Bijective ↑(algebraMap K L)))))
(RingEquiv.toRingHom (RingEquiv.ofBijective (algebraMap K L) (_ : Function.Bijective ↑(algebraMap K L)))))
f
[PROOFSTEP]
exact splits_comp_of_splits _ _ (splits L f)
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field F
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra F K
inst✝³ : Algebra F L
inst✝² : IsScalarTower F K L
f g : F[X]
hf : f ≠ 0
hg : g ≠ 0
inst✝¹ : IsSplittingField F K f
inst✝ : IsSplittingField K L (Polynomial.map (algebraMap F K) g)
⊢ Algebra.adjoin F (rootSet (f * g) L) = ⊤
[PROOFSTEP]
rw [rootSet, Polynomial.map_mul, roots_mul (mul_ne_zero (map_ne_zero hf : f.map (algebraMap F L) ≠ 0) (map_ne_zero hg)),
Multiset.toFinset_add, Finset.coe_union, Algebra.adjoin_union_eq_adjoin_adjoin, IsScalarTower.algebraMap_eq F K L, ←
map_map, roots_map (algebraMap K L) ((splits_id_iff_splits <| algebraMap F K).2 <| splits K f), Multiset.toFinset_map,
Finset.coe_image, Algebra.adjoin_algebraMap, ← rootSet, adjoin_rootSet, Algebra.map_top,
IsScalarTower.adjoin_range_toAlgHom, ← map_map, ← rootSet, adjoin_rootSet, Subalgebra.restrictScalars_top]
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field F
inst✝² : Algebra K L
inst✝¹ : Algebra K F
f : K[X]
inst✝ : IsSplittingField K L f
hf : Splits (algebraMap K F) f
hf0 : f = 0
⊢ L →ₐ[K] { x // x ∈ ⊥ }
[PROOFSTEP]
rw [← (splits_iff L f).1 (show f.Splits (RingHom.id K) from hf0.symm ▸ splits_zero _)]
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field F
inst✝² : Algebra K L
inst✝¹ : Algebra K F
f : K[X]
inst✝ : IsSplittingField K L f
hf : Splits (algebraMap K F) f
hf0 : f = 0
⊢ L →ₐ[K] { x // x ∈ ⊤ }
[PROOFSTEP]
exact Algebra.toTop
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field F
inst✝² : Algebra K L
inst✝¹ : Algebra K F
f : K[X]
inst✝ : IsSplittingField K L f
hf : Splits (algebraMap K F) f
hf0 : ¬f = 0
⊢ { x // x ∈ ⊤ } →ₐ[K] F
[PROOFSTEP]
rw [← adjoin_rootSet L f]
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field F
inst✝² : Algebra K L
inst✝¹ : Algebra K F
f : K[X]
inst✝ : IsSplittingField K L f
hf : Splits (algebraMap K F) f
hf0 : ¬f = 0
⊢ { x // x ∈ Algebra.adjoin K (rootSet f L) } →ₐ[K] F
[PROOFSTEP]
exact
Classical.choice
(lift_of_splits _ fun y hy =>
have : aeval y f = 0 :=
(eval₂_eq_eval_map _).trans <| (mem_roots <| map_ne_zero hf0).1 (Multiset.mem_toFinset.mp hy)
⟨isAlgebraic_iff_isIntegral.1 ⟨f, hf0, this⟩, splits_of_splits_of_dvd _ hf0 hf <| minpoly.dvd _ _ this⟩)
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field F
inst✝¹ : Algebra K L
f : K[X]
inst✝ : IsSplittingField K L f
y : L
hy : y ∈ rootSet f L
hf : f = 0
⊢ IsIntegral K y
[PROOFSTEP]
rw [hf, rootSet_zero] at hy
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field F
inst✝¹ : Algebra K L
f : K[X]
inst✝ : IsSplittingField K L f
y : L
hy : y ∈ ∅
hf : f = 0
⊢ IsIntegral K y
[PROOFSTEP]
cases hy
[GOAL]
F : Type u
K : Type v
L : Type w
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field F
inst✝² : Algebra K L
inst✝¹ : Algebra K F
p : K[X]
f : F ≃ₐ[K] L
inst✝ : IsSplittingField K F p
⊢ IsSplittingField K L p
[PROOFSTEP]
constructor
[GOAL]
case splits'
F : Type u
K : Type v
L : Type w
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field F
inst✝² : Algebra K L
inst✝¹ : Algebra K F
p : K[X]
f : F ≃ₐ[K] L
inst✝ : IsSplittingField K F p
⊢ Splits (algebraMap K L) p
[PROOFSTEP]
rw [← f.toAlgHom.comp_algebraMap]
[GOAL]
case splits'
F : Type u
K : Type v
L : Type w
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field F
inst✝² : Algebra K L
inst✝¹ : Algebra K F
p : K[X]
f : F ≃ₐ[K] L
inst✝ : IsSplittingField K F p
⊢ Splits (RingHom.comp (↑↑f) (algebraMap K F)) p
[PROOFSTEP]
exact splits_comp_of_splits _ _ (splits F p)
[GOAL]
case adjoin_rootSet'
F : Type u
K : Type v
L : Type w
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field F
inst✝² : Algebra K L
inst✝¹ : Algebra K F
p : K[X]
f : F ≃ₐ[K] L
inst✝ : IsSplittingField K F p
⊢ Algebra.adjoin K (rootSet p L) = ⊤
[PROOFSTEP]
rw [← (Algebra.range_top_iff_surjective f.toAlgHom).mpr f.surjective, adjoin_rootSet_eq_range (splits F p),
adjoin_rootSet F p]
[GOAL]
F✝ : Type u
K : Type v
L : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
p : K[X]
F : IntermediateField K L
h : Splits (algebraMap K L) p
hF : ∀ (x : L), x ∈ rootSet p L → x ∈ F
⊢ Splits (algebraMap K { x // x ∈ F }) p
[PROOFSTEP]
simp_rw [rootSet_def, Finset.mem_coe, Multiset.mem_toFinset] at hF
[GOAL]
F✝ : Type u
K : Type v
L : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
p : K[X]
F : IntermediateField K L
h : Splits (algebraMap K L) p
hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F
⊢ Splits (algebraMap K { x // x ∈ F }) p
[PROOFSTEP]
rw [splits_iff_exists_multiset]
[GOAL]
F✝ : Type u
K : Type v
L : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
p : K[X]
F : IntermediateField K L
h : Splits (algebraMap K L) p
hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F
⊢ ∃ s,
Polynomial.map (algebraMap K { x // x ∈ F }) p =
↑C (↑(algebraMap K { x // x ∈ F }) (leadingCoeff p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s)
[PROOFSTEP]
refine' ⟨Multiset.pmap Subtype.mk _ hF, map_injective _ (algebraMap F L).injective _⟩
[GOAL]
F✝ : Type u
K : Type v
L : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
p : K[X]
F : IntermediateField K L
h : Splits (algebraMap K L) p
hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F
⊢ Polynomial.map (algebraMap { x // x ∈ F } L) (Polynomial.map (algebraMap K { x // x ∈ F }) p) =
Polynomial.map (algebraMap { x // x ∈ F } L)
(↑C (↑(algebraMap K { x // x ∈ F }) (leadingCoeff p)) *
Multiset.prod
(Multiset.map (fun a => X - ↑C a) (Multiset.pmap Subtype.mk (roots (Polynomial.map (algebraMap K L) p)) hF)))
[PROOFSTEP]
conv_lhs =>
rw [Polynomial.map_map, ← IsScalarTower.algebraMap_eq, eq_prod_roots_of_splits h, ← Multiset.pmap_eq_map _ _ _ hF]
[GOAL]
F✝ : Type u
K : Type v
L : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
p : K[X]
F : IntermediateField K L
h : Splits (algebraMap K L) p
hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F
| Polynomial.map (algebraMap { x // x ∈ F } L) (Polynomial.map (algebraMap K { x // x ∈ F }) p)
[PROOFSTEP]
rw [Polynomial.map_map, ← IsScalarTower.algebraMap_eq, eq_prod_roots_of_splits h, ← Multiset.pmap_eq_map _ _ _ hF]
[GOAL]
F✝ : Type u
K : Type v
L : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
p : K[X]
F : IntermediateField K L
h : Splits (algebraMap K L) p
hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F
| Polynomial.map (algebraMap { x // x ∈ F } L) (Polynomial.map (algebraMap K { x // x ∈ F }) p)
[PROOFSTEP]
rw [Polynomial.map_map, ← IsScalarTower.algebraMap_eq, eq_prod_roots_of_splits h, ← Multiset.pmap_eq_map _ _ _ hF]
[GOAL]
F✝ : Type u
K : Type v
L : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
p : K[X]
F : IntermediateField K L
h : Splits (algebraMap K L) p
hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F
| Polynomial.map (algebraMap { x // x ∈ F } L) (Polynomial.map (algebraMap K { x // x ∈ F }) p)
[PROOFSTEP]
rw [Polynomial.map_map, ← IsScalarTower.algebraMap_eq, eq_prod_roots_of_splits h, ← Multiset.pmap_eq_map _ _ _ hF]
[GOAL]
F✝ : Type u
K : Type v
L : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
p : K[X]
F : IntermediateField K L
h : Splits (algebraMap K L) p
hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F
⊢ ↑C (↑(algebraMap K L) (leadingCoeff p)) *
Multiset.prod (Multiset.pmap (fun a x => X - ↑C a) (roots (Polynomial.map (algebraMap K L) p)) hF) =
Polynomial.map (algebraMap { x // x ∈ F } L)
(↑C (↑(algebraMap K { x // x ∈ F }) (leadingCoeff p)) *
Multiset.prod
(Multiset.map (fun a => X - ↑C a) (Multiset.pmap Subtype.mk (roots (Polynomial.map (algebraMap K L) p)) hF)))
[PROOFSTEP]
simp_rw [Polynomial.map_mul, Polynomial.map_multiset_prod, Multiset.map_pmap, Polynomial.map_sub, map_C, map_X]
[GOAL]
F✝ : Type u
K : Type v
L : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Algebra K L
p : K[X]
F : IntermediateField K L
h : Splits (algebraMap K L) p
hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F
⊢ ↑C (↑(algebraMap K L) (leadingCoeff p)) *
Multiset.prod (Multiset.pmap (fun a x => X - ↑C a) (roots (Polynomial.map (algebraMap K L) p)) hF) =
↑C (↑(algebraMap { x // x ∈ F } L) (↑(algebraMap K { x // x ∈ F }) (leadingCoeff p))) *
Multiset.prod
(Multiset.pmap (fun a h => X - ↑C (↑(algebraMap { x // x ∈ F } L) { val := a, property := h }))
(roots (Polynomial.map (algebraMap K L) p)) hF)
[PROOFSTEP]
rfl
|
{"mathlib_filename": "Mathlib.FieldTheory.SplittingField.IsSplittingField", "llama_tokens": 6723}
|
{"mathlib_filename": "Mathlib.Data.ByteArray", "llama_tokens": 0}
|
|
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain R
inst✝¹¹ : Algebra R S
K : Type u_3
L : Type u_4
inst✝¹⁰ : Field K
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Field L
inst✝⁶ : Algebra R L
inst✝⁵ : Algebra S L
inst✝⁴ : Algebra K L
inst✝³ : IsScalarTower R K L
inst✝² : IsScalarTower R S L
inst✝¹ : IsIntegrallyClosed R
inst✝ : IsDomain S
s : S
hs : IsIntegral R s
⊢ minpoly K (↑(algebraMap S L) s) = map (algebraMap R K) (minpoly R s)
[PROOFSTEP]
refine' (eq_of_irreducible_of_monic _ _ _).symm
[GOAL]
case refine'_1
R : Type u_1
S : Type u_2
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain R
inst✝¹¹ : Algebra R S
K : Type u_3
L : Type u_4
inst✝¹⁰ : Field K
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Field L
inst✝⁶ : Algebra R L
inst✝⁵ : Algebra S L
inst✝⁴ : Algebra K L
inst✝³ : IsScalarTower R K L
inst✝² : IsScalarTower R S L
inst✝¹ : IsIntegrallyClosed R
inst✝ : IsDomain S
s : S
hs : IsIntegral R s
⊢ Irreducible (map (algebraMap R K) (minpoly R s))
[PROOFSTEP]
exact (Polynomial.Monic.irreducible_iff_irreducible_map_fraction_map (monic hs)).1 (irreducible hs)
[GOAL]
case refine'_2
R : Type u_1
S : Type u_2
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain R
inst✝¹¹ : Algebra R S
K : Type u_3
L : Type u_4
inst✝¹⁰ : Field K
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Field L
inst✝⁶ : Algebra R L
inst✝⁵ : Algebra S L
inst✝⁴ : Algebra K L
inst✝³ : IsScalarTower R K L
inst✝² : IsScalarTower R S L
inst✝¹ : IsIntegrallyClosed R
inst✝ : IsDomain S
s : S
hs : IsIntegral R s
⊢ ↑(Polynomial.aeval (↑(algebraMap S L) s)) (map (algebraMap R K) (minpoly R s)) = 0
[PROOFSTEP]
rw [aeval_map_algebraMap, aeval_algebraMap_apply, aeval, map_zero]
[GOAL]
case refine'_3
R : Type u_1
S : Type u_2
inst✝¹⁴ : CommRing R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain R
inst✝¹¹ : Algebra R S
K : Type u_3
L : Type u_4
inst✝¹⁰ : Field K
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Field L
inst✝⁶ : Algebra R L
inst✝⁵ : Algebra S L
inst✝⁴ : Algebra K L
inst✝³ : IsScalarTower R K L
inst✝² : IsScalarTower R S L
inst✝¹ : IsIntegrallyClosed R
inst✝ : IsDomain S
s : S
hs : IsIntegral R s
⊢ Monic (map (algebraMap R K) (minpoly R s))
[PROOFSTEP]
exact (monic hs).map _
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹⁶ : CommRing R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain R
inst✝¹³ : Algebra R S
K : Type u_3
L : Type u_4
inst✝¹² : Field K
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Field L
inst✝⁸ : Algebra R L
inst✝⁷ : Algebra S L
inst✝⁶ : Algebra K L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : IsScalarTower R S L
inst✝³ : IsIntegrallyClosed R
inst✝² : IsDomain S
inst✝¹ : Algebra K S
inst✝ : IsScalarTower R K S
s : S
hs : IsIntegral R s
⊢ minpoly K s = map (algebraMap R K) (minpoly R s)
[PROOFSTEP]
let L := FractionRing S
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹⁶ : CommRing R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain R
inst✝¹³ : Algebra R S
K : Type u_3
L✝ : Type u_4
inst✝¹² : Field K
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Field L✝
inst✝⁸ : Algebra R L✝
inst✝⁷ : Algebra S L✝
inst✝⁶ : Algebra K L✝
inst✝⁵ : IsScalarTower R K L✝
inst✝⁴ : IsScalarTower R S L✝
inst✝³ : IsIntegrallyClosed R
inst✝² : IsDomain S
inst✝¹ : Algebra K S
inst✝ : IsScalarTower R K S
s : S
hs : IsIntegral R s
L : Type u_2 := FractionRing S
⊢ minpoly K s = map (algebraMap R K) (minpoly R s)
[PROOFSTEP]
rw [← isIntegrallyClosed_eq_field_fractions K L hs]
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹⁶ : CommRing R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain R
inst✝¹³ : Algebra R S
K : Type u_3
L✝ : Type u_4
inst✝¹² : Field K
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Field L✝
inst✝⁸ : Algebra R L✝
inst✝⁷ : Algebra S L✝
inst✝⁶ : Algebra K L✝
inst✝⁵ : IsScalarTower R K L✝
inst✝⁴ : IsScalarTower R S L✝
inst✝³ : IsIntegrallyClosed R
inst✝² : IsDomain S
inst✝¹ : Algebra K S
inst✝ : IsScalarTower R K S
s : S
hs : IsIntegral R s
L : Type u_2 := FractionRing S
⊢ minpoly K s = minpoly K (↑(algebraMap S L) s)
[PROOFSTEP]
refine' minpoly.eq_of_algebraMap_eq (IsFractionRing.injective S L) (isIntegral_of_isScalarTower hs) rfl
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
⊢ minpoly R s ∣ p
[PROOFSTEP]
let K := FractionRing R
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
⊢ minpoly R s ∣ p
[PROOFSTEP]
let L := FractionRing S
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ minpoly R s ∣ p
[PROOFSTEP]
have : minpoly K (algebraMap S L s) ∣ map (algebraMap R K) (p %ₘ minpoly R s) :=
by
rw [map_modByMonic _ (minpoly.monic hs), modByMonic_eq_sub_mul_div]
refine' dvd_sub (minpoly.dvd K (algebraMap S L s) _) _
rw [← map_aeval_eq_aeval_map, hp, map_zero]
rw [← IsScalarTower.algebraMap_eq, ← IsScalarTower.algebraMap_eq]
apply dvd_mul_of_dvd_left
rw [isIntegrallyClosed_eq_field_fractions K L hs]
exact Monic.map _ (minpoly.monic hs)
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (p %ₘ minpoly R s)
[PROOFSTEP]
rw [map_modByMonic _ (minpoly.monic hs), modByMonic_eq_sub_mul_div]
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ minpoly K (↑(algebraMap S L) s) ∣
map (algebraMap R K) p -
map (algebraMap R K) (minpoly R s) * (map (algebraMap R K) p /ₘ map (algebraMap R K) (minpoly R s))
case _hq
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ Monic (map (algebraMap R K) (minpoly R s))
[PROOFSTEP]
refine' dvd_sub (minpoly.dvd K (algebraMap S L s) _) _
[GOAL]
case refine'_1
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ ↑(Polynomial.aeval (↑(algebraMap S L) s)) (map (algebraMap R K) p) = 0
case refine'_2
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ minpoly K (↑(algebraMap S L) s) ∣
map (algebraMap R K) (minpoly R s) * (map (algebraMap R K) p /ₘ map (algebraMap R K) (minpoly R s))
case _hq
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ Monic (map (algebraMap R K) (minpoly R s))
[PROOFSTEP]
rw [← map_aeval_eq_aeval_map, hp, map_zero]
[GOAL]
case refine'_1.h
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ RingHom.comp (algebraMap K ((fun x => L) s)) (algebraMap R K) = RingHom.comp (algebraMap S L) (algebraMap R S)
case refine'_2
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ minpoly K (↑(algebraMap S L) s) ∣
map (algebraMap R K) (minpoly R s) * (map (algebraMap R K) p /ₘ map (algebraMap R K) (minpoly R s))
case _hq
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ Monic (map (algebraMap R K) (minpoly R s))
[PROOFSTEP]
rw [← IsScalarTower.algebraMap_eq, ← IsScalarTower.algebraMap_eq]
[GOAL]
case refine'_2
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ minpoly K (↑(algebraMap S L) s) ∣
map (algebraMap R K) (minpoly R s) * (map (algebraMap R K) p /ₘ map (algebraMap R K) (minpoly R s))
case _hq
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ Monic (map (algebraMap R K) (minpoly R s))
[PROOFSTEP]
apply dvd_mul_of_dvd_left
[GOAL]
case refine'_2.h
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (minpoly R s)
case _hq
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ Monic (map (algebraMap R K) (minpoly R s))
[PROOFSTEP]
rw [isIntegrallyClosed_eq_field_fractions K L hs]
[GOAL]
case _hq
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
⊢ Monic (map (algebraMap R K) (minpoly R s))
[PROOFSTEP]
exact Monic.map _ (minpoly.monic hs)
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
this : minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (p %ₘ minpoly R s)
⊢ minpoly R s ∣ p
[PROOFSTEP]
rw [isIntegrallyClosed_eq_field_fractions _ _ hs,
map_dvd_map (algebraMap R K) (IsFractionRing.injective R K) (minpoly.monic hs)] at this
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
this✝ : minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (p %ₘ minpoly R s)
this : minpoly R s ∣ p %ₘ minpoly R s
⊢ minpoly R s ∣ p
[PROOFSTEP]
rw [← dvd_iff_modByMonic_eq_zero (minpoly.monic hs)]
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : ↑(Polynomial.aeval s) p = 0
K : Type u_1 := FractionRing R
L : Type u_2 := FractionRing S
this✝ : minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (p %ₘ minpoly R s)
this : minpoly R s ∣ p %ₘ minpoly R s
⊢ p %ₘ minpoly R s = 0
[PROOFSTEP]
refine' Polynomial.eq_zero_of_dvd_of_degree_lt this (degree_modByMonic_lt p <| minpoly.monic hs)
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁷ : CommRing R
inst✝⁶ : CommRing S
inst✝⁵ : IsDomain R
inst✝⁴ : Algebra R S
inst✝³ : IsDomain S
inst✝² : NoZeroSMulDivisors R S
inst✝¹ : IsIntegrallyClosed R
inst✝ : Nontrivial R
s : S
hs : IsIntegral R s
p : R[X]
hp : minpoly R s ∣ p
⊢ ↑(Polynomial.aeval s) p = 0
[PROOFSTEP]
simpa only [RingHom.mem_ker, RingHom.coe_comp, coe_evalRingHom, coe_mapRingHom, Function.comp_apply, eval_map, ←
aeval_def] using aeval_eq_zero_of_dvd_aeval_eq_zero hp (minpoly.aeval R s)
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
hs : IsIntegral R s
⊢ RingHom.ker ↑(Polynomial.aeval s) = Ideal.span {minpoly R s}
[PROOFSTEP]
ext p
[GOAL]
case h
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
hs : IsIntegral R s
p : R[X]
⊢ p ∈ RingHom.ker ↑(Polynomial.aeval s) ↔ p ∈ Ideal.span {minpoly R s}
[PROOFSTEP]
simp_rw [RingHom.mem_ker, AlgHom.toRingHom_eq_coe, AlgHom.coe_toRingHom, isIntegrallyClosed_dvd_iff hs, ←
Ideal.mem_span_singleton]
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
hs : IsIntegral R s
p : R[X]
hp0 : p ≠ 0
hp : ↑(Polynomial.aeval s) p = 0
⊢ degree (minpoly R s) ≤ degree p
[PROOFSTEP]
rw [degree_eq_natDegree (minpoly.ne_zero hs), degree_eq_natDegree hp0]
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
hs : IsIntegral R s
p : R[X]
hp0 : p ≠ 0
hp : ↑(Polynomial.aeval s) p = 0
⊢ ↑(natDegree (minpoly R s)) ≤ ↑(natDegree p)
[PROOFSTEP]
norm_cast
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
hs : IsIntegral R s
p : R[X]
hp0 : p ≠ 0
hp : ↑(Polynomial.aeval s) p = 0
⊢ natDegree (minpoly R s) ≤ natDegree p
[PROOFSTEP]
exact natDegree_le_of_dvd ((isIntegrallyClosed_dvd_iff hs _).mp hp) hp0
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
⊢ P = minpoly R s
[PROOFSTEP]
have hs : IsIntegral R s := ⟨P, hmo, hP⟩
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
hs : IsIntegral R s
⊢ P = minpoly R s
[PROOFSTEP]
symm
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
hs : IsIntegral R s
⊢ minpoly R s = P
[PROOFSTEP]
apply eq_of_sub_eq_zero
[GOAL]
case h
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
hs : IsIntegral R s
⊢ minpoly R s - P = 0
[PROOFSTEP]
by_contra hnz
[GOAL]
case h
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
hs : IsIntegral R s
hnz : ¬minpoly R s - P = 0
⊢ False
[PROOFSTEP]
have := IsIntegrallyClosed.degree_le_of_ne_zero hs hnz (by simp [hP])
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
hs : IsIntegral R s
hnz : ¬minpoly R s - P = 0
⊢ ↑(Polynomial.aeval s) (minpoly R s - P) = 0
[PROOFSTEP]
simp [hP]
[GOAL]
case h
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
hs : IsIntegral R s
hnz : ¬minpoly R s - P = 0
this : degree (minpoly R s) ≤ degree (minpoly R s - P)
⊢ False
[PROOFSTEP]
contrapose! this
[GOAL]
case h
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
hs : IsIntegral R s
hnz : ¬minpoly R s - P = 0
this : ¬False
⊢ degree (minpoly R s - P) < degree (minpoly R s)
[PROOFSTEP]
refine' degree_sub_lt _ (ne_zero hs) _
[GOAL]
case h.refine'_1
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
hs : IsIntegral R s
hnz : ¬minpoly R s - P = 0
this : ¬False
⊢ degree (minpoly R s) = degree P
[PROOFSTEP]
exact le_antisymm (min R s hmo hP) (Pmin (minpoly R s) (monic hs) (aeval R s))
[GOAL]
case h.refine'_2
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
s : S
P : R[X]
hmo : Monic P
hP : ↑(Polynomial.aeval s) P = 0
Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q
hs : IsIntegral R s
hnz : ¬minpoly R s - P = 0
this : ¬False
⊢ leadingCoeff (minpoly R s) = leadingCoeff P
[PROOFSTEP]
rw [(monic hs).leadingCoeff, hmo.leadingCoeff]
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
⊢ Prime (minpoly R x)
[PROOFSTEP]
refine'
⟨(minpoly.monic hx).ne_zero,
⟨fun h_contra => (ne_of_lt (minpoly.degree_pos hx)) (degree_eq_zero_of_isUnit h_contra).symm, fun a b h =>
or_iff_not_imp_left.mpr fun h' => _⟩⟩
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
a b : R[X]
h : minpoly R x ∣ a * b
h' : ¬minpoly R x ∣ a
⊢ minpoly R x ∣ b
[PROOFSTEP]
rw [← minpoly.isIntegrallyClosed_dvd_iff hx] at h' h ⊢
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
a b : R[X]
h : ↑(Polynomial.aeval x) (a * b) = 0
h' : ¬↑(Polynomial.aeval x) a = 0
⊢ ↑(Polynomial.aeval x) b = 0
[PROOFSTEP]
rw [aeval_mul] at h
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
a b : R[X]
h : ↑(Polynomial.aeval x) a * ↑(Polynomial.aeval x) b = 0
h' : ¬↑(Polynomial.aeval x) a = 0
⊢ ↑(Polynomial.aeval x) b = 0
[PROOFSTEP]
exact eq_zero_of_ne_zero_of_mul_left_eq_zero h' h
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
⊢ Injective ↑(Minpoly.toAdjoin R x)
[PROOFSTEP]
refine' (injective_iff_map_eq_zero _).2 fun P₁ hP₁ => _
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
P₁ : AdjoinRoot (minpoly R x)
hP₁ : ↑(Minpoly.toAdjoin R x) P₁ = 0
⊢ P₁ = 0
[PROOFSTEP]
obtain ⟨P, hP⟩ := mk_surjective (minpoly.monic hx) P₁
[GOAL]
case intro
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
P₁ : AdjoinRoot (minpoly R x)
hP₁ : ↑(Minpoly.toAdjoin R x) P₁ = 0
P : R[X]
hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁
⊢ P₁ = 0
[PROOFSTEP]
by_cases hPzero : P = 0
[GOAL]
case pos
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
P₁ : AdjoinRoot (minpoly R x)
hP₁ : ↑(Minpoly.toAdjoin R x) P₁ = 0
P : R[X]
hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁
hPzero : P = 0
⊢ P₁ = 0
[PROOFSTEP]
simpa [hPzero] using hP.symm
[GOAL]
case neg
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
P₁ : AdjoinRoot (minpoly R x)
hP₁ : ↑(Minpoly.toAdjoin R x) P₁ = 0
P : R[X]
hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁
hPzero : ¬P = 0
⊢ P₁ = 0
[PROOFSTEP]
rw [← hP, Minpoly.toAdjoin_apply', liftHom_mk, ← Subalgebra.coe_eq_zero, aeval_subalgebra_coe,
isIntegrallyClosed_dvd_iff hx] at hP₁
[GOAL]
case neg
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
P₁ : AdjoinRoot (minpoly R x)
P : R[X]
hP₁ : minpoly R x ∣ P
hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁
hPzero : ¬P = 0
⊢ P₁ = 0
[PROOFSTEP]
obtain ⟨Q, hQ⟩ := hP₁
[GOAL]
case neg.intro
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
P₁ : AdjoinRoot (minpoly R x)
P : R[X]
hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁
hPzero : ¬P = 0
Q : R[X]
hQ : P = minpoly R x * Q
⊢ P₁ = 0
[PROOFSTEP]
rw [← hP, hQ, RingHom.map_mul, mk_self, zero_mul]
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
hx : IsIntegral R x
⊢ (adjoin.powerBasis' hx).gen = { val := x, property := (_ : x ∈ adjoin R {x}) }
[PROOFSTEP]
rw [Algebra.adjoin.powerBasis', PowerBasis.map_gen, AdjoinRoot.powerBasis'_gen, equivAdjoin, AlgEquiv.ofBijective_apply,
Minpoly.toAdjoin, liftHom_root]
[GOAL]
R : Type u_1
S : Type u_2
inst✝⁶ : CommRing R
inst✝⁵ : CommRing S
inst✝⁴ : IsDomain R
inst✝³ : Algebra R S
inst✝² : IsDomain S
inst✝¹ : NoZeroSMulDivisors R S
inst✝ : IsIntegrallyClosed R
x : S
B : PowerBasis R S
hint : IsIntegral R x
hx : B.gen ∈ adjoin R {x}
⊢ (PowerBasis.ofGenMemAdjoin' B hint hx).gen = x
[PROOFSTEP]
simp [PowerBasis.ofGenMemAdjoin']
|
{"mathlib_filename": "Mathlib.FieldTheory.Minpoly.IsIntegrallyClosed", "llama_tokens": 13071}
|
[GOAL]
α✝ : Sort u_1
β✝ : Sort u_2
γ : Sort u_3
p✝ q✝ : α✝ → Prop
α β : Sort u_4
p : α → Prop
q : β → Prop
a : { x // p x }
b : { y // q y }
h : α = β
h' : HEq p q
⊢ HEq a b ↔ HEq ↑a ↑b
[PROOFSTEP]
subst h
[GOAL]
α✝ : Sort u_1
β : Sort u_2
γ : Sort u_3
p✝ q✝ : α✝ → Prop
α : Sort u_4
p : α → Prop
a : { x // p x }
q : α → Prop
b : { y // q y }
h' : HEq p q
⊢ HEq a b ↔ HEq ↑a ↑b
[PROOFSTEP]
subst h'
[GOAL]
α✝ : Sort u_1
β : Sort u_2
γ : Sort u_3
p✝ q : α✝ → Prop
α : Sort u_4
p : α → Prop
a b : { y // p y }
⊢ HEq a b ↔ HEq ↑a ↑b
[PROOFSTEP]
rw [heq_iff_eq, heq_iff_eq, ext_iff]
[GOAL]
α : Sort u_1
β : Sort u_2
γ : Sort u_3
p q : α → Prop
a : Subtype p
b : α
⊢ (∃ h, { val := b, property := h } = a) ↔ b = ↑a
[PROOFSTEP]
simp only [@eq_comm _ b, exists_eq_subtype_mk_iff, @eq_comm _ _ a]
[GOAL]
α✝ : Sort u_1
β✝ : Sort u_2
γ : Sort u_3
p✝ q : α✝ → Prop
α : Sort u_5
β : α → Type u_4
f : (x : α) → β x
p : α → Prop
x : Subtype p
⊢ restrict p f x = f ↑x
[PROOFSTEP]
rfl
[GOAL]
α✝ : Sort u_1
β✝ : Sort u_2
γ : Sort u_3
p✝ q : α✝ → Prop
α : Sort u_5
β : α → Type u_4
ne : ∀ (a : α), Nonempty (β a)
p : α → Prop
⊢ Surjective fun f => restrict p f
[PROOFSTEP]
letI := Classical.decPred p
[GOAL]
α✝ : Sort u_1
β✝ : Sort u_2
γ : Sort u_3
p✝ q : α✝ → Prop
α : Sort u_5
β : α → Type u_4
ne : ∀ (a : α), Nonempty (β a)
p : α → Prop
this : DecidablePred p := Classical.decPred p
⊢ Surjective fun f => restrict p f
[PROOFSTEP]
refine' fun f ↦ ⟨fun x ↦ if h : p x then f ⟨x, h⟩ else Nonempty.some (ne x), funext <| _⟩
[GOAL]
α✝ : Sort u_1
β✝ : Sort u_2
γ : Sort u_3
p✝ q : α✝ → Prop
α : Sort u_5
β : α → Type u_4
ne : ∀ (a : α), Nonempty (β a)
p : α → Prop
this : DecidablePred p := Classical.decPred p
f : (x : Subtype p) → β ↑x
⊢ ∀ (x : Subtype p),
(fun f => restrict p f)
(fun x => if h : p x then f { val := x, property := h } else Nonempty.some (_ : Nonempty (β x))) x =
f x
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case mk
α✝ : Sort u_1
β✝ : Sort u_2
γ : Sort u_3
p✝ q : α✝ → Prop
α : Sort u_5
β : α → Type u_4
ne : ∀ (a : α), Nonempty (β a)
p : α → Prop
this : DecidablePred p := Classical.decPred p
f : (x : Subtype p) → β ↑x
x : α
hx : p x
⊢ (fun f => restrict p f)
(fun x => if h : p x then f { val := x, property := h } else Nonempty.some (_ : Nonempty (β x)))
{ val := x, property := hx } =
f { val := x, property := hx }
[PROOFSTEP]
exact dif_pos hx
[GOAL]
α✝ : Sort u_1
β✝ : Sort u_2
γ : Sort u_3
p✝ q : α✝ → Prop
α : Sort u_4
β : Sort u_5
f : α → β
p : β → Prop
h : ∀ (a : α), p (f a)
hf : Injective f
x y : α
hxy : coind f h x = coind f h y
⊢ f x = f y
[PROOFSTEP]
apply congr_arg Subtype.val hxy
|
{"mathlib_filename": "Mathlib.Data.Subtype", "llama_tokens": 1384}
|
[GOAL]
α : Type ?u.337
lt : α → α → Bool
a : Array α
i : Fin (Array.size a)
left : ℕ := 2 * ↑i + 1
right : ℕ := left + 1
⊢ ↑i ≤ 2 * ↑i
[PROOFSTEP]
rw [Nat.succ_mul, Nat.one_mul]
[GOAL]
α : Type ?u.337
lt : α → α → Bool
a : Array α
i : Fin (Array.size a)
left : ℕ := 2 * ↑i + 1
right : ℕ := left + 1
⊢ ↑i ≤ ↑i + ↑i
[PROOFSTEP]
exact Nat.le_add_left i i
[GOAL]
α : Type ?u.337
lt : α → α → Bool
a : Array α
i : Fin (Array.size a)
left : ℕ := 2 * ↑i + 1
right : ℕ := left + 1
left_le : ↑i ≤ left
right_le : ↑i ≤ right
i_le : i ≤ i
j✝ j : { j // i ≤ j }
h : ¬↑i = ↑↑j
a' : Array α := Array.swap a i ↑j
⊢ ↑↑j < Array.size a'
[PROOFSTEP]
rw [a.size_swap i j]
[GOAL]
α : Type ?u.337
lt : α → α → Bool
a : Array α
i : Fin (Array.size a)
left : ℕ := 2 * ↑i + 1
right : ℕ := left + 1
left_le : ↑i ≤ left
right_le : ↑i ≤ right
i_le : i ≤ i
j✝ j : { j // i ≤ j }
h : ¬↑i = ↑↑j
a' : Array α := Array.swap a i ↑j
⊢ ↑↑j < Array.size a
[PROOFSTEP]
exact j.1.2
[GOAL]
α : Type ?u.337
lt : α → α → Bool
a : Array α
i : Fin (Array.size a)
left : ℕ := 2 * ↑i + 1
right : ℕ := left + 1
left_le : ↑i ≤ left
right_le : ↑i ≤ right
i_le : i ≤ i
j✝ j : { j // i ≤ j }
h : ¬↑i = ↑↑j
a' : Array α := Array.swap a i ↑j
j' : Fin (Array.size a') := { val := ↑↑j, isLt := ?m.5009 }
⊢ Array.size a' - ↑↑j < Array.size a - ↑i
[PROOFSTEP]
rw [a.size_swap i j]
[GOAL]
α : Type ?u.337
lt : α → α → Bool
a : Array α
i : Fin (Array.size a)
left : ℕ := 2 * ↑i + 1
right : ℕ := left + 1
left_le : ↑i ≤ left
right_le : ↑i ≤ right
i_le : i ≤ i
j✝ j : { j // i ≤ j }
h : ¬↑i = ↑↑j
a' : Array α := Array.swap a i ↑j
j' : Fin (Array.size a') := { val := ↑↑j, isLt := ?m.5009 }
⊢ Array.size a - ↑↑j < Array.size a - ↑i
[PROOFSTEP]
exact Nat.sub_lt_sub_left i.2 <| Nat.lt_of_le_of_ne j.2 h
[GOAL]
α : Type u_1
a : Array α
i : Fin (Array.size a)
left : ℕ := 2 * ↑i + 1
right : ℕ := left + 1
left_le : ↑i ≤ left
right_le : ↑i ≤ right
i_le : i ≤ i
j : { j // i ≤ j }
h : ¬↑i = ↑↑j
a' : Array α := Array.swap a i ↑j
j' : Fin (Array.size a') := { val := ↑↑j, isLt := (_ : ↑↑j < Array.size a') }
this : Array.size a' - ↑↑j < Array.size a - ↑i
⊢ (invImage (fun a => PSigma.casesOn a fun a snd => Array.size a - ↑snd) instWellFoundedRelation).1
{ fst := a', snd := j' } { fst := a, snd := i }
[PROOFSTEP]
assumption
[GOAL]
α : Type ?u.8277
lt : α → α → Bool
a : Array α
i : Fin (Array.size a)
i0 : ¬↑i = 0
this : (↑i - 1) / 2 < ↑i
j : Fin (Array.size a) := { val := (↑i - 1) / 2, isLt := (_ : (↑i - 1) / 2 < Array.size a) }
a' : Array α := Array.swap a i j
⊢ ↑j < Array.size a'
[PROOFSTEP]
rw [a.size_swap i j]
[GOAL]
α : Type ?u.8277
lt : α → α → Bool
a : Array α
i : Fin (Array.size a)
i0 : ¬↑i = 0
this : (↑i - 1) / 2 < ↑i
j : Fin (Array.size a) := { val := (↑i - 1) / 2, isLt := (_ : (↑i - 1) / 2 < Array.size a) }
a' : Array α := Array.swap a i j
⊢ ↑j < Array.size a
[PROOFSTEP]
exact j.2
[GOAL]
α : Type u_1
lt : α → α → Bool
a : Array α
i : Fin (Array.size a)
i0 : ¬↑i = 0
this : (↑i - 1) / 2 < ↑i
j : Fin (Array.size a) := { val := (↑i - 1) / 2, isLt := (_ : (↑i - 1) / 2 < Array.size a) }
h✝ : lt (Array.get a j) (Array.get a i) = true
a' : Array α := Array.swap a i j
⊢ (invImage (fun a => PSigma.casesOn a fun a snd => ↑snd) instWellFoundedRelation).1
{ fst := a', snd := { val := ↑j, isLt := (_ : ↑j < Array.size a') } } { fst := a, snd := i }
[PROOFSTEP]
assumption
[GOAL]
α : Type ?u.10435
lt : α → α → Bool
self : BinaryHeap α lt
x : α
n : ℕ := size self
⊢ n < Array.size (Array.push self.arr x)
[PROOFSTEP]
rw [Array.size_push]
[GOAL]
α : Type ?u.10435
lt : α → α → Bool
self : BinaryHeap α lt
x : α
n : ℕ := size self
⊢ n < Array.size self.arr + 1
[PROOFSTEP]
apply Nat.lt_succ_self
[GOAL]
α : Type u_1
lt : α → α → Bool
self : BinaryHeap α lt
x : α
⊢ size (insert self x) = size self + 1
[PROOFSTEP]
simp [insert, size, size_heapifyUp]
[GOAL]
α : Type ?u.11234
lt : α → α → Bool
self : BinaryHeap α lt
e : Array.size self.arr = 0
⊢ size self = size self - 1
[PROOFSTEP]
simp [size, e]
[GOAL]
α : Type ?u.11234
lt : α → α → Bool
self : BinaryHeap α lt
n : ℕ
e : Array.size self.arr = Nat.succ n
⊢ 0 < Array.size self.arr
[PROOFSTEP]
rw [e]
[GOAL]
α : Type ?u.11234
lt : α → α → Bool
self : BinaryHeap α lt
n : ℕ
e : Array.size self.arr = Nat.succ n
⊢ 0 < Nat.succ n
[PROOFSTEP]
apply Nat.succ_pos
[GOAL]
α : Type ?u.11234
lt : α → α → Bool
self : BinaryHeap α lt
n : ℕ
e : Array.size self.arr = Nat.succ n
h0 : 0 < Array.size self.arr
⊢ n < Array.size self.arr
[PROOFSTEP]
rw [e]
[GOAL]
α : Type ?u.11234
lt : α → α → Bool
self : BinaryHeap α lt
n : ℕ
e : Array.size self.arr = Nat.succ n
h0 : 0 < Array.size self.arr
⊢ n < Nat.succ n
[PROOFSTEP]
apply Nat.lt_succ_self
[GOAL]
α : Type ?u.11234
lt : α → α → Bool
self : BinaryHeap α lt
n : ℕ
e : Array.size self.arr = Nat.succ n
h0 : 0 < Array.size self.arr
hn : n < Array.size self.arr
hn0 : 0 < n
a : Array α := Array.pop (Array.swap self.arr { val := 0, isLt := h0 } { val := n, isLt := hn })
⊢ 0 < Array.size a
[PROOFSTEP]
rwa [Array.size_pop, Array.size_swap, e]
[GOAL]
α : Type ?u.11234
lt : α → α → Bool
self : BinaryHeap α lt
n : ℕ
e : Array.size self.arr = Nat.succ n
h0 : 0 < Array.size self.arr
hn : n < Array.size self.arr
hn0 : 0 < n
a : Array α := Array.pop (Array.swap self.arr { val := 0, isLt := h0 } { val := n, isLt := hn })
⊢ size { arr := ↑(heapifyDown lt a { val := 0, isLt := (_ : 0 < Array.size a) }) } = size self - 1
[PROOFSTEP]
simp [size]
[GOAL]
α : Type ?u.11234
lt : α → α → Bool
self : BinaryHeap α lt
n : ℕ
e : Array.size self.arr = Nat.succ n
h0 : 0 < Array.size self.arr
hn : n < Array.size self.arr
hn0 : ¬0 < n
⊢ size { arr := Array.pop self.arr } = size self - 1
[PROOFSTEP]
simp [size]
[GOAL]
α : Type u_1
x : α
lt : α → α → Bool
self : BinaryHeap α lt
e : max self = some x
h : ¬0 < Array.size self.arr
⊢ False
[PROOFSTEP]
simp [BinaryHeap.max, Array.get?, h] at e
[GOAL]
α : Type ?u.16836
lt : α → α → Bool
self : BinaryHeap α lt
x m : α
e : max self = some m
a : Array α := Array.set self.arr { val := 0, isLt := (_ : 0 < size self) } x
⊢ 0 < Array.size a
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.16836
lt : α → α → Bool
self : BinaryHeap α lt
x m : α
e : max self = some m
a : Array α := Array.set self.arr { val := 0, isLt := (_ : 0 < size self) } x
⊢ 0 < Array.size self.arr
[PROOFSTEP]
exact size_pos_of_max e
[GOAL]
α : Type ?u.18030
lt : α → α → Bool
self : BinaryHeap α lt
x m : α
e : max self = some m
a : Array α := Array.set self.arr { val := 0, isLt := (_ : 0 < size self) } x
⊢ 0 < Array.size a
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.18030
lt : α → α → Bool
self : BinaryHeap α lt
x m : α
e : max self = some m
a : Array α := Array.set self.arr { val := 0, isLt := (_ : 0 < size self) } x
⊢ 0 < Array.size self.arr
[PROOFSTEP]
exact size_pos_of_max e
[GOAL]
α : Type ?u.19048
lt : α → α → Bool
self : BinaryHeap α lt
i : Fin (size self)
x : α
⊢ ↑i < Array.size (Array.set self.arr i x)
[PROOFSTEP]
rw [self.1.size_set]
[GOAL]
α : Type ?u.19048
lt : α → α → Bool
self : BinaryHeap α lt
i : Fin (size self)
x : α
⊢ ↑i < Array.size self.arr
[PROOFSTEP]
exact i.2
[GOAL]
α : Type ?u.19626
lt : α → α → Bool
self : BinaryHeap α lt
i : Fin (size self)
x : α
⊢ ↑i < Array.size (Array.set self.arr i x)
[PROOFSTEP]
rw [self.1.size_set]
[GOAL]
α : Type ?u.19626
lt : α → α → Bool
self : BinaryHeap α lt
i : Fin (size self)
x : α
⊢ ↑i < Array.size self.arr
[PROOFSTEP]
exact i.2
[GOAL]
α : Type ?u.20451
a✝ : Array α
lt : α → α → Bool
gt : α → α → Bool := fun y x => lt x y
a : BinaryHeap α gt
out : Array α
x : α
e : BinaryHeap.max a = some x
⊢ BinaryHeap.size (BinaryHeap.popMax a) < BinaryHeap.size a
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.20451
a✝ : Array α
lt : α → α → Bool
gt : α → α → Bool := fun y x => lt x y
a : BinaryHeap α gt
out : Array α
x : α
e : BinaryHeap.max a = some x
⊢ BinaryHeap.size a - 1 < BinaryHeap.size a
[PROOFSTEP]
exact Nat.sub_lt (BinaryHeap.size_pos_of_max e) Nat.zero_lt_one
[GOAL]
α : Type u_1
lt : α → α → Bool
a : BinaryHeap α fun y x => lt x y
out : Array α
gt : α → α → Bool := fun y x => lt x y
x : α
e : BinaryHeap.max a = some x
this : BinaryHeap.size (BinaryHeap.popMax a) < BinaryHeap.size a
⊢ (invImage (fun a => PSigma.casesOn a fun a snd => BinaryHeap.size a) instWellFoundedRelation).1
{ fst := BinaryHeap.popMax a, snd := push out x } { fst := a, snd := out }
[PROOFSTEP]
assumption
|
{"mathlib_filename": "Mathlib.Data.BinaryHeap", "llama_tokens": 4068}
|
{"mathlib_filename": "Mathlib.Data.TwoPointing", "llama_tokens": 0}
|
|
[GOAL]
α : Type u_1
m n : ℕ
a : α
v : Vector3 α n
i : Fin2 (succ n)
⊢ α
[PROOFSTEP]
refine' i.cases' _ _
[GOAL]
case refine'_1
α : Type u_1
m n : ℕ
a : α
v : Vector3 α n
i : Fin2 (succ n)
⊢ α
case refine'_2 α : Type u_1 m n : ℕ a : α v : Vector3 α n i : Fin2 (succ n) ⊢ Fin2 n → α
[PROOFSTEP]
exact a
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a : α
v : Vector3 α n
i : Fin2 (succ n)
⊢ Fin2 n → α
[PROOFSTEP]
exact v
[GOAL]
α : Type u_1
m n : ℕ
C : Vector3 α 0 → Sort u
H : C []
v : Vector3 α 0
⊢ C v
[PROOFSTEP]
rw [eq_nil v]
[GOAL]
α : Type u_1
m n : ℕ
C : Vector3 α 0 → Sort u
H : C []
v : Vector3 α 0
⊢ C []
[PROOFSTEP]
apply H
[GOAL]
α : Type u_1
m n : ℕ
C : Vector3 α (succ n) → Sort u
H : (a : α) → (t : Vector3 α n) → C (a :: t)
v : Vector3 α (succ n)
⊢ C v
[PROOFSTEP]
rw [← cons_head_tail v]
[GOAL]
α : Type u_1
m n : ℕ
C : Vector3 α (succ n) → Sort u
H : (a : α) → (t : Vector3 α n) → C (a :: t)
v : Vector3 α (succ n)
⊢ C (head v :: tail v)
[PROOFSTEP]
apply H
[GOAL]
α : Type u_1
m✝ n✝ m : ℕ
v : Vector3 α (succ m)
n : ℕ
w : Vector3 α n
a : α
_t : Vector3 α m
⊢ ((a :: _t) +-+ w) (left n fz) = (a :: _t) fz
[PROOFSTEP]
simp [*, left]
[GOAL]
α : Type u_1
m✝ n✝ m : ℕ
i : Fin2 m
v : Vector3 α (succ m)
n : ℕ
w : Vector3 α n
_a : α
t : Vector3 α m
⊢ ((_a :: t) +-+ w) (left n (fs i)) = (_a :: t) (fs i)
[PROOFSTEP]
simp [append_left, left]
[GOAL]
α : Type u_1
m✝ n✝ m : ℕ
v : Vector3 α (succ m)
n : ℕ
w : Vector3 α n
i : Fin2 n
_a : α
t : Vector3 α m
⊢ ((_a :: t) +-+ w) (add i (succ m)) = w i
[PROOFSTEP]
simp [append_add, add]
[GOAL]
α : Type u_1
m n : ℕ
a : α
v : Vector3 α n
⊢ insert a v fz = a :: v
[PROOFSTEP]
refine' funext fun j => j.cases' _ _
[GOAL]
case refine'_1
α : Type u_1
m n : ℕ
a : α
v : Vector3 α n
j : Fin2 (succ n)
⊢ insert a v fz fz = (a :: v) fz
[PROOFSTEP]
intros
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a : α
v : Vector3 α n
j : Fin2 (succ n)
⊢ ∀ (n_1 : Fin2 n), insert a v fz (fs n_1) = (a :: v) (fs n_1)
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α : Type u_1
m n : ℕ
a : α
v : Vector3 α n
j : Fin2 (succ n)
⊢ insert a v fz fz = (a :: v) fz
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a : α
v : Vector3 α n
j : Fin2 (succ n)
n✝ : Fin2 n
⊢ insert a v fz (fs n✝) = (a :: v) (fs n✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
m n : ℕ
a b : α
v : Vector3 α n
i : Fin2 (succ n)
j : Fin2 (succ (succ n))
⊢ insert a (b :: v) (fs i) j = (b :: insert a v i) j
[PROOFSTEP]
refine' j.cases' _ fun j => _
[GOAL]
case refine'_1
α : Type u_1
m n : ℕ
a b : α
v : Vector3 α n
i : Fin2 (succ n)
j : Fin2 (succ (succ n))
⊢ insert a (b :: v) (fs i) fz = (b :: insert a v i) fz
[PROOFSTEP]
simp [insert, insertPerm]
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a b : α
v : Vector3 α n
i : Fin2 (succ n)
j✝ : Fin2 (succ (succ n))
j : Fin2 (n + 1)
⊢ insert a (b :: v) (fs i) (fs j) = (b :: insert a v i) (fs j)
[PROOFSTEP]
simp [insert, insertPerm]
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a b : α
v : Vector3 α n
i : Fin2 (succ n)
j✝ : Fin2 (succ (succ n))
j : Fin2 (n + 1)
⊢ (a :: b :: v)
(match insertPerm i j with
| fz => fz
| fs k => fs (fs k)) =
(a :: v) (insertPerm i j)
[PROOFSTEP]
refine' Fin2.cases' _ _ (insertPerm i j)
[GOAL]
case refine'_2.refine'_1
α : Type u_1
m n : ℕ
a b : α
v : Vector3 α n
i : Fin2 (succ n)
j✝ : Fin2 (succ (succ n))
j : Fin2 (n + 1)
⊢ (a :: b :: v)
(match fz with
| fz => fz
| fs k => fs (fs k)) =
(a :: v) fz
[PROOFSTEP]
simp [insertPerm]
[GOAL]
case refine'_2.refine'_2
α : Type u_1
m n : ℕ
a b : α
v : Vector3 α n
i : Fin2 (succ n)
j✝ : Fin2 (succ (succ n))
j : Fin2 (n + 1)
⊢ ∀ (n_1 : Fin2 n),
(a :: b :: v)
(match fs n_1 with
| fz => fz
| fs k => fs (fs k)) =
(a :: v) (fs n_1)
[PROOFSTEP]
simp [insertPerm]
[GOAL]
α : Type u_1
m n : ℕ
a : α
t : Vector3 α m
v : Vector3 α n
i : Fin2 (succ n)
e : succ n + m = succ (n + m)
⊢ insert a (t +-+ v) (Eq.recOn e (add i m)) = Eq.recOn e (t +-+ insert a v i)
[PROOFSTEP]
refine' Vector3.recOn t (fun e => _) (@fun k b t IH _ => _) e
[GOAL]
case refine'_1
α : Type u_1
m n : ℕ
a : α
t : Vector3 α m
v : Vector3 α n
i : Fin2 (succ n)
e✝ : succ n + m = succ (n + m)
e : succ n + 0 = succ (n + 0)
⊢ insert a ([] +-+ v) (Eq.recOn e (add i 0)) = Eq.recOn e ([] +-+ insert a v i)
case refine'_2
α : Type u_1
m n : ℕ
a : α
t✝ : Vector3 α m
v : Vector3 α n
i : Fin2 (succ n)
e : succ n + m = succ (n + m)
k : ℕ
b : α
t : Vector3 α k
IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i)
x✝ : succ n + succ k = succ (n + succ k)
⊢ insert a ((b :: t) +-+ v) (Eq.recOn x✝ (add i (succ k))) = Eq.recOn x✝ ((b :: t) +-+ insert a v i)
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a : α
t✝ : Vector3 α m
v : Vector3 α n
i : Fin2 (succ n)
e : succ n + m = succ (n + m)
k : ℕ
b : α
t : Vector3 α k
IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i)
x✝ : succ n + succ k = succ (n + succ k)
⊢ insert a ((b :: t) +-+ v) (Eq.recOn x✝ (add i (succ k))) = Eq.recOn x✝ ((b :: t) +-+ insert a v i)
[PROOFSTEP]
have e' := succ_add n k
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a : α
t✝ : Vector3 α m
v : Vector3 α n
i : Fin2 (succ n)
e : succ n + m = succ (n + m)
k : ℕ
b : α
t : Vector3 α k
IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i)
x✝ : succ n + succ k = succ (n + succ k)
e' : succ n + k = succ (n + k)
⊢ insert a ((b :: t) +-+ v) (Eq.recOn x✝ (add i (succ k))) = Eq.recOn x✝ ((b :: t) +-+ insert a v i)
[PROOFSTEP]
change
insert a (b :: t +-+ v) (Eq.recOn (congr_arg succ e') (fs (add i k))) =
Eq.recOn (congr_arg succ e') (b :: t +-+ insert a v i)
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a : α
t✝ : Vector3 α m
v : Vector3 α n
i : Fin2 (succ n)
e : succ n + m = succ (n + m)
k : ℕ
b : α
t : Vector3 α k
IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i)
x✝ : succ n + succ k = succ (n + succ k)
e' : succ n + k = succ (n + k)
⊢ insert a (b :: t +-+ v) (Eq.recOn (_ : succ (succ n + k) = succ (succ (n + k))) (fs (add i k))) =
Eq.recOn (_ : succ (succ n + k) = succ (succ (n + k))) (b :: t +-+ insert a v i)
[PROOFSTEP]
rw [←
(Eq.recOn e' rfl : fs (Eq.recOn e' (i.add k) : Fin2 (succ (n + k))) = Eq.recOn (congr_arg succ e') (fs (i.add k)))]
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a : α
t✝ : Vector3 α m
v : Vector3 α n
i : Fin2 (succ n)
e : succ n + m = succ (n + m)
k : ℕ
b : α
t : Vector3 α k
IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i)
x✝ : succ n + succ k = succ (n + succ k)
e' : succ n + k = succ (n + k)
⊢ insert a (b :: t +-+ v) (fs (Eq.recOn e' (add i k))) =
Eq.recOn (_ : succ (succ n + k) = succ (succ (n + k))) (b :: t +-+ insert a v i)
[PROOFSTEP]
simp
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a : α
t✝ : Vector3 α m
v : Vector3 α n
i : Fin2 (succ n)
e : succ n + m = succ (n + m)
k : ℕ
b : α
t : Vector3 α k
IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i)
x✝ : succ n + succ k = succ (n + succ k)
e' : succ n + k = succ (n + k)
⊢ (b :: insert a (t +-+ v) (e' ▸ add i k)) = (_ : succ (succ n + k) = succ (succ (n + k))) ▸ b :: t +-+ insert a v i
[PROOFSTEP]
rw [IH]
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
a : α
t✝ : Vector3 α m
v : Vector3 α n
i : Fin2 (succ n)
e : succ n + m = succ (n + m)
k : ℕ
b : α
t : Vector3 α k
IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i)
x✝ : succ n + succ k = succ (n + succ k)
e' : succ n + k = succ (n + k)
⊢ (b :: Eq.recOn e' (t +-+ insert a v i)) = (_ : succ (succ n + k) = succ (succ (n + k))) ▸ b :: t +-+ insert a v i
[PROOFSTEP]
exact Eq.recOn e' rfl
[GOAL]
α : Type u_1
m n : ℕ
f : Vector3 α 0 → Prop
x✝ : Exists f
v : Vector3 α 0
fv : f v
⊢ f []
[PROOFSTEP]
rw [← eq_nil v]
[GOAL]
α : Type u_1
m n : ℕ
f : Vector3 α 0 → Prop
x✝ : Exists f
v : Vector3 α 0
fv : f v
⊢ f v
[PROOFSTEP]
exact fv
[GOAL]
α : Type u_1
m n : ℕ
f : Vector3 α (succ n) → Prop
x✝ : Exists f
v : Vector3 α (succ n)
fv : f v
⊢ f (?m.40396 f x✝ v fv :: ?m.40397 f x✝ v fv)
[PROOFSTEP]
rw [cons_head_tail v]
[GOAL]
α : Type u_1
m n : ℕ
f : Vector3 α (succ n) → Prop
x✝ : Exists f
v : Vector3 α (succ n)
fv : f v
⊢ f v
[PROOFSTEP]
exact fv
[GOAL]
α : Type u_1
m n : ℕ
p : α → Prop
v : Vector3 α n
⊢ VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)
[PROOFSTEP]
refine' v.recOn _ _
[GOAL]
case refine'_1
α : Type u_1
m n : ℕ
p : α → Prop
v : Vector3 α n
⊢ VectorAllP p [] ↔ ∀ (i : Fin2 0), p []
[PROOFSTEP]
exact ⟨fun _ => Fin2.elim0, fun _ => trivial⟩
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
p : α → Prop
v : Vector3 α n
⊢ ∀ {n : ℕ} (a : α) (w : Vector3 α n),
(VectorAllP p w ↔ ∀ (i : Fin2 n), p (w i)) → (VectorAllP p (a :: w) ↔ ∀ (i : Fin2 (succ n)), p ((a :: w) i))
[PROOFSTEP]
simp only [vectorAllP_cons]
[GOAL]
case refine'_2
α : Type u_1
m n : ℕ
p : α → Prop
v : Vector3 α n
⊢ ∀ {n : ℕ} (a : α) (w : Vector3 α n),
(VectorAllP p w ↔ ∀ (i : Fin2 n), p (w i)) → (p a ∧ VectorAllP p w ↔ ∀ (i : Fin2 (succ n)), p ((a :: w) i))
[PROOFSTEP]
refine' fun {n} a v IH =>
(and_congr_right fun _ => IH).trans
⟨fun ⟨pa, h⟩ i => by
refine' i.cases' _ _
exacts [pa, h], fun h => ⟨_, fun i => _⟩⟩
[GOAL]
α : Type u_1
m n✝ : ℕ
p : α → Prop
v✝ : Vector3 α n✝
n : ℕ
a : α
v : Vector3 α n
IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)
x✝ : p a ∧ ∀ (i : Fin2 n), p (v i)
i : Fin2 (succ n)
pa : p a
h : ∀ (i : Fin2 n), p (v i)
⊢ p ((a :: v) i)
[PROOFSTEP]
refine' i.cases' _ _
[GOAL]
case refine'_1
α : Type u_1
m n✝ : ℕ
p : α → Prop
v✝ : Vector3 α n✝
n : ℕ
a : α
v : Vector3 α n
IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)
x✝ : p a ∧ ∀ (i : Fin2 n), p (v i)
i : Fin2 (succ n)
pa : p a
h : ∀ (i : Fin2 n), p (v i)
⊢ p ((a :: v) fz)
case refine'_2
α : Type u_1
m n✝ : ℕ
p : α → Prop
v✝ : Vector3 α n✝
n : ℕ
a : α
v : Vector3 α n
IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)
x✝ : p a ∧ ∀ (i : Fin2 n), p (v i)
i : Fin2 (succ n)
pa : p a
h : ∀ (i : Fin2 n), p (v i)
⊢ ∀ (n_1 : Fin2 n), p ((a :: v) (fs n_1))
[PROOFSTEP]
exacts [pa, h]
[GOAL]
case refine'_2.refine'_1
α : Type u_1
m n✝ : ℕ
p : α → Prop
v✝ : Vector3 α n✝
n : ℕ
a : α
v : Vector3 α n
IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)
h : ∀ (i : Fin2 (succ n)), p ((a :: v) i)
⊢ p a
[PROOFSTEP]
simpa using h fz
[GOAL]
case refine'_2.refine'_2
α : Type u_1
m n✝ : ℕ
p : α → Prop
v✝ : Vector3 α n✝
n : ℕ
a : α
v : Vector3 α n
IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)
h : ∀ (i : Fin2 (succ n)), p ((a :: v) i)
i : Fin2 n
⊢ p (v i)
[PROOFSTEP]
simpa using h (fs i)
|
{"mathlib_filename": "Mathlib.Data.Vector3", "llama_tokens": 5594}
|
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x1 x2 y : ℕ × K
H : R K p x1 x2
n : ℕ
x : K
⊢ R K p ((n, x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n, x).snd * (↑(frobenius K p))^[(n, x).fst] y.snd)
((n + 1, ↑(frobenius K p) x).fst + y.fst,
(↑(frobenius K p))^[y.fst] (n + 1, ↑(frobenius K p) x).snd *
(↑(frobenius K p))^[(n + 1, ↑(frobenius K p) x).fst] y.snd)
[PROOFSTEP]
rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_mul, Nat.succ_add]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x1 x2 y : ℕ × K
H : R K p x1 x2
n : ℕ
x : K
⊢ R K p ((n, x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n, x).snd * (↑(frobenius K p))^[(n, x).fst] y.snd)
(Nat.succ (n + y.fst), ↑(frobenius K p) ((↑(frobenius K p))^[y.fst] x * (↑(frobenius K p))^[n] y.snd))
[PROOFSTEP]
apply R.intro
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y1 y2 : ℕ × K
H : R K p y1 y2
n : ℕ
y : K
⊢ R K p (x.fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] x.snd * (↑(frobenius K p))^[x.fst] (n, y).snd)
(x.fst + (n + 1, ↑(frobenius K p) y).fst,
(↑(frobenius K p))^[(n + 1, ↑(frobenius K p) y).fst] x.snd *
(↑(frobenius K p))^[x.fst] (n + 1, ↑(frobenius K p) y).snd)
[PROOFSTEP]
rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_mul]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y1 y2 : ℕ × K
H : R K p y1 y2
n : ℕ
y : K
⊢ R K p (x.fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] x.snd * (↑(frobenius K p))^[x.fst] (n, y).snd)
(x.fst + (n + 1, ↑(frobenius K p) y).fst,
↑(frobenius K p) ((↑(frobenius K p))^[n] x.snd * (↑(frobenius K p))^[x.fst] y))
[PROOFSTEP]
apply R.intro
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Mul (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ Quot.mk (R K p) (m, x) * Quot.mk (R K p) (n, y) * Quot.mk (R K p) (s, z) =
Quot.mk (R K p) (m, x) * (Quot.mk (R K p) (n, y) * Quot.mk (R K p) (s, z))
[PROOFSTEP]
simp only [quot_mk_eq_mk, mk_mul_mk]
-- Porting note: added this line
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Mul (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ mk K p
(m + n + s,
(↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) =
mk K p
(m + (n + s),
(↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z))
[PROOFSTEP]
apply congr_arg (Quot.mk _)
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Mul (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ (m + n + s,
(↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) =
(m + (n + s),
(↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z))
[PROOFSTEP]
simp only [add_assoc, mul_assoc, iterate_map_mul, ← iterate_add_apply, add_comm, add_left_comm]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Mul (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
n : ℕ
x : K
⊢ ((0, 1).fst + (n, x).fst, (↑(frobenius K p))^[(n, x).fst] (0, 1).snd * (↑(frobenius K p))^[(0, 1).fst] (n, x).snd) =
(n, x)
[PROOFSTEP]
simp only [RingHom.iterate_map_one, iterate_zero_apply, one_mul, zero_add]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Mul (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
n : ℕ
x : K
⊢ ((n, x).fst + (0, 1).fst, (↑(frobenius K p))^[(0, 1).fst] (n, x).snd * (↑(frobenius K p))^[(n, x).fst] (0, 1).snd) =
(n, x)
[PROOFSTEP]
simp only [RingHom.iterate_map_one, iterate_zero_apply, mul_one, add_zero]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Mul (PerfectClosure K p) := inferInstance
e f : PerfectClosure K p
x✝¹ : ℕ × K
m : ℕ
x : K
x✝ : ℕ × K
n : ℕ
y : K
⊢ ((m, x).fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] (m, x).snd * (↑(frobenius K p))^[(m, x).fst] (n, y).snd) =
((n, y).fst + (m, x).fst, (↑(frobenius K p))^[(m, x).fst] (n, y).snd * (↑(frobenius K p))^[(n, y).fst] (m, x).snd)
[PROOFSTEP]
simp only [add_comm, mul_comm]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x1 x2 y : ℕ × K
H : R K p x1 x2
n : ℕ
x : K
⊢ R K p ((n, x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n, x).snd + (↑(frobenius K p))^[(n, x).fst] y.snd)
((n + 1, ↑(frobenius K p) x).fst + y.fst,
(↑(frobenius K p))^[y.fst] (n + 1, ↑(frobenius K p) x).snd +
(↑(frobenius K p))^[(n + 1, ↑(frobenius K p) x).fst] y.snd)
[PROOFSTEP]
rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_add, Nat.succ_add]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x1 x2 y : ℕ × K
H : R K p x1 x2
n : ℕ
x : K
⊢ R K p ((n, x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n, x).snd + (↑(frobenius K p))^[(n, x).fst] y.snd)
(Nat.succ (n + y.fst), ↑(frobenius K p) ((↑(frobenius K p))^[y.fst] x + (↑(frobenius K p))^[n] y.snd))
[PROOFSTEP]
apply R.intro
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y1 y2 : ℕ × K
H : R K p y1 y2
n : ℕ
y : K
⊢ R K p (x.fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] x.snd + (↑(frobenius K p))^[x.fst] (n, y).snd)
(x.fst + (n + 1, ↑(frobenius K p) y).fst,
(↑(frobenius K p))^[(n + 1, ↑(frobenius K p) y).fst] x.snd +
(↑(frobenius K p))^[x.fst] (n + 1, ↑(frobenius K p) y).snd)
[PROOFSTEP]
rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_add]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y1 y2 : ℕ × K
H : R K p y1 y2
n : ℕ
y : K
⊢ R K p (x.fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] x.snd + (↑(frobenius K p))^[x.fst] (n, y).snd)
(x.fst + (n + 1, ↑(frobenius K p) y).fst,
↑(frobenius K p) ((↑(frobenius K p))^[n] x.snd + (↑(frobenius K p))^[x.fst] y))
[PROOFSTEP]
apply R.intro
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y : ℕ × K
H : R K p x✝ y
n : ℕ
x : K
⊢ R K p ((n, x).fst, -(n, x).snd) ((n + 1, ↑(frobenius K p) x).fst, -(n + 1, ↑(frobenius K p) x).snd)
[PROOFSTEP]
rw [← frobenius_neg]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y : ℕ × K
H : R K p x✝ y
n : ℕ
x : K
⊢ R K p ((n, x).fst, -(n, x).snd) ((n + 1, ↑(frobenius K p) x).fst, ↑(frobenius K p) (-x))
[PROOFSTEP]
apply R.intro
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
⊢ mk K p (n, 0) = 0
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
⊢ mk K p (Nat.zero, 0) = 0
[PROOFSTEP]
rfl
[GOAL]
case succ
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
ih : mk K p (n, 0) = 0
⊢ mk K p (Nat.succ n, 0) = 0
[PROOFSTEP]
rw [← ih]
[GOAL]
case succ
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
ih : mk K p (n, 0) = 0
⊢ mk K p (Nat.succ n, 0) = mk K p (n, 0)
[PROOFSTEP]
symm
[GOAL]
case succ
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
ih : mk K p (n, 0) = 0
⊢ mk K p (n, 0) = mk K p (Nat.succ n, 0)
[PROOFSTEP]
apply Quot.sound
[GOAL]
case succ.a
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
ih : mk K p (n, 0) = 0
⊢ R K p (n, 0) (Nat.succ n, 0)
[PROOFSTEP]
have := R.intro (p := p) n (0 : K)
[GOAL]
case succ.a
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
ih : mk K p (n, 0) = 0
this : R K p (n, 0) (n + 1, ↑(frobenius K p) 0)
⊢ R K p (n, 0) (Nat.succ n, 0)
[PROOFSTEP]
rwa [frobenius_zero K p] at this
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
m n : ℕ
x y : K
H : (↑(frobenius K p))^[m] x = y
⊢ mk K p (n, x) = mk K p (m + n, y)
[PROOFSTEP]
subst H
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
m n : ℕ
x : K
⊢ mk K p (n, x) = mk K p (m + n, (↑(frobenius K p))^[m] x)
[PROOFSTEP]
induction' m with m ih
[GOAL]
case zero
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ mk K p (n, x) = mk K p (Nat.zero + n, (↑(frobenius K p))^[Nat.zero] x)
[PROOFSTEP]
simp only [Nat.zero_eq, zero_add, iterate_zero_apply]
[GOAL]
case succ
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
m : ℕ
ih : mk K p (n, x) = mk K p (m + n, (↑(frobenius K p))^[m] x)
⊢ mk K p (n, x) = mk K p (Nat.succ m + n, (↑(frobenius K p))^[Nat.succ m] x)
[PROOFSTEP]
rw [ih, Nat.succ_add, iterate_succ']
[GOAL]
case succ
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
m : ℕ
ih : mk K p (n, x) = mk K p (m + n, (↑(frobenius K p))^[m] x)
⊢ mk K p (m + n, (↑(frobenius K p))^[m] x) = mk K p (Nat.succ (m + n), (↑(frobenius K p) ∘ (↑(frobenius K p))^[m]) x)
[PROOFSTEP]
apply Quot.sound
[GOAL]
case succ.a
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
m : ℕ
ih : mk K p (n, x) = mk K p (m + n, (↑(frobenius K p))^[m] x)
⊢ R K p (m + n, (↑(frobenius K p))^[m] x) (Nat.succ (m + n), (↑(frobenius K p) ∘ (↑(frobenius K p))^[m]) x)
[PROOFSTEP]
apply R.intro
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝¹ : Add (PerfectClosure K p) := inferInstance
src✝ : Neg (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ Quot.mk (R K p) (m, x) + Quot.mk (R K p) (n, y) + Quot.mk (R K p) (s, z) =
Quot.mk (R K p) (m, x) + (Quot.mk (R K p) (n, y) + Quot.mk (R K p) (s, z))
[PROOFSTEP]
simp only [quot_mk_eq_mk, mk_add_mk]
-- Porting note: added this line
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝¹ : Add (PerfectClosure K p) := inferInstance
src✝ : Neg (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ mk K p
(m + n + s,
(↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) + (↑(frobenius K p))^[m + n] z) =
mk K p
(m + (n + s),
(↑(frobenius K p))^[n + s] x + (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y + (↑(frobenius K p))^[n] z))
[PROOFSTEP]
apply congr_arg (Quot.mk _)
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝¹ : Add (PerfectClosure K p) := inferInstance
src✝ : Neg (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ (m + n + s,
(↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) + (↑(frobenius K p))^[m + n] z) =
(m + (n + s),
(↑(frobenius K p))^[n + s] x + (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y + (↑(frobenius K p))^[n] z))
[PROOFSTEP]
simp only [iterate_map_add, ← iterate_add_apply, add_assoc, add_comm s _]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝¹ : Add (PerfectClosure K p) := inferInstance
src✝ : Neg (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
n : ℕ
x : K
⊢ ((0, 0).fst + (n, x).fst, (↑(frobenius K p))^[(n, x).fst] (0, 0).snd + (↑(frobenius K p))^[(0, 0).fst] (n, x).snd) =
(n, x)
[PROOFSTEP]
simp only [RingHom.iterate_map_zero, iterate_zero_apply, zero_add]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝¹ : Add (PerfectClosure K p) := inferInstance
src✝ : Neg (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
n : ℕ
x : K
⊢ ((n, x).fst + (0, 0).fst, (↑(frobenius K p))^[(0, 0).fst] (n, x).snd + (↑(frobenius K p))^[(n, x).fst] (0, 0).snd) =
(n, x)
[PROOFSTEP]
simp only [RingHom.iterate_map_zero, iterate_zero_apply, add_zero]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝¹ : Add (PerfectClosure K p) := inferInstance
src✝ : Neg (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
n : ℕ
x : K
⊢ -Quot.mk (R K p) (n, x) + Quot.mk (R K p) (n, x) = 0
[PROOFSTEP]
simp only [quot_mk_eq_mk, neg_mk, mk_add_mk, RingHom.iterate_map_neg, add_left_neg, mk_zero]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝¹ : Add (PerfectClosure K p) := inferInstance
src✝ : Neg (PerfectClosure K p) := inferInstance
e f : PerfectClosure K p
x✝¹ : ℕ × K
m : ℕ
x : K
x✝ : ℕ × K
n : ℕ
y : K
⊢ ((m, x).fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] (m, x).snd + (↑(frobenius K p))^[(m, x).fst] (n, y).snd) =
((n, y).fst + (m, x).fst, (↑(frobenius K p))^[(m, x).fst] (n, y).snd + (↑(frobenius K p))^[(n, y).fst] (m, x).snd)
[PROOFSTEP]
simp only [add_comm]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ Quot.mk (R K p) (m, x) * (Quot.mk (R K p) (n, y) + Quot.mk (R K p) (s, z)) =
Quot.mk (R K p) (m, x) * Quot.mk (R K p) (n, y) + Quot.mk (R K p) (m, x) * Quot.mk (R K p) (s, z)
[PROOFSTEP]
simp only [quot_mk_eq_mk, mk_add_mk, mk_mul_mk]
-- Porting note: added this line
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ mk K p
(m + (n + s),
(↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y + (↑(frobenius K p))^[n] z)) =
mk K p
(m + n + (m + s),
(↑(frobenius K p))^[m + s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y) +
(↑(frobenius K p))^[m + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z))
[PROOFSTEP]
simp only [add_assoc, add_comm, add_left_comm]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ mk K p
(m + (n + s),
(↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[n] z + (↑(frobenius K p))^[s] y)) =
mk K p
(m + (m + (n + s)),
(↑(frobenius K p))^[m + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) +
(↑(frobenius K p))^[m + s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y))
[PROOFSTEP]
apply R.sound
[GOAL]
case H
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ (↑(frobenius K p))^[m]
((↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[n] z + (↑(frobenius K p))^[s] y)) =
(↑(frobenius K p))^[m + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) +
(↑(frobenius K p))^[m + s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y)
[PROOFSTEP]
simp only [iterate_map_mul, iterate_map_add, ← iterate_add_apply, mul_add, add_comm, add_left_comm]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ (Quot.mk (R K p) (m, x) + Quot.mk (R K p) (n, y)) * Quot.mk (R K p) (s, z) =
Quot.mk (R K p) (m, x) * Quot.mk (R K p) (s, z) + Quot.mk (R K p) (n, y) * Quot.mk (R K p) (s, z)
[PROOFSTEP]
simp only [quot_mk_eq_mk, mk_add_mk, mk_mul_mk]
-- Porting note: added this line
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ mk K p
(m + n + s,
(↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) =
mk K p
(m + s + (n + s),
(↑(frobenius K p))^[n + s] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) +
(↑(frobenius K p))^[m + s] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z))
[PROOFSTEP]
simp only [add_assoc, add_comm _ s, add_left_comm _ s]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ mk K p
(s + (m + n),
(↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) =
mk K p
(s + (s + (m + n)),
(↑(frobenius K p))^[s + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) +
(↑(frobenius K p))^[s + m] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z))
[PROOFSTEP]
apply R.sound
[GOAL]
case H
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
e f g : PerfectClosure K p
x✝² : ℕ × K
m : ℕ
x : K
x✝¹ : ℕ × K
n : ℕ
y : K
x✝ : ℕ × K
s : ℕ
z : K
⊢ (↑(frobenius K p))^[s]
((↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) =
(↑(frobenius K p))^[s + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) +
(↑(frobenius K p))^[s + m] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z)
[PROOFSTEP]
simp only [iterate_map_mul, iterate_map_add, ← iterate_add_apply, add_mul, add_comm, add_left_comm]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
a : PerfectClosure K p
⊢ 0 * a = 0
[PROOFSTEP]
refine Quot.inductionOn a fun ⟨m, x⟩ => ?_
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
a : PerfectClosure K p
x✝ : ℕ × K
m : ℕ
x : K
⊢ 0 * Quot.mk (R K p) (m, x) = 0
[PROOFSTEP]
rw [zero_def, quot_mk_eq_mk, mk_mul_mk]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
a : PerfectClosure K p
x✝ : ℕ × K
m : ℕ
x : K
⊢ mk K p
((0, 0).fst + (m, x).fst,
(↑(frobenius K p))^[(m, x).fst] (0, 0).snd * (↑(frobenius K p))^[(0, 0).fst] (m, x).snd) =
mk K p (0, 0)
[PROOFSTEP]
simp only [zero_add, iterate_zero, id_eq, RingHom.iterate_map_zero, zero_mul, mk_zero]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
a : PerfectClosure K p
⊢ a * 0 = 0
[PROOFSTEP]
refine Quot.inductionOn a fun ⟨m, x⟩ => ?_
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
a : PerfectClosure K p
x✝ : ℕ × K
m : ℕ
x : K
⊢ Quot.mk (R K p) (m, x) * 0 = 0
[PROOFSTEP]
rw [zero_def, quot_mk_eq_mk, mk_mul_mk]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p
src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary
src✝ : CommMonoid (PerfectClosure K p) := inferInstance
a : PerfectClosure K p
x✝ : ℕ × K
m : ℕ
x : K
⊢ mk K p
((m, x).fst + (0, 0).fst,
(↑(frobenius K p))^[(0, 0).fst] (m, x).snd * (↑(frobenius K p))^[(m, x).fst] (0, 0).snd) =
mk K p (0, 0)
[PROOFSTEP]
simp only [zero_add, iterate_zero, id_eq, RingHom.iterate_map_zero, mul_zero, mk_zero]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ × K
⊢ mk K p x = mk K p y ↔ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ × K
⊢ mk K p x = mk K p y → ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
[PROOFSTEP]
intro H
[GOAL]
case mp
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ × K
H : mk K p x = mk K p y
⊢ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
[PROOFSTEP]
replace H := Quot.exact _ H
[GOAL]
case mp
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ × K
H : EqvGen (R K p) x y
⊢ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
[PROOFSTEP]
induction H
[GOAL]
case mp.rel
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ y✝ : ℕ × K
a✝ : R K p x✝ y✝
⊢ ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd
case mp.refl
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ : ℕ × K
⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] x✝.snd
case mp.symm
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ y✝ : ℕ × K
a✝ : EqvGen (R K p) x✝ y✝
a_ih✝ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd
⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] x✝.snd
case mp.trans
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ y✝ z✝ : ℕ × K
a✝¹ : EqvGen (R K p) x✝ y✝
a✝ : EqvGen (R K p) y✝ z✝
a_ih✝¹ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd
a_ih✝ : ∃ z, (↑(frobenius K p))^[z✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] z✝.snd
⊢ ∃ z, (↑(frobenius K p))^[z✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] z✝.snd
[PROOFSTEP]
case rel x y H => cases' H with n x; exact ⟨0, rfl⟩
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y : ℕ × K
H : R K p x y
⊢ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
[PROOFSTEP]
case rel x y H => cases' H with n x; exact ⟨0, rfl⟩
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y : ℕ × K
H : R K p x y
⊢ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
[PROOFSTEP]
cases' H with n x
[GOAL]
case intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y : ℕ × K
n : ℕ
x : K
⊢ ∃ z,
(↑(frobenius K p))^[(n + 1, ↑(frobenius K p) x).fst + z] (n, x).snd =
(↑(frobenius K p))^[(n, x).fst + z] (n + 1, ↑(frobenius K p) x).snd
[PROOFSTEP]
exact ⟨0, rfl⟩
[GOAL]
case mp.refl
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ : ℕ × K
⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] x✝.snd
case mp.symm
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ y✝ : ℕ × K
a✝ : EqvGen (R K p) x✝ y✝
a_ih✝ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd
⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] x✝.snd
case mp.trans
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ y✝ z✝ : ℕ × K
a✝¹ : EqvGen (R K p) x✝ y✝
a✝ : EqvGen (R K p) y✝ z✝
a_ih✝¹ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd
a_ih✝ : ∃ z, (↑(frobenius K p))^[z✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] z✝.snd
⊢ ∃ z, (↑(frobenius K p))^[z✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] z✝.snd
[PROOFSTEP]
case refl H => exact ⟨0, rfl⟩
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y H : ℕ × K
⊢ ∃ z, (↑(frobenius K p))^[H.fst + z] H.snd = (↑(frobenius K p))^[H.fst + z] H.snd
[PROOFSTEP]
case refl H => exact ⟨0, rfl⟩
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y H : ℕ × K
⊢ ∃ z, (↑(frobenius K p))^[H.fst + z] H.snd = (↑(frobenius K p))^[H.fst + z] H.snd
[PROOFSTEP]
exact ⟨0, rfl⟩
[GOAL]
case mp.symm
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ y✝ : ℕ × K
a✝ : EqvGen (R K p) x✝ y✝
a_ih✝ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd
⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] x✝.snd
case mp.trans
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ y✝ z✝ : ℕ × K
a✝¹ : EqvGen (R K p) x✝ y✝
a✝ : EqvGen (R K p) y✝ z✝
a_ih✝¹ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd
a_ih✝ : ∃ z, (↑(frobenius K p))^[z✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] z✝.snd
⊢ ∃ z, (↑(frobenius K p))^[z✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] z✝.snd
[PROOFSTEP]
case symm x y H ih => cases' ih with w ih; exact ⟨w, ih.symm⟩
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y : ℕ × K
H : EqvGen (R K p) x y
ih : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
⊢ ∃ z, (↑(frobenius K p))^[x.fst + z] y.snd = (↑(frobenius K p))^[y.fst + z] x.snd
[PROOFSTEP]
case symm x y H ih => cases' ih with w ih; exact ⟨w, ih.symm⟩
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y : ℕ × K
H : EqvGen (R K p) x y
ih : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
⊢ ∃ z, (↑(frobenius K p))^[x.fst + z] y.snd = (↑(frobenius K p))^[y.fst + z] x.snd
[PROOFSTEP]
cases' ih with w ih
[GOAL]
case intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y : ℕ × K
H : EqvGen (R K p) x y
w : ℕ
ih : (↑(frobenius K p))^[y.fst + w] x.snd = (↑(frobenius K p))^[x.fst + w] y.snd
⊢ ∃ z, (↑(frobenius K p))^[x.fst + z] y.snd = (↑(frobenius K p))^[y.fst + z] x.snd
[PROOFSTEP]
exact ⟨w, ih.symm⟩
[GOAL]
case mp.trans
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y x✝ y✝ z✝ : ℕ × K
a✝¹ : EqvGen (R K p) x✝ y✝
a✝ : EqvGen (R K p) y✝ z✝
a_ih✝¹ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd
a_ih✝ : ∃ z, (↑(frobenius K p))^[z✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] z✝.snd
⊢ ∃ z, (↑(frobenius K p))^[z✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] z✝.snd
[PROOFSTEP]
case trans x y z H1 H2 ih1 ih2 =>
cases' ih1 with z1 ih1
cases' ih2 with z2 ih2
exists z2 + (y.1 + z1)
rw [← add_assoc, iterate_add_apply, ih1]
rw [← iterate_add_apply, add_comm, iterate_add_apply, ih2]
rw [← iterate_add_apply]
simp only [add_comm, add_left_comm]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y z : ℕ × K
H1 : EqvGen (R K p) x y
H2 : EqvGen (R K p) y z
ih1 : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
ih2 : ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] y.snd = (↑(frobenius K p))^[y.fst + z_1] z.snd
⊢ ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] x.snd = (↑(frobenius K p))^[x.fst + z_1] z.snd
[PROOFSTEP]
case trans x y z H1 H2 ih1 ih2 =>
cases' ih1 with z1 ih1
cases' ih2 with z2 ih2
exists z2 + (y.1 + z1)
rw [← add_assoc, iterate_add_apply, ih1]
rw [← iterate_add_apply, add_comm, iterate_add_apply, ih2]
rw [← iterate_add_apply]
simp only [add_comm, add_left_comm]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y z : ℕ × K
H1 : EqvGen (R K p) x y
H2 : EqvGen (R K p) y z
ih1 : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
ih2 : ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] y.snd = (↑(frobenius K p))^[y.fst + z_1] z.snd
⊢ ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] x.snd = (↑(frobenius K p))^[x.fst + z_1] z.snd
[PROOFSTEP]
cases' ih1 with z1 ih1
[GOAL]
case intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y z : ℕ × K
H1 : EqvGen (R K p) x y
H2 : EqvGen (R K p) y z
ih2 : ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] y.snd = (↑(frobenius K p))^[y.fst + z_1] z.snd
z1 : ℕ
ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd
⊢ ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] x.snd = (↑(frobenius K p))^[x.fst + z_1] z.snd
[PROOFSTEP]
cases' ih2 with z2 ih2
[GOAL]
case intro.intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y z : ℕ × K
H1 : EqvGen (R K p) x y
H2 : EqvGen (R K p) y z
z1 : ℕ
ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd
z2 : ℕ
ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd
⊢ ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] x.snd = (↑(frobenius K p))^[x.fst + z_1] z.snd
[PROOFSTEP]
exists z2 + (y.1 + z1)
[GOAL]
case intro.intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y z : ℕ × K
H1 : EqvGen (R K p) x y
H2 : EqvGen (R K p) y z
z1 : ℕ
ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd
z2 : ℕ
ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd
⊢ (↑(frobenius K p))^[z.fst + (z2 + (y.fst + z1))] x.snd = (↑(frobenius K p))^[x.fst + (z2 + (y.fst + z1))] z.snd
[PROOFSTEP]
rw [← add_assoc, iterate_add_apply, ih1]
[GOAL]
case intro.intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y z : ℕ × K
H1 : EqvGen (R K p) x y
H2 : EqvGen (R K p) y z
z1 : ℕ
ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd
z2 : ℕ
ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd
⊢ (↑(frobenius K p))^[z.fst + z2] ((↑(frobenius K p))^[x.fst + z1] y.snd) =
(↑(frobenius K p))^[x.fst + (z2 + (y.fst + z1))] z.snd
[PROOFSTEP]
rw [← iterate_add_apply, add_comm, iterate_add_apply, ih2]
[GOAL]
case intro.intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y z : ℕ × K
H1 : EqvGen (R K p) x y
H2 : EqvGen (R K p) y z
z1 : ℕ
ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd
z2 : ℕ
ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd
⊢ (↑(frobenius K p))^[x.fst + z1] ((↑(frobenius K p))^[y.fst + z2] z.snd) =
(↑(frobenius K p))^[x.fst + (z2 + (y.fst + z1))] z.snd
[PROOFSTEP]
rw [← iterate_add_apply]
[GOAL]
case intro.intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y✝ x y z : ℕ × K
H1 : EqvGen (R K p) x y
H2 : EqvGen (R K p) y z
z1 : ℕ
ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd
z2 : ℕ
ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd
⊢ (↑(frobenius K p))^[x.fst + z1 + (y.fst + z2)] z.snd = (↑(frobenius K p))^[x.fst + (z2 + (y.fst + z1))] z.snd
[PROOFSTEP]
simp only [add_comm, add_left_comm]
[GOAL]
case mpr
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ × K
⊢ (∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd) → mk K p x = mk K p y
[PROOFSTEP]
intro H
[GOAL]
case mpr
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ × K
H : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
⊢ mk K p x = mk K p y
[PROOFSTEP]
cases' x with m x
[GOAL]
case mpr.mk
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
y : ℕ × K
m : ℕ
x : K
H : ∃ z, (↑(frobenius K p))^[y.fst + z] (m, x).snd = (↑(frobenius K p))^[(m, x).fst + z] y.snd
⊢ mk K p (m, x) = mk K p y
[PROOFSTEP]
cases' y with n y
[GOAL]
case mpr.mk.mk
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
m : ℕ
x : K
n : ℕ
y : K
H : ∃ z, (↑(frobenius K p))^[(n, y).fst + z] (m, x).snd = (↑(frobenius K p))^[(m, x).fst + z] (n, y).snd
⊢ mk K p (m, x) = mk K p (n, y)
[PROOFSTEP]
cases' H with z H
[GOAL]
case mpr.mk.mk.intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
m : ℕ
x : K
n : ℕ
y : K
z : ℕ
H : (↑(frobenius K p))^[(n, y).fst + z] (m, x).snd = (↑(frobenius K p))^[(m, x).fst + z] (n, y).snd
⊢ mk K p (m, x) = mk K p (n, y)
[PROOFSTEP]
dsimp only at H
[GOAL]
case mpr.mk.mk.intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
m : ℕ
x : K
n : ℕ
y : K
z : ℕ
H : (↑(frobenius K p))^[n + z] x = (↑(frobenius K p))^[m + z] y
⊢ mk K p (m, x) = mk K p (n, y)
[PROOFSTEP]
rw [R.sound K p (n + z) m x _ rfl, R.sound K p (m + z) n y _ rfl, H]
[GOAL]
case mpr.mk.mk.intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
m : ℕ
x : K
n : ℕ
y : K
z : ℕ
H : (↑(frobenius K p))^[n + z] x = (↑(frobenius K p))^[m + z] y
⊢ mk K p (n + z + m, (↑(frobenius K p))^[m + z] y) = mk K p (m + z + n, (↑(frobenius K p))^[m + z] y)
[PROOFSTEP]
rw [add_assoc, add_comm, add_comm z]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n x : ℕ
⊢ ↑x = mk K p (n, ↑x)
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : ℕ
⊢ ↑x = mk K p (Nat.zero, ↑x)
[PROOFSTEP]
induction' x with x ih
[GOAL]
case zero.zero
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
⊢ ↑Nat.zero = mk K p (Nat.zero, ↑Nat.zero)
[PROOFSTEP]
simp
[GOAL]
case zero.succ
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : ℕ
ih : ↑x = mk K p (Nat.zero, ↑x)
⊢ ↑(Nat.succ x) = mk K p (Nat.zero, ↑(Nat.succ x))
[PROOFSTEP]
rw [Nat.cast_succ, Nat.cast_succ, ih]
[GOAL]
case zero.succ
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : ℕ
ih : ↑x = mk K p (Nat.zero, ↑x)
⊢ mk K p (Nat.zero, ↑x) + 1 = mk K p (Nat.zero, ↑x + 1)
[PROOFSTEP]
rfl
[GOAL]
case succ
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x n : ℕ
ih : ↑x = mk K p (n, ↑x)
⊢ ↑x = mk K p (Nat.succ n, ↑x)
[PROOFSTEP]
rw [ih]
[GOAL]
case succ
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x n : ℕ
ih : ↑x = mk K p (n, ↑x)
⊢ mk K p (n, ↑x) = mk K p (Nat.succ n, ↑x)
[PROOFSTEP]
apply Quot.sound
[GOAL]
case succ.a
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x n : ℕ
ih : ↑x = mk K p (n, ↑x)
⊢ R K p (n, ↑x) (Nat.succ n, ↑x)
[PROOFSTEP]
suffices R K p (n, (x : K)) (Nat.succ n, frobenius K p (x : K)) by rwa [frobenius_nat_cast K p x] at this
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x n : ℕ
ih : ↑x = mk K p (n, ↑x)
this : R K p (n, ↑x) (Nat.succ n, ↑(frobenius K p) ↑x)
⊢ R K p (n, ↑x) (Nat.succ n, ↑x)
[PROOFSTEP]
rwa [frobenius_nat_cast K p x] at this
[GOAL]
case succ.a
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x n : ℕ
ih : ↑x = mk K p (n, ↑x)
⊢ R K p (n, ↑x) (Nat.succ n, ↑(frobenius K p) ↑x)
[PROOFSTEP]
apply R.intro
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : ℤ
⊢ ↑x = mk K p (0, ↑x)
[PROOFSTEP]
induction x
[GOAL]
case ofNat
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
a✝ : ℕ
⊢ ↑(Int.ofNat a✝) = mk K p (0, ↑(Int.ofNat a✝))
[PROOFSTEP]
simp only [Int.ofNat_eq_coe, Int.cast_ofNat, Int.cast_negSucc, nat_cast K p 0]
[GOAL]
case negSucc
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
a✝ : ℕ
⊢ ↑(Int.negSucc a✝) = mk K p (0, ↑(Int.negSucc a✝))
[PROOFSTEP]
simp only [Int.ofNat_eq_coe, Int.cast_ofNat, Int.cast_negSucc, nat_cast K p 0]
[GOAL]
case negSucc
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
a✝ : ℕ
⊢ -mk K p (0, ↑(a✝ + 1)) = mk K p (0, -↑(a✝ + 1))
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ
⊢ ↑x = ↑y ↔ ↑x = ↑y
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ
⊢ ↑x = ↑y → ↑x = ↑y
[PROOFSTEP]
intro H
[GOAL]
case mpr
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ
⊢ ↑x = ↑y → ↑x = ↑y
[PROOFSTEP]
intro H
[GOAL]
case mp
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ
H : ↑x = ↑y
⊢ ↑x = ↑y
[PROOFSTEP]
rw [nat_cast K p 0, nat_cast K p 0, eq_iff'] at H
[GOAL]
case mp
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ
H : ∃ z, (↑(frobenius K p))^[(0, ↑y).fst + z] (0, ↑x).snd = (↑(frobenius K p))^[(0, ↑x).fst + z] (0, ↑y).snd
⊢ ↑x = ↑y
[PROOFSTEP]
cases' H with z H
[GOAL]
case mp.intro
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y z : ℕ
H : (↑(frobenius K p))^[(0, ↑y).fst + z] (0, ↑x).snd = (↑(frobenius K p))^[(0, ↑x).fst + z] (0, ↑y).snd
⊢ ↑x = ↑y
[PROOFSTEP]
simpa only [zero_add, iterate_fixed (frobenius_nat_cast K p _)] using H
[GOAL]
case mpr
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ
H : ↑x = ↑y
⊢ ↑x = ↑y
[PROOFSTEP]
rw [nat_cast K p 0, nat_cast K p 0, H]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
⊢ CharP (PerfectClosure K p) p
[PROOFSTEP]
constructor
[GOAL]
case cast_eq_zero_iff'
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
⊢ ∀ (x : ℕ), ↑x = 0 ↔ p ∣ x
[PROOFSTEP]
intro x
[GOAL]
case cast_eq_zero_iff'
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : ℕ
⊢ ↑x = 0 ↔ p ∣ x
[PROOFSTEP]
rw [← CharP.cast_eq_zero_iff K]
[GOAL]
case cast_eq_zero_iff'
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : ℕ
⊢ ↑x = 0 ↔ ↑x = 0
[PROOFSTEP]
rw [← Nat.cast_zero, nat_cast_eq_iff, Nat.cast_zero]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : ℕ × K
⊢ ↑(frobenius (PerfectClosure K p) p) (mk K p x) = mk K p (x.fst, x.snd ^ p)
[PROOFSTEP]
simp only [frobenius_def]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : ℕ × K
⊢ mk K p x ^ p = mk K p (x.fst, x.snd ^ p)
[PROOFSTEP]
cases' x with n x
[GOAL]
case mk
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ mk K p (n, x) ^ p = mk K p ((n, x).fst, (n, x).snd ^ p)
[PROOFSTEP]
dsimp only
[GOAL]
case mk
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ mk K p (n, x) ^ p = mk K p (n, x ^ p)
[PROOFSTEP]
suffices ∀ p' : ℕ, mk K p (n, x) ^ p' = mk K p (n, x ^ p') by apply this
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
this : ∀ (p' : ℕ), mk K p (n, x) ^ p' = mk K p (n, x ^ p')
⊢ mk K p (n, x) ^ p = mk K p (n, x ^ p)
[PROOFSTEP]
apply this
[GOAL]
case mk
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ ∀ (p' : ℕ), mk K p (n, x) ^ p' = mk K p (n, x ^ p')
[PROOFSTEP]
intro p
[GOAL]
case mk
K : Type u
inst✝² : CommRing K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : CharP K p✝
n : ℕ
x : K
p : ℕ
⊢ mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p)
[PROOFSTEP]
induction' p with p ih
[GOAL]
case mk.zero
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ mk K p (n, x) ^ Nat.zero = mk K p (n, x ^ Nat.zero)
case mk.succ
K : Type u
inst✝² : CommRing K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : CharP K p✝
n : ℕ
x : K
p : ℕ
ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p)
⊢ mk K p✝ (n, x) ^ Nat.succ p = mk K p✝ (n, x ^ Nat.succ p)
[PROOFSTEP]
case zero => apply R.sound; rw [(frobenius _ _).iterate_map_one, pow_zero]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ mk K p (n, x) ^ Nat.zero = mk K p (n, x ^ Nat.zero)
[PROOFSTEP]
case zero => apply R.sound; rw [(frobenius _ _).iterate_map_one, pow_zero]
[GOAL]
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ mk K p (n, x) ^ Nat.zero = mk K p (n, x ^ Nat.zero)
[PROOFSTEP]
apply R.sound
[GOAL]
case H
K : Type u
inst✝² : CommRing K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ (↑(frobenius K p))^[n] 1 = x ^ Nat.zero
[PROOFSTEP]
rw [(frobenius _ _).iterate_map_one, pow_zero]
[GOAL]
case mk.succ
K : Type u
inst✝² : CommRing K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : CharP K p✝
n : ℕ
x : K
p : ℕ
ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p)
⊢ mk K p✝ (n, x) ^ Nat.succ p = mk K p✝ (n, x ^ Nat.succ p)
[PROOFSTEP]
case succ =>
rw [pow_succ, ih]
symm
apply R.sound
simp only [pow_succ, iterate_map_mul]
[GOAL]
K : Type u
inst✝² : CommRing K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : CharP K p✝
n : ℕ
x : K
p : ℕ
ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p)
⊢ mk K p✝ (n, x) ^ Nat.succ p = mk K p✝ (n, x ^ Nat.succ p)
[PROOFSTEP]
case succ =>
rw [pow_succ, ih]
symm
apply R.sound
simp only [pow_succ, iterate_map_mul]
[GOAL]
K : Type u
inst✝² : CommRing K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : CharP K p✝
n : ℕ
x : K
p : ℕ
ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p)
⊢ mk K p✝ (n, x) ^ Nat.succ p = mk K p✝ (n, x ^ Nat.succ p)
[PROOFSTEP]
rw [pow_succ, ih]
[GOAL]
K : Type u
inst✝² : CommRing K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : CharP K p✝
n : ℕ
x : K
p : ℕ
ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p)
⊢ mk K p✝ (n, x) * mk K p✝ (n, x ^ p) = mk K p✝ (n, x ^ Nat.succ p)
[PROOFSTEP]
symm
[GOAL]
K : Type u
inst✝² : CommRing K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : CharP K p✝
n : ℕ
x : K
p : ℕ
ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p)
⊢ mk K p✝ (n, x ^ Nat.succ p) = mk K p✝ (n, x) * mk K p✝ (n, x ^ p)
[PROOFSTEP]
apply R.sound
[GOAL]
case H
K : Type u
inst✝² : CommRing K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : CharP K p✝
n : ℕ
x : K
p : ℕ
ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p)
⊢ (↑(frobenius K p✝))^[(n, x).fst] (x ^ Nat.succ p) =
(↑(frobenius K p✝))^[(n, x ^ p).fst] (n, x).snd * (↑(frobenius K p✝))^[(n, x).fst] (n, x ^ p).snd
[PROOFSTEP]
simp only [pow_succ, iterate_map_mul]
[GOAL]
K : Type u
inst✝³ : CommRing K
inst✝² : IsReduced K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x y : ℕ × K
x✝ : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
z : ℕ
H : (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd
⊢ (↑(frobenius K p))^[z] ((↑(frobenius K p))^[y.fst] x.snd) = (↑(frobenius K p))^[z] ((↑(frobenius K p))^[x.fst] y.snd)
[PROOFSTEP]
simpa only [add_comm, iterate_add] using H
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y : ℕ × K
H : R K p x✝ y
n : ℕ
x : K
⊢ R K p ((n, x).fst, (n, x).snd⁻¹) ((n + 1, ↑(frobenius K p) x).fst, (n + 1, ↑(frobenius K p) x).snd⁻¹)
[PROOFSTEP]
simp only [frobenius_def]
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y : ℕ × K
H : R K p x✝ y
n : ℕ
x : K
⊢ R K p (n, x⁻¹) (n + 1, (x ^ p)⁻¹)
[PROOFSTEP]
rw [← inv_pow]
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x✝ y : ℕ × K
H : R K p x✝ y
n : ℕ
x : K
⊢ R K p (n, x⁻¹) (n + 1, x⁻¹ ^ p)
[PROOFSTEP]
apply R.intro
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Inv (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
m : ℕ
x : K
H : mk K p (m, x) ≠ 0
⊢ mk K p (m, x) * (mk K p (m, x))⁻¹ = 1
[PROOFSTEP]
have := mt (eq_iff _ _ _ _).2 H
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Inv (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
m : ℕ
x : K
H : mk K p (m, x) ≠ 0
this : ¬(↑(frobenius K p))^[(0, 0).fst] (m, x).snd = (↑(frobenius K p))^[(m, x).fst] (0, 0).snd
⊢ mk K p (m, x) * (mk K p (m, x))⁻¹ = 1
[PROOFSTEP]
rw [mk_inv, mk_mul_mk]
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Inv (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
m : ℕ
x : K
H : mk K p (m, x) ≠ 0
this : ¬(↑(frobenius K p))^[(0, 0).fst] (m, x).snd = (↑(frobenius K p))^[(m, x).fst] (0, 0).snd
⊢ mk K p
((m, x).fst + ((m, x).fst, (m, x).snd⁻¹).fst,
(↑(frobenius K p))^[((m, x).fst, (m, x).snd⁻¹).fst] (m, x).snd *
(↑(frobenius K p))^[(m, x).fst] ((m, x).fst, (m, x).snd⁻¹).snd) =
1
[PROOFSTEP]
refine (eq_iff K p _ _).2 ?_
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Inv (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
m : ℕ
x : K
H : mk K p (m, x) ≠ 0
this : ¬(↑(frobenius K p))^[(0, 0).fst] (m, x).snd = (↑(frobenius K p))^[(m, x).fst] (0, 0).snd
⊢ (↑(frobenius K p))^[(0, 1).fst]
((m, x).fst + ((m, x).fst, (m, x).snd⁻¹).fst,
(↑(frobenius K p))^[((m, x).fst, (m, x).snd⁻¹).fst] (m, x).snd *
(↑(frobenius K p))^[(m, x).fst] ((m, x).fst, (m, x).snd⁻¹).snd).snd =
(↑(frobenius K
p))^[((m, x).fst + ((m, x).fst, (m, x).snd⁻¹).fst,
(↑(frobenius K p))^[((m, x).fst, (m, x).snd⁻¹).fst] (m, x).snd *
(↑(frobenius K p))^[(m, x).fst] ((m, x).fst, (m, x).snd⁻¹).snd).fst]
(0, 1).snd
[PROOFSTEP]
simp only [(frobenius _ _).iterate_map_one, (frobenius K p).iterate_map_zero, iterate_zero_apply, ← iterate_map_mul] at
this ⊢
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Inv (PerfectClosure K p) := inferInstance
e : PerfectClosure K p
x✝ : ℕ × K
m : ℕ
x : K
H : mk K p (m, x) ≠ 0
this : ¬x = 0
⊢ (↑(frobenius K p))^[m] (x * x⁻¹) = 1
[PROOFSTEP]
rw [mul_inv_cancel this, (frobenius _ _).iterate_map_one]
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
src✝ : Inv (PerfectClosure K p) := inferInstance
⊢ ((0, 0).fst, (0, 0).snd⁻¹) = (0, 0)
[PROOFSTEP]
rw [inv_zero]
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
⊢ Bijective ↑(frobenius (PerfectClosure K p) p)
[PROOFSTEP]
let f : PerfectClosure K p → PerfectClosure K p := fun e ↦
liftOn e (fun x => mk K p (x.1 + 1, x.2)) fun x y H =>
match x, y, H with
| _, _, R.intro n x => Quot.sound (R.intro _ _)
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
f : PerfectClosure K p → PerfectClosure K p :=
fun e =>
liftOn e (fun x => mk K p (x.fst + 1, x.snd))
(_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y)
⊢ Bijective ↑(frobenius (PerfectClosure K p) p)
[PROOFSTEP]
have hl : LeftInverse f (frobenius (PerfectClosure K p) p) := fun e ↦
induction_on e fun ⟨n, x⟩ => by
simp only [liftOn_mk, frobenius_mk]
exact (Quot.sound <| R.intro _ _).symm
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
f : PerfectClosure K p → PerfectClosure K p :=
fun e =>
liftOn e (fun x => mk K p (x.fst + 1, x.snd))
(_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y)
e : PerfectClosure K p
x✝ : ℕ × K
n : ℕ
x : K
⊢ f (↑(frobenius (PerfectClosure K p) p) (mk K p (n, x))) = mk K p (n, x)
[PROOFSTEP]
simp only [liftOn_mk, frobenius_mk]
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
f : PerfectClosure K p → PerfectClosure K p :=
fun e =>
liftOn e (fun x => mk K p (x.fst + 1, x.snd))
(_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y)
e : PerfectClosure K p
x✝ : ℕ × K
n : ℕ
x : K
⊢ mk K p (n + 1, x ^ p) = mk K p (n, x)
[PROOFSTEP]
exact (Quot.sound <| R.intro _ _).symm
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
f : PerfectClosure K p → PerfectClosure K p :=
fun e =>
liftOn e (fun x => mk K p (x.fst + 1, x.snd))
(_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y)
hl : LeftInverse f ↑(frobenius (PerfectClosure K p) p)
⊢ Bijective ↑(frobenius (PerfectClosure K p) p)
[PROOFSTEP]
have hr : RightInverse f (frobenius (PerfectClosure K p) p) := fun e ↦
induction_on e fun ⟨n, x⟩ => by
simp only [liftOn_mk, frobenius_mk]
exact (Quot.sound <| R.intro _ _).symm
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
f : PerfectClosure K p → PerfectClosure K p :=
fun e =>
liftOn e (fun x => mk K p (x.fst + 1, x.snd))
(_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y)
hl : LeftInverse f ↑(frobenius (PerfectClosure K p) p)
e : PerfectClosure K p
x✝ : ℕ × K
n : ℕ
x : K
⊢ ↑(frobenius (PerfectClosure K p) p) (f (mk K p (n, x))) = mk K p (n, x)
[PROOFSTEP]
simp only [liftOn_mk, frobenius_mk]
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
f : PerfectClosure K p → PerfectClosure K p :=
fun e =>
liftOn e (fun x => mk K p (x.fst + 1, x.snd))
(_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y)
hl : LeftInverse f ↑(frobenius (PerfectClosure K p) p)
e : PerfectClosure K p
x✝ : ℕ × K
n : ℕ
x : K
⊢ mk K p (n + 1, x ^ p) = mk K p (n, x)
[PROOFSTEP]
exact (Quot.sound <| R.intro _ _).symm
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
f : PerfectClosure K p → PerfectClosure K p :=
fun e =>
liftOn e (fun x => mk K p (x.fst + 1, x.snd))
(_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y)
hl : LeftInverse f ↑(frobenius (PerfectClosure K p) p)
hr : Function.RightInverse f ↑(frobenius (PerfectClosure K p) p)
⊢ Bijective ↑(frobenius (PerfectClosure K p) p)
[PROOFSTEP]
exact bijective_iff_has_inverse.mpr ⟨f, hl, hr⟩
[GOAL]
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ (↑(frobenius (PerfectClosure K p) p))^[n] (mk K p (n, x)) = ↑(of K p) x
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : K
⊢ (↑(frobenius (PerfectClosure K p) p))^[Nat.zero] (mk K p (Nat.zero, x)) = ↑(of K p) x
case succ
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : K
n : ℕ
ih : (↑(frobenius (PerfectClosure K p) p))^[n] (mk K p (n, x)) = ↑(of K p) x
⊢ (↑(frobenius (PerfectClosure K p) p))^[Nat.succ n] (mk K p (Nat.succ n, x)) = ↑(of K p) x
[PROOFSTEP]
rfl
[GOAL]
case succ
K : Type u
inst✝² : Field K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : K
n : ℕ
ih : (↑(frobenius (PerfectClosure K p) p))^[n] (mk K p (n, x)) = ↑(of K p) x
⊢ (↑(frobenius (PerfectClosure K p) p))^[Nat.succ n] (mk K p (Nat.succ n, x)) = ↑(of K p) x
[PROOFSTEP]
rw [iterate_succ_apply, ← ih, frobenius_mk, mk_succ_pow]
[GOAL]
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
⊢ PerfectClosure K p → L
[PROOFSTEP]
refine' fun e => liftOn e (fun x => (frobeniusEquiv L p).symm^[x.1] (f x.2)) _
[GOAL]
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
e : PerfectClosure K p
⊢ ∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y
[PROOFSTEP]
rintro - - ⟨n, x⟩
[GOAL]
case intro
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
e : PerfectClosure K p
n : ℕ
x : K
⊢ (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (n, x) =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (n + 1, ↑(frobenius K p) x)
[PROOFSTEP]
simp [f.map_frobenius]
[GOAL]
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
⊢ ∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y
[PROOFSTEP]
rintro ⟨n, x⟩ ⟨m, y⟩
[GOAL]
case mk.mk.mk.mk
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
x✝ : PerfectClosure K p
n : ℕ
x : K
y✝ : PerfectClosure K p
m : ℕ
y : K
⊢ OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(Quot.mk (R K p) (n, x) * Quot.mk (R K p) (m, y)) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(Quot.mk (R K p) (n, x)) *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(Quot.mk (R K p) (m, y))
[PROOFSTEP]
simp only [quot_mk_eq_mk, liftOn_mk, f.map_iterate_frobenius, mk_mul_mk, map_mul, iterate_map_mul]
[GOAL]
case mk.mk.mk.mk
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
x✝ : PerfectClosure K p
n : ℕ
x : K
y✝ : PerfectClosure K p
m : ℕ
y : K
⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[m] (↑f x)) *
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[n] (↑f y)) =
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f x) * (↑(RingEquiv.symm (frobeniusEquiv L p)))^[m] (↑f y)
[PROOFSTEP]
have := LeftInverse.iterate (frobeniusEquiv_symm_apply_frobenius L p)
[GOAL]
case mk.mk.mk.mk
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
x✝ : PerfectClosure K p
n : ℕ
x : K
y✝ : PerfectClosure K p
m : ℕ
y : K
this : ∀ (n : ℕ), LeftInverse (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (fun x => ↑(frobenius L p) x)^[n]
⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[m] (↑f x)) *
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[n] (↑f y)) =
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f x) * (↑(RingEquiv.symm (frobeniusEquiv L p)))^[m] (↑f y)
[PROOFSTEP]
rw [iterate_add_apply, this _ _, add_comm, iterate_add_apply, this _ _]
[GOAL]
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
⊢ ∀ (x y : PerfectClosure K p),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) })
y
[PROOFSTEP]
rintro ⟨n, x⟩ ⟨m, y⟩
[GOAL]
case mk.mk.mk.mk
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
x✝ : PerfectClosure K p
n : ℕ
x : K
y✝ : PerfectClosure K p
m : ℕ
y : K
⊢ OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) })
(Quot.mk (R K p) (n, x) + Quot.mk (R K p) (m, y)) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) })
(Quot.mk (R K p) (n, x)) +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) })
(Quot.mk (R K p) (m, y))
[PROOFSTEP]
simp only [quot_mk_eq_mk, liftOn_mk, f.map_iterate_frobenius, mk_add_mk, map_add, iterate_map_add]
[GOAL]
case mk.mk.mk.mk
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
x✝ : PerfectClosure K p
n : ℕ
x : K
y✝ : PerfectClosure K p
m : ℕ
y : K
⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[m] (↑f x)) +
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[n] (↑f y)) =
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f x) + (↑(RingEquiv.symm (frobeniusEquiv L p)))^[m] (↑f y)
[PROOFSTEP]
have := LeftInverse.iterate (frobeniusEquiv_symm_apply_frobenius L p)
[GOAL]
case mk.mk.mk.mk
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
x✝ : PerfectClosure K p
n : ℕ
x : K
y✝ : PerfectClosure K p
m : ℕ
y : K
this : ∀ (n : ℕ), LeftInverse (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (fun x => ↑(frobenius L p) x)^[n]
⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[m] (↑f x)) +
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[n] (↑f y)) =
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f x) + (↑(RingEquiv.symm (frobeniusEquiv L p)))^[m] (↑f y)
[PROOFSTEP]
rw [iterate_add_apply, this _ _, add_comm n, iterate_add_apply, this _ _]
[GOAL]
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
⊢ (fun f => RingHom.comp f (of K p))
((fun f =>
{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) },
map_zero' := (_ : ↑f 0 = 0),
map_add' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
y) })
f) =
f
[PROOFSTEP]
ext x
[GOAL]
case a
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : K →+* L
x : K
⊢ ↑((fun f => RingHom.comp f (of K p))
((fun f =>
{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) },
map_zero' := (_ : ↑f 0 = 0),
map_add' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst]
(↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst]
(↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst]
(↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst]
(↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst]
(↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst]
(↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst]
(↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst]
(↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
y) })
f))
x =
↑f x
[PROOFSTEP]
rfl
[GOAL]
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : PerfectClosure K p →+* L
⊢ (fun f =>
{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) },
map_zero' := (_ : ↑f 0 = 0),
map_add' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
y) })
((fun f => RingHom.comp f (of K p)) f) =
f
[PROOFSTEP]
ext ⟨n, x⟩
[GOAL]
case a.mk.mk
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : PerfectClosure K p →+* L
x✝ : PerfectClosure K p
n : ℕ
x : K
⊢ ↑((fun f =>
{
toMonoidHom :=
{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) }
y) },
map_zero' := (_ : ↑f 0 = 0),
map_add' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
(x + y) =
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
x +
OneHom.toFun
(↑{
toOneHom :=
{
toFun := fun e =>
liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x =
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y),
map_one' := (_ : ↑f 1 = 1) },
map_mul' :=
(_ :
∀ (x y : PerfectClosure K p),
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
(x * y) =
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
x *
OneHom.toFun
{
toFun := fun e =>
liftOn e
(fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
(_ :
∀ (x y : ℕ × K),
R K p x y →
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
x =
(fun x =>
(↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd))
y),
map_one' := (_ : ↑f 1 = 1) }
y) })
y) })
((fun f => RingHom.comp f (of K p)) f))
(Quot.mk (R K p) (n, x)) =
↑f (Quot.mk (R K p) (n, x))
[PROOFSTEP]
simp only [quot_mk_eq_mk, RingHom.comp_apply, RingHom.coe_mk, MonoidHom.coe_mk, OneHom.coe_mk, liftOn_mk]
[GOAL]
case a.mk.mk
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : PerfectClosure K p →+* L
x✝ : PerfectClosure K p
n : ℕ
x : K
⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f (↑(of K p) x)) = ↑f (mk K p (n, x))
[PROOFSTEP]
apply (injective_frobenius L p).iterate n
[GOAL]
case a.mk.mk.a
K : Type u
inst✝⁵ : Field K
p : ℕ
inst✝⁴ : Fact (Nat.Prime p)
inst✝³ : CharP K p
L : Type v
inst✝² : CommSemiring L
inst✝¹ : CharP L p
inst✝ : PerfectRing L p
f : PerfectClosure K p →+* L
x✝ : PerfectClosure K p
n : ℕ
x : K
⊢ (↑(frobenius L p))^[n] ((↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f (↑(of K p) x))) =
(↑(frobenius L p))^[n] (↑f (mk K p (n, x)))
[PROOFSTEP]
rw [← f.map_iterate_frobenius, iterate_frobenius_mk, RightInverse.iterate (frobenius_apply_frobeniusEquiv_symm L p) n]
|
{"mathlib_filename": "Mathlib.FieldTheory.PerfectClosure", "llama_tokens": 57006}
|
[GOAL]
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pnz : p ≠ 0
hp : ↑(Polynomial.aeval x) p = 0
⊢ ↑(Polynomial.aeval x) (p * ↑C (leadingCoeff p)⁻¹) = 0
[PROOFSTEP]
simp [hp]
[GOAL]
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
⊢ p = minpoly A x
[PROOFSTEP]
have hx : IsIntegral A x := ⟨p, pmonic, hp⟩
[GOAL]
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
hx : IsIntegral A x
⊢ p = minpoly A x
[PROOFSTEP]
symm
[GOAL]
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
hx : IsIntegral A x
⊢ minpoly A x = p
[PROOFSTEP]
apply eq_of_sub_eq_zero
[GOAL]
case h
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
hx : IsIntegral A x
⊢ minpoly A x - p = 0
[PROOFSTEP]
by_contra hnz
[GOAL]
case h
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
hx : IsIntegral A x
hnz : ¬minpoly A x - p = 0
⊢ False
[PROOFSTEP]
have hd := degree_le_of_ne_zero A x hnz (by simp [hp])
[GOAL]
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
hx : IsIntegral A x
hnz : ¬minpoly A x - p = 0
⊢ ↑(Polynomial.aeval x) (minpoly A x - p) = 0
[PROOFSTEP]
simp [hp]
[GOAL]
case h
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
hx : IsIntegral A x
hnz : ¬minpoly A x - p = 0
hd : degree (minpoly A x) ≤ degree (minpoly A x - p)
⊢ False
[PROOFSTEP]
contrapose! hd
[GOAL]
case h
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
hx : IsIntegral A x
hnz : ¬minpoly A x - p = 0
hd : ¬False
⊢ degree (minpoly A x - p) < degree (minpoly A x)
[PROOFSTEP]
apply degree_sub_lt _ (minpoly.ne_zero hx)
[GOAL]
case h
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
hx : IsIntegral A x
hnz : ¬minpoly A x - p = 0
hd : ¬False
⊢ leadingCoeff (minpoly A x) = leadingCoeff p
[PROOFSTEP]
rw [(monic hx).leadingCoeff, pmonic.leadingCoeff]
[GOAL]
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
pmonic : Monic p
hp : ↑(Polynomial.aeval x) p = 0
pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q
hx : IsIntegral A x
hnz : ¬minpoly A x - p = 0
hd : ¬False
⊢ degree (minpoly A x) = degree p
[PROOFSTEP]
exact le_antisymm (min A x pmonic hp) (pmin (minpoly A x) (monic hx) (aeval A x))
[GOAL]
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
⊢ minpoly A x ∣ p
[PROOFSTEP]
by_cases hp0 : p = 0
[GOAL]
case pos
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
hp0 : p = 0
⊢ minpoly A x ∣ p
[PROOFSTEP]
simp only [hp0, dvd_zero]
[GOAL]
case neg
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
hp0 : ¬p = 0
⊢ minpoly A x ∣ p
[PROOFSTEP]
have hx : IsIntegral A x := by
rw [← isAlgebraic_iff_isIntegral]
exact ⟨p, hp0, hp⟩
[GOAL]
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
hp0 : ¬p = 0
⊢ IsIntegral A x
[PROOFSTEP]
rw [← isAlgebraic_iff_isIntegral]
[GOAL]
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
hp0 : ¬p = 0
⊢ IsAlgebraic A x
[PROOFSTEP]
exact ⟨p, hp0, hp⟩
[GOAL]
case neg
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
hp0 : ¬p = 0
hx : IsIntegral A x
⊢ minpoly A x ∣ p
[PROOFSTEP]
rw [← dvd_iff_modByMonic_eq_zero (monic hx)]
[GOAL]
case neg
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
hp0 : ¬p = 0
hx : IsIntegral A x
⊢ p %ₘ minpoly A x = 0
[PROOFSTEP]
by_contra hnz
[GOAL]
case neg
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
hp0 : ¬p = 0
hx : IsIntegral A x
hnz : ¬p %ₘ minpoly A x = 0
⊢ False
[PROOFSTEP]
have hd := degree_le_of_ne_zero A x hnz ((aeval_modByMonic_eq_self_of_root (monic hx) (aeval _ _)).trans hp)
[GOAL]
case neg
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
hp0 : ¬p = 0
hx : IsIntegral A x
hnz : ¬p %ₘ minpoly A x = 0
hd : degree (minpoly A x) ≤ degree (p %ₘ minpoly A x)
⊢ False
[PROOFSTEP]
contrapose! hd
[GOAL]
case neg
A : Type u_1
B : Type u_2
inst✝² : Field A
inst✝¹ : Ring B
inst✝ : Algebra A B
x : B
p : A[X]
hp : ↑(Polynomial.aeval x) p = 0
hp0 : ¬p = 0
hx : IsIntegral A x
hnz : ¬p %ₘ minpoly A x = 0
hd : ¬False
⊢ degree (p %ₘ minpoly A x) < degree (minpoly A x)
[PROOFSTEP]
exact degree_modByMonic_lt _ (monic hx)
[GOAL]
A✝ : Type u_1
B : Type u_2
inst✝⁹ : Field A✝
inst✝⁸ : Ring B
inst✝⁷ : Algebra A✝ B
x✝ : B
A : Type u_3
K : Type u_4
R : Type u_5
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : CommRing R
inst✝³ : Algebra A K
inst✝² : Algebra A R
inst✝¹ : Algebra K R
inst✝ : IsScalarTower A K R
x : R
⊢ minpoly K x ∣ map (algebraMap A K) (minpoly A x)
[PROOFSTEP]
refine' minpoly.dvd K x _
[GOAL]
A✝ : Type u_1
B : Type u_2
inst✝⁹ : Field A✝
inst✝⁸ : Ring B
inst✝⁷ : Algebra A✝ B
x✝ : B
A : Type u_3
K : Type u_4
R : Type u_5
inst✝⁶ : CommRing A
inst✝⁵ : Field K
inst✝⁴ : CommRing R
inst✝³ : Algebra A K
inst✝² : Algebra A R
inst✝¹ : Algebra K R
inst✝ : IsScalarTower A K R
x : R
⊢ ↑(Polynomial.aeval x) (map (algebraMap A K) (minpoly A x)) = 0
[PROOFSTEP]
rw [aeval_map_algebraMap, minpoly.aeval]
[GOAL]
A : Type u_1
B : Type u_2
inst✝¹³ : Field A
inst✝¹² : Ring B
inst✝¹¹ : Algebra A B
x : B
R : Type u_3
S : Type u_4
K : Type u_5
L : Type u_6
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing S
inst✝⁸ : Field K
inst✝⁷ : CommRing L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra R K
inst✝⁴ : Algebra S L
inst✝³ : Algebra K L
inst✝² : Algebra R L
inst✝¹ : IsScalarTower R K L
inst✝ : IsScalarTower R S L
s : S
⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (minpoly R s)
[PROOFSTEP]
apply minpoly.dvd K (algebraMap S L s)
[GOAL]
A : Type u_1
B : Type u_2
inst✝¹³ : Field A
inst✝¹² : Ring B
inst✝¹¹ : Algebra A B
x : B
R : Type u_3
S : Type u_4
K : Type u_5
L : Type u_6
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing S
inst✝⁸ : Field K
inst✝⁷ : CommRing L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra R K
inst✝⁴ : Algebra S L
inst✝³ : Algebra K L
inst✝² : Algebra R L
inst✝¹ : IsScalarTower R K L
inst✝ : IsScalarTower R S L
s : S
⊢ ↑(Polynomial.aeval (↑(algebraMap S L) s)) (map (algebraMap R K) (minpoly R s)) = 0
[PROOFSTEP]
rw [← map_aeval_eq_aeval_map, minpoly.aeval, map_zero]
[GOAL]
case h
A : Type u_1
B : Type u_2
inst✝¹³ : Field A
inst✝¹² : Ring B
inst✝¹¹ : Algebra A B
x : B
R : Type u_3
S : Type u_4
K : Type u_5
L : Type u_6
inst✝¹⁰ : CommRing R
inst✝⁹ : CommRing S
inst✝⁸ : Field K
inst✝⁷ : CommRing L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra R K
inst✝⁴ : Algebra S L
inst✝³ : Algebra K L
inst✝² : Algebra R L
inst✝¹ : IsScalarTower R K L
inst✝ : IsScalarTower R S L
s : S
⊢ RingHom.comp (algebraMap K ((fun x => L) s)) (algebraMap R K) = RingHom.comp (algebraMap S L) (algebraMap R S)
[PROOFSTEP]
rw [← IsScalarTower.algebraMap_eq, ← IsScalarTower.algebraMap_eq]
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
p : A[X]
hp1 : Irreducible p
hp2 : ↑(Polynomial.aeval x) p = 0
⊢ p * ↑C (leadingCoeff p)⁻¹ = minpoly A x
[PROOFSTEP]
have : p.leadingCoeff ≠ 0 := leadingCoeff_ne_zero.mpr hp1.ne_zero
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
p : A[X]
hp1 : Irreducible p
hp2 : ↑(Polynomial.aeval x) p = 0
this : leadingCoeff p ≠ 0
⊢ p * ↑C (leadingCoeff p)⁻¹ = minpoly A x
[PROOFSTEP]
apply eq_of_irreducible_of_monic
[GOAL]
case hp1
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
p : A[X]
hp1 : Irreducible p
hp2 : ↑(Polynomial.aeval x) p = 0
this : leadingCoeff p ≠ 0
⊢ Irreducible (p * ↑C (leadingCoeff p)⁻¹)
[PROOFSTEP]
exact
Associated.irreducible
⟨⟨C p.leadingCoeff⁻¹, C p.leadingCoeff, by rwa [← C_mul, inv_mul_cancel, C_1], by
rwa [← C_mul, mul_inv_cancel, C_1]⟩,
rfl⟩
hp1
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
p : A[X]
hp1 : Irreducible p
hp2 : ↑(Polynomial.aeval x) p = 0
this : leadingCoeff p ≠ 0
⊢ ↑C (leadingCoeff p)⁻¹ * ↑C (leadingCoeff p) = 1
[PROOFSTEP]
rwa [← C_mul, inv_mul_cancel, C_1]
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
p : A[X]
hp1 : Irreducible p
hp2 : ↑(Polynomial.aeval x) p = 0
this : leadingCoeff p ≠ 0
⊢ ↑C (leadingCoeff p) * ↑C (leadingCoeff p)⁻¹ = 1
[PROOFSTEP]
rwa [← C_mul, mul_inv_cancel, C_1]
[GOAL]
case hp2
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
p : A[X]
hp1 : Irreducible p
hp2 : ↑(Polynomial.aeval x) p = 0
this : leadingCoeff p ≠ 0
⊢ ↑(Polynomial.aeval x) (p * ↑C (leadingCoeff p)⁻¹) = 0
[PROOFSTEP]
rw [aeval_mul, hp2, zero_mul]
[GOAL]
case hp3
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
p : A[X]
hp1 : Irreducible p
hp2 : ↑(Polynomial.aeval x) p = 0
this : leadingCoeff p ≠ 0
⊢ Monic (p * ↑C (leadingCoeff p)⁻¹)
[PROOFSTEP]
rwa [Polynomial.Monic, leadingCoeff_mul, leadingCoeff_C, mul_inv_cancel]
[GOAL]
A : Type u_1
B : Type u_2
inst✝⁹ : Field A
inst✝⁸ : Ring B
inst✝⁷ : Algebra A B
x✝ : B
K : Type u_3
S : Type u_4
T : Type u_5
inst✝⁶ : Field K
inst✝⁵ : CommRing S
inst✝⁴ : CommRing T
inst✝³ : Algebra K S
inst✝² : Algebra K T
inst✝¹ : Algebra S T
inst✝ : IsScalarTower K S T
hST : Injective ↑(algebraMap S T)
x : S
y : T
hx : IsIntegral K x
h : y = ↑(algebraMap S T) x
⊢ ↑(Polynomial.aeval y) (minpoly K x) = 0
[PROOFSTEP]
rw [h, aeval_algebraMap_apply, minpoly.aeval, RingHom.map_zero]
[GOAL]
A : Type u_1
B✝ : Type u_2
inst✝⁴ : Field A
inst✝³ : Ring B✝
inst✝² : Algebra A B✝
x✝ : B✝
B : Type u_3
inst✝¹ : CommRing B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
a : A
⊢ minpoly A (x + ↑(algebraMap A B) a) = Polynomial.comp (minpoly A x) (X - ↑C a)
[PROOFSTEP]
refine' (minpoly.unique _ _ ((minpoly.monic hx).comp_X_sub_C _) _ fun q qmo hq => _).symm
[GOAL]
case refine'_1
A : Type u_1
B✝ : Type u_2
inst✝⁴ : Field A
inst✝³ : Ring B✝
inst✝² : Algebra A B✝
x✝ : B✝
B : Type u_3
inst✝¹ : CommRing B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
a : A
⊢ ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) (Polynomial.comp (minpoly A x) (X - ↑C a)) = 0
[PROOFSTEP]
simp [aeval_comp]
[GOAL]
case refine'_2
A : Type u_1
B✝ : Type u_2
inst✝⁴ : Field A
inst✝³ : Ring B✝
inst✝² : Algebra A B✝
x✝ : B✝
B : Type u_3
inst✝¹ : CommRing B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
a : A
q : A[X]
qmo : Monic q
hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0
⊢ degree (Polynomial.comp (minpoly A x) (X - ↑C a)) ≤ degree q
[PROOFSTEP]
have : (Polynomial.aeval x) (q.comp (X + C a)) = 0 := by simpa [aeval_comp] using hq
[GOAL]
A : Type u_1
B✝ : Type u_2
inst✝⁴ : Field A
inst✝³ : Ring B✝
inst✝² : Algebra A B✝
x✝ : B✝
B : Type u_3
inst✝¹ : CommRing B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
a : A
q : A[X]
qmo : Monic q
hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0
⊢ ↑(Polynomial.aeval x) (Polynomial.comp q (X + ↑C a)) = 0
[PROOFSTEP]
simpa [aeval_comp] using hq
[GOAL]
case refine'_2
A : Type u_1
B✝ : Type u_2
inst✝⁴ : Field A
inst✝³ : Ring B✝
inst✝² : Algebra A B✝
x✝ : B✝
B : Type u_3
inst✝¹ : CommRing B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
a : A
q : A[X]
qmo : Monic q
hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0
this : ↑(Polynomial.aeval x) (Polynomial.comp q (X + ↑C a)) = 0
⊢ degree (Polynomial.comp (minpoly A x) (X - ↑C a)) ≤ degree q
[PROOFSTEP]
have H := minpoly.min A x (qmo.comp_X_add_C _) this
[GOAL]
case refine'_2
A : Type u_1
B✝ : Type u_2
inst✝⁴ : Field A
inst✝³ : Ring B✝
inst✝² : Algebra A B✝
x✝ : B✝
B : Type u_3
inst✝¹ : CommRing B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
a : A
q : A[X]
qmo : Monic q
hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0
this : ↑(Polynomial.aeval x) (Polynomial.comp q (X + ↑C a)) = 0
H : degree (minpoly A x) ≤ degree (Polynomial.comp q (X + ↑C a))
⊢ degree (Polynomial.comp (minpoly A x) (X - ↑C a)) ≤ degree q
[PROOFSTEP]
rw [degree_eq_natDegree qmo.ne_zero, degree_eq_natDegree ((minpoly.monic hx).comp_X_sub_C _).ne_zero, natDegree_comp,
natDegree_X_sub_C, mul_one]
[GOAL]
case refine'_2
A : Type u_1
B✝ : Type u_2
inst✝⁴ : Field A
inst✝³ : Ring B✝
inst✝² : Algebra A B✝
x✝ : B✝
B : Type u_3
inst✝¹ : CommRing B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
a : A
q : A[X]
qmo : Monic q
hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0
this : ↑(Polynomial.aeval x) (Polynomial.comp q (X + ↑C a)) = 0
H : degree (minpoly A x) ≤ degree (Polynomial.comp q (X + ↑C a))
⊢ ↑(natDegree (minpoly A x)) ≤ ↑(natDegree q)
[PROOFSTEP]
rwa [degree_eq_natDegree (minpoly.ne_zero hx), degree_eq_natDegree (qmo.comp_X_add_C _).ne_zero, natDegree_comp,
natDegree_X_add_C, mul_one] at H
[GOAL]
A : Type u_1
B✝ : Type u_2
inst✝⁴ : Field A
inst✝³ : Ring B✝
inst✝² : Algebra A B✝
x✝ : B✝
B : Type u_3
inst✝¹ : CommRing B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
a : A
⊢ minpoly A (x - ↑(algebraMap A B) a) = Polynomial.comp (minpoly A x) (X + ↑C a)
[PROOFSTEP]
simpa [sub_eq_add_neg] using add_algebraMap hx (-a)
[GOAL]
A : Type u_1
B : Type u_2
inst✝⁹ : Field A
inst✝⁸ : Ring B
inst✝⁷ : Algebra A B
x✝ : B
F : Type u_3
E : Type u_4
K : Type u_5
inst✝⁶ : Field F
inst✝⁵ : Ring E
inst✝⁴ : CommRing K
inst✝³ : IsDomain K
inst✝² : Algebra F E
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F E
φ : E →ₐ[F] K
x : ↑(range ↑(FiniteDimensional.finBasis F E))
⊢ ↑φ ↑x ∈ roots (map (algebraMap F K) (minpoly F ↑x))
[PROOFSTEP]
rw [mem_roots_map (minpoly.ne_zero_of_finite F x.val), ← aeval_def, aeval_algHom_apply, minpoly.aeval, map_zero]
[GOAL]
A : Type u_1
B : Type u_2
inst✝⁹ : Field A
inst✝⁸ : Ring B
inst✝⁷ : Algebra A B
x : B
F : Type u_3
E : Type u_4
K : Type u_5
inst✝⁶ : Field F
inst✝⁵ : Ring E
inst✝⁴ : CommRing K
inst✝³ : IsDomain K
inst✝² : Algebra F E
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F E
⊢ Injective (rootsOfMinPolyPiType F E K)
[PROOFSTEP]
intro f g h
[GOAL]
A : Type u_1
B : Type u_2
inst✝⁹ : Field A
inst✝⁸ : Ring B
inst✝⁷ : Algebra A B
x : B
F : Type u_3
E : Type u_4
K : Type u_5
inst✝⁶ : Field F
inst✝⁵ : Ring E
inst✝⁴ : CommRing K
inst✝³ : IsDomain K
inst✝² : Algebra F E
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F E
f g : E →ₐ[F] K
h : rootsOfMinPolyPiType F E K f = rootsOfMinPolyPiType F E K g
⊢ f = g
[PROOFSTEP]
suffices (f : E →ₗ[F] K) = g by rwa [FunLike.ext'_iff] at this ⊢
[GOAL]
A : Type u_1
B : Type u_2
inst✝⁹ : Field A
inst✝⁸ : Ring B
inst✝⁷ : Algebra A B
x : B
F : Type u_3
E : Type u_4
K : Type u_5
inst✝⁶ : Field F
inst✝⁵ : Ring E
inst✝⁴ : CommRing K
inst✝³ : IsDomain K
inst✝² : Algebra F E
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F E
f g : E →ₐ[F] K
h : rootsOfMinPolyPiType F E K f = rootsOfMinPolyPiType F E K g
this : ↑↑f = ↑↑g
⊢ f = g
[PROOFSTEP]
rwa [FunLike.ext'_iff] at this ⊢
[GOAL]
A : Type u_1
B : Type u_2
inst✝⁹ : Field A
inst✝⁸ : Ring B
inst✝⁷ : Algebra A B
x : B
F : Type u_3
E : Type u_4
K : Type u_5
inst✝⁶ : Field F
inst✝⁵ : Ring E
inst✝⁴ : CommRing K
inst✝³ : IsDomain K
inst✝² : Algebra F E
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F E
f g : E →ₐ[F] K
h : rootsOfMinPolyPiType F E K f = rootsOfMinPolyPiType F E K g
⊢ ↑↑f = ↑↑g
[PROOFSTEP]
rw [funext_iff] at h
[GOAL]
A : Type u_1
B : Type u_2
inst✝⁹ : Field A
inst✝⁸ : Ring B
inst✝⁷ : Algebra A B
x : B
F : Type u_3
E : Type u_4
K : Type u_5
inst✝⁶ : Field F
inst✝⁵ : Ring E
inst✝⁴ : CommRing K
inst✝³ : IsDomain K
inst✝² : Algebra F E
inst✝¹ : Algebra F K
inst✝ : FiniteDimensional F E
f g : E →ₐ[F] K
h : ∀ (a : ↑(range ↑(FiniteDimensional.finBasis F E))), rootsOfMinPolyPiType F E K f a = rootsOfMinPolyPiType F E K g a
⊢ ↑↑f = ↑↑g
[PROOFSTEP]
exact LinearMap.ext_on (FiniteDimensional.finBasis F E).span_eq fun e he => Subtype.ext_iff.mp (h ⟨e, he⟩)
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
⊢ minpoly A 0 = X
[PROOFSTEP]
simpa only [add_zero, C_0, sub_eq_add_neg, neg_zero, RingHom.map_zero] using eq_X_sub_C B (0 : A)
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : Algebra A B
x : B
inst✝ : Nontrivial B
⊢ minpoly A 1 = X - 1
[PROOFSTEP]
simpa only [RingHom.map_one, C_1, sub_eq_add_neg] using eq_X_sub_C B (1 : A)
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
⊢ Prime (minpoly A x)
[PROOFSTEP]
refine' ⟨minpoly.ne_zero hx, not_isUnit A x, _⟩
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
⊢ ∀ (a b : A[X]), minpoly A x ∣ a * b → minpoly A x ∣ a ∨ minpoly A x ∣ b
[PROOFSTEP]
rintro p q ⟨d, h⟩
[GOAL]
case intro
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
p q d : A[X]
h : p * q = minpoly A x * d
⊢ minpoly A x ∣ p ∨ minpoly A x ∣ q
[PROOFSTEP]
have : Polynomial.aeval x (p * q) = 0 := by simp [h, aeval A x]
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
p q d : A[X]
h : p * q = minpoly A x * d
⊢ ↑(Polynomial.aeval x) (p * q) = 0
[PROOFSTEP]
simp [h, aeval A x]
[GOAL]
case intro
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
p q d : A[X]
h : p * q = minpoly A x * d
this : ↑(Polynomial.aeval x) (p * q) = 0
⊢ minpoly A x ∣ p ∨ minpoly A x ∣ q
[PROOFSTEP]
replace : Polynomial.aeval x p = 0 ∨ Polynomial.aeval x q = 0 := by simpa
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
p q d : A[X]
h : p * q = minpoly A x * d
this : ↑(Polynomial.aeval x) (p * q) = 0
⊢ ↑(Polynomial.aeval x) p = 0 ∨ ↑(Polynomial.aeval x) q = 0
[PROOFSTEP]
simpa
[GOAL]
case intro
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
p q d : A[X]
h : p * q = minpoly A x * d
this : ↑(Polynomial.aeval x) p = 0 ∨ ↑(Polynomial.aeval x) q = 0
⊢ minpoly A x ∣ p ∨ minpoly A x ∣ q
[PROOFSTEP]
exact Or.imp (dvd A x) (dvd A x) this
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x✝ x : B
hx : IsIntegral A x
y : A
h : IsRoot (minpoly A x) y
⊢ ↑(algebraMap A B) y = x
[PROOFSTEP]
have key : minpoly A x = X - C y :=
eq_of_monic_of_associated (monic hx) (monic_X_sub_C y)
(associated_of_dvd_dvd ((irreducible_X_sub_C y).dvd_symm (irreducible hx) (dvd_iff_isRoot.2 h))
(dvd_iff_isRoot.2 h))
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x✝ x : B
hx : IsIntegral A x
y : A
h : IsRoot (minpoly A x) y
key : minpoly A x = X - ↑C y
⊢ ↑(algebraMap A B) y = x
[PROOFSTEP]
have := aeval A x
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x✝ x : B
hx : IsIntegral A x
y : A
h : IsRoot (minpoly A x) y
key : minpoly A x = X - ↑C y
this : ↑(Polynomial.aeval x) (minpoly A x) = 0
⊢ ↑(algebraMap A B) y = x
[PROOFSTEP]
rwa [key, AlgHom.map_sub, aeval_X, aeval_C, sub_eq_zero, eq_comm] at this
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
⊢ coeff (minpoly A x) 0 = 0 ↔ x = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
⊢ coeff (minpoly A x) 0 = 0 → x = 0
[PROOFSTEP]
intro h
[GOAL]
case mp
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
h : coeff (minpoly A x) 0 = 0
⊢ x = 0
[PROOFSTEP]
have zero_root := zero_isRoot_of_coeff_zero_eq_zero h
[GOAL]
case mp
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
h : coeff (minpoly A x) 0 = 0
zero_root : IsRoot (minpoly A x) 0
⊢ x = 0
[PROOFSTEP]
rw [← root hx zero_root]
[GOAL]
case mp
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
h : coeff (minpoly A x) 0 = 0
zero_root : IsRoot (minpoly A x) 0
⊢ ↑(algebraMap A B) 0 = 0
[PROOFSTEP]
exact RingHom.map_zero _
[GOAL]
case mpr
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
⊢ x = 0 → coeff (minpoly A x) 0 = 0
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
hx : IsIntegral A 0
⊢ coeff (minpoly A 0) 0 = 0
[PROOFSTEP]
simp
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
h : x ≠ 0
⊢ coeff (minpoly A x) 0 ≠ 0
[PROOFSTEP]
contrapose! h
[GOAL]
A : Type u_1
B : Type u_2
inst✝³ : Field A
inst✝² : Ring B
inst✝¹ : IsDomain B
inst✝ : Algebra A B
x : B
hx : IsIntegral A x
h : coeff (minpoly A x) 0 = 0
⊢ x = 0
[PROOFSTEP]
simpa only [hx, coeff_zero_eq_zero] using h
|
{"mathlib_filename": "Mathlib.FieldTheory.Minpoly.Field", "llama_tokens": 12012}
|
{"mathlib_filename": "Mathlib.Data.HashMap", "llama_tokens": 0}
|
|
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
⊢ Function.Injective fun S => S.carrier
[PROOFSTEP]
rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩
[GOAL]
case mk.mk.mk.mk
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
toSubsemiring✝¹ : Subsemiring L
algebraMap_mem'✝¹ : ∀ (r : K), ↑(algebraMap K L) r ∈ toSubsemiring✝¹.carrier
inv_mem'✝¹ :
∀ (x : L),
x ∈
{ toSubsemiring := toSubsemiring✝¹,
algebraMap_mem' := algebraMap_mem'✝¹ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
x⁻¹ ∈
{ toSubsemiring := toSubsemiring✝¹,
algebraMap_mem' := algebraMap_mem'✝¹ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
toSubsemiring✝ : Subsemiring L
algebraMap_mem'✝ : ∀ (r : K), ↑(algebraMap K L) r ∈ toSubsemiring✝.carrier
inv_mem'✝ :
∀ (x : L),
x ∈
{ toSubsemiring := toSubsemiring✝,
algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
x⁻¹ ∈
{ toSubsemiring := toSubsemiring✝,
algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
⊢ (fun S => S.carrier)
{ toSubalgebra := { toSubsemiring := toSubsemiring✝¹, algebraMap_mem' := algebraMap_mem'✝¹ },
inv_mem' := inv_mem'✝¹ } =
(fun S => S.carrier)
{ toSubalgebra := { toSubsemiring := toSubsemiring✝, algebraMap_mem' := algebraMap_mem'✝ },
inv_mem' := inv_mem'✝ } →
{ toSubalgebra := { toSubsemiring := toSubsemiring✝¹, algebraMap_mem' := algebraMap_mem'✝¹ },
inv_mem' := inv_mem'✝¹ } =
{ toSubalgebra := { toSubsemiring := toSubsemiring✝, algebraMap_mem' := algebraMap_mem'✝ },
inv_mem' := inv_mem'✝ }
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
x : L
hx : x ∈ S
⊢ -x ∈ S
[PROOFSTEP]
show -x ∈ S.toSubalgebra
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
x : L
hx : x ∈ S
⊢ -x ∈ S.toSubalgebra
[PROOFSTEP]
simpa
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
n : ℕ
⊢ ↑n ∈ S
[PROOFSTEP]
simpa using coe_int_mem S n
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
inv_mem : ∀ (x : L), x ∈ S → x⁻¹ ∈ S
⊢ (Subalgebra.toIntermediateField S inv_mem).toSubalgebra = S
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
inv_mem : ∀ (x : L), x ∈ S → x⁻¹ ∈ S
x✝ : L
⊢ x✝ ∈ (Subalgebra.toIntermediateField S inv_mem).toSubalgebra ↔ x✝ ∈ S
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ S : IntermediateField K L
⊢ Subalgebra.toIntermediateField S.toSubalgebra (_ : ∀ (x : L), x ∈ S → x⁻¹ ∈ S) = S
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ S : IntermediateField K L
x✝ : L
⊢ x✝ ∈ Subalgebra.toIntermediateField S.toSubalgebra (_ : ∀ (x : L), x ∈ S → x⁻¹ ∈ S) ↔ x✝ ∈ S
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
hS : IsField { x // x ∈ S }
x : L
hx : x ∈ S
⊢ x⁻¹ ∈ S
[PROOFSTEP]
by_cases hx0 : x = 0
[GOAL]
case pos
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
hS : IsField { x // x ∈ S }
x : L
hx : x ∈ S
hx0 : x = 0
⊢ x⁻¹ ∈ S
[PROOFSTEP]
rw [hx0, inv_zero]
[GOAL]
case pos
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
hS : IsField { x // x ∈ S }
x : L
hx : x ∈ S
hx0 : x = 0
⊢ 0 ∈ S
[PROOFSTEP]
exact S.zero_mem
[GOAL]
case neg
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
hS : IsField { x // x ∈ S }
x : L
hx : x ∈ S
hx0 : ¬x = 0
⊢ x⁻¹ ∈ S
[PROOFSTEP]
letI hS' := hS.toField
[GOAL]
case neg
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
hS : IsField { x // x ∈ S }
x : L
hx : x ∈ S
hx0 : ¬x = 0
hS' : Field { x // x ∈ S } := IsField.toField hS
⊢ x⁻¹ ∈ S
[PROOFSTEP]
obtain ⟨y, hy⟩ := hS.mul_inv_cancel (show (⟨x, hx⟩ : S) ≠ 0 from Subtype.ne_of_val_ne hx0)
[GOAL]
case neg.intro
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
hS : IsField { x // x ∈ S }
x : L
hx : x ∈ S
hx0 : ¬x = 0
hS' : Field { x // x ∈ S } := IsField.toField hS
y : { x // x ∈ S }
hy : { val := x, property := hx } * y = 1
⊢ x⁻¹ ∈ S
[PROOFSTEP]
rw [Subtype.ext_iff, S.coe_mul, S.coe_one, Subtype.coe_mk, mul_eq_one_iff_inv_eq₀ hx0] at hy
[GOAL]
case neg.intro
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
hS : IsField { x // x ∈ S }
x : L
hx : x ∈ S
hx0 : ¬x = 0
hS' : Field { x // x ∈ S } := IsField.toField hS
y : { x // x ∈ S }
hy : x⁻¹ = ↑y
⊢ x⁻¹ ∈ S
[PROOFSTEP]
exact hy.symm ▸ y.2
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
hS : IsField { x // x ∈ S }
⊢ (Subalgebra.toIntermediateField' S hS).toSubalgebra = S
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
S : Subalgebra K L
hS : IsField { x // x ∈ S }
x✝ : L
⊢ x✝ ∈ (Subalgebra.toIntermediateField' S hS).toSubalgebra ↔ x✝ ∈ S
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ S : IntermediateField K L
⊢ Subalgebra.toIntermediateField' S.toSubalgebra (_ : IsField { x // x ∈ S }) = S
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ S : IntermediateField K L
x✝ : L
⊢ x✝ ∈ Subalgebra.toIntermediateField' S.toSubalgebra (_ : IsField { x // x ∈ S }) ↔ x✝ ∈ S
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S : IntermediateField K L
ι : Type u_4
inst✝ : Fintype ι
f : ι → { x // x ∈ S }
⊢ ↑(∑ i : ι, f i) = ∑ i : ι, ↑(f i)
[PROOFSTEP]
classical
induction' (Finset.univ : Finset ι) using Finset.induction_on with i s hi H
· simp
· rw [Finset.sum_insert hi, AddMemClass.coe_add, H, Finset.sum_insert hi]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S : IntermediateField K L
ι : Type u_4
inst✝ : Fintype ι
f : ι → { x // x ∈ S }
⊢ ↑(∑ i : ι, f i) = ∑ i : ι, ↑(f i)
[PROOFSTEP]
induction' (Finset.univ : Finset ι) using Finset.induction_on with i s hi H
[GOAL]
case empty
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S : IntermediateField K L
ι : Type u_4
inst✝ : Fintype ι
f : ι → { x // x ∈ S }
⊢ ↑(∑ i in ∅, f i) = ∑ i in ∅, ↑(f i)
[PROOFSTEP]
simp
[GOAL]
case insert
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S : IntermediateField K L
ι : Type u_4
inst✝ : Fintype ι
f : ι → { x // x ∈ S }
i : ι
s : Finset ι
hi : ¬i ∈ s
H : ↑(∑ i in s, f i) = ∑ i in s, ↑(f i)
⊢ ↑(∑ i in insert i s, f i) = ∑ i in insert i s, ↑(f i)
[PROOFSTEP]
rw [Finset.sum_insert hi, AddMemClass.coe_add, H, Finset.sum_insert hi]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S : IntermediateField K L
ι : Type u_4
inst✝ : Fintype ι
f : ι → { x // x ∈ S }
⊢ ↑(∏ i : ι, f i) = ∏ i : ι, ↑(f i)
[PROOFSTEP]
classical
induction' (Finset.univ : Finset ι) using Finset.induction_on with i s hi H
· simp
· rw [Finset.prod_insert hi, MulMemClass.coe_mul, H, Finset.prod_insert hi]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S : IntermediateField K L
ι : Type u_4
inst✝ : Fintype ι
f : ι → { x // x ∈ S }
⊢ ↑(∏ i : ι, f i) = ∏ i : ι, ↑(f i)
[PROOFSTEP]
induction' (Finset.univ : Finset ι) using Finset.induction_on with i s hi H
[GOAL]
case empty
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S : IntermediateField K L
ι : Type u_4
inst✝ : Fintype ι
f : ι → { x // x ∈ S }
⊢ ↑(∏ i in ∅, f i) = ∏ i in ∅, ↑(f i)
[PROOFSTEP]
simp
[GOAL]
case insert
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S : IntermediateField K L
ι : Type u_4
inst✝ : Fintype ι
f : ι → { x // x ∈ S }
i : ι
s : Finset ι
hi : ¬i ∈ s
H : ↑(∏ i in s, f i) = ∏ i in s, ↑(f i)
⊢ ↑(∏ i in insert i s, f i) = ∏ i in insert i s, ↑(f i)
[PROOFSTEP]
rw [Finset.prod_insert hi, MulMemClass.coe_mul, H, Finset.prod_insert hi]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
f : L →ₐ[K] L'
S : IntermediateField K L
src✝ : Subalgebra K L' := Subalgebra.map f S.toSubalgebra
⊢ ∀ (x : L'),
x ∈
{ toSubsemiring := src✝.toSubsemiring,
algebraMap_mem' :=
(_ :
∀ (r : K),
↑(algebraMap K L') r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
x⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
algebraMap_mem' :=
(_ :
∀ (r : K), ↑(algebraMap K L') r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩
[GOAL]
case intro.intro
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ : IntermediateField K L
f : L →ₐ[K] L'
S : IntermediateField K L
src✝ : Subalgebra K L' := Subalgebra.map f S.toSubalgebra
x : L
hx : x ∈ ↑S.toSubsemiring
⊢ (↑↑f x)⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
algebraMap_mem' :=
(_ : ∀ (r : K), ↑(algebraMap K L') r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
exact ⟨x⁻¹, S.inv_mem hx, map_inv₀ f x⟩
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
⊢ ↑(aeval ↑x) P = ↑(↑(aeval x) P)
[PROOFSTEP]
refine' Polynomial.induction_on' P (fun f g hf hg => _) fun n r => _
[GOAL]
case refine'_1
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P f g : R[X]
hf : ↑(aeval ↑x) f = ↑(↑(aeval x) f)
hg : ↑(aeval ↑x) g = ↑(↑(aeval x) g)
⊢ ↑(aeval ↑x) (f + g) = ↑(↑(aeval x) (f + g))
[PROOFSTEP]
rw [aeval_add, aeval_add, AddMemClass.coe_add, hf, hg]
[GOAL]
case refine'_2
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
n : ℕ
r : R
⊢ ↑(aeval ↑x) (↑(monomial n) r) = ↑(↑(aeval x) (↑(monomial n) r))
[PROOFSTEP]
simp only [MulMemClass.coe_mul, aeval_monomial, SubmonoidClass.coe_pow, mul_eq_mul_right_iff]
[GOAL]
case refine'_2
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
n : ℕ
r : R
⊢ ↑(algebraMap R L) r = ↑(↑(algebraMap R { x // x ∈ S }) r) ∨ ↑x ^ n = 0
[PROOFSTEP]
left
[GOAL]
case refine'_2.h
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
n : ℕ
r : R
⊢ ↑(algebraMap R L) r = ↑(↑(algebraMap R { x // x ∈ S }) r)
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
⊢ IsIntegral R ↑x ↔ IsIntegral R x
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
h : IsIntegral R ↑x
⊢ IsIntegral R x
[PROOFSTEP]
obtain ⟨P, hPmo, hProot⟩ := h
[GOAL]
case refine'_1.intro.intro
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
hPmo : Monic P
hProot : eval₂ (algebraMap R L) (↑x) P = 0
⊢ IsIntegral R x
[PROOFSTEP]
refine' ⟨P, hPmo, (injective_iff_map_eq_zero _).1 (algebraMap (↥S) L).injective _ _⟩
[GOAL]
case refine'_1.intro.intro
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
hPmo : Monic P
hProot : eval₂ (algebraMap R L) (↑x) P = 0
⊢ ↑(algebraMap { x // x ∈ S } L) (eval₂ (algebraMap R { x // x ∈ S }) x P) = 0
[PROOFSTEP]
letI : IsScalarTower R S L := IsScalarTower.of_algebraMap_eq (congr_fun rfl)
[GOAL]
case refine'_1.intro.intro
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
hPmo : Monic P
hProot : eval₂ (algebraMap R L) (↑x) P = 0
this : IsScalarTower R { x // x ∈ S } L := IsScalarTower.of_algebraMap_eq (congr_fun rfl)
⊢ ↑(algebraMap { x // x ∈ S } L) (eval₂ (algebraMap R { x // x ∈ S }) x P) = 0
[PROOFSTEP]
rw [eval₂_eq_eval_map, ← eval₂_at_apply, eval₂_eq_eval_map, Polynomial.map_map, ←
--Porting note: very strange that I have to `rw` twice with `eval₂_eq_eval_map`.
-- The first `rw` does nothingIsScalarTower.algebraMap_eq, ← eval₂_eq_eval_map, ← eval₂_eq_eval_map]
[GOAL]
case refine'_1.intro.intro
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
hPmo : Monic P
hProot : eval₂ (algebraMap R L) (↑x) P = 0
this : IsScalarTower R { x // x ∈ S } L := IsScalarTower.of_algebraMap_eq (congr_fun rfl)
⊢ eval₂ (algebraMap R L) (↑(algebraMap { x // x ∈ S } L) x) P = 0
[PROOFSTEP]
exact hProot
[GOAL]
case refine'_2
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
h : IsIntegral R x
⊢ IsIntegral R ↑x
[PROOFSTEP]
obtain ⟨P, hPmo, hProot⟩ := h
[GOAL]
case refine'_2.intro.intro
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
hPmo : Monic P
hProot : eval₂ (algebraMap R { x // x ∈ S }) x P = 0
⊢ IsIntegral R ↑x
[PROOFSTEP]
refine' ⟨P, hPmo, _⟩
[GOAL]
case refine'_2.intro.intro
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁸ : Field K
inst✝⁷ : Field L
inst✝⁶ : Field L'
inst✝⁵ : Algebra K L
inst✝⁴ : Algebra K L'
S : IntermediateField K L
R : Type u_4
inst✝³ : CommRing R
inst✝² : Algebra R K
inst✝¹ : Algebra R L
inst✝ : IsScalarTower R K L
x : { x // x ∈ S }
P : R[X]
hPmo : Monic P
hProot : eval₂ (algebraMap R { x // x ∈ S }) x P = 0
⊢ eval₂ (algebraMap R L) (↑x) P = 0
[PROOFSTEP]
rw [← aeval_def, aeval_coe, aeval_def, hProot, ZeroMemClass.coe_zero]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ S S' : IntermediateField K L
h : S.toSubalgebra = S'.toSubalgebra
⊢ S = S'
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S✝ S S' : IntermediateField K L
h : S.toSubalgebra = S'.toSubalgebra
x✝ : L
⊢ x✝ ∈ S ↔ x✝ ∈ S'
[PROOFSTEP]
rw [← mem_toSubalgebra, ← mem_toSubalgebra, h]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
x : L
hx : x ∈ RingHom.fieldRange (algebraMap K L)
⊢ x ∈ Set.range ↑(algebraMap K L)
[PROOFSTEP]
rwa [Set.mem_range, ← RingHom.mem_fieldRange]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁶ : Field K
inst✝⁵ : Field L
inst✝⁴ : Field L'
inst✝³ : Algebra K L
inst✝² : Algebra K L'
S : IntermediateField K L
inst✝¹ : Algebra L' L
inst✝ : IsScalarTower K L' L
U V : IntermediateField L' L
H : restrictScalars K U = restrictScalars K V
x : L
⊢ x ∈ U ↔ x ∈ V
[PROOFSTEP]
rw [← mem_restrictScalars K, H, mem_restrictScalars]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S F : IntermediateField K L
E : IntermediateField { x // x ∈ F } L
⊢ Algebra K { x // x ∈ E }
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S F E : IntermediateField K L
⊢ F.toSubalgebra = E.toSubalgebra ↔ F = E
[PROOFSTEP]
rw [SetLike.ext_iff, SetLike.ext'_iff, Set.ext_iff]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S F E : IntermediateField K L
⊢ (∀ (x : L), x ∈ F.toSubalgebra ↔ x ∈ E.toSubalgebra) ↔ ∀ (x : L), x ∈ ↑F ↔ x ∈ ↑E
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S F E : IntermediateField K L
inst✝ : FiniteDimensional K L
h_le : F ≤ E
h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L
⊢ F = E
[PROOFSTEP]
apply eq_of_le_of_finrank_le h_le
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S F E : IntermediateField K L
inst✝ : FiniteDimensional K L
h_le : F ≤ E
h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L
⊢ finrank K { x // x ∈ E } ≤ finrank K { x // x ∈ F }
[PROOFSTEP]
have h1 := finrank_mul_finrank K F L
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S F E : IntermediateField K L
inst✝ : FiniteDimensional K L
h_le : F ≤ E
h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L
h1 : finrank K { x // x ∈ F } * finrank { x // x ∈ F } L = finrank K L
⊢ finrank K { x // x ∈ E } ≤ finrank K { x // x ∈ F }
[PROOFSTEP]
have h2 := finrank_mul_finrank K E L
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S F E : IntermediateField K L
inst✝ : FiniteDimensional K L
h_le : F ≤ E
h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L
h1 : finrank K { x // x ∈ F } * finrank { x // x ∈ F } L = finrank K L
h2 : finrank K { x // x ∈ E } * finrank { x // x ∈ E } L = finrank K L
⊢ finrank K { x // x ∈ E } ≤ finrank K { x // x ∈ F }
[PROOFSTEP]
have h3 : 0 < finrank E L := finrank_pos
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Field L
inst✝³ : Field L'
inst✝² : Algebra K L
inst✝¹ : Algebra K L'
S F E : IntermediateField K L
inst✝ : FiniteDimensional K L
h_le : F ≤ E
h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L
h1 : finrank K { x // x ∈ F } * finrank { x // x ∈ F } L = finrank K L
h2 : finrank K { x // x ∈ E } * finrank { x // x ∈ E } L = finrank K L
h3 : 0 < finrank { x // x ∈ E } L
⊢ finrank K { x // x ∈ E } ≤ finrank K { x // x ∈ F }
[PROOFSTEP]
nlinarith
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
x : { x // x ∈ S }
⊢ IsIntegral K x ↔ IsIntegral K ↑x
[PROOFSTEP]
rw [← isAlgebraic_iff_isIntegral, isAlgebraic_iff, isAlgebraic_iff_isIntegral]
[GOAL]
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
x : { x // x ∈ S }
⊢ minpoly K x = minpoly K ↑x
[PROOFSTEP]
by_cases hx : IsIntegral K x
[GOAL]
case pos
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
x : { x // x ∈ S }
hx : IsIntegral K x
⊢ minpoly K x = minpoly K ↑x
[PROOFSTEP]
exact minpoly.eq_of_algebraMap_eq (algebraMap S L).injective hx rfl
[GOAL]
case neg
K : Type u_1
L : Type u_2
L' : Type u_3
inst✝⁴ : Field K
inst✝³ : Field L
inst✝² : Field L'
inst✝¹ : Algebra K L
inst✝ : Algebra K L'
S : IntermediateField K L
x : { x // x ∈ S }
hx : ¬IsIntegral K x
⊢ minpoly K x = minpoly K ↑x
[PROOFSTEP]
exact (minpoly.eq_zero hx).trans (minpoly.eq_zero (mt isIntegral_iff.mpr hx)).symm
|
{"mathlib_filename": "Mathlib.FieldTheory.IntermediateField", "llama_tokens": 12096}
|
{"mathlib_filename": "Mathlib.Data.KVMap", "llama_tokens": 0}
|
|
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
⊢ inv (inv r) = r
[PROOFSTEP]
ext x y
[GOAL]
case a.h.a
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
x : α
y : β
⊢ inv (inv r) x y ↔ r x y
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
⊢ codom (inv r) = dom r
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
x : α
⊢ x ∈ codom (inv r) ↔ x ∈ dom r
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
⊢ dom (inv r) = codom r
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
x : β
⊢ x ∈ dom (inv r) ↔ x ∈ codom r
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : Rel α β
δ : Type u_4
r : Rel α β
s : Rel β γ
t : Rel γ δ
⊢ (r • s) • t = r • s • t
[PROOFSTEP]
unfold comp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : Rel α β
δ : Type u_4
r : Rel α β
s : Rel β γ
t : Rel γ δ
⊢ (fun x z => ∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y z) = fun x z => ∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 z
[PROOFSTEP]
ext (x w)
[GOAL]
case a.h.a
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : Rel α β
δ : Type u_4
r : Rel α β
s : Rel β γ
t : Rel γ δ
x : α
w : δ
⊢ (∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y w) ↔ ∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 w
[PROOFSTEP]
constructor
[GOAL]
case a.h.a.mp
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : Rel α β
δ : Type u_4
r : Rel α β
s : Rel β γ
t : Rel γ δ
x : α
w : δ
⊢ (∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y w) → ∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 w
[PROOFSTEP]
rintro ⟨z, ⟨y, rxy, syz⟩, tzw⟩
[GOAL]
case a.h.a.mp.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : Rel α β
δ : Type u_4
r : Rel α β
s : Rel β γ
t : Rel γ δ
x : α
w : δ
z : γ
tzw : t z w
y : β
rxy : r x y
syz : s y z
⊢ ∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 w
[PROOFSTEP]
exact ⟨y, rxy, z, syz, tzw⟩
[GOAL]
case a.h.a.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : Rel α β
δ : Type u_4
r : Rel α β
s : Rel β γ
t : Rel γ δ
x : α
w : δ
⊢ (∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 w) → ∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y w
[PROOFSTEP]
rintro ⟨y, rxy, z, syz, tzw⟩
[GOAL]
case a.h.a.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ : Rel α β
δ : Type u_4
r : Rel α β
s : Rel β γ
t : Rel γ δ
x : α
w : δ
y : β
rxy : r x y
z : γ
syz : s y z
tzw : t z w
⊢ ∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y w
[PROOFSTEP]
exact ⟨z, ⟨y, rxy, syz⟩, tzw⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r : Rel α β
⊢ r • Eq = r
[PROOFSTEP]
unfold comp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r : Rel α β
⊢ (fun x z => ∃ y, r x y ∧ y = z) = r
[PROOFSTEP]
ext y
[GOAL]
case a.h.a
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r : Rel α β
y : α
x✝ : β
⊢ (∃ y_1, r y y_1 ∧ y_1 = x✝) ↔ r y x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r : Rel α β
⊢ Eq • r = r
[PROOFSTEP]
unfold comp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r : Rel α β
⊢ (fun x z => ∃ y, x = y ∧ r y z) = r
[PROOFSTEP]
ext x
[GOAL]
case a.h.a
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r : Rel α β
x : α
x✝ : β
⊢ (∃ y, x = y ∧ r y x✝) ↔ r x x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
⊢ inv Eq = Eq
[PROOFSTEP]
ext x y
[GOAL]
case a.h.a
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
x y : α
⊢ inv Eq x y ↔ x = y
[PROOFSTEP]
constructor
[GOAL]
case a.h.a.mp
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
x y : α
⊢ inv Eq x y → x = y
[PROOFSTEP]
apply Eq.symm
[GOAL]
case a.h.a.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
x y : α
⊢ x = y → inv Eq x y
[PROOFSTEP]
apply Eq.symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r : Rel α β
s : Rel β γ
⊢ inv (r • s) = inv s • inv r
[PROOFSTEP]
ext x z
[GOAL]
case a.h.a
α : Type u_1
β : Type u_2
γ : Type u_3
r✝ r : Rel α β
s : Rel β γ
x : γ
z : α
⊢ inv (r • s) x z ↔ (inv s • inv r) x z
[PROOFSTEP]
simp [comp, inv, flip, and_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Set α
⊢ image Eq s = s
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Set α
x : α
⊢ x ∈ image Eq s ↔ x ∈ s
[PROOFSTEP]
simp [mem_image]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set α
⊢ image (r • s) t = image s (image r t)
[PROOFSTEP]
ext z
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set α
z : γ
⊢ z ∈ image (r • s) t ↔ z ∈ image s (image r t)
[PROOFSTEP]
simp only [mem_image]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set α
z : γ
⊢ (∃ x, x ∈ t ∧ (r • s) x z) ↔ ∃ x, (∃ x_1, x_1 ∈ t ∧ r x_1 x) ∧ s x z
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set α
z : γ
⊢ (∃ x, x ∈ t ∧ (r • s) x z) → ∃ x, (∃ x_1, x_1 ∈ t ∧ r x_1 x) ∧ s x z
[PROOFSTEP]
rintro ⟨x, xt, y, rxy, syz⟩
[GOAL]
case h.mp.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set α
z : γ
x : α
xt : x ∈ t
y : β
rxy : r x y
syz : s y z
⊢ ∃ x, (∃ x_1, x_1 ∈ t ∧ r x_1 x) ∧ s x z
[PROOFSTEP]
exact ⟨y, ⟨x, xt, rxy⟩, syz⟩
[GOAL]
case h.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set α
z : γ
⊢ (∃ x, (∃ x_1, x_1 ∈ t ∧ r x_1 x) ∧ s x z) → ∃ x, x ∈ t ∧ (r • s) x z
[PROOFSTEP]
rintro ⟨y, ⟨x, xt, rxy⟩, syz⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set α
z : γ
y : β
syz : s y z
x : α
xt : x ∈ t
rxy : r x y
⊢ ∃ x, x ∈ t ∧ (r • s) x z
[PROOFSTEP]
exact ⟨x, xt, y, rxy, syz⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
⊢ image r Set.univ = codom r
[PROOFSTEP]
ext y
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
y : β
⊢ y ∈ image r Set.univ ↔ y ∈ codom r
[PROOFSTEP]
simp [mem_image, codom]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Set α
⊢ preimage Eq s = s
[PROOFSTEP]
simp only [preimage, inv_id, image_id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set γ
⊢ preimage (r • s) t = preimage r (preimage s t)
[PROOFSTEP]
simp only [preimage, inv_comp, image_comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
⊢ preimage r Set.univ = dom r
[PROOFSTEP]
rw [preimage, image_univ, codom_inv]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s t : Set β
⊢ ∀ (x : α), x ∈ core r (s ∩ t) ↔ x ∈ core r s ∩ core r t
[PROOFSTEP]
simp [mem_core, imp_and, forall_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
⊢ ∀ (x : α), x ∈ core r Set.univ ↔ x ∈ Set.univ
[PROOFSTEP]
simp [mem_core]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Set α
⊢ core Eq s = s
[PROOFSTEP]
simp [core]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set γ
⊢ core (r • s) t = core r (core s t)
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set γ
x : α
⊢ x ∈ core (r • s) t ↔ x ∈ core r (core s t)
[PROOFSTEP]
simp [core, comp]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set γ
x : α
⊢ (∀ (y : γ) (x_1 : β), r x x_1 → s x_1 y → y ∈ t) ↔ ∀ (y : β), r x y → ∀ (y_1 : γ), s y y_1 → y_1 ∈ t
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set γ
x : α
⊢ (∀ (y : γ) (x_1 : β), r x x_1 → s x_1 y → y ∈ t) → ∀ (y : β), r x y → ∀ (y_1 : γ), s y y_1 → y_1 ∈ t
[PROOFSTEP]
exact fun h y rxy z => h z y rxy
[GOAL]
case h.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
r : Rel α β
s : Rel β γ
t : Set γ
x : α
⊢ (∀ (y : β), r x y → ∀ (y_1 : γ), s y y_1 → y_1 ∈ t) → ∀ (y : γ) (x_1 : β), r x x_1 → s x_1 y → y ∈ t
[PROOFSTEP]
exact fun h z y rzy => h y rzy z
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
s : Set α
⊢ f '' s = Rel.image (Function.graph f) s
[PROOFSTEP]
simp [Set.image, Function.graph, Rel.image]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
s : Set β
⊢ f ⁻¹' s = Rel.preimage (Function.graph f) s
[PROOFSTEP]
simp [Set.preimage, Function.graph, Rel.preimage, Rel.inv, flip, Rel.image]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
s : Set β
⊢ f ⁻¹' s = Rel.core (Function.graph f) s
[PROOFSTEP]
simp [Set.preimage, Function.graph, Rel.core]
|
{"mathlib_filename": "Mathlib.Data.Rel", "llama_tokens": 4722}
|
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : CommRing R
inst✝² : IsDomain R
inst✝¹ : DecidableEq R
inst✝ : Fintype R
p : R[X]
hp : 0 < degree p
a : R
x✝ : a ∈ image (fun x => eval x p) univ
⊢ filter (fun x => eval x p = a) univ = Multiset.toFinset (roots (p - ↑C a))
[PROOFSTEP]
simp [Finset.ext_iff, ← mem_roots_sub_C hp]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ 0 < degree f
[PROOFSTEP]
rw [hf2]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ 0 < 2
[PROOFSTEP]
exact by decide
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ 0 < 2
[PROOFSTEP]
decide
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ ¬Fintype.card R % 2 = natDegree f * card (image (fun x => eval x f) univ) % 2
[PROOFSTEP]
simp [natDegree_eq_of_degree_eq_some hf2, hR]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ 0 < degree (-g)
[PROOFSTEP]
rw [degree_neg, hg2]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ 0 < 2
[PROOFSTEP]
exact by decide
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ 0 < 2
[PROOFSTEP]
decide
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ natDegree f * card (image (fun x => eval x f) univ) + natDegree (-g) * card (image (fun x => eval x (-g)) univ) =
2 * card (image (fun x => eval x f) univ ∪ image (fun x => eval x (-g)) univ)
[PROOFSTEP]
rw [card_disjoint_union hd]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ natDegree f * card (image (fun x => eval x f) univ) + natDegree (-g) * card (image (fun x => eval x (-g)) univ) =
2 * (card (image (fun x => eval x f) univ) + card (image (fun x => eval x (-g)) univ))
[PROOFSTEP]
simp [natDegree_eq_of_degree_eq_some hf2, natDegree_eq_of_degree_eq_some hg2, mul_add]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this✝ : DecidableEq R := Classical.decEq R
this : ¬Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ)
⊢ ∃ a b, eval a f + eval b g = 0
[PROOFSTEP]
simp only [disjoint_left, mem_image] at this
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this✝ : DecidableEq R := Classical.decEq R
this : ¬∀ ⦃a : R⦄, (∃ a_1, a_1 ∈ univ ∧ eval a_1 f = a) → ¬∃ a_2, a_2 ∈ univ ∧ eval a_2 (-g) = a
⊢ ∃ a b, eval a f + eval b g = 0
[PROOFSTEP]
push_neg at this
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this✝ : DecidableEq R := Classical.decEq R
this : Exists fun ⦃a⦄ => (∃ a_1, a_1 ∈ univ ∧ eval a_1 f = a) ∧ ∃ a_1, a_1 ∈ univ ∧ eval a_1 (-g) = a
⊢ ∃ a b, eval a f + eval b g = 0
[PROOFSTEP]
rcases this with ⟨x, ⟨a, _, ha⟩, ⟨b, _, hb⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
x a : R
left✝¹ : a ∈ univ
ha : eval a f = x
b : R
left✝ : b ∈ univ
hb : eval b (-g) = x
⊢ ∃ a b, eval a f + eval b g = 0
[PROOFSTEP]
exact ⟨a, b, by rw [ha, ← hb, eval_neg, neg_add_self]⟩
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing R
inst✝¹ : IsDomain R
inst✝ : Fintype R
f g : R[X]
hf2 : degree f = 2
hg2 : degree g = 2
hR : Fintype.card R % 2 = 1
this : DecidableEq R := Classical.decEq R
x a : R
left✝¹ : a ∈ univ
ha : eval a f = x
b : R
left✝ : b ∈ univ
hb : eval b (-g) = x
⊢ eval a f + eval b g = 0
[PROOFSTEP]
rw [ha, ← hb, eval_neg, neg_add_self]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing K
inst✝¹ : IsDomain K
inst✝ : Fintype Kˣ
⊢ ∏ x : Kˣ, x = -1
[PROOFSTEP]
classical
have : (∏ x in (@univ Kˣ _).erase (-1), x) = 1 :=
prod_involution (fun x _ => x⁻¹) (by simp)
(fun a => by simp (config := { contextual := true }) [Units.inv_eq_self_iff])
(fun a => by simp [@inv_eq_iff_eq_inv _ _ a]) (by simp)
rw [← insert_erase (mem_univ (-1 : Kˣ)), prod_insert (not_mem_erase _ _), this, mul_one]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing K
inst✝¹ : IsDomain K
inst✝ : Fintype Kˣ
⊢ ∏ x : Kˣ, x = -1
[PROOFSTEP]
have : (∏ x in (@univ Kˣ _).erase (-1), x) = 1 :=
prod_involution (fun x _ => x⁻¹) (by simp)
(fun a => by simp (config := { contextual := true }) [Units.inv_eq_self_iff])
(fun a => by simp [@inv_eq_iff_eq_inv _ _ a]) (by simp)
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing K
inst✝¹ : IsDomain K
inst✝ : Fintype Kˣ
⊢ ∀ (a : Kˣ) (ha : a ∈ erase univ (-1)), a * (fun x x_1 => x⁻¹) a ha = 1
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing K
inst✝¹ : IsDomain K
inst✝ : Fintype Kˣ
a : Kˣ
⊢ ∀ (ha : a ∈ erase univ (-1)), a ≠ 1 → (fun x x_1 => x⁻¹) a ha ≠ a
[PROOFSTEP]
simp (config := { contextual := true }) [Units.inv_eq_self_iff]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing K
inst✝¹ : IsDomain K
inst✝ : Fintype Kˣ
a : Kˣ
⊢ ∀ (ha : a ∈ erase univ (-1)), (fun x x_1 => x⁻¹) a ha ∈ erase univ (-1)
[PROOFSTEP]
simp [@inv_eq_iff_eq_inv _ _ a]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing K
inst✝¹ : IsDomain K
inst✝ : Fintype Kˣ
⊢ ∀ (a : Kˣ) (ha : a ∈ erase univ (-1)), (fun x x_1 => x⁻¹) ((fun x x_1 => x⁻¹) a ha) (_ : a⁻¹ ∈ erase univ (-1)) = a
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : CommRing K
inst✝¹ : IsDomain K
inst✝ : Fintype Kˣ
this : ∏ x in erase univ (-1), x = 1
⊢ ∏ x : Kˣ, x = -1
[PROOFSTEP]
rw [← insert_erase (mem_univ (-1 : Kˣ)), prod_insert (not_mem_erase _ _), this, mul_one]
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
ha : a ≠ 0
⊢ a ^ (q - 1) = 1
[PROOFSTEP]
calc
a ^ (Fintype.card K - 1) = (Units.mk0 a ha ^ (Fintype.card K - 1) : Kˣ).1 := by
rw [Units.val_pow_eq_pow_val, Units.val_mk0]
_ = 1 := by
classical
rw [← Fintype.card_units, pow_card_eq_one]
rfl
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
ha : a ≠ 0
⊢ a ^ (q - 1) = ↑(Units.mk0 a ha ^ (q - 1))
[PROOFSTEP]
rw [Units.val_pow_eq_pow_val, Units.val_mk0]
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
ha : a ≠ 0
⊢ ↑(Units.mk0 a ha ^ (q - 1)) = 1
[PROOFSTEP]
classical
rw [← Fintype.card_units, pow_card_eq_one]
rfl
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
ha : a ≠ 0
⊢ ↑(Units.mk0 a ha ^ (q - 1)) = 1
[PROOFSTEP]
rw [← Fintype.card_units, pow_card_eq_one]
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
ha : a ≠ 0
⊢ ↑1 = 1
[PROOFSTEP]
rfl
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
⊢ a ^ q = a
[PROOFSTEP]
have hp : 0 < Fintype.card K := lt_trans zero_lt_one Fintype.one_lt_card
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
hp : 0 < q
⊢ a ^ q = a
[PROOFSTEP]
by_cases h : a = 0
[GOAL]
case pos
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
hp : 0 < q
h : a = 0
⊢ a ^ q = a
[PROOFSTEP]
rw [h]
[GOAL]
case pos
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
hp : 0 < q
h : a = 0
⊢ 0 ^ q = 0
[PROOFSTEP]
apply zero_pow hp
[GOAL]
case neg
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
hp : 0 < q
h : ¬a = 0
⊢ a ^ q = a
[PROOFSTEP]
rw [← Nat.succ_pred_eq_of_pos hp, pow_succ, Nat.pred_eq_sub_one, pow_card_sub_one_eq_one a h, mul_one]
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
n : ℕ
a : K
⊢ a ^ q ^ n = a
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
⊢ a ^ q ^ Nat.zero = a
[PROOFSTEP]
simp
[GOAL]
case succ
K : Type u_1
R : Type u_2
inst✝¹ : GroupWithZero K
inst✝ : Fintype K
a : K
n : ℕ
ih : a ^ q ^ n = a
⊢ a ^ q ^ Nat.succ n = a
[PROOFSTEP]
simp [pow_succ, pow_mul, ih, pow_card]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n
[PROOFSTEP]
haveI hp : Fact p.Prime := ⟨CharP.char_is_prime K p⟩
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n
[PROOFSTEP]
letI : Module (ZMod p) K := { (ZMod.castHom dvd_rfl K : ZMod p →+* _).toModule with }
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
this : Module (ZMod p) K :=
let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K);
Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0)
⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n
[PROOFSTEP]
obtain ⟨n, h⟩ := VectorSpace.card_fintype (ZMod p) K
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
this : Module (ZMod p) K :=
let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K);
Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0)
n : ℕ
h : q = Fintype.card (ZMod p) ^ n
⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n
[PROOFSTEP]
rw [ZMod.card] at h
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
this : Module (ZMod p) K :=
let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K);
Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0)
n : ℕ
h : q = p ^ n
⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n
[PROOFSTEP]
refine' ⟨⟨n, _⟩, hp.1, h⟩
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
this : Module (ZMod p) K :=
let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K);
Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0)
n : ℕ
h : q = p ^ n
⊢ 0 < n
[PROOFSTEP]
apply Or.resolve_left (Nat.eq_zero_or_pos n)
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
this : Module (ZMod p) K :=
let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K);
Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0)
n : ℕ
h : q = p ^ n
⊢ ¬n = 0
[PROOFSTEP]
rintro rfl
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
this : Module (ZMod p) K :=
let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K);
Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0)
h : q = p ^ 0
⊢ False
[PROOFSTEP]
rw [pow_zero] at h
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
this : Module (ZMod p) K :=
let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K);
Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0)
h : q = 1
⊢ False
[PROOFSTEP]
have : (0 : K) = 1 := by apply Fintype.card_le_one_iff.mp (le_of_eq h)
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
this : Module (ZMod p) K :=
let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K);
Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0)
h : q = 1
⊢ 0 = 1
[PROOFSTEP]
apply Fintype.card_le_one_iff.mp (le_of_eq h)
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
p : ℕ
inst✝ : CharP K p
hp : Fact (Nat.Prime p)
this✝ : Module (ZMod p) K :=
let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K);
Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0)
h : q = 1
this : 0 = 1
⊢ False
[PROOFSTEP]
exact absurd this zero_ne_one
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
⊢ ↑q = 0
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ q - 1 ∣ i
[PROOFSTEP]
classical
obtain ⟨x, hx⟩ := IsCyclic.exists_generator (α := Kˣ)
rw [← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hx, orderOf_dvd_iff_pow_eq_one]
constructor
· intro h; apply h
· intro h y
simp_rw [← mem_powers_iff_mem_zpowers] at hx
rcases hx y with ⟨j, rfl⟩
rw [← pow_mul, mul_comm, pow_mul, h, one_pow]
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ q - 1 ∣ i
[PROOFSTEP]
obtain ⟨x, hx⟩ := IsCyclic.exists_generator (α := Kˣ)
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
x : Kˣ
hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x
⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ q - 1 ∣ i
[PROOFSTEP]
rw [← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hx, orderOf_dvd_iff_pow_eq_one]
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
x : Kˣ
hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x
⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ x ^ i = 1
[PROOFSTEP]
constructor
[GOAL]
case intro.mp
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
x : Kˣ
hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x
⊢ (∀ (x : Kˣ), x ^ i = 1) → x ^ i = 1
[PROOFSTEP]
intro h
[GOAL]
case intro.mp
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
x : Kˣ
hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x
h : ∀ (x : Kˣ), x ^ i = 1
⊢ x ^ i = 1
[PROOFSTEP]
apply h
[GOAL]
case intro.mpr
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
x : Kˣ
hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x
⊢ x ^ i = 1 → ∀ (x : Kˣ), x ^ i = 1
[PROOFSTEP]
intro h y
[GOAL]
case intro.mpr
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
x : Kˣ
hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x
h : x ^ i = 1
y : Kˣ
⊢ y ^ i = 1
[PROOFSTEP]
simp_rw [← mem_powers_iff_mem_zpowers] at hx
[GOAL]
case intro.mpr
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
x : Kˣ
h : x ^ i = 1
y : Kˣ
hx : ∀ (x_1 : Kˣ), x_1 ∈ Submonoid.powers x
⊢ y ^ i = 1
[PROOFSTEP]
rcases hx y with ⟨j, rfl⟩
[GOAL]
case intro.mpr.intro
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
x : Kˣ
h : x ^ i = 1
hx : ∀ (x_1 : Kˣ), x_1 ∈ Submonoid.powers x
j : ℕ
⊢ (fun x x_1 => x ^ x_1) x j ^ i = 1
[PROOFSTEP]
rw [← pow_mul, mul_comm, pow_mul, h, one_pow]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
⊢ ∑ x : Kˣ, ↑(x ^ i) = if q - 1 ∣ i then -1 else 0
[PROOFSTEP]
let φ : Kˣ →* K :=
{ toFun := fun x => x ^ i
map_one' := by simp
map_mul' := by intros; simp [mul_pow] }
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
⊢ (fun x => ↑(x ^ i)) 1 = 1
[PROOFSTEP]
simp
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
⊢ ∀ (x y : Kˣ),
OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } (x * y) =
OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } x *
OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } y
[PROOFSTEP]
intros
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
x✝ y✝ : Kˣ
⊢ OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } (x✝ * y✝) =
OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } x✝ *
OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } y✝
[PROOFSTEP]
simp [mul_pow]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
⊢ ∑ x : Kˣ, ↑(x ^ i) = if q - 1 ∣ i then -1 else 0
[PROOFSTEP]
have : Decidable (φ = 1) := by classical infer_instance
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
⊢ Decidable (φ = 1)
[PROOFSTEP]
classical infer_instance
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
⊢ Decidable (φ = 1)
[PROOFSTEP]
infer_instance
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this : Decidable (φ = 1)
⊢ ∑ x : Kˣ, ↑(x ^ i) = if q - 1 ∣ i then -1 else 0
[PROOFSTEP]
calc
(∑ x : Kˣ, φ x) = if φ = 1 then Fintype.card Kˣ else 0 := sum_hom_units φ
_ = if q - 1 ∣ i then -1 else 0 :=
by
suffices q - 1 ∣ i ↔ φ = 1 by
simp only [this]
split_ifs; swap
· exact Nat.cast_zero
· rw [Fintype.card_units, Nat.cast_sub, cast_card_eq_zero, Nat.cast_one, zero_sub]
show 1 ≤ q; exact Fintype.card_pos_iff.mpr ⟨0⟩
rw [← forall_pow_eq_one_iff, FunLike.ext_iff]
apply forall_congr'; intro x; simp [Units.ext_iff]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this : Decidable (φ = 1)
⊢ ↑(if φ = 1 then Fintype.card Kˣ else 0) = if q - 1 ∣ i then -1 else 0
[PROOFSTEP]
suffices q - 1 ∣ i ↔ φ = 1 by
simp only [this]
split_ifs; swap
· exact Nat.cast_zero
· rw [Fintype.card_units, Nat.cast_sub, cast_card_eq_zero, Nat.cast_one, zero_sub]
show 1 ≤ q; exact Fintype.card_pos_iff.mpr ⟨0⟩
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this✝ : Decidable (φ = 1)
this : q - 1 ∣ i ↔ φ = 1
⊢ ↑(if φ = 1 then Fintype.card Kˣ else 0) = if q - 1 ∣ i then -1 else 0
[PROOFSTEP]
simp only [this]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this✝ : Decidable (φ = 1)
this : q - 1 ∣ i ↔ φ = 1
⊢ ↑(if
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } =
1 then
Fintype.card Kˣ
else 0) =
if
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } =
1 then
-1
else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this✝ : Decidable (φ = 1)
this : q - 1 ∣ i ↔ φ = 1
h✝ :
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } =
1
⊢ ↑(Fintype.card Kˣ) = -1
case neg
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this✝ : Decidable (φ = 1)
this : q - 1 ∣ i ↔ φ = 1
h✝ :
¬{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } =
1
⊢ ↑0 = 0
[PROOFSTEP]
swap
[GOAL]
case neg
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this✝ : Decidable (φ = 1)
this : q - 1 ∣ i ↔ φ = 1
h✝ :
¬{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } =
1
⊢ ↑0 = 0
[PROOFSTEP]
exact Nat.cast_zero
[GOAL]
case pos
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this✝ : Decidable (φ = 1)
this : q - 1 ∣ i ↔ φ = 1
h✝ :
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } =
1
⊢ ↑(Fintype.card Kˣ) = -1
[PROOFSTEP]
rw [Fintype.card_units, Nat.cast_sub, cast_card_eq_zero, Nat.cast_one, zero_sub]
[GOAL]
case pos
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this✝ : Decidable (φ = 1)
this : q - 1 ∣ i ↔ φ = 1
h✝ :
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } =
1
⊢ 1 ≤ q
[PROOFSTEP]
show 1 ≤ q
[GOAL]
case pos
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this✝ : Decidable (φ = 1)
this : q - 1 ∣ i ↔ φ = 1
h✝ :
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } =
1
⊢ 1 ≤ q
[PROOFSTEP]
exact Fintype.card_pos_iff.mpr ⟨0⟩
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this : Decidable (φ = 1)
⊢ q - 1 ∣ i ↔ φ = 1
[PROOFSTEP]
rw [← forall_pow_eq_one_iff, FunLike.ext_iff]
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this : Decidable (φ = 1)
⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ ∀ (x : Kˣ), ↑φ x = ↑1 x
[PROOFSTEP]
apply forall_congr'
[GOAL]
case h
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this : Decidable (φ = 1)
⊢ ∀ (a : Kˣ), a ^ i = 1 ↔ ↑φ a = ↑1 a
[PROOFSTEP]
intro x
[GOAL]
case h
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
inst✝ : DecidableEq K
i : ℕ
φ : Kˣ →* K :=
{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) },
map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) }
this : Decidable (φ = 1)
x : Kˣ
⊢ x ^ i = 1 ↔ ↑φ x = ↑1 x
[PROOFSTEP]
simp [Units.ext_iff]
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
⊢ ∑ x : K, x ^ i = 0
[PROOFSTEP]
by_cases hi : i = 0
[GOAL]
case pos
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : i = 0
⊢ ∑ x : K, x ^ i = 0
[PROOFSTEP]
simp only [hi, nsmul_one, sum_const, pow_zero, card_univ, cast_card_eq_zero]
[GOAL]
case neg
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
⊢ ∑ x : K, x ^ i = 0
[PROOFSTEP]
classical
have hiq : ¬q - 1 ∣ i := by contrapose! h; exact Nat.le_of_dvd (Nat.pos_of_ne_zero hi) h
let φ : Kˣ ↪ K := ⟨fun x ↦ x, Units.ext⟩
have : univ.map φ = univ \ {0} := by
ext x
simp only [true_and_iff, Function.Embedding.coeFn_mk, mem_sdiff, Units.exists_iff_ne_zero, mem_univ, mem_map,
exists_prop_of_true, mem_singleton]
calc
∑ x : K, x ^ i = ∑ x in univ \ {(0 : K)}, x ^ i := by
rw [← sum_sdiff ({0} : Finset K).subset_univ, sum_singleton, zero_pow (Nat.pos_of_ne_zero hi), add_zero]
_ = ∑ x : Kˣ, (x ^ i : K) := by simp [← this, univ.sum_map φ]
_ = 0 := by rw [sum_pow_units K i, if_neg]; exact hiq
[GOAL]
case neg
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
⊢ ∑ x : K, x ^ i = 0
[PROOFSTEP]
have hiq : ¬q - 1 ∣ i := by contrapose! h; exact Nat.le_of_dvd (Nat.pos_of_ne_zero hi) h
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
⊢ ¬q - 1 ∣ i
[PROOFSTEP]
contrapose! h
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
hi : ¬i = 0
h : q - 1 ∣ i
⊢ q - 1 ≤ i
[PROOFSTEP]
exact Nat.le_of_dvd (Nat.pos_of_ne_zero hi) h
[GOAL]
case neg
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
hiq : ¬q - 1 ∣ i
⊢ ∑ x : K, x ^ i = 0
[PROOFSTEP]
let φ : Kˣ ↪ K := ⟨fun x ↦ x, Units.ext⟩
[GOAL]
case neg
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
hiq : ¬q - 1 ∣ i
φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) }
⊢ ∑ x : K, x ^ i = 0
[PROOFSTEP]
have : univ.map φ = univ \ {0} := by
ext x
simp only [true_and_iff, Function.Embedding.coeFn_mk, mem_sdiff, Units.exists_iff_ne_zero, mem_univ, mem_map,
exists_prop_of_true, mem_singleton]
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
hiq : ¬q - 1 ∣ i
φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) }
⊢ map φ univ = univ \ {0}
[PROOFSTEP]
ext x
[GOAL]
case a
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
hiq : ¬q - 1 ∣ i
φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) }
x : K
⊢ x ∈ map φ univ ↔ x ∈ univ \ {0}
[PROOFSTEP]
simp only [true_and_iff, Function.Embedding.coeFn_mk, mem_sdiff, Units.exists_iff_ne_zero, mem_univ, mem_map,
exists_prop_of_true, mem_singleton]
[GOAL]
case neg
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
hiq : ¬q - 1 ∣ i
φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) }
this : map φ univ = univ \ {0}
⊢ ∑ x : K, x ^ i = 0
[PROOFSTEP]
calc
∑ x : K, x ^ i = ∑ x in univ \ {(0 : K)}, x ^ i := by
rw [← sum_sdiff ({0} : Finset K).subset_univ, sum_singleton, zero_pow (Nat.pos_of_ne_zero hi), add_zero]
_ = ∑ x : Kˣ, (x ^ i : K) := by simp [← this, univ.sum_map φ]
_ = 0 := by rw [sum_pow_units K i, if_neg]; exact hiq
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
hiq : ¬q - 1 ∣ i
φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) }
this : map φ univ = univ \ {0}
⊢ ∑ x : K, x ^ i = ∑ x in univ \ {0}, x ^ i
[PROOFSTEP]
rw [← sum_sdiff ({0} : Finset K).subset_univ, sum_singleton, zero_pow (Nat.pos_of_ne_zero hi), add_zero]
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
hiq : ¬q - 1 ∣ i
φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) }
this : map φ univ = univ \ {0}
⊢ ∑ x in univ \ {0}, x ^ i = ∑ x : Kˣ, ↑(x ^ i)
[PROOFSTEP]
simp [← this, univ.sum_map φ]
[GOAL]
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
hiq : ¬q - 1 ∣ i
φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) }
this : map φ univ = univ \ {0}
⊢ ∑ x : Kˣ, ↑(x ^ i) = 0
[PROOFSTEP]
rw [sum_pow_units K i, if_neg]
[GOAL]
case hnc
K : Type u_1
R : Type u_2
inst✝¹ : Field K
inst✝ : Fintype K
i : ℕ
h : i < q - 1
hi : ¬i = 0
hiq : ¬q - 1 ∣ i
φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) }
this : map φ univ = univ \ {0}
⊢ ¬q - 1 ∣ i
[PROOFSTEP]
exact hiq
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
K' : Type u_3
inst✝ : Field K'
p n : ℕ
hp : 1 < p
⊢ natDegree (X ^ p - X) = p
[PROOFSTEP]
have h1 : (X : K'[X]).degree < (X ^ p : K'[X]).degree :=
by
rw [degree_X_pow, degree_X]
-- Porting note: the following line was `exact_mod_cast hp`
exact WithBot.coe_lt_coe.2 hp
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
K' : Type u_3
inst✝ : Field K'
p n : ℕ
hp : 1 < p
⊢ degree X < degree (X ^ p)
[PROOFSTEP]
rw [degree_X_pow, degree_X]
-- Porting note: the following line was `exact_mod_cast hp`
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
K' : Type u_3
inst✝ : Field K'
p n : ℕ
hp : 1 < p
⊢ 1 < ↑p
[PROOFSTEP]
exact WithBot.coe_lt_coe.2 hp
[GOAL]
K : Type u_1
R : Type u_2
inst✝² : Field K
inst✝¹ : Fintype K
K' : Type u_3
inst✝ : Field K'
p n : ℕ
hp : 1 < p
h1 : degree X < degree (X ^ p)
⊢ natDegree (X ^ p - X) = p
[PROOFSTEP]
rw [natDegree_eq_of_degree_eq (degree_sub_eq_left_of_degree_lt h1), natDegree_X_pow]
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
⊢ roots (X ^ q - X) = univ.val
[PROOFSTEP]
classical
have aux : (X ^ q - X : K[X]) ≠ 0 := X_pow_card_sub_X_ne_zero K Fintype.one_lt_card
have : (roots (X ^ q - X : K[X])).toFinset = Finset.univ :=
by
rw [eq_univ_iff_forall]
intro x
rw [Multiset.mem_toFinset, mem_roots aux, IsRoot.def, eval_sub, eval_pow, eval_X, sub_eq_zero, pow_card]
rw [← this, Multiset.toFinset_val, eq_comm, Multiset.dedup_eq_self]
apply nodup_roots
rw [separable_def]
convert isCoprime_one_right.neg_right (R := K[X]) using 1
rw [derivative_sub, derivative_X, derivative_X_pow, CharP.cast_card_eq_zero K, C_0, zero_mul, zero_sub]
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
⊢ roots (X ^ q - X) = univ.val
[PROOFSTEP]
have aux : (X ^ q - X : K[X]) ≠ 0 := X_pow_card_sub_X_ne_zero K Fintype.one_lt_card
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
aux : X ^ q - X ≠ 0
⊢ roots (X ^ q - X) = univ.val
[PROOFSTEP]
have : (roots (X ^ q - X : K[X])).toFinset = Finset.univ :=
by
rw [eq_univ_iff_forall]
intro x
rw [Multiset.mem_toFinset, mem_roots aux, IsRoot.def, eval_sub, eval_pow, eval_X, sub_eq_zero, pow_card]
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
aux : X ^ q - X ≠ 0
⊢ Multiset.toFinset (roots (X ^ q - X)) = univ
[PROOFSTEP]
rw [eq_univ_iff_forall]
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
aux : X ^ q - X ≠ 0
⊢ ∀ (x : K), x ∈ Multiset.toFinset (roots (X ^ q - X))
[PROOFSTEP]
intro x
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
aux : X ^ q - X ≠ 0
x : K
⊢ x ∈ Multiset.toFinset (roots (X ^ q - X))
[PROOFSTEP]
rw [Multiset.mem_toFinset, mem_roots aux, IsRoot.def, eval_sub, eval_pow, eval_X, sub_eq_zero, pow_card]
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
aux : X ^ q - X ≠ 0
this : Multiset.toFinset (roots (X ^ q - X)) = univ
⊢ roots (X ^ q - X) = univ.val
[PROOFSTEP]
rw [← this, Multiset.toFinset_val, eq_comm, Multiset.dedup_eq_self]
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
aux : X ^ q - X ≠ 0
this : Multiset.toFinset (roots (X ^ q - X)) = univ
⊢ Multiset.Nodup (roots (X ^ q - X))
[PROOFSTEP]
apply nodup_roots
[GOAL]
case hsep
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
aux : X ^ q - X ≠ 0
this : Multiset.toFinset (roots (X ^ q - X)) = univ
⊢ Separable (X ^ q - X)
[PROOFSTEP]
rw [separable_def]
[GOAL]
case hsep
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
aux : X ^ q - X ≠ 0
this : Multiset.toFinset (roots (X ^ q - X)) = univ
⊢ IsCoprime (X ^ q - X) (↑derivative (X ^ q - X))
[PROOFSTEP]
convert isCoprime_one_right.neg_right (R := K[X]) using 1
[GOAL]
case h.e'_4
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
aux : X ^ q - X ≠ 0
this : Multiset.toFinset (roots (X ^ q - X)) = univ
⊢ ↑derivative (X ^ q - X) = -1
[PROOFSTEP]
rw [derivative_sub, derivative_X, derivative_X_pow, CharP.cast_card_eq_zero K, C_0, zero_mul, zero_sub]
[GOAL]
K : Type u_1
R : Type u_2
inst✝⁵ : Field K
inst✝⁴ : Fintype K
p✝ : ℕ
inst✝³ : Fact (Nat.Prime p✝)
inst✝² : Algebra (ZMod p✝) K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
hcard : q = p ^ n
⊢ frobenius K p ^ n = 1
[PROOFSTEP]
ext x
[GOAL]
case a
K : Type u_1
R : Type u_2
inst✝⁵ : Field K
inst✝⁴ : Fintype K
p✝ : ℕ
inst✝³ : Fact (Nat.Prime p✝)
inst✝² : Algebra (ZMod p✝) K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
hcard : q = p ^ n
x : K
⊢ ↑(frobenius K p ^ n) x = ↑1 x
[PROOFSTEP]
conv_rhs => rw [RingHom.one_def, RingHom.id_apply, ← pow_card x, hcard]
[GOAL]
K : Type u_1
R : Type u_2
inst✝⁵ : Field K
inst✝⁴ : Fintype K
p✝ : ℕ
inst✝³ : Fact (Nat.Prime p✝)
inst✝² : Algebra (ZMod p✝) K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
hcard : q = p ^ n
x : K
| ↑1 x
[PROOFSTEP]
rw [RingHom.one_def, RingHom.id_apply, ← pow_card x, hcard]
[GOAL]
K : Type u_1
R : Type u_2
inst✝⁵ : Field K
inst✝⁴ : Fintype K
p✝ : ℕ
inst✝³ : Fact (Nat.Prime p✝)
inst✝² : Algebra (ZMod p✝) K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
hcard : q = p ^ n
x : K
| ↑1 x
[PROOFSTEP]
rw [RingHom.one_def, RingHom.id_apply, ← pow_card x, hcard]
[GOAL]
K : Type u_1
R : Type u_2
inst✝⁵ : Field K
inst✝⁴ : Fintype K
p✝ : ℕ
inst✝³ : Fact (Nat.Prime p✝)
inst✝² : Algebra (ZMod p✝) K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
hcard : q = p ^ n
x : K
| ↑1 x
[PROOFSTEP]
rw [RingHom.one_def, RingHom.id_apply, ← pow_card x, hcard]
[GOAL]
case a
K : Type u_1
R : Type u_2
inst✝⁵ : Field K
inst✝⁴ : Fintype K
p✝ : ℕ
inst✝³ : Fact (Nat.Prime p✝)
inst✝² : Algebra (ZMod p✝) K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
hcard : q = p ^ n
x : K
⊢ ↑(frobenius K p ^ n) x = x ^ p ^ n
[PROOFSTEP]
clear hcard
[GOAL]
case a
K : Type u_1
R : Type u_2
inst✝⁵ : Field K
inst✝⁴ : Fintype K
p✝ : ℕ
inst✝³ : Fact (Nat.Prime p✝)
inst✝² : Algebra (ZMod p✝) K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
n : ℕ
x : K
⊢ ↑(frobenius K p ^ n) x = x ^ p ^ n
[PROOFSTEP]
induction' n with n hn
[GOAL]
case a.zero
K : Type u_1
R : Type u_2
inst✝⁵ : Field K
inst✝⁴ : Fintype K
p✝ : ℕ
inst✝³ : Fact (Nat.Prime p✝)
inst✝² : Algebra (ZMod p✝) K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : K
⊢ ↑(frobenius K p ^ Nat.zero) x = x ^ p ^ Nat.zero
[PROOFSTEP]
simp
[GOAL]
case a.succ
K : Type u_1
R : Type u_2
inst✝⁵ : Field K
inst✝⁴ : Fintype K
p✝ : ℕ
inst✝³ : Fact (Nat.Prime p✝)
inst✝² : Algebra (ZMod p✝) K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : CharP K p
x : K
n : ℕ
hn : ↑(frobenius K p ^ n) x = x ^ p ^ n
⊢ ↑(frobenius K p ^ Nat.succ n) x = x ^ p ^ Nat.succ n
[PROOFSTEP]
rw [pow_succ, pow_succ', pow_mul, RingHom.mul_def, RingHom.comp_apply, frobenius_def, hn]
[GOAL]
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p : ℕ
inst✝¹ : Fact (Nat.Prime p)
inst✝ : Algebra (ZMod p) K
f : K[X]
⊢ ↑(expand K q) f = f ^ q
[PROOFSTEP]
cases' CharP.exists K with p hp
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : Algebra (ZMod p✝) K
f : K[X]
p : ℕ
hp : CharP K p
⊢ ↑(expand K q) f = f ^ q
[PROOFSTEP]
letI := hp
[GOAL]
case intro
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : Algebra (ZMod p✝) K
f : K[X]
p : ℕ
hp : CharP K p
this : CharP K p := hp
⊢ ↑(expand K q) f = f ^ q
[PROOFSTEP]
rcases FiniteField.card K p with ⟨⟨n, npos⟩, ⟨hp, hn⟩⟩
[GOAL]
case intro.intro.mk.intro
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : Algebra (ZMod p✝) K
f : K[X]
p : ℕ
hp✝ : CharP K p
this : CharP K p := hp✝
n : ℕ
npos : 0 < n
hp : Nat.Prime p
hn : q = p ^ ↑{ val := n, property := npos }
⊢ ↑(expand K q) f = f ^ q
[PROOFSTEP]
haveI : Fact p.Prime := ⟨hp⟩
[GOAL]
case intro.intro.mk.intro
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : Algebra (ZMod p✝) K
f : K[X]
p : ℕ
hp✝ : CharP K p
this✝ : CharP K p := hp✝
n : ℕ
npos : 0 < n
hp : Nat.Prime p
hn : q = p ^ ↑{ val := n, property := npos }
this : Fact (Nat.Prime p)
⊢ ↑(expand K q) f = f ^ q
[PROOFSTEP]
dsimp at hn
[GOAL]
case intro.intro.mk.intro
K : Type u_1
R : Type u_2
inst✝³ : Field K
inst✝² : Fintype K
p✝ : ℕ
inst✝¹ : Fact (Nat.Prime p✝)
inst✝ : Algebra (ZMod p✝) K
f : K[X]
p : ℕ
hp✝ : CharP K p
this✝ : CharP K p := hp✝
n : ℕ
npos : 0 < n
hp : Nat.Prime p
hn : q = p ^ n
this : Fact (Nat.Prime p)
⊢ ↑(expand K q) f = f ^ q
[PROOFSTEP]
rw [hn, ← map_expand_pow_char, frobenius_pow hn, RingHom.one_def, map_id]
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
⊢ ∃ a b, a ^ 2 + b ^ 2 = x
[PROOFSTEP]
cases' hp.1.eq_two_or_odd with hp2 hp_odd
[GOAL]
case inl
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
hp2 : p = 2
⊢ ∃ a b, a ^ 2 + b ^ 2 = x
[PROOFSTEP]
subst p
[GOAL]
case inl
K : Type u_1
R : Type u_2
hp : Fact (Nat.Prime 2)
x : ZMod 2
⊢ ∃ a b, a ^ 2 + b ^ 2 = x
[PROOFSTEP]
change Fin 2 at x
[GOAL]
case inl
K : Type u_1
R : Type u_2
hp : Fact (Nat.Prime 2)
x : Fin 2
⊢ ∃ a b, a ^ 2 + b ^ 2 = x
[PROOFSTEP]
fin_cases x
[GOAL]
case inl.head
K : Type u_1
R : Type u_2
hp : Fact (Nat.Prime 2)
⊢ ∃ a b, a ^ 2 + b ^ 2 = { val := 0, isLt := (_ : 0 < 2) }
[PROOFSTEP]
use 0
[GOAL]
case h
K : Type u_1
R : Type u_2
hp : Fact (Nat.Prime 2)
⊢ ∃ b, 0 ^ 2 + b ^ 2 = { val := 0, isLt := (_ : 0 < 2) }
[PROOFSTEP]
simp
[GOAL]
case inl.tail.head
K : Type u_1
R : Type u_2
hp : Fact (Nat.Prime 2)
⊢ ∃ a b, a ^ 2 + b ^ 2 = { val := 1, isLt := (_ : (fun a => a < 2) 1) }
[PROOFSTEP]
use 0, 1
[GOAL]
case h
K : Type u_1
R : Type u_2
hp : Fact (Nat.Prime 2)
⊢ 0 ^ 2 + 1 ^ 2 = { val := 1, isLt := (_ : (fun a => a < 2) 1) }
[PROOFSTEP]
simp
[GOAL]
case inr
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
hp_odd : p % 2 = 1
⊢ ∃ a b, a ^ 2 + b ^ 2 = x
[PROOFSTEP]
let f : (ZMod p)[X] := X ^ 2
[GOAL]
case inr
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
hp_odd : p % 2 = 1
f : (ZMod p)[X] := X ^ 2
⊢ ∃ a b, a ^ 2 + b ^ 2 = x
[PROOFSTEP]
let g : (ZMod p)[X] := X ^ 2 - C x
[GOAL]
case inr
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
hp_odd : p % 2 = 1
f : (ZMod p)[X] := X ^ 2
g : (ZMod p)[X] := X ^ 2 - ↑C x
⊢ ∃ a b, a ^ 2 + b ^ 2 = x
[PROOFSTEP]
obtain ⟨a, b, hab⟩ : ∃ a b, f.eval a + g.eval b = 0 :=
@exists_root_sum_quadratic _ _ _ _ f g (degree_X_pow 2) (degree_X_pow_sub_C (by decide) _) (by rw [ZMod.card, hp_odd])
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
hp_odd : p % 2 = 1
f : (ZMod p)[X] := X ^ 2
g : (ZMod p)[X] := X ^ 2 - ↑C x
⊢ 0 < 2
[PROOFSTEP]
decide
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
hp_odd : p % 2 = 1
f : (ZMod p)[X] := X ^ 2
g : (ZMod p)[X] := X ^ 2 - ↑C x
⊢ Fintype.card (ZMod p) % 2 = 1
[PROOFSTEP]
rw [ZMod.card, hp_odd]
[GOAL]
case inr.intro.intro
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
hp_odd : p % 2 = 1
f : (ZMod p)[X] := X ^ 2
g : (ZMod p)[X] := X ^ 2 - ↑C x
a b : ZMod p
hab : eval a f + eval b g = 0
⊢ ∃ a b, a ^ 2 + b ^ 2 = x
[PROOFSTEP]
refine' ⟨a, b, _⟩
[GOAL]
case inr.intro.intro
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
hp_odd : p % 2 = 1
f : (ZMod p)[X] := X ^ 2
g : (ZMod p)[X] := X ^ 2 - ↑C x
a b : ZMod p
hab : eval a f + eval b g = 0
⊢ a ^ 2 + b ^ 2 = x
[PROOFSTEP]
rw [← sub_eq_zero]
[GOAL]
case inr.intro.intro
K : Type u_1
R : Type u_2
p : ℕ
hp : Fact (Nat.Prime p)
x : ZMod p
hp_odd : p % 2 = 1
f : (ZMod p)[X] := X ^ 2
g : (ZMod p)[X] := X ^ 2 - ↑C x
a b : ZMod p
hab : eval a f + eval b g = 0
⊢ a ^ 2 + b ^ 2 - x = 0
[PROOFSTEP]
simpa only [eval_C, eval_X, eval_pow, eval_sub, ← add_sub_assoc] using hab
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Prime p)
x : ℤ
⊢ ∃ a b, a ≤ p / 2 ∧ b ≤ p / 2 ∧ ↑a ^ 2 + ↑b ^ 2 ≡ x [ZMOD ↑p]
[PROOFSTEP]
rcases ZMod.sq_add_sq p x with ⟨a, b, hx⟩
[GOAL]
case intro.intro
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Prime p)
x : ℤ
a b : ZMod p
hx : a ^ 2 + b ^ 2 = ↑x
⊢ ∃ a b, a ≤ p / 2 ∧ b ≤ p / 2 ∧ ↑a ^ 2 + ↑b ^ 2 ≡ x [ZMOD ↑p]
[PROOFSTEP]
refine ⟨a.valMinAbs.natAbs, b.valMinAbs.natAbs, ZMod.natAbs_valMinAbs_le _, ZMod.natAbs_valMinAbs_le _, ?_⟩
[GOAL]
case intro.intro
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Prime p)
x : ℤ
a b : ZMod p
hx : a ^ 2 + b ^ 2 = ↑x
⊢ ↑(Int.natAbs (ZMod.valMinAbs a)) ^ 2 + ↑(Int.natAbs (ZMod.valMinAbs b)) ^ 2 ≡ x [ZMOD ↑p]
[PROOFSTEP]
rw [← a.coe_valMinAbs, ← b.coe_valMinAbs] at hx
[GOAL]
case intro.intro
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Prime p)
x : ℤ
a b : ZMod p
hx : ↑(ZMod.valMinAbs a) ^ 2 + ↑(ZMod.valMinAbs b) ^ 2 = ↑x
⊢ ↑(Int.natAbs (ZMod.valMinAbs a)) ^ 2 + ↑(Int.natAbs (ZMod.valMinAbs b)) ^ 2 ≡ x [ZMOD ↑p]
[PROOFSTEP]
push_cast
[GOAL]
case intro.intro
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Prime p)
x : ℤ
a b : ZMod p
hx : ↑(ZMod.valMinAbs a) ^ 2 + ↑(ZMod.valMinAbs b) ^ 2 = ↑x
⊢ |ZMod.valMinAbs a| ^ 2 + |ZMod.valMinAbs b| ^ 2 ≡ x [ZMOD ↑p]
[PROOFSTEP]
rw [sq_abs, sq_abs, ← ZMod.int_cast_eq_int_cast_iff]
[GOAL]
case intro.intro
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Prime p)
x : ℤ
a b : ZMod p
hx : ↑(ZMod.valMinAbs a) ^ 2 + ↑(ZMod.valMinAbs b) ^ 2 = ↑x
⊢ ↑(ZMod.valMinAbs a ^ 2 + ZMod.valMinAbs b ^ 2) = ↑x
[PROOFSTEP]
exact_mod_cast hx
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Prime p)
x : ℕ
⊢ ∃ a b, a ≤ p / 2 ∧ b ≤ p / 2 ∧ a ^ 2 + b ^ 2 ≡ x [MOD p]
[PROOFSTEP]
simpa only [← Int.coe_nat_modEq_iff] using Nat.sq_add_sq_zmodEq p x
[GOAL]
K : Type u_1
R✝ : Type u_2
R : Type u_3
inst✝³ : CommRing R
inst✝² : IsDomain R
p : ℕ
inst✝¹ : NeZero p
inst✝ : CharP R p
x : ℤ
⊢ ∃ a b, ↑a ^ 2 + ↑b ^ 2 = ↑x
[PROOFSTEP]
haveI := char_is_prime_of_pos R p
[GOAL]
K : Type u_1
R✝ : Type u_2
R : Type u_3
inst✝³ : CommRing R
inst✝² : IsDomain R
p : ℕ
inst✝¹ : NeZero p
inst✝ : CharP R p
x : ℤ
this : Fact (Nat.Prime p)
⊢ ∃ a b, ↑a ^ 2 + ↑b ^ 2 = ↑x
[PROOFSTEP]
obtain ⟨a, b, hab⟩ := ZMod.sq_add_sq p x
[GOAL]
case intro.intro
K : Type u_1
R✝ : Type u_2
R : Type u_3
inst✝³ : CommRing R
inst✝² : IsDomain R
p : ℕ
inst✝¹ : NeZero p
inst✝ : CharP R p
x : ℤ
this : Fact (Nat.Prime p)
a b : ZMod p
hab : a ^ 2 + b ^ 2 = ↑x
⊢ ∃ a b, ↑a ^ 2 + ↑b ^ 2 = ↑x
[PROOFSTEP]
refine' ⟨a.val, b.val, _⟩
[GOAL]
case intro.intro
K : Type u_1
R✝ : Type u_2
R : Type u_3
inst✝³ : CommRing R
inst✝² : IsDomain R
p : ℕ
inst✝¹ : NeZero p
inst✝ : CharP R p
x : ℤ
this : Fact (Nat.Prime p)
a b : ZMod p
hab : a ^ 2 + b ^ 2 = ↑x
⊢ ↑(ZMod.val a) ^ 2 + ↑(ZMod.val b) ^ 2 = ↑x
[PROOFSTEP]
simpa using congr_arg (ZMod.castHom dvd_rfl R) hab
[GOAL]
K : Type u_1
R : Type u_2
n : ℕ
x : (ZMod n)ˣ
⊢ x ^ φ n = 1
[PROOFSTEP]
cases n
[GOAL]
case zero
K : Type u_1
R : Type u_2
x : (ZMod Nat.zero)ˣ
⊢ x ^ φ Nat.zero = 1
[PROOFSTEP]
rw [Nat.totient_zero, pow_zero]
[GOAL]
case succ
K : Type u_1
R : Type u_2
n✝ : ℕ
x : (ZMod (Nat.succ n✝))ˣ
⊢ x ^ φ (Nat.succ n✝) = 1
[PROOFSTEP]
rw [← card_units_eq_totient, pow_card_eq_one]
[GOAL]
K : Type u_1
R : Type u_2
x n : ℕ
h : coprime x n
⊢ x ^ φ n ≡ 1 [MOD n]
[PROOFSTEP]
rw [← ZMod.eq_iff_modEq_nat]
[GOAL]
K : Type u_1
R : Type u_2
x n : ℕ
h : coprime x n
⊢ ↑(x ^ φ n) = ↑1
[PROOFSTEP]
let x' : Units (ZMod n) := ZMod.unitOfCoprime _ h
[GOAL]
K : Type u_1
R : Type u_2
x n : ℕ
h : coprime x n
x' : (ZMod n)ˣ := unitOfCoprime x h
⊢ ↑(x ^ φ n) = ↑1
[PROOFSTEP]
have := ZMod.pow_totient x'
[GOAL]
K : Type u_1
R : Type u_2
x n : ℕ
h : coprime x n
x' : (ZMod n)ˣ := unitOfCoprime x h
this : x' ^ φ n = 1
⊢ ↑(x ^ φ n) = ↑1
[PROOFSTEP]
apply_fun ((fun (x : Units (ZMod n)) => (x : ZMod n)) : Units (ZMod n) → ZMod n) at this
[GOAL]
K : Type u_1
R : Type u_2
x n : ℕ
h : coprime x n
x' : (ZMod n)ˣ := unitOfCoprime x h
this : ↑(x' ^ φ n) = ↑1
⊢ ↑(x ^ φ n) = ↑1
[PROOFSTEP]
simpa only [Nat.succ_eq_add_one, Nat.cast_pow, Units.val_one, Nat.cast_one, coe_unitOfCoprime, Units.val_pow_eq_pow_val]
[GOAL]
K : Type u_1
R : Type u_2
V : Type u_3
inst✝⁴ : Fintype K
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Fintype V
⊢ Fintype.card V = q ^ FiniteDimensional.finrank K V
[PROOFSTEP]
let b := IsNoetherian.finsetBasis K V
[GOAL]
K : Type u_1
R : Type u_2
V : Type u_3
inst✝⁴ : Fintype K
inst✝³ : DivisionRing K
inst✝² : AddCommGroup V
inst✝¹ : Module K V
inst✝ : Fintype V
b : Basis { x // x ∈ IsNoetherian.finsetBasisIndex K V } K V := IsNoetherian.finsetBasis K V
⊢ Fintype.card V = q ^ FiniteDimensional.finrank K V
[PROOFSTEP]
rw [Module.card_fintype b, ← FiniteDimensional.finrank_eq_card_basis b]
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
x : ZMod p
⊢ x ^ p = x
[PROOFSTEP]
have h := FiniteField.pow_card x
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
x : ZMod p
h : x ^ Fintype.card (ZMod p) = x
⊢ x ^ p = x
[PROOFSTEP]
rwa [ZMod.card p] at h
[GOAL]
K : Type u_1
R : Type u_2
n p : ℕ
inst✝ : Fact (Nat.Prime p)
x : ZMod p
⊢ x ^ p ^ n = x
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
x : ZMod p
⊢ x ^ p ^ Nat.zero = x
[PROOFSTEP]
simp
[GOAL]
case succ
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
x : ZMod p
n : ℕ
ih : x ^ p ^ n = x
⊢ x ^ p ^ Nat.succ n = x
[PROOFSTEP]
simp [pow_succ, pow_mul, ih, pow_card]
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
⊢ frobenius (ZMod p) p = RingHom.id (ZMod p)
[PROOFSTEP]
ext a
[GOAL]
case a
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
a : ZMod p
⊢ ↑(frobenius (ZMod p) p) a = ↑(RingHom.id (ZMod p)) a
[PROOFSTEP]
rw [frobenius_def, ZMod.pow_card, RingHom.id_apply]
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
⊢ Fintype.card (ZMod p)ˣ = p - 1
[PROOFSTEP]
rw [Fintype.card_units, card]
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
a : (ZMod p)ˣ
⊢ a ^ (p - 1) = 1
[PROOFSTEP]
rw [← card_units p, pow_card_eq_one]
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
a : ZMod p
ha : a ≠ 0
⊢ a ^ (p - 1) = 1
[PROOFSTEP]
have h := FiniteField.pow_card_sub_one_eq_one a ha
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
a : ZMod p
ha : a ≠ 0
h : a ^ (Fintype.card (ZMod p) - 1) = 1
⊢ a ^ (p - 1) = 1
[PROOFSTEP]
rwa [ZMod.card p] at h
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
f : (ZMod p)[X]
⊢ ↑(expand (ZMod p) p) f = f ^ p
[PROOFSTEP]
have h := FiniteField.expand_card f
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
inst✝ : Fact (Nat.Prime p)
f : (ZMod p)[X]
h : ↑(expand (ZMod p) (Fintype.card (ZMod p))) f = f ^ Fintype.card (ZMod p)
⊢ ↑(expand (ZMod p) p) f = f ^ p
[PROOFSTEP]
rwa [ZMod.card p] at h
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
hp : Nat.Prime p
n : ℤ
hpn : IsCoprime n ↑p
⊢ n ^ (p - 1) ≡ 1 [ZMOD ↑p]
[PROOFSTEP]
haveI : Fact p.Prime := ⟨hp⟩
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
hp : Nat.Prime p
n : ℤ
hpn : IsCoprime n ↑p
this : Fact (Nat.Prime p)
⊢ n ^ (p - 1) ≡ 1 [ZMOD ↑p]
[PROOFSTEP]
have : ¬(n : ZMod p) = 0 :=
by
rw [CharP.int_cast_eq_zero_iff _ p, ← (Nat.prime_iff_prime_int.mp hp).coprime_iff_not_dvd]
· exact hpn.symm
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
hp : Nat.Prime p
n : ℤ
hpn : IsCoprime n ↑p
this : Fact (Nat.Prime p)
⊢ ¬↑n = 0
[PROOFSTEP]
rw [CharP.int_cast_eq_zero_iff _ p, ← (Nat.prime_iff_prime_int.mp hp).coprime_iff_not_dvd]
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
hp : Nat.Prime p
n : ℤ
hpn : IsCoprime n ↑p
this : Fact (Nat.Prime p)
⊢ IsCoprime (↑p) n
[PROOFSTEP]
exact hpn.symm
[GOAL]
K : Type u_1
R : Type u_2
p : ℕ
hp : Nat.Prime p
n : ℤ
hpn : IsCoprime n ↑p
this✝ : Fact (Nat.Prime p)
this : ¬↑n = 0
⊢ n ^ (p - 1) ≡ 1 [ZMOD ↑p]
[PROOFSTEP]
simpa [← ZMod.int_cast_eq_int_cast_iff] using ZMod.pow_card_sub_one_eq_one this
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
⊢ ∃ a, ¬IsSquare a
[PROOFSTEP]
let sq : F → F := fun x => x ^ 2
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
sq : F → F := fun x => x ^ 2
⊢ ∃ a, ¬IsSquare a
[PROOFSTEP]
have h : ¬Function.Injective sq :=
by
simp only [Function.Injective, not_forall, exists_prop]
refine' ⟨-1, 1, _, Ring.neg_one_ne_one_of_char_ne_two hF⟩
simp only [one_pow, neg_one_sq]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
sq : F → F := fun x => x ^ 2
⊢ ¬Function.Injective sq
[PROOFSTEP]
simp only [Function.Injective, not_forall, exists_prop]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
sq : F → F := fun x => x ^ 2
⊢ ∃ x x_1, x ^ 2 = x_1 ^ 2 ∧ ¬x = x_1
[PROOFSTEP]
refine' ⟨-1, 1, _, Ring.neg_one_ne_one_of_char_ne_two hF⟩
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
sq : F → F := fun x => x ^ 2
⊢ (-1) ^ 2 = 1 ^ 2
[PROOFSTEP]
simp only [one_pow, neg_one_sq]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
sq : F → F := fun x => x ^ 2
h : ¬Function.Injective sq
⊢ ∃ a, ¬IsSquare a
[PROOFSTEP]
rw [Finite.injective_iff_surjective] at h
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
sq : F → F := fun x => x ^ 2
h : ¬Function.Surjective sq
⊢ ∃ a, ¬IsSquare a
[PROOFSTEP]
simp_rw [IsSquare, ← pow_two, @eq_comm _ _ (_ ^ 2)]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
sq : F → F := fun x => x ^ 2
h : ¬Function.Surjective sq
⊢ ∃ a, ¬∃ r, r ^ 2 = a
[PROOFSTEP]
unfold Function.Surjective at h
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
sq : F → F := fun x => x ^ 2
h : ¬∀ (b : F), ∃ a, sq a = b
⊢ ∃ a, ¬∃ r, r ^ 2 = a
[PROOFSTEP]
push_neg at h ⊢
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Finite F
hF : ringChar F ≠ 2
sq : F → F := fun x => x ^ 2
h : ∃ b, ∀ (a : F), (fun x => x ^ 2) a ≠ b
⊢ ∃ a, ∀ (r : F), r ^ 2 ≠ a
[PROOFSTEP]
exact h
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
⊢ ringChar F = 2 ↔ Fintype.card F % 2 = 0
[PROOFSTEP]
rcases FiniteField.card F (ringChar F) with ⟨n, hp, h⟩
[GOAL]
case intro.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
n : ℕ+
hp : Nat.Prime (ringChar F)
h : Fintype.card F = ringChar F ^ ↑n
⊢ ringChar F = 2 ↔ Fintype.card F % 2 = 0
[PROOFSTEP]
rw [h, Nat.pow_mod]
[GOAL]
case intro.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
n : ℕ+
hp : Nat.Prime (ringChar F)
h : Fintype.card F = ringChar F ^ ↑n
⊢ ringChar F = 2 ↔ (ringChar F % 2) ^ ↑n % 2 = 0
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.mp
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
n : ℕ+
hp : Nat.Prime (ringChar F)
h : Fintype.card F = ringChar F ^ ↑n
⊢ ringChar F = 2 → (ringChar F % 2) ^ ↑n % 2 = 0
[PROOFSTEP]
intro hF
[GOAL]
case intro.intro.mp
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
n : ℕ+
hp : Nat.Prime (ringChar F)
h : Fintype.card F = ringChar F ^ ↑n
hF : ringChar F = 2
⊢ (ringChar F % 2) ^ ↑n % 2 = 0
[PROOFSTEP]
simp [hF]
[GOAL]
case intro.intro.mpr
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
n : ℕ+
hp : Nat.Prime (ringChar F)
h : Fintype.card F = ringChar F ^ ↑n
⊢ (ringChar F % 2) ^ ↑n % 2 = 0 → ringChar F = 2
[PROOFSTEP]
rw [← Nat.even_iff, Nat.even_pow]
[GOAL]
case intro.intro.mpr
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
n : ℕ+
hp : Nat.Prime (ringChar F)
h : Fintype.card F = ringChar F ^ ↑n
⊢ Even (ringChar F % 2) ∧ ↑n ≠ 0 → ringChar F = 2
[PROOFSTEP]
rintro ⟨hev, hnz⟩
[GOAL]
case intro.intro.mpr.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
n : ℕ+
hp : Nat.Prime (ringChar F)
h : Fintype.card F = ringChar F ^ ↑n
hev : Even (ringChar F % 2)
hnz : ↑n ≠ 0
⊢ ringChar F = 2
[PROOFSTEP]
rw [Nat.even_iff, Nat.mod_mod] at hev
[GOAL]
case intro.intro.mpr.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
n : ℕ+
hp : Nat.Prime (ringChar F)
h : Fintype.card F = ringChar F ^ ↑n
hev : ringChar F % 2 = 0
hnz : ↑n ≠ 0
⊢ ringChar F = 2
[PROOFSTEP]
exact (Nat.Prime.eq_two_or_odd hp).resolve_right (ne_of_eq_of_ne hev zero_ne_one)
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
⊢ a ^ (Fintype.card F / 2) = 1 ∨ a ^ (Fintype.card F / 2) = -1
[PROOFSTEP]
have h₁ := FiniteField.pow_card_sub_one_eq_one a ha
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
h₁ : a ^ (Fintype.card F - 1) = 1
⊢ a ^ (Fintype.card F / 2) = 1 ∨ a ^ (Fintype.card F / 2) = -1
[PROOFSTEP]
rw [← Nat.two_mul_odd_div_two (FiniteField.odd_card_of_char_ne_two hF), mul_comm, pow_mul, pow_two] at h₁
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
h₁ : a ^ (Fintype.card F / 2) * a ^ (Fintype.card F / 2) = 1
⊢ a ^ (Fintype.card F / 2) = 1 ∨ a ^ (Fintype.card F / 2) = -1
[PROOFSTEP]
exact mul_self_eq_one_iff.mp h₁
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : Fˣ
⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1
[PROOFSTEP]
classical
obtain ⟨g, hg⟩ := IsCyclic.exists_generator (α := Fˣ)
obtain ⟨n, hn⟩ : a ∈ Submonoid.powers g := by rw [mem_powers_iff_mem_zpowers]; apply hg
have hodd := Nat.two_mul_odd_div_two (FiniteField.odd_card_of_char_ne_two hF)
constructor
· rintro ⟨y, rfl⟩
rw [← pow_two, ← pow_mul, hodd]
apply_fun Units.val using Units.ext (α := F)
· push_cast
exact FiniteField.pow_card_sub_one_eq_one (y : F) (Units.ne_zero y)
· subst a; intro h
have key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2) :=
by
rw [← pow_mul] at h
rw [hodd, ← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hg]
apply orderOf_dvd_of_pow_eq_one h
have : 0 < Fintype.card F / 2 := Nat.div_pos Fintype.one_lt_card (by norm_num)
obtain ⟨m, rfl⟩ := Nat.dvd_of_mul_dvd_mul_right this key
refine' ⟨g ^ m, _⟩
dsimp
rw [mul_comm, pow_mul, pow_two]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : Fˣ
⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1
[PROOFSTEP]
obtain ⟨g, hg⟩ := IsCyclic.exists_generator (α := Fˣ)
[GOAL]
case intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1
[PROOFSTEP]
obtain ⟨n, hn⟩ : a ∈ Submonoid.powers g := by rw [mem_powers_iff_mem_zpowers]; apply hg
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
⊢ a ∈ Submonoid.powers g
[PROOFSTEP]
rw [mem_powers_iff_mem_zpowers]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
⊢ a ∈ Subgroup.zpowers g
[PROOFSTEP]
apply hg
[GOAL]
case intro.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hn : (fun x x_1 => x ^ x_1) g n = a
⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1
[PROOFSTEP]
have hodd := Nat.two_mul_odd_div_two (FiniteField.odd_card_of_char_ne_two hF)
[GOAL]
case intro.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hn : (fun x x_1 => x ^ x_1) g n = a
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.mp
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hn : (fun x x_1 => x ^ x_1) g n = a
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
⊢ IsSquare a → a ^ (Fintype.card F / 2) = 1
[PROOFSTEP]
rintro ⟨y, rfl⟩
[GOAL]
case intro.intro.mp.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
y : Fˣ
hn : (fun x x_1 => x ^ x_1) g n = y * y
⊢ (y * y) ^ (Fintype.card F / 2) = 1
[PROOFSTEP]
rw [← pow_two, ← pow_mul, hodd]
[GOAL]
case intro.intro.mp.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
y : Fˣ
hn : (fun x x_1 => x ^ x_1) g n = y * y
⊢ y ^ (Fintype.card F - 1) = 1
[PROOFSTEP]
apply_fun Units.val using Units.ext (α := F)
[GOAL]
case intro.intro.mp.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
y : Fˣ
hn : (fun x x_1 => x ^ x_1) g n = y * y
⊢ ↑(y ^ (Fintype.card F - 1)) = ↑1
[PROOFSTEP]
push_cast
[GOAL]
case intro.intro.mp.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
y : Fˣ
hn : (fun x x_1 => x ^ x_1) g n = y * y
⊢ ↑y ^ (Fintype.card F - 1) = 1
[PROOFSTEP]
exact FiniteField.pow_card_sub_one_eq_one (y : F) (Units.ne_zero y)
[GOAL]
case intro.intro.mpr
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hn : (fun x x_1 => x ^ x_1) g n = a
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
⊢ a ^ (Fintype.card F / 2) = 1 → IsSquare a
[PROOFSTEP]
subst a
[GOAL]
case intro.intro.mpr
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
⊢ (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1 → IsSquare ((fun x x_1 => x ^ x_1) g n)
[PROOFSTEP]
intro h
[GOAL]
case intro.intro.mpr
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1
⊢ IsSquare ((fun x x_1 => x ^ x_1) g n)
[PROOFSTEP]
have key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2) :=
by
rw [← pow_mul] at h
rw [hodd, ← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hg]
apply orderOf_dvd_of_pow_eq_one h
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1
⊢ 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2)
[PROOFSTEP]
rw [← pow_mul] at h
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
h : g ^ (n * (Fintype.card F / 2)) = 1
⊢ 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2)
[PROOFSTEP]
rw [hodd, ← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hg]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
h : g ^ (n * (Fintype.card F / 2)) = 1
⊢ orderOf g ∣ n * (Fintype.card F / 2)
[PROOFSTEP]
apply orderOf_dvd_of_pow_eq_one h
[GOAL]
case intro.intro.mpr
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1
key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2)
⊢ IsSquare ((fun x x_1 => x ^ x_1) g n)
[PROOFSTEP]
have : 0 < Fintype.card F / 2 := Nat.div_pos Fintype.one_lt_card (by norm_num)
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1
key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2)
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.mpr
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
n : ℕ
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1
key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2)
this : 0 < Fintype.card F / 2
⊢ IsSquare ((fun x x_1 => x ^ x_1) g n)
[PROOFSTEP]
obtain ⟨m, rfl⟩ := Nat.dvd_of_mul_dvd_mul_right this key
[GOAL]
case intro.intro.mpr.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
this : 0 < Fintype.card F / 2
m : ℕ
h : (fun x x_1 => x ^ x_1) g (2 * m) ^ (Fintype.card F / 2) = 1
key : 2 * (Fintype.card F / 2) ∣ 2 * m * (Fintype.card F / 2)
⊢ IsSquare ((fun x x_1 => x ^ x_1) g (2 * m))
[PROOFSTEP]
refine' ⟨g ^ m, _⟩
[GOAL]
case intro.intro.mpr.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
this : 0 < Fintype.card F / 2
m : ℕ
h : (fun x x_1 => x ^ x_1) g (2 * m) ^ (Fintype.card F / 2) = 1
key : 2 * (Fintype.card F / 2) ∣ 2 * m * (Fintype.card F / 2)
⊢ (fun x x_1 => x ^ x_1) g (2 * m) = g ^ m * g ^ m
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.mpr.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
g : Fˣ
hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g
hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1
this : 0 < Fintype.card F / 2
m : ℕ
h : (fun x x_1 => x ^ x_1) g (2 * m) ^ (Fintype.card F / 2) = 1
key : 2 * (Fintype.card F / 2) ∣ 2 * m * (Fintype.card F / 2)
⊢ g ^ (2 * m) = g ^ m * g ^ m
[PROOFSTEP]
rw [mul_comm, pow_mul, pow_two]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1
[PROOFSTEP]
apply (iff_congr _ (by simp [Units.ext_iff])).mp (FiniteField.unit_isSquare_iff hF (Units.mk0 a ha))
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
⊢ Units.mk0 a ha ^ (Fintype.card F / 2) = 1 ↔ a ^ (Fintype.card F / 2) = 1
[PROOFSTEP]
simp [Units.ext_iff]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
⊢ IsSquare (Units.mk0 a ha) ↔ IsSquare a
[PROOFSTEP]
simp only [IsSquare, Units.ext_iff, Units.val_mk0, Units.val_mul]
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
⊢ (∃ r, a = ↑r * ↑r) ↔ ∃ r, a = r * r
[PROOFSTEP]
constructor
[GOAL]
case mp
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
⊢ (∃ r, a = ↑r * ↑r) → ∃ r, a = r * r
[PROOFSTEP]
rintro ⟨y, hy⟩
[GOAL]
case mp.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
y : Fˣ
hy : a = ↑y * ↑y
⊢ ∃ r, a = r * r
[PROOFSTEP]
exact ⟨y, hy⟩
[GOAL]
case mpr
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
a : F
ha : a ≠ 0
⊢ (∃ r, a = r * r) → ∃ r, a = ↑r * ↑r
[PROOFSTEP]
rintro ⟨y, rfl⟩
[GOAL]
case mpr.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
y : F
ha : y * y ≠ 0
⊢ ∃ r, y * y = ↑r * ↑r
[PROOFSTEP]
have hy : y ≠ 0 := by rintro rfl; simp at ha
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
y : F
ha : y * y ≠ 0
⊢ y ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
ha : 0 * 0 ≠ 0
⊢ False
[PROOFSTEP]
simp at ha
[GOAL]
case mpr.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
y : F
ha : y * y ≠ 0
hy : y ≠ 0
⊢ ∃ r, y * y = ↑r * ↑r
[PROOFSTEP]
refine' ⟨Units.mk0 y hy, _⟩
[GOAL]
case mpr.intro
K : Type u_1
R : Type u_2
F : Type u_3
inst✝¹ : Field F
inst✝ : Fintype F
hF : ringChar F ≠ 2
y : F
ha : y * y ≠ 0
hy : y ≠ 0
⊢ y * y = ↑(Units.mk0 y hy) * ↑(Units.mk0 y hy)
[PROOFSTEP]
simp
|
{"mathlib_filename": "Mathlib.FieldTheory.Finite.Basic", "llama_tokens": 37279}
|
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
⊢ Injective toFun
[PROOFSTEP]
rintro ⟨f₁, f₂, hf⟩ ⟨g₁, g₂, hg⟩ (rfl : f₁ = g₁)
[GOAL]
case mk.mk
α : Type u
β : Type v
γ : Type w
δ : Type x
f₁ : α → Option β
f₂ : β → Option α
hf : ∀ (a : α) (b : β), a ∈ f₂ b ↔ b ∈ f₁ a
g₂ : β → Option α
hg : ∀ (a : α) (b : β), a ∈ g₂ b ↔ b ∈ f₁ a
⊢ { toFun := f₁, invFun := f₂, inv := hf } = { toFun := f₁, invFun := g₂, inv := hg }
[PROOFSTEP]
congr with y x
[GOAL]
case mk.mk.e_invFun.h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f₁ : α → Option β
f₂ : β → Option α
hf : ∀ (a : α) (b : β), a ∈ f₂ b ↔ b ∈ f₁ a
g₂ : β → Option α
hg : ∀ (a : α) (b : β), a ∈ g₂ b ↔ b ∈ f₁ a
y : β
x : α
⊢ x ∈ f₂ y ↔ x ∈ g₂ y
[PROOFSTEP]
simp only [hf, hg]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
g : β ≃. γ
a : α
b : γ
⊢ a ∈ (fun a => Option.bind (↑(PEquiv.symm g) a) ↑(PEquiv.symm f)) b ↔ b ∈ (fun a => Option.bind (↑f a) ↑g) a
[PROOFSTEP]
simp_all [and_comm, eq_some_iff f, eq_some_iff g]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
⊢ PEquiv.symm (PEquiv.symm f) = f
[PROOFSTEP]
cases f
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
δ : Type x
toFun✝ : α → Option β
invFun✝ : β → Option α
inv✝ : ∀ (a : α) (b : β), a ∈ invFun✝ b ↔ b ∈ toFun✝ a
⊢ PEquiv.symm (PEquiv.symm { toFun := toFun✝, invFun := invFun✝, inv := inv✝ }) =
{ toFun := toFun✝, invFun := invFun✝, inv := inv✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
g : β ≃. γ
a : α
⊢ ↑(PEquiv.trans f g) a = none ↔ ∀ (b : β) (c : γ), ¬b ∈ ↑f a ∨ ¬c ∈ ↑g b
[PROOFSTEP]
simp only [eq_none_iff_forall_not_mem, mem_trans, imp_iff_not_or.symm]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
g : β ≃. γ
a : α
⊢ (∀ (a_1 : γ), ¬∃ b, b ∈ ↑f a ∧ a_1 ∈ ↑g b) ↔ ∀ (b : β) (c : γ), b ∈ ↑f a → ¬c ∈ ↑g b
[PROOFSTEP]
push_neg
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
g : β ≃. γ
a : α
⊢ (∀ (a_1 : γ) (b : β), b ∈ ↑f a → ¬a_1 ∈ ↑g b) ↔ ∀ (b : β) (c : γ), b ∈ ↑f a → ¬c ∈ ↑g b
[PROOFSTEP]
exact forall_swap
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
⊢ PEquiv.trans (PEquiv.refl α) f = f
[PROOFSTEP]
ext
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ : α
a✝ : β
⊢ a✝ ∈ ↑(PEquiv.trans (PEquiv.refl α) f) x✝ ↔ a✝ ∈ ↑f x✝
[PROOFSTEP]
dsimp [PEquiv.trans]
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ : α
a✝ : β
⊢ a✝ ∈ ↑f x✝ ↔ a✝ ∈ ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
⊢ PEquiv.trans f (PEquiv.refl β) = f
[PROOFSTEP]
ext
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ : α
a✝ : β
⊢ a✝ ∈ ↑(PEquiv.trans f (PEquiv.refl β)) x✝ ↔ a✝ ∈ ↑f x✝
[PROOFSTEP]
dsimp [PEquiv.trans]
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ : α
a✝ : β
⊢ a✝ ∈ Option.bind (↑f x✝) ↑(PEquiv.refl β) ↔ a✝ ∈ ↑f x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₁ a₂ : α
b : β
h₁ : b ∈ ↑f a₁
h₂ : b ∈ ↑f a₂
⊢ a₁ = a₂
[PROOFSTEP]
rw [← mem_iff_mem] at *
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₁ a₂ : α
b : β
h₁ : a₁ ∈ ↑(PEquiv.symm f) b
h₂ : a₂ ∈ ↑(PEquiv.symm f) b
⊢ a₁ = a₂
[PROOFSTEP]
cases h : f.symm b
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₁ a₂ : α
b : β
h₁ : a₁ ∈ ↑(PEquiv.symm f) b
h₂ : a₂ ∈ ↑(PEquiv.symm f) b
h : ↑(PEquiv.symm f) b = none
⊢ a₁ = a₂
[PROOFSTEP]
simp_all
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₁ a₂ : α
b : β
h₁ : a₁ ∈ ↑(PEquiv.symm f) b
h₂ : a₂ ∈ ↑(PEquiv.symm f) b
val✝ : α
h : ↑(PEquiv.symm f) b = some val✝
⊢ a₁ = a₂
[PROOFSTEP]
simp_all
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₂ : α
h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true
x : α
⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) (↑f x) = x
[PROOFSTEP]
classical
cases hfx : f x
· have : x = a₂ := not_imp_comm.1 (h x) (hfx.symm ▸ by simp)
simp [this]
· dsimp only
rw [(eq_some_iff f).2 hfx]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₂ : α
h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true
x : α
⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) (↑f x) = x
[PROOFSTEP]
cases hfx : f x
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₂ : α
h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true
x : α
hfx : ↑f x = none
⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) none = x
[PROOFSTEP]
have : x = a₂ := not_imp_comm.1 (h x) (hfx.symm ▸ by simp)
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₂ : α
h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true
x : α
hfx : ↑f x = none
⊢ ¬isSome none = true
[PROOFSTEP]
simp
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₂ : α
h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true
x : α
hfx : ↑f x = none
this : x = a₂
⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) none = x
[PROOFSTEP]
simp [this]
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₂ : α
h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true
x : α
val✝ : β
hfx : ↑f x = some val✝
⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) (some val✝) = x
[PROOFSTEP]
dsimp only
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₂ : α
h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true
x : α
val✝ : β
hfx : ↑f x = some val✝
⊢ Option.rec a₂ id (↑(PEquiv.symm f) val✝) = x
[PROOFSTEP]
rw [(eq_some_iff f).2 hfx]
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a₂ : α
h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true
x : α
val✝ : β
hfx : ↑f x = some val✝
⊢ Option.rec a₂ id (some x) = x
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
⊢ a ∈ (fun a => if a ∈ s then some a else none) b ↔ b ∈ (fun a => if a ∈ s then some a else none) a
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
⊢ (a ∈ if b ∈ s then some b else none) ↔ b ∈ if a ∈ s then some a else none
[PROOFSTEP]
split_ifs with hb ha ha
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
hb : b ∈ s
ha : a ∈ s
⊢ a ∈ some b ↔ b ∈ some a
[PROOFSTEP]
simp [eq_comm]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
hb : b ∈ s
ha : ¬a ∈ s
⊢ a ∈ some b ↔ b ∈ none
[PROOFSTEP]
simp [ne_of_mem_of_not_mem hb ha]
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
hb : ¬b ∈ s
ha : a ∈ s
⊢ a ∈ none ↔ b ∈ some a
[PROOFSTEP]
simp [ne_of_mem_of_not_mem ha hb]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
hb : ¬b ∈ s
ha : ¬a ∈ s
⊢ a ∈ none ↔ b ∈ none
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a : α
⊢ a ∈ ↑(ofSet s) a ↔ a ∈ s
[PROOFSTEP]
dsimp [ofSet]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a : α
⊢ (a ∈ if a ∈ s then some a else none) ↔ a ∈ s
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a : α
h✝ : a ∈ s
⊢ a ∈ some a ↔ a ∈ s
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a : α
h✝ : ¬a ∈ s
⊢ a ∈ none ↔ a ∈ s
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
⊢ a ∈ ↑(ofSet s) b ↔ a = b ∧ a ∈ s
[PROOFSTEP]
dsimp [ofSet]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
⊢ (a ∈ if b ∈ s then some b else none) ↔ a = b ∧ a ∈ s
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
h : b ∈ s
⊢ a ∈ some b ↔ a = b ∧ a ∈ s
[PROOFSTEP]
simp only [mem_def, eq_comm, some.injEq, iff_self_and]
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
h : b ∈ s
⊢ a = b → a ∈ s
[PROOFSTEP]
rintro rfl
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a : α
h : a ∈ s
⊢ a ∈ s
[PROOFSTEP]
exact h
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
h : ¬b ∈ s
⊢ a ∈ none ↔ a = b ∧ a ∈ s
[PROOFSTEP]
simp only [mem_def, false_iff, not_and]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a b : α
h : ¬b ∈ s
⊢ a = b → ¬a ∈ s
[PROOFSTEP]
rintro rfl
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
a : α
h : ¬a ∈ s
⊢ ¬a ∈ s
[PROOFSTEP]
exact h
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
h : ofSet s = PEquiv.refl α
⊢ s = Set.univ
[PROOFSTEP]
rw [Set.eq_univ_iff_forall]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
h : ofSet s = PEquiv.refl α
⊢ ∀ (x : α), x ∈ s
[PROOFSTEP]
intro
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
h : ofSet s = PEquiv.refl α
x✝ : α
⊢ x✝ ∈ s
[PROOFSTEP]
rw [← mem_ofSet_self_iff, h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
h : ofSet s = PEquiv.refl α
x✝ : α
⊢ x✝ ∈ ↑(PEquiv.refl α) x✝
[PROOFSTEP]
exact rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
s✝ : Set α
inst✝¹ : DecidablePred fun x => x ∈ s✝
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
h : s = Set.univ
⊢ ofSet s = PEquiv.refl α
[PROOFSTEP]
simp only [← ofSet_univ, h]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
⊢ PEquiv.trans f (PEquiv.symm f) = ofSet {a | isSome (↑f a) = true}
[PROOFSTEP]
ext
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ a✝ : α
⊢ a✝ ∈ ↑(PEquiv.trans f (PEquiv.symm f)) x✝ ↔ a✝ ∈ ↑(ofSet {a | isSome (↑f a) = true}) x✝
[PROOFSTEP]
dsimp [PEquiv.trans]
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ a✝ : α
⊢ a✝ ∈ Option.bind (↑f x✝) ↑(PEquiv.symm f) ↔ a✝ ∈ ↑(ofSet {a | isSome (↑f a) = true}) x✝
[PROOFSTEP]
simp only [eq_some_iff f, Option.isSome_iff_exists, Option.mem_def, bind_eq_some', ofSet_eq_some_iff]
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ a✝ : α
⊢ (∃ a, ↑f x✝ = some a ∧ ↑f a✝ = some a) ↔ a✝ = x✝ ∧ a✝ ∈ {a | ∃ a_1, ↑f a = some a_1}
[PROOFSTEP]
constructor
[GOAL]
case h.a.mp
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ a✝ : α
⊢ (∃ a, ↑f x✝ = some a ∧ ↑f a✝ = some a) → a✝ = x✝ ∧ a✝ ∈ {a | ∃ a_1, ↑f a = some a_1}
[PROOFSTEP]
rintro ⟨b, hb₁, hb₂⟩
[GOAL]
case h.a.mp.intro.intro
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ a✝ : α
b : β
hb₁ : ↑f x✝ = some b
hb₂ : ↑f a✝ = some b
⊢ a✝ = x✝ ∧ a✝ ∈ {a | ∃ a_1, ↑f a = some a_1}
[PROOFSTEP]
exact ⟨PEquiv.inj _ hb₂ hb₁, b, hb₂⟩
[GOAL]
case h.a.mpr
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ a✝ : α
⊢ a✝ = x✝ ∧ a✝ ∈ {a | ∃ a_1, ↑f a = some a_1} → ∃ a, ↑f x✝ = some a ∧ ↑f a✝ = some a
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
⊢ PEquiv.symm (PEquiv.trans (PEquiv.symm f) f) = PEquiv.symm (ofSet {b | isSome (↑(PEquiv.symm f) b) = true})
[PROOFSTEP]
simp [symm_trans_rev, self_trans_symm, -symm_symm]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
⊢ PEquiv.trans f (PEquiv.symm f) = PEquiv.refl α ↔ ∀ (a : α), isSome (↑f a) = true
[PROOFSTEP]
rw [self_trans_symm, ofSet_eq_refl, Set.eq_univ_iff_forall]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
⊢ (∀ (x : α), x ∈ {a | isSome (↑f a) = true}) ↔ ∀ (a : α), isSome (↑f a) = true
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
⊢ ∀ (a : α) (b : β), a ∈ (fun x => none) b ↔ b ∈ (fun x => none) a
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
⊢ PEquiv.trans f ⊥ = ⊥
[PROOFSTEP]
ext
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ : α
a✝ : γ
⊢ a✝ ∈ ↑(PEquiv.trans f ⊥) x✝ ↔ a✝ ∈ ↑⊥ x✝
[PROOFSTEP]
dsimp [PEquiv.trans]
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
x✝ : α
a✝ : γ
⊢ a✝ ∈ Option.bind (↑f x✝) ↑⊥ ↔ a✝ ∈ none
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : β ≃. γ
⊢ PEquiv.trans ⊥ f = ⊥
[PROOFSTEP]
ext
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : β ≃. γ
x✝ : α
a✝ : γ
⊢ a✝ ∈ ↑(PEquiv.trans ⊥ f) x✝ ↔ a✝ ∈ ↑⊥ x✝
[PROOFSTEP]
dsimp [PEquiv.trans]
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
f : β ≃. γ
x✝ : α
a✝ : γ
⊢ a✝ ∈ none ↔ a✝ ∈ none
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f : α ≃. β
a : α
h : isSome (↑f a) = true
⊢ ↑(PEquiv.symm f) (Option.get (↑f a) h) = some a
[PROOFSTEP]
rw [f.eq_some_iff, some_get]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
x : α
y : β
⊢ x ∈ (fun x => if x = b then some a else none) y ↔ y ∈ (fun x => if x = a then some b else none) x
[PROOFSTEP]
dsimp only
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
x : α
y : β
⊢ (x ∈ if y = b then some a else none) ↔ y ∈ if x = a then some b else none
[PROOFSTEP]
split_ifs with h1 h2
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
x : α
y : β
h1 : y = b
h2 : x = a
⊢ x ∈ some a ↔ y ∈ some b
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
x : α
y : β
h1 : y = b
h2 : ¬x = a
⊢ x ∈ some a ↔ y ∈ none
[PROOFSTEP]
simp only [mem_def, some.injEq, iff_false] at *
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
x : α
y : β
h1 : y = b
h2 : ¬x = a
⊢ ¬a = x
[PROOFSTEP]
exact Ne.symm h2
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
x : α
y : β
h1 : ¬y = b
h✝ : x = a
⊢ x ∈ none ↔ y ∈ some b
[PROOFSTEP]
simp only [mem_def, some.injEq, false_iff] at *
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
x : α
y : β
h1 : ¬y = b
h✝ : x = a
⊢ ¬b = y
[PROOFSTEP]
exact Ne.symm h1
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
x : α
y : β
h1 : ¬y = b
h✝ : ¬x = a
⊢ x ∈ none ↔ y ∈ none
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a₁ a₂ : α
b₁ b₂ : β
⊢ b₁ ∈ ↑(single a₂ b₂) a₁ ↔ a₁ = a₂ ∧ b₁ = b₂
[PROOFSTEP]
dsimp [single]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a₁ a₂ : α
b₁ b₂ : β
⊢ (b₁ ∈ if a₁ = a₂ then some b₂ else none) ↔ a₁ = a₂ ∧ b₁ = b₂
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a₁ a₂ : α
b₁ b₂ : β
h✝ : a₁ = a₂
⊢ b₁ ∈ some b₂ ↔ a₁ = a₂ ∧ b₁ = b₂
[PROOFSTEP]
simp [*, eq_comm]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a₁ a₂ : α
b₁ b₂ : β
h✝ : ¬a₁ = a₂
⊢ b₁ ∈ none ↔ a₁ = a₂ ∧ b₁ = b₂
[PROOFSTEP]
simp [*, eq_comm]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
c : γ
f : β ≃. γ
h : c ∈ ↑f b
⊢ PEquiv.trans (single a b) f = single a c
[PROOFSTEP]
ext
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
c : γ
f : β ≃. γ
h : c ∈ ↑f b
x✝ : α
a✝ : γ
⊢ a✝ ∈ ↑(PEquiv.trans (single a b) f) x✝ ↔ a✝ ∈ ↑(single a c) x✝
[PROOFSTEP]
dsimp [single, PEquiv.trans]
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
c : γ
f : β ≃. γ
h : c ∈ ↑f b
x✝ : α
a✝ : γ
⊢ a✝ ∈ Option.bind (if x✝ = a then some b else none) ↑f ↔ a✝ ∈ if x✝ = a then some c else none
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
c : γ
f : β ≃. γ
h : c ∈ ↑f b
x✝ : α
a✝ : γ
h✝ : x✝ = a
⊢ a✝ ∈ Option.bind (some b) ↑f ↔ a✝ ∈ some c
[PROOFSTEP]
simp_all
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
a : α
b : β
c : γ
f : β ≃. γ
h : c ∈ ↑f b
x✝ : α
a✝ : γ
h✝ : ¬x✝ = a
⊢ a✝ ∈ Option.bind none ↑f ↔ a✝ ∈ none
[PROOFSTEP]
simp_all
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝³ : DecidableEq α
inst✝² : DecidableEq β
inst✝¹ : DecidableEq γ
inst✝ : Subsingleton α
a b : α
⊢ single a b = PEquiv.refl α
[PROOFSTEP]
ext i j
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝³ : DecidableEq α
inst✝² : DecidableEq β
inst✝¹ : DecidableEq γ
inst✝ : Subsingleton α
a b i j : α
⊢ j ∈ ↑(single a b) i ↔ j ∈ ↑(PEquiv.refl α) i
[PROOFSTEP]
dsimp [single]
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝³ : DecidableEq α
inst✝² : DecidableEq β
inst✝¹ : DecidableEq γ
inst✝ : Subsingleton α
a b i j : α
⊢ (j ∈ if i = a then some b else none) ↔ j ∈ some i
[PROOFSTEP]
rw [if_pos (Subsingleton.elim i a), Subsingleton.elim i j, Subsingleton.elim b j]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
b : β
c : γ
f : δ ≃. β
h : ↑(PEquiv.symm f) b = none
⊢ PEquiv.trans f (single b c) = ⊥
[PROOFSTEP]
ext
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
b : β
c : γ
f : δ ≃. β
h : ↑(PEquiv.symm f) b = none
x✝ : δ
a✝ : γ
⊢ a✝ ∈ ↑(PEquiv.trans f (single b c)) x✝ ↔ a✝ ∈ ↑⊥ x✝
[PROOFSTEP]
simp only [eq_none_iff_forall_not_mem, Option.mem_def, f.eq_some_iff] at h
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
b : β
c : γ
f : δ ≃. β
x✝ : δ
a✝ : γ
h : ∀ (a : δ), ¬↑f a = some b
⊢ a✝ ∈ ↑(PEquiv.trans f (single b c)) x✝ ↔ a✝ ∈ ↑⊥ x✝
[PROOFSTEP]
dsimp [PEquiv.trans, single]
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
b : β
c : γ
f : δ ≃. β
x✝ : δ
a✝ : γ
h : ∀ (a : δ), ¬↑f a = some b
⊢ (a✝ ∈ Option.bind (↑f x✝) fun x => if x = b then some c else none) ↔ a✝ ∈ none
[PROOFSTEP]
simp
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
b : β
c : γ
f : δ ≃. β
x✝ : δ
a✝ : γ
h : ∀ (a : δ), ¬↑f a = some b
⊢ ∀ (x : β), ↑f x✝ = some x → ¬(if x = b then some c else none) = some a✝
[PROOFSTEP]
intros
[GOAL]
case h.a
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
b : β
c : γ
f : δ ≃. β
x✝¹ : δ
a✝¹ : γ
h : ∀ (a : δ), ¬↑f a = some b
x✝ : β
a✝ : ↑f x✝¹ = some x✝
⊢ ¬(if x✝ = b then some c else none) = some a✝¹
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
b : β
c : γ
f : δ ≃. β
x✝¹ : δ
a✝¹ : γ
h : ∀ (a : δ), ¬↑f a = some b
x✝ : β
a✝ : ↑f x✝¹ = some x✝
h✝ : x✝ = b
⊢ ¬some c = some a✝¹
[PROOFSTEP]
simp_all
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝² : DecidableEq α
inst✝¹ : DecidableEq β
inst✝ : DecidableEq γ
b : β
c : γ
f : δ ≃. β
x✝¹ : δ
a✝¹ : γ
h : ∀ (a : δ), ¬↑f a = some b
x✝ : β
a✝ : ↑f x✝¹ = some x✝
h✝ : ¬x✝ = b
⊢ ¬False
[PROOFSTEP]
simp_all
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f g : α ≃. β
fg : f ≤ g
gf : g ≤ f
⊢ ∀ (x : α), ↑f x = ↑g x
[PROOFSTEP]
intro a
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
f g : α ≃. β
fg : f ≤ g
gf : g ≤ f
a : α
⊢ ↑f a = ↑g a
[PROOFSTEP]
cases' h : g a with b
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
δ : Type x
f g : α ≃. β
fg : f ≤ g
gf : g ≤ f
a : α
h : ↑g a = none
⊢ ↑f a = none
[PROOFSTEP]
exact eq_none_iff_forall_not_mem.2 fun b hb => Option.not_mem_none b <| h ▸ fg a b hb
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
δ : Type x
f g : α ≃. β
fg : f ≤ g
gf : g ≤ f
a : α
b : β
h : ↑g a = some b
⊢ ↑f a = some b
[PROOFSTEP]
exact gf _ _ h
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
⊢ a ∈ (fun b => if ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b then ↑(PEquiv.symm f) b else none) b ↔
b ∈ (fun a => if ↑f a = ↑g a then ↑f a else none) a
[PROOFSTEP]
have hf := @mem_iff_mem _ _ f a b
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : a ∈ ↑(PEquiv.symm f) b ↔ b ∈ ↑f a
⊢ a ∈ (fun b => if ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b then ↑(PEquiv.symm f) b else none) b ↔
b ∈ (fun a => if ↑f a = ↑g a then ↑f a else none) a
[PROOFSTEP]
have hg := @mem_iff_mem _ _ g a b
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : a ∈ ↑(PEquiv.symm f) b ↔ b ∈ ↑f a
hg : a ∈ ↑(PEquiv.symm g) b ↔ b ∈ ↑g a
⊢ a ∈ (fun b => if ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b then ↑(PEquiv.symm f) b else none) b ↔
b ∈ (fun a => if ↑f a = ↑g a then ↑f a else none) a
[PROOFSTEP]
simp only [Option.mem_def] at *
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
⊢ (if ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b then ↑(PEquiv.symm f) b else none) = some a ↔
(if ↑f a = ↑g a then ↑f a else none) = some b
[PROOFSTEP]
split_ifs with h1 h2 h2
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ↑f a = ↑g a
⊢ ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
[PROOFSTEP]
try simp [hf]
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ↑f a = ↑g a
⊢ ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
[PROOFSTEP]
simp [hf]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ¬↑f a = ↑g a
⊢ ↑(PEquiv.symm f) b = some a ↔ False
[PROOFSTEP]
try simp [hf]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ¬↑f a = ↑g a
⊢ ↑(PEquiv.symm f) b = some a ↔ False
[PROOFSTEP]
simp [hf]
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ↑f a = ↑g a
⊢ False ↔ ↑f a = some b
[PROOFSTEP]
try simp [hf]
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ↑f a = ↑g a
⊢ False ↔ ↑f a = some b
[PROOFSTEP]
simp [hf]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ¬↑f a = ↑g a
⊢ False ↔ False
[PROOFSTEP]
try simp [hf]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ¬↑f a = ↑g a
⊢ False ↔ False
[PROOFSTEP]
simp [hf]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ¬↑f a = ↑g a
⊢ ¬↑f a = some b
[PROOFSTEP]
contrapose! h2
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ↑f a = some b
⊢ ↑f a = ↑g a
[PROOFSTEP]
rw [h2]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ↑f a = some b
⊢ some b = ↑g a
[PROOFSTEP]
rw [← h1, hf, h2] at hg
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : some b = some b ↔ ↑g a = some b
h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ↑f a = some b
⊢ some b = ↑g a
[PROOFSTEP]
simp only [mem_def, true_iff_iff, eq_self_iff_true] at hg
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ↑f a = some b
hg : ↑g a = some b
⊢ some b = ↑g a
[PROOFSTEP]
rw [hg]
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
h2 : ↑f a = ↑g a
⊢ ¬↑f a = some b
[PROOFSTEP]
contrapose! h1
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h2 : ↑f a = ↑g a
h1 : ↑f a = some b
⊢ ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
[PROOFSTEP]
rw [h1] at hf h2
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ some b = some b
hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b
h2 : some b = ↑g a
h1 : ↑f a = some b
⊢ ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
[PROOFSTEP]
rw [← h2] at hg
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
hf : ↑(PEquiv.symm f) b = some a ↔ some b = some b
hg : ↑(PEquiv.symm g) b = some a ↔ some b = some b
h2 : some b = ↑g a
h1 : ↑f a = some b
⊢ ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
[PROOFSTEP]
simp only [iff_true] at hf hg
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g : α ≃. β
a : α
b : β
h2 : some b = ↑g a
h1 : ↑f a = some b
hf : ↑(PEquiv.symm f) b = some a
hg : ↑(PEquiv.symm g) b = some a
⊢ ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b
[PROOFSTEP]
rw [hf, hg]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
x✝³ x✝² : α ≃. β
x✝¹ : α
x✝ : β
⊢ x✝ ∈ ↑(x✝³ ⊓ x✝²) x✝¹ → x✝ ∈ ↑x✝³ x✝¹
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
x✝³ x✝² : α ≃. β
x✝¹ : α
x✝ : β
⊢ (if ↑x✝³ x✝¹ = ↑x✝² x✝¹ then ↑x✝³ x✝¹ else none) = some x✝ → ↑x✝³ x✝¹ = some x✝
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
x✝³ x✝² : α ≃. β
x✝¹ : α
x✝ : β
h✝ : ↑x✝³ x✝¹ = ↑x✝² x✝¹
⊢ ↑x✝³ x✝¹ = some x✝ → ↑x✝³ x✝¹ = some x✝
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
x✝³ x✝² : α ≃. β
x✝¹ : α
x✝ : β
h✝ : ¬↑x✝³ x✝¹ = ↑x✝² x✝¹
⊢ False → ↑x✝³ x✝¹ = some x✝
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
x✝³ x✝² : α ≃. β
x✝¹ : α
x✝ : β
⊢ x✝ ∈ ↑(x✝³ ⊓ x✝²) x✝¹ → x✝ ∈ ↑x✝² x✝¹
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
x✝³ x✝² : α ≃. β
x✝¹ : α
x✝ : β
⊢ (if ↑x✝³ x✝¹ = ↑x✝² x✝¹ then ↑x✝³ x✝¹ else none) = some x✝ → ↑x✝² x✝¹ = some x✝
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
x✝³ x✝² : α ≃. β
x✝¹ : α
x✝ : β
h✝ : ↑x✝³ x✝¹ = ↑x✝² x✝¹
⊢ ↑x✝³ x✝¹ = some x✝ → ↑x✝² x✝¹ = some x✝
[PROOFSTEP]
simp [*]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
x✝³ x✝² : α ≃. β
x✝¹ : α
x✝ : β
h✝ : ¬↑x✝³ x✝¹ = ↑x✝² x✝¹
⊢ False → ↑x✝² x✝¹ = some x✝
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g h : α ≃. β
fg : f ≤ g
gh : f ≤ h
a : α
b : β
⊢ b ∈ ↑f a → b ∈ ↑(g ⊓ h) a
[PROOFSTEP]
intro H
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g h : α ≃. β
fg : f ≤ g
gh : f ≤ h
a : α
b : β
H : b ∈ ↑f a
⊢ b ∈ ↑(g ⊓ h) a
[PROOFSTEP]
have hf := fg a b H
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g h : α ≃. β
fg : f ≤ g
gh : f ≤ h
a : α
b : β
H : b ∈ ↑f a
hf : b ∈ ↑g a
⊢ b ∈ ↑(g ⊓ h) a
[PROOFSTEP]
have hg := gh a b H
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g h : α ≃. β
fg : f ≤ g
gh : f ≤ h
a : α
b : β
H : b ∈ ↑f a
hf : b ∈ ↑g a
hg : b ∈ ↑h a
⊢ b ∈ ↑(g ⊓ h) a
[PROOFSTEP]
simp only [Option.mem_def, PEquiv.coe_mk_apply] at *
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type x
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv
f g h : α ≃. β
fg : f ≤ g
gh : f ≤ h
a : α
b : β
H : ↑f a = some b
hf : ↑g a = some b
hg : ↑h a = some b
⊢ (if ↑g a = ↑h a then ↑g a else none) = some b
[PROOFSTEP]
rw [hf, hg, if_pos rfl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α ≃ β
⊢ ∀ (a : α) (b : β), a ∈ (some ∘ ↑f.symm) b ↔ b ∈ (some ∘ ↑f) a
[PROOFSTEP]
simp [Equiv.eq_symm_apply, eq_comm]
|
{"mathlib_filename": "Mathlib.Data.PEquiv", "llama_tokens": 19860}
|
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x : ℚ
⊢ ↑x ∈ s
[PROOFSTEP]
simpa only [Rat.cast_def] using div_mem (coe_int_mem s x.num) (coe_nat_mem s x.den)
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
a : ℚ
x : { x // x ∈ s }
⊢ a • ↑x ∈ s
[PROOFSTEP]
simpa only [Rat.smul_def] using mul_mem (coe_rat_mem s a) x.prop
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ↑0 = 0
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ↑1 = 1
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x y : { x // x ∈ s }), ↑(x + y) = ↑x + ↑y
[PROOFSTEP]
intros _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ y✝ : { x // x ∈ s }
⊢ ↑(x✝ + y✝) = ↑x✝ + ↑y✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x y : { x // x ∈ s }), ↑(x * y) = ↑x * ↑y
[PROOFSTEP]
intros _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ y✝ : { x // x ∈ s }
⊢ ↑(x✝ * y✝) = ↑x✝ * ↑y✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x : { x // x ∈ s }), ↑(-x) = -↑x
[PROOFSTEP]
intros _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ : { x // x ∈ s }
⊢ ↑(-x✝) = -↑x✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x y : { x // x ∈ s }), ↑(x - y) = ↑x - ↑y
[PROOFSTEP]
intros _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ y✝ : { x // x ∈ s }
⊢ ↑(x✝ - y✝) = ↑x✝ - ↑y✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x : { x // x ∈ s }), ↑x⁻¹ = (↑x)⁻¹
[PROOFSTEP]
intros _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ : { x // x ∈ s }
⊢ ↑x✝⁻¹ = (↑x✝)⁻¹
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x y : { x // x ∈ s }), ↑(x / y) = ↑x / ↑y
[PROOFSTEP]
intros _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ y✝ : { x // x ∈ s }
⊢ ↑(x✝ / y✝) = ↑x✝ / ↑y✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x : { x // x ∈ s }) (n : ℕ), ↑(n • x) = n • ↑x
[PROOFSTEP]
intros _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ : { x // x ∈ s }
n✝ : ℕ
⊢ ↑(n✝ • x✝) = n✝ • ↑x✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x : { x // x ∈ s }) (n : ℤ), ↑(n • x) = n • ↑x
[PROOFSTEP]
intros _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ : { x // x ∈ s }
n✝ : ℤ
⊢ ↑(n✝ • x✝) = n✝ • ↑x✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x : { x // x ∈ s }) (n : ℚ), ↑(n • x) = n • ↑x
[PROOFSTEP]
intros _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ : { x // x ∈ s }
n✝ : ℚ
⊢ ↑(n✝ • x✝) = n✝ • ↑x✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x : { x // x ∈ s }) (n : ℕ), ↑(x ^ n) = ↑x ^ n
[PROOFSTEP]
intros _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ : { x // x ∈ s }
n✝ : ℕ
⊢ ↑(x✝ ^ n✝) = ↑x✝ ^ n✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (x : { x // x ∈ s }) (n : ℤ), ↑(x ^ n) = ↑x ^ n
[PROOFSTEP]
intros _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
x✝ : { x // x ∈ s }
n✝ : ℤ
⊢ ↑(x✝ ^ n✝) = ↑x✝ ^ n✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (n : ℕ), ↑↑n = ↑n
[PROOFSTEP]
intros _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
n✝ : ℕ
⊢ ↑↑n✝ = ↑n✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (n : ℤ), ↑↑n = ↑n
[PROOFSTEP]
intros _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
n✝ : ℤ
⊢ ↑↑n✝ = ↑n✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
⊢ ∀ (n : ℚ), ↑↑n = ↑n
[PROOFSTEP]
intros _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝³ : Field K
inst✝² : Field L
inst✝¹ : Field M
S : Type u_1
inst✝ : SetLike S K
h : SubfieldClass S K
s : S
n✝ : ℚ
⊢ ↑↑n✝ = ↑n✝
[PROOFSTEP]
rfl
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
p q : Subfield K
h : (fun s => s.carrier) p = (fun s => s.carrier) q
⊢ p = q
[PROOFSTEP]
cases p
[GOAL]
case mk
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
q : Subfield K
toSubring✝ : Subring K
inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier → x⁻¹ ∈ toSubring✝.carrier
h : (fun s => s.carrier) { toSubring := toSubring✝, inv_mem' := inv_mem'✝ } = (fun s => s.carrier) q
⊢ { toSubring := toSubring✝, inv_mem' := inv_mem'✝ } = q
[PROOFSTEP]
cases q
[GOAL]
case mk.mk
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
toSubring✝¹ : Subring K
inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier → x⁻¹ ∈ toSubring✝¹.carrier
toSubring✝ : Subring K
inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier → x⁻¹ ∈ toSubring✝.carrier
h :
(fun s => s.carrier) { toSubring := toSubring✝¹, inv_mem' := inv_mem'✝¹ } =
(fun s => s.carrier) { toSubring := toSubring✝, inv_mem' := inv_mem'✝ }
⊢ { toSubring := toSubring✝¹, inv_mem' := inv_mem'✝¹ } = { toSubring := toSubring✝, inv_mem' := inv_mem'✝ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toSubring
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
toSubring✝¹ : Subring K
inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier → x⁻¹ ∈ toSubring✝¹.carrier
toSubring✝ : Subring K
inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier → x⁻¹ ∈ toSubring✝.carrier
h :
(fun s => s.carrier) { toSubring := toSubring✝¹, inv_mem' := inv_mem'✝¹ } =
(fun s => s.carrier) { toSubring := toSubring✝, inv_mem' := inv_mem'✝ }
⊢ toSubring✝¹ = toSubring✝
[PROOFSTEP]
exact SetLike.ext' h
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s t : Subfield K
x : K
hx : x ∈ s
n : ℤ
⊢ x ^ n ∈ s
[PROOFSTEP]
cases n
[GOAL]
case ofNat
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s t : Subfield K
x : K
hx : x ∈ s
a✝ : ℕ
⊢ x ^ Int.ofNat a✝ ∈ s
[PROOFSTEP]
simpa using s.pow_mem hx _
[GOAL]
case negSucc
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s t : Subfield K
x : K
hx : x ∈ s
a✝ : ℕ
⊢ x ^ Int.negSucc a✝ ∈ s
[PROOFSTEP]
simpa [pow_succ] using s.inv_mem (s.mul_mem hx (s.pow_mem hx _))
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s✝ t : Subfield K
f : K →+* L
s : Subfield L
src✝ : Subring K := Subring.comap f s.toSubring
x : K
hx :
x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
⊢ ↑f x⁻¹ ∈ s
[PROOFSTEP]
rw [map_inv₀ f]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s✝ t : Subfield K
f : K →+* L
s : Subfield L
src✝ : Subring K := Subring.comap f s.toSubring
x : K
hx :
x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
⊢ (↑f x)⁻¹ ∈ s
[PROOFSTEP]
exact s.inv_mem hx
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s✝ t : Subfield K
f : K →+* L
s : Subfield K
src✝ : Subring L := Subring.map f s.toSubring
⊢ ∀ (x : L),
x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : L},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
x⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : L},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
rintro _ ⟨x, hx, rfl⟩
[GOAL]
case intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s✝ t : Subfield K
f : K →+* L
s : Subfield K
src✝ : Subring L := Subring.map f s.toSubring
x : K
hx : x ∈ s.carrier
⊢ (↑f x)⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ : ∀ {x : L}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
exact ⟨x⁻¹, s.inv_mem hx, map_inv₀ f x⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s✝ t : Subfield K
f✝ f : K →+* L
s : Subfield K
y : L
⊢ y ∈ map f s ↔ ∃ x, x ∈ s ∧ ↑f x = y
[PROOFSTEP]
unfold map
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s✝ t : Subfield K
f✝ f : K →+* L
s : Subfield K
y : L
⊢ (y ∈
let src := Subring.map f s.toSubring;
{
toSubring :=
{ toSubsemiring := src.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : L},
x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
-x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier) },
inv_mem' :=
(_ :
∀ (x : L),
x ∈
{ toSubsemiring := (Subring.map f s.toSubring).toSubsemiring,
neg_mem' :=
(_ :
∀ {x : L},
x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
-x ∈
(Subring.map f
s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
x⁻¹ ∈
{ toSubsemiring := (Subring.map f s.toSubring).toSubsemiring,
neg_mem' :=
(_ :
∀ {x : L},
x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
-x ∈
(Subring.map f
s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier) }) ↔
∃ x, x ∈ s ∧ ↑f x = y
[PROOFSTEP]
simp only [mem_mk, Subring.mem_mk, Subring.mem_toSubsemiring, Subring.mem_map, mem_toSubring]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
g : L →+* M
f : K →+* L
⊢ fieldRange f = Subfield.map f ⊤
[PROOFSTEP]
ext
[GOAL]
case h
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
g : L →+* M
f : K →+* L
x✝ : L
⊢ x✝ ∈ fieldRange f ↔ x✝ ∈ Subfield.map f ⊤
[PROOFSTEP]
simp
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
g : L →+* M
f : K →+* L
⊢ Subfield.map g (fieldRange f) = fieldRange (comp g f)
[PROOFSTEP]
simpa only [fieldRange_eq_map] using (⊤ : Subfield K).map_map g f
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
src✝ : Subring K := sInf (toSubring '' S)
⊢ ∀ (x : K),
x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
x⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ :
∀ {x : K},
x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
rintro x hx
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
src✝ : Subring K := sInf (toSubring '' S)
x : K
hx :
x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
⊢ x⁻¹ ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
apply Subring.mem_sInf.mpr
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
src✝ : Subring K := sInf (toSubring '' S)
x : K
hx :
x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
⊢ ∀ (p : Subring K), p ∈ toSubring '' S → x⁻¹ ∈ p
[PROOFSTEP]
rintro _ ⟨p, p_mem, rfl⟩
[GOAL]
case intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
src✝ : Subring K := sInf (toSubring '' S)
x : K
hx :
x ∈
{ toSubsemiring := src✝.toSubsemiring,
neg_mem' :=
(_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
p : Subfield K
p_mem : p ∈ S
⊢ x⁻¹ ∈ p.toSubring
[PROOFSTEP]
exact p.inv_mem (Subring.mem_sInf.mp hx p.toSubring ⟨p, p_mem, rfl⟩)
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
⊢ ↑(sInf (toSubring '' S)) = ⋂ (s : Subfield K) (_ : s ∈ S), ↑s
[PROOFSTEP]
ext x
[GOAL]
case h
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
x : K
⊢ x ∈ ↑(sInf (toSubring '' S)) ↔ x ∈ ⋂ (s : Subfield K) (_ : s ∈ S), ↑s
[PROOFSTEP]
rw [Subring.coe_sInf, Set.mem_iInter, Set.mem_iInter]
[GOAL]
case h
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
x : K
⊢ (∀ (i : Subring K), x ∈ ⋂ (_ : i ∈ toSubring '' S), ↑i) ↔ ∀ (i : Subfield K), x ∈ ⋂ (_ : i ∈ S), ↑i
[PROOFSTEP]
exact
⟨fun h s s' ⟨s_mem, s'_eq⟩ => h s.toSubring _ ⟨⟨s, s_mem, rfl⟩, s'_eq⟩,
fun h s s' ⟨⟨s'', s''_mem, s_eq⟩, (s'_eq : ↑s = s')⟩ => h s'' _ ⟨s''_mem, by simp [← s_eq, ← s'_eq]⟩⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
x : K
h : ∀ (i : Subfield K), x ∈ ⋂ (_ : i ∈ S), ↑i
s : Subring K
s' : Set K
x✝ : s' ∈ Set.range fun h => ↑s
s'' : Subfield K
s''_mem : s'' ∈ S
s_eq : s''.toSubring = s
s'_eq : ↑s = s'
⊢ (fun h => ↑s'') s''_mem = s'
[PROOFSTEP]
simp [← s_eq, ← s'_eq]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set (Subfield K)
⊢ (sInf s).toSubring = ⨅ (t : Subfield K) (_ : t ∈ s), t.toSubring
[PROOFSTEP]
ext x
[GOAL]
case h
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set (Subfield K)
x : K
⊢ x ∈ (sInf s).toSubring ↔ x ∈ ⨅ (t : Subfield K) (_ : t ∈ s), t.toSubring
[PROOFSTEP]
rw [mem_toSubring, mem_sInf]
[GOAL]
case h
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set (Subfield K)
x : K
⊢ (∀ (p : Subfield K), p ∈ s → x ∈ p) ↔ x ∈ ⨅ (t : Subfield K) (_ : t ∈ s), t.toSubring
[PROOFSTEP]
erw [Subring.mem_sInf]
[GOAL]
case h
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set (Subfield K)
x : K
⊢ (∀ (p : Subfield K), p ∈ s → x ∈ p) ↔ ∀ (p : Subring K), (p ∈ Set.range fun t => ⨅ (_ : t ∈ s), t.toSubring) → x ∈ p
[PROOFSTEP]
exact
⟨fun h p ⟨p', hp⟩ => hp ▸ Subring.mem_sInf.mpr fun p ⟨hp', hp⟩ => hp ▸ h _ hp', fun h p hp =>
h p.toSubring
⟨p,
Subring.ext fun x =>
⟨fun hx => Subring.mem_sInf.mp hx _ ⟨hp, rfl⟩, fun hx =>
Subring.mem_sInf.mpr fun p' ⟨_, p'_eq⟩ => p'_eq ▸ hx⟩⟩⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
⊢ IsGLB S (sInf S)
[PROOFSTEP]
have : ∀ {s t : Subfield K}, (s : Set K) ≤ t ↔ s ≤ t := by simp [SetLike.coe_subset_coe]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
⊢ ∀ {s t : Subfield K}, ↑s ≤ ↑t ↔ s ≤ t
[PROOFSTEP]
simp [SetLike.coe_subset_coe]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
this : ∀ {s t : Subfield K}, ↑s ≤ ↑t ↔ s ≤ t
⊢ IsGLB S (sInf S)
[PROOFSTEP]
refine' IsGLB.of_image this _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
this : ∀ {s t : Subfield K}, ↑s ≤ ↑t ↔ s ≤ t
⊢ IsGLB ((fun {x} => ↑x) '' S) ↑(sInf S)
[PROOFSTEP]
convert isGLB_biInf (s := S) (f := SetLike.coe)
[GOAL]
case h.e'_4
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
this : ∀ {s t : Subfield K}, ↑s ≤ ↑t ↔ s ≤ t
⊢ ↑(sInf S) = ⨅ (x : Subfield K) (_ : x ∈ S), ↑x
[PROOFSTEP]
exact coe_sInf _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
a✝ b✝ : K
x_mem : a✝ ∈ {z | ∃ x x_1 y x_2, x / y = z}
y_mem : b✝ ∈ {z | ∃ x x_1 y x_2, x / y = z}
⊢ a✝ * b✝ ∈ {z | ∃ x x_1 y x_2, x / y = z}
[PROOFSTEP]
obtain ⟨nx, hnx, dx, hdx, rfl⟩ := id x_mem
[GOAL]
case intro.intro.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
b✝ : K
y_mem : b✝ ∈ {z | ∃ x x_1 y x_2, x / y = z}
nx : K
hnx : nx ∈ Subring.closure s
dx : K
hdx : dx ∈ Subring.closure s
x_mem : nx / dx ∈ {z | ∃ x x_1 y x_2, x / y = z}
⊢ nx / dx * b✝ ∈ {z | ∃ x x_1 y x_2, x / y = z}
[PROOFSTEP]
obtain ⟨ny, hny, dy, hdy, rfl⟩ := id y_mem
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
nx : K
hnx : nx ∈ Subring.closure s
dx : K
hdx : dx ∈ Subring.closure s
x_mem : nx / dx ∈ {z | ∃ x x_1 y x_2, x / y = z}
ny : K
hny : ny ∈ Subring.closure s
dy : K
hdy : dy ∈ Subring.closure s
y_mem : ny / dy ∈ {z | ∃ x x_1 y x_2, x / y = z}
⊢ nx / dx * (ny / dy) ∈ {z | ∃ x x_1 y x_2, x / y = z}
[PROOFSTEP]
exact ⟨nx * ny, Subring.mul_mem _ hnx hny, dx * dy, Subring.mul_mem _ hdx hdy, (div_mul_div_comm _ _ _ _).symm⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
a✝ b✝ : K
x_mem :
a✝ ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
y_mem :
b✝ ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
⊢ a✝ + b✝ ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
[PROOFSTEP]
obtain ⟨nx, hnx, dx, hdx, rfl⟩ := id x_mem
[GOAL]
case intro.intro.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
b✝ : K
y_mem :
b✝ ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
nx : K
hnx : nx ∈ Subring.closure s
dx : K
hdx : dx ∈ Subring.closure s
x_mem :
nx / dx ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
⊢ nx / dx + b✝ ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
[PROOFSTEP]
obtain ⟨ny, hny, dy, hdy, rfl⟩ := id y_mem
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
nx : K
hnx : nx ∈ Subring.closure s
dx : K
hdx : dx ∈ Subring.closure s
x_mem :
nx / dx ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
ny : K
hny : ny ∈ Subring.closure s
dy : K
hdy : dy ∈ Subring.closure s
y_mem :
ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
⊢ nx / dx + ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
[PROOFSTEP]
by_cases hx0 : dx = 0
[GOAL]
case pos
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
nx : K
hnx : nx ∈ Subring.closure s
dx : K
hdx : dx ∈ Subring.closure s
x_mem :
nx / dx ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
ny : K
hny : ny ∈ Subring.closure s
dy : K
hdy : dy ∈ Subring.closure s
y_mem :
ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
hx0 : dx = 0
⊢ nx / dx + ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
[PROOFSTEP]
rwa [hx0, div_zero, zero_add]
[GOAL]
case neg
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
nx : K
hnx : nx ∈ Subring.closure s
dx : K
hdx : dx ∈ Subring.closure s
x_mem :
nx / dx ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
ny : K
hny : ny ∈ Subring.closure s
dy : K
hdy : dy ∈ Subring.closure s
y_mem :
ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
hx0 : ¬dx = 0
⊢ nx / dx + ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
[PROOFSTEP]
by_cases hy0 : dy = 0
[GOAL]
case pos
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
nx : K
hnx : nx ∈ Subring.closure s
dx : K
hdx : dx ∈ Subring.closure s
x_mem :
nx / dx ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
ny : K
hny : ny ∈ Subring.closure s
dy : K
hdy : dy ∈ Subring.closure s
y_mem :
ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
hx0 : ¬dx = 0
hy0 : dy = 0
⊢ nx / dx + ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
[PROOFSTEP]
rwa [hy0, div_zero, add_zero]
[GOAL]
case neg
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
nx : K
hnx : nx ∈ Subring.closure s
dx : K
hdx : dx ∈ Subring.closure s
x_mem :
nx / dx ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
ny : K
hny : ny ∈ Subring.closure s
dy : K
hdy : dy ∈ Subring.closure s
y_mem :
ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
hx0 : ¬dx = 0
hy0 : ¬dy = 0
⊢ nx / dx + ny / dy ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier
[PROOFSTEP]
exact
⟨nx * dy + dx * ny, Subring.add_mem _ (Subring.mul_mem _ hnx hdy) (Subring.mul_mem _ hdx hny), dx * dy,
Subring.mul_mem _ hdx hdy, (div_add_div nx ny hx0 hy0).symm⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
x : K
⊢ x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier →
-x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
rintro ⟨y, hy, z, hz, x_eq⟩
[GOAL]
case intro.intro.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
x y : K
hy : y ∈ Subring.closure s
z : K
hz : z ∈ Subring.closure s
x_eq : y / z = x
⊢ -x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
exact ⟨-y, Subring.neg_mem _ hy, z, hz, x_eq ▸ neg_div _ _⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
x : K
⊢ x ∈
{
toSubsemiring :=
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) },
neg_mem' :=
(_ :
∀ {x : K},
x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' :=
(_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' :=
(_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier →
-x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' :=
(_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' :=
(_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' :=
(_ :
∃ x x_1 y x_2,
x / y =
0) }.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
x⁻¹ ∈
{
toSubsemiring :=
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) },
neg_mem' :=
(_ :
∀ {x : K},
x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' :=
(_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' :=
(_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier →
-x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' :=
(_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' :=
(_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' :=
(_ :
∃ x x_1 y x_2,
x / y =
0) }.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
rintro ⟨y, hy, z, hz, x_eq⟩
[GOAL]
case intro.intro.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
x y : K
hy : y ∈ Subring.closure s
z : K
hz : z ∈ Subring.closure s
x_eq : y / z = x
⊢ x⁻¹ ∈
{
toSubsemiring :=
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) },
neg_mem' :=
(_ :
∀ {x : K},
x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier →
-x ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) },
add_mem' :=
(_ :
∀ {a b : K},
a ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier →
a + b ∈
{
toSubsemigroup :=
{ carrier := {z | ∃ x x_1 y x_2, x / y = z},
mul_mem' :=
(_ :
∀ {a b : K},
a ∈ {z | ∃ x x_1 y x_2, x / y = z} →
b ∈ {z | ∃ x x_1 y x_2, x / y = z} →
a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) },
one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier),
zero_mem' :=
(_ :
∃ x x_1 y x_2,
x / y =
0) }.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
exact ⟨z, hz, y, hy, x_eq ▸ (inv_div _ _).symm⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
x : K
⊢ x ∈ closure s ↔ ∃ y, y ∈ Subring.closure s ∧ ∃ z, z ∈ Subring.closure s ∧ y / z = x
[PROOFSTEP]
change x ∈ (closure s).carrier ↔ ∃ y ∈ Subring.closure s, ∃ z ∈ Subring.closure s, y / z = x
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
x : K
⊢ x ∈ (closure s).toSubring.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ↔
∃ y, y ∈ Subring.closure s ∧ ∃ z, z ∈ Subring.closure s ∧ y / z = x
[PROOFSTEP]
simp only [closure, exists_prop, Set.mem_setOf_eq]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
p : K → Prop
x : K
h : x ∈ closure s
Hs : ∀ (x : K), x ∈ s → p x
H1 : p 1
Hadd : ∀ (x y : K), p x → p y → p (x + y)
Hneg : ∀ (x : K), p x → p (-x)
Hinv : ∀ (x : K), p x → p x⁻¹
Hmul : ∀ (x y : K), p x → p y → p (x * y)
⊢ p x
[PROOFSTEP]
letI : Subfield K :=
⟨⟨⟨⟨⟨p, by intro _ _; exact Hmul _ _⟩, H1⟩, by intro _ _; exact Hadd _ _,
@add_neg_self K _ 1 ▸ Hadd _ _ H1 (Hneg _ H1)⟩,
by intro _; exact Hneg _⟩,
Hinv⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
p : K → Prop
x : K
h : x ∈ closure s
Hs : ∀ (x : K), x ∈ s → p x
H1 : p 1
Hadd : ∀ (x y : K), p x → p y → p (x + y)
Hneg : ∀ (x : K), p x → p (-x)
Hinv : ∀ (x : K), p x → p x⁻¹
Hmul : ∀ (x y : K), p x → p y → p (x * y)
⊢ ∀ {a b : K}, a ∈ p → b ∈ p → a * b ∈ p
[PROOFSTEP]
intro _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
p : K → Prop
x : K
h : x ∈ closure s
Hs : ∀ (x : K), x ∈ s → p x
H1 : p 1
Hadd : ∀ (x y : K), p x → p y → p (x + y)
Hneg : ∀ (x : K), p x → p (-x)
Hinv : ∀ (x : K), p x → p x⁻¹
Hmul : ∀ (x y : K), p x → p y → p (x * y)
a✝ b✝ : K
⊢ a✝ ∈ p → b✝ ∈ p → a✝ * b✝ ∈ p
[PROOFSTEP]
exact Hmul _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
p : K → Prop
x : K
h : x ∈ closure s
Hs : ∀ (x : K), x ∈ s → p x
H1 : p 1
Hadd : ∀ (x y : K), p x → p y → p (x + y)
Hneg : ∀ (x : K), p x → p (-x)
Hinv : ∀ (x : K), p x → p x⁻¹
Hmul : ∀ (x y : K), p x → p y → p (x * y)
⊢ ∀ {a b : K},
a ∈
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 }.toSubsemigroup.carrier →
b ∈
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 }.toSubsemigroup.carrier →
a + b ∈
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 }.toSubsemigroup.carrier
[PROOFSTEP]
intro _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
p : K → Prop
x : K
h : x ∈ closure s
Hs : ∀ (x : K), x ∈ s → p x
H1 : p 1
Hadd : ∀ (x y : K), p x → p y → p (x + y)
Hneg : ∀ (x : K), p x → p (-x)
Hinv : ∀ (x : K), p x → p x⁻¹
Hmul : ∀ (x y : K), p x → p y → p (x * y)
a✝ b✝ : K
⊢ a✝ ∈
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 }.toSubsemigroup.carrier →
b✝ ∈
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 }.toSubsemigroup.carrier →
a✝ + b✝ ∈
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 }.toSubsemigroup.carrier
[PROOFSTEP]
exact Hadd _ _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
p : K → Prop
x : K
h : x ∈ closure s
Hs : ∀ (x : K), x ∈ s → p x
H1 : p 1
Hadd : ∀ (x y : K), p x → p y → p (x + y)
Hneg : ∀ (x : K), p x → p (-x)
Hinv : ∀ (x : K), p x → p x⁻¹
Hmul : ∀ (x y : K), p x → p y → p (x * y)
⊢ ∀ {x : K},
x ∈
{
toSubmonoid :=
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 },
add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)),
zero_mem' := (_ : p 0) }.toSubmonoid.toSubsemigroup.carrier →
-x ∈
{
toSubmonoid :=
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 },
add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)),
zero_mem' := (_ : p 0) }.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
intro _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
p : K → Prop
x : K
h : x ∈ closure s
Hs : ∀ (x : K), x ∈ s → p x
H1 : p 1
Hadd : ∀ (x y : K), p x → p y → p (x + y)
Hneg : ∀ (x : K), p x → p (-x)
Hinv : ∀ (x : K), p x → p x⁻¹
Hmul : ∀ (x y : K), p x → p y → p (x * y)
x✝ : K
⊢ x✝ ∈
{
toSubmonoid :=
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 },
add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)),
zero_mem' := (_ : p 0) }.toSubmonoid.toSubsemigroup.carrier →
-x✝ ∈
{
toSubmonoid :=
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 },
add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)),
zero_mem' := (_ : p 0) }.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
exact Hneg _
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Set K
p : K → Prop
x : K
h : x ∈ closure s
Hs : ∀ (x : K), x ∈ s → p x
H1 : p 1
Hadd : ∀ (x y : K), p x → p y → p (x + y)
Hneg : ∀ (x : K), p x → p (-x)
Hinv : ∀ (x : K), p x → p x⁻¹
Hmul : ∀ (x y : K), p x → p y → p (x * y)
this : Subfield K :=
{
toSubring :=
{
toSubsemiring :=
{
toSubmonoid :=
{ toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) },
one_mem' := H1 },
add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)), zero_mem' := (_ : p 0) },
neg_mem' := (_ : ∀ {x : K}, p x → p (-x)) },
inv_mem' := Hinv }
⊢ p x
[PROOFSTEP]
exact (closure_le (t := this)).2 Hs h
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
⊢ x ∈ ⨆ (i : ι), S i ↔ ∃ i, x ∈ S i
[PROOFSTEP]
refine' ⟨_, fun ⟨i, hi⟩ => (SetLike.le_def.1 <| le_iSup S i) hi⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i
[PROOFSTEP]
suffices x ∈ closure (⋃ i, (S i : Set K)) → ∃ i, x ∈ S i by simpa only [closure_iUnion, closure_eq]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
this : x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i
⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i
[PROOFSTEP]
simpa only [closure_iUnion, closure_eq]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
⊢ x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i
[PROOFSTEP]
refine' fun hx => closure_induction hx (fun x => Set.mem_iUnion.mp) _ _ _ _ _
[GOAL]
case refine'_1
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
hx : x ∈ closure (⋃ (i : ι), ↑(S i))
⊢ ∃ i, 1 ∈ S i
[PROOFSTEP]
exact hι.elim fun i => ⟨i, (S i).one_mem⟩
[GOAL]
case refine'_2
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
hx : x ∈ closure (⋃ (i : ι), ↑(S i))
⊢ ∀ (x y : K), (∃ i, x ∈ S i) → (∃ i, y ∈ S i) → ∃ i, x + y ∈ S i
[PROOFSTEP]
rintro x y ⟨i, hi⟩ ⟨j, hj⟩
[GOAL]
case refine'_2.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : K
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x y : K
i : ι
hi : x ∈ S i
j : ι
hj : y ∈ S j
⊢ ∃ i, x + y ∈ S i
[PROOFSTEP]
obtain ⟨k, hki, hkj⟩ := hS i j
[GOAL]
case refine'_2.intro.intro.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : K
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x y : K
i : ι
hi : x ∈ S i
j : ι
hj : y ∈ S j
k : ι
hki : S i ≤ S k
hkj : S j ≤ S k
⊢ ∃ i, x + y ∈ S i
[PROOFSTEP]
exact ⟨k, (S k).add_mem (hki hi) (hkj hj)⟩
[GOAL]
case refine'_3
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
hx : x ∈ closure (⋃ (i : ι), ↑(S i))
⊢ ∀ (x : K), (∃ i, x ∈ S i) → ∃ i, -x ∈ S i
[PROOFSTEP]
rintro x ⟨i, hi⟩
[GOAL]
case refine'_3.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : K
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x : K
i : ι
hi : x ∈ S i
⊢ ∃ i, -x ∈ S i
[PROOFSTEP]
exact ⟨i, (S i).neg_mem hi⟩
[GOAL]
case refine'_4
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
hx : x ∈ closure (⋃ (i : ι), ↑(S i))
⊢ ∀ (x : K), (∃ i, x ∈ S i) → ∃ i, x⁻¹ ∈ S i
[PROOFSTEP]
rintro x ⟨i, hi⟩
[GOAL]
case refine'_4.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : K
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x : K
i : ι
hi : x ∈ S i
⊢ ∃ i, x⁻¹ ∈ S i
[PROOFSTEP]
exact ⟨i, (S i).inv_mem hi⟩
[GOAL]
case refine'_5
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
hx : x ∈ closure (⋃ (i : ι), ↑(S i))
⊢ ∀ (x y : K), (∃ i, x ∈ S i) → (∃ i, y ∈ S i) → ∃ i, x * y ∈ S i
[PROOFSTEP]
rintro x y ⟨i, hi⟩ ⟨j, hj⟩
[GOAL]
case refine'_5.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : K
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x y : K
i : ι
hi : x ∈ S i
j : ι
hj : y ∈ S j
⊢ ∃ i, x * y ∈ S i
[PROOFSTEP]
obtain ⟨k, hki, hkj⟩ := hS i j
[GOAL]
case refine'_5.intro.intro.intro.intro
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x✝ : K
hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i))
x y : K
i : ι
hi : x ∈ S i
j : ι
hj : y ∈ S j
k : ι
hki : S i ≤ S k
hkj : S j ≤ S k
⊢ ∃ i, x * y ∈ S i
[PROOFSTEP]
exact ⟨k, (S k).mul_mem (hki hi) (hkj hj)⟩
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
ι : Sort u_1
hι : Nonempty ι
S : ι → Subfield K
hS : Directed (fun x x_1 => x ≤ x_1) S
x : K
⊢ x ∈ ↑(⨆ (i : ι), S i) ↔ x ∈ ⋃ (i : ι), ↑(S i)
[PROOFSTEP]
simp [mem_iSup_of_directed hS]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
Sne : Set.Nonempty S
hS : DirectedOn (fun x x_1 => x ≤ x_1) S
x : K
⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s
[PROOFSTEP]
haveI : Nonempty S := Sne.to_subtype
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
Sne : Set.Nonempty S
hS : DirectedOn (fun x x_1 => x ≤ x_1) S
x : K
this : Nonempty ↑S
⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s
[PROOFSTEP]
simp only [sSup_eq_iSup', mem_iSup_of_directed hS.directed_val, Subtype.exists, exists_prop]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
S : Set (Subfield K)
Sne : Set.Nonempty S
hS : DirectedOn (fun x x_1 => x ≤ x_1) S
x : K
⊢ x ∈ ↑(sSup S) ↔ x ∈ ⋃ (s : Subfield K) (_ : s ∈ S), ↑s
[PROOFSTEP]
simp [mem_sSup_of_directedOn Sne hS]
[GOAL]
K : Type u
L : Type v
M : Type w
inst✝² : Field K
inst✝¹ : Field L
inst✝ : Field M
s : Subfield K
f g : K →+* L
src✝ : Subring K := eqLocus f g
x : K
hx : ↑f x = ↑g x
⊢ ↑f x⁻¹ = ↑g x⁻¹
[PROOFSTEP]
rw [map_inv₀ f, map_inv₀ g, hx]
|
{"mathlib_filename": "Mathlib.FieldTheory.Subfield", "llama_tokens": 33698}
|
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
α : E
hα : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
⊢ Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }) = finrank F { x // x ∈ F⟮α⟯ }
[PROOFSTEP]
letI : Fintype (F⟮α⟯ →ₐ[F] F⟮α⟯) := IntermediateField.fintypeOfAlgHomAdjoinIntegral F hα
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
α : E
hα : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
this : Fintype ({ x // x ∈ F⟮α⟯ } →ₐ[F] { x // x ∈ F⟮α⟯ }) := IntermediateField.fintypeOfAlgHomAdjoinIntegral F hα
⊢ Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }) = finrank F { x // x ∈ F⟮α⟯ }
[PROOFSTEP]
rw [IntermediateField.adjoin.finrank hα]
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
α : E
hα : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
this : Fintype ({ x // x ∈ F⟮α⟯ } →ₐ[F] { x // x ∈ F⟮α⟯ }) := IntermediateField.fintypeOfAlgHomAdjoinIntegral F hα
⊢ Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }) = Polynomial.natDegree (minpoly F α)
[PROOFSTEP]
rw [← IntermediateField.card_algHom_adjoin_integral F hα h_sep h_splits]
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
α : E
hα : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
this : Fintype ({ x // x ∈ F⟮α⟯ } →ₐ[F] { x // x ∈ F⟮α⟯ }) := IntermediateField.fintypeOfAlgHomAdjoinIntegral F hα
⊢ Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }) = Fintype.card ({ x // x ∈ F⟮α⟯ } →ₐ[F] { x // x ∈ F⟮α⟯ })
[PROOFSTEP]
exact Fintype.card_congr (algEquivEquivAlgHom F F⟮α⟯)
[GOAL]
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
cases' Field.exists_primitive_element F E with α hα
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
let iso : F⟮α⟯ ≃ₐ[F] E :=
{ toFun := fun e => e.val
invFun := fun e => ⟨e, by rw [hα]; exact IntermediateField.mem_top⟩
left_inv := fun _ => by ext; rfl
right_inv := fun _ => rfl
map_mul' := fun _ _ => rfl
map_add' := fun _ _ => rfl
commutes' := fun _ => rfl }
[GOAL]
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
e : E
⊢ e ∈ F⟮α⟯
[PROOFSTEP]
rw [hα]
[GOAL]
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
e : E
⊢ e ∈ ⊤
[PROOFSTEP]
exact IntermediateField.mem_top
[GOAL]
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
x✝ : { x // x ∈ F⟮α⟯ }
⊢ (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x✝) = x✝
[PROOFSTEP]
ext
[GOAL]
case a
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
x✝ : { x // x ∈ F⟮α⟯ }
⊢ ↑((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x✝)) = ↑x✝
[PROOFSTEP]
rfl
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
have H : IsIntegral F α := IsGalois.integral F α
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
have h_sep : (minpoly F α).Separable := IsGalois.separable F α
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
have h_splits : (minpoly F α).Splits (algebraMap F E) := IsGalois.splits F α
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F E) (minpoly F α)
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
replace h_splits : Polynomial.Splits (algebraMap F F⟮α⟯) (minpoly F α)
[GOAL]
case h_splits
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F E) (minpoly F α)
⊢ Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
[PROOFSTEP]
simpa using Polynomial.splits_comp_of_splits (algebraMap F E) iso.symm.toAlgHom.toRingHom h_splits
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
rw [← LinearEquiv.finrank_eq iso.toLinearEquiv]
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F { x // x ∈ F⟮α⟯ }
[PROOFSTEP]
rw [← IntermediateField.AdjoinSimple.card_aut_eq_finrank F E H h_sep h_splits]
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
⊢ Fintype.card (E ≃ₐ[F] E) = Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ })
[PROOFSTEP]
apply Fintype.card_congr
[GOAL]
case intro.f
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
⊢ (E ≃ₐ[F] E) ≃ { x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }
[PROOFSTEP]
apply Equiv.mk (fun ϕ => iso.trans (ϕ.trans iso.symm)) fun ϕ => iso.symm.trans (ϕ.trans iso)
[GOAL]
case intro.f.left_inv
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
⊢ Function.LeftInverse (fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) fun ϕ =>
AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso))
[PROOFSTEP]
intro ϕ
[GOAL]
case intro.f.left_inv
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
ϕ : E ≃ₐ[F] E
⊢ (fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso))
((fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso))) ϕ) =
ϕ
[PROOFSTEP]
ext1
[GOAL]
case intro.f.left_inv.h
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
ϕ : E ≃ₐ[F] E
a✝ : E
⊢ ↑((fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso))
((fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso))) ϕ))
a✝ =
↑ϕ a✝
[PROOFSTEP]
simp only [trans_apply, apply_symm_apply]
[GOAL]
case intro.f.right_inv
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
⊢ Function.RightInverse (fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) fun ϕ =>
AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso))
[PROOFSTEP]
intro ϕ
[GOAL]
case intro.f.right_inv
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
ϕ : { x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }
⊢ (fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso)))
((fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) ϕ) =
ϕ
[PROOFSTEP]
ext1
[GOAL]
case intro.f.right_inv.h
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
hα : F⟮α⟯ = ⊤
iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E :=
{
toEquiv :=
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) },
map_mul' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x * x_1)),
map_add' :=
(_ :
∀ (x x_1 : { x // x ∈ F⟮α⟯ }),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(x + x_1)),
commutes' :=
(_ :
∀ (x : F),
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) =
Equiv.toFun
{ toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) },
left_inv :=
(_ :
∀ (x : { x // x ∈ F⟮α⟯ }),
(fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x),
right_inv :=
(_ :
∀ (x : E),
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) =
(fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }
(↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) }
H : IsIntegral F α
h_sep : Polynomial.Separable (minpoly F α)
h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α)
ϕ : { x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }
a✝ : { x // x ∈ F⟮α⟯ }
⊢ ↑((fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso)))
((fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) ϕ))
a✝ =
↑ϕ a✝
[PROOFSTEP]
simp only [trans_apply, symm_apply_apply]
[GOAL]
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁸ : Field F
inst✝⁷ : Field K
inst✝⁶ : Field E
E' : Type u_4
inst✝⁵ : Field E'
inst✝⁴ : Algebra F E'
inst✝³ : Algebra F K
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
⊢ IsGalois { x // x ∈ ⊥ } E ↔ IsGalois F E
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁸ : Field F
inst✝⁷ : Field K
inst✝⁶ : Field E
E' : Type u_4
inst✝⁵ : Field E'
inst✝⁴ : Algebra F E'
inst✝³ : Algebra F K
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
⊢ IsGalois { x // x ∈ ⊥ } E → IsGalois F E
[PROOFSTEP]
intro h
[GOAL]
case mp
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁸ : Field F
inst✝⁷ : Field K
inst✝⁶ : Field E
E' : Type u_4
inst✝⁵ : Field E'
inst✝⁴ : Algebra F E'
inst✝³ : Algebra F K
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : IsGalois { x // x ∈ ⊥ } E
⊢ IsGalois F E
[PROOFSTEP]
exact IsGalois.tower_top_of_isGalois (⊥ : IntermediateField F E) F E
[GOAL]
case mpr
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁸ : Field F
inst✝⁷ : Field K
inst✝⁶ : Field E
E' : Type u_4
inst✝⁵ : Field E'
inst✝⁴ : Algebra F E'
inst✝³ : Algebra F K
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
⊢ IsGalois F E → IsGalois { x // x ∈ ⊥ } E
[PROOFSTEP]
intro h
[GOAL]
case mpr
F : Type u_1
K : Type u_2
E : Type u_3
inst✝⁸ : Field F
inst✝⁷ : Field K
inst✝⁶ : Field E
E' : Type u_4
inst✝⁵ : Field E'
inst✝⁴ : Algebra F E'
inst✝³ : Algebra F K
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : IsGalois F E
⊢ IsGalois { x // x ∈ ⊥ } E
[PROOFSTEP]
infer_instance
[GOAL]
F : Type u_1
inst✝⁵ : Field F
E : Type u_2
inst✝⁴ : Field E
inst✝³ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
M : Type u_3
inst✝² : Monoid M
inst✝¹ : MulSemiringAction M E
inst✝ : SMulCommClass M F E
src✝ : Subfield E := subfield M E
a : F
g : M
⊢ g • ↑(algebraMap F E) a = ↑(algebraMap F E) a
[PROOFSTEP]
rw [Algebra.algebraMap_eq_smul_one, smul_comm, smul_one]
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
x✝ : { x // x ∈ fixingSubgroup K }
⊢ (fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
((fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
x✝) =
x✝
[PROOFSTEP]
ext
[GOAL]
case a.h
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
x✝ : { x // x ∈ fixingSubgroup K }
a✝ : E
⊢ ↑↑((fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
((fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
x✝))
a✝ =
↑↑x✝ a✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
x✝ : E ≃ₐ[{ x // x ∈ K }] E
⊢ (fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
((fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
x✝) =
x✝
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
x✝ : E ≃ₐ[{ x // x ∈ K }] E
a✝ : E
⊢ ↑((fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
((fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
x✝))
a✝ =
↑x✝ a✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
x✝¹ x✝ : { x // x ∈ fixingSubgroup K }
⊢ Equiv.toFun
{
toFun := fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) },
invFun := fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) },
left_inv :=
(_ :
∀ (x : { x // x ∈ fixingSubgroup K }),
(fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
((fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
x) =
x),
right_inv :=
(_ :
∀ (x : E ≃ₐ[{ x // x ∈ K }] E),
(fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
((fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
x) =
x) }
(x✝¹ * x✝) =
Equiv.toFun
{
toFun := fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) },
invFun := fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) },
left_inv :=
(_ :
∀ (x : { x // x ∈ fixingSubgroup K }),
(fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
((fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) =
Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
x) =
x),
right_inv :=
(_ :
∀ (x : E ≃ₐ[{ x // x ∈ K }] E),
(fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
((fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
x) =
x) }
x✝¹ *
Equiv.toFun
{
toFun := fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) },
invFun := fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) },
left_inv :=
(_ :
∀ (x : { x // x ∈ fixingSubgroup K }),
(fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
((fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) =
Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
x) =
x),
right_inv :=
(_ :
∀ (x : E ≃ₐ[{ x // x ∈ K }] E),
(fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
((fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
x) =
x) }
x✝
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
x✝¹ x✝ : { x // x ∈ fixingSubgroup K }
a✝ : E
⊢ ↑(Equiv.toFun
{
toFun := fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) },
invFun := fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) },
left_inv :=
(_ :
∀ (x : { x // x ∈ fixingSubgroup K }),
(fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
((fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) =
Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
x) =
x),
right_inv :=
(_ :
∀ (x : E ≃ₐ[{ x // x ∈ K }] E),
(fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) =
Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
((fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
x) =
x) }
(x✝¹ * x✝))
a✝ =
↑(Equiv.toFun
{
toFun := fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) },
invFun := fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) },
left_inv :=
(_ :
∀ (x : { x // x ∈ fixingSubgroup K }),
(fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
((fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) =
Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
x) =
x),
right_inv :=
(_ :
∀ (x : E ≃ₐ[{ x // x ∈ K }] E),
(fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) =
Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
((fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
x) =
x) }
x✝¹ *
Equiv.toFun
{
toFun := fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) },
invFun := fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) },
left_inv :=
(_ :
∀ (x : { x // x ∈ fixingSubgroup K }),
(fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
((fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) =
Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
x) =
x),
right_inv :=
(_ :
∀ (x : E ≃ₐ[{ x // x ∈ K }] E),
(fun ϕ =>
let src := toRingEquiv ↑ϕ;
{ toEquiv := src.toEquiv,
map_mul' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x * y) =
Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y),
map_add' :=
(_ :
∀ (x y : E),
Equiv.toFun src.toEquiv (x + y) =
Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y),
commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) })
((fun ϕ =>
{ val := AlgEquiv.restrictScalars F ϕ,
property :=
(_ :
∀ (r : { x // x ∈ K }),
↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) })
x) =
x) }
x✝)
a✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
⊢ fixingSubgroup (fixedField H) = H
[PROOFSTEP]
have H_le : H ≤ fixingSubgroup (fixedField H) := (le_iff_le _ _).mp le_rfl
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
H_le : H ≤ fixingSubgroup (fixedField H)
⊢ fixingSubgroup (fixedField H) = H
[PROOFSTEP]
classical
suffices Fintype.card H = Fintype.card (fixingSubgroup (fixedField H)) by
exact
SetLike.coe_injective
(Set.eq_of_inclusion_surjective
((Fintype.bijective_iff_injective_and_card (Set.inclusion H_le)).mpr
⟨Set.inclusion_injective H_le, this⟩).2).symm
apply Fintype.card_congr
refine' (FixedPoints.toAlgHomEquiv H E).trans _
refine' (algEquivEquivAlgHom (fixedField H) E).toEquiv.symm.trans _
exact (fixingSubgroupEquiv (fixedField H)).toEquiv.symm
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
H_le : H ≤ fixingSubgroup (fixedField H)
⊢ fixingSubgroup (fixedField H) = H
[PROOFSTEP]
suffices Fintype.card H = Fintype.card (fixingSubgroup (fixedField H)) by
exact
SetLike.coe_injective
(Set.eq_of_inclusion_surjective
((Fintype.bijective_iff_injective_and_card (Set.inclusion H_le)).mpr
⟨Set.inclusion_injective H_le, this⟩).2).symm
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
H_le : H ≤ fixingSubgroup (fixedField H)
this : Fintype.card { x // x ∈ H } = Fintype.card { x // x ∈ fixingSubgroup (fixedField H) }
⊢ fixingSubgroup (fixedField H) = H
[PROOFSTEP]
exact
SetLike.coe_injective
(Set.eq_of_inclusion_surjective
((Fintype.bijective_iff_injective_and_card (Set.inclusion H_le)).mpr
⟨Set.inclusion_injective H_le, this⟩).2).symm
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
H_le : H ≤ fixingSubgroup (fixedField H)
⊢ Fintype.card { x // x ∈ H } = Fintype.card { x // x ∈ fixingSubgroup (fixedField H) }
[PROOFSTEP]
apply Fintype.card_congr
[GOAL]
case f
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
H_le : H ≤ fixingSubgroup (fixedField H)
⊢ { x // x ∈ H } ≃ { x // x ∈ fixingSubgroup (fixedField H) }
[PROOFSTEP]
refine' (FixedPoints.toAlgHomEquiv H E).trans _
[GOAL]
case f
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
H_le : H ≤ fixingSubgroup (fixedField H)
⊢ (E →ₐ[{ x // x ∈ FixedPoints.subfield { x // x ∈ H } E }] E) ≃ { x // x ∈ fixingSubgroup (fixedField H) }
[PROOFSTEP]
refine' (algEquivEquivAlgHom (fixedField H) E).toEquiv.symm.trans _
[GOAL]
case f
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
H_le : H ≤ fixingSubgroup (fixedField H)
⊢ (E ≃ₐ[{ x // x ∈ fixedField H }] E) ≃ { x // x ∈ fixingSubgroup (fixedField H) }
[PROOFSTEP]
exact (fixingSubgroupEquiv (fixedField H)).toEquiv.symm
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
x : { x // x ∈ K }
y : { x // x ∈ fixedField (fixingSubgroup K) }
ϕ : { x // x ∈ fixingSubgroup K }
⊢ ϕ • (↑x * ↑y) = ↑x * ↑y
[PROOFSTEP]
rw [smul_mul', show ϕ • (x : E) = ↑x from ϕ.2 x, show ϕ • (y : E) = ↑y from y.2 ϕ]
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
h : IsGalois F E
⊢ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K
[PROOFSTEP]
have K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) :=
(IntermediateField.le_iff_le _ _).mpr le_rfl
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
h : IsGalois F E
K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K)
⊢ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K
[PROOFSTEP]
suffices finrank K E = finrank (IntermediateField.fixedField (IntermediateField.fixingSubgroup K)) E by
exact (IntermediateField.eq_of_le_of_finrank_eq' K_le this).symm
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
h : IsGalois F E
K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K)
this :
finrank { x // x ∈ K } E = finrank { x // x ∈ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) } E
⊢ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K
[PROOFSTEP]
exact (IntermediateField.eq_of_le_of_finrank_eq' K_le this).symm
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
h : IsGalois F E
K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K)
⊢ finrank { x // x ∈ K } E = finrank { x // x ∈ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) } E
[PROOFSTEP]
classical
rw [IntermediateField.finrank_fixedField_eq_card, Fintype.card_congr (IntermediateField.fixingSubgroupEquiv K).toEquiv]
exact (card_aut_eq_finrank K E).symm
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
h : IsGalois F E
K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K)
⊢ finrank { x // x ∈ K } E = finrank { x // x ∈ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) } E
[PROOFSTEP]
rw [IntermediateField.finrank_fixedField_eq_card, Fintype.card_congr (IntermediateField.fixingSubgroupEquiv K).toEquiv]
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝ : FiniteDimensional F E
h : IsGalois F E
K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K)
⊢ finrank { x // x ∈ K } E = Fintype.card (E ≃ₐ[{ x // x ∈ K }] E)
[PROOFSTEP]
exact (card_aut_eq_finrank K E).symm
[GOAL]
F : Type u_1
inst✝⁵ : Field F
E : Type u_2
inst✝⁴ : Field E
inst✝³ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝² : DecidablePred fun x => x ∈ IntermediateField.fixingSubgroup K
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
⊢ Fintype.card { x // x ∈ IntermediateField.fixingSubgroup K } = finrank { x // x ∈ K } E
[PROOFSTEP]
conv_rhs => rw [← fixedField_fixingSubgroup K, IntermediateField.finrank_fixedField_eq_card]
[GOAL]
F : Type u_1
inst✝⁵ : Field F
E : Type u_2
inst✝⁴ : Field E
inst✝³ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝² : DecidablePred fun x => x ∈ IntermediateField.fixingSubgroup K
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
| finrank { x // x ∈ K } E
[PROOFSTEP]
rw [← fixedField_fixingSubgroup K, IntermediateField.finrank_fixedField_eq_card]
[GOAL]
F : Type u_1
inst✝⁵ : Field F
E : Type u_2
inst✝⁴ : Field E
inst✝³ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝² : DecidablePred fun x => x ∈ IntermediateField.fixingSubgroup K
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
| finrank { x // x ∈ K } E
[PROOFSTEP]
rw [← fixedField_fixingSubgroup K, IntermediateField.finrank_fixedField_eq_card]
[GOAL]
F : Type u_1
inst✝⁵ : Field F
E : Type u_2
inst✝⁴ : Field E
inst✝³ : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K : IntermediateField F E
inst✝² : DecidablePred fun x => x ∈ IntermediateField.fixingSubgroup K
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
| finrank { x // x ∈ K } E
[PROOFSTEP]
rw [← fixedField_fixingSubgroup K, IntermediateField.finrank_fixedField_eq_card]
[GOAL]
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K✝ : IntermediateField F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
K L : IntermediateField F E
⊢ ↑{ toFun := IntermediateField.fixingSubgroup, invFun := IntermediateField.fixedField,
left_inv :=
(_ :
∀ (K : IntermediateField F E), IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K),
right_inv :=
(_ :
∀ (H : (Subgroup (E ≃ₐ[F] E))ᵒᵈ),
IntermediateField.fixingSubgroup (IntermediateField.fixedField H) = H) }
K ≤
↑{ toFun := IntermediateField.fixingSubgroup, invFun := IntermediateField.fixedField,
left_inv :=
(_ :
∀ (K : IntermediateField F E), IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K),
right_inv :=
(_ :
∀ (H : (Subgroup (E ≃ₐ[F] E))ᵒᵈ),
IntermediateField.fixingSubgroup (IntermediateField.fixedField H) = H) }
L ↔
K ≤ L
[PROOFSTEP]
rw [← fixedField_fixingSubgroup L, IntermediateField.le_iff_le, fixedField_fixingSubgroup L]
[GOAL]
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
H : Subgroup (E ≃ₐ[F] E)
K✝ : IntermediateField F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
K L : IntermediateField F E
⊢ ↑{ toFun := IntermediateField.fixingSubgroup, invFun := IntermediateField.fixedField,
left_inv :=
(_ :
∀ (K : IntermediateField F E), IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K),
right_inv :=
(_ :
∀ (H : (Subgroup (E ≃ₐ[F] E))ᵒᵈ),
IntermediateField.fixingSubgroup (IntermediateField.fixedField H) = H) }
K ≤
↑{ toFun := IntermediateField.fixingSubgroup, invFun := IntermediateField.fixedField,
left_inv :=
(_ :
∀ (K : IntermediateField F E), IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K),
right_inv :=
(_ :
∀ (H : (Subgroup (E ≃ₐ[F] E))ᵒᵈ),
IntermediateField.fixingSubgroup (IntermediateField.fixedField H) = H) }
L ↔
IntermediateField.fixingSubgroup L ≤ IntermediateField.fixingSubgroup K
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
⊢ ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
[PROOFSTEP]
cases' Field.exists_primitive_element F E with α h1
[GOAL]
case intro
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
h1 : F⟮α⟯ = ⊤
⊢ ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
[PROOFSTEP]
use minpoly F α, separable F α, IsGalois.splits F α
[GOAL]
case adjoin_rootSet'
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
h1 : F⟮α⟯ = ⊤
⊢ Algebra.adjoin F (Polynomial.rootSet (minpoly F α) E) = ⊤
[PROOFSTEP]
rw [eq_top_iff, ← IntermediateField.top_toSubalgebra, ← h1]
[GOAL]
case adjoin_rootSet'
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
h1 : F⟮α⟯ = ⊤
⊢ F⟮α⟯.toSubalgebra ≤ Algebra.adjoin F (Polynomial.rootSet (minpoly F α) E)
[PROOFSTEP]
rw [IntermediateField.adjoin_simple_toSubalgebra_of_integral (integral F α)]
[GOAL]
case adjoin_rootSet'
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
h1 : F⟮α⟯ = ⊤
⊢ Algebra.adjoin F {α} ≤ Algebra.adjoin F (Polynomial.rootSet (minpoly F α) E)
[PROOFSTEP]
apply Algebra.adjoin_mono
[GOAL]
case adjoin_rootSet'.H
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
h1 : F⟮α⟯ = ⊤
⊢ {α} ⊆ Polynomial.rootSet (minpoly F α) E
[PROOFSTEP]
rw [Set.singleton_subset_iff, Polynomial.mem_rootSet]
[GOAL]
case adjoin_rootSet'.H
F : Type u_1
inst✝⁴ : Field F
E : Type u_2
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : FiniteDimensional F E
inst✝ : IsGalois F E
α : E
h1 : F⟮α⟯ = ⊤
⊢ minpoly F α ≠ 0 ∧ ↑(Polynomial.aeval α) (minpoly F α) = 0
[PROOFSTEP]
exact ⟨minpoly.ne_zero (integral F α), minpoly.aeval _ _⟩
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : IntermediateField.fixedField ⊤ = ⊥
⊢ IsGalois F E
[PROOFSTEP]
rw [← isGalois_iff_isGalois_bot, ← h]
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : IntermediateField.fixedField ⊤ = ⊥
⊢ IsGalois { x // x ∈ IntermediateField.fixedField ⊤ } E
[PROOFSTEP]
classical exact IsGalois.of_fixed_field E (⊤ : Subgroup (E ≃ₐ[F] E))
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : IntermediateField.fixedField ⊤ = ⊥
⊢ IsGalois { x // x ∈ IntermediateField.fixedField ⊤ } E
[PROOFSTEP]
exact IsGalois.of_fixed_field E (⊤ : Subgroup (E ≃ₐ[F] E))
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : Fintype.card (E ≃ₐ[F] E) = finrank F E
⊢ IsGalois F E
[PROOFSTEP]
apply of_fixedField_eq_bot
[GOAL]
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : Fintype.card (E ≃ₐ[F] E) = finrank F E
⊢ IntermediateField.fixedField ⊤ = ⊥
[PROOFSTEP]
have p : 0 < finrank (IntermediateField.fixedField (⊤ : Subgroup (E ≃ₐ[F] E))) E := finrank_pos
[GOAL]
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : Fintype.card (E ≃ₐ[F] E) = finrank F E
p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E
⊢ IntermediateField.fixedField ⊤ = ⊥
[PROOFSTEP]
classical
rw [← IntermediateField.finrank_eq_one_iff, ← mul_left_inj' (ne_of_lt p).symm, finrank_mul_finrank, ← h, one_mul,
IntermediateField.finrank_fixedField_eq_card]
apply Fintype.card_congr
exact
{ toFun := fun g => ⟨g, Subgroup.mem_top g⟩
invFun := (↑)
left_inv := fun g => rfl
right_inv := fun _ => by ext; rfl }
[GOAL]
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : Fintype.card (E ≃ₐ[F] E) = finrank F E
p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E
⊢ IntermediateField.fixedField ⊤ = ⊥
[PROOFSTEP]
rw [← IntermediateField.finrank_eq_one_iff, ← mul_left_inj' (ne_of_lt p).symm, finrank_mul_finrank, ← h, one_mul,
IntermediateField.finrank_fixedField_eq_card]
[GOAL]
case h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : Fintype.card (E ≃ₐ[F] E) = finrank F E
p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E
⊢ Fintype.card (E ≃ₐ[F] E) = Fintype.card { x // x ∈ ⊤ }
[PROOFSTEP]
apply Fintype.card_congr
[GOAL]
case h.f
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : Fintype.card (E ≃ₐ[F] E) = finrank F E
p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E
⊢ (E ≃ₐ[F] E) ≃ { x // x ∈ ⊤ }
[PROOFSTEP]
exact
{ toFun := fun g => ⟨g, Subgroup.mem_top g⟩
invFun := (↑)
left_inv := fun g => rfl
right_inv := fun _ => by ext; rfl }
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : Fintype.card (E ≃ₐ[F] E) = finrank F E
p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E
x✝ : { x // x ∈ ⊤ }
⊢ (fun g => { val := g, property := (_ : g ∈ ⊤) }) ↑x✝ = x✝
[PROOFSTEP]
ext
[GOAL]
case a.h
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
inst✝ : FiniteDimensional F E
h : Fintype.card (E ≃ₐ[F] E) = finrank F E
p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E
x✝ : { x // x ∈ ⊤ }
a✝ : E
⊢ ↑↑((fun g => { val := g, property := (_ : g ∈ ⊤) }) ↑x✝) a✝ = ↑↑x✝ a✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) =
Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ }
[PROOFSTEP]
have h : IsIntegral K x := isIntegral_of_isScalarTower (isIntegral_of_noetherian (IsNoetherian.iff_fg.2 hFE) x)
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) =
Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ }
[PROOFSTEP]
have h1 : p ≠ 0 := fun hp => by
rw [hp, Polynomial.map_zero, Polynomial.roots_zero] at hx
exact Multiset.not_mem_zero x hx
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp✝ : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
hp : p = 0
⊢ False
[PROOFSTEP]
rw [hp, Polynomial.map_zero, Polynomial.roots_zero] at hx
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp✝ : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ 0
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
hp : p = 0
⊢ False
[PROOFSTEP]
exact Multiset.not_mem_zero x hx
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) =
Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ }
[PROOFSTEP]
have h2 : minpoly K x ∣ p.map (algebraMap F K) := by
apply minpoly.dvd
rw [Polynomial.aeval_def, Polynomial.eval₂_map, ← Polynomial.eval_map, ← IsScalarTower.algebraMap_eq]
exact (Polynomial.mem_roots (Polynomial.map_ne_zero h1)).mp hx
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
⊢ minpoly K x ∣ Polynomial.map (algebraMap F K) p
[PROOFSTEP]
apply minpoly.dvd
[GOAL]
case hp
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
⊢ ↑(Polynomial.aeval x) (Polynomial.map (algebraMap F K) p) = 0
[PROOFSTEP]
rw [Polynomial.aeval_def, Polynomial.eval₂_map, ← Polynomial.eval_map, ← IsScalarTower.algebraMap_eq]
[GOAL]
case hp
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
⊢ Polynomial.eval x (Polynomial.map (algebraMap F E) p) = 0
[PROOFSTEP]
exact (Polynomial.mem_roots (Polynomial.map_ne_zero h1)).mp hx
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) =
Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ }
[PROOFSTEP]
let key_equiv : (K⟮x⟯.restrictScalars F →ₐ[F] E) ≃ Σ f : K →ₐ[F] E, @AlgHom K K⟮x⟯ E _ _ _ _ (RingHom.toAlgebra f) :=
by
change (K⟮x⟯ →ₐ[F] E) ≃ Σ f : K →ₐ[F] E, _
exact algHomEquivSigma
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
⊢ ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
[PROOFSTEP]
change (K⟮x⟯ →ₐ[F] E) ≃ Σ f : K →ₐ[F] E, _
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
⊢ ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
[PROOFSTEP]
exact algHomEquivSigma
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) =
Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ }
[PROOFSTEP]
haveI : ∀ f : K →ₐ[F] E, Fintype (@AlgHom K K⟮x⟯ E _ _ _ _ (RingHom.toAlgebra f)) := fun f =>
by
have := Fintype.ofEquiv _ key_equiv
apply Fintype.ofInjective (Sigma.mk f) fun _ _ H => eq_of_heq (Sigma.ext_iff.mp H).2
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
f : K →ₐ[F] E
⊢ Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
[PROOFSTEP]
have := Fintype.ofEquiv _ key_equiv
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
f : K →ₐ[F] E
this : Fintype ((f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E))
⊢ Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
[PROOFSTEP]
apply Fintype.ofInjective (Sigma.mk f) fun _ _ H => eq_of_heq (Sigma.ext_iff.mp H).2
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) =
Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ }
[PROOFSTEP]
rw [Fintype.card_congr key_equiv, Fintype.card_sigma, IntermediateField.adjoin.finrank h]
[GOAL]
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
⊢ (Finset.sum Finset.univ fun a => Fintype.card ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)) =
Fintype.card (K →ₐ[F] E) * Polynomial.natDegree (minpoly K x)
[PROOFSTEP]
apply Finset.sum_const_nat
[GOAL]
case h₁
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
⊢ ∀ (x_1 : K →ₐ[F] E),
x_1 ∈ Finset.univ → Fintype.card ({ x_2 // x_2 ∈ K⟮x⟯ } →ₐ[K] E) = Polynomial.natDegree (minpoly K x)
[PROOFSTEP]
intro f _
[GOAL]
case h₁
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
f : K →ₐ[F] E
a✝ : f ∈ Finset.univ
⊢ Fintype.card ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) = Polynomial.natDegree (minpoly K x)
[PROOFSTEP]
rw [← @IntermediateField.card_algHom_adjoin_integral K _ E _ _ x E _ (RingHom.toAlgebra f) h]
[GOAL]
case h₁
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
f : K →ₐ[F] E
a✝ : f ∈ Finset.univ
⊢ Fintype.card ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) = Fintype.card ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
[PROOFSTEP]
congr!
[GOAL]
case h₁.h_sep
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
f : K →ₐ[F] E
a✝ : f ∈ Finset.univ
⊢ Polynomial.Separable (minpoly K x)
[PROOFSTEP]
exact Polynomial.Separable.of_dvd ((Polynomial.separable_map (algebraMap F K)).mpr hp) h2
[GOAL]
case h₁.h_splits
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
f : K →ₐ[F] E
a✝ : f ∈ Finset.univ
⊢ Polynomial.Splits (algebraMap K E) (minpoly K x)
[PROOFSTEP]
refine' Polynomial.splits_of_splits_of_dvd _ (Polynomial.map_ne_zero h1) _ h2
[GOAL]
case h₁.h_splits
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
f : K →ₐ[F] E
a✝ : f ∈ Finset.univ
⊢ Polynomial.Splits (algebraMap K E) (Polynomial.map (algebraMap F K) p)
[PROOFSTEP]
rw [Polynomial.splits_map_iff, ← @IsScalarTower.algebraMap_eq _ _ _ _ _ _ _ (_) _ _]
[GOAL]
case h₁.h_splits
F : Type u_1
inst✝⁸ : Field F
E : Type u_2
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
p : F[X]
hFE : FiniteDimensional F E
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
K : Type u_3
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
inst✝³ : Algebra K E
inst✝² : IsScalarTower F K E
x : E
hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p)
inst✝¹ : Fintype (K →ₐ[F] E)
inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E)
h : IsIntegral K x
h1 : p ≠ 0
h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p
key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃
(f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) :=
let_fun this := algHomEquivSigma;
this
this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)
f : K →ₐ[F] E
a✝ : f ∈ Finset.univ
⊢ Polynomial.Splits (algebraMap F E) p
[PROOFSTEP]
exact sp.splits
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
⊢ IsGalois F E
[PROOFSTEP]
haveI hFE : FiniteDimensional F E := Polynomial.IsSplittingField.finiteDimensional E p
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
⊢ IsGalois F E
[PROOFSTEP]
letI := Classical.decEq E
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
⊢ IsGalois F E
[PROOFSTEP]
let s := (p.map (algebraMap F E)).roots.toFinset
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
⊢ IsGalois F E
[PROOFSTEP]
have adjoin_root : IntermediateField.adjoin F (s : Set E) = ⊤ :=
by
apply IntermediateField.toSubalgebra_injective
rw [IntermediateField.top_toSubalgebra, ← top_le_iff, ← sp.adjoin_rootSet]
apply IntermediateField.algebra_adjoin_le_adjoin
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
⊢ IntermediateField.adjoin F ↑s = ⊤
[PROOFSTEP]
apply IntermediateField.toSubalgebra_injective
[GOAL]
case h
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
⊢ (IntermediateField.adjoin F ↑s).toSubalgebra = ⊤.toSubalgebra
[PROOFSTEP]
rw [IntermediateField.top_toSubalgebra, ← top_le_iff, ← sp.adjoin_rootSet]
[GOAL]
case h
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
⊢ Algebra.adjoin F (Polynomial.rootSet p E) ≤ (IntermediateField.adjoin F ↑s).toSubalgebra
[PROOFSTEP]
apply IntermediateField.algebra_adjoin_le_adjoin
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
⊢ IsGalois F E
[PROOFSTEP]
let P : IntermediateField F E → Prop := fun K => Fintype.card (K →ₐ[F] E) = finrank F K
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
⊢ IsGalois F E
[PROOFSTEP]
suffices P (IntermediateField.adjoin F ↑s) by
rw [adjoin_root] at this
apply of_card_aut_eq_finrank
rw [← Eq.trans this (LinearEquiv.finrank_eq IntermediateField.topEquiv.toLinearEquiv)]
exact
Fintype.card_congr
((algEquivEquivAlgHom F E).toEquiv.trans (IntermediateField.topEquiv.symm.arrowCongr AlgEquiv.refl))
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this✝ : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
this : P (IntermediateField.adjoin F ↑s)
⊢ IsGalois F E
[PROOFSTEP]
rw [adjoin_root] at this
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this✝ : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
this : P ⊤
⊢ IsGalois F E
[PROOFSTEP]
apply of_card_aut_eq_finrank
[GOAL]
case h
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this✝ : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
this : P ⊤
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
rw [← Eq.trans this (LinearEquiv.finrank_eq IntermediateField.topEquiv.toLinearEquiv)]
[GOAL]
case h
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this✝ : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
this : P ⊤
⊢ Fintype.card (E ≃ₐ[F] E) = Fintype.card ({ x // x ∈ ⊤ } →ₐ[F] E)
[PROOFSTEP]
exact
Fintype.card_congr
((algEquivEquivAlgHom F E).toEquiv.trans (IntermediateField.topEquiv.symm.arrowCongr AlgEquiv.refl))
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
⊢ P (IntermediateField.adjoin F ↑s)
[PROOFSTEP]
apply IntermediateField.induction_on_adjoin_finset s P
[GOAL]
case base
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
⊢ P ⊥
[PROOFSTEP]
have key := IntermediateField.card_algHom_adjoin_integral F (K := E) (show IsIntegral F (0 : E) from isIntegral_zero)
[GOAL]
case base
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
key :
Polynomial.Separable (minpoly F 0) →
Polynomial.Splits (algebraMap F E) (minpoly F 0) →
Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = Polynomial.natDegree (minpoly F 0)
⊢ P ⊥
[PROOFSTEP]
rw [minpoly.zero, Polynomial.natDegree_X] at key
[GOAL]
case base
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
key :
Polynomial.Separable Polynomial.X →
Polynomial.Splits (algebraMap F E) Polynomial.X → Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = 1
⊢ P ⊥
[PROOFSTEP]
specialize key Polynomial.separable_X (Polynomial.splits_X (algebraMap F E))
[GOAL]
case base
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
key : Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = 1
⊢ P ⊥
[PROOFSTEP]
rw [← @Subalgebra.finrank_bot F E _ _ _, ← IntermediateField.bot_toSubalgebra] at key
[GOAL]
case base
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
key : Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = finrank F { x // x ∈ ⊥.toSubalgebra }
⊢ P ⊥
[PROOFSTEP]
refine' Eq.trans _ key
[GOAL]
case base
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
key : Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = finrank F { x // x ∈ ⊥.toSubalgebra }
⊢ Fintype.card ({ x // x ∈ ⊥ } →ₐ[F] E) = Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E)
[PROOFSTEP]
apply @Fintype.card_congr _ _ _ (_) _
[GOAL]
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
key : Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = finrank F { x // x ∈ ⊥.toSubalgebra }
⊢ ({ x // x ∈ ⊥ } →ₐ[F] E) ≃ ({ x // x ∈ F⟮0⟯ } →ₐ[F] E)
[PROOFSTEP]
rw [IntermediateField.adjoin_zero]
[GOAL]
case ih
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
⊢ ∀ (K : IntermediateField F E) (x : E), x ∈ s → P K → P (IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯)
[PROOFSTEP]
intro K x hx hK
[GOAL]
case ih
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑s = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
K : IntermediateField F E
x : E
hx : x ∈ s
hK : P K
⊢ P (IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯)
[PROOFSTEP]
simp only at *
-- Porting note: need to specify two implicit arguments of `finrank_mul_finrank`
[GOAL]
case ih
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑(Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))) = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
K : IntermediateField F E
x : E
hx : x ∈ Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
hK : Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ } →ₐ[F] E) =
finrank F { x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ }
[PROOFSTEP]
rw [of_separable_splitting_field_aux hp K (Multiset.mem_toFinset.mp hx), hK,
@finrank_mul_finrank _ _ _ _ _ _ _ K⟮x⟯.module _ K⟮x⟯.isScalarTower _]
[GOAL]
case ih
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑(Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))) = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
K : IntermediateField F E
x : E
hx : x ∈ Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
hK : Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
⊢ finrank F { x_1 // x_1 ∈ { x // x ∈ K }⟮x⟯ } =
finrank F { x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ }
[PROOFSTEP]
symm
[GOAL]
case ih
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑(Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))) = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
K : IntermediateField F E
x : E
hx : x ∈ Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
hK : Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
⊢ finrank F { x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ } =
finrank F { x_1 // x_1 ∈ { x // x ∈ K }⟮x⟯ }
[PROOFSTEP]
refine' LinearEquiv.finrank_eq _
[GOAL]
case ih
F : Type u_1
inst✝² : Field F
E : Type u_2
inst✝¹ : Field E
inst✝ : Algebra F E
p : F[X]
sp : Polynomial.IsSplittingField F E p
hp : Polynomial.Separable p
hFE : FiniteDimensional F E
this : DecidableEq E := Classical.decEq E
s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
adjoin_root : IntermediateField.adjoin F ↑(Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))) = ⊤
P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
K : IntermediateField F E
x : E
hx : x ∈ Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))
hK : Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K }
⊢ { x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ } ≃ₗ[F] { x_1 // x_1 ∈ { x // x ∈ K }⟮x⟯ }
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
⊢ List.TFAE
[IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E,
∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p]
[PROOFSTEP]
tfae_have 1 → 2
[GOAL]
case tfae_1_to_2
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
⊢ IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
[PROOFSTEP]
exact fun h => OrderIso.map_bot (@intermediateFieldEquivSubgroup F _ E _ _ _ h).symm
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
⊢ List.TFAE
[IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E,
∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p]
[PROOFSTEP]
tfae_have 1 → 3
[GOAL]
case tfae_1_to_3
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
⊢ IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
intro
[GOAL]
case tfae_1_to_3
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
✝ : IsGalois F E
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E
[PROOFSTEP]
exact card_aut_eq_finrank F E
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
⊢ List.TFAE
[IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E,
∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p]
[PROOFSTEP]
tfae_have 1 → 4
[GOAL]
case tfae_1_to_4
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
⊢ IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
[PROOFSTEP]
intro
[GOAL]
case tfae_1_to_4
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
✝ : IsGalois F E
⊢ ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
[PROOFSTEP]
exact is_separable_splitting_field F E
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
⊢ List.TFAE
[IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E,
∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p]
[PROOFSTEP]
tfae_have 2 → 1
[GOAL]
case tfae_2_to_1
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
⊢ IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E
[PROOFSTEP]
exact of_fixedField_eq_bot F E
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E
⊢ List.TFAE
[IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E,
∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p]
[PROOFSTEP]
tfae_have 3 → 1
[GOAL]
case tfae_3_to_1
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E
⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E
[PROOFSTEP]
exact of_card_aut_eq_finrank F E
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E
tfae_3_to_1 : Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E
⊢ List.TFAE
[IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E,
∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p]
[PROOFSTEP]
tfae_have 4 → 1
[GOAL]
case tfae_4_to_1
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E
tfae_3_to_1 : Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E
⊢ (∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p) → IsGalois F E
[PROOFSTEP]
rintro ⟨h, hp1, _⟩
[GOAL]
case tfae_4_to_1.intro.intro
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E
tfae_3_to_1 : Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E
h : F[X]
hp1 : Polynomial.Separable h
right✝ : Polynomial.IsSplittingField F E h
⊢ IsGalois F E
[PROOFSTEP]
exact of_separable_splitting_field hp1
[GOAL]
F : Type u_1
inst✝³ : Field F
E : Type u_2
inst✝² : Field E
inst✝¹ : Algebra F E
p : F[X]
inst✝ : FiniteDimensional F E
tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥
tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E
tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p
tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E
tfae_3_to_1 : Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E
tfae_4_to_1 : (∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p) → IsGalois F E
⊢ List.TFAE
[IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E,
∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p]
[PROOFSTEP]
tfae_finish
|
{"mathlib_filename": "Mathlib.FieldTheory.Galois", "llama_tokens": 69721}
|
[GOAL]
α : Type u
x : Tree α
⊢ numLeaves x = numNodes x + 1
[PROOFSTEP]
induction x
[GOAL]
case nil
α : Type u
⊢ numLeaves nil = numNodes nil + 1
[PROOFSTEP]
simp [*, Nat.add_comm, Nat.add_assoc, Nat.add_left_comm]
[GOAL]
case node
α : Type u
a✝² : α
a✝¹ a✝ : Tree α
a_ih✝¹ : numLeaves a✝¹ = numNodes a✝¹ + 1
a_ih✝ : numLeaves a✝ = numNodes a✝ + 1
⊢ numLeaves (node a✝² a✝¹ a✝) = numNodes (node a✝² a✝¹ a✝) + 1
[PROOFSTEP]
simp [*, Nat.add_comm, Nat.add_assoc, Nat.add_left_comm]
[GOAL]
α : Type u
x : Tree α
⊢ 0 < numLeaves x
[PROOFSTEP]
rw [numLeaves_eq_numNodes_succ]
[GOAL]
α : Type u
x : Tree α
⊢ 0 < numNodes x + 1
[PROOFSTEP]
exact x.numNodes.zero_lt_succ
[GOAL]
α : Type u
h : nil ≠ nil
⊢ node () (left nil) (right nil) = nil
[PROOFSTEP]
trivial
|
{"mathlib_filename": "Mathlib.Data.Tree", "llama_tokens": 393}
|
[GOAL]
n : ℕ
α : TypeVec n
β : TypeVec n
f g : α ⟹ β
⊢ (∀ (i : Fin2 n), f i = g i) → f = g
[PROOFSTEP]
intro h
[GOAL]
n : ℕ
α : TypeVec n
β : TypeVec n
f g : α ⟹ β
h : ∀ (i : Fin2 n), f i = g i
⊢ f = g
[PROOFSTEP]
funext i
[GOAL]
case h
n : ℕ
α : TypeVec n
β : TypeVec n
f g : α ⟹ β
h : ∀ (i : Fin2 n), f i = g i
i : Fin2 n
⊢ f i = g i
[PROOFSTEP]
apply h
[GOAL]
n : ℕ
α : TypeVec (n + 1)
i : Fin2 (n + 1)
⊢ (drop α ::: last α) i = α i
[PROOFSTEP]
cases i
[GOAL]
case fz
n : ℕ
α : TypeVec (n + 1)
⊢ (drop α ::: last α) Fin2.fz = α Fin2.fz
[PROOFSTEP]
rfl
[GOAL]
case fs
n : ℕ
α : TypeVec (n + 1)
a✝ : Fin2 (Nat.add n 0)
⊢ (drop α ::: last α) (Fin2.fs a✝) = α (Fin2.fs a✝)
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
C : TypeVec (n + 1) → Sort u
H : (α : TypeVec n) → (β : Type ?u.25747) → C (α ::: β)
γ : TypeVec (n + 1)
⊢ C γ
[PROOFSTEP]
rw [← @append1_drop_last _ γ]
[GOAL]
n : ℕ
C : TypeVec (n + 1) → Sort u
H : (α : TypeVec n) → (β : Type ?u.25747) → C (α ::: β)
γ : TypeVec (n + 1)
⊢ C (drop γ ::: last γ)
[PROOFSTEP]
apply H
[GOAL]
n : ℕ
α : TypeVec 0
β : TypeVec 0
i : Fin2 0
⊢ α i → β i
[PROOFSTEP]
apply Fin2.elim0 i
[GOAL]
n : ℕ
α : TypeVec (n + 1)
β : TypeVec (n + 1)
f g : α ⟹ β
h₀ : dropFun f = dropFun g
h₁ : lastFun f = lastFun g
⊢ f = g
[PROOFSTEP]
refine funext (fun x => ?_)
[GOAL]
n : ℕ
α : TypeVec (n + 1)
β : TypeVec (n + 1)
f g : α ⟹ β
h₀ : dropFun f = dropFun g
h₁ : lastFun f = lastFun g
x : Fin2 (n + 1)
⊢ f x = g x
[PROOFSTEP]
cases x
[GOAL]
case fz
n : ℕ
α : TypeVec (n + 1)
β : TypeVec (n + 1)
f g : α ⟹ β
h₀ : dropFun f = dropFun g
h₁ : lastFun f = lastFun g
⊢ f Fin2.fz = g Fin2.fz
[PROOFSTEP]
apply h₁
[GOAL]
case fs
n : ℕ
α : TypeVec (n + 1)
β : TypeVec (n + 1)
f g : α ⟹ β
h₀ : dropFun f = dropFun g
h₁ : lastFun f = lastFun g
a✝ : Fin2 (Nat.add n 0)
⊢ f (Fin2.fs a✝) = g (Fin2.fs a✝)
[PROOFSTEP]
apply congr_fun h₀
[GOAL]
n : ℕ
α : TypeVec (n + 1)
α' : TypeVec (n + 1)
f f' : drop α ⟹ drop α'
g g' : last α → last α'
H : splitFun f g = splitFun f' g'
⊢ f = f' ∧ g = g'
[PROOFSTEP]
rw [← dropFun_splitFun f g, H, ← lastFun_splitFun f g, H]
[GOAL]
n : ℕ
α : TypeVec (n + 1)
α' : TypeVec (n + 1)
f f' : drop α ⟹ drop α'
g g' : last α → last α'
H : splitFun f g = splitFun f' g'
⊢ dropFun (splitFun f' g') = f' ∧ lastFun (splitFun f' g') = g'
[PROOFSTEP]
simp
[GOAL]
n : ℕ
α₀ : TypeVec 0
f₀ : α₀ ⟹ Fin2.elim0
x : Fin2 0
⊢ (nilFun ⊚ f₀) x = f₀ x
[PROOFSTEP]
apply Fin2.elim0 x
[GOAL]
n : ℕ
a✝ b : TypeVec 0
a : Fin2 0
⊢ a✝ a = b a
[PROOFSTEP]
apply Fin2.elim0 a
[GOAL]
n : ℕ
β : TypeVec 0 → Sort u_1
f : β Fin2.elim0
v : TypeVec 0
⊢ β Fin2.elim0 = β v
[PROOFSTEP]
congr
[GOAL]
case e_a
n : ℕ
β : TypeVec 0 → Sort u_1
f : β Fin2.elim0
v : TypeVec 0
⊢ Fin2.elim0 = v
[PROOFSTEP]
funext i
[GOAL]
case e_a.h
n : ℕ
β : TypeVec 0 → Sort u_1
f : β Fin2.elim0
v : TypeVec 0
i : Fin2 0
⊢ Fin2.elim0 i = v i
[PROOFSTEP]
cases i
[GOAL]
n✝ n : ℕ
β : TypeVec (n + 1) → Sort u_1
f : (t : Type ?u.47809) → (v : TypeVec n) → β (v ::: t)
v : TypeVec (n + 1)
⊢ β (drop v ::: last v) = β v
[PROOFSTEP]
simp
[GOAL]
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
⊢ β v v' fs
[PROOFSTEP]
refine' cast _ f
[GOAL]
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
⊢ β Fin2.elim0 Fin2.elim0 nilFun = β v v' fs
[PROOFSTEP]
have eq₁ : v = Fin2.elim0 := by funext i; contradiction
[GOAL]
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
⊢ v = Fin2.elim0
[PROOFSTEP]
funext i
[GOAL]
case h
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
i : Fin2 0
⊢ v i = Fin2.elim0 i
[PROOFSTEP]
contradiction
[GOAL]
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
eq₁ : v = Fin2.elim0
⊢ β Fin2.elim0 Fin2.elim0 nilFun = β v v' fs
[PROOFSTEP]
have eq₂ : v' = Fin2.elim0 := by funext i; contradiction
[GOAL]
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
eq₁ : v = Fin2.elim0
⊢ v' = Fin2.elim0
[PROOFSTEP]
funext i
[GOAL]
case h
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
eq₁ : v = Fin2.elim0
i : Fin2 0
⊢ v' i = Fin2.elim0 i
[PROOFSTEP]
contradiction
[GOAL]
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
eq₁ : v = Fin2.elim0
eq₂ : v' = Fin2.elim0
⊢ β Fin2.elim0 Fin2.elim0 nilFun = β v v' fs
[PROOFSTEP]
have eq₃ : fs = nilFun := by funext i; contradiction
[GOAL]
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
eq₁ : v = Fin2.elim0
eq₂ : v' = Fin2.elim0
⊢ fs = nilFun
[PROOFSTEP]
funext i
[GOAL]
case h
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
eq₁ : v = Fin2.elim0
eq₂ : v' = Fin2.elim0
i : Fin2 0
⊢ fs i = nilFun i
[PROOFSTEP]
contradiction
[GOAL]
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v : TypeVec 0
v' : TypeVec 0
fs : v ⟹ v'
eq₁ : v = Fin2.elim0
eq₂ : v' = Fin2.elim0
eq₃ : fs = nilFun
⊢ β Fin2.elim0 Fin2.elim0 nilFun = β v v' fs
[PROOFSTEP]
cases eq₁
[GOAL]
case refl
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
v' : TypeVec 0
eq₂ : v' = Fin2.elim0
fs : Fin2.elim0 ⟹ v'
eq₃ : fs = nilFun
⊢ β Fin2.elim0 Fin2.elim0 nilFun = β Fin2.elim0 v' fs
[PROOFSTEP]
cases eq₂
[GOAL]
case refl.refl
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
fs : Fin2.elim0 ⟹ Fin2.elim0
eq₃ : fs = nilFun
⊢ β Fin2.elim0 Fin2.elim0 nilFun = β Fin2.elim0 Fin2.elim0 fs
[PROOFSTEP]
cases eq₃
[GOAL]
case refl.refl.refl
n : ℕ
β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1
f : β Fin2.elim0 Fin2.elim0 nilFun
⊢ β Fin2.elim0 Fin2.elim0 nilFun = β Fin2.elim0 Fin2.elim0 nilFun
[PROOFSTEP]
rfl
[GOAL]
n✝ n : ℕ
β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1
F :
(t : Type ?u.50165) →
(t' : Type ?u.50168) →
(f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f)
⊢ (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → (fs : v ⟹ v') → β v v' fs
[PROOFSTEP]
intro v v'
[GOAL]
n✝ n : ℕ
β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1
F :
(t : Type ?u.50165) →
(t' : Type ?u.50168) →
(f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f)
v : TypeVec (n + 1)
v' : TypeVec (n + 1)
⊢ (fs : v ⟹ v') → β v v' fs
[PROOFSTEP]
rw [← append1_drop_last v, ← append1_drop_last v']
[GOAL]
n✝ n : ℕ
β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1
F :
(t : Type ?u.50165) →
(t' : Type ?u.50168) →
(f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f)
v : TypeVec (n + 1)
v' : TypeVec (n + 1)
⊢ (fs : drop v ::: last v ⟹ drop v' ::: last v') → β (drop v ::: last v) (drop v' ::: last v') fs
[PROOFSTEP]
intro fs
[GOAL]
n✝ n : ℕ
β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1
F :
(t : Type ?u.50165) →
(t' : Type ?u.50168) →
(f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f)
v : TypeVec (n + 1)
v' : TypeVec (n + 1)
fs : drop v ::: last v ⟹ drop v' ::: last v'
⊢ β (drop v ::: last v) (drop v' ::: last v') fs
[PROOFSTEP]
rw [← split_dropFun_lastFun fs]
[GOAL]
n✝ n : ℕ
β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1
F :
(t : Type ?u.50165) →
(t' : Type ?u.50168) →
(f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f)
v : TypeVec (n + 1)
v' : TypeVec (n + 1)
fs : drop v ::: last v ⟹ drop v' ::: last v'
⊢ β (drop v ::: last v) (drop v' ::: last v') (splitFun (dropFun fs) (lastFun fs))
[PROOFSTEP]
apply F
[GOAL]
n : ℕ
β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1
f : β nilFun
⊢ (f : Fin2.elim0 ⟹ Fin2.elim0) → β f
[PROOFSTEP]
intro g
[GOAL]
n : ℕ
β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1
f : β nilFun
g : Fin2.elim0 ⟹ Fin2.elim0
⊢ β g
[PROOFSTEP]
have : g = nilFun
[GOAL]
case this
n : ℕ
β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1
f : β nilFun
g : Fin2.elim0 ⟹ Fin2.elim0
⊢ g = nilFun
n : ℕ β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1 f : β nilFun g : Fin2.elim0 ⟹ Fin2.elim0 this : g = nilFun ⊢ β g
[PROOFSTEP]
ext ⟨⟩
[GOAL]
n : ℕ
β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1
f : β nilFun
g : Fin2.elim0 ⟹ Fin2.elim0
this : g = nilFun
⊢ β g
[PROOFSTEP]
rw [this]
[GOAL]
n : ℕ
β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1
f : β nilFun
g : Fin2.elim0 ⟹ Fin2.elim0
this : g = nilFun
⊢ β nilFun
[PROOFSTEP]
exact f
[GOAL]
n✝ n : ℕ
t : Type u_1
t' : Type u_2
v : TypeVec n
v' : TypeVec n
β : v ::: t ⟹ v' ::: t' → Sort u_3
F : (f : t → t') → (fs : v ⟹ v') → β (fs ::: f)
⊢ (fs : v ::: t ⟹ v' ::: t') → β fs
[PROOFSTEP]
intro fs
[GOAL]
n✝ n : ℕ
t : Type u_1
t' : Type u_2
v : TypeVec n
v' : TypeVec n
β : v ::: t ⟹ v' ::: t' → Sort u_3
F : (f : t → t') → (fs : v ⟹ v') → β (fs ::: f)
fs : v ::: t ⟹ v' ::: t'
⊢ β fs
[PROOFSTEP]
rw [← split_dropFun_lastFun fs]
[GOAL]
n✝ n : ℕ
t : Type u_1
t' : Type u_2
v : TypeVec n
v' : TypeVec n
β : v ::: t ⟹ v' ::: t' → Sort u_3
F : (f : t → t') → (fs : v ⟹ v') → β (fs ::: f)
fs : v ::: t ⟹ v' ::: t'
⊢ β (splitFun (dropFun fs) (lastFun fs))
[PROOFSTEP]
apply F
[GOAL]
n✝ : ℕ
β : Type u_1
γ : Type u_2
x : γ
n : ℕ
α : TypeVec n
⊢ TypeVec.const x (α ::: β) = (TypeVec.const x α ::: fun x_1 => x)
[PROOFSTEP]
ext i : 1
[GOAL]
case a
n✝ : ℕ
β : Type u_1
γ : Type u_2
x : γ
n : ℕ
α : TypeVec n
i : Fin2 (n + 1)
⊢ TypeVec.const x (α ::: β) i = (TypeVec.const x α ::: fun x_1 => x) i
[PROOFSTEP]
cases i
[GOAL]
case a.fz
n✝ : ℕ
β : Type u_1
γ : Type u_2
x : γ
n : ℕ
α : TypeVec n
⊢ TypeVec.const x (α ::: β) Fin2.fz = (TypeVec.const x α ::: fun x_1 => x) Fin2.fz
[PROOFSTEP]
rfl
[GOAL]
case a.fs
n✝ : ℕ
β : Type u_1
γ : Type u_2
x : γ
n : ℕ
α : TypeVec n
a✝ : Fin2 (Nat.add n 0)
⊢ TypeVec.const x (α ::: β) (Fin2.fs a✝) = (TypeVec.const x α ::: fun x_1 => x) (Fin2.fs a✝)
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α : TypeVec 0
β : TypeVec 0
f : α ⟹ β
⊢ f = nilFun
[PROOFSTEP]
ext x
[GOAL]
case a.h
n : ℕ
α : TypeVec 0
β : TypeVec 0
f : α ⟹ β
x : Fin2 0
x✝ : α x
⊢ f x x✝ = nilFun x x✝
[PROOFSTEP]
cases x
[GOAL]
n : ℕ
α : TypeVec 0
⊢ id = nilFun
[PROOFSTEP]
ext x
[GOAL]
case a.h
n : ℕ
α : TypeVec 0
x : Fin2 0
x✝ : α x
⊢ id x x✝ = nilFun x x✝
[PROOFSTEP]
cases x
[GOAL]
n : ℕ
β : Type u_1
x : β
α : TypeVec 0
⊢ TypeVec.const x α = nilFun
[PROOFSTEP]
ext i : 1
[GOAL]
case a
n : ℕ
β : Type u_1
x : β
α : TypeVec 0
i : Fin2 0
⊢ TypeVec.const x α i = nilFun i
[PROOFSTEP]
cases i
[GOAL]
n✝ : ℕ
β : Type u_1
n : ℕ
α : TypeVec n
⊢ repeatEq (α ::: β) = splitFun (repeatEq α) (uncurry Eq)
[PROOFSTEP]
induction n
[GOAL]
case zero
n : ℕ
β : Type u_1
α : TypeVec zero
⊢ repeatEq (α ::: β) = splitFun (repeatEq α) (uncurry Eq)
[PROOFSTEP]
rfl
[GOAL]
case succ
n : ℕ
β : Type u_1
n✝ : ℕ
n_ih✝ : ∀ (α : TypeVec n✝), repeatEq (α ::: β) = splitFun (repeatEq α) (uncurry Eq)
α : TypeVec (succ n✝)
⊢ repeatEq (α ::: β) = splitFun (repeatEq α) (uncurry Eq)
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α : TypeVec 0
⊢ repeatEq α = nilFun
[PROOFSTEP]
ext i
[GOAL]
case a.h
n : ℕ
α : TypeVec 0
i : Fin2 0
x✝ : (α ⊗ α) i
⊢ repeatEq α i x✝ = nilFun i x✝
[PROOFSTEP]
cases i
[GOAL]
n : ℕ
α : TypeVec n
i : Fin2 n
x : α i
p : Prop
⊢ ofRepeat (TypeVec.const p α i x) ↔ p
[PROOFSTEP]
induction i
[GOAL]
case fz
n : ℕ
p : Prop
n✝ : ℕ
α : TypeVec (succ n✝)
x : α Fin2.fz
⊢ ofRepeat (TypeVec.const p α Fin2.fz x) ↔ p
case fs
n : ℕ
p : Prop
n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec n✝} {x : α a✝}, ofRepeat (TypeVec.const p α a✝ x) ↔ p
α : TypeVec (succ n✝)
x : α (Fin2.fs a✝)
⊢ ofRepeat (TypeVec.const p α (Fin2.fs a✝) x) ↔ p
[PROOFSTEP]
case fz => rfl
[GOAL]
n : ℕ
p : Prop
n✝ : ℕ
α : TypeVec (succ n✝)
x : α Fin2.fz
⊢ ofRepeat (TypeVec.const p α Fin2.fz x) ↔ p
[PROOFSTEP]
case fz => rfl
[GOAL]
n : ℕ
p : Prop
n✝ : ℕ
α : TypeVec (succ n✝)
x : α Fin2.fz
⊢ ofRepeat (TypeVec.const p α Fin2.fz x) ↔ p
[PROOFSTEP]
rfl
[GOAL]
case fs
n : ℕ
p : Prop
n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec n✝} {x : α a✝}, ofRepeat (TypeVec.const p α a✝ x) ↔ p
α : TypeVec (succ n✝)
x : α (Fin2.fs a✝)
⊢ ofRepeat (TypeVec.const p α (Fin2.fs a✝) x) ↔ p
[PROOFSTEP]
case fs _ ih => erw [TypeVec.const, @ih (drop α) x]
[GOAL]
n : ℕ
p : Prop
n✝ : ℕ
a✝ : Fin2 n✝
ih : ∀ {α : TypeVec n✝} {x : α a✝}, ofRepeat (TypeVec.const p α a✝ x) ↔ p
α : TypeVec (succ n✝)
x : α (Fin2.fs a✝)
⊢ ofRepeat (TypeVec.const p α (Fin2.fs a✝) x) ↔ p
[PROOFSTEP]
case fs _ ih => erw [TypeVec.const, @ih (drop α) x]
[GOAL]
n : ℕ
p : Prop
n✝ : ℕ
a✝ : Fin2 n✝
ih : ∀ {α : TypeVec n✝} {x : α a✝}, ofRepeat (TypeVec.const p α a✝ x) ↔ p
α : TypeVec (succ n✝)
x : α (Fin2.fs a✝)
⊢ ofRepeat (TypeVec.const p α (Fin2.fs a✝) x) ↔ p
[PROOFSTEP]
erw [TypeVec.const, @ih (drop α) x]
[GOAL]
n : ℕ
α β : TypeVec n
i : Fin2 n
a : α i
b : β i
⊢ prod.fst i (prod.mk i a b) = a
[PROOFSTEP]
induction' i with _ _ _ i_ih
[GOAL]
case fz
n : ℕ
α✝ β✝ : TypeVec n
i : Fin2 n
a✝ : α✝ i
b✝ : β✝ i
n✝ : ℕ
α β : TypeVec (succ n✝)
a : α Fin2.fz
b : β Fin2.fz
⊢ prod.fst Fin2.fz (prod.mk Fin2.fz a b) = a
case fs
n : ℕ
α✝ β✝ : TypeVec n
i : Fin2 n
a✝¹ : α✝ i
b✝ : β✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.fst a✝ (prod.mk a✝ a b) = a
α β : TypeVec (succ n✝)
a : α (Fin2.fs a✝)
b : β (Fin2.fs a✝)
⊢ prod.fst (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = a
[PROOFSTEP]
simp_all only [prod.fst, prod.mk]
[GOAL]
case fs
n : ℕ
α✝ β✝ : TypeVec n
i : Fin2 n
a✝¹ : α✝ i
b✝ : β✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.fst a✝ (prod.mk a✝ a b) = a
α β : TypeVec (succ n✝)
a : α (Fin2.fs a✝)
b : β (Fin2.fs a✝)
⊢ prod.fst (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = a
[PROOFSTEP]
apply i_ih
[GOAL]
n : ℕ
α β : TypeVec n
i : Fin2 n
a : α i
b : β i
⊢ prod.snd i (prod.mk i a b) = b
[PROOFSTEP]
induction' i with _ _ _ i_ih
[GOAL]
case fz
n : ℕ
α✝ β✝ : TypeVec n
i : Fin2 n
a✝ : α✝ i
b✝ : β✝ i
n✝ : ℕ
α β : TypeVec (succ n✝)
a : α Fin2.fz
b : β Fin2.fz
⊢ prod.snd Fin2.fz (prod.mk Fin2.fz a b) = b
case fs
n : ℕ
α✝ β✝ : TypeVec n
i : Fin2 n
a✝¹ : α✝ i
b✝ : β✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.snd a✝ (prod.mk a✝ a b) = b
α β : TypeVec (succ n✝)
a : α (Fin2.fs a✝)
b : β (Fin2.fs a✝)
⊢ prod.snd (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = b
[PROOFSTEP]
simp_all [prod.snd, prod.mk]
[GOAL]
case fs
n : ℕ
α✝ β✝ : TypeVec n
i : Fin2 n
a✝¹ : α✝ i
b✝ : β✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.snd a✝ (prod.mk a✝ a b) = b
α β : TypeVec (succ n✝)
a : α (Fin2.fs a✝)
b : β (Fin2.fs a✝)
⊢ prod.snd (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = b
[PROOFSTEP]
apply i_ih
[GOAL]
n : ℕ
α α' β β' : TypeVec n
f : α ⟹ β
g : α' ⟹ β'
⊢ prod.fst ⊚ (f ⊗' g) = f ⊚ prod.fst
[PROOFSTEP]
funext i
[GOAL]
case h
n : ℕ
α α' β β' : TypeVec n
f : α ⟹ β
g : α' ⟹ β'
i : Fin2 n
⊢ (prod.fst ⊚ (f ⊗' g)) i = (f ⊚ prod.fst) i
[PROOFSTEP]
induction i
[GOAL]
case h.fz
n n✝ : ℕ
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.fst ⊚ (f ⊗' g)) Fin2.fz = (f ⊚ prod.fst) Fin2.fz
case h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.fst ⊚ (f ⊗' g)) a✝ = (f ⊚ prod.fst) a✝
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.fst ⊚ (f ⊗' g)) (Fin2.fs a✝) = (f ⊚ prod.fst) (Fin2.fs a✝)
[PROOFSTEP]
case fz => rfl
[GOAL]
n n✝ : ℕ
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.fst ⊚ (f ⊗' g)) Fin2.fz = (f ⊚ prod.fst) Fin2.fz
[PROOFSTEP]
case fz => rfl
[GOAL]
n n✝ : ℕ
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.fst ⊚ (f ⊗' g)) Fin2.fz = (f ⊚ prod.fst) Fin2.fz
[PROOFSTEP]
rfl
[GOAL]
case h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.fst ⊚ (f ⊗' g)) a✝ = (f ⊚ prod.fst) a✝
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.fst ⊚ (f ⊗' g)) (Fin2.fs a✝) = (f ⊚ prod.fst) (Fin2.fs a✝)
[PROOFSTEP]
case fs _ _ i_ih => apply i_ih
[GOAL]
n n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.fst ⊚ (f ⊗' g)) a✝ = (f ⊚ prod.fst) a✝
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.fst ⊚ (f ⊗' g)) (Fin2.fs a✝) = (f ⊚ prod.fst) (Fin2.fs a✝)
[PROOFSTEP]
case fs _ _ i_ih => apply i_ih
[GOAL]
n n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.fst ⊚ (f ⊗' g)) a✝ = (f ⊚ prod.fst) a✝
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.fst ⊚ (f ⊗' g)) (Fin2.fs a✝) = (f ⊚ prod.fst) (Fin2.fs a✝)
[PROOFSTEP]
apply i_ih
[GOAL]
n : ℕ
α α' β β' : TypeVec n
f : α ⟹ β
g : α' ⟹ β'
⊢ prod.snd ⊚ (f ⊗' g) = g ⊚ prod.snd
[PROOFSTEP]
funext i
[GOAL]
case h
n : ℕ
α α' β β' : TypeVec n
f : α ⟹ β
g : α' ⟹ β'
i : Fin2 n
⊢ (prod.snd ⊚ (f ⊗' g)) i = (g ⊚ prod.snd) i
[PROOFSTEP]
induction i
[GOAL]
case h.fz
n n✝ : ℕ
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.snd ⊚ (f ⊗' g)) Fin2.fz = (g ⊚ prod.snd) Fin2.fz
case h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.snd ⊚ (f ⊗' g)) a✝ = (g ⊚ prod.snd) a✝
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.snd ⊚ (f ⊗' g)) (Fin2.fs a✝) = (g ⊚ prod.snd) (Fin2.fs a✝)
[PROOFSTEP]
case fz => rfl
[GOAL]
n n✝ : ℕ
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.snd ⊚ (f ⊗' g)) Fin2.fz = (g ⊚ prod.snd) Fin2.fz
[PROOFSTEP]
case fz => rfl
[GOAL]
n n✝ : ℕ
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.snd ⊚ (f ⊗' g)) Fin2.fz = (g ⊚ prod.snd) Fin2.fz
[PROOFSTEP]
rfl
[GOAL]
case h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.snd ⊚ (f ⊗' g)) a✝ = (g ⊚ prod.snd) a✝
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.snd ⊚ (f ⊗' g)) (Fin2.fs a✝) = (g ⊚ prod.snd) (Fin2.fs a✝)
[PROOFSTEP]
case fs _ _ i_ih => apply i_ih
[GOAL]
n n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.snd ⊚ (f ⊗' g)) a✝ = (g ⊚ prod.snd) a✝
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.snd ⊚ (f ⊗' g)) (Fin2.fs a✝) = (g ⊚ prod.snd) (Fin2.fs a✝)
[PROOFSTEP]
case fs _ _ i_ih => apply i_ih
[GOAL]
n n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.snd ⊚ (f ⊗' g)) a✝ = (g ⊚ prod.snd) a✝
α α' β β' : TypeVec (succ n✝)
f : α ⟹ β
g : α' ⟹ β'
⊢ (prod.snd ⊚ (f ⊗' g)) (Fin2.fs a✝) = (g ⊚ prod.snd) (Fin2.fs a✝)
[PROOFSTEP]
apply i_ih
[GOAL]
n : ℕ
α : TypeVec n
⊢ prod.fst ⊚ prod.diag = id
[PROOFSTEP]
funext i
[GOAL]
case h
n : ℕ
α : TypeVec n
i : Fin2 n
⊢ (prod.fst ⊚ prod.diag) i = id i
[PROOFSTEP]
induction i
[GOAL]
case h.fz
n n✝ : ℕ
α : TypeVec (succ n✝)
⊢ (prod.fst ⊚ prod.diag) Fin2.fz = id Fin2.fz
case h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec n✝}, (prod.fst ⊚ prod.diag) a✝ = id a✝
α : TypeVec (succ n✝)
⊢ (prod.fst ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝)
[PROOFSTEP]
case fz => rfl
[GOAL]
n n✝ : ℕ
α : TypeVec (succ n✝)
⊢ (prod.fst ⊚ prod.diag) Fin2.fz = id Fin2.fz
[PROOFSTEP]
case fz => rfl
[GOAL]
n n✝ : ℕ
α : TypeVec (succ n✝)
⊢ (prod.fst ⊚ prod.diag) Fin2.fz = id Fin2.fz
[PROOFSTEP]
rfl
[GOAL]
case h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec n✝}, (prod.fst ⊚ prod.diag) a✝ = id a✝
α : TypeVec (succ n✝)
⊢ (prod.fst ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝)
[PROOFSTEP]
case fs _ _ i_ih => apply i_ih
[GOAL]
n n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝}, (prod.fst ⊚ prod.diag) a✝ = id a✝
α : TypeVec (succ n✝)
⊢ (prod.fst ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝)
[PROOFSTEP]
case fs _ _ i_ih => apply i_ih
[GOAL]
n n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝}, (prod.fst ⊚ prod.diag) a✝ = id a✝
α : TypeVec (succ n✝)
⊢ (prod.fst ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝)
[PROOFSTEP]
apply i_ih
[GOAL]
n : ℕ
α : TypeVec n
⊢ prod.snd ⊚ prod.diag = id
[PROOFSTEP]
funext i
[GOAL]
case h
n : ℕ
α : TypeVec n
i : Fin2 n
⊢ (prod.snd ⊚ prod.diag) i = id i
[PROOFSTEP]
induction i
[GOAL]
case h.fz
n n✝ : ℕ
α : TypeVec (succ n✝)
⊢ (prod.snd ⊚ prod.diag) Fin2.fz = id Fin2.fz
case h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec n✝}, (prod.snd ⊚ prod.diag) a✝ = id a✝
α : TypeVec (succ n✝)
⊢ (prod.snd ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝)
[PROOFSTEP]
case fz => rfl
[GOAL]
n n✝ : ℕ
α : TypeVec (succ n✝)
⊢ (prod.snd ⊚ prod.diag) Fin2.fz = id Fin2.fz
[PROOFSTEP]
case fz => rfl
[GOAL]
n n✝ : ℕ
α : TypeVec (succ n✝)
⊢ (prod.snd ⊚ prod.diag) Fin2.fz = id Fin2.fz
[PROOFSTEP]
rfl
[GOAL]
case h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec n✝}, (prod.snd ⊚ prod.diag) a✝ = id a✝
α : TypeVec (succ n✝)
⊢ (prod.snd ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝)
[PROOFSTEP]
case fs _ _ i_ih => apply i_ih
[GOAL]
n n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝}, (prod.snd ⊚ prod.diag) a✝ = id a✝
α : TypeVec (succ n✝)
⊢ (prod.snd ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝)
[PROOFSTEP]
case fs _ _ i_ih => apply i_ih
[GOAL]
n n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝}, (prod.snd ⊚ prod.diag) a✝ = id a✝
α : TypeVec (succ n✝)
⊢ (prod.snd ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝)
[PROOFSTEP]
apply i_ih
[GOAL]
n : ℕ
α : TypeVec n
i : Fin2 n
x y : α i
⊢ ofRepeat (repeatEq α i (prod.mk i x y)) ↔ x = y
[PROOFSTEP]
induction' i with _ _ _ i_ih
[GOAL]
case fz
n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ y✝ : α✝ i
n✝ : ℕ
α : TypeVec (succ n✝)
x y : α Fin2.fz
⊢ ofRepeat (repeatEq α Fin2.fz (prod.mk Fin2.fz x y)) ↔ x = y
case fs
n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ y✝ : α✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝} {x y : α a✝}, ofRepeat (repeatEq α a✝ (prod.mk a✝ x y)) ↔ x = y
α : TypeVec (succ n✝)
x y : α (Fin2.fs a✝)
⊢ ofRepeat (repeatEq α (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x y)) ↔ x = y
[PROOFSTEP]
rfl
[GOAL]
case fs
n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ y✝ : α✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝} {x y : α a✝}, ofRepeat (repeatEq α a✝ (prod.mk a✝ x y)) ↔ x = y
α : TypeVec (succ n✝)
x y : α (Fin2.fs a✝)
⊢ ofRepeat (repeatEq α (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x y)) ↔ x = y
[PROOFSTEP]
erw [repeatEq, i_ih]
[GOAL]
n✝¹ n : ℕ
α✝ : TypeVec n
p✝ : α✝ ⊗ α✝ ⟹ repeat n Prop
n✝ : ℕ
α : TypeVec (succ n✝)
p : α ⊗ α ⟹ repeat (succ n✝) Prop
x : (fun i => { x // ofRepeat (p i (prod.mk i x.fst x.snd)) }) Fin2.fz
⊢ ofRepeat (p Fin2.fz (prod.mk Fin2.fz (↑x).fst (↑x).snd)) = p Fin2.fz ↑x
[PROOFSTEP]
congr
[GOAL]
n✝¹ n : ℕ
α✝ : TypeVec n
p✝ : α✝ ⊗ α✝ ⟹ repeat n Prop
n✝ : ℕ
α : TypeVec (succ n✝)
p : α ⊗ α ⟹ repeat (succ n✝) Prop
x : Subtype_ p Fin2.fz
⊢ p Fin2.fz ↑x = ofRepeat (p Fin2.fz (prod.mk Fin2.fz (↑x).fst (↑x).snd))
[PROOFSTEP]
congr
[GOAL]
n : ℕ
α : TypeVec 0
ps : α ⟹ repeat 0 Prop
⊢ ∀ (x : Fin2 0), subtypeVal ps x = nilFun x
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
n✝ n : ℕ
α : TypeVec n
⊢ subtypeVal (repeatEq α) ⊚ diagSub = prod.diag
[PROOFSTEP]
ext i x
[GOAL]
case a.h
n✝ n : ℕ
α : TypeVec n
i : Fin2 n
x : α i
⊢ (subtypeVal (repeatEq α) ⊚ diagSub) i x = prod.diag i x
[PROOFSTEP]
induction' i with _ _ _ i_ih
[GOAL]
case a.h.fz
n✝¹ n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ : α✝ i
n✝ : ℕ
α : TypeVec (succ n✝)
x : α Fin2.fz
⊢ (subtypeVal (repeatEq α) ⊚ diagSub) Fin2.fz x = prod.diag Fin2.fz x
case a.h.fs
n✝¹ n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ : α✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝} (x : α a✝), (subtypeVal (repeatEq α) ⊚ diagSub) a✝ x = prod.diag a✝ x
α : TypeVec (succ n✝)
x : α (Fin2.fs a✝)
⊢ (subtypeVal (repeatEq α) ⊚ diagSub) (Fin2.fs a✝) x = prod.diag (Fin2.fs a✝) x
[PROOFSTEP]
simp [prod.diag, diagSub, repeatEq, subtypeVal, comp]
[GOAL]
case a.h.fs
n✝¹ n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ : α✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝} (x : α a✝), (subtypeVal (repeatEq α) ⊚ diagSub) a✝ x = prod.diag a✝ x
α : TypeVec (succ n✝)
x : α (Fin2.fs a✝)
⊢ (subtypeVal (repeatEq α) ⊚ diagSub) (Fin2.fs a✝) x = prod.diag (Fin2.fs a✝) x
[PROOFSTEP]
apply @i_ih (drop α)
[GOAL]
n : ℕ
⊢ ∀ {n : ℕ} {α β : TypeVec n}, (id ⊗' id) = id
[PROOFSTEP]
intros
[GOAL]
n n✝ : ℕ
α✝ β✝ : TypeVec n✝
⊢ (id ⊗' id) = id
[PROOFSTEP]
ext i a
[GOAL]
case a.h
n n✝ : ℕ
α✝ β✝ : TypeVec n✝
i : Fin2 n✝
a : (α✝ ⊗ β✝) i
⊢ (id ⊗' id) i a = id i a
[PROOFSTEP]
induction' i with _ _ _ i_ih
[GOAL]
case a.h.fz
n n✝¹ : ℕ
α✝¹ β✝¹ : TypeVec n✝¹
i : Fin2 n✝¹
a✝ : (α✝¹ ⊗ β✝¹) i
n✝ : ℕ
α✝ β✝ : TypeVec (succ n✝)
a : (α✝ ⊗ β✝) Fin2.fz
⊢ (id ⊗' id) Fin2.fz a = id Fin2.fz a
[PROOFSTEP]
cases a
[GOAL]
case a.h.fz.mk
n n✝¹ : ℕ
α✝¹ β✝¹ : TypeVec n✝¹
i : Fin2 n✝¹
a : (α✝¹ ⊗ β✝¹) i
n✝ : ℕ
α✝ β✝ : TypeVec (succ n✝)
fst✝ : last α✝
snd✝ : last β✝
⊢ (id ⊗' id) Fin2.fz (fst✝, snd✝) = id Fin2.fz (fst✝, snd✝)
[PROOFSTEP]
rfl
[GOAL]
case a.h.fs
n n✝¹ : ℕ
α✝¹ β✝¹ : TypeVec n✝¹
i : Fin2 n✝¹
a✝¹ : (α✝¹ ⊗ β✝¹) i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α β : TypeVec n✝} (a : (α ⊗ β) a✝), (id ⊗' id) a✝ a = id a✝ a
α✝ β✝ : TypeVec (succ n✝)
a : (α✝ ⊗ β✝) (Fin2.fs a✝)
⊢ (id ⊗' id) (Fin2.fs a✝) a = id (Fin2.fs a✝) a
[PROOFSTEP]
apply i_ih
[GOAL]
n✝ n : ℕ
α α' β β' : TypeVec n
φ φ' ψ ψ' : Type u
f₀ : α ⟹ α'
g₀ : β ⟹ β'
f₁ : φ → φ'
g₁ : ψ → ψ'
⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁))
[PROOFSTEP]
ext i a
[GOAL]
case a.h
n✝ n : ℕ
α α' β β' : TypeVec n
φ φ' ψ ψ' : Type u
f₀ : α ⟹ α'
g₀ : β ⟹ β'
f₁ : φ → φ'
g₁ : ψ → ψ'
i : Fin2 (n + 1)
a : ((α ⊗ β) ::: (φ × ψ)) i
⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) i a = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁)) i a
[PROOFSTEP]
cases i
[GOAL]
case a.h.fz
n✝ n : ℕ
α α' β β' : TypeVec n
φ φ' ψ ψ' : Type u
f₀ : α ⟹ α'
g₀ : β ⟹ β'
f₁ : φ → φ'
g₁ : ψ → ψ'
a : ((α ⊗ β) ::: (φ × ψ)) Fin2.fz
⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) Fin2.fz a = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁)) Fin2.fz a
[PROOFSTEP]
cases a
[GOAL]
case a.h.fz.mk
n✝ n : ℕ
α α' β β' : TypeVec n
φ φ' ψ ψ' : Type u
f₀ : α ⟹ α'
g₀ : β ⟹ β'
f₁ : φ → φ'
g₁ : ψ → ψ'
fst✝ : φ
snd✝ : ψ
⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) Fin2.fz (fst✝, snd✝) = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁)) Fin2.fz (fst✝, snd✝)
[PROOFSTEP]
rfl
[GOAL]
case a.h.fs
n✝ n : ℕ
α α' β β' : TypeVec n
φ φ' ψ ψ' : Type u
f₀ : α ⟹ α'
g₀ : β ⟹ β'
f₁ : φ → φ'
g₁ : ψ → ψ'
a✝ : Fin2 (Nat.add n 0)
a : ((α ⊗ β) ::: (φ × ψ)) (Fin2.fs a✝)
⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) (Fin2.fs a✝) a = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁)) (Fin2.fs a✝) a
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α : TypeVec (n + 1)
⊢ dropFun prod.diag = prod.diag
[PROOFSTEP]
ext i : 2
[GOAL]
case a.h
n : ℕ
α : TypeVec (n + 1)
i : Fin2 n
x✝ : drop α i
⊢ dropFun prod.diag i x✝ = prod.diag i x✝
[PROOFSTEP]
induction i
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝ + 1)
x✝ : drop α Fin2.fz
⊢ dropFun prod.diag Fin2.fz x✝ = prod.diag Fin2.fz x✝
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec (n✝ + 1)} (x : drop α a✝), dropFun prod.diag a✝ x = prod.diag a✝ x
α : TypeVec (Nat.succ n✝ + 1)
x✝ : drop α (Fin2.fs a✝)
⊢ dropFun prod.diag (Fin2.fs a✝) x✝ = prod.diag (Fin2.fs a✝) x✝
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝ + 1)
x✝ : drop α Fin2.fz
⊢ prod.diag (Fin2.fs Fin2.fz) x✝ = prod.diag Fin2.fz x✝
[PROOFSTEP]
rfl
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec (n✝ + 1)} (x : drop α a✝), dropFun prod.diag a✝ x = prod.diag a✝ x
α : TypeVec (Nat.succ n✝ + 1)
x✝ : drop α (Fin2.fs a✝)
⊢ prod.diag (Fin2.fs (Fin2.fs a✝)) x✝ = prod.diag (Fin2.fs a✝) x✝
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
⊢ dropFun (toSubtype p) = toSubtype fun i x => p (Fin2.fs i) x
[PROOFSTEP]
ext i
[GOAL]
case a.h
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
i : Fin2 n
x✝ : drop (fun i => { x // ofRepeat (p i x) }) i
⊢ dropFun (toSubtype p) i x✝ = toSubtype (fun i x => p (Fin2.fs i) x) i x✝
[PROOFSTEP]
induction i
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝ + 1)
p : α ⟹ repeat (Nat.succ n✝ + 1) Prop
x✝ : drop (fun i => { x // ofRepeat (p i x) }) Fin2.fz
⊢ dropFun (toSubtype p) Fin2.fz x✝ = toSubtype (fun i x => p (Fin2.fs i) x) Fin2.fz x✝
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α : TypeVec (n✝ + 1)} (p : α ⟹ repeat (n✝ + 1) Prop) (x : drop (fun i => { x // ofRepeat (p i x) }) a✝),
dropFun (toSubtype p) a✝ x = toSubtype (fun i x => p (Fin2.fs i) x) a✝ x
α : TypeVec (Nat.succ n✝ + 1)
p : α ⟹ repeat (Nat.succ n✝ + 1) Prop
x✝ : drop (fun i => { x // ofRepeat (p i x) }) (Fin2.fs a✝)
⊢ dropFun (toSubtype p) (Fin2.fs a✝) x✝ = toSubtype (fun i x => p (Fin2.fs i) x) (Fin2.fs a✝) x✝
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝ + 1)
p : α ⟹ repeat (Nat.succ n✝ + 1) Prop
x✝ : drop (fun i => { x // ofRepeat (p i x) }) Fin2.fz
⊢ toSubtype p (Fin2.fs Fin2.fz) x✝ = toSubtype (fun i x => p (Fin2.fs i) x) Fin2.fz x✝
[PROOFSTEP]
rfl
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α : TypeVec (n✝ + 1)} (p : α ⟹ repeat (n✝ + 1) Prop) (x : drop (fun i => { x // ofRepeat (p i x) }) a✝),
dropFun (toSubtype p) a✝ x = toSubtype (fun i x => p (Fin2.fs i) x) a✝ x
α : TypeVec (Nat.succ n✝ + 1)
p : α ⟹ repeat (Nat.succ n✝ + 1) Prop
x✝ : drop (fun i => { x // ofRepeat (p i x) }) (Fin2.fs a✝)
⊢ toSubtype p (Fin2.fs (Fin2.fs a✝)) x✝ = toSubtype (fun i x => p (Fin2.fs i) x) (Fin2.fs a✝) x✝
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
⊢ lastFun (toSubtype p) = _root_.id
[PROOFSTEP]
ext i : 2
[GOAL]
case h
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
i : last fun i => { x // ofRepeat (p i x) }
⊢ lastFun (toSubtype p) i = _root_.id i
[PROOFSTEP]
induction i
[GOAL]
case h.mk
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
val✝ : α Fin2.fz
property✝ : ofRepeat (p Fin2.fz val✝)
⊢ lastFun (toSubtype p) { val := val✝, property := property✝ } = _root_.id { val := val✝, property := property✝ }
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case h.mk
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
val✝ : α Fin2.fz
property✝ : ofRepeat (p Fin2.fz val✝)
⊢ lastFun (toSubtype p) { val := val✝, property := property✝ } = { val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
⊢ dropFun (ofSubtype p) = ofSubtype (dropFun p)
[PROOFSTEP]
ext i : 2
[GOAL]
case a.h
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
i : Fin2 n
x✝ : drop (Subtype_ p) i
⊢ dropFun (ofSubtype p) i x✝ = ofSubtype (dropFun p) i x✝
[PROOFSTEP]
induction i
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝ + 1)
p : α ⟹ repeat (Nat.succ n✝ + 1) Prop
x✝ : drop (Subtype_ p) Fin2.fz
⊢ dropFun (ofSubtype p) Fin2.fz x✝ = ofSubtype (dropFun p) Fin2.fz x✝
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α : TypeVec (n✝ + 1)} (p : α ⟹ repeat (n✝ + 1) Prop) (x : drop (Subtype_ p) a✝),
dropFun (ofSubtype p) a✝ x = ofSubtype (dropFun p) a✝ x
α : TypeVec (Nat.succ n✝ + 1)
p : α ⟹ repeat (Nat.succ n✝ + 1) Prop
x✝ : drop (Subtype_ p) (Fin2.fs a✝)
⊢ dropFun (ofSubtype p) (Fin2.fs a✝) x✝ = ofSubtype (dropFun p) (Fin2.fs a✝) x✝
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝ + 1)
p : α ⟹ repeat (Nat.succ n✝ + 1) Prop
x✝ : drop (Subtype_ p) Fin2.fz
⊢ ofSubtype p (Fin2.fs Fin2.fz) x✝ = ofSubtype (fun i => p (Fin2.fs i)) Fin2.fz x✝
[PROOFSTEP]
rfl
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α : TypeVec (n✝ + 1)} (p : α ⟹ repeat (n✝ + 1) Prop) (x : drop (Subtype_ p) a✝),
dropFun (ofSubtype p) a✝ x = ofSubtype (dropFun p) a✝ x
α : TypeVec (Nat.succ n✝ + 1)
p : α ⟹ repeat (Nat.succ n✝ + 1) Prop
x✝ : drop (Subtype_ p) (Fin2.fs a✝)
⊢ ofSubtype p (Fin2.fs (Fin2.fs a✝)) x✝ = ofSubtype (fun i => p (Fin2.fs i)) (Fin2.fs a✝) x✝
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
⊢ lastFun (ofSubtype p) = _root_.id
[PROOFSTEP]
ext i : 2
[GOAL]
case h
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
i : last (Subtype_ p)
⊢ lastFun (ofSubtype p) i = _root_.id i
[PROOFSTEP]
induction i
[GOAL]
case h.mk
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
val✝ : α Fin2.fz
property✝ : p Fin2.fz val✝
⊢ lastFun (ofSubtype p) { val := val✝, property := property✝ } = _root_.id { val := val✝, property := property✝ }
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case h.mk
n : ℕ
α : TypeVec (n + 1)
p : α ⟹ repeat (n + 1) Prop
val✝ : α Fin2.fz
property✝ : p Fin2.fz val✝
⊢ lastFun (ofSubtype p) { val := val✝, property := property✝ } = { val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α α' β β' : TypeVec (n + 1)
f : α ⟹ β
f' : α' ⟹ β'
⊢ dropFun (f ⊗' f') = (dropFun f ⊗' dropFun f')
[PROOFSTEP]
ext i : 2
[GOAL]
case a.h
n : ℕ
α α' β β' : TypeVec (n + 1)
f : α ⟹ β
f' : α' ⟹ β'
i : Fin2 n
x✝ : drop (α ⊗ α') i
⊢ dropFun (f ⊗' f') i x✝ = (dropFun f ⊗' dropFun f') i x✝
[PROOFSTEP]
induction i
[GOAL]
case a.h.fz
n n✝ : ℕ
α α' β β' : TypeVec (Nat.succ n✝ + 1)
f : α ⟹ β
f' : α' ⟹ β'
x✝ : drop (α ⊗ α') Fin2.fz
⊢ dropFun (f ⊗' f') Fin2.fz x✝ = (dropFun f ⊗' dropFun f') Fin2.fz x✝
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α α' β β' : TypeVec (n✝ + 1)} (f : α ⟹ β) (f' : α' ⟹ β') (x : drop (α ⊗ α') a✝),
dropFun (f ⊗' f') a✝ x = (dropFun f ⊗' dropFun f') a✝ x
α α' β β' : TypeVec (Nat.succ n✝ + 1)
f : α ⟹ β
f' : α' ⟹ β'
x✝ : drop (α ⊗ α') (Fin2.fs a✝)
⊢ dropFun (f ⊗' f') (Fin2.fs a✝) x✝ = (dropFun f ⊗' dropFun f') (Fin2.fs a✝) x✝
[PROOFSTEP]
simp [dropFun, *]
[GOAL]
case a.h.fz
n n✝ : ℕ
α α' β β' : TypeVec (Nat.succ n✝ + 1)
f : α ⟹ β
f' : α' ⟹ β'
x✝ : drop (α ⊗ α') Fin2.fz
⊢ (f ⊗' f') (Fin2.fs Fin2.fz) x✝ = ((fun i => f (Fin2.fs i)) ⊗' fun i => f' (Fin2.fs i)) Fin2.fz x✝
[PROOFSTEP]
rfl
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α α' β β' : TypeVec (n✝ + 1)} (f : α ⟹ β) (f' : α' ⟹ β') (x : drop (α ⊗ α') a✝),
dropFun (f ⊗' f') a✝ x = (dropFun f ⊗' dropFun f') a✝ x
α α' β β' : TypeVec (Nat.succ n✝ + 1)
f : α ⟹ β
f' : α' ⟹ β'
x✝ : drop (α ⊗ α') (Fin2.fs a✝)
⊢ (f ⊗' f') (Fin2.fs (Fin2.fs a✝)) x✝ = ((fun i => f (Fin2.fs i)) ⊗' fun i => f' (Fin2.fs i)) (Fin2.fs a✝) x✝
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α α' β β' : TypeVec (n + 1)
f : α ⟹ β
f' : α' ⟹ β'
⊢ lastFun (f ⊗' f') = Prod.map (lastFun f) (lastFun f')
[PROOFSTEP]
ext i : 1
[GOAL]
case h
n : ℕ
α α' β β' : TypeVec (n + 1)
f : α ⟹ β
f' : α' ⟹ β'
i : last (α ⊗ α')
⊢ lastFun (f ⊗' f') i = Prod.map (lastFun f) (lastFun f') i
[PROOFSTEP]
induction i
[GOAL]
case h.mk
n : ℕ
α α' β β' : TypeVec (n + 1)
f : α ⟹ β
f' : α' ⟹ β'
fst✝ : last α
snd✝ : last α'
⊢ lastFun (f ⊗' f') (fst✝, snd✝) = Prod.map (lastFun f) (lastFun f') (fst✝, snd✝)
[PROOFSTEP]
simp [lastFun, *]
[GOAL]
case h.mk
n : ℕ
α α' β β' : TypeVec (n + 1)
f : α ⟹ β
f' : α' ⟹ β'
fst✝ : last α
snd✝ : last α'
⊢ (f ⊗' f') Fin2.fz (fst✝, snd✝) = Prod.map (f Fin2.fz) (f' Fin2.fz) (fst✝, snd✝)
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α β : TypeVec n
⊢ (id ⊗' id) = id
[PROOFSTEP]
ext i x : 2
[GOAL]
case a.h
n : ℕ
α β : TypeVec n
i : Fin2 n
x : (α ⊗ β) i
⊢ (id ⊗' id) i x = id i x
[PROOFSTEP]
induction i
[GOAL]
case a.h.fz
n n✝ : ℕ
α β : TypeVec (Nat.succ n✝)
x : (α ⊗ β) Fin2.fz
⊢ (id ⊗' id) Fin2.fz x = id Fin2.fz x
[PROOFSTEP]
simp only [TypeVec.prod.map, *, dropFun_id]
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α β : TypeVec n✝} (x : (α ⊗ β) a✝), (id ⊗' id) a✝ x = id a✝ x
α β : TypeVec (Nat.succ n✝)
x : (α ⊗ β) (Fin2.fs a✝)
⊢ (id ⊗' id) (Fin2.fs a✝) x = id (Fin2.fs a✝) x
[PROOFSTEP]
simp only [TypeVec.prod.map, *, dropFun_id]
[GOAL]
case a.h.fz
n n✝ : ℕ
α β : TypeVec (Nat.succ n✝)
x : (α ⊗ β) Fin2.fz
⊢ (id Fin2.fz x.fst, id Fin2.fz x.snd) = id Fin2.fz x
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α β : TypeVec n✝} (x : (α ⊗ β) a✝), (id ⊗' id) a✝ x = id a✝ x
α β : TypeVec (Nat.succ n✝)
x : (α ⊗ β) (Fin2.fs a✝)
⊢ id a✝ x = id (Fin2.fs a✝) x
[PROOFSTEP]
cases x
[GOAL]
case a.h.fz.mk
n n✝ : ℕ
α β : TypeVec (Nat.succ n✝)
fst✝ : last α
snd✝ : last β
⊢ (id Fin2.fz (fst✝, snd✝).fst, id Fin2.fz (fst✝, snd✝).snd) = id Fin2.fz (fst✝, snd✝)
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α β : TypeVec n✝} (x : (α ⊗ β) a✝), (id ⊗' id) a✝ x = id a✝ x
α β : TypeVec (Nat.succ n✝)
x : (α ⊗ β) (Fin2.fs a✝)
⊢ id a✝ x = id (Fin2.fs a✝) x
[PROOFSTEP]
rfl
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α β : TypeVec n✝} (x : (α ⊗ β) a✝), (id ⊗' id) a✝ x = id a✝ x
α β : TypeVec (Nat.succ n✝)
x : (α ⊗ β) (Fin2.fs a✝)
⊢ id a✝ x = id (Fin2.fs a✝) x
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
α : TypeVec n
⊢ subtypeVal (repeatEq α) ⊚ diagSub = prod.diag
[PROOFSTEP]
ext i x
[GOAL]
case a.h
n : ℕ
α : TypeVec n
i : Fin2 n
x : α i
⊢ (subtypeVal (repeatEq α) ⊚ diagSub) i x = prod.diag i x
[PROOFSTEP]
induction' i with _ _ _ i_ih
[GOAL]
case a.h.fz
n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ : α✝ i
n✝ : ℕ
α : TypeVec (Nat.succ n✝)
x : α Fin2.fz
⊢ (subtypeVal (repeatEq α) ⊚ diagSub) Fin2.fz x = prod.diag Fin2.fz x
[PROOFSTEP]
simp [comp, diagSub, subtypeVal, prod.diag]
[GOAL]
case a.h.fs
n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ : α✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝} (x : α a✝), (subtypeVal (repeatEq α) ⊚ diagSub) a✝ x = prod.diag a✝ x
α : TypeVec (Nat.succ n✝)
x : α (Fin2.fs a✝)
⊢ (subtypeVal (repeatEq α) ⊚ diagSub) (Fin2.fs a✝) x = prod.diag (Fin2.fs a✝) x
[PROOFSTEP]
simp [prod.diag]
[GOAL]
case a.h.fs
n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ : α✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝} (x : α a✝), (subtypeVal (repeatEq α) ⊚ diagSub) a✝ x = prod.diag a✝ x
α : TypeVec (Nat.succ n✝)
x : α (Fin2.fs a✝)
⊢ (subtypeVal (repeatEq α) ⊚ diagSub) (Fin2.fs a✝) x = prod.diag a✝ x
[PROOFSTEP]
simp [comp, diagSub, subtypeVal, prod.diag] at *
[GOAL]
case a.h.fs
n : ℕ
α✝ : TypeVec n
i : Fin2 n
x✝ : α✝ i
n✝ : ℕ
a✝ : Fin2 n✝
i_ih : ∀ {α : TypeVec n✝} (x : α a✝), subtypeVal (repeatEq α) a✝ (diagSub a✝ x) = prod.diag a✝ x
α : TypeVec (Nat.succ n✝)
x : α (Fin2.fs a✝)
⊢ subtypeVal (dropFun (repeatEq α)) a✝ (diagSub a✝ x) = prod.diag a✝ x
[PROOFSTEP]
apply @i_ih (drop _)
[GOAL]
n : ℕ
α : TypeVec n
p : α ⟹ repeat n Prop
⊢ toSubtype p ⊚ ofSubtype p = id
[PROOFSTEP]
ext i x
[GOAL]
case a.h
n : ℕ
α : TypeVec n
p : α ⟹ repeat n Prop
i : Fin2 n
x : Subtype_ p i
⊢ (toSubtype p ⊚ ofSubtype p) i x = id i x
[PROOFSTEP]
induction i
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝)
p : α ⟹ repeat (Nat.succ n✝) Prop
x : Subtype_ p Fin2.fz
⊢ (toSubtype p ⊚ ofSubtype p) Fin2.fz x = id Fin2.fz x
[PROOFSTEP]
dsimp only [id, toSubtype, comp, ofSubtype] at *
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec n✝} (p : α ⟹ repeat n✝ Prop) (x : Subtype_ p a✝), (toSubtype p ⊚ ofSubtype p) a✝ x = id a✝ x
α : TypeVec (Nat.succ n✝)
p : α ⟹ repeat (Nat.succ n✝) Prop
x : Subtype_ p (Fin2.fs a✝)
⊢ (toSubtype p ⊚ ofSubtype p) (Fin2.fs a✝) x = id (Fin2.fs a✝) x
[PROOFSTEP]
dsimp only [id, toSubtype, comp, ofSubtype] at *
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec n✝} (p : α ⟹ repeat n✝ Prop) (x : Subtype_ p a✝), toSubtype p a✝ (ofSubtype p a✝ x) = x
α : TypeVec (Nat.succ n✝)
p : α ⟹ repeat (Nat.succ n✝) Prop
x : Subtype_ p (Fin2.fs a✝)
⊢ toSubtype (dropFun p) a✝ (ofSubtype (dropFun p) a✝ x) = x
[PROOFSTEP]
simp [*]
[GOAL]
n : ℕ
α : TypeVec n
p : α ⟹ repeat n Prop
⊢ subtypeVal p ⊚ toSubtype p = fun x => Subtype.val
[PROOFSTEP]
ext i x
[GOAL]
case a.h
n : ℕ
α : TypeVec n
p : α ⟹ repeat n Prop
i : Fin2 n
x : (fun i => { x // ofRepeat (p i x) }) i
⊢ (subtypeVal p ⊚ toSubtype p) i x = ↑x
[PROOFSTEP]
induction i
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝)
p : α ⟹ repeat (Nat.succ n✝) Prop
x : { x // ofRepeat (p Fin2.fz x) }
⊢ (subtypeVal p ⊚ toSubtype p) Fin2.fz x = ↑x
[PROOFSTEP]
dsimp only [toSubtype, comp, subtypeVal] at *
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α : TypeVec n✝} (p : α ⟹ repeat n✝ Prop) (x : (fun i => { x // ofRepeat (p i x) }) a✝),
(subtypeVal p ⊚ toSubtype p) a✝ x = ↑x
α : TypeVec (Nat.succ n✝)
p : α ⟹ repeat (Nat.succ n✝) Prop
x : { x // ofRepeat (p (Fin2.fs a✝) x) }
⊢ (subtypeVal p ⊚ toSubtype p) (Fin2.fs a✝) x = ↑x
[PROOFSTEP]
dsimp only [toSubtype, comp, subtypeVal] at *
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α : TypeVec n✝} (p : α ⟹ repeat n✝ Prop) (x : { x // ofRepeat (p a✝ x) }), subtypeVal p a✝ (toSubtype p a✝ x) = ↑x
α : TypeVec (Nat.succ n✝)
p : α ⟹ repeat (Nat.succ n✝) Prop
x : { x // ofRepeat (p (Fin2.fs a✝) x) }
⊢ subtypeVal (dropFun p) a✝ (toSubtype (dropFun p) a✝ x) = ↑x
[PROOFSTEP]
simp [*]
[GOAL]
n : ℕ
α : TypeVec n
β : TypeVec n
p : α ⟹ repeat n Prop
f : β ⟹ Subtype_ p
⊢ toSubtype p ⊚ (ofSubtype fun i x => p i x) ⊚ f = f
[PROOFSTEP]
rw [← comp_assoc, toSubtype_of_subtype]
[GOAL]
n : ℕ
α : TypeVec n
β : TypeVec n
p : α ⟹ repeat n Prop
f : β ⟹ Subtype_ p
⊢ id ⊚ f = f
[PROOFSTEP]
simp
[GOAL]
n : ℕ
α : TypeVec n
r : α ⊗ α ⟹ repeat n Prop
⊢ toSubtype' r ⊚ ofSubtype' r = id
[PROOFSTEP]
ext i x
[GOAL]
case a.h
n : ℕ
α : TypeVec n
r : α ⊗ α ⟹ repeat n Prop
i : Fin2 n
x : Subtype_ r i
⊢ (toSubtype' r ⊚ ofSubtype' r) i x = id i x
[PROOFSTEP]
induction i
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝)
r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop
x : Subtype_ r Fin2.fz
⊢ (toSubtype' r ⊚ ofSubtype' r) Fin2.fz x = id Fin2.fz x
[PROOFSTEP]
dsimp only [id, toSubtype', comp, ofSubtype'] at *
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α : TypeVec n✝} (r : α ⊗ α ⟹ repeat n✝ Prop) (x : Subtype_ r a✝), (toSubtype' r ⊚ ofSubtype' r) a✝ x = id a✝ x
α : TypeVec (Nat.succ n✝)
r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop
x : Subtype_ r (Fin2.fs a✝)
⊢ (toSubtype' r ⊚ ofSubtype' r) (Fin2.fs a✝) x = id (Fin2.fs a✝) x
[PROOFSTEP]
dsimp only [id, toSubtype', comp, ofSubtype'] at *
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝)
r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop
x : Subtype_ r Fin2.fz
⊢ { val := ↑x,
property :=
(_ : r Fin2.fz ↑{ val := ↑x, property := (_ : ofRepeat (r Fin2.fz (prod.mk Fin2.fz (↑x).fst (↑x).snd))) }) } =
x
[PROOFSTEP]
simp [Subtype.eta, *]
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ : ∀ {α : TypeVec n✝} (r : α ⊗ α ⟹ repeat n✝ Prop) (x : Subtype_ r a✝), toSubtype' r a✝ (ofSubtype' r a✝ x) = x
α : TypeVec (Nat.succ n✝)
r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop
x : Subtype_ r (Fin2.fs a✝)
⊢ toSubtype' (dropFun r) a✝ (ofSubtype' (dropFun r) a✝ x) = x
[PROOFSTEP]
simp [Subtype.eta, *]
[GOAL]
n : ℕ
α : TypeVec n
r : α ⊗ α ⟹ repeat n Prop
⊢ subtypeVal r ⊚ toSubtype' r = fun i x => prod.mk i (↑x).fst (↑x).snd
[PROOFSTEP]
ext i x
[GOAL]
case a.h
n : ℕ
α : TypeVec n
r : α ⊗ α ⟹ repeat n Prop
i : Fin2 n
x : (fun i => { x // ofRepeat (r i (prod.mk i x.fst x.snd)) }) i
⊢ (subtypeVal r ⊚ toSubtype' r) i x = prod.mk i (↑x).fst (↑x).snd
[PROOFSTEP]
induction i
[GOAL]
case a.h.fz
n n✝ : ℕ
α : TypeVec (Nat.succ n✝)
r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop
x : { x // ofRepeat (r Fin2.fz (prod.mk Fin2.fz x.fst x.snd)) }
⊢ (subtypeVal r ⊚ toSubtype' r) Fin2.fz x = prod.mk Fin2.fz (↑x).fst (↑x).snd
[PROOFSTEP]
dsimp only [id, toSubtype', comp, subtypeVal, prod.mk] at *
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α : TypeVec n✝} (r : α ⊗ α ⟹ repeat n✝ Prop) (x : (fun i => { x // ofRepeat (r i (prod.mk i x.fst x.snd)) }) a✝),
(subtypeVal r ⊚ toSubtype' r) a✝ x = prod.mk a✝ (↑x).fst (↑x).snd
α : TypeVec (Nat.succ n✝)
r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop
x : { x // ofRepeat (r (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x.fst x.snd)) }
⊢ (subtypeVal r ⊚ toSubtype' r) (Fin2.fs a✝) x = prod.mk (Fin2.fs a✝) (↑x).fst (↑x).snd
[PROOFSTEP]
dsimp only [id, toSubtype', comp, subtypeVal, prod.mk] at *
[GOAL]
case a.h.fs
n n✝ : ℕ
a✝ : Fin2 n✝
a_ih✝ :
∀ {α : TypeVec n✝} (r : α ⊗ α ⟹ repeat n✝ Prop) (x : { x // ofRepeat (r a✝ (prod.mk a✝ x.fst x.snd)) }),
subtypeVal r a✝ (toSubtype' r a✝ x) = prod.mk a✝ (↑x).fst (↑x).snd
α : TypeVec (Nat.succ n✝)
r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop
x : { x // ofRepeat (r (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x.fst x.snd)) }
⊢ subtypeVal (dropFun r) a✝ (toSubtype' (dropFun r) a✝ x) = prod.mk a✝ (↑x).fst (↑x).snd
[PROOFSTEP]
simp [*]
|
{"mathlib_filename": "Mathlib.Data.TypeVec", "llama_tokens": 27175}
|
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
⊢ Option.isSome (toOption o) = true ↔ o.Dom
[PROOFSTEP]
by_cases h : o.Dom
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
h : o.Dom
⊢ Option.isSome (toOption o) = true ↔ o.Dom
[PROOFSTEP]
simp [h, toOption]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
h : ¬o.Dom
⊢ Option.isSome (toOption o) = true ↔ o.Dom
[PROOFSTEP]
simp [h, toOption]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
⊢ Option.isNone (toOption o) = true ↔ ¬o.Dom
[PROOFSTEP]
by_cases h : o.Dom
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
h : o.Dom
⊢ Option.isNone (toOption o) = true ↔ ¬o.Dom
[PROOFSTEP]
simp [h, toOption]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
h : ¬o.Dom
⊢ Option.isNone (toOption o) = true ↔ ¬o.Dom
[PROOFSTEP]
simp [h, toOption]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
od : Prop
o : od → α
pd : Prop
p : pd → α
H1 : { Dom := od, get := o }.Dom ↔ { Dom := pd, get := p }.Dom
H2 :
∀ (h₁ : { Dom := od, get := o }.Dom) (h₂ : { Dom := pd, get := p }.Dom),
get { Dom := od, get := o } h₁ = get { Dom := pd, get := p } h₂
⊢ { Dom := od, get := o } = { Dom := pd, get := p }
[PROOFSTEP]
have t : od = pd := propext H1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
od : Prop
o : od → α
pd : Prop
p : pd → α
H1 : { Dom := od, get := o }.Dom ↔ { Dom := pd, get := p }.Dom
H2 :
∀ (h₁ : { Dom := od, get := o }.Dom) (h₂ : { Dom := pd, get := p }.Dom),
get { Dom := od, get := o } h₁ = get { Dom := pd, get := p } h₂
t : od = pd
⊢ { Dom := od, get := o } = { Dom := pd, get := p }
[PROOFSTEP]
cases t
[GOAL]
case refl
α : Type u_1
β : Type u_2
γ : Type u_3
od : Prop
o p : od → α
H1 : { Dom := od, get := o }.Dom ↔ { Dom := od, get := p }.Dom
H2 :
∀ (h₁ : { Dom := od, get := o }.Dom) (h₂ : { Dom := od, get := p }.Dom),
get { Dom := od, get := o } h₁ = get { Dom := od, get := p } h₂
⊢ { Dom := od, get := o } = { Dom := od, get := p }
[PROOFSTEP]
rw [show o = p from funext fun p => H2 p p]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
h : ∀ (a : α), ¬a ∈ o
⊢ ∀ (a : α), a ∈ o ↔ a ∈ none
[PROOFSTEP]
simpa
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
x : α
⊢ some x ≠ none
[PROOFSTEP]
intro h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
x : α
h : some x = none
⊢ False
[PROOFSTEP]
exact true_ne_false (congr_arg Dom h)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
⊢ o ≠ none ↔ ∃ x, o = some x
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
⊢ o ≠ none → ∃ x, o = some x
[PROOFSTEP]
rw [Ne, eq_none_iff', not_not]
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
⊢ o.Dom → ∃ x, o = some x
[PROOFSTEP]
exact fun h => ⟨o.get h, eq_some_iff.2 (get_mem h)⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
⊢ (∃ x, o = some x) → o ≠ none
[PROOFSTEP]
rintro ⟨x, rfl⟩
[GOAL]
case mpr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
x : α
⊢ some x ≠ none
[PROOFSTEP]
apply some_ne_none
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a : Part α
ha : a.Dom
b : α
h : get a ha = b
⊢ a = some b
[PROOFSTEP]
simp [h.symm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a : Part α
ha : a.Dom
b : α
h : a = some b
⊢ get a ha = b
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a : Part α
ha : a.Dom
b : Part α
h : a = b
⊢ get a ha = get b (_ : b.Dom)
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
a : α
⊢ a ∈ toOption o ↔ a ∈ o
[PROOFSTEP]
unfold toOption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
a : α
⊢ (a ∈ if h : o.Dom then Option.some (get o h) else Option.none) ↔ a ∈ o
[PROOFSTEP]
by_cases h : o.Dom
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
a : α
h : o.Dom
⊢ (a ∈ if h : o.Dom then Option.some (get o h) else Option.none) ↔ a ∈ o
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
a : α
h : ¬o.Dom
⊢ (a ∈ if h : o.Dom then Option.some (get o h) else Option.none) ↔ a ∈ o
[PROOFSTEP]
simp [h]
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
a : α
h : o.Dom
⊢ get o (_ : o.Dom) = a ↔ a ∈ o
[PROOFSTEP]
exact ⟨fun h => ⟨_, h⟩, fun ⟨_, h⟩ => h⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
a : α
h : ¬o.Dom
⊢ ¬a ∈ o
[PROOFSTEP]
exact mt Exists.fst h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
inst✝ : Decidable o.Dom
a : α
⊢ toOption o = Option.some a ↔ a ∈ o
[PROOFSTEP]
rw [← Option.mem_def, mem_toOption]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
α : Type u_4
β : Type u_5
a : Part α
inst✝ : Decidable a.Dom
b : β
f : α → β
⊢ Option.elim (toOption a) b f = if h : a.Dom then f (get a h) else b
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
α : Type u_4
β : Type u_5
a : Part α
inst✝ : Decidable a.Dom
b : β
f : α → β
h : a.Dom
⊢ Option.elim (toOption a) b f = f (get a h)
[PROOFSTEP]
rw [h.toOption]
[GOAL]
case pos
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
α : Type u_4
β : Type u_5
a : Part α
inst✝ : Decidable a.Dom
b : β
f : α → β
h : a.Dom
⊢ Option.elim (Option.some (get a h)) b f = f (get a h)
[PROOFSTEP]
rfl
[GOAL]
case neg
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
α : Type u_4
β : Type u_5
a : Part α
inst✝ : Decidable a.Dom
b : β
f : α → β
h : ¬a.Dom
⊢ Option.elim (toOption a) b f = b
[PROOFSTEP]
rw [Part.toOption_eq_none_iff.2 h]
[GOAL]
case neg
α✝ : Type u_1
β✝ : Type u_2
γ : Type u_3
α : Type u_4
β : Type u_5
a : Part α
inst✝ : Decidable a.Dom
b : β
f : α → β
h : ¬a.Dom
⊢ Option.elim Option.none b f = b
[PROOFSTEP]
rfl
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_4
⊢ (↑Option.none).Dom ↔ Option.isSome Option.none = true
[PROOFSTEP]
simp [ofOption, none]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_4
a : α
⊢ (↑(Option.some a)).Dom ↔ Option.isSome (Option.some a) = true
[PROOFSTEP]
simp [ofOption]
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_4
o : Option α
h₁ : (↑o).Dom
h₂ : { Dom := Option.isSome o = true, get := Option.get o }.Dom
⊢ get (↑o) h₁ = get { Dom := Option.isSome o = true, get := Option.get o } h₂
[PROOFSTEP]
cases o
[GOAL]
case none
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_4
h₁ : (↑Option.none).Dom
h₂ : { Dom := Option.isSome Option.none = true, get := Option.get Option.none }.Dom
⊢ get (↑Option.none) h₁ = get { Dom := Option.isSome Option.none = true, get := Option.get Option.none } h₂
[PROOFSTEP]
simp at h₂
[GOAL]
case some
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_4
val✝ : α
h₁ : (↑(Option.some val✝)).Dom
h₂ : { Dom := Option.isSome (Option.some val✝) = true, get := Option.get (Option.some val✝) }.Dom
⊢ get (↑(Option.some val✝)) h₁ =
get { Dom := Option.isSome (Option.some val✝) = true, get := Option.get (Option.some val✝) } h₂
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Option α
⊢ toOption ↑o = o
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
⊢ toOption ↑Option.none = Option.none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
val✝ : α
⊢ toOption ↑(Option.some val✝) = Option.some val✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
this : (p : Prop) → Decidable p
o : Option α
⊢ (fun o => toOption o) ↑o = toOption ↑o
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
this : (p : Prop) → Decidable p
o : Option α
⊢ toOption ↑o = toOption ↑o
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
⊢ ∀ (a : Part α), ⊥ ≤ a
[PROOFSTEP]
introv x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a : Part α
x : α
⊢ x ∈ ⊥ → x ∈ a
[PROOFSTEP]
rintro ⟨⟨_⟩, _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx : x ≤ z
hy : y ≤ z
⊢ x ≤ y ∨ y ≤ x
[PROOFSTEP]
rcases Part.eq_none_or_eq_some x with (h | ⟨b, h₀⟩)
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx : x ≤ z
hy : y ≤ z
h : x = none
⊢ x ≤ y ∨ y ≤ x
[PROOFSTEP]
rw [h]
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx : x ≤ z
hy : y ≤ z
h : x = none
⊢ none ≤ y ∨ y ≤ none
[PROOFSTEP]
left
[GOAL]
case inl.h
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx : x ≤ z
hy : y ≤ z
h : x = none
⊢ none ≤ y
[PROOFSTEP]
apply OrderBot.bot_le _
[GOAL]
case inr.intro
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx : x ≤ z
hy : y ≤ z
b : α
h₀ : x = some b
⊢ x ≤ y ∨ y ≤ x
[PROOFSTEP]
right
[GOAL]
case inr.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx : x ≤ z
hy : y ≤ z
b : α
h₀ : x = some b
⊢ y ≤ x
[PROOFSTEP]
intro b' h₁
[GOAL]
case inr.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx : x ≤ z
hy : y ≤ z
b : α
h₀ : x = some b
b' : α
h₁ : b' ∈ y
⊢ b' ∈ x
[PROOFSTEP]
rw [Part.eq_some_iff] at h₀
[GOAL]
case inr.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx : x ≤ z
hy : y ≤ z
b : α
h₀ : b ∈ x
b' : α
h₁ : b' ∈ y
⊢ b' ∈ x
[PROOFSTEP]
have hx := hx _ h₀
[GOAL]
case inr.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx✝ : x ≤ z
hy : y ≤ z
b : α
h₀ : b ∈ x
b' : α
h₁ : b' ∈ y
hx : b ∈ z
⊢ b' ∈ x
[PROOFSTEP]
have hy := hy _ h₁
[GOAL]
case inr.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx✝ : x ≤ z
hy✝ : y ≤ z
b : α
h₀ : b ∈ x
b' : α
h₁ : b' ∈ y
hx : b ∈ z
hy : b' ∈ z
⊢ b' ∈ x
[PROOFSTEP]
have hx := Part.mem_unique hx hy
[GOAL]
case inr.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx✝¹ : x ≤ z
hy✝ : y ≤ z
b : α
h₀ : b ∈ x
b' : α
h₁ : b' ∈ y
hx✝ : b ∈ z
hy : b' ∈ z
hx : b = b'
⊢ b' ∈ x
[PROOFSTEP]
subst hx
[GOAL]
case inr.intro.h
α : Type u_1
β : Type u_2
γ : Type u_3
x y z : Part α
hx✝ : x ≤ z
hy✝ : y ≤ z
b : α
h₀ : b ∈ x
hx : b ∈ z
h₁ : b ∈ y
hy : b ∈ z
⊢ b ∈ x
[PROOFSTEP]
exact h₀
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
a : β
⊢ ¬a ∈ map f none
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : p
⊢ assert p f = f h
[PROOFSTEP]
dsimp [assert]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : p
⊢ { Dom := ∃ h, (f h).Dom, get := fun ha => get (f (_ : p)) (_ : (f (_ : p)).Dom) } = f h
[PROOFSTEP]
cases h' : f h
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : p
Dom✝ : Prop
get✝ : Dom✝ → α
h' : f h = { Dom := Dom✝, get := get✝ }
⊢ { Dom := ∃ h, (f h).Dom, get := fun ha => get (f (_ : p)) (_ : (f (_ : p)).Dom) } = { Dom := Dom✝, get := get✝ }
[PROOFSTEP]
simp [h', mk.injEq, h, exists_prop_of_true, true_and]
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : p
Dom✝ : Prop
get✝ : Dom✝ → α
h' : f h = { Dom := Dom✝, get := get✝ }
⊢ HEq (fun ha => get✝ (_ : { Dom := Dom✝, get := get✝ }.Dom)) get✝
[PROOFSTEP]
apply Function.hfunext
[GOAL]
case mk.hα
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : p
Dom✝ : Prop
get✝ : Dom✝ → α
h' : f h = { Dom := Dom✝, get := get✝ }
⊢ (∃ h, (f h).Dom) = Dom✝
[PROOFSTEP]
simp only [h, h', exists_prop_of_true]
[GOAL]
case mk.h
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : p
Dom✝ : Prop
get✝ : Dom✝ → α
h' : f h = { Dom := Dom✝, get := get✝ }
⊢ ∀ (a : ∃ h, (f h).Dom) (a' : Dom✝), HEq a a' → HEq (get✝ (_ : { Dom := Dom✝, get := get✝ }.Dom)) (get✝ a')
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : ¬p
⊢ assert p f = none
[PROOFSTEP]
dsimp [assert, none]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : ¬p
⊢ { Dom := ∃ h, (f h).Dom, get := fun ha => get (f (_ : p)) (_ : (f (_ : p)).Dom) } =
{ Dom := False, get := fun t => False.rec (fun x => α) t }
[PROOFSTEP]
congr
[GOAL]
case h.e_2
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : ¬p
⊢ (∃ h, (f h).Dom) = False
[PROOFSTEP]
simp only [h, not_false_iff, exists_prop_of_false]
[GOAL]
case h.e_3
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : ¬p
⊢ HEq (fun ha => get (f (_ : p)) (_ : (f (_ : p)).Dom)) fun t => False.rec (fun x => α) t
[PROOFSTEP]
apply Function.hfunext
[GOAL]
case h.e_3.hα
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : ¬p
⊢ (∃ h, (f h).Dom) = False
[PROOFSTEP]
simp only [h, not_false_iff, exists_prop_of_false]
[GOAL]
case h.e_3.h
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
f : p → Part α
h : ¬p
⊢ ∀ (a : ∃ h, (f h).Dom) (a' : False),
HEq a a' → HEq (get (f (_ : p)) (_ : (f (_ : p)).Dom)) (False.rec (fun x => α) a')
[PROOFSTEP]
simp at *
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
h : o.Dom
f : α → Part β
⊢ Part.bind o f = f (get o h)
[PROOFSTEP]
ext b
[GOAL]
case H
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
h : o.Dom
f : α → Part β
b : β
⊢ b ∈ Part.bind o f ↔ b ∈ f (get o h)
[PROOFSTEP]
simp only [Part.mem_bind_iff, exists_prop]
[GOAL]
case H
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
h : o.Dom
f : α → Part β
b : β
⊢ (∃ a, a ∈ o ∧ b ∈ f a) ↔ b ∈ f (get o h)
[PROOFSTEP]
refine' ⟨_, fun hb => ⟨o.get h, Part.get_mem _, hb⟩⟩
[GOAL]
case H
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
h : o.Dom
f : α → Part β
b : β
⊢ (∃ a, a ∈ o ∧ b ∈ f a) → b ∈ f (get o h)
[PROOFSTEP]
rintro ⟨a, ha, hb⟩
[GOAL]
case H.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
h : o.Dom
f : α → Part β
b : β
a : α
ha : a ∈ o
hb : b ∈ f a
⊢ b ∈ f (get o h)
[PROOFSTEP]
rwa [Part.get_eq_of_mem ha]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → Part β
a : β
⊢ ¬a ∈ Part.bind none f
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a : α
f : α → Part β
⊢ ∀ (a_1 : β), a_1 ∈ Part.bind (some a) f ↔ a_1 ∈ f a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
o : Part α
a : α
h : a ∈ o
f : α → Part β
⊢ Part.bind o f = f a
[PROOFSTEP]
rw [eq_some_iff.2 h, bind_some]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
x : Part α
⊢ ∀ (a : β), a ∈ Part.bind x (some ∘ f) ↔ a ∈ map f x
[PROOFSTEP]
simp [eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → Part β
o : Part α
inst✝² : Decidable o.Dom
inst✝¹ : (a : α) → Decidable (f a).Dom
inst✝ : Decidable (Part.bind o f).Dom
⊢ toOption (Part.bind o f) = Option.elim (toOption o) Option.none fun a => toOption (f a)
[PROOFSTEP]
by_cases h : o.Dom
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → Part β
o : Part α
inst✝² : Decidable o.Dom
inst✝¹ : (a : α) → Decidable (f a).Dom
inst✝ : Decidable (Part.bind o f).Dom
h : o.Dom
⊢ toOption (Part.bind o f) = Option.elim (toOption o) Option.none fun a => toOption (f a)
[PROOFSTEP]
simp_rw [h.toOption, h.bind]
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → Part β
o : Part α
inst✝² : Decidable o.Dom
inst✝¹ : (a : α) → Decidable (f a).Dom
inst✝ : Decidable (Part.bind o f).Dom
h : o.Dom
⊢ toOption (f (get o h)) = Option.elim (Option.some (get o h)) Option.none fun a => toOption (f a)
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → Part β
o : Part α
inst✝² : Decidable o.Dom
inst✝¹ : (a : α) → Decidable (f a).Dom
inst✝ : Decidable (Part.bind o f).Dom
h : ¬o.Dom
⊢ toOption (Part.bind o f) = Option.elim (toOption o) Option.none fun a => toOption (f a)
[PROOFSTEP]
rw [Part.toOption_eq_none_iff.2 h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → Part β
o : Part α
inst✝² : Decidable o.Dom
inst✝¹ : (a : α) → Decidable (f a).Dom
inst✝ : Decidable (Part.bind o f).Dom
h : ¬o.Dom
⊢ toOption (Part.bind o f) = Option.elim Option.none Option.none fun a => toOption (f a)
[PROOFSTEP]
exact Part.toOption_eq_none_iff.2 fun ho => h ho.of_bind
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
γ : Type u_4
f : Part α
g : α → Part β
k : β → Part γ
a : γ
⊢ a ∈ Part.bind (Part.bind f g) k ↔ a ∈ Part.bind f fun x => Part.bind (g x) k
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
γ : Type u_4
f : Part α
g : α → Part β
k : β → Part γ
a : γ
⊢ (∃ a_1, (∃ a, a ∈ f ∧ a_1 ∈ g a) ∧ a ∈ k a_1) ↔ ∃ a_1, a_1 ∈ f ∧ ∃ a_2, a_2 ∈ g a_1 ∧ a ∈ k a_2
[PROOFSTEP]
exact ⟨fun ⟨_, ⟨_, h₁, h₂⟩, h₃⟩ => ⟨_, h₁, _, h₂, h₃⟩, fun ⟨_, h₁, _, h₂, h₃⟩ => ⟨_, ⟨_, h₁, h₂⟩, h₃⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
γ : Type u_4
f : α → β
x : Part α
g : β → Part γ
⊢ Part.bind (map f x) g = Part.bind x fun y => g (f y)
[PROOFSTEP]
rw [← bind_some_eq_map, bind_assoc]
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
γ : Type u_4
f : α → β
x : Part α
g : β → Part γ
⊢ (Part.bind x fun x => Part.bind ((some ∘ f) x) g) = Part.bind x fun y => g (f y)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
γ : Type u_4
f : α → Part β
x : Part α
g : β → γ
⊢ map g (Part.bind x f) = Part.bind x fun y => map g (f y)
[PROOFSTEP]
rw [← bind_some_eq_map, bind_assoc]
[GOAL]
α : Type u_1
β : Type u_2
γ✝ : Type u_3
γ : Type u_4
f : α → Part β
x : Part α
g : β → γ
⊢ (Part.bind x fun x => Part.bind (f x) (some ∘ g)) = Part.bind x fun y => map g (f y)
[PROOFSTEP]
simp [bind_some_eq_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
g : β → γ
f : α → β
o : Part α
⊢ map g (map f o) = map (g ∘ f) o
[PROOFSTEP]
erw [← bind_some_eq_map, bind_map, bind_some_eq_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
⊢ ∀ {α β : Type ?u.35509}, Functor.mapConst = Functor.map ∘ const β
[PROOFSTEP]
simp [Functor.mapConst, Functor.map]
--Porting TODO : In Lean3 these were automatic by a tactic
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
α✝ : Type ?u.35509
f : Part α✝
⊢ id <$> f = f
[PROOFSTEP]
cases f
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
α✝ : Type ?u.35509
Dom✝ : Prop
get✝ : Dom✝ → α✝
⊢ id <$> { Dom := Dom✝, get := get✝ } = { Dom := Dom✝, get := get✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
α✝ β✝ : Type ?u.35509
x : Part α✝
y : Part β✝
⊢ (SeqLeft.seqLeft x fun x => y).Dom ↔ (Seq.seq (const β✝ <$> x) fun x => y).Dom
[PROOFSTEP]
simp [SeqLeft.seqLeft, Part.bind, assert, Seq.seq, const, (· <$> ·), and_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
α✝ β✝ : Type ?u.35509
x : Part α✝
y : Part β✝
⊢ (SeqRight.seqRight x fun x => y).Dom ↔ (Seq.seq (const α✝ id <$> x) fun x => y).Dom
[PROOFSTEP]
simp [SeqRight.seqRight, Part.bind, assert, Seq.seq, const, (· <$> ·), and_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
α✝ β✝ : Type ?u.35509
x : α✝ → β✝
y : Part α✝
⊢ (Seq.seq (pure x) fun x => y).Dom ↔ (x <$> y).Dom
[PROOFSTEP]
simp [Seq.seq, Part.bind, assert, (· <$> ·), pure]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
α✝ β✝ : Type ?u.35509
x : Part (α✝ → β✝)
y : Part α✝
⊢ (do
let x ← x
x <$> y).Dom ↔
(Seq.seq x fun x => y).Dom
[PROOFSTEP]
simp [(· >>= ·), Part.bind, assert, Seq.seq, get, (· <$> ·)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → α
H : ∀ (x : α), f x = x
o : Part α
⊢ map f o = o
[PROOFSTEP]
rw [show f = id from funext H]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → α
H : ∀ (x : α), f x = x
o : Part α
⊢ map id o = o
[PROOFSTEP]
exact id_map o
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
x : Part α
⊢ Part.bind x some = x
[PROOFSTEP]
erw [bind_some_eq_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
x : Part α
⊢ map (fun a => a) x = x
[PROOFSTEP]
simp [map_id']
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
⊢ x >>= f ≤ y ↔ ∀ (a : α), a ∈ x → f a ≤ y
[PROOFSTEP]
constructor
[GOAL]
case mp
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
⊢ x >>= f ≤ y → ∀ (a : α), a ∈ x → f a ≤ y
[PROOFSTEP]
intro h
[GOAL]
case mpr
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
⊢ (∀ (a : α), a ∈ x → f a ≤ y) → x >>= f ≤ y
[PROOFSTEP]
intro h
[GOAL]
case mp
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
h : x >>= f ≤ y
⊢ ∀ (a : α), a ∈ x → f a ≤ y
[PROOFSTEP]
intro a h' b
[GOAL]
case mp
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
h : x >>= f ≤ y
a : α
h' : a ∈ x
b : β
⊢ b ∈ f a → b ∈ y
[PROOFSTEP]
have h := h b
[GOAL]
case mp
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
h✝ : x >>= f ≤ y
a : α
h' : a ∈ x
b : β
h : b ∈ x >>= f → b ∈ y
⊢ b ∈ f a → b ∈ y
[PROOFSTEP]
simp only [and_imp, exists_prop, bind_eq_bind, mem_bind_iff, exists_imp] at h
[GOAL]
case mp
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
h✝ : x >>= f ≤ y
a : α
h' : a ∈ x
b : β
h : ∀ (x_1 : α), x_1 ∈ x → b ∈ f x_1 → b ∈ y
⊢ b ∈ f a → b ∈ y
[PROOFSTEP]
apply h _ h'
[GOAL]
case mpr
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
h : ∀ (a : α), a ∈ x → f a ≤ y
⊢ x >>= f ≤ y
[PROOFSTEP]
intro b h'
[GOAL]
case mpr
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
h : ∀ (a : α), a ∈ x → f a ≤ y
b : β
h' : b ∈ x >>= f
⊢ b ∈ y
[PROOFSTEP]
simp only [exists_prop, bind_eq_bind, mem_bind_iff] at h'
[GOAL]
case mpr
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
h : ∀ (a : α), a ∈ x → f a ≤ y
b : β
h' : ∃ a, a ∈ x ∧ b ∈ f a
⊢ b ∈ y
[PROOFSTEP]
rcases h' with ⟨a, h₀, h₁⟩
[GOAL]
case mpr.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
α : Type u_2
x : Part α
f : α → Part β
y : Part β
h : ∀ (a : α), a ∈ x → f a ≤ y
b : β
a : α
h₀ : a ∈ x
h₁ : b ∈ f a
⊢ b ∈ y
[PROOFSTEP]
apply h _ h₀ _ h₁
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
o : Part α
h : p → o.Dom
a : α
⊢ a ∈ restrict p o h ↔ p ∧ a ∈ o
[PROOFSTEP]
dsimp [restrict, mem_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
o : Part α
h : p → o.Dom
a : α
⊢ (∃ h_1, get o (_ : o.Dom) = a) ↔ p ∧ ∃ h, get o h = a
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
o : Part α
h : p → o.Dom
a : α
⊢ (∃ h_1, get o (_ : o.Dom) = a) → p ∧ ∃ h, get o h = a
[PROOFSTEP]
rintro ⟨h₀, h₁⟩
[GOAL]
case mp.intro
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
o : Part α
h : p → o.Dom
a : α
h₀ : p
h₁ : get o (_ : o.Dom) = a
⊢ p ∧ ∃ h, get o h = a
[PROOFSTEP]
exact ⟨h₀, ⟨_, h₁⟩⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
o : Part α
h : p → o.Dom
a : α
⊢ (p ∧ ∃ h, get o h = a) → ∃ h_1, get o (_ : o.Dom) = a
[PROOFSTEP]
rintro ⟨h₀, _, h₂⟩
[GOAL]
case mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
p : Prop
o : Part α
h : p → o.Dom
a : α
h₀ : p
w✝ : o.Dom
h₂ : get o w✝ = a
⊢ ∃ h_1, get o (_ : o.Dom) = a
[PROOFSTEP]
exact ⟨h₀, h₂⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Mul α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ get (a * b)
(_ : ∃ h, ((fun b_1 => (fun y => map y ((fun x => b) ())) (get ((fun x x_1 => x * x_1) <$> a) b_1)) h).Dom) =
ma * mb
[PROOFSTEP]
simp [← ha.2, ← hb.2]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Mul α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ get (a * b)
(_ : ∃ h, ((fun b_1 => (fun y => map y ((fun x => b) ())) (get ((fun x x_1 => x * x_1) <$> a) b_1)) h).Dom) =
get a (_ : a.Dom) * get b (_ : b.Dom)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Mul α
a b : α
⊢ some a * some b = some (a * b)
[PROOFSTEP]
simp [mul_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Inv α
a : Part α
ma : α
ha : ma ∈ a
⊢ ma⁻¹ ∈ a⁻¹
[PROOFSTEP]
simp [inv_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Inv α
a : Part α
ma : α
ha : ma ∈ a
⊢ ∃ a_1, a_1 ∈ a ∧ a_1⁻¹ = ma⁻¹
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Div α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ma / mb ∈ a / b
[PROOFSTEP]
simp [div_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Div α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 / a = ma / mb
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Div α
a b : Part α
hab : (a / b).Dom
⊢ get (a / b) hab = get a (_ : a.Dom) / get b (_ : b.Dom)
[PROOFSTEP]
simp [div_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Div α
a b : Part α
hab : (a / b).Dom
⊢ get (Part.bind a fun y => map (fun x => y / x) b) (_ : (Part.bind a fun y => map (fun x => y / x) b).Dom) =
get a (_ : a.Dom) / get b (_ : b.Dom)
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Div α
a b : α
⊢ some a / some b = some (a / b)
[PROOFSTEP]
simp [div_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Mod α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ma % mb ∈ a % b
[PROOFSTEP]
simp [mod_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Mod α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 % a = ma % mb
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Mod α
a b : Part α
hab : (a % b).Dom
⊢ get (a % b) hab = get a (_ : a.Dom) % get b (_ : b.Dom)
[PROOFSTEP]
simp [mod_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Mod α
a b : Part α
hab : (a % b).Dom
⊢ get (Part.bind a fun y => map (fun x => y % x) b) (_ : (Part.bind a fun y => map (fun x => y % x) b).Dom) =
get a (_ : a.Dom) % get b (_ : b.Dom)
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Mod α
a b : α
⊢ some a % some b = some (a % b)
[PROOFSTEP]
simp [mod_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Append α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ma ++ mb ∈ a ++ b
[PROOFSTEP]
simp [append_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Append α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 ++ a = ma ++ mb
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Append α
a b : Part α
hab : (a ++ b).Dom
⊢ get (a ++ b) hab = get a (_ : a.Dom) ++ get b (_ : b.Dom)
[PROOFSTEP]
simp [append_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Append α
a b : Part α
hab : (a ++ b).Dom
⊢ get (Part.bind a fun y => map (fun x => y ++ x) b) (_ : (Part.bind a fun y => map (fun x => y ++ x) b).Dom) =
get a (_ : a.Dom) ++ get b (_ : b.Dom)
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Append α
a b : α
⊢ some a ++ some b = some (a ++ b)
[PROOFSTEP]
simp [append_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Inter α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ma ∩ mb ∈ a ∩ b
[PROOFSTEP]
simp [inter_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Inter α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 ∩ a = ma ∩ mb
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Inter α
a b : Part α
hab : (a ∩ b).Dom
⊢ get (a ∩ b) hab = get a (_ : a.Dom) ∩ get b (_ : b.Dom)
[PROOFSTEP]
simp [inter_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Inter α
a b : Part α
hab : (a ∩ b).Dom
⊢ get (Part.bind a fun y => map (fun x => y ∩ x) b) (_ : (Part.bind a fun y => map (fun x => y ∩ x) b).Dom) =
get a (_ : a.Dom) ∩ get b (_ : b.Dom)
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Inter α
a b : α
⊢ some a ∩ some b = some (a ∩ b)
[PROOFSTEP]
simp [inter_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Union α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ma ∪ mb ∈ a ∪ b
[PROOFSTEP]
simp [union_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Union α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 ∪ a = ma ∪ mb
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Union α
a b : Part α
hab : (a ∪ b).Dom
⊢ get (a ∪ b) hab = get a (_ : a.Dom) ∪ get b (_ : b.Dom)
[PROOFSTEP]
simp [union_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Union α
a b : Part α
hab : (a ∪ b).Dom
⊢ get (Part.bind a fun y => map (fun x => y ∪ x) b) (_ : (Part.bind a fun y => map (fun x => y ∪ x) b).Dom) =
get a (_ : a.Dom) ∪ get b (_ : b.Dom)
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : Union α
a b : α
⊢ some a ∪ some b = some (a ∪ b)
[PROOFSTEP]
simp [union_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : SDiff α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ma \ mb ∈ a \ b
[PROOFSTEP]
simp [sdiff_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : SDiff α
a b : Part α
ma mb : α
ha : ma ∈ a
hb : mb ∈ b
⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 \ a = ma \ mb
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : SDiff α
a b : Part α
hab : (a \ b).Dom
⊢ get (a \ b) hab = get a (_ : a.Dom) \ get b (_ : b.Dom)
[PROOFSTEP]
simp [sdiff_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : SDiff α
a b : Part α
hab : (a \ b).Dom
⊢ get (Part.bind a fun y => map (fun x => y \ x) b) (_ : (Part.bind a fun y => map (fun x => y \ x) b).Dom) =
get a (_ : a.Dom) \ get b (_ : b.Dom)
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : SDiff α
a b : α
⊢ some a \ some b = some (a \ b)
[PROOFSTEP]
simp [sdiff_def]
|
{"mathlib_filename": "Mathlib.Data.Part", "llama_tokens": 15422}
|
{"mathlib_filename": "Mathlib.Data.LazyList", "llama_tokens": 0}
|
|
[GOAL]
x : SignType
⊢ x ∈ ↑[zero, neg, pos]
[PROOFSTEP]
cases x
[GOAL]
case zero
⊢ zero ∈ ↑[zero, neg, pos]
[PROOFSTEP]
simp only
[GOAL]
case neg
⊢ neg ∈ ↑[zero, neg, pos]
[PROOFSTEP]
simp only
[GOAL]
case pos
⊢ pos ∈ ↑[zero, neg, pos]
[PROOFSTEP]
simp only
[GOAL]
a b : SignType
⊢ Decidable (SignType.LE a b)
[PROOFSTEP]
cases a
[GOAL]
case zero
b : SignType
⊢ Decidable (SignType.LE SignType.zero b)
[PROOFSTEP]
cases b
[GOAL]
case neg
b : SignType
⊢ Decidable (SignType.LE neg b)
[PROOFSTEP]
cases b
[GOAL]
case pos
b : SignType
⊢ Decidable (SignType.LE pos b)
[PROOFSTEP]
cases b
[GOAL]
case zero.zero
⊢ Decidable (SignType.LE SignType.zero SignType.zero)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case zero.zero
⊢ Decidable (SignType.LE SignType.zero SignType.zero)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ SignType.LE SignType.zero SignType.zero
[PROOFSTEP]
constructor
[GOAL]
case zero.neg
⊢ Decidable (SignType.LE SignType.zero neg)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case zero.neg
⊢ Decidable (SignType.LE SignType.zero neg)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ SignType.LE SignType.zero neg
[PROOFSTEP]
constructor
[GOAL]
case zero.neg
⊢ Decidable (SignType.LE SignType.zero neg)
[PROOFSTEP]
exact isFalse (by rintro ⟨_⟩)
[GOAL]
⊢ ¬SignType.LE SignType.zero neg
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case zero.pos
⊢ Decidable (SignType.LE SignType.zero pos)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case zero.pos
⊢ Decidable (SignType.LE SignType.zero pos)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ SignType.LE SignType.zero pos
[PROOFSTEP]
constructor
[GOAL]
case neg.zero
⊢ Decidable (SignType.LE neg SignType.zero)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case neg.zero
⊢ Decidable (SignType.LE neg SignType.zero)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ SignType.LE neg SignType.zero
[PROOFSTEP]
constructor
[GOAL]
case neg.neg
⊢ Decidable (SignType.LE neg neg)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case neg.neg
⊢ Decidable (SignType.LE neg neg)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ SignType.LE neg neg
[PROOFSTEP]
constructor
[GOAL]
case neg.pos
⊢ Decidable (SignType.LE neg pos)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case neg.pos
⊢ Decidable (SignType.LE neg pos)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ SignType.LE neg pos
[PROOFSTEP]
constructor
[GOAL]
case pos.zero
⊢ Decidable (SignType.LE pos SignType.zero)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case pos.zero
⊢ Decidable (SignType.LE pos SignType.zero)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ SignType.LE pos SignType.zero
[PROOFSTEP]
constructor
[GOAL]
case pos.zero
⊢ Decidable (SignType.LE pos SignType.zero)
[PROOFSTEP]
exact isFalse (by rintro ⟨_⟩)
[GOAL]
⊢ ¬SignType.LE pos SignType.zero
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case pos.neg
⊢ Decidable (SignType.LE pos neg)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case pos.neg
⊢ Decidable (SignType.LE pos neg)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ SignType.LE pos neg
[PROOFSTEP]
constructor
[GOAL]
case pos.neg
⊢ Decidable (SignType.LE pos neg)
[PROOFSTEP]
exact isFalse (by rintro ⟨_⟩)
[GOAL]
⊢ ¬SignType.LE pos neg
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case pos.pos
⊢ Decidable (SignType.LE pos pos)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case pos.pos
⊢ Decidable (SignType.LE pos pos)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ SignType.LE pos pos
[PROOFSTEP]
constructor
[GOAL]
a b : SignType
⊢ Decidable (a = b)
[PROOFSTEP]
cases a
[GOAL]
case zero
b : SignType
⊢ Decidable (zero = b)
[PROOFSTEP]
cases b
[GOAL]
case neg
b : SignType
⊢ Decidable (neg = b)
[PROOFSTEP]
cases b
[GOAL]
case pos
b : SignType
⊢ Decidable (pos = b)
[PROOFSTEP]
cases b
[GOAL]
case zero.zero
⊢ Decidable (zero = zero)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case zero.zero
⊢ Decidable (zero = zero)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ zero = zero
[PROOFSTEP]
constructor
[GOAL]
case zero.neg
⊢ Decidable (zero = neg)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case zero.neg
⊢ Decidable (zero = neg)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ zero = neg
[PROOFSTEP]
constructor
[GOAL]
case zero.neg
⊢ Decidable (zero = neg)
[PROOFSTEP]
exact isFalse (by rintro ⟨_⟩)
[GOAL]
⊢ ¬zero = neg
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case zero.pos
⊢ Decidable (zero = pos)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case zero.pos
⊢ Decidable (zero = pos)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ zero = pos
[PROOFSTEP]
constructor
[GOAL]
case zero.pos
⊢ Decidable (zero = pos)
[PROOFSTEP]
exact isFalse (by rintro ⟨_⟩)
[GOAL]
⊢ ¬zero = pos
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case neg.zero
⊢ Decidable (neg = zero)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case neg.zero
⊢ Decidable (neg = zero)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ neg = zero
[PROOFSTEP]
constructor
[GOAL]
case neg.zero
⊢ Decidable (neg = zero)
[PROOFSTEP]
exact isFalse (by rintro ⟨_⟩)
[GOAL]
⊢ ¬neg = zero
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case neg.neg
⊢ Decidable (neg = neg)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case neg.neg
⊢ Decidable (neg = neg)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ neg = neg
[PROOFSTEP]
constructor
[GOAL]
case neg.pos
⊢ Decidable (neg = pos)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case neg.pos
⊢ Decidable (neg = pos)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ neg = pos
[PROOFSTEP]
constructor
[GOAL]
case neg.pos
⊢ Decidable (neg = pos)
[PROOFSTEP]
exact isFalse (by rintro ⟨_⟩)
[GOAL]
⊢ ¬neg = pos
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case pos.zero
⊢ Decidable (pos = zero)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case pos.zero
⊢ Decidable (pos = zero)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ pos = zero
[PROOFSTEP]
constructor
[GOAL]
case pos.zero
⊢ Decidable (pos = zero)
[PROOFSTEP]
exact isFalse (by rintro ⟨_⟩)
[GOAL]
⊢ ¬pos = zero
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case pos.neg
⊢ Decidable (pos = neg)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case pos.neg
⊢ Decidable (pos = neg)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ pos = neg
[PROOFSTEP]
constructor
[GOAL]
case pos.neg
⊢ Decidable (pos = neg)
[PROOFSTEP]
exact isFalse (by rintro ⟨_⟩)
[GOAL]
⊢ ¬pos = neg
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
case pos.pos
⊢ Decidable (pos = pos)
[PROOFSTEP]
first
| exact isTrue (by constructor)
| exact isFalse (by rintro ⟨_⟩)
[GOAL]
case pos.pos
⊢ Decidable (pos = pos)
[PROOFSTEP]
exact isTrue (by constructor)
[GOAL]
⊢ pos = pos
[PROOFSTEP]
constructor
[GOAL]
⊢ ∀ (a b : SignType), a * b = b * a
[PROOFSTEP]
rintro ⟨⟩ ⟨⟩
[GOAL]
case zero.zero
⊢ zero * zero = zero * zero
[PROOFSTEP]
rfl
[GOAL]
case zero.neg
⊢ zero * neg = neg * zero
[PROOFSTEP]
rfl
[GOAL]
case zero.pos
⊢ zero * pos = pos * zero
[PROOFSTEP]
rfl
[GOAL]
case neg.zero
⊢ neg * zero = zero * neg
[PROOFSTEP]
rfl
[GOAL]
case neg.neg
⊢ neg * neg = neg * neg
[PROOFSTEP]
rfl
[GOAL]
case neg.pos
⊢ neg * pos = pos * neg
[PROOFSTEP]
rfl
[GOAL]
case pos.zero
⊢ pos * zero = zero * pos
[PROOFSTEP]
rfl
[GOAL]
case pos.neg
⊢ pos * neg = neg * pos
[PROOFSTEP]
rfl
[GOAL]
case pos.pos
⊢ pos * pos = pos * pos
[PROOFSTEP]
rfl
[GOAL]
⊢ ∀ (a b c : SignType), a * b * c = a * (b * c)
[PROOFSTEP]
rintro ⟨⟩ ⟨⟩ ⟨⟩
[GOAL]
case zero.zero.zero
⊢ zero * zero * zero = zero * (zero * zero)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case zero.zero.neg
⊢ zero * zero * neg = zero * (zero * neg)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case zero.zero.pos
⊢ zero * zero * pos = zero * (zero * pos)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case zero.neg.zero
⊢ zero * neg * zero = zero * (neg * zero)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case zero.neg.neg
⊢ zero * neg * neg = zero * (neg * neg)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case zero.neg.pos
⊢ zero * neg * pos = zero * (neg * pos)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case zero.pos.zero
⊢ zero * pos * zero = zero * (pos * zero)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case zero.pos.neg
⊢ zero * pos * neg = zero * (pos * neg)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case zero.pos.pos
⊢ zero * pos * pos = zero * (pos * pos)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case neg.zero.zero
⊢ neg * zero * zero = neg * (zero * zero)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case neg.zero.neg
⊢ neg * zero * neg = neg * (zero * neg)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case neg.zero.pos
⊢ neg * zero * pos = neg * (zero * pos)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case neg.neg.zero
⊢ neg * neg * zero = neg * (neg * zero)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case neg.neg.neg
⊢ neg * neg * neg = neg * (neg * neg)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case neg.neg.pos
⊢ neg * neg * pos = neg * (neg * pos)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case neg.pos.zero
⊢ neg * pos * zero = neg * (pos * zero)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case neg.pos.neg
⊢ neg * pos * neg = neg * (pos * neg)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case neg.pos.pos
⊢ neg * pos * pos = neg * (pos * pos)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case pos.zero.zero
⊢ pos * zero * zero = pos * (zero * zero)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case pos.zero.neg
⊢ pos * zero * neg = pos * (zero * neg)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case pos.zero.pos
⊢ pos * zero * pos = pos * (zero * pos)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case pos.neg.zero
⊢ pos * neg * zero = pos * (neg * zero)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case pos.neg.neg
⊢ pos * neg * neg = pos * (neg * neg)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case pos.neg.pos
⊢ pos * neg * pos = pos * (neg * pos)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case pos.pos.zero
⊢ pos * pos * zero = pos * (pos * zero)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case pos.pos.neg
⊢ pos * pos * neg = pos * (pos * neg)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
case pos.pos.pos
⊢ pos * pos * pos = pos * (pos * pos)
[PROOFSTEP]
rfl
/- We can define a `Field` instance on `SignType`, but it's not mathematically sensible,
so we only define the `CommGroupWithZero`. -/
[GOAL]
a : SignType
⊢ 1 * a = a
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ 1 * zero = zero
[PROOFSTEP]
rfl
[GOAL]
case neg
⊢ 1 * neg = neg
[PROOFSTEP]
rfl
[GOAL]
case pos
⊢ 1 * pos = pos
[PROOFSTEP]
rfl
[GOAL]
a : SignType
⊢ a * 1 = a
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ zero * 1 = zero
[PROOFSTEP]
rfl
[GOAL]
case neg
⊢ neg * 1 = neg
[PROOFSTEP]
rfl
[GOAL]
case pos
⊢ pos * 1 = pos
[PROOFSTEP]
rfl
[GOAL]
a : SignType
⊢ 0 * a = 0
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ 0 * zero = 0
[PROOFSTEP]
rfl
[GOAL]
case neg
⊢ 0 * neg = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
⊢ 0 * pos = 0
[PROOFSTEP]
rfl
[GOAL]
a : SignType
⊢ a * 0 = 0
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ zero * 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case neg
⊢ neg * 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case pos
⊢ pos * 0 = 0
[PROOFSTEP]
rfl
[GOAL]
⊢ 0 ≠ 1
[PROOFSTEP]
rintro ⟨_⟩
[GOAL]
a : SignType
ha : a ≠ 0
⊢ a * a⁻¹ = 1
[PROOFSTEP]
cases a
[GOAL]
case zero
ha : zero ≠ 0
⊢ zero * zero⁻¹ = 1
[PROOFSTEP]
trivial
[GOAL]
case neg
ha : neg ≠ 0
⊢ neg * neg⁻¹ = 1
[PROOFSTEP]
trivial
[GOAL]
case pos
ha : pos ≠ 0
⊢ pos * pos⁻¹ = 1
[PROOFSTEP]
trivial
[GOAL]
a b : SignType
x✝¹ : a ≤ b
x✝ : b ≤ a
⊢ a = b
[PROOFSTEP]
cases a
[GOAL]
case zero
b : SignType
x✝¹ : zero ≤ b
x✝ : b ≤ zero
⊢ zero = b
[PROOFSTEP]
cases b
[GOAL]
case neg
b : SignType
x✝¹ : neg ≤ b
x✝ : b ≤ neg
⊢ neg = b
[PROOFSTEP]
cases b
[GOAL]
case pos
b : SignType
x✝¹ : pos ≤ b
x✝ : b ≤ pos
⊢ pos = b
[PROOFSTEP]
cases b
[GOAL]
case zero.zero
x✝¹ x✝ : zero ≤ zero
⊢ zero = zero
[PROOFSTEP]
trivial
[GOAL]
case zero.neg
x✝¹ : zero ≤ neg
x✝ : neg ≤ zero
⊢ zero = neg
[PROOFSTEP]
trivial
[GOAL]
case zero.pos
x✝¹ : zero ≤ pos
x✝ : pos ≤ zero
⊢ zero = pos
[PROOFSTEP]
trivial
[GOAL]
case neg.zero
x✝¹ : neg ≤ zero
x✝ : zero ≤ neg
⊢ neg = zero
[PROOFSTEP]
trivial
[GOAL]
case neg.neg
x✝¹ x✝ : neg ≤ neg
⊢ neg = neg
[PROOFSTEP]
trivial
[GOAL]
case neg.pos
x✝¹ : neg ≤ pos
x✝ : pos ≤ neg
⊢ neg = pos
[PROOFSTEP]
trivial
[GOAL]
case pos.zero
x✝¹ : pos ≤ zero
x✝ : zero ≤ pos
⊢ pos = zero
[PROOFSTEP]
trivial
[GOAL]
case pos.neg
x✝¹ : pos ≤ neg
x✝ : neg ≤ pos
⊢ pos = neg
[PROOFSTEP]
trivial
[GOAL]
case pos.pos
x✝¹ x✝ : pos ≤ pos
⊢ pos = pos
[PROOFSTEP]
trivial
[GOAL]
a b c : SignType
x✝¹ : a ≤ b
x✝ : b ≤ c
⊢ a ≤ c
[PROOFSTEP]
cases a
[GOAL]
case zero
b c : SignType
x✝¹ : b ≤ c
x✝ : zero ≤ b
⊢ zero ≤ c
[PROOFSTEP]
cases b
[GOAL]
case neg
b c : SignType
x✝¹ : b ≤ c
x✝ : neg ≤ b
⊢ neg ≤ c
[PROOFSTEP]
cases b
[GOAL]
case pos
b c : SignType
x✝¹ : b ≤ c
x✝ : pos ≤ b
⊢ pos ≤ c
[PROOFSTEP]
cases b
[GOAL]
case zero.zero
c : SignType
x✝¹ : zero ≤ c
x✝ : zero ≤ zero
⊢ zero ≤ c
[PROOFSTEP]
cases c
[GOAL]
case zero.neg
c : SignType
x✝¹ : neg ≤ c
x✝ : zero ≤ neg
⊢ zero ≤ c
[PROOFSTEP]
cases c
[GOAL]
case zero.pos
c : SignType
x✝¹ : pos ≤ c
x✝ : zero ≤ pos
⊢ zero ≤ c
[PROOFSTEP]
cases c
[GOAL]
case neg.zero
c : SignType
x✝¹ : zero ≤ c
x✝ : neg ≤ zero
⊢ neg ≤ c
[PROOFSTEP]
cases c
[GOAL]
case neg.neg
c : SignType
x✝¹ : neg ≤ c
x✝ : neg ≤ neg
⊢ neg ≤ c
[PROOFSTEP]
cases c
[GOAL]
case neg.pos
c : SignType
x✝¹ : pos ≤ c
x✝ : neg ≤ pos
⊢ neg ≤ c
[PROOFSTEP]
cases c
[GOAL]
case pos.zero
c : SignType
x✝¹ : zero ≤ c
x✝ : pos ≤ zero
⊢ pos ≤ c
[PROOFSTEP]
cases c
[GOAL]
case pos.neg
c : SignType
x✝¹ : neg ≤ c
x✝ : pos ≤ neg
⊢ pos ≤ c
[PROOFSTEP]
cases c
[GOAL]
case pos.pos
c : SignType
x✝¹ : pos ≤ c
x✝ : pos ≤ pos
⊢ pos ≤ c
[PROOFSTEP]
cases c
[GOAL]
case zero.zero.zero
x✝¹ x✝ : zero ≤ zero
⊢ zero ≤ zero
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case zero.zero.zero
x✝¹ x✝ : zero ≤ zero
⊢ zero ≤ zero
[PROOFSTEP]
tauto
[GOAL]
case zero.zero.neg
x✝¹ : zero ≤ zero
x✝ : zero ≤ neg
⊢ zero ≤ neg
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case zero.zero.neg
x✝¹ : zero ≤ zero
x✝ : zero ≤ neg
⊢ zero ≤ neg
[PROOFSTEP]
tauto
[GOAL]
case zero.zero.pos
x✝¹ : zero ≤ zero
x✝ : zero ≤ pos
⊢ zero ≤ pos
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case zero.zero.pos
x✝¹ : zero ≤ zero
x✝ : zero ≤ pos
⊢ zero ≤ pos
[PROOFSTEP]
tauto
[GOAL]
case zero.neg.zero
x✝¹ : zero ≤ neg
x✝ : neg ≤ zero
⊢ zero ≤ zero
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case zero.neg.zero
x✝¹ : zero ≤ neg
x✝ : neg ≤ zero
⊢ zero ≤ zero
[PROOFSTEP]
tauto
[GOAL]
case zero.neg.neg
x✝¹ : zero ≤ neg
x✝ : neg ≤ neg
⊢ zero ≤ neg
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case zero.neg.neg
x✝¹ : zero ≤ neg
x✝ : neg ≤ neg
⊢ zero ≤ neg
[PROOFSTEP]
tauto
[GOAL]
case zero.neg.pos
x✝¹ : zero ≤ neg
x✝ : neg ≤ pos
⊢ zero ≤ pos
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case zero.neg.pos
x✝¹ : zero ≤ neg
x✝ : neg ≤ pos
⊢ zero ≤ pos
[PROOFSTEP]
tauto
[GOAL]
case zero.pos.zero
x✝¹ : zero ≤ pos
x✝ : pos ≤ zero
⊢ zero ≤ zero
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case zero.pos.zero
x✝¹ : zero ≤ pos
x✝ : pos ≤ zero
⊢ zero ≤ zero
[PROOFSTEP]
tauto
[GOAL]
case zero.pos.neg
x✝¹ : zero ≤ pos
x✝ : pos ≤ neg
⊢ zero ≤ neg
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case zero.pos.neg
x✝¹ : zero ≤ pos
x✝ : pos ≤ neg
⊢ zero ≤ neg
[PROOFSTEP]
tauto
[GOAL]
case zero.pos.pos
x✝¹ : zero ≤ pos
x✝ : pos ≤ pos
⊢ zero ≤ pos
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case zero.pos.pos
x✝¹ : zero ≤ pos
x✝ : pos ≤ pos
⊢ zero ≤ pos
[PROOFSTEP]
tauto
[GOAL]
case neg.zero.zero
x✝¹ : neg ≤ zero
x✝ : zero ≤ zero
⊢ neg ≤ zero
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case neg.zero.zero
x✝¹ : neg ≤ zero
x✝ : zero ≤ zero
⊢ neg ≤ zero
[PROOFSTEP]
tauto
[GOAL]
case neg.zero.neg
x✝¹ : neg ≤ zero
x✝ : zero ≤ neg
⊢ neg ≤ neg
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case neg.zero.neg
x✝¹ : neg ≤ zero
x✝ : zero ≤ neg
⊢ neg ≤ neg
[PROOFSTEP]
tauto
[GOAL]
case neg.zero.pos
x✝¹ : neg ≤ zero
x✝ : zero ≤ pos
⊢ neg ≤ pos
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case neg.zero.pos
x✝¹ : neg ≤ zero
x✝ : zero ≤ pos
⊢ neg ≤ pos
[PROOFSTEP]
tauto
[GOAL]
case neg.zero.pos
x✝¹ : neg ≤ zero
x✝ : zero ≤ pos
⊢ neg ≤ pos
[PROOFSTEP]
constructor
[GOAL]
case neg.neg.zero
x✝¹ : neg ≤ neg
x✝ : neg ≤ zero
⊢ neg ≤ zero
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case neg.neg.zero
x✝¹ : neg ≤ neg
x✝ : neg ≤ zero
⊢ neg ≤ zero
[PROOFSTEP]
tauto
[GOAL]
case neg.neg.neg
x✝¹ x✝ : neg ≤ neg
⊢ neg ≤ neg
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case neg.neg.neg
x✝¹ x✝ : neg ≤ neg
⊢ neg ≤ neg
[PROOFSTEP]
tauto
[GOAL]
case neg.neg.pos
x✝¹ : neg ≤ neg
x✝ : neg ≤ pos
⊢ neg ≤ pos
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case neg.neg.pos
x✝¹ : neg ≤ neg
x✝ : neg ≤ pos
⊢ neg ≤ pos
[PROOFSTEP]
tauto
[GOAL]
case neg.pos.zero
x✝¹ : neg ≤ pos
x✝ : pos ≤ zero
⊢ neg ≤ zero
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case neg.pos.zero
x✝¹ : neg ≤ pos
x✝ : pos ≤ zero
⊢ neg ≤ zero
[PROOFSTEP]
tauto
[GOAL]
case neg.pos.neg
x✝¹ : neg ≤ pos
x✝ : pos ≤ neg
⊢ neg ≤ neg
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case neg.pos.neg
x✝¹ : neg ≤ pos
x✝ : pos ≤ neg
⊢ neg ≤ neg
[PROOFSTEP]
tauto
[GOAL]
case neg.pos.pos
x✝¹ : neg ≤ pos
x✝ : pos ≤ pos
⊢ neg ≤ pos
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case neg.pos.pos
x✝¹ : neg ≤ pos
x✝ : pos ≤ pos
⊢ neg ≤ pos
[PROOFSTEP]
tauto
[GOAL]
case pos.zero.zero
x✝¹ : pos ≤ zero
x✝ : zero ≤ zero
⊢ pos ≤ zero
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case pos.zero.zero
x✝¹ : pos ≤ zero
x✝ : zero ≤ zero
⊢ pos ≤ zero
[PROOFSTEP]
tauto
[GOAL]
case pos.zero.neg
x✝¹ : pos ≤ zero
x✝ : zero ≤ neg
⊢ pos ≤ neg
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case pos.zero.neg
x✝¹ : pos ≤ zero
x✝ : zero ≤ neg
⊢ pos ≤ neg
[PROOFSTEP]
tauto
[GOAL]
case pos.zero.pos
x✝¹ : pos ≤ zero
x✝ : zero ≤ pos
⊢ pos ≤ pos
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case pos.zero.pos
x✝¹ : pos ≤ zero
x✝ : zero ≤ pos
⊢ pos ≤ pos
[PROOFSTEP]
tauto
[GOAL]
case pos.neg.zero
x✝¹ : pos ≤ neg
x✝ : neg ≤ zero
⊢ pos ≤ zero
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case pos.neg.zero
x✝¹ : pos ≤ neg
x✝ : neg ≤ zero
⊢ pos ≤ zero
[PROOFSTEP]
tauto
[GOAL]
case pos.neg.neg
x✝¹ : pos ≤ neg
x✝ : neg ≤ neg
⊢ pos ≤ neg
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case pos.neg.neg
x✝¹ : pos ≤ neg
x✝ : neg ≤ neg
⊢ pos ≤ neg
[PROOFSTEP]
tauto
[GOAL]
case pos.neg.pos
x✝¹ : pos ≤ neg
x✝ : neg ≤ pos
⊢ pos ≤ pos
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case pos.neg.pos
x✝¹ : pos ≤ neg
x✝ : neg ≤ pos
⊢ pos ≤ pos
[PROOFSTEP]
tauto
[GOAL]
case pos.pos.zero
x✝¹ : pos ≤ pos
x✝ : pos ≤ zero
⊢ pos ≤ zero
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case pos.pos.zero
x✝¹ : pos ≤ pos
x✝ : pos ≤ zero
⊢ pos ≤ zero
[PROOFSTEP]
tauto
[GOAL]
case pos.pos.neg
x✝¹ : pos ≤ pos
x✝ : pos ≤ neg
⊢ pos ≤ neg
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case pos.pos.neg
x✝¹ : pos ≤ pos
x✝ : pos ≤ neg
⊢ pos ≤ neg
[PROOFSTEP]
tauto
[GOAL]
case pos.pos.pos
x✝¹ x✝ : pos ≤ pos
⊢ pos ≤ pos
[PROOFSTEP]
first
| tauto
| constructor
[GOAL]
case pos.pos.pos
x✝¹ x✝ : pos ≤ pos
⊢ pos ≤ pos
[PROOFSTEP]
tauto
[GOAL]
a : SignType
⊢ a ≤ a
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ zero ≤ zero
[PROOFSTEP]
constructor
[GOAL]
case neg
⊢ neg ≤ neg
[PROOFSTEP]
constructor
[GOAL]
case pos
⊢ pos ≤ pos
[PROOFSTEP]
constructor
[GOAL]
a b : SignType
⊢ a ≤ b ∨ b ≤ a
[PROOFSTEP]
cases a
[GOAL]
case zero
b : SignType
⊢ zero ≤ b ∨ b ≤ zero
[PROOFSTEP]
cases b
[GOAL]
case neg
b : SignType
⊢ neg ≤ b ∨ b ≤ neg
[PROOFSTEP]
cases b
[GOAL]
case pos
b : SignType
⊢ pos ≤ b ∨ b ≤ pos
[PROOFSTEP]
cases b
[GOAL]
case zero.zero
⊢ zero ≤ zero ∨ zero ≤ zero
[PROOFSTEP]
first
| left; constructor
| right; constructor
[GOAL]
case zero.zero
⊢ zero ≤ zero ∨ zero ≤ zero
[PROOFSTEP]
left
[GOAL]
case zero.zero.h
⊢ zero ≤ zero
[PROOFSTEP]
constructor
[GOAL]
case zero.neg
⊢ zero ≤ neg ∨ neg ≤ zero
[PROOFSTEP]
first
| left; constructor
| right; constructor
[GOAL]
case zero.neg
⊢ zero ≤ neg ∨ neg ≤ zero
[PROOFSTEP]
left
[GOAL]
case zero.neg.h
⊢ zero ≤ neg
[PROOFSTEP]
constructor
[GOAL]
case zero.neg
⊢ zero ≤ neg ∨ neg ≤ zero
[PROOFSTEP]
right
[GOAL]
case zero.neg.h
⊢ neg ≤ zero
[PROOFSTEP]
constructor
[GOAL]
case zero.pos
⊢ zero ≤ pos ∨ pos ≤ zero
[PROOFSTEP]
first
| left; constructor
| right; constructor
[GOAL]
case zero.pos
⊢ zero ≤ pos ∨ pos ≤ zero
[PROOFSTEP]
left
[GOAL]
case zero.pos.h
⊢ zero ≤ pos
[PROOFSTEP]
constructor
[GOAL]
case neg.zero
⊢ neg ≤ zero ∨ zero ≤ neg
[PROOFSTEP]
first
| left; constructor
| right; constructor
[GOAL]
case neg.zero
⊢ neg ≤ zero ∨ zero ≤ neg
[PROOFSTEP]
left
[GOAL]
case neg.zero.h
⊢ neg ≤ zero
[PROOFSTEP]
constructor
[GOAL]
case neg.neg
⊢ neg ≤ neg ∨ neg ≤ neg
[PROOFSTEP]
first
| left; constructor
| right; constructor
[GOAL]
case neg.neg
⊢ neg ≤ neg ∨ neg ≤ neg
[PROOFSTEP]
left
[GOAL]
case neg.neg.h
⊢ neg ≤ neg
[PROOFSTEP]
constructor
[GOAL]
case neg.pos
⊢ neg ≤ pos ∨ pos ≤ neg
[PROOFSTEP]
first
| left; constructor
| right; constructor
[GOAL]
case neg.pos
⊢ neg ≤ pos ∨ pos ≤ neg
[PROOFSTEP]
left
[GOAL]
case neg.pos.h
⊢ neg ≤ pos
[PROOFSTEP]
constructor
[GOAL]
case pos.zero
⊢ pos ≤ zero ∨ zero ≤ pos
[PROOFSTEP]
first
| left; constructor
| right; constructor
[GOAL]
case pos.zero
⊢ pos ≤ zero ∨ zero ≤ pos
[PROOFSTEP]
left
[GOAL]
case pos.zero.h
⊢ pos ≤ zero
[PROOFSTEP]
constructor
[GOAL]
case pos.zero
⊢ pos ≤ zero ∨ zero ≤ pos
[PROOFSTEP]
right
[GOAL]
case pos.zero.h
⊢ zero ≤ pos
[PROOFSTEP]
constructor
[GOAL]
case pos.neg
⊢ pos ≤ neg ∨ neg ≤ pos
[PROOFSTEP]
first
| left; constructor
| right; constructor
[GOAL]
case pos.neg
⊢ pos ≤ neg ∨ neg ≤ pos
[PROOFSTEP]
left
[GOAL]
case pos.neg.h
⊢ pos ≤ neg
[PROOFSTEP]
constructor
[GOAL]
case pos.neg
⊢ pos ≤ neg ∨ neg ≤ pos
[PROOFSTEP]
right
[GOAL]
case pos.neg.h
⊢ neg ≤ pos
[PROOFSTEP]
constructor
[GOAL]
case pos.pos
⊢ pos ≤ pos ∨ pos ≤ pos
[PROOFSTEP]
first
| left; constructor
| right; constructor
[GOAL]
case pos.pos
⊢ pos ≤ pos ∨ pos ≤ pos
[PROOFSTEP]
left
[GOAL]
case pos.pos.h
⊢ pos ≤ pos
[PROOFSTEP]
constructor
[GOAL]
x : SignType
⊢ - -x = x
[PROOFSTEP]
cases x
[GOAL]
case zero
⊢ - -zero = zero
[PROOFSTEP]
rfl
[GOAL]
case neg
⊢ - -neg = neg
[PROOFSTEP]
rfl
[GOAL]
case pos
⊢ - -pos = pos
[PROOFSTEP]
rfl
[GOAL]
x y : SignType
⊢ -x * y = -(x * y)
[PROOFSTEP]
cases x
[GOAL]
case zero
y : SignType
⊢ -zero * y = -(zero * y)
[PROOFSTEP]
cases y
[GOAL]
case neg
y : SignType
⊢ -neg * y = -(neg * y)
[PROOFSTEP]
cases y
[GOAL]
case pos
y : SignType
⊢ -pos * y = -(pos * y)
[PROOFSTEP]
cases y
[GOAL]
case zero.zero
⊢ -zero * zero = -(zero * zero)
[PROOFSTEP]
rfl
[GOAL]
case zero.neg
⊢ -zero * neg = -(zero * neg)
[PROOFSTEP]
rfl
[GOAL]
case zero.pos
⊢ -zero * pos = -(zero * pos)
[PROOFSTEP]
rfl
[GOAL]
case neg.zero
⊢ -neg * zero = -(neg * zero)
[PROOFSTEP]
rfl
[GOAL]
case neg.neg
⊢ -neg * neg = -(neg * neg)
[PROOFSTEP]
rfl
[GOAL]
case neg.pos
⊢ -neg * pos = -(neg * pos)
[PROOFSTEP]
rfl
[GOAL]
case pos.zero
⊢ -pos * zero = -(pos * zero)
[PROOFSTEP]
rfl
[GOAL]
case pos.neg
⊢ -pos * neg = -(pos * neg)
[PROOFSTEP]
rfl
[GOAL]
case pos.pos
⊢ -pos * pos = -(pos * pos)
[PROOFSTEP]
rfl
[GOAL]
x y : SignType
⊢ x * -y = -(x * y)
[PROOFSTEP]
cases x
[GOAL]
case zero
y : SignType
⊢ zero * -y = -(zero * y)
[PROOFSTEP]
cases y
[GOAL]
case neg
y : SignType
⊢ neg * -y = -(neg * y)
[PROOFSTEP]
cases y
[GOAL]
case pos
y : SignType
⊢ pos * -y = -(pos * y)
[PROOFSTEP]
cases y
[GOAL]
case zero.zero
⊢ zero * -zero = -(zero * zero)
[PROOFSTEP]
rfl
[GOAL]
case zero.neg
⊢ zero * -neg = -(zero * neg)
[PROOFSTEP]
rfl
[GOAL]
case zero.pos
⊢ zero * -pos = -(zero * pos)
[PROOFSTEP]
rfl
[GOAL]
case neg.zero
⊢ neg * -zero = -(neg * zero)
[PROOFSTEP]
rfl
[GOAL]
case neg.neg
⊢ neg * -neg = -(neg * neg)
[PROOFSTEP]
rfl
[GOAL]
case neg.pos
⊢ neg * -pos = -(neg * pos)
[PROOFSTEP]
rfl
[GOAL]
case pos.zero
⊢ pos * -zero = -(pos * zero)
[PROOFSTEP]
rfl
[GOAL]
case pos.neg
⊢ pos * -neg = -(pos * neg)
[PROOFSTEP]
rfl
[GOAL]
case pos.pos
⊢ pos * -pos = -(pos * pos)
[PROOFSTEP]
rfl
[GOAL]
a : SignType
⊢ 0 < 3
[PROOFSTEP]
simp
[GOAL]
a : SignType
⊢ 1 < 3
[PROOFSTEP]
simp
[GOAL]
a : SignType
⊢ 2 < 3
[PROOFSTEP]
simp
[GOAL]
a : SignType
⊢ (fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ (fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
zero) =
zero
[PROOFSTEP]
rfl
[GOAL]
case neg
⊢ (fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
neg) =
neg
[PROOFSTEP]
rfl
[GOAL]
case pos
⊢ (fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
pos) =
pos
[PROOFSTEP]
rfl
[GOAL]
a : Fin 3
isLt✝ : 0 < 3
⊢ (fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
{ val := 0, isLt := isLt✝ }) =
{ val := 0, isLt := isLt✝ }
[PROOFSTEP]
simp
[GOAL]
a : Fin 3
isLt✝ : 1 < 3
⊢ (fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
{ val := 1, isLt := isLt✝ }) =
{ val := 1, isLt := isLt✝ }
[PROOFSTEP]
simp
[GOAL]
a : Fin 3
isLt✝ : 2 < 3
⊢ (fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
{ val := 2, isLt := isLt✝ }) =
{ val := 2, isLt := isLt✝ }
[PROOFSTEP]
simp
[GOAL]
a : Fin 3
n : ℕ
h : n + 3 < 3
⊢ (fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
{ val := n + 3, isLt := h }) =
{ val := n + 3, isLt := h }
[PROOFSTEP]
simp at h
[GOAL]
a b : SignType
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(a * b) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
a *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
b
[PROOFSTEP]
cases a
[GOAL]
case zero
b : SignType
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(zero * b) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
zero *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
b
[PROOFSTEP]
cases b
[GOAL]
case neg
b : SignType
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(neg * b) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
neg *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
b
[PROOFSTEP]
cases b
[GOAL]
case pos
b : SignType
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(pos * b) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
pos *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
b
[PROOFSTEP]
cases b
[GOAL]
case zero.zero
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(zero * zero) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
zero *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
zero
[PROOFSTEP]
simp
[GOAL]
case zero.neg
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(zero * neg) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
zero *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
neg
[PROOFSTEP]
simp
[GOAL]
case zero.pos
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(zero * pos) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
zero *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
pos
[PROOFSTEP]
simp
[GOAL]
case neg.zero
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(neg * zero) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
neg *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
zero
[PROOFSTEP]
simp
[GOAL]
case neg.neg
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(neg * neg) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
neg *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
neg
[PROOFSTEP]
simp
[GOAL]
case neg.pos
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(neg * pos) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
neg *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
pos
[PROOFSTEP]
simp
[GOAL]
case pos.zero
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(pos * zero) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
pos *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
zero
[PROOFSTEP]
simp
[GOAL]
case pos.neg
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(pos * neg) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
pos *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
neg
[PROOFSTEP]
simp
[GOAL]
case pos.pos
⊢ Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
(pos * pos) =
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
pos *
Equiv.toFun
{
toFun := fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) },
invFun := fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False),
left_inv :=
(_ :
∀ (a : SignType),
(fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
((fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
a) =
a),
right_inv :=
(_ :
∀ (a : Fin 3),
(fun a =>
match a with
| zero => { val := 0, isLt := (_ : 0 < 3) }
| pos => { val := 1, isLt := (_ : 1 < 3) }
| neg => { val := 2, isLt := (_ : 2 < 3) })
((fun a =>
match a with
| { val := 0, isLt := isLt } => 0
| { val := 1, isLt := isLt } => 1
| { val := 2, isLt := isLt } => -1
| { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False))
a) =
a) }
pos
[PROOFSTEP]
simp
[GOAL]
a : SignType
⊢ 0 ≤ a ↔ a = 0 ∨ a = 1
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ 0 ≤ zero ↔ zero = 0 ∨ zero = 1
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ 0 ≤ neg ↔ neg = 0 ∨ neg = 1
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ 0 ≤ pos ↔ pos = 0 ∨ pos = 1
[PROOFSTEP]
decide
[GOAL]
a : SignType
⊢ 0 ≤ a ↔ a ≠ -1
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ 0 ≤ zero ↔ zero ≠ -1
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ 0 ≤ neg ↔ neg ≠ -1
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ 0 ≤ pos ↔ pos ≠ -1
[PROOFSTEP]
decide
[GOAL]
a : SignType
⊢ -1 < a ↔ 0 ≤ a
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ -1 < zero ↔ 0 ≤ zero
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ -1 < neg ↔ 0 ≤ neg
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ -1 < pos ↔ 0 ≤ pos
[PROOFSTEP]
decide
[GOAL]
a : SignType
⊢ a ≤ 0 ↔ a = -1 ∨ a = 0
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ zero ≤ 0 ↔ zero = -1 ∨ zero = 0
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ neg ≤ 0 ↔ neg = -1 ∨ neg = 0
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ pos ≤ 0 ↔ pos = -1 ∨ pos = 0
[PROOFSTEP]
decide
[GOAL]
a : SignType
⊢ a ≤ 0 ↔ a ≠ 1
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ zero ≤ 0 ↔ zero ≠ 1
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ neg ≤ 0 ↔ neg ≠ 1
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ pos ≤ 0 ↔ pos ≠ 1
[PROOFSTEP]
decide
[GOAL]
a : SignType
⊢ a < 1 ↔ a ≤ 0
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ zero < 1 ↔ zero ≤ 0
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ neg < 1 ↔ neg ≤ 0
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ pos < 1 ↔ pos ≤ 0
[PROOFSTEP]
decide
[GOAL]
a : SignType
⊢ a < 0 ↔ a = -1
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ zero < 0 ↔ zero = -1
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ neg < 0 ↔ neg = -1
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ pos < 0 ↔ pos = -1
[PROOFSTEP]
decide
[GOAL]
a : SignType
⊢ 0 < a ↔ a = 1
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ 0 < zero ↔ zero = 1
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ 0 < neg ↔ neg = 1
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ 0 < pos ↔ pos = 1
[PROOFSTEP]
decide
[GOAL]
a : SignType
⊢ a = -a ↔ a = 0
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ zero = -zero ↔ zero = 0
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ neg = -neg ↔ neg = 0
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ pos = -pos ↔ pos = 0
[PROOFSTEP]
decide
[GOAL]
a : SignType
⊢ -a = a ↔ a = 0
[PROOFSTEP]
cases a
[GOAL]
case zero
⊢ -zero = zero ↔ zero = 0
[PROOFSTEP]
decide
[GOAL]
case neg
⊢ -neg = neg ↔ neg = 0
[PROOFSTEP]
decide
[GOAL]
case pos
⊢ -pos = pos ↔ pos = 0
[PROOFSTEP]
decide
[GOAL]
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
x y : SignType
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (x * y) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } x *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } y
[PROOFSTEP]
cases x
[GOAL]
case zero
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
y : SignType
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (zero * y) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } y
[PROOFSTEP]
cases y
[GOAL]
case neg
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
y : SignType
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (neg * y) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } y
[PROOFSTEP]
cases y
[GOAL]
case pos
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
y : SignType
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (pos * y) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } y
[PROOFSTEP]
cases y
[GOAL]
case zero.zero
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (zero * zero) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero
[PROOFSTEP]
simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one]
[GOAL]
case zero.neg
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (zero * neg) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg
[PROOFSTEP]
simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one]
[GOAL]
case zero.pos
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (zero * pos) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos
[PROOFSTEP]
simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one]
[GOAL]
case neg.zero
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (neg * zero) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero
[PROOFSTEP]
simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one]
[GOAL]
case neg.neg
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (neg * neg) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg
[PROOFSTEP]
simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one]
[GOAL]
case neg.pos
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (neg * pos) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos
[PROOFSTEP]
simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one]
[GOAL]
case pos.zero
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (pos * zero) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero
[PROOFSTEP]
simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one]
[GOAL]
case pos.neg
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (pos * neg) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg
[PROOFSTEP]
simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one]
[GOAL]
case pos.pos
α : Type ?u.34903
inst✝¹ : MulZeroOneClass α
inst✝ : HasDistribNeg α
⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (pos * pos) =
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos *
ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos
[PROOFSTEP]
simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one]
[GOAL]
⊢ Finset.univ = {0, -1, 1}
[PROOFSTEP]
decide
[GOAL]
α : Type u_1
f : SignType → α
⊢ Set.range f = {f zero, f neg, f pos}
[PROOFSTEP]
classical rw [← Fintype.coe_image_univ, univ_eq]
[GOAL]
α : Type u_1
f : SignType → α
⊢ Set.range f = {f zero, f neg, f pos}
[PROOFSTEP]
rw [← Fintype.coe_image_univ, univ_eq]
[GOAL]
α : Type u_1
f : SignType → α
⊢ ↑(Finset.image f {0, -1, 1}) = {f zero, f neg, f pos}
[PROOFSTEP]
classical simp [Finset.coe_insert]
[GOAL]
α : Type u_1
f : SignType → α
⊢ ↑(Finset.image f {0, -1, 1}) = {f zero, f neg, f pos}
[PROOFSTEP]
simp [Finset.coe_insert]
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
⊢ (fun a => if 0 < a then 1 else if a < 0 then -1 else 0) a ≤ (fun a => if 0 < a then 1 else if a < 0 then -1 else 0) b
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
⊢ (if 0 < a then 1 else if a < 0 then -1 else 0) ≤ if 0 < b then 1 else if b < 0 then -1 else 0
[PROOFSTEP]
split_ifs with h₁ h₂ h₃ h₄ _ _ h₂ h₃
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : 0 < a
h₂ : 0 < b
⊢ 1 ≤ 1
[PROOFSTEP]
try constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : 0 < a
h₂ : 0 < b
⊢ 1 ≤ 1
[PROOFSTEP]
constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : 0 < a
h₂ : ¬0 < b
h₃ : b < 0
⊢ 1 ≤ -1
[PROOFSTEP]
try constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : 0 < a
h₂ : ¬0 < b
h₃ : b < 0
⊢ 1 ≤ -1
[PROOFSTEP]
constructor
[GOAL]
case neg
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : 0 < a
h₂ : ¬0 < b
h₃ : ¬b < 0
⊢ 1 ≤ 0
[PROOFSTEP]
try constructor
[GOAL]
case neg
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : 0 < a
h₂ : ¬0 < b
h₃ : ¬b < 0
⊢ 1 ≤ 0
[PROOFSTEP]
constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : a < 0
_ : 0 < b
⊢ -1 ≤ 1
[PROOFSTEP]
try constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : a < 0
_ : 0 < b
⊢ -1 ≤ 1
[PROOFSTEP]
constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : a < 0
_✝ : ¬0 < b
_ : b < 0
⊢ -1 ≤ -1
[PROOFSTEP]
try constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : a < 0
_✝ : ¬0 < b
_ : b < 0
⊢ -1 ≤ -1
[PROOFSTEP]
constructor
[GOAL]
case neg
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : a < 0
_✝ : ¬0 < b
_ : ¬b < 0
⊢ -1 ≤ 0
[PROOFSTEP]
try constructor
[GOAL]
case neg
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : a < 0
_✝ : ¬0 < b
_ : ¬b < 0
⊢ -1 ≤ 0
[PROOFSTEP]
constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : ¬a < 0
h₂ : 0 < b
⊢ 0 ≤ 1
[PROOFSTEP]
try constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : ¬a < 0
h₂ : 0 < b
⊢ 0 ≤ 1
[PROOFSTEP]
constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : ¬a < 0
h₂ : ¬0 < b
h₃ : b < 0
⊢ 0 ≤ -1
[PROOFSTEP]
try constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : ¬a < 0
h₂ : ¬0 < b
h₃ : b < 0
⊢ 0 ≤ -1
[PROOFSTEP]
constructor
[GOAL]
case neg
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : ¬a < 0
h₂ : ¬0 < b
h₃ : ¬b < 0
⊢ 0 ≤ 0
[PROOFSTEP]
try constructor
[GOAL]
case neg
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : ¬a < 0
h₂ : ¬0 < b
h₃ : ¬b < 0
⊢ 0 ≤ 0
[PROOFSTEP]
constructor
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : 0 < a
h₂ : ¬0 < b
h₃ : b < 0
⊢ 1 ≤ -1
[PROOFSTEP]
cases lt_irrefl 0 (h₁.trans <| h.trans_lt h₃)
[GOAL]
case neg
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : 0 < a
h₂ : ¬0 < b
h₃ : ¬b < 0
⊢ 1 ≤ 0
[PROOFSTEP]
cases h₂ (h₁.trans_le h)
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a✝ a b : α
h : a ≤ b
h₁ : ¬0 < a
h₄ : ¬a < 0
h₂ : ¬0 < b
h₃ : b < 0
⊢ 0 ≤ -1
[PROOFSTEP]
cases h₄ (h.trans_lt h₃)
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
⊢ ↑sign 0 = 0
[PROOFSTEP]
simp [sign_apply]
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
ha : 0 < a
⊢ ↑sign a = 1
[PROOFSTEP]
rwa [sign_apply, if_pos]
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
ha : a < 0
⊢ ↑sign a = -1
[PROOFSTEP]
rwa [sign_apply, if_neg <| asymm ha, if_pos]
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
⊢ ↑sign a = 1 ↔ 0 < a
[PROOFSTEP]
refine' ⟨fun h => _, fun h => sign_pos h⟩
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
h : ↑sign a = 1
⊢ 0 < a
[PROOFSTEP]
by_contra hn
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
h : ↑sign a = 1
hn : ¬0 < a
⊢ False
[PROOFSTEP]
rw [sign_apply, if_neg hn] at h
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
h : (if a < 0 then -1 else 0) = 1
hn : ¬0 < a
⊢ False
[PROOFSTEP]
split_ifs at h
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
⊢ ↑sign a = -1 ↔ a < 0
[PROOFSTEP]
refine' ⟨fun h => _, fun h => sign_neg h⟩
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
h : ↑sign a = -1
⊢ a < 0
[PROOFSTEP]
rw [sign_apply] at h
[GOAL]
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
h : (if 0 < a then 1 else if a < 0 then -1 else 0) = -1
⊢ a < 0
[PROOFSTEP]
split_ifs at h
[GOAL]
case pos
α : Type u_1
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : DecidableRel fun x x_1 => x < x_1
a : α
h✝¹ : ¬0 < a
h✝ : a < 0
h : -1 = -1
⊢ a < 0
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
⊢ ↑sign a = 0 ↔ a = 0
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.symm ▸ sign_zero⟩
[GOAL]
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h : ↑sign a = 0
⊢ a = 0
[PROOFSTEP]
rw [sign_apply] at h
[GOAL]
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h : (if 0 < a then 1 else if a < 0 then -1 else 0) = 0
⊢ a = 0
[PROOFSTEP]
split_ifs at h with h_1 h_2
[GOAL]
case neg
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h_1 : ¬0 < a
h_2 : ¬a < 0
h : 0 = 0
⊢ a = 0
[PROOFSTEP]
cases' h
[GOAL]
case neg.refl
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h_1 : ¬0 < a
h_2 : ¬a < 0
⊢ a = 0
[PROOFSTEP]
exact (le_of_not_lt h_1).eq_of_not_lt h_2
[GOAL]
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
⊢ 0 ≤ ↑sign a ↔ 0 ≤ a
[PROOFSTEP]
rcases lt_trichotomy 0 a with (h | h | h)
[GOAL]
case inl
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h : 0 < a
⊢ 0 ≤ ↑sign a ↔ 0 ≤ a
[PROOFSTEP]
simp [h, h.le]
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h : 0 = a
⊢ 0 ≤ ↑sign a ↔ 0 ≤ a
[PROOFSTEP]
simp [← h]
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h : a < 0
⊢ 0 ≤ ↑sign a ↔ 0 ≤ a
[PROOFSTEP]
simp [h, h.not_le]
[GOAL]
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
⊢ ↑sign a ≤ 0 ↔ a ≤ 0
[PROOFSTEP]
rcases lt_trichotomy 0 a with (h | h | h)
[GOAL]
case inl
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h : 0 < a
⊢ ↑sign a ≤ 0 ↔ a ≤ 0
[PROOFSTEP]
simp [h, h.not_le]
[GOAL]
case inr.inl
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h : 0 = a
⊢ ↑sign a ≤ 0 ↔ a ≤ 0
[PROOFSTEP]
simp [← h]
[GOAL]
case inr.inr
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h : a < 0
⊢ ↑sign a ≤ 0 ↔ a ≤ 0
[PROOFSTEP]
simp [h, h.le]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
rcases lt_trichotomy x 0 with (hx | hx | hx)
[GOAL]
case inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : x < 0
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
rcases lt_trichotomy y 0 with (hy | hy | hy)
[GOAL]
case inr.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : x = 0
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
rcases lt_trichotomy y 0 with (hy | hy | hy)
[GOAL]
case inr.inr
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : 0 < x
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
rcases lt_trichotomy y 0 with (hy | hy | hy)
[GOAL]
case inl.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : x < 0
hy : y < 0
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case inl.inr.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : x < 0
hy : y = 0
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case inl.inr.inr
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : x < 0
hy : 0 < y
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case inr.inl.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : x = 0
hy : y < 0
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case inr.inl.inr.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : x = 0
hy : y = 0
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case inr.inl.inr.inr
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : x = 0
hy : 0 < y
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case inr.inr.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : 0 < x
hy : y < 0
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case inr.inr.inr.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : 0 < x
hy : y = 0
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
case inr.inr.inr.inr
α : Type u_1
inst✝ : LinearOrderedRing α
a b x y : α
hx : 0 < x
hy : 0 < y
⊢ ↑sign (x * y) = ↑sign x * ↑sign y
[PROOFSTEP]
simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b x : α
⊢ ↑(↑sign x) * |x| = x
[PROOFSTEP]
rcases lt_trichotomy x 0 with (hx | rfl | hx)
[GOAL]
case inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x : α
hx : x < 0
⊢ ↑(↑sign x) * |x| = x
[PROOFSTEP]
rw [sign_neg hx, abs_of_neg hx, coe_neg_one, neg_one_mul, neg_neg]
[GOAL]
case inr.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b : α
⊢ ↑(↑sign 0) * |0| = 0
[PROOFSTEP]
rw [abs_zero, mul_zero]
[GOAL]
case inr.inr
α : Type u_1
inst✝ : LinearOrderedRing α
a b x : α
hx : 0 < x
⊢ ↑(↑sign x) * |x| = x
[PROOFSTEP]
rw [sign_pos hx, abs_of_pos hx, coe_one, one_mul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b x : α
⊢ |x| * ↑(↑sign x) = x
[PROOFSTEP]
rcases lt_trichotomy x 0 with (hx | rfl | hx)
[GOAL]
case inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b x : α
hx : x < 0
⊢ |x| * ↑(↑sign x) = x
[PROOFSTEP]
rw [sign_neg hx, abs_of_neg hx, coe_neg_one, mul_neg_one, neg_neg]
[GOAL]
case inr.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a b : α
⊢ |0| * ↑(↑sign 0) = 0
[PROOFSTEP]
rw [abs_zero, zero_mul]
[GOAL]
case inr.inr
α : Type u_1
inst✝ : LinearOrderedRing α
a b x : α
hx : 0 < x
⊢ |x| * ↑(↑sign x) = x
[PROOFSTEP]
rw [sign_pos hx, abs_of_pos hx, coe_one, mul_one]
[GOAL]
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
⊢ ↑sign (-a) = -↑sign a
[PROOFSTEP]
simp_rw [sign_apply, Left.neg_pos_iff, Left.neg_neg_iff]
[GOAL]
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
⊢ (if a < 0 then 1 else if 0 < a then -1 else 0) = -if 0 < a then 1 else if a < 0 then -1 else 0
[PROOFSTEP]
split_ifs with h h'
[GOAL]
case pos
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
h : a < 0
h' : 0 < a
⊢ False
[PROOFSTEP]
exact False.elim (lt_asymm h h')
[GOAL]
case neg
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
h : a < 0
h' : ¬0 < a
⊢ 1 = - -1
[PROOFSTEP]
simp
[GOAL]
case pos
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
h : ¬a < 0
h✝ : 0 < a
⊢ -1 = -1
[PROOFSTEP]
simp
[GOAL]
case neg
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
h : ¬a < 0
h✝ : ¬0 < a
⊢ 0 = -0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
⊢ ↑sign (-a) = -↑sign a
[PROOFSTEP]
simp_rw [sign_apply, Right.neg_pos_iff, Right.neg_neg_iff]
[GOAL]
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
⊢ (if a < 0 then 1 else if 0 < a then -1 else 0) = -if 0 < a then 1 else if a < 0 then -1 else 0
[PROOFSTEP]
split_ifs with h h'
[GOAL]
case pos
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
h : a < 0
h' : 0 < a
⊢ False
[PROOFSTEP]
exact False.elim (lt_asymm h h')
[GOAL]
case neg
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
h : a < 0
h' : ¬0 < a
⊢ 1 = - -1
[PROOFSTEP]
simp
[GOAL]
case pos
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
h : ¬a < 0
h✝ : 0 < a
⊢ -1 = -1
[PROOFSTEP]
simp
[GOAL]
case neg
α : Type u_1
inst✝³ : AddGroup α
inst✝² : Preorder α
inst✝¹ : DecidableRel fun x x_1 => x < x_1
inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a : α
h : ¬a < 0
h✝ : ¬0 < a
⊢ 0 = -0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
ι : Type u_2
s : Finset ι
f : ι → α
hs : Finset.Nonempty s
t : SignType
h : ∀ (i : ι), i ∈ s → ↑sign (f i) = t
⊢ ↑sign (∑ i in s, f i) = t
[PROOFSTEP]
cases t
[GOAL]
case zero
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
ι : Type u_2
s : Finset ι
f : ι → α
hs : Finset.Nonempty s
h : ∀ (i : ι), i ∈ s → ↑sign (f i) = zero
⊢ ↑sign (∑ i in s, f i) = zero
[PROOFSTEP]
simp_rw [zero_eq_zero, sign_eq_zero_iff] at h ⊢
[GOAL]
case zero
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
ι : Type u_2
s : Finset ι
f : ι → α
hs : Finset.Nonempty s
h : ∀ (i : ι), i ∈ s → f i = 0
⊢ ∑ i in s, f i = 0
[PROOFSTEP]
exact Finset.sum_eq_zero h
[GOAL]
case neg
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
ι : Type u_2
s : Finset ι
f : ι → α
hs : Finset.Nonempty s
h : ∀ (i : ι), i ∈ s → ↑sign (f i) = neg
⊢ ↑sign (∑ i in s, f i) = neg
[PROOFSTEP]
simp_rw [neg_eq_neg_one, sign_eq_neg_one_iff] at h ⊢
[GOAL]
case neg
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
ι : Type u_2
s : Finset ι
f : ι → α
hs : Finset.Nonempty s
h : ∀ (i : ι), i ∈ s → f i < 0
⊢ ∑ i in s, f i < 0
[PROOFSTEP]
exact Finset.sum_neg h hs
[GOAL]
case pos
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
ι : Type u_2
s : Finset ι
f : ι → α
hs : Finset.Nonempty s
h : ∀ (i : ι), i ∈ s → ↑sign (f i) = pos
⊢ ↑sign (∑ i in s, f i) = pos
[PROOFSTEP]
simp_rw [pos_eq_one, sign_eq_one_iff] at h ⊢
[GOAL]
case pos
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
ι : Type u_2
s : Finset ι
f : ι → α
hs : Finset.Nonempty s
h : ∀ (i : ι), i ∈ s → 0 < f i
⊢ 0 < ∑ i in s, f i
[PROOFSTEP]
exact Finset.sum_pos h hs
[GOAL]
α : Type u_1
n : ℤ
⊢ sign n = ↑(↑SignType.sign n)
[PROOFSTEP]
obtain (n | _) | _ := n
[GOAL]
case ofNat.zero
α : Type u_1
⊢ sign (ofNat Nat.zero) = ↑(↑SignType.sign (ofNat Nat.zero))
[PROOFSTEP]
simp [sign, Int.sign_neg, negSucc_lt_zero]
[GOAL]
case ofNat.succ
α : Type u_1
n✝ : ℕ
⊢ sign (ofNat (Nat.succ n✝)) = ↑(↑SignType.sign (ofNat (Nat.succ n✝)))
[PROOFSTEP]
simp [sign, Int.sign_neg, negSucc_lt_zero]
[GOAL]
case negSucc
α : Type u_1
a✝ : ℕ
⊢ sign -[a✝+1] = ↑(↑SignType.sign -[a✝+1])
[PROOFSTEP]
simp [sign, Int.sign_neg, negSucc_lt_zero]
[GOAL]
α✝ α : Type u_1
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
⊢ ∃ β t sgn g,
(∀ (b : β), g b ∈ s) ∧
card t = ∑ a in s, Int.natAbs (f a) ∧ ∀ (a : α), a ∈ s → (∑ b in t, if g b = a then ↑(sgn b) else 0) = f a
[PROOFSTEP]
refine'
⟨(Σ _ : { x // x ∈ s }, ℕ), Finset.univ.sigma fun a => range (f a).natAbs, fun a => sign (f a.1), fun a => a.1,
fun a => a.1.2, _, _⟩
[GOAL]
case refine'_1
α✝ α : Type u_1
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
⊢ card (Finset.sigma univ fun a => range (Int.natAbs (f ↑a))) = ∑ a in s, Int.natAbs (f a)
[PROOFSTEP]
simp [sum_attach (f := fun a => (f a).natAbs)]
[GOAL]
case refine'_2
α✝ α : Type u_1
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
⊢ ∀ (a : α),
a ∈ s →
(∑ b in Finset.sigma univ fun a => range (Int.natAbs (f ↑a)),
if (fun a => ↑a.fst) b = a then ↑((fun a => ↑sign (f ↑a.fst)) b) else 0) =
f a
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_2
α✝ α : Type u_1
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
x : α
hx : x ∈ s
⊢ (∑ b in Finset.sigma univ fun a => range (Int.natAbs (f ↑a)),
if (fun a => ↑a.fst) b = x then ↑((fun a => ↑sign (f ↑a.fst)) b) else 0) =
f x
[PROOFSTEP]
simp [sum_sigma, hx, ← Int.sign_eq_sign, Int.sign_mul_abs, mul_comm |f _|,
sum_attach (s := s) (f := fun y => if y = x then f y else 0)]
[GOAL]
α✝ α : Type u_1
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
β : Type u_1
t : Finset β
sgn : β → SignType
g : β → α
hg : ∀ (b : β), g b ∈ s
ht : card t = ∑ a in s, Int.natAbs (f a)
hf : ∀ (a : α), a ∈ s → (∑ b in t, if g b = a then ↑(sgn b) else 0) = f a
⊢ Fintype.card { x // x ∈ t } = ∑ a in s, Int.natAbs (f a)
[PROOFSTEP]
simp [ht]
[GOAL]
α✝ α : Type u_1
inst✝¹ : Nonempty α
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
n : ℕ
h : ∑ i in s, Int.natAbs (f i) ≤ n
⊢ ∃ β x sgn g,
(∀ (b : β), ¬g b ∈ s → sgn b = 0) ∧
Fintype.card β = n ∧ ∀ (a : α), a ∈ s → (∑ i : β, if g i = a then ↑(sgn i) else 0) = f a
[PROOFSTEP]
obtain ⟨β, _, sgn, g, hg, hβ, hf⟩ := exists_signed_sum s f
[GOAL]
case intro.intro.intro.intro.intro.intro
α✝ α : Type u_1
inst✝¹ : Nonempty α
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
n : ℕ
h : ∑ i in s, Int.natAbs (f i) ≤ n
β : Type u_1
w✝ : Fintype β
sgn : β → SignType
g : β → α
hg : ∀ (b : β), g b ∈ s
hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a)
hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a
⊢ ∃ β x sgn g,
(∀ (b : β), ¬g b ∈ s → sgn b = 0) ∧
Fintype.card β = n ∧ ∀ (a : α), a ∈ s → (∑ i : β, if g i = a then ↑(sgn i) else 0) = f a
[PROOFSTEP]
refine'
⟨Sum β (Fin (n - ∑ i in s, (f i).natAbs)), inferInstance, Sum.elim sgn 0,
Sum.elim g (Classical.arbitrary (Fin (n - Finset.sum s fun i => Int.natAbs (f i)) → α)), _, by simp [hβ, h],
fun a ha => by simp [hf _ ha]⟩
[GOAL]
α✝ α : Type u_1
inst✝¹ : Nonempty α
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
n : ℕ
h : ∑ i in s, Int.natAbs (f i) ≤ n
β : Type u_1
w✝ : Fintype β
sgn : β → SignType
g : β → α
hg : ∀ (b : β), g b ∈ s
hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a)
hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a
⊢ Fintype.card (β ⊕ Fin (n - ∑ i in s, Int.natAbs (f i))) = n
[PROOFSTEP]
simp [hβ, h]
[GOAL]
α✝ α : Type u_1
inst✝¹ : Nonempty α
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
n : ℕ
h : ∑ i in s, Int.natAbs (f i) ≤ n
β : Type u_1
w✝ : Fintype β
sgn : β → SignType
g : β → α
hg : ∀ (b : β), g b ∈ s
hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a)
hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a
a : α
ha : a ∈ s
⊢ (∑ i : β ⊕ Fin (n - ∑ i in s, Int.natAbs (f i)),
if Sum.elim g (Classical.arbitrary (Fin (n - ∑ i in s, Int.natAbs (f i)) → α)) i = a then ↑(Sum.elim sgn 0 i)
else 0) =
f a
[PROOFSTEP]
simp [hf _ ha]
[GOAL]
case intro.intro.intro.intro.intro.intro
α✝ α : Type u_1
inst✝¹ : Nonempty α
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
n : ℕ
h : ∑ i in s, Int.natAbs (f i) ≤ n
β : Type u_1
w✝ : Fintype β
sgn : β → SignType
g : β → α
hg : ∀ (b : β), g b ∈ s
hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a)
hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a
⊢ ∀ (b : β ⊕ Fin (n - ∑ i in s, Int.natAbs (f i))),
¬Sum.elim g (Classical.arbitrary (Fin (n - ∑ i in s, Int.natAbs (f i)) → α)) b ∈ s → Sum.elim sgn 0 b = 0
[PROOFSTEP]
rintro (b | b) hb
[GOAL]
case intro.intro.intro.intro.intro.intro.inl
α✝ α : Type u_1
inst✝¹ : Nonempty α
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
n : ℕ
h : ∑ i in s, Int.natAbs (f i) ≤ n
β : Type u_1
w✝ : Fintype β
sgn : β → SignType
g : β → α
hg : ∀ (b : β), g b ∈ s
hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a)
hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a
b : β
hb : ¬Sum.elim g (Classical.arbitrary (Fin (n - ∑ i in s, Int.natAbs (f i)) → α)) (Sum.inl b) ∈ s
⊢ Sum.elim sgn 0 (Sum.inl b) = 0
[PROOFSTEP]
cases hb (hg _)
[GOAL]
case intro.intro.intro.intro.intro.intro.inr
α✝ α : Type u_1
inst✝¹ : Nonempty α
inst✝ : DecidableEq α
s : Finset α
f : α → ℤ
n : ℕ
h : ∑ i in s, Int.natAbs (f i) ≤ n
β : Type u_1
w✝ : Fintype β
sgn : β → SignType
g : β → α
hg : ∀ (b : β), g b ∈ s
hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a)
hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a
b : Fin (n - ∑ i in s, Int.natAbs (f i))
hb : ¬Sum.elim g (Classical.arbitrary (Fin (n - ∑ i in s, Int.natAbs (f i)) → α)) (Sum.inr b) ∈ s
⊢ Sum.elim sgn 0 (Sum.inr b) = 0
[PROOFSTEP]
rfl
|
{"mathlib_filename": "Mathlib.Data.Sign", "llama_tokens": 57892}
|
{"mathlib_filename": "Mathlib.Data.ULift", "llama_tokens": 0}
|
|
[GOAL]
c : Char
⊢ 0 < utf8Size c
[PROOFSTEP]
simp only [utf8Size]
[GOAL]
c : Char
⊢ 0 <
if c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 then UInt32.ofNatCore 1 utf8Size.proof_2
else
if c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 then UInt32.ofNatCore 2 utf8Size.proof_4
else
if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6
else UInt32.ofNatCore 4 utf8Size.proof_7
[PROOFSTEP]
repeat (split; decide)
[GOAL]
c : Char
⊢ 0 <
if c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 then UInt32.ofNatCore 1 utf8Size.proof_2
else
if c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 then UInt32.ofNatCore 2 utf8Size.proof_4
else
if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6
else UInt32.ofNatCore 4 utf8Size.proof_7
[PROOFSTEP]
split
[GOAL]
case inl
c : Char
h✝ : c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
⊢ 0 < UInt32.ofNatCore 1 utf8Size.proof_2
case inr
c : Char
h✝ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
⊢ 0 <
if c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 then UInt32.ofNatCore 2 utf8Size.proof_4
else
if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6
else UInt32.ofNatCore 4 utf8Size.proof_7
[PROOFSTEP]
decide
[GOAL]
case inr
c : Char
h✝ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
⊢ 0 <
if c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 then UInt32.ofNatCore 2 utf8Size.proof_4
else
if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6
else UInt32.ofNatCore 4 utf8Size.proof_7
[PROOFSTEP]
split
[GOAL]
case inr.inl
c : Char
h✝¹ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
h✝ : c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3
⊢ 0 < UInt32.ofNatCore 2 utf8Size.proof_4
case inr.inr
c : Char
h✝¹ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
h✝ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3
⊢ 0 <
if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6
else UInt32.ofNatCore 4 utf8Size.proof_7
[PROOFSTEP]
decide
[GOAL]
case inr.inr
c : Char
h✝¹ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
h✝ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3
⊢ 0 <
if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6
else UInt32.ofNatCore 4 utf8Size.proof_7
[PROOFSTEP]
split
[GOAL]
case inr.inr.inl
c : Char
h✝² : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
h✝¹ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3
h✝ : c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5
⊢ 0 < UInt32.ofNatCore 3 utf8Size.proof_6
case inr.inr.inr
c : Char
h✝² : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
h✝¹ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3
h✝ : ¬c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5
⊢ 0 < UInt32.ofNatCore 4 utf8Size.proof_7
[PROOFSTEP]
decide
[GOAL]
case inr.inr.inr
c : Char
h✝² : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
h✝¹ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3
h✝ : ¬c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5
⊢ 0 < UInt32.ofNatCore 4 utf8Size.proof_7
[PROOFSTEP]
split
[GOAL]
case inr.inr.inr
c : Char
h✝² : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1
h✝¹ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3
h✝ : ¬c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5
⊢ 0 < UInt32.ofNatCore 4 utf8Size.proof_7
[PROOFSTEP]
decide
[GOAL]
c : Char
h : isValidCharNat (toNat c)
⊢ ofNat (toNat c) = c
[PROOFSTEP]
rw [Char.ofNat, dif_pos h]
[GOAL]
c : Char
h : isValidCharNat (toNat c)
⊢ ofNatAux (toNat c) h = c
[PROOFSTEP]
rfl
|
{"mathlib_filename": "Mathlib.Data.Char", "llama_tokens": 2000}
|
[GOAL]
ds₁ ds₂ ds₃ is : List ℕ
eq : ds₁ = ds₂
h : Forall₂ (fun x x_1 => x < x_1) is ds₁
⊢ ↑(cast (_ : HolorIndex ds₁ = HolorIndex ds₂) { val := is, property := h }) = is
[PROOFSTEP]
subst eq
[GOAL]
ds₁ ds₃ is : List ℕ
h : Forall₂ (fun x x_1 => x < x_1) is ds₁
⊢ ↑(cast (_ : HolorIndex ds₁ = HolorIndex ds₁) { val := is, property := h }) = is
[PROOFSTEP]
rfl
[GOAL]
ds₁ ds₂ ds₃ is : List ℕ
h : Forall₂ (fun x x_1 => x < x_1) is (ds₁ ++ ds₂ ++ ds₃)
⊢ ↑(take (assocRight { val := is, property := h })) = ↑(take (take { val := is, property := h }))
[PROOFSTEP]
simp [assocRight, take, cast_type, List.take_take, Nat.le_add_right, min_eq_left]
[GOAL]
ds₁ ds₂ ds₃ is : List ℕ
h : Forall₂ (fun x x_1 => x < x_1) is (ds₁ ++ ds₂ ++ ds₃)
⊢ ↑(take (drop (assocRight { val := is, property := h }))) = ↑(drop (take { val := is, property := h }))
[PROOFSTEP]
simp [assocRight, take, drop, cast_type, List.drop_take]
[GOAL]
ds₁ ds₂ ds₃ is : List ℕ
h : Forall₂ (fun x x_1 => x < x_1) is (ds₁ ++ ds₂ ++ ds₃)
⊢ ↑(drop (drop (assocRight { val := is, property := h }))) = ↑(drop { val := is, property := h })
[PROOFSTEP]
simp [add_comm, assocRight, drop, cast_type, List.drop_drop]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
eq : ds₁ = ds₂
a : Holor α ds₁
⊢ cast (_ : Holor α ds₁ = Holor α ds₂) a = fun t => a (cast (_ : HolorIndex ds₂ = HolorIndex ds₁) t)
[PROOFSTEP]
subst eq
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₃ : List ℕ
a : Holor α ds₁
⊢ cast (_ : Holor α ds₁ = Holor α ds₁) a = fun t => a (cast (_ : HolorIndex ds₁ = HolorIndex ds₁) t)
[PROOFSTEP]
rfl
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Semigroup α
x : Holor α ds₁
y : Holor α ds₂
z : Holor α ds₃
t : HolorIndex (ds₁ ++ ds₂ ++ ds₃)
⊢ (x ⊗ y ⊗ z) t = assocLeft (x ⊗ (y ⊗ z)) t
[PROOFSTEP]
rw [assocLeft]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Semigroup α
x : Holor α ds₁
y : Holor α ds₂
z : Holor α ds₃
t : HolorIndex (ds₁ ++ ds₂ ++ ds₃)
⊢ (x ⊗ y ⊗ z) t = cast (_ : Holor α (ds₁ ++ (ds₂ ++ ds₃)) = Holor α (ds₁ ++ ds₂ ++ ds₃)) (x ⊗ (y ⊗ z)) t
[PROOFSTEP]
unfold mul
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Semigroup α
x : Holor α ds₁
y : Holor α ds₂
z : Holor α ds₃
t : HolorIndex (ds₁ ++ ds₂ ++ ds₃)
⊢ x (HolorIndex.take (HolorIndex.take t)) * y (HolorIndex.drop (HolorIndex.take t)) * z (HolorIndex.drop t) =
cast (_ : Holor α (ds₁ ++ (ds₂ ++ ds₃)) = Holor α (ds₁ ++ ds₂ ++ ds₃))
(fun t =>
x (HolorIndex.take t) * (y (HolorIndex.take (HolorIndex.drop t)) * z (HolorIndex.drop (HolorIndex.drop t))))
t
[PROOFSTEP]
rw [mul_assoc, ← HolorIndex.take_take, ← HolorIndex.drop_take, ← HolorIndex.drop_drop, cast_type]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Semigroup α
x : Holor α ds₁
y : Holor α ds₂
z : Holor α ds₃
t : HolorIndex (ds₁ ++ ds₂ ++ ds₃)
⊢ x (HolorIndex.take (HolorIndex.assocRight t)) *
(y (HolorIndex.take (HolorIndex.drop (HolorIndex.assocRight t))) *
z (HolorIndex.drop (HolorIndex.drop (HolorIndex.assocRight t)))) =
(fun t =>
x (HolorIndex.take (cast (_ : HolorIndex (ds₁ ++ ds₂ ++ ds₃) = HolorIndex (ds₁ ++ (ds₂ ++ ds₃))) t)) *
(y
(HolorIndex.take
(HolorIndex.drop (cast (_ : HolorIndex (ds₁ ++ ds₂ ++ ds₃) = HolorIndex (ds₁ ++ (ds₂ ++ ds₃))) t))) *
z
(HolorIndex.drop
(HolorIndex.drop (cast (_ : HolorIndex (ds₁ ++ ds₂ ++ ds₃) = HolorIndex (ds₁ ++ (ds₂ ++ ds₃))) t)))))
t
case eq
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Semigroup α
x : Holor α ds₁
y : Holor α ds₂
z : Holor α ds₃
t : HolorIndex (ds₁ ++ ds₂ ++ ds₃)
⊢ ds₁ ++ (ds₂ ++ ds₃) = ds₁ ++ ds₂ ++ ds₃
[PROOFSTEP]
rfl
[GOAL]
case eq
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Semigroup α
x : Holor α ds₁
y : Holor α ds₂
z : Holor α ds₃
t : HolorIndex (ds₁ ++ ds₂ ++ ds₃)
⊢ ds₁ ++ (ds₂ ++ ds₃) = ds₁ ++ ds₂ ++ ds₃
[PROOFSTEP]
rw [append_assoc]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Semigroup α
x : Holor α ds₁
y : Holor α ds₂
z : Holor α ds₃
⊢ HEq (x ⊗ y ⊗ z) (x ⊗ (y ⊗ z))
[PROOFSTEP]
simp [cast_heq, mul_assoc0, assocLeft]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Monoid α
x : Holor α []
y : Holor α ds
⊢ x ⊗ y = x { val := [], property := (_ : Forall₂ (fun x x_1 => x < x_1) [] []) } • y
[PROOFSTEP]
simp [mul, SMul.smul, HolorIndex.take, HolorIndex.drop, HSMul.hSMul]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
p : HolorIndex (d :: ds) → Prop
t : HolorIndex (d :: ds)
i : ℕ
is : List ℕ
h : ↑t = i :: is
⊢ Forall₂ (fun x x_1 => x < x_1) (i :: is) (d :: ds)
[PROOFSTEP]
rw [← h]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
p : HolorIndex (d :: ds) → Prop
t : HolorIndex (d :: ds)
i : ℕ
is : List ℕ
h : ↑t = i :: is
⊢ Forall₂ (fun x x_1 => x < x_1) (↑t) (d :: ds)
[PROOFSTEP]
exact t.2
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
x y : Holor α (d :: ds)
h : slice x = slice y
t : HolorIndex (d :: ds)
i : ℕ
is : List ℕ
hiis : ↑t = i :: is
⊢ Forall₂ (fun x x_1 => x < x_1) (i :: is) (d :: ds)
[PROOFSTEP]
rw [← hiis]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
x y : Holor α (d :: ds)
h : slice x = slice y
t : HolorIndex (d :: ds)
i : ℕ
is : List ℕ
hiis : ↑t = i :: is
⊢ Forall₂ (fun x x_1 => x < x_1) (↑t) (d :: ds)
[PROOFSTEP]
exact t.2
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
x y : Holor α (d :: ds)
h : slice x = slice y
t : HolorIndex (d :: ds)
i : ℕ
is : List ℕ
hiis : ↑t = i :: is
hiisdds : Forall₂ (fun x x_1 => x < x_1) (i :: is) (d :: ds)
hid : i < d
hisds : Forall₂ (fun x x_1 => x < x_1) is ds
⊢ slice x i hid { val := is, property := hisds } = slice y i hid { val := is, property := hisds }
[PROOFSTEP]
rw [h]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
i j : ℕ
hid : i < d
x : Holor α ds
t : HolorIndex ds
h : i = j
⊢ slice (unitVec d j ⊗ x) i hid t = ite (i = j) x 0 t
[PROOFSTEP]
simp [slice, mul, HolorIndex.take, unitVec, HolorIndex.drop, h]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
i j : ℕ
hid : i < d
x : Holor α ds
t : HolorIndex ds
h : ¬i = j
⊢ slice (unitVec d j ⊗ x) i hid t = ite (i = j) x 0 t
[PROOFSTEP]
simp [slice, mul, HolorIndex.take, unitVec, HolorIndex.drop, h]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
i j : ℕ
hid : i < d
x : Holor α ds
t : HolorIndex ds
h : ¬i = j
⊢ 0 = OfNat.ofNat 0 t
[PROOFSTEP]
rfl
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Add α
i : ℕ
hid : i < d
x y : Holor α (d :: ds)
t : HolorIndex ds
⊢ (slice x i hid + slice y i hid) t = slice (x + y) i hid t
[PROOFSTEP]
simp [slice, (· + ·), Add.add]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : AddCommMonoid α
β : Type
i : ℕ
hid : i < d
s : Finset β
f : β → Holor α (d :: ds)
⊢ ∑ x in s, slice (f x) i hid = slice (∑ x in s, f x) i hid
[PROOFSTEP]
letI := Classical.decEq β
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : AddCommMonoid α
β : Type
i : ℕ
hid : i < d
s : Finset β
f : β → Holor α (d :: ds)
this : DecidableEq β := Classical.decEq β
⊢ ∑ x in s, slice (f x) i hid = slice (∑ x in s, f x) i hid
[PROOFSTEP]
refine' Finset.induction_on s _ _
[GOAL]
case refine'_1
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : AddCommMonoid α
β : Type
i : ℕ
hid : i < d
s : Finset β
f : β → Holor α (d :: ds)
this : DecidableEq β := Classical.decEq β
⊢ ∑ x in ∅, slice (f x) i hid = slice (∑ x in ∅, f x) i hid
[PROOFSTEP]
simp [slice_zero]
[GOAL]
case refine'_2
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : AddCommMonoid α
β : Type
i : ℕ
hid : i < d
s : Finset β
f : β → Holor α (d :: ds)
this : DecidableEq β := Classical.decEq β
⊢ ∀ ⦃a : β⦄ {s : Finset β},
¬a ∈ s →
∑ x in s, slice (f x) i hid = slice (∑ x in s, f x) i hid →
∑ x in insert a s, slice (f x) i hid = slice (∑ x in insert a s, f x) i hid
[PROOFSTEP]
intro _ _ h_not_in ih
[GOAL]
case refine'_2
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : AddCommMonoid α
β : Type
i : ℕ
hid : i < d
s : Finset β
f : β → Holor α (d :: ds)
this : DecidableEq β := Classical.decEq β
a✝ : β
s✝ : Finset β
h_not_in : ¬a✝ ∈ s✝
ih : ∑ x in s✝, slice (f x) i hid = slice (∑ x in s✝, f x) i hid
⊢ ∑ x in insert a✝ s✝, slice (f x) i hid = slice (∑ x in insert a✝ s✝, f x) i hid
[PROOFSTEP]
rw [Finset.sum_insert h_not_in, ih, slice_add, Finset.sum_insert h_not_in]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
⊢ ∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d) = x
[PROOFSTEP]
apply slice_eq _ _ _
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
⊢ slice (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d)) = slice x
[PROOFSTEP]
ext i hid
[GOAL]
case h.h
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
⊢ slice (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d)) i hid = slice x i hid
[PROOFSTEP]
rw [← slice_sum]
[GOAL]
case h.h
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
⊢ ∑ x_1 in Finset.attach (Finset.range d), slice (unitVec d ↑x_1 ⊗ slice x ↑x_1 (_ : Nat.succ ↑x_1 ≤ d)) i hid =
slice x i hid
[PROOFSTEP]
simp only [slice_unitVec_mul hid]
[GOAL]
case h.h
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
⊢ (∑ x_1 in Finset.attach (Finset.range d), if i = ↑x_1 then slice x ↑x_1 (_ : Nat.succ ↑x_1 ≤ d) else 0) =
slice x i hid
[PROOFSTEP]
rw [Finset.sum_eq_single (Subtype.mk i <| Finset.mem_range.2 hid)]
[GOAL]
case h.h
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
⊢ (if i = ↑{ val := i, property := (_ : i ∈ Finset.range d) } then
slice x ↑{ val := i, property := (_ : i ∈ Finset.range d) }
(_ : Nat.succ ↑{ val := i, property := (_ : i ∈ Finset.range d) } ≤ d)
else 0) =
slice x i hid
[PROOFSTEP]
simp
[GOAL]
case h.h.h₀
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
⊢ ∀ (b : { x // x ∈ Finset.range d }),
b ∈ Finset.attach (Finset.range d) →
b ≠ { val := i, property := (_ : i ∈ Finset.range d) } →
(if i = ↑b then slice x ↑b (_ : Nat.succ ↑b ≤ d) else 0) = 0
[PROOFSTEP]
intro (b : { x // x ∈ Finset.range d }) (_ : b ∈ (Finset.range d).attach) (hbi : b ≠ ⟨i, _⟩)
[GOAL]
case h.h.h₀
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
b : { x // x ∈ Finset.range d }
x✝ : b ∈ Finset.attach (Finset.range d)
hbi : b ≠ { val := i, property := (_ : i ∈ Finset.range d) }
⊢ (if i = ↑b then slice x ↑b (_ : Nat.succ ↑b ≤ d) else 0) = 0
[PROOFSTEP]
have hbi' : i ≠ b := by simpa only [Ne.def, Subtype.ext_iff, Subtype.coe_mk] using hbi.symm
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
b : { x // x ∈ Finset.range d }
x✝ : b ∈ Finset.attach (Finset.range d)
hbi : b ≠ { val := i, property := (_ : i ∈ Finset.range d) }
⊢ i ≠ ↑b
[PROOFSTEP]
simpa only [Ne.def, Subtype.ext_iff, Subtype.coe_mk] using hbi.symm
[GOAL]
case h.h.h₀
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
b : { x // x ∈ Finset.range d }
x✝ : b ∈ Finset.attach (Finset.range d)
hbi : b ≠ { val := i, property := (_ : i ∈ Finset.range d) }
hbi' : i ≠ ↑b
⊢ (if i = ↑b then slice x ↑b (_ : Nat.succ ↑b ≤ d) else 0) = 0
[PROOFSTEP]
simp [hbi']
[GOAL]
case h.h.h₁
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
⊢ ¬{ val := i, property := (_ : i ∈ Finset.range d) } ∈ Finset.attach (Finset.range d) →
(if i = ↑{ val := i, property := (_ : i ∈ Finset.range d) } then
slice x ↑{ val := i, property := (_ : i ∈ Finset.range d) }
(_ : Nat.succ ↑{ val := i, property := (_ : i ∈ Finset.range d) } ≤ d)
else 0) =
0
[PROOFSTEP]
intro (hid' : Subtype.mk i _ ∉ Finset.attach (Finset.range d))
[GOAL]
case h.h.h₁
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
hid' : ¬{ val := i, property := (_ : i ∈ Finset.range d) } ∈ Finset.attach (Finset.range d)
⊢ (if i = ↑{ val := i, property := (_ : i ∈ Finset.range d) } then
slice x ↑{ val := i, property := (_ : i ∈ Finset.range d) }
(_ : Nat.succ ↑{ val := i, property := (_ : i ∈ Finset.range d) } ≤ d)
else 0) =
0
[PROOFSTEP]
exfalso
[GOAL]
case h.h.h₁.h
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α (d :: ds)
i : ℕ
hid : i < d
hid' : ¬{ val := i, property := (_ : i ∈ Finset.range d) } ∈ Finset.attach (Finset.range d)
⊢ False
[PROOFSTEP]
exact absurd (Finset.mem_attach _ _) hid'
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
x : Holor α []
⊢ CPRankMax 1 x
[PROOFSTEP]
have h := CPRankMax.succ 0 x 0 (CPRankMax1.nil x) CPRankMax.zero
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
x : Holor α []
h : CPRankMax (0 + 1) (x + 0)
⊢ CPRankMax 1 x
[PROOFSTEP]
rwa [add_zero x, zero_add] at h
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
x : Holor α ds
h : CPRankMax1 x
⊢ CPRankMax 1 x
[PROOFSTEP]
have h' := CPRankMax.succ 0 x 0 h CPRankMax.zero
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
x : Holor α ds
h : CPRankMax1 x
h' : CPRankMax (0 + 1) (x + 0)
⊢ CPRankMax 1 x
[PROOFSTEP]
rwa [zero_add, add_zero] at h'
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
n : ℕ
x y : Holor α ds
hx : CPRankMax 0 x
hy : CPRankMax n y
⊢ CPRankMax (0 + n) (x + y)
[PROOFSTEP]
match hx with
| CPRankMax.zero => simp only [zero_add, hy]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
n : ℕ
x y : Holor α ds
hx : CPRankMax 0 x
hy : CPRankMax n y
⊢ CPRankMax (0 + n) (0 + y)
[PROOFSTEP]
simp only [zero_add, hy]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
m n : ℕ
y x₁ x₂ : Holor α ds
hx₁ : CPRankMax1 x₁
hx₂ : CPRankMax m x₂
hy : CPRankMax n y
⊢ CPRankMax (m + 1 + n) (x₁ + x₂ + y)
[PROOFSTEP]
simp only [add_comm, add_assoc]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
m n : ℕ
y x₁ x₂ : Holor α ds
hx₁ : CPRankMax1 x₁
hx₂ : CPRankMax m x₂
hy : CPRankMax n y
⊢ CPRankMax (n + (m + 1)) (x₁ + (x₂ + y))
[PROOFSTEP]
apply CPRankMax.succ
[GOAL]
case a
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
m n : ℕ
y x₁ x₂ : Holor α ds
hx₁ : CPRankMax1 x₁
hx₂ : CPRankMax m x₂
hy : CPRankMax n y
⊢ CPRankMax1 x₁
[PROOFSTEP]
assumption
[GOAL]
case a
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
m n : ℕ
y x₁ x₂ : Holor α ds
hx₁ : CPRankMax1 x₁
hx₂ : CPRankMax m x₂
hy : CPRankMax n y
⊢ CPRankMax (Nat.add n (Nat.add m 0)) (x₂ + y)
[PROOFSTEP]
simp only [Nat.add_eq, add_zero, add_comm n m]
[GOAL]
case a
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝¹ : Monoid α
inst✝ : AddMonoid α
m n : ℕ
y x₁ x₂ : Holor α ds
hx₁ : CPRankMax1 x₁
hx₂ : CPRankMax m x₂
hy : CPRankMax n y
⊢ CPRankMax (m + n) (x₂ + y)
[PROOFSTEP]
exact cprankMax_add hx₂ hy
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
x : Holor α [d]
⊢ CPRankMax 0 (x ⊗ 0)
[PROOFSTEP]
simp [mul_zero x, CPRankMax.zero]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
n : ℕ
x : Holor α [d]
y₁ y₂ : Holor α ds
hy₁ : CPRankMax1 y₁
hy₂ : CPRankMax n y₂
⊢ CPRankMax (n + 1) (x ⊗ (y₁ + y₂))
[PROOFSTEP]
rw [mul_left_distrib]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
n : ℕ
x : Holor α [d]
y₁ y₂ : Holor α ds
hy₁ : CPRankMax1 y₁
hy₂ : CPRankMax n y₂
⊢ CPRankMax (n + 1) (x ⊗ y₁ + x ⊗ y₂)
[PROOFSTEP]
rw [Nat.add_comm]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
n : ℕ
x : Holor α [d]
y₁ y₂ : Holor α ds
hy₁ : CPRankMax1 y₁
hy₂ : CPRankMax n y₂
⊢ CPRankMax (1 + n) (x ⊗ y₁ + x ⊗ y₂)
[PROOFSTEP]
apply cprankMax_add
[GOAL]
case a
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
n : ℕ
x : Holor α [d]
y₁ y₂ : Holor α ds
hy₁ : CPRankMax1 y₁
hy₂ : CPRankMax n y₂
⊢ CPRankMax 1 (x ⊗ y₁)
[PROOFSTEP]
exact cprankMax_1 (CPRankMax1.cons _ _ hy₁)
[GOAL]
case a
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
n : ℕ
x : Holor α [d]
y₁ y₂ : Holor α ds
hy₁ : CPRankMax1 y₁
hy₂ : CPRankMax n y₂
⊢ CPRankMax n (x ⊗ y₂)
[PROOFSTEP]
exact cprankMax_mul _ x y₂ hy₂
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
⊢ (∀ (x : β), x ∈ ∅ → CPRankMax n (f x)) → CPRankMax (Finset.card ∅ * n) (∑ x in ∅, f x)
[PROOFSTEP]
simp [CPRankMax.zero]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
⊢ ∀ ⦃a : β⦄ {s : Finset β},
¬a ∈ s →
((∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)) →
(∀ (x : β), x ∈ insert a s → CPRankMax n (f x)) →
CPRankMax (Finset.card (insert a s) * n) (∑ x in insert a s, f x)
[PROOFSTEP]
intro x s (h_x_notin_s : x ∉ s) ih h_cprank
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s✝ : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
x : β
s : Finset β
h_x_notin_s : ¬x ∈ s
ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)
h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1)
⊢ CPRankMax (Finset.card (insert x s) * n) (∑ x in insert x s, f x)
[PROOFSTEP]
simp only [Finset.sum_insert h_x_notin_s, Finset.card_insert_of_not_mem h_x_notin_s]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s✝ : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
x : β
s : Finset β
h_x_notin_s : ¬x ∈ s
ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)
h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1)
⊢ CPRankMax ((Finset.card s + 1) * n) (f x + ∑ x in s, f x)
[PROOFSTEP]
rw [Nat.right_distrib]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s✝ : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
x : β
s : Finset β
h_x_notin_s : ¬x ∈ s
ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)
h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1)
⊢ CPRankMax (Finset.card s * n + 1 * n) (f x + ∑ x in s, f x)
[PROOFSTEP]
simp only [Nat.one_mul, Nat.add_comm]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s✝ : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
x : β
s : Finset β
h_x_notin_s : ¬x ∈ s
ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)
h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1)
⊢ CPRankMax (n + Finset.card s * n) (f x + ∑ x in s, f x)
[PROOFSTEP]
have ih' : CPRankMax (Finset.card s * n) (∑ x in s, f x) :=
by
apply ih
intro (x : β) (h_x_in_s : x ∈ s)
simp only [h_cprank, Finset.mem_insert_of_mem, h_x_in_s]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s✝ : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
x : β
s : Finset β
h_x_notin_s : ¬x ∈ s
ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)
h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1)
⊢ CPRankMax (Finset.card s * n) (∑ x in s, f x)
[PROOFSTEP]
apply ih
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s✝ : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
x : β
s : Finset β
h_x_notin_s : ¬x ∈ s
ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)
h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1)
⊢ ∀ (x : β), x ∈ s → CPRankMax n (f x)
[PROOFSTEP]
intro (x : β) (h_x_in_s : x ∈ s)
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s✝ : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
x✝ : β
s : Finset β
h_x_notin_s : ¬x✝ ∈ s
ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)
h_cprank : ∀ (x : β), x ∈ insert x✝ s → CPRankMax n (f x)
x : β
h_x_in_s : x ∈ s
⊢ CPRankMax n (f x)
[PROOFSTEP]
simp only [h_cprank, Finset.mem_insert_of_mem, h_x_in_s]
[GOAL]
α : Type
d : ℕ
ds ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
β : Type u_1
n : ℕ
s✝ : Finset β
f : β → Holor α ds
this : DecidableEq β := Classical.decEq β
x : β
s : Finset β
h_x_notin_s : ¬x ∈ s
ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)
h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1)
ih' : CPRankMax (Finset.card s * n) (∑ x in s, f x)
⊢ CPRankMax (n + Finset.card s * n) (f x + ∑ x in s, f x)
[PROOFSTEP]
exact cprankMax_add (h_cprank x (Finset.mem_insert_self x s)) ih'
[GOAL]
α : Type
d✝ : ℕ
ds✝ ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
d : ℕ
ds : List ℕ
x : Holor α (d :: ds)
⊢ CPRankMax (prod (d :: ds)) x
[PROOFSTEP]
have h_summands :
∀ i : { x // x ∈ Finset.range d }, CPRankMax ds.prod (unitVec d i.1 ⊗ slice x i.1 (mem_range.1 i.2)) := fun i =>
cprankMax_mul _ _ _ (cprankMax_upper_bound (slice x i.1 (mem_range.1 i.2)))
[GOAL]
α : Type
d✝ : ℕ
ds✝ ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
d : ℕ
ds : List ℕ
x : Holor α (d :: ds)
h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
⊢ CPRankMax (prod (d :: ds)) x
[PROOFSTEP]
have h_dds_prod : (List.cons d ds).prod = Finset.card (Finset.range d) * prod ds := by simp [Finset.card_range]
[GOAL]
α : Type
d✝ : ℕ
ds✝ ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
d : ℕ
ds : List ℕ
x : Holor α (d :: ds)
h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
⊢ prod (d :: ds) = Finset.card (Finset.range d) * prod ds
[PROOFSTEP]
simp [Finset.card_range]
[GOAL]
α : Type
d✝ : ℕ
ds✝ ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
d : ℕ
ds : List ℕ
x : Holor α (d :: ds)
h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds
⊢ CPRankMax (prod (d :: ds)) x
[PROOFSTEP]
have :
CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d i.val ⊗ slice x i.val (mem_range.1 i.2)) :=
cprankMax_sum (Finset.range d).attach _ fun i _ => h_summands i
[GOAL]
α : Type
d✝ : ℕ
ds✝ ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
d : ℕ
ds : List ℕ
x : Holor α (d :: ds)
h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds
this :
CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
⊢ CPRankMax (prod (d :: ds)) x
[PROOFSTEP]
have h_cprankMax_sum :
CPRankMax (Finset.card (Finset.range d) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d i.val ⊗ slice x i.val (mem_range.1 i.2)) :=
by rwa [Finset.card_attach] at this
[GOAL]
α : Type
d✝ : ℕ
ds✝ ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
d : ℕ
ds : List ℕ
x : Holor α (d :: ds)
h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds
this :
CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
⊢ CPRankMax (Finset.card (Finset.range d) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
[PROOFSTEP]
rwa [Finset.card_attach] at this
[GOAL]
α : Type
d✝ : ℕ
ds✝ ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
d : ℕ
ds : List ℕ
x : Holor α (d :: ds)
h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds
this :
CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
h_cprankMax_sum :
CPRankMax (Finset.card (Finset.range d) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
⊢ CPRankMax (prod (d :: ds)) x
[PROOFSTEP]
rw [← sum_unitVec_mul_slice x]
[GOAL]
α : Type
d✝ : ℕ
ds✝ ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
d : ℕ
ds : List ℕ
x : Holor α (d :: ds)
h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds
this :
CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
h_cprankMax_sum :
CPRankMax (Finset.card (Finset.range d) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
⊢ CPRankMax (prod (d :: ds)) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d))
[PROOFSTEP]
rw [h_dds_prod]
[GOAL]
α : Type
d✝ : ℕ
ds✝ ds₁ ds₂ ds₃ : List ℕ
inst✝ : Ring α
d : ℕ
ds : List ℕ
x : Holor α (d :: ds)
h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds
this :
CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
h_cprankMax_sum :
CPRankMax (Finset.card (Finset.range d) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d))
⊢ CPRankMax (Finset.card (Finset.range d) * prod ds)
(∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d))
[PROOFSTEP]
exact h_cprankMax_sum
|
{"mathlib_filename": "Mathlib.Data.Holor", "llama_tokens": 13068}
|
{"mathlib_filename": "Mathlib.Data.TypeMax", "llama_tokens": 0}
|
|
[GOAL]
α : Sort u_1
a : α
⊢ out (mk a) = a
[PROOFSTEP]
let h := (mk a).2
[GOAL]
α : Sort u_1
a : α
h : ∃ a_1, (fun b => a_1 = b) = (mk a).fst := (mk a).snd
⊢ out (mk a) = a
[PROOFSTEP]
show Classical.choose h = a
[GOAL]
α : Sort u_1
a : α
h : ∃ a_1, (fun b => a_1 = b) = (mk a).fst := (mk a).snd
⊢ Classical.choose h = a
[PROOFSTEP]
have := Classical.choose_spec h
[GOAL]
α : Sort u_1
a : α
h : ∃ a_1, (fun b => a_1 = b) = (mk a).fst := (mk a).snd
this : (fun b => Classical.choose h = b) = (mk a).fst
⊢ Classical.choose h = a
[PROOFSTEP]
exact cast (congr_fun this a).symm rfl
[GOAL]
α : Sort u_1
s : α → Prop
h : ∃ a, (fun b => a = b) = s
⊢ mk (out { fst := s, snd := h }) = { fst := s, snd := h }
[PROOFSTEP]
simp [mk]
[GOAL]
α : Sort u_1
s : α → Prop
h : ∃ a, (fun b => a = b) = s
⊢ { fst := fun b => out { fst := s, snd := h } = b,
snd := (_ : ∃ a, (fun b => a = b) = fun b => out { fst := s, snd := h } = b) } =
{ fst := s, snd := h }
[PROOFSTEP]
congr
[GOAL]
case e_fst
α : Sort u_1
s : α → Prop
h : ∃ a, (fun b => a = b) = s
⊢ (fun b => out { fst := s, snd := h } = b) = s
[PROOFSTEP]
exact Classical.choose_spec h
[GOAL]
α : Sort u_1
a b : Erased α
h : out a = out b
⊢ a = b
[PROOFSTEP]
simpa using congr_arg mk h
[GOAL]
α : Sort u_1
β : Sort u_2
f : α → β
a : Erased α
⊢ out (map f a) = f (out a)
[PROOFSTEP]
simp [map]
[GOAL]
src✝ : Monad Erased := Erased.Monad
⊢ ∀ {α β : Type ?u.5529}, Functor.mapConst = Functor.map ∘ Function.const β
[PROOFSTEP]
intros
[GOAL]
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
⊢ Functor.mapConst = Functor.map ∘ Function.const β✝
[PROOFSTEP]
ext
[GOAL]
case h.h.h
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
x✝¹ : α✝
x✝ : Erased β✝
⊢ out (Functor.mapConst x✝¹ x✝) = out ((Functor.map ∘ Function.const β✝) x✝¹ x✝)
[PROOFSTEP]
simp [Functor.mapConst]
[GOAL]
src✝ : Monad Erased := Erased.Monad
⊢ ∀ {α : Type ?u.5529} (x : Erased α), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
src✝ : Monad Erased := Erased.Monad
α✝ : Type ?u.5529
x✝ : Erased α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
ext
[GOAL]
case h
src✝ : Monad Erased := Erased.Monad
α✝ : Type ?u.5529
x✝ : Erased α✝
⊢ out (id <$> x✝) = out x✝
[PROOFSTEP]
simp
[GOAL]
src✝ : Monad Erased := Erased.Monad
⊢ ∀ {α β : Type ?u.5529} (x : Erased α) (y : Erased β),
(SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
x✝ : Erased α✝
y✝ : Erased β✝
⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝
[PROOFSTEP]
ext
[GOAL]
case h
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
x✝ : Erased α✝
y✝ : Erased β✝
⊢ out (SeqLeft.seqLeft x✝ fun x => y✝) = out (Seq.seq (Function.const β✝ <$> x✝) fun x => y✝)
[PROOFSTEP]
simp [Seq.seq, Functor.mapConst, SeqLeft.seqLeft]
[GOAL]
src✝ : Monad Erased := Erased.Monad
⊢ ∀ {α β : Type ?u.5529} (x : Erased α) (y : Erased β),
(SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α id <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
x✝ : Erased α✝
y✝ : Erased β✝
⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝
[PROOFSTEP]
ext
[GOAL]
case h
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
x✝ : Erased α✝
y✝ : Erased β✝
⊢ out (SeqRight.seqRight x✝ fun x => y✝) = out (Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝)
[PROOFSTEP]
simp [Seq.seq, Functor.mapConst, SeqRight.seqRight]
[GOAL]
src✝ : Monad Erased := Erased.Monad
⊢ ∀ {α β : Type ?u.5529} (g : α → β) (x : Erased α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
[PROOFSTEP]
intros
[GOAL]
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
g✝ : α✝ → β✝
x✝ : Erased α✝
⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝
[PROOFSTEP]
ext
[GOAL]
case h
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
g✝ : α✝ → β✝
x✝ : Erased α✝
⊢ out (Seq.seq (pure g✝) fun x => x✝) = out (g✝ <$> x✝)
[PROOFSTEP]
simp [Seq.seq, Functor.mapConst, SeqRight.seqRight]
[GOAL]
src✝ : Monad Erased := Erased.Monad
⊢ ∀ {α β : Type ?u.5529} (f : α → β) (x : Erased α),
(do
let a ← x
pure (f a)) =
f <$> x
[PROOFSTEP]
intros
[GOAL]
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
f✝ : α✝ → β✝
x✝ : Erased α✝
⊢ (do
let a ← x✝
pure (f✝ a)) =
f✝ <$> x✝
[PROOFSTEP]
ext
[GOAL]
case h
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
f✝ : α✝ → β✝
x✝ : Erased α✝
⊢ (out do
let a ← x✝
pure (f✝ a)) =
out (f✝ <$> x✝)
[PROOFSTEP]
simp
[GOAL]
src✝ : Monad Erased := Erased.Monad
⊢ ∀ {α β : Type ?u.5529} (f : Erased (α → β)) (x : Erased α),
(do
let x_1 ← f
x_1 <$> x) =
Seq.seq f fun x_1 => x
[PROOFSTEP]
intros
[GOAL]
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
f✝ : Erased (α✝ → β✝)
x✝ : Erased α✝
⊢ (do
let x ← f✝
x <$> x✝) =
Seq.seq f✝ fun x => x✝
[PROOFSTEP]
ext
[GOAL]
case h
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
f✝ : Erased (α✝ → β✝)
x✝ : Erased α✝
⊢ (out do
let x ← f✝
x <$> x✝) =
out (Seq.seq f✝ fun x => x✝)
[PROOFSTEP]
simp [Seq.seq]
[GOAL]
src✝ : Monad Erased := Erased.Monad
⊢ ∀ {α β : Type ?u.5529} (x : α) (f : α → Erased β), pure x >>= f = f x
[PROOFSTEP]
intros
[GOAL]
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
x✝ : α✝
f✝ : α✝ → Erased β✝
⊢ pure x✝ >>= f✝ = f✝ x✝
[PROOFSTEP]
ext
[GOAL]
case h
src✝ : Monad Erased := Erased.Monad
α✝ β✝ : Type ?u.5529
x✝ : α✝
f✝ : α✝ → Erased β✝
⊢ out (pure x✝ >>= f✝) = out (f✝ x✝)
[PROOFSTEP]
simp
[GOAL]
src✝ : Monad Erased := Erased.Monad
⊢ ∀ {α β γ : Type ?u.5529} (x : Erased α) (f : α → Erased β) (g : β → Erased γ),
x >>= f >>= g = x >>= fun x => f x >>= g
[PROOFSTEP]
intros
[GOAL]
src✝ : Monad Erased := Erased.Monad
α✝ β✝ γ✝ : Type ?u.5529
x✝ : Erased α✝
f✝ : α✝ → Erased β✝
g✝ : β✝ → Erased γ✝
⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
ext
[GOAL]
case h
src✝ : Monad Erased := Erased.Monad
α✝ β✝ γ✝ : Type ?u.5529
x✝ : Erased α✝
f✝ : α✝ → Erased β✝
g✝ : β✝ → Erased γ✝
⊢ out (x✝ >>= f✝ >>= g✝) = out (x✝ >>= fun x => f✝ x >>= g✝)
[PROOFSTEP]
simp
|
{"mathlib_filename": "Mathlib.Data.Erased", "llama_tokens": 3582}
|
[GOAL]
⊢ size ≠ 0
[PROOFSTEP]
decide
[GOAL]
⊢ size ≠ 0
[PROOFSTEP]
decide
[GOAL]
⊢ size ≠ 0
[PROOFSTEP]
decide
[GOAL]
⊢ size ≠ 0
[PROOFSTEP]
decide
[GOAL]
n : ℕ
h : n < size
⊢ Nat.isValidChar ↑(UInt32.ofNat n).val
[PROOFSTEP]
rw [UInt32.val_eq_of_lt]
[GOAL]
n : ℕ
h : n < size
⊢ Nat.isValidChar n
n : ℕ h : n < size ⊢ n < UInt32.size
[PROOFSTEP]
exact Or.inl $ Nat.lt_trans h $ by decide
[GOAL]
n : ℕ
h : n < size
⊢ size < 55296
[PROOFSTEP]
decide
[GOAL]
n : ℕ
h : n < size
⊢ n < UInt32.size
[PROOFSTEP]
exact Nat.lt_trans h $ by decide
[GOAL]
n : ℕ
h : n < size
⊢ size < UInt32.size
[PROOFSTEP]
decide
|
{"mathlib_filename": "Mathlib.Data.UInt", "llama_tokens": 333}
|
[GOAL]
n : ℕ
F : TypeVec n → Type u
inst✝¹ : MvFunctor F
q : MvQPF F
G : TypeVec n → Type u
inst✝ : MvFunctor G
FG_abs : {α : TypeVec n} → F α → G α
FG_repr : {α : TypeVec n} → G α → F α
FG_abs_repr : ∀ {α : TypeVec n} (x : G α), FG_abs (FG_repr x) = x
FG_abs_map : ∀ {α β : TypeVec n} (f : α ⟹ β) (x : F α), FG_abs (f <$$> x) = f <$$> FG_abs x
α✝ : TypeVec n
x : G α✝
⊢ (fun {α} p => FG_abs (abs p)) ((fun {α} x => repr (FG_repr x)) x) = x
[PROOFSTEP]
dsimp
[GOAL]
n : ℕ
F : TypeVec n → Type u
inst✝¹ : MvFunctor F
q : MvQPF F
G : TypeVec n → Type u
inst✝ : MvFunctor G
FG_abs : {α : TypeVec n} → F α → G α
FG_repr : {α : TypeVec n} → G α → F α
FG_abs_repr : ∀ {α : TypeVec n} (x : G α), FG_abs (FG_repr x) = x
FG_abs_map : ∀ {α β : TypeVec n} (f : α ⟹ β) (x : F α), FG_abs (f <$$> x) = f <$$> FG_abs x
α✝ : TypeVec n
x : G α✝
⊢ FG_abs (abs (repr (FG_repr x))) = x
[PROOFSTEP]
rw [abs_repr, FG_abs_repr]
[GOAL]
n : ℕ
F : TypeVec n → Type u
inst✝¹ : MvFunctor F
q : MvQPF F
G : TypeVec n → Type u
inst✝ : MvFunctor G
FG_abs : {α : TypeVec n} → F α → G α
FG_repr : {α : TypeVec n} → G α → F α
FG_abs_repr : ∀ {α : TypeVec n} (x : G α), FG_abs (FG_repr x) = x
FG_abs_map : ∀ {α β : TypeVec n} (f : α ⟹ β) (x : F α), FG_abs (f <$$> x) = f <$$> FG_abs x
α✝ β✝ : TypeVec n
f : α✝ ⟹ β✝
p : MvPFunctor.Obj (P F) α✝
⊢ (fun {α} p => FG_abs (abs p)) (f <$$> p) = f <$$> (fun {α} p => FG_abs (abs p)) p
[PROOFSTEP]
dsimp
[GOAL]
n : ℕ
F : TypeVec n → Type u
inst✝¹ : MvFunctor F
q : MvQPF F
G : TypeVec n → Type u
inst✝ : MvFunctor G
FG_abs : {α : TypeVec n} → F α → G α
FG_repr : {α : TypeVec n} → G α → F α
FG_abs_repr : ∀ {α : TypeVec n} (x : G α), FG_abs (FG_repr x) = x
FG_abs_map : ∀ {α β : TypeVec n} (f : α ⟹ β) (x : F α), FG_abs (f <$$> x) = f <$$> FG_abs x
α✝ β✝ : TypeVec n
f : α✝ ⟹ β✝
p : MvPFunctor.Obj (P F) α✝
⊢ FG_abs (abs (f <$$> p)) = f <$$> FG_abs (abs p)
[PROOFSTEP]
rw [abs_map, FG_abs_map]
|
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Quot", "llama_tokens": 1097}
|
[GOAL]
n : ℕ
m : UFModel n
k : ℕ
le : n ≤ k
i : Fin k
⊢ ↑((fun i =>
if h : ↑i < n then
match parent m { val := ↑i, isLt := h } with
| { val := a, isLt := h' } => { val := a, isLt := (_ : a < k) }
else i)
i) ≠
↑i →
(fun i => if i < n then rank m i else 0) ↑i <
(fun i => if i < n then rank m i else 0)
↑((fun i =>
if h : ↑i < n then
match parent m { val := ↑i, isLt := h } with
| { val := a, isLt := h' } => { val := a, isLt := (_ : a < k) }
else i)
i)
[PROOFSTEP]
simp
[GOAL]
n : ℕ
m : UFModel n
k : ℕ
le : n ≤ k
i : Fin k
⊢ ¬↑(if h : ↑i < n then
{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }),
isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) }
else i) =
↑i →
(if ↑i < n then rank m ↑i else 0) <
if
↑(if h : ↑i < n then
{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }),
isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) }
else i) <
n then
rank m
↑(if h : ↑i < n then
{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }),
isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) }
else i)
else 0
[PROOFSTEP]
split
[GOAL]
case inl
n : ℕ
m : UFModel n
k : ℕ
le : n ≤ k
i : Fin k
h✝ : ↑i < n
⊢ ¬↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }),
isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } =
↑i →
rank m ↑i <
if
↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }),
isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } <
n then
rank m
↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }),
isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) }
else 0
[PROOFSTEP]
rename_i h
[GOAL]
case inr
n : ℕ
m : UFModel n
k : ℕ
le : n ≤ k
i : Fin k
h✝ : ¬↑i < n
⊢ ¬↑i = ↑i → 0 < 0
[PROOFSTEP]
rename_i h
[GOAL]
case inl
n : ℕ
m : UFModel n
k : ℕ
le : n ≤ k
i : Fin k
h : ↑i < n
⊢ ¬↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }),
isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } =
↑i →
rank m ↑i <
if
↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }),
isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } <
n then
rank m
↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }),
isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) }
else 0
[PROOFSTEP]
simp [(m.parent ⟨i, h⟩).2, h]
[GOAL]
case inl
n : ℕ
m : UFModel n
k : ℕ
le : n ≤ k
i : Fin k
h : ↑i < n
⊢ ¬↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) = ↑i → rank m ↑i < rank m ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) })
[PROOFSTEP]
exact m.rank_lt _
[GOAL]
case inr
n : ℕ
m : UFModel n
k : ℕ
le : n ≤ k
i : Fin k
h : ¬↑i < n
⊢ ¬↑i = ↑i → 0 < 0
[PROOFSTEP]
intro .
[GOAL]
case inr
n : ℕ
m : UFModel n
k : ℕ
le : n ≤ k
i : Fin k
h : ¬↑i < n
⊢ ¬↑i = ↑i → 0 < 0
[PROOFSTEP]
intro.
[GOAL]
n : ℕ
m : UFModel n
x y : Fin n
h : rank m ↑x < rank m ↑y
i : Fin n
⊢ ↑((fun i => if ↑x = ↑i then y else parent m i) i) ≠ ↑i →
rank m ↑i < rank m ↑((fun i => if ↑x = ↑i then y else parent m i) i)
[PROOFSTEP]
simp
[GOAL]
n : ℕ
m : UFModel n
x y : Fin n
h : rank m ↑x < rank m ↑y
i : Fin n
⊢ ¬↑(if ↑x = ↑i then y else parent m i) = ↑i → rank m ↑i < rank m ↑(if ↑x = ↑i then y else parent m i)
[PROOFSTEP]
split
[GOAL]
case inl
n : ℕ
m : UFModel n
x y : Fin n
h : rank m ↑x < rank m ↑y
i : Fin n
h✝ : ↑x = ↑i
⊢ ¬↑y = ↑i → rank m ↑i < rank m ↑y
[PROOFSTEP]
rename_i h'
[GOAL]
case inr
n : ℕ
m : UFModel n
x y : Fin n
h : rank m ↑x < rank m ↑y
i : Fin n
h✝ : ¬↑x = ↑i
⊢ ¬↑(parent m i) = ↑i → rank m ↑i < rank m ↑(parent m i)
[PROOFSTEP]
rename_i h'
[GOAL]
case inl
n : ℕ
m : UFModel n
x y : Fin n
h : rank m ↑x < rank m ↑y
i : Fin n
h' : ↑x = ↑i
⊢ ¬↑y = ↑i → rank m ↑i < rank m ↑y
[PROOFSTEP]
rw [← h']
[GOAL]
case inl
n : ℕ
m : UFModel n
x y : Fin n
h : rank m ↑x < rank m ↑y
i : Fin n
h' : ↑x = ↑i
⊢ ¬↑y = ↑x → rank m ↑x < rank m ↑y
[PROOFSTEP]
exact fun _ ↦ h
[GOAL]
case inr
n : ℕ
m : UFModel n
x y : Fin n
h : rank m ↑x < rank m ↑y
i : Fin n
h' : ¬↑x = ↑i
⊢ ¬↑(parent m i) = ↑i → rank m ↑i < rank m ↑(parent m i)
[PROOFSTEP]
exact m.rank_lt i
[GOAL]
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
⊢ ↑((fun i => if ↑x = ↑i then y else parent m i) i) ≠ ↑i →
(fun i => if ↑y = i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m i) ↑i <
(fun i => if ↑y = i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m i)
↑((fun i => if ↑x = ↑i then y else parent m i) i)
[PROOFSTEP]
simp
[GOAL]
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
⊢ ¬↑(if ↑x = ↑i then y else parent m i) = ↑i →
(if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) <
if ↑y = ↑(if ↑x = ↑i then y else parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1
else rank m ↑(if ↑x = ↑i then y else parent m i)
[PROOFSTEP]
split
[GOAL]
case inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h✝ : ↑x = ↑i
⊢ ¬↑y = ↑i →
(if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) <
if ↑y = ↑y ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
rename_i h₁
[GOAL]
case inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
⊢ ¬↑y = ↑i →
(if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) <
if ↑y = ↑y ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
try simp [h₁]
[GOAL]
case inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
⊢ ¬↑y = ↑i →
(if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) <
if ↑y = ↑y ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
simp [h₁]
[GOAL]
case inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
⊢ ¬↑y = ↑i →
(if ↑y = ↑i ∧ rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑i) <
if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
split
[GOAL]
case inl.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h✝ : ↑y = ↑i ∧ rank m ↑i = rank m ↑y
⊢ ¬↑y = ↑i → rank m ↑y + 1 < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
rename_i h₂
[GOAL]
case inl.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h✝ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
⊢ ¬↑y = ↑i → rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
rename_i h₂
[GOAL]
case inl.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ↑y = ↑i ∧ rank m ↑i = rank m ↑y
⊢ ¬↑y = ↑i → rank m ↑y + 1 < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
intro h
[GOAL]
case inl.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ↑y = ↑i ∧ rank m ↑i = rank m ↑y
h : ¬↑y = ↑i
⊢ rank m ↑y + 1 < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
try simp [h] at h₂ <;> simp [h₁, h₂, h]
[GOAL]
case inl.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ↑y = ↑i ∧ rank m ↑i = rank m ↑y
h : ¬↑y = ↑i
⊢ rank m ↑y + 1 < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
simp [h] at h₂
[GOAL]
case inl.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
⊢ ¬↑y = ↑i → rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
intro h
[GOAL]
case inl.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
h : ¬↑y = ↑i
⊢ rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
try simp [h] at h₂ <;> simp [h₁, h₂, h]
[GOAL]
case inl.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
h : ¬↑y = ↑i
⊢ rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
simp [h] at h₂
[GOAL]
case inl.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h : ¬↑y = ↑i
h₂ : True
⊢ rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
simp [h₁, h₂, h]
[GOAL]
case inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h✝ : ¬↑x = ↑i
⊢ ¬↑(parent m i) = ↑i →
(if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) <
if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
rename_i h₁
[GOAL]
case inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
⊢ ¬↑(parent m i) = ↑i →
(if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) <
if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
try simp [h₁]
[GOAL]
case inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
⊢ ¬↑(parent m i) = ↑i →
(if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) <
if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
simp [h₁]
[GOAL]
case inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
⊢ ¬↑(parent m i) = ↑i →
(if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) <
if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
split
[GOAL]
case inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h✝ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y
⊢ ¬↑(parent m i) = ↑i →
rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
rename_i h₂
[GOAL]
case inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h✝ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
⊢ ¬↑(parent m i) = ↑i →
rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
rename_i h₂
[GOAL]
case inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y
⊢ ¬↑(parent m i) = ↑i →
rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
intro h
[GOAL]
case inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y
h : ¬↑(parent m i) = ↑i
⊢ rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
try simp [h] at h₂ <;> simp [h₁, h₂, h]
[GOAL]
case inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y
h : ¬↑(parent m i) = ↑i
⊢ rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
simp [h] at h₂
[GOAL]
case inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
⊢ ¬↑(parent m i) = ↑i →
rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
intro h
[GOAL]
case inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
h : ¬↑(parent m i) = ↑i
⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
try simp [h] at h₂ <;> simp [h₁, h₂, h]
[GOAL]
case inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
h : ¬↑(parent m i) = ↑i
⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
simp [h] at h₂
[GOAL]
case inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h : ¬↑(parent m i) = ↑i
h₂ : ↑y = ↑i → ¬rank m ↑x = rank m ↑y
⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
simp [h₁, h₂, h]
[GOAL]
case inl.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
h : ¬↑y = ↑i
⊢ rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
simp [← h₁]
[GOAL]
case inl.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
h : ¬↑y = ↑i
⊢ rank m ↑x < if rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑y
[PROOFSTEP]
split
[GOAL]
case inl.inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
h : ¬↑y = ↑i
h✝ : rank m ↑x = rank m ↑y
⊢ rank m ↑x < rank m ↑y + 1
[PROOFSTEP]
rename_i h₃
[GOAL]
case inl.inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
h : ¬↑y = ↑i
h✝ : ¬rank m ↑x = rank m ↑y
⊢ rank m ↑x < rank m ↑y
[PROOFSTEP]
rename_i h₃
[GOAL]
case inl.inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
h : ¬↑y = ↑i
h₃ : rank m ↑x = rank m ↑y
⊢ rank m ↑x < rank m ↑y + 1
[PROOFSTEP]
rw [h₃]
[GOAL]
case inl.inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
h : ¬↑y = ↑i
h₃ : rank m ↑x = rank m ↑y
⊢ rank m ↑y < rank m ↑y + 1
[PROOFSTEP]
apply Nat.lt_succ_self
[GOAL]
case inl.inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y)
h : ¬↑y = ↑i
h₃ : ¬rank m ↑x = rank m ↑y
⊢ rank m ↑x < rank m ↑y
[PROOFSTEP]
exact lt_of_le_of_ne H h₃
[GOAL]
case inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y
h : ¬↑(parent m i) = ↑i
⊢ rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
have := Fin.eq_of_val_eq h₂.1
[GOAL]
case inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y
h : ¬↑(parent m i) = ↑i
this : y = i
⊢ rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
subst this
[GOAL]
case inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
h₁ : ¬↑x = ↑y
h₂ : ↑y = ↑y ∧ rank m ↑x = rank m ↑y
h : ¬↑(parent m y) = ↑y
⊢ rank m ↑y + 1 < if ↑y = ↑(parent m y) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m y)
[PROOFSTEP]
simp [hroot] at h
[GOAL]
case inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
h : ¬↑(parent m i) = ↑i
⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
have := m.rank_lt i h
[GOAL]
case inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
h : ¬↑(parent m i) = ↑i
this : rank m ↑i < rank m ↑(parent m i)
⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i)
[PROOFSTEP]
split
[GOAL]
case inr.inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
h : ¬↑(parent m i) = ↑i
this : rank m ↑i < rank m ↑(parent m i)
h✝ : ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y
⊢ rank m ↑i < rank m ↑y + 1
[PROOFSTEP]
rename_i h₃
[GOAL]
case inr.inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
h : ¬↑(parent m i) = ↑i
this : rank m ↑i < rank m ↑(parent m i)
h✝ : ¬(↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y)
⊢ rank m ↑i < rank m ↑(parent m i)
[PROOFSTEP]
rename_i h₃
[GOAL]
case inr.inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
h : ¬↑(parent m i) = ↑i
this : rank m ↑i < rank m ↑(parent m i)
h₃ : ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y
⊢ rank m ↑i < rank m ↑y + 1
[PROOFSTEP]
rw [h₃.1]
[GOAL]
case inr.inr.inl
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
h : ¬↑(parent m i) = ↑i
this : rank m ↑i < rank m ↑(parent m i)
h₃ : ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y
⊢ rank m ↑i < rank m ↑(parent m i) + 1
[PROOFSTEP]
exact Nat.lt_succ_of_lt this
[GOAL]
case inr.inr.inr
n : ℕ
m : UFModel n
x y : Fin n
H : rank m ↑x ≤ rank m ↑y
hroot : ↑(parent m y) = ↑y
i : Fin n
h₁ : ¬↑x = ↑i
h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y)
h : ¬↑(parent m i) = ↑i
this : rank m ↑i < rank m ↑(parent m i)
h₃ : ¬(↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y)
⊢ rank m ↑i < rank m ↑(parent m i)
[PROOFSTEP]
exact this
[GOAL]
α : Type u_1
β : Sort u_2
arr : Array α
f : α → β
n : ℕ
g : Fin n → β
e : n = Array.size arr
H :
∀ (i : ℕ) (h₁ : i < Array.size arr) (h₂ : i < n),
f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ }
⊢ Agrees arr f g
[PROOFSTEP]
cases e
[GOAL]
case refl
α : Type u_1
β : Sort u_2
arr : Array α
f : α → β
g : Fin (Array.size arr) → β
H : ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ }
⊢ Agrees arr f g
[PROOFSTEP]
have : (fun i ↦ f (arr.get i)) = g := by funext ⟨i, h⟩; apply H
[GOAL]
α : Type u_1
β : Sort u_2
arr : Array α
f : α → β
g : Fin (Array.size arr) → β
H : ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ }
⊢ (fun i => f (Array.get arr i)) = g
[PROOFSTEP]
funext ⟨i, h⟩
[GOAL]
case h
α : Type u_1
β : Sort u_2
arr : Array α
f : α → β
g : Fin (Array.size arr) → β
H : ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ }
i : ℕ
h : i < Array.size arr
⊢ f (Array.get arr { val := i, isLt := h }) = g { val := i, isLt := h }
[PROOFSTEP]
apply H
[GOAL]
case refl
α : Type u_1
β : Sort u_2
arr : Array α
f : α → β
g : Fin (Array.size arr) → β
H : ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ }
this : (fun i => f (Array.get arr i)) = g
⊢ Agrees arr f g
[PROOFSTEP]
cases this
[GOAL]
case refl.refl
α : Type u_1
β : Sort u_2
arr : Array α
f : α → β
H :
∀ (i : ℕ) (h₁ h₂ : i < Array.size arr),
f (Array.get arr { val := i, isLt := h₁ }) = (fun i => f (Array.get arr i)) { val := i, isLt := h₂ }
⊢ Agrees arr f fun i => f (Array.get arr i)
[PROOFSTEP]
constructor
[GOAL]
α : Type u_1
n : ℕ
β : Sort u_2
f : α → β
arr : Array α
m : Fin n → β
H : Agrees arr f m
⊢ n = Array.size arr
[PROOFSTEP]
cases H
[GOAL]
case mk
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
⊢ Array.size arr = Array.size arr
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
n : ℕ
m : Fin n → β
H : Agrees arr f m
⊢ ∀ (i : ℕ) (h₁ : i < Array.size arr) (h₂ : i < n),
f (Array.get arr { val := i, isLt := h₁ }) = m { val := i, isLt := h₂ }
[PROOFSTEP]
cases H
[GOAL]
case mk
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
⊢ ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr),
f (Array.get arr { val := i, isLt := h₁ }) = (fun i => f (Array.get arr i)) { val := i, isLt := h₂ }
[PROOFSTEP]
exact fun i h _ ↦ rfl
[GOAL]
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
n : ℕ
m : Fin n → β
H : Agrees arr f m
k : ℕ
hk : k = n + 1
x : α
m' : Fin k → β
hm₁ : ∀ (i : Fin k) (h : ↑i < n), m' i = m { val := ↑i, isLt := h }
hm₂ : ∀ (h : n < k), f x = m' { val := n, isLt := h }
⊢ Agrees (Array.push arr x) f m'
[PROOFSTEP]
cases H
[GOAL]
case mk
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h }
⊢ Agrees (Array.push arr x) f m'
[PROOFSTEP]
have : k = (arr.push x).size := by simp [hk]
[GOAL]
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h }
⊢ k = Array.size (Array.push arr x)
[PROOFSTEP]
simp [hk]
[GOAL]
case mk
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h }
this : k = Array.size (Array.push arr x)
⊢ Agrees (Array.push arr x) f m'
[PROOFSTEP]
refine mk' this fun i h₁ h₂ ↦ ?_
[GOAL]
case mk
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h }
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
⊢ f (Array.get (Array.push arr x) { val := i, isLt := h₁ }) = m' { val := i, isLt := h₂ }
[PROOFSTEP]
simp [Array.get_push]
[GOAL]
case mk
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h }
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
⊢ f (if h : i < Array.size arr then arr[i] else x) = m' { val := i, isLt := h₂ }
[PROOFSTEP]
split
[GOAL]
case mk.inl
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h }
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h✝ : i < Array.size arr
⊢ f arr[i] = m' { val := i, isLt := h₂ }
[PROOFSTEP]
rename_i h
[GOAL]
case mk.inl
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h }
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h : i < Array.size arr
⊢ f arr[i] = m' { val := i, isLt := h₂ }
[PROOFSTEP]
simp at hm₁ ⊢
[GOAL]
case mk.inr
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h }
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h✝ : ¬i < Array.size arr
⊢ f x = m' { val := i, isLt := h₂ }
[PROOFSTEP]
rename_i h
[GOAL]
case mk.inr
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h }
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h : ¬i < Array.size arr
⊢ f x = m' { val := i, isLt := h₂ }
[PROOFSTEP]
simp at hm₁ ⊢
[GOAL]
case mk.inl
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i]
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h : i < Array.size arr
⊢ f arr[i] = m' { val := i, isLt := h₂ }
[PROOFSTEP]
rw [← hm₁ ⟨i, h₂⟩]
[GOAL]
case mk.inl
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i]
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h : i < Array.size arr
⊢ ↑{ val := i, isLt := h₂ } < Array.size arr
[PROOFSTEP]
assumption
[GOAL]
case mk.inr
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i]
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h : ¬i < Array.size arr
⊢ f x = m' { val := i, isLt := h₂ }
[PROOFSTEP]
cases show i = arr.size by apply le_antisymm <;> simp_all [Nat.lt_succ]
[GOAL]
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i]
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h : ¬i < Array.size arr
⊢ i = Array.size arr
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i]
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h : ¬i < Array.size arr
⊢ i ≤ Array.size arr
[PROOFSTEP]
simp_all [Nat.lt_succ]
[GOAL]
case a
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i]
this : k = Array.size (Array.push arr x)
i : ℕ
h₁ : i < Array.size (Array.push arr x)
h₂ : i < k
h : ¬i < Array.size arr
⊢ Array.size arr ≤ i
[PROOFSTEP]
simp_all [Nat.lt_succ]
[GOAL]
case mk.inr.refl
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
k : ℕ
x : α
m' : Fin k → β
hk : k = Array.size arr + 1
hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h }
hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i]
this : k = Array.size (Array.push arr x)
h₁ : Array.size arr < Array.size (Array.push arr x)
h₂ : Array.size arr < k
h : ¬Array.size arr < Array.size arr
⊢ f x = m' { val := Array.size arr, isLt := h₂ }
[PROOFSTEP]
rw [hm₂]
[GOAL]
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
n : ℕ
m : Fin n → β
H : Agrees arr f m
i : Fin (Array.size arr)
x : α
m' : Fin n → β
hm₁ : ∀ (j : Fin n), ↑j ≠ ↑i → m' j = m j
hm₂ : ∀ (h : ↑i < n), f x = m' { val := ↑i, isLt := h }
⊢ Agrees (Array.set arr i x) f m'
[PROOFSTEP]
cases H
[GOAL]
case mk
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
⊢ Agrees (Array.set arr i x) f m'
[PROOFSTEP]
refine mk' (by simp) fun j hj₁ hj₂ ↦ ?_
[GOAL]
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
⊢ Array.size arr = Array.size (Array.set arr i x)
[PROOFSTEP]
simp
[GOAL]
case mk
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
j : ℕ
hj₁ : j < Array.size (Array.set arr i x)
hj₂ : j < Array.size arr
⊢ f (Array.get (Array.set arr i x) { val := j, isLt := hj₁ }) = m' { val := j, isLt := hj₂ }
[PROOFSTEP]
suffices f (Array.set arr i x)[j] = m' ⟨j, hj₂⟩ by simp_all [Array.get_set]
[GOAL]
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
j : ℕ
hj₁ : j < Array.size (Array.set arr i x)
hj₂ : j < Array.size arr
this : f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }
⊢ f (Array.get (Array.set arr i x) { val := j, isLt := hj₁ }) = m' { val := j, isLt := hj₂ }
[PROOFSTEP]
simp_all [Array.get_set]
[GOAL]
case mk
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
j : ℕ
hj₁ : j < Array.size (Array.set arr i x)
hj₂ : j < Array.size arr
⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }
[PROOFSTEP]
by_cases h : i = j
[GOAL]
case pos
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
j : ℕ
hj₁ : j < Array.size (Array.set arr i x)
hj₂ : j < Array.size arr
h : ↑i = j
⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }
[PROOFSTEP]
subst h
[GOAL]
case pos
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
hj₁ : ↑i < Array.size (Array.set arr i x)
hj₂ : ↑i < Array.size arr
⊢ f (Array.set arr i x)[↑i] = m' { val := ↑i, isLt := hj₂ }
[PROOFSTEP]
rw [Array.get_set_eq, ← hm₂]
[GOAL]
case neg
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
j : ℕ
hj₁ : j < Array.size (Array.set arr i x)
hj₂ : j < Array.size arr
h : ¬↑i = j
⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ }
[PROOFSTEP]
rw [arr.get_set_ne _ _ _ h, hm₁ ⟨j, _⟩ (Ne.symm h)]
[GOAL]
case neg
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
j : ℕ
hj₁ : j < Array.size (Array.set arr i x)
hj₂ : j < Array.size arr
h : ¬↑i = j
⊢ f arr[j] = (fun i => f (Array.get arr i)) { val := j, isLt := hj₂ }
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
j : ℕ
hj₁ : j < Array.size (Array.set arr i x)
hj₂ : j < Array.size arr
h : ¬↑i = j
⊢ j < Array.size arr
α : Type u_1
β : Sort u_2
f : α → β
arr : Array α
i : Fin (Array.size arr)
x : α
m' : Fin (Array.size arr) → β
hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h }
hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j
j : ℕ
hj₁ : j < Array.size (Array.set arr i x)
hj₂ : j < Array.size arr
h : ¬↑i = j
⊢ j < Array.size arr
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H : Models arr m
i : ℕ
h : i < Array.size arr
⊢ i < n
[PROOFSTEP]
rw [H.size_eq]
[GOAL]
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H : Models arr m
i : ℕ
h : i < Array.size arr
⊢ i < Array.size arr
[PROOFSTEP]
exact h
[GOAL]
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H : Models arr m
k : ℕ
hk : k = n + 1
x : α
⊢ Models (Array.push arr { parent := n, value := x, rank := 0 }) (UFModel.push m k (_ : n ≤ k))
[PROOFSTEP]
apply H.imp
[GOAL]
case f
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H : Models arr m
k : ℕ
hk : k = n + 1
x : α
⊢ (Agrees arr (fun x => x.parent) fun i => ↑(parent m i)) →
Agrees (Array.push arr { parent := n, value := x, rank := 0 }) (fun x => x.parent) fun i =>
↑(parent (UFModel.push m k (_ : n ≤ k)) i)
[PROOFSTEP]
intro H
[GOAL]
case f
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H✝ : Models arr m
k : ℕ
hk : k = n + 1
x : α
H : Agrees arr (fun x => x.parent) fun i => ↑(parent m i)
⊢ Agrees (Array.push arr { parent := n, value := x, rank := 0 }) (fun x => x.parent) fun i =>
↑(parent (UFModel.push m k (_ : n ≤ k)) i)
[PROOFSTEP]
refine H.push _ hk _ _ (fun i h ↦ ?_) (fun h ↦ ?_)
[GOAL]
case f.refine_1
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H✝ : Models arr m
k : ℕ
hk : k = n + 1
x : α
H : Agrees arr (fun x => x.parent) fun i => ↑(parent m i)
i : Fin k
h : ↑i < n
⊢ ↑(parent (UFModel.push m k (_ : n ≤ k)) i) = ↑(parent m { val := ↑i, isLt := h })
[PROOFSTEP]
simp [UFModel.push, h, lt_irrefl]
[GOAL]
case f.refine_2
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H✝ : Models arr m
k : ℕ
hk : k = n + 1
x : α
H : Agrees arr (fun x => x.parent) fun i => ↑(parent m i)
h : n < k
⊢ { parent := n, value := x, rank := 0 }.parent = ↑(parent (UFModel.push m k (_ : n ≤ k)) { val := n, isLt := h })
[PROOFSTEP]
simp [UFModel.push, h, lt_irrefl]
[GOAL]
case g
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H : Models arr m
k : ℕ
hk : k = n + 1
x : α
⊢ (Agrees arr (fun x => x.rank) fun i => rank m ↑i) →
Agrees (Array.push arr { parent := n, value := x, rank := 0 }) (fun x => x.rank) fun i =>
rank (UFModel.push m k (_ : n ≤ k)) ↑i
[PROOFSTEP]
intro H
[GOAL]
case g
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H✝ : Models arr m
k : ℕ
hk : k = n + 1
x : α
H : Agrees arr (fun x => x.rank) fun i => rank m ↑i
⊢ Agrees (Array.push arr { parent := n, value := x, rank := 0 }) (fun x => x.rank) fun i =>
rank (UFModel.push m k (_ : n ≤ k)) ↑i
[PROOFSTEP]
refine H.push _ hk _ _ (fun i h ↦ ?_) (fun h ↦ ?_)
[GOAL]
case g.refine_1
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H✝ : Models arr m
k : ℕ
hk : k = n + 1
x : α
H : Agrees arr (fun x => x.rank) fun i => rank m ↑i
i : Fin k
h : ↑i < n
⊢ rank (UFModel.push m k (_ : n ≤ k)) ↑i = rank m ↑{ val := ↑i, isLt := h }
[PROOFSTEP]
simp [UFModel.push, h, lt_irrefl]
[GOAL]
case g.refine_2
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
H✝ : Models arr m
k : ℕ
hk : k = n + 1
x : α
H : Agrees arr (fun x => x.rank) fun i => rank m ↑i
h : n < k
⊢ { parent := n, value := x, rank := 0 }.rank = rank (UFModel.push m k (_ : n ≤ k)) ↑{ val := n, isLt := h }
[PROOFSTEP]
simp [UFModel.push, h, lt_irrefl]
[GOAL]
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
hm : Models arr m
i j : Fin n
H : rank m ↑i < rank m ↑j
hi : ↑i < Array.size arr
x : UFNode α
hp : x.parent = ↑j
hrk : x.rank = arr[i].rank
k : Fin n
h : ↑k ≠ ↑i
⊢ ↑(parent (UFModel.setParent m i j H) k) = ↑(parent m k)
[PROOFSTEP]
simp [UFModel.setParent, h.symm]
[GOAL]
α : Type u_1
arr : Array (UFNode α)
n : ℕ
m : UFModel n
hm : Models arr m
i j : Fin n
H : rank m ↑i < rank m ↑j
hi : ↑i < Array.size arr
x : UFNode α
hp : x.parent = ↑j
hrk : x.rank = arr[i].rank
h : ↑{ val := ↑i, isLt := hi } < n
⊢ x.parent = ↑(parent (UFModel.setParent m i j H) { val := ↑{ val := ↑i, isLt := hi }, isLt := h })
[PROOFSTEP]
simp [UFModel.setParent, hp]
[GOAL]
α : Type u_1
self : UnionFind α
⊢ ∃ m, UFModel.Models self.arr m
[PROOFSTEP]
let ⟨n, m, hm⟩ := self.model
[GOAL]
α : Type u_1
self : UnionFind α
n : ℕ
m : UFModel n
hm : UFModel.Models self.arr m
⊢ ∃ m, UFModel.Models self.arr m
[PROOFSTEP]
cases hm.size_eq
[GOAL]
case refl
α : Type u_1
self : UnionFind α
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
⊢ ∃ m, UFModel.Models self.arr m
[PROOFSTEP]
exact ⟨m, hm⟩
[GOAL]
α : Type ?u.46031
self : UnionFind α
i : ℕ
⊢ { k // ∀ (j : ℕ), j < i + 1 → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k }
[PROOFSTEP]
let ⟨k, H⟩ := rankMaxAux self i
[GOAL]
α : Type ?u.46031
self : UnionFind α
i k : ℕ
H : ∀ (j : ℕ), j < i → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k
⊢ { k // ∀ (j : ℕ), j < i + 1 → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k }
[PROOFSTEP]
refine ⟨max k (if h : _ then (self.arr.get ⟨i, h⟩).rank else 0), fun j hj h ↦ ?_⟩
[GOAL]
α : Type ?u.46031
self : UnionFind α
i k : ℕ
H : ∀ (j : ℕ), j < i → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k
j : ℕ
hj : j < i + 1
h : j < Array.size self.arr
⊢ (Array.get self.arr { val := j, isLt := h }).rank ≤
max k (if h : i < Array.size self.arr then (Array.get self.arr { val := i, isLt := h }).rank else 0)
[PROOFSTEP]
match j, lt_or_eq_of_le (Nat.le_of_lt_succ hj) with
| j, Or.inl hj => exact le_trans (H _ hj h) (le_max_left _ _)
| _, Or.inr rfl => simp [h, le_max_right]
[GOAL]
α : Type ?u.46031
self : UnionFind α
i k : ℕ
H : ∀ (j : ℕ), j < i → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k
j✝ j : ℕ
hj : j < i
hj✝ : j < i + 1
h : j < Array.size self.arr
⊢ (Array.get self.arr { val := j, isLt := h }).rank ≤
max k (if h : i < Array.size self.arr then (Array.get self.arr { val := i, isLt := h }).rank else 0)
[PROOFSTEP]
exact le_trans (H _ hj h) (le_max_left _ _)
[GOAL]
α : Type ?u.46031
self : UnionFind α
i k : ℕ
H : ∀ (j : ℕ), j < i → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k
j : ℕ
hj : i < i + 1
h : i < Array.size self.arr
⊢ (Array.get self.arr { val := i, isLt := h }).rank ≤
max k (if h : i < Array.size self.arr then (Array.get self.arr { val := i, isLt := h }).rank else 0)
[PROOFSTEP]
simp [h, le_max_right]
[GOAL]
α : Type u_1
self : UnionFind α
i : ℕ
⊢ rank self i < rankMax self
[PROOFSTEP]
simp [rank]
[GOAL]
α : Type u_1
self : UnionFind α
i : ℕ
⊢ (if h : i < size self then self.arr[i].rank else 0) < rankMax self
[PROOFSTEP]
split
[GOAL]
case inl
α : Type u_1
self : UnionFind α
i : ℕ
h✝ : i < size self
⊢ self.arr[i].rank < rankMax self
case inr α : Type u_1 self : UnionFind α i : ℕ h✝ : ¬i < size self ⊢ 0 < rankMax self
[PROOFSTEP]
{apply lt_rankMax'
}
[GOAL]
case inl
α : Type u_1
self : UnionFind α
i : ℕ
h✝ : i < size self
⊢ self.arr[i].rank < rankMax self
[PROOFSTEP]
apply lt_rankMax'
[GOAL]
case inr
α : Type u_1
self : UnionFind α
i : ℕ
h✝ : ¬i < size self
⊢ 0 < rankMax self
[PROOFSTEP]
apply Nat.succ_pos
[GOAL]
α : Type u_1
self : UnionFind α
n : ℕ
m : UFModel n
H : UFModel.Models self.arr m
i : ℕ
h : i < size self
⊢ rank self i = UFModel.rank m i
[PROOFSTEP]
simp [rank, h, H.rank_eq]
[GOAL]
α : Type u_1
self : UnionFind α
i : ℕ
h : i < Array.size self.arr
⊢ self.arr[i].parent ≠ i → rank self i < rank self self.arr[i].parent
[PROOFSTEP]
let ⟨m, hm⟩ := self.model'
[GOAL]
α : Type u_1
self : UnionFind α
i : ℕ
h : i < Array.size self.arr
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
⊢ self.arr[i].parent ≠ i → rank self i < rank self self.arr[i].parent
[PROOFSTEP]
simpa [hm.parent_eq, hm.rank_eq, rank, size, h, (m.parent ⟨i, h⟩).2] using m.rank_lt ⟨i, h⟩
[GOAL]
α : Type u_1
self : UnionFind α
i : ℕ
h : i < Array.size self.arr
⊢ self.arr[i].parent < size self
[PROOFSTEP]
let ⟨m, hm⟩ := self.model'
[GOAL]
α : Type u_1
self : UnionFind α
i : ℕ
h : i < Array.size self.arr
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
⊢ self.arr[i].parent < size self
[PROOFSTEP]
simp [hm.parent_eq, size, (m.parent ⟨i, h⟩).2, h]
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
⊢ (s : Array (UFNode α)) ×'
(root : Fin (Array.size s)) ×'
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models s m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑x ≤ UFModel.rank m ↑root
[PROOFSTEP]
let y := self.arr[x].parent
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
⊢ (s : Array (UFNode α)) ×'
(root : Fin (Array.size s)) ×'
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models s m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑x ≤ UFModel.rank m ↑root
[PROOFSTEP]
refine
if h : y = x then ⟨self.arr, x, ?a'⟩
else
have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank_lt _ h)
let ⟨arr₁, root, H⟩ := self.findAux ⟨y, self.parent_lt _ x.2⟩
have hx := ?hx
let arr₂ := arr₁.set ⟨x, hx⟩ { arr₁.get ⟨x, hx⟩ with parent := root }
⟨arr₂, ⟨root, by simp [root.2]⟩, ?b'⟩
-- start proof
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root, value := src.value, rank := src.rank })
⊢ ↑root < Array.size arr₂
[PROOFSTEP]
simp [root.2]
[GOAL]
case a'
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : y = ↑x
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models self.arr m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑x, isLt := hr }) = ↑x) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑x
case hx
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ↑x < Array.size arr₁
case b'
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root, value := src.value, rank := src.rank })
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
case a' =>
-- FIXME: hygiene bug causes `case a` to fail
let ⟨m, hm⟩ := self.model'
exact ⟨_, m, m, hm, hm, rfl, ⟨x.2, by rwa [← hm.parent_eq]⟩, le_refl _⟩
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : y = ↑x
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models self.arr m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑x, isLt := hr }) = ↑x) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑x
[PROOFSTEP]
case a' =>
-- FIXME: hygiene bug causes `case a` to fail
let ⟨m, hm⟩ := self.model'
exact ⟨_, m, m, hm, hm, rfl, ⟨x.2, by rwa [← hm.parent_eq]⟩, le_refl _⟩
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : y = ↑x
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models self.arr m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑x, isLt := hr }) = ↑x) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑x
[PROOFSTEP]
let ⟨m, hm⟩ := self.model'
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : y = ↑x
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models self.arr m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑x, isLt := hr }) = ↑x) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑x
[PROOFSTEP]
exact ⟨_, m, m, hm, hm, rfl, ⟨x.2, by rwa [← hm.parent_eq]⟩, le_refl _⟩
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : y = ↑x
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
⊢ ↑(UFModel.parent m { val := ↑x, isLt := (_ : ↑x < size self) }) = ↑x
[PROOFSTEP]
rwa [← hm.parent_eq]
[GOAL]
case hx
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ↑x < Array.size arr₁
case b'
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root, value := src.value, rank := src.rank })
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
all_goals let ⟨n, m, m', hm, hm', e, ⟨_, hr⟩, le⟩ := H
[GOAL]
case hx
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ↑x < Array.size arr₁
[PROOFSTEP]
let ⟨n, m, m', hm, hm', e, ⟨_, hr⟩, le⟩ := H
[GOAL]
case b'
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root, value := src.value, rank := src.rank })
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
let ⟨n, m, m', hm, hm', e, ⟨_, hr⟩, le⟩ := H
[GOAL]
case hx
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root < n
hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ↑x < Array.size arr₁
case b'
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root < n
hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
case hx => exact hm'.size_eq ▸ hm.size_eq.symm ▸ x.2
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root < n
hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ↑x < Array.size arr₁
[PROOFSTEP]
case hx => exact hm'.size_eq ▸ hm.size_eq.symm ▸ x.2
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root < n
hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ↑x < Array.size arr₁
[PROOFSTEP]
exact hm'.size_eq ▸ hm.size_eq.symm ▸ x.2
[GOAL]
case b'
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root < n
hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
case b' =>
let x' : Fin n := ⟨x, hm.size_eq ▸ x.2⟩
let root : Fin n := ⟨root, hm'.size_eq.symm ▸ root.2⟩
have hy : (UFModel.parent m x').1 = y := by rw [← hm.parent_eq x x.2 x'.2]; rfl
have := m.rank_lt x'; rw [hy] at this
have := lt_of_lt_of_le (this h) le
refine ⟨n, m, _, hm, hm'.setParent x' root (by rw [e]; exact this) hx _ rfl rfl, e, ⟨root.2, ?_⟩, le_of_lt this⟩
have : x.1 ≠ root := mt (congrArg _) (ne_of_lt this); dsimp only at this
simp [UFModel.setParent, this, hr]
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root < n
hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
case b' =>
let x' : Fin n := ⟨x, hm.size_eq ▸ x.2⟩
let root : Fin n := ⟨root, hm'.size_eq.symm ▸ root.2⟩
have hy : (UFModel.parent m x').1 = y := by rw [← hm.parent_eq x x.2 x'.2]; rfl
have := m.rank_lt x'; rw [hy] at this
have := lt_of_lt_of_le (this h) le
refine ⟨n, m, _, hm, hm'.setParent x' root (by rw [e]; exact this) hx _ rfl rfl, e, ⟨root.2, ?_⟩, le_of_lt this⟩
have : x.1 ≠ root := mt (congrArg _) (ne_of_lt this); dsimp only at this
simp [UFModel.setParent, this, hr]
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root < n
hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
let x' : Fin n := ⟨x, hm.size_eq ▸ x.2⟩
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root < n
hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root,
isLt :=
(_ :
↑root <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
let root : Fin n := ⟨root, hm'.size_eq.symm ▸ root.2⟩
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
have hy : (UFModel.parent m x').1 = y := by rw [← hm.parent_eq x x.2 x'.2]; rfl
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
⊢ ↑(UFModel.parent m x') = y
[PROOFSTEP]
rw [← hm.parent_eq x x.2 x'.2]
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
⊢ self.arr[↑x].parent = y
[PROOFSTEP]
rfl
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
hy : ↑(UFModel.parent m x') = y
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
have := m.rank_lt x'
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this✝ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
hy : ↑(UFModel.parent m x') = y
this : ↑(UFModel.parent m x') ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m ↑(UFModel.parent m x')
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
rw [hy] at this
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this✝ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
hy : ↑(UFModel.parent m x') = y
this : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
have := lt_of_lt_of_le (this h) le
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this✝¹ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
hy : ↑(UFModel.parent m x') = y
this✝ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y
this : UFModel.rank m ↑x' < UFModel.rank m ↑root✝
⊢ ∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₂ m' ∧
m'.rank = m.rank ∧
(∃ hr,
↑(UFModel.parent m'
{
val :=
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := hr }) =
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧
UFModel.rank m ↑x ≤
UFModel.rank m
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
refine ⟨n, m, _, hm, hm'.setParent x' root (by rw [e]; exact this) hx _ rfl rfl, e, ⟨root.2, ?_⟩, le_of_lt this⟩
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this✝¹ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
hy : ↑(UFModel.parent m x') = y
this✝ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y
this : UFModel.rank m ↑x' < UFModel.rank m ↑root✝
⊢ UFModel.rank m' ↑x' < UFModel.rank m' ↑root
[PROOFSTEP]
rw [e]
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this✝¹ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
hy : ↑(UFModel.parent m x') = y
this✝ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y
this : UFModel.rank m ↑x' < UFModel.rank m ↑root✝
⊢ UFModel.rank m ↑x' < UFModel.rank m ↑root
[PROOFSTEP]
exact this
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this✝¹ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
hy : ↑(UFModel.parent m x') = y
this✝ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y
this : UFModel.rank m ↑x' < UFModel.rank m ↑root✝
⊢ ↑(UFModel.parent (UFModel.setParent m' x' root (_ : UFModel.rank m' ↑x' < UFModel.rank m' ↑root))
{
val :=
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := (_ : ↑root < n) }) =
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
have : x.1 ≠ root := mt (congrArg _) (ne_of_lt this)
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this✝² : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
hy : ↑(UFModel.parent m x') = y
this✝¹ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y
this✝ : UFModel.rank m ↑x' < UFModel.rank m ↑root✝
this : ↑x ≠ ↑root
⊢ ↑(UFModel.parent (UFModel.setParent m' x' root (_ : UFModel.rank m' ↑x' < UFModel.rank m' ↑root))
{
val :=
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := (_ : ↑root < n) }) =
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
dsimp only at this
[GOAL]
α : Type ?u.56700
self : UnionFind α
x : Fin (size self)
y : ℕ := self.arr[x].parent
h : ¬y = ↑x
this✝² : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x
arr₁ : Array (UFNode α)
root✝ : Fin (Array.size arr₁)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models arr₁ m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧
UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
hx : ↑x < Array.size arr₁
arr₂ : Array (UFNode α) :=
Array.set arr₁ { val := ↑x, isLt := hx }
(let src := Array.get arr₁ { val := ↑x, isLt := hx };
{ parent := ↑root✝, value := src.value, rank := src.rank })
n : ℕ
m m' : UFModel n
hm : UFModel.Models self.arr m
hm' : UFModel.Models arr₁ m'
e : m'.rank = m.rank
w✝ : ↑root✝ < n
hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝
le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝
x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) }
root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) }
hy : ↑(UFModel.parent m x') = y
this✝¹ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y
this✝ : UFModel.rank m ↑x' < UFModel.rank m ↑root✝
this : ↑x ≠ ↑root✝
⊢ ↑(UFModel.parent (UFModel.setParent m' x' root (_ : UFModel.rank m' ↑x' < UFModel.rank m' ↑root))
{
val :=
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) },
isLt := (_ : ↑root < n) }) =
↑{ val := ↑root✝,
isLt :=
(_ :
↑root✝ <
Array.size
(Array.set arr₁ { val := ↑x, isLt := hx }
{ parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }
[PROOFSTEP]
simp [UFModel.setParent, this, hr]
[GOAL]
α : Type ?u.79923
self : UnionFind α
x : Fin (size self)
s : Array (UFNode α)
root : Fin (Array.size s)
H :
∃ n m m',
UFModel.Models self.arr m ∧
UFModel.Models s m' ∧
m'.rank = m.rank ∧
(∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑root
n : ℕ
w✝¹ m' : UFModel n
hm : UFModel.Models self.arr w✝¹
hm' : UFModel.Models s m'
left✝ : m'.rank = w✝¹.rank
w✝ : ↑root < n
hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root
right✝ : UFModel.rank w✝¹ ↑x ≤ UFModel.rank w✝¹ ↑root
⊢ s[↑root].parent = ↑root
[PROOFSTEP]
rwa [hm'.parent_eq]
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
⊢ UnionFind α
[PROOFSTEP]
refine
if ne : x.1 = y then self
else
let nx := self.arr[x]
let ny := self.arr[y]
if h : ny.rank < nx.rank then ⟨self.arr.set y { ny with parent := x }, ?a⟩
else
let arr₁ := self.arr.set x { nx with parent := y }
let arr₂ := if nx.rank = ny.rank then arr₁.set ⟨y, by simp; exact y.2⟩ { ny with rank := ny.rank + 1 } else arr₁
⟨arr₂, ?b⟩
-- start proof
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
⊢ ↑y < Array.size arr₁
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
⊢ ↑y < Array.size self.arr
[PROOFSTEP]
exact y.2
[GOAL]
case a
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ny.rank < nx.rank
⊢ ∃ n m, UFModel.Models (Array.set self.arr y { parent := ↑x, value := ny.value, rank := ny.rank }) m
case b
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
⊢ ∃ n m, UFModel.Models arr₂ m
[PROOFSTEP]
case a =>
let ⟨m, hm⟩ := self.model'
exact ⟨_, _, hm.setParent y x (by simpa [hm.rank_eq] using h) _ _ rfl rfl⟩
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ny.rank < nx.rank
⊢ ∃ n m, UFModel.Models (Array.set self.arr y { parent := ↑x, value := ny.value, rank := ny.rank }) m
[PROOFSTEP]
case a =>
let ⟨m, hm⟩ := self.model'
exact ⟨_, _, hm.setParent y x (by simpa [hm.rank_eq] using h) _ _ rfl rfl⟩
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ny.rank < nx.rank
⊢ ∃ n m, UFModel.Models (Array.set self.arr y { parent := ↑x, value := ny.value, rank := ny.rank }) m
[PROOFSTEP]
let ⟨m, hm⟩ := self.model'
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ny.rank < nx.rank
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
⊢ ∃ n m, UFModel.Models (Array.set self.arr y { parent := ↑x, value := ny.value, rank := ny.rank }) m
[PROOFSTEP]
exact ⟨_, _, hm.setParent y x (by simpa [hm.rank_eq] using h) _ _ rfl rfl⟩
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ny.rank < nx.rank
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
⊢ UFModel.rank m ↑y < UFModel.rank m ↑x
[PROOFSTEP]
simpa [hm.rank_eq] using h
[GOAL]
case b
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
⊢ ∃ n m, UFModel.Models arr₂ m
[PROOFSTEP]
case b =>
let ⟨m, hm⟩ := self.model'; let n := self.size
refine ⟨_, m.setParentBump x y (by simpa [hm.rank_eq] using h) (by simpa [← hm.parent_eq'] using yroot), ?_⟩
let parent (i : Fin n) := (if x.1 = i then y else m.parent i).1
have : UFModel.Agrees arr₁ (·.parent) parent := hm.1.set (fun i h ↦ by simp; rw [if_neg h.symm]) (fun h ↦ by simp)
have H1 : UFModel.Agrees arr₂ (·.parent) parent := by
simp; split
· exact this.set (fun i h ↦ by simp [h.symm]) (fun h ↦ by simp [ne, hm.parent_eq'])
· exact this
have : UFModel.Agrees arr₁ (·.rank) (fun i : Fin n ↦ m.rank i) :=
hm.2.set (fun i _ ↦ by simp) (fun _ ↦ by simp [hm.rank_eq])
let rank (i : Fin n) := if y.1 = i ∧ m.rank x = m.rank y then m.rank y + 1 else m.rank i
have H2 : UFModel.Agrees arr₂ (·.rank) rank := by
simp; split <;> (rename_i xy; simp [hm.rank_eq] at xy ; simp [xy])
· exact this.set (fun i h ↦ by rw [if_neg h.symm]) (fun h ↦ by simp [hm.rank_eq])
· exact this
exact ⟨H1, H2⟩
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
⊢ ∃ n m, UFModel.Models arr₂ m
[PROOFSTEP]
case b =>
let ⟨m, hm⟩ := self.model'; let n := self.size
refine ⟨_, m.setParentBump x y (by simpa [hm.rank_eq] using h) (by simpa [← hm.parent_eq'] using yroot), ?_⟩
let parent (i : Fin n) := (if x.1 = i then y else m.parent i).1
have : UFModel.Agrees arr₁ (·.parent) parent := hm.1.set (fun i h ↦ by simp; rw [if_neg h.symm]) (fun h ↦ by simp)
have H1 : UFModel.Agrees arr₂ (·.parent) parent := by
simp; split
· exact this.set (fun i h ↦ by simp [h.symm]) (fun h ↦ by simp [ne, hm.parent_eq'])
· exact this
have : UFModel.Agrees arr₁ (·.rank) (fun i : Fin n ↦ m.rank i) :=
hm.2.set (fun i _ ↦ by simp) (fun _ ↦ by simp [hm.rank_eq])
let rank (i : Fin n) := if y.1 = i ∧ m.rank x = m.rank y then m.rank y + 1 else m.rank i
have H2 : UFModel.Agrees arr₂ (·.rank) rank := by
simp; split <;> (rename_i xy; simp [hm.rank_eq] at xy ; simp [xy])
· exact this.set (fun i h ↦ by rw [if_neg h.symm]) (fun h ↦ by simp [hm.rank_eq])
· exact this
exact ⟨H1, H2⟩
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
⊢ ∃ n m, UFModel.Models arr₂ m
[PROOFSTEP]
let ⟨m, hm⟩ := self.model'
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
⊢ ∃ n m, UFModel.Models arr₂ m
[PROOFSTEP]
let n := self.size
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
⊢ ∃ n m, UFModel.Models arr₂ m
[PROOFSTEP]
refine ⟨_, m.setParentBump x y (by simpa [hm.rank_eq] using h) (by simpa [← hm.parent_eq'] using yroot), ?_⟩
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
⊢ UFModel.rank m ↑x ≤ UFModel.rank m ↑y
[PROOFSTEP]
simpa [hm.rank_eq] using h
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
⊢ ↑(UFModel.parent m y) = ↑y
[PROOFSTEP]
simpa [← hm.parent_eq'] using yroot
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
⊢ UFModel.Models arr₂
(UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y))
[PROOFSTEP]
let parent (i : Fin n) := (if x.1 = i then y else m.parent i).1
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
⊢ UFModel.Models arr₂
(UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y))
[PROOFSTEP]
have : UFModel.Agrees arr₁ (·.parent) parent := hm.1.set (fun i h ↦ by simp; rw [if_neg h.symm]) (fun h ↦ by simp)
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h✝ : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
i : Fin (Array.size self.arr)
h : ↑i ≠ ↑x
⊢ parent i = ↑(UFModel.parent m i)
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h✝ : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
i : Fin (Array.size self.arr)
h : ↑i ≠ ↑x
⊢ ↑(if ↑x = ↑i then y else UFModel.parent m i) = ↑(UFModel.parent m i)
[PROOFSTEP]
rw [if_neg h.symm]
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h✝ : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
h : ↑x < Array.size self.arr
⊢ { parent := ↑y, value := nx.value, rank := nx.rank }.parent = parent { val := ↑x, isLt := h }
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
⊢ UFModel.Models arr₂
(UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y))
[PROOFSTEP]
have H1 : UFModel.Agrees arr₂ (·.parent) parent := by
simp; split
· exact this.set (fun i h ↦ by simp [h.symm]) (fun h ↦ by simp [ne, hm.parent_eq'])
· exact this
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
⊢ UFModel.Agrees arr₂ (fun x => x.parent) parent
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
⊢ UFModel.Agrees
(if self.arr[↑x].rank = self.arr[↑y].rank then
Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }
else Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
(fun x => x.parent) fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
[PROOFSTEP]
split
[GOAL]
case inl
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
h✝ : self.arr[↑x].rank = self.arr[↑y].rank
⊢ UFModel.Agrees
(Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 })
(fun x => x.parent) fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
[PROOFSTEP]
exact this.set (fun i h ↦ by simp [h.symm]) (fun h ↦ by simp [ne, hm.parent_eq'])
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h✝¹ : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
h✝ : self.arr[↑x].rank = self.arr[↑y].rank
i : Fin n
h : ↑i ≠ ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
⊢ ↑(if ↑x = ↑i then y else UFModel.parent m i) = parent i
[PROOFSTEP]
simp [h.symm]
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h✝¹ : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
h✝ : self.arr[↑x].rank = self.arr[↑y].rank
h : ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } < n
⊢ { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }.parent =
↑(if ↑x = ↑{ val := ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }, isLt := h } then y
else UFModel.parent m { val := ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }, isLt := h })
[PROOFSTEP]
simp [ne, hm.parent_eq']
[GOAL]
case inr
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
h✝ : ¬self.arr[↑x].rank = self.arr[↑y].rank
⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
(fun x => x.parent) fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
[PROOFSTEP]
exact this
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
⊢ UFModel.Models arr₂
(UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y))
[PROOFSTEP]
have : UFModel.Agrees arr₁ (·.rank) (fun i : Fin n ↦ m.rank i) :=
hm.2.set (fun i _ ↦ by simp) (fun _ ↦ by simp [hm.rank_eq])
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
i : Fin (Array.size self.arr)
x✝ : ↑i ≠ ↑x
⊢ UFModel.rank m ↑i = UFModel.rank m ↑i
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
x✝ : ↑x < Array.size self.arr
⊢ { parent := ↑y, value := nx.value, rank := nx.rank }.rank = UFModel.rank m ↑{ val := ↑x, isLt := x✝ }
[PROOFSTEP]
simp [hm.rank_eq]
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
⊢ UFModel.Models arr₂
(UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y))
[PROOFSTEP]
let rank (i : Fin n) := if y.1 = i ∧ m.rank x = m.rank y then m.rank y + 1 else m.rank i
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
⊢ UFModel.Models arr₂
(UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y))
[PROOFSTEP]
have H2 : UFModel.Agrees arr₂ (·.rank) rank := by
simp; split <;> (rename_i xy; simp [hm.rank_eq] at xy ; simp [xy])
· exact this.set (fun i h ↦ by rw [if_neg h.symm]) (fun h ↦ by simp [hm.rank_eq])
· exact this
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
⊢ UFModel.Agrees arr₂ (fun x => x.rank) rank
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
⊢ UFModel.Agrees
(if self.arr[↑x].rank = self.arr[↑y].rank then
Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }
else Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
(fun x => x.rank) fun i =>
if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
[PROOFSTEP]
split
[GOAL]
case inl
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
h✝ : self.arr[↑x].rank = self.arr[↑y].rank
⊢ UFModel.Agrees
(Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 })
(fun x => x.rank) fun i =>
if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
[PROOFSTEP]
rename_i xy
[GOAL]
case inl
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
xy : self.arr[↑x].rank = self.arr[↑y].rank
⊢ UFModel.Agrees
(Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 })
(fun x => x.rank) fun i =>
if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
[PROOFSTEP]
simp [hm.rank_eq] at xy
[GOAL]
case inl
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
xy : UFModel.rank m ↑x = UFModel.rank m ↑y
⊢ UFModel.Agrees
(Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 })
(fun x => x.rank) fun i =>
if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
[PROOFSTEP]
simp [xy]
[GOAL]
case inr
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
h✝ : ¬self.arr[↑x].rank = self.arr[↑y].rank
⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
(fun x => x.rank) fun i =>
if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
[PROOFSTEP]
rename_i xy
[GOAL]
case inr
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
xy : ¬self.arr[↑x].rank = self.arr[↑y].rank
⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
(fun x => x.rank) fun i =>
if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
[PROOFSTEP]
simp [hm.rank_eq] at xy
[GOAL]
case inr
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
xy : ¬UFModel.rank m ↑x = UFModel.rank m ↑y
⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
(fun x => x.rank) fun i =>
if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
[PROOFSTEP]
simp [xy]
[GOAL]
case inl
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
xy : UFModel.rank m ↑x = UFModel.rank m ↑y
⊢ UFModel.Agrees
(Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 })
(fun x => x.rank) fun i => if ↑y = ↑i then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
[PROOFSTEP]
exact this.set (fun i h ↦ by rw [if_neg h.symm]) (fun h ↦ by simp [hm.rank_eq])
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h✝ : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
xy : UFModel.rank m ↑x = UFModel.rank m ↑y
i : Fin n
h : ↑i ≠ ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
⊢ (if ↑y = ↑i then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i) = UFModel.rank m ↑i
[PROOFSTEP]
rw [if_neg h.symm]
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h✝ : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
xy : UFModel.rank m ↑x = UFModel.rank m ↑y
h : ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } < n
⊢ { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }.rank =
if ↑y = ↑{ val := ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }, isLt := h } then UFModel.rank m ↑y + 1
else UFModel.rank m ↑{ val := ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }, isLt := h }
[PROOFSTEP]
simp [hm.rank_eq]
[GOAL]
case inr
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
xy : ¬UFModel.rank m ↑x = UFModel.rank m ↑y
⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank })
(fun x => x.rank) fun i => UFModel.rank m ↑i
[PROOFSTEP]
exact this
[GOAL]
α : Type ?u.82096
self : UnionFind α
x y : Fin (size self)
yroot : (Array.get self.arr y).parent = ↑y
ne : ¬↑x = ↑y
nx : UFNode α := self.arr[x]
ny : UFNode α := self.arr[y]
h : ¬ny.rank < nx.rank
arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank }
arr₂ : Array (UFNode α) :=
if nx.rank = ny.rank then
Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }
{ parent := ny.parent, value := ny.value, rank := ny.rank + 1 }
else arr₁
m : UFModel (Array.size self.arr)
hm : UFModel.Models self.arr m
n : ℕ := size self
parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i)
this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent
H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent
this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i
rank : Fin n → ℕ :=
fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i
H2 : UFModel.Agrees arr₂ (fun x => x.rank) rank
⊢ UFModel.Models arr₂
(UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y))
[PROOFSTEP]
exact ⟨H1, H2⟩
[GOAL]
α : Type ?u.99196
self : UnionFind α
x y : Fin (size self)
self₁ : UnionFind α
rx : Fin (size self₁)
e : size self₁ = size self
right✝ : (Array.get self₁.arr rx).parent = ↑rx
⊢ ↑y < size self₁
[PROOFSTEP]
rw [e]
[GOAL]
α : Type ?u.99196
self : UnionFind α
x y : Fin (size self)
self₁ : UnionFind α
rx : Fin (size self₁)
e : size self₁ = size self
right✝ : (Array.get self₁.arr rx).parent = ↑rx
⊢ ↑y < size self
[PROOFSTEP]
exact y.2
[GOAL]
α : Type ?u.99196
self : UnionFind α
x y : Fin (size self)
self₁ : UnionFind α
rx : Fin (size self₁)
e✝ : size self₁ = size self
right✝ : (Array.get self₁.arr rx).parent = ↑rx
self₂ : UnionFind α
ry : Fin (size self₂)
e : size self₂ = size self₁
hry : (Array.get self₂.arr ry).parent = ↑ry
⊢ ↑rx < size self₂
[PROOFSTEP]
rw [e]
[GOAL]
α : Type ?u.99196
self : UnionFind α
x y : Fin (size self)
self₁ : UnionFind α
rx : Fin (size self₁)
e✝ : size self₁ = size self
right✝ : (Array.get self₁.arr rx).parent = ↑rx
self₂ : UnionFind α
ry : Fin (size self₂)
e : size self₂ = size self₁
hry : (Array.get self₂.arr ry).parent = ↑ry
⊢ ↑rx < size self₁
[PROOFSTEP]
exact rx.2
|
{"mathlib_filename": "Mathlib.Data.UnionFind", "llama_tokens": 64012}
|
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Const", "llama_tokens": 0}
|
|
[GOAL]
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
⊢ ∀ {α : TypeVec n} (x : Sigma F α), (fun {α} => Sigma.abs F) ((fun {α} => Sigma.repr F) x) = x
[PROOFSTEP]
rintro α ⟨x, f⟩
[GOAL]
case mk
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
α : TypeVec n
x : A
f : F x α
⊢ (fun {α} => Sigma.abs F) ((fun {α} => Sigma.repr F) { fst := x, snd := f }) = { fst := x, snd := f }
[PROOFSTEP]
simp only [Sigma.abs, Sigma.repr, Sigma.eta, abs_repr]
[GOAL]
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
⊢ ∀ {α β : TypeVec n} (f : α ⟹ β) (p : MvPFunctor.Obj (Sigma.P F) α),
(fun {α} => Sigma.abs F) (f <$$> p) = f <$$> (fun {α} => Sigma.abs F) p
[PROOFSTEP]
rintro α β f ⟨x, g⟩
[GOAL]
case mk
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
α β : TypeVec n
f : α ⟹ β
x : (Sigma.P F).A
g : MvPFunctor.B (Sigma.P F) x ⟹ α
⊢ (fun {α} => Sigma.abs F) (f <$$> { fst := x, snd := g }) = f <$$> (fun {α} => Sigma.abs F) { fst := x, snd := g }
[PROOFSTEP]
simp only [Sigma.abs, MvPFunctor.map_eq]
[GOAL]
case mk
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
α β : TypeVec n
f : α ⟹ β
x : (Sigma.P F).A
g : MvPFunctor.B (Sigma.P F) x ⟹ α
⊢ { fst := x.fst, snd := abs { fst := x.snd, snd := f ⊚ g } } =
f <$$> { fst := x.fst, snd := abs { fst := x.snd, snd := g } }
[PROOFSTEP]
simp only [(· <$$> ·), ← abs_map, ← MvPFunctor.map_eq]
[GOAL]
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
⊢ ∀ {α : TypeVec n} (x : Pi F α), Pi.abs F (Pi.repr F x) = x
[PROOFSTEP]
rintro α f
[GOAL]
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
α : TypeVec n
f : Pi F α
⊢ Pi.abs F (Pi.repr F f) = f
[PROOFSTEP]
simp only [Pi.abs, Pi.repr, Sigma.eta, abs_repr]
[GOAL]
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
⊢ ∀ {α β : TypeVec n} (f : α ⟹ β) (p : MvPFunctor.Obj (Pi.P F) α), Pi.abs F (f <$$> p) = f <$$> Pi.abs F p
[PROOFSTEP]
rintro α β f ⟨x, g⟩
[GOAL]
case mk
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
α β : TypeVec n
f : α ⟹ β
x : (Pi.P F).A
g : MvPFunctor.B (Pi.P F) x ⟹ α
⊢ Pi.abs F (f <$$> { fst := x, snd := g }) = f <$$> Pi.abs F { fst := x, snd := g }
[PROOFSTEP]
simp only [Pi.abs, (· <$$> ·), ← abs_map]
[GOAL]
case mk
n : ℕ
A : Type u
F : A → TypeVec n → Type u
inst✝¹ : (α : A) → MvFunctor (F α)
inst✝ : (α : A) → MvQPF (F α)
α β : TypeVec n
f : α ⟹ β
x : (Pi.P F).A
g : MvPFunctor.B (Pi.P F) x ⟹ α
⊢ (match MvPFunctor.map (Pi.P F) f { fst := x, snd := g } with
| { fst := a, snd := f } => fun x => abs { fst := a x, snd := fun i y => f i { fst := x, snd := y } }) =
fun a => abs (MvPFunctor.map (P (F a)) f { fst := x a, snd := fun i y => g i { fst := a, snd := y } })
[PROOFSTEP]
rfl
|
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Sigma", "llama_tokens": 1728}
|
[GOAL]
α : Type u
β : α → Type v
m : Multiset ((a : α) × β a)
⊢ Nodup (keys m) ↔ NodupKeys m
[PROOFSTEP]
rcases m with ⟨l⟩
[GOAL]
case mk
α : Type u
β : α → Type v
m : Multiset ((a : α) × β a)
l : List ((a : α) × β a)
⊢ Nodup (keys (Quot.mk Setoid.r l)) ↔ NodupKeys (Quot.mk Setoid.r l)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : α → Type v
s₁ s₂ : AList β
⊢ ⟦s₁⟧ = ⟦s₂⟧ ↔ s₁.entries ~ s₂.entries
[PROOFSTEP]
cases s₁
[GOAL]
case mk
α : Type u
β : α → Type v
s₂ : AList β
entries✝ : List (Sigma β)
nodupKeys✝ : NodupKeys entries✝
⊢ ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ = ⟦s₂⟧ ↔
{ entries := entries✝, nodupKeys := nodupKeys✝ }.entries ~ s₂.entries
[PROOFSTEP]
cases s₂
[GOAL]
case mk.mk
α : Type u
β : α → Type v
entries✝¹ : List (Sigma β)
nodupKeys✝¹ : NodupKeys entries✝¹
entries✝ : List (Sigma β)
nodupKeys✝ : NodupKeys entries✝
⊢ ⟦{ entries := entries✝¹, nodupKeys := nodupKeys✝¹ }⟧ = ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ ↔
{ entries := entries✝¹, nodupKeys := nodupKeys✝¹ }.entries ~
{ entries := entries✝, nodupKeys := nodupKeys✝ }.entries
[PROOFSTEP]
simp [AList.toFinmap]
[GOAL]
α : Type u
β : α → Type v
γ : Sort ?u.11051
s : Finmap β
f : AList β → γ
H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b
⊢ γ
[PROOFSTEP]
refine'
(Quotient.liftOn s.entries (fun (l : List (Sigma β)) => (⟨_, fun nd => f ⟨l, nd⟩⟩ : Part γ))
(fun l₁ l₂ p => Part.ext' (perm_nodupKeys p) _) :
Part γ).get
_
[GOAL]
case refine'_1
α : Type u
β : α → Type v
γ : Type ?u.11103
s : Finmap β
f : AList β → γ
H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b
l₁ l₂ : List (Sigma β)
p : l₁ ≈ l₂
⊢ ∀ (h₁ : ((fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁).Dom)
(h₂ : ((fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂).Dom),
Part.get ((fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁) h₁ =
Part.get ((fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂) h₂
[PROOFSTEP]
exact fun h1 h2 => H _ _ p
[GOAL]
case refine'_2
α : Type u
β : α → Type v
γ : Type ?u.11103
s : Finmap β
f : AList β → γ
H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b
⊢ (Quotient.liftOn s.entries (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } })
(_ :
∀ (l₁ l₂ : List (Sigma β)),
l₁ ≈ l₂ →
(fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁ =
(fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂)).Dom
[PROOFSTEP]
have := s.nodupKeys
[GOAL]
case refine'_2
α : Type u
β : α → Type v
γ : Type ?u.11103
s : Finmap β
f : AList β → γ
H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b
this : Multiset.NodupKeys s.entries
⊢ (Quotient.liftOn s.entries (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } })
(_ :
∀ (l₁ l₂ : List (Sigma β)),
l₁ ≈ l₂ →
(fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁ =
(fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂)).Dom
[PROOFSTEP]
revert this
[GOAL]
case refine'_2
α : Type u
β : α → Type v
γ : Type ?u.11103
s : Finmap β
f : AList β → γ
H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b
⊢ Multiset.NodupKeys s.entries →
(Quotient.liftOn s.entries (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } })
(_ :
∀ (l₁ l₂ : List (Sigma β)),
l₁ ≈ l₂ →
(fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁ =
(fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂)).Dom
[PROOFSTEP]
rcases s.entries with ⟨l⟩
[GOAL]
case refine'_2.mk
α : Type u
β : α → Type v
γ : Type ?u.11103
s : Finmap β
f : AList β → γ
H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b
x✝ : Multiset (Sigma β)
l : List (Sigma β)
⊢ Multiset.NodupKeys (Quot.mk Setoid.r l) →
(Quotient.liftOn (Quot.mk Setoid.r l)
(fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } })
(_ :
∀ (l₁ l₂ : List (Sigma β)),
l₁ ≈ l₂ →
(fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁ =
(fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂)).Dom
[PROOFSTEP]
exact id
[GOAL]
α : Type u
β : α → Type v
γ : Type u_1
s : AList β
f : AList β → γ
H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b
⊢ liftOn ⟦s⟧ f H = f s
[PROOFSTEP]
cases s
[GOAL]
case mk
α : Type u
β : α → Type v
γ : Type u_1
f : AList β → γ
H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b
entries✝ : List (Sigma β)
nodupKeys✝ : NodupKeys entries✝
⊢ liftOn ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ f H = f { entries := entries✝, nodupKeys := nodupKeys✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : α → Type v
γ : Type ?u.20104
s₁ s₂ : Finmap β
f : AList β → AList β → γ
H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂
a₁ a₂ : AList β
p : a₁.entries ~ a₂.entries
⊢ (fun l₁ => liftOn s₂ (f l₁) (_ : ∀ (b₁ b₂ : AList β), b₁.entries ~ b₂.entries → f l₁ b₁ = f l₁ b₂)) a₁ =
(fun l₁ => liftOn s₂ (f l₁) (_ : ∀ (b₁ b₂ : AList β), b₁.entries ~ b₂.entries → f l₁ b₁ = f l₁ b₂)) a₂
[PROOFSTEP]
have H' : f a₁ = f a₂ := funext fun _ => H _ _ _ _ p (Perm.refl _)
[GOAL]
α : Type u
β : α → Type v
γ : Type ?u.20104
s₁ s₂ : Finmap β
f : AList β → AList β → γ
H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂
a₁ a₂ : AList β
p : a₁.entries ~ a₂.entries
H' : f a₁ = f a₂
⊢ (fun l₁ => liftOn s₂ (f l₁) (_ : ∀ (b₁ b₂ : AList β), b₁.entries ~ b₂.entries → f l₁ b₁ = f l₁ b₂)) a₁ =
(fun l₁ => liftOn s₂ (f l₁) (_ : ∀ (b₁ b₂ : AList β), b₁.entries ~ b₂.entries → f l₁ b₁ = f l₁ b₂)) a₂
[PROOFSTEP]
simp only [H']
[GOAL]
α : Type u
β : α → Type v
γ : Type u_1
s₁ s₂ : AList β
f : AList β → AList β → γ
H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂
⊢ liftOn₂ ⟦s₁⟧ ⟦s₂⟧ f H = f s₁ s₂
[PROOFSTEP]
cases s₁
[GOAL]
case mk
α : Type u
β : α → Type v
γ : Type u_1
s₂ : AList β
f : AList β → AList β → γ
H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂
entries✝ : List (Sigma β)
nodupKeys✝ : NodupKeys entries✝
⊢ liftOn₂ ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ ⟦s₂⟧ f H =
f { entries := entries✝, nodupKeys := nodupKeys✝ } s₂
[PROOFSTEP]
cases s₂
[GOAL]
case mk.mk
α : Type u
β : α → Type v
γ : Type u_1
f : AList β → AList β → γ
H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂
entries✝¹ : List (Sigma β)
nodupKeys✝¹ : NodupKeys entries✝¹
entries✝ : List (Sigma β)
nodupKeys✝ : NodupKeys entries✝
⊢ liftOn₂ ⟦{ entries := entries✝¹, nodupKeys := nodupKeys✝¹ }⟧ ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ f H =
f { entries := entries✝¹, nodupKeys := nodupKeys✝¹ } { entries := entries✝, nodupKeys := nodupKeys✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : α → Type v
C : Finmap β → Prop
s : Finmap β
H : ∀ (a : AList β), C ⟦a⟧
⊢ C s
[PROOFSTEP]
rcases s with ⟨⟨a⟩, h⟩
[GOAL]
case mk.mk
α : Type u
β : α → Type v
C : Finmap β → Prop
H : ∀ (a : AList β), C ⟦a⟧
entries✝ : Multiset (Sigma β)
a : List (Sigma β)
h : Multiset.NodupKeys (Quot.mk Setoid.r a)
⊢ C { entries := Quot.mk Setoid.r a, nodupKeys := h }
[PROOFSTEP]
exact H ⟨a, h⟩
[GOAL]
α : Type u
β : α → Type v
l₁ : Multiset (Sigma β)
h₁ : Multiset.NodupKeys l₁
l₂ : Multiset (Sigma β)
nodupKeys✝ : Multiset.NodupKeys l₂
H : { entries := l₁, nodupKeys := h₁ }.entries = { entries := l₂, nodupKeys := nodupKeys✝ }.entries
⊢ { entries := l₁, nodupKeys := h₁ } = { entries := l₂, nodupKeys := nodupKeys✝ }
[PROOFSTEP]
congr
[GOAL]
α : Type u
β : α → Type v
s₁ s₂ : AList β
⊢ keys ⟦s₁⟧ = keys ⟦s₂⟧ ↔ AList.keys s₁ ~ AList.keys s₂
[PROOFSTEP]
simp [keys, AList.keys]
[GOAL]
α : Type u
β : α → Type v
x y : α
b : β y
⊢ x ∈ singleton y b ↔ x = y
[PROOFSTEP]
simp only [singleton]
[GOAL]
α : Type u
β : α → Type v
x y : α
b : β y
⊢ x ∈ ⟦AList.singleton y b⟧ ↔ x = y
[PROOFSTEP]
erw [mem_cons, mem_nil_iff, or_false_iff]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s : List (Sigma β)
⊢ lookup a (List.toFinmap s) = dlookup a s
[PROOFSTEP]
rw [List.toFinmap, lookup_toFinmap, lookup_to_alist]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s : Finmap β
a : α
b : β a
⊢ b ∈ lookup a s ↔ { fst := a, snd := b } ∈ s.entries
[PROOFSTEP]
rcases s with ⟨⟨l⟩, hl⟩
[GOAL]
case mk.mk
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
entries✝ : Multiset (Sigma β)
l : List (Sigma β)
hl : Multiset.NodupKeys (Quot.mk Setoid.r l)
⊢ b ∈ lookup a { entries := Quot.mk Setoid.r l, nodupKeys := hl } ↔
{ fst := a, snd := b } ∈ { entries := Quot.mk Setoid.r l, nodupKeys := hl }.entries
[PROOFSTEP]
exact List.mem_dlookup_iff hl
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s : Finmap β
⊢ (Finset.sigma (keys s) fun i => Option.toFinset (lookup i s)) =
{ val := s.entries, nodup := (_ : Multiset.Nodup s.entries) }
[PROOFSTEP]
ext x
[GOAL]
case a
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s : Finmap β
x : (i : α) × β i
⊢ (x ∈ Finset.sigma (keys s) fun i => Option.toFinset (lookup i s)) ↔
x ∈ { val := s.entries, nodup := (_ : Multiset.Nodup s.entries) }
[PROOFSTEP]
have : x ∈ s.entries → x.1 ∈ s.keys := Multiset.mem_map_of_mem _
[GOAL]
case a
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s : Finmap β
x : (i : α) × β i
this : x ∈ s.entries → x.fst ∈ keys s
⊢ (x ∈ Finset.sigma (keys s) fun i => Option.toFinset (lookup i s)) ↔
x ∈ { val := s.entries, nodup := (_ : Multiset.Nodup s.entries) }
[PROOFSTEP]
simpa [lookup_eq_some_iff]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
⊢ lookup a (singleton a b) = some b
[PROOFSTEP]
rw [singleton, lookup_toFinmap, AList.singleton, AList.lookup, dlookup_cons_eq]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
h : ∀ (x : α), lookup x ⟦s₁⟧ = lookup x ⟦s₂⟧
⊢ ⟦s₁⟧ = ⟦s₂⟧
[PROOFSTEP]
simp only [AList.lookup, lookup_toFinmap] at h
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries
⊢ ⟦s₁⟧ = ⟦s₂⟧
[PROOFSTEP]
rw [AList.toFinmap_eq]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries
⊢ s₁.entries ~ s₂.entries
[PROOFSTEP]
apply lookup_ext s₁.nodupKeys s₂.nodupKeys
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries
⊢ ∀ (x : α) (y : β x), y ∈ dlookup x s₁.entries ↔ y ∈ dlookup x s₂.entries
[PROOFSTEP]
intro x y
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries
x : α
y : β x
⊢ y ∈ dlookup x s₁.entries ↔ y ∈ dlookup x s₂.entries
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
f : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst }
⊢ Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val
[PROOFSTEP]
refine Multiset.nodup_keys.1 ((Finset.nodup _).map_on ?_)
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
f : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst }
⊢ ∀ (x : (a : α) × β a),
x ∈ (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val →
∀ (y : (a : α) × β a),
y ∈ (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val → x.fst = y.fst → x = y
[PROOFSTEP]
simp only [Finset.mem_val, Finset.mem_sigma, Option.mem_toFinset, Option.mem_def]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
f : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst }
⊢ ∀ (x : (a : α) × β a),
x.fst ∈ (↑f).fst ∧ Prod.snd (↑f) x.fst = some x.snd →
∀ (y : (a : α) × β a), y.fst ∈ (↑f).fst ∧ Prod.snd (↑f) y.fst = some y.snd → x.fst = y.fst → x = y
[PROOFSTEP]
rintro ⟨i, x⟩ ⟨_, hx⟩ ⟨j, y⟩ ⟨_, hy⟩ (rfl : i = j)
[GOAL]
case mk.intro.mk.intro
α : Type u
β : α → Type v
inst✝ : DecidableEq α
f : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst }
i : α
x : β i
left✝¹ : { fst := i, snd := x }.fst ∈ (↑f).fst
hx : Prod.snd ↑f { fst := i, snd := x }.fst = some { fst := i, snd := x }.snd
y : β i
left✝ : { fst := i, snd := y }.fst ∈ (↑f).fst
hy : Prod.snd ↑f { fst := i, snd := y }.fst = some { fst := i, snd := y }.snd
⊢ { fst := i, snd := x } = { fst := i, snd := y }
[PROOFSTEP]
simpa using hx.symm.trans hy
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
f : Finmap β
⊢ ((fun f =>
{ entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val,
nodupKeys :=
(_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) })
((fun s =>
{ val := (keys s, fun i => lookup i s),
property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) })
f)).entries =
f.entries
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x✝ : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst }
s : Finset α
f : (a : α) → Option (β a)
hf : ∀ (i : α), Option.isSome (Prod.snd (s, f) i) = true ↔ i ∈ (s, f).fst
⊢ (fun s =>
{ val := (keys s, fun i => lookup i s),
property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) })
((fun f =>
{ entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val,
nodupKeys :=
(_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) })
{ val := (s, f), property := hf }) =
{ val := (s, f), property := hf }
[PROOFSTEP]
dsimp only at hf
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x✝ : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst }
s : Finset α
f : (a : α) → Option (β a)
hf : ∀ (i : α), Option.isSome (f i) = true ↔ i ∈ s
⊢ (fun s =>
{ val := (keys s, fun i => lookup i s),
property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) })
((fun f =>
{ entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val,
nodupKeys :=
(_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) })
{ val := (s, f), property := hf }) =
{ val := (s, f), property := hf }
[PROOFSTEP]
ext
[GOAL]
case a.h₁.a
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x✝ : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst }
s : Finset α
f : (a : α) → Option (β a)
hf : ∀ (i : α), Option.isSome (f i) = true ↔ i ∈ s
a✝ : α
⊢ a✝ ∈
(↑((fun s =>
{ val := (keys s, fun i => lookup i s),
property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) })
((fun f =>
{ entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val,
nodupKeys :=
(_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) })
{ val := (s, f), property := hf }))).fst ↔
a✝ ∈ (↑{ val := (s, f), property := hf }).fst
[PROOFSTEP]
simp [keys, Multiset.keys, ← hf, Option.isSome_iff_exists]
[GOAL]
case a.h₂.h.a
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x✝¹ : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst }
s : Finset α
f : (a : α) → Option (β a)
hf : ∀ (i : α), Option.isSome (f i) = true ↔ i ∈ s
x✝ : α
a✝ : β x✝
⊢ a✝ ∈
Prod.snd
(↑((fun s =>
{ val := (keys s, fun i => lookup i s),
property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) })
((fun f =>
{ entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val,
nodupKeys :=
(_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) })
{ val := (s, f), property := hf })))
x✝ ↔
a✝ ∈ Prod.snd (↑{ val := (s, f), property := hf }) x✝
[PROOFSTEP]
simp (config := { contextual := true }) [lookup_eq_some_iff, ← hf]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x✝ : Finmap fun a => β a
⊢ keys (↑keysLookupEquiv.symm (↑keysLookupEquiv x✝)) = (↑(↑keysLookupEquiv x✝)).fst
[PROOFSTEP]
simp only [Equiv.symm_apply_apply, keysLookupEquiv_apply_coe_fst]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x✝¹ : Finmap fun a => β a
x✝ : α
⊢ lookup x✝ (↑keysLookupEquiv.symm (↑keysLookupEquiv x✝¹)) = Prod.snd (↑(↑keysLookupEquiv x✝¹)) x✝
[PROOFSTEP]
simp only [Equiv.symm_apply_apply, keysLookupEquiv_apply_coe_snd]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s : AList β
⊢ replace a b ⟦s⟧ = ⟦AList.replace a b s⟧
[PROOFSTEP]
simp [replace]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s✝ : Finmap β
s : AList β
⊢ keys (replace a b ⟦s⟧) = keys ⟦s⟧
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a a' : α
b : β a
s✝ : Finmap β
s : AList β
⊢ a' ∈ replace a b ⟦s⟧ ↔ a' ∈ ⟦s⟧
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
f : (x : α) → β x → Bool
s : Finmap β
x✝³ : Bool
x✝² : α
x✝¹ : β x✝²
x✝ : α
⊢ ∀ (b₂ : β x✝),
(fun x y z => x || f y z) ((fun x y z => x || f y z) x✝³ x✝² x✝¹) x✝ b₂ =
(fun x y z => x || f y z) ((fun x y z => x || f y z) x✝³ x✝ b₂) x✝² x✝¹
[PROOFSTEP]
simp_rw [Bool.or_assoc, Bool.or_comm, imp_true_iff]
[GOAL]
α : Type u
β : α → Type v
f : (x : α) → β x → Bool
s : Finmap β
x✝³ : Bool
x✝² : α
x✝¹ : β x✝²
x✝ : α
⊢ ∀ (b₂ : β x✝),
(fun x y z => x && f y z) ((fun x y z => x && f y z) x✝³ x✝² x✝¹) x✝ b₂ =
(fun x y z => x && f y z) ((fun x y z => x && f y z) x✝³ x✝ b₂) x✝² x✝¹
[PROOFSTEP]
simp_rw [Bool.and_assoc, Bool.and_comm, imp_true_iff]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s : AList β
⊢ erase a ⟦s⟧ = ⟦AList.erase a s⟧
[PROOFSTEP]
simp [erase]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s : AList β
⊢ keys ⟦AList.erase a s⟧ = Finset.erase (keys ⟦s⟧) a
[PROOFSTEP]
simp [Finset.erase, keys, AList.erase, keys_kerase]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s✝ : Finmap β
s : AList β
⊢ keys (erase a ⟦s⟧) = Finset.erase (keys ⟦s⟧) a
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a a' : α
s✝ : Finmap β
s : AList β
⊢ a' ∈ erase a ⟦s⟧ ↔ a' ≠ a ∧ a' ∈ ⟦s⟧
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s : Finmap β
⊢ ¬a ∈ erase a s
[PROOFSTEP]
rw [mem_erase, not_and_or, not_not]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s : Finmap β
⊢ a = a ∨ ¬a ∈ s
[PROOFSTEP]
left
[GOAL]
case h
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s : Finmap β
⊢ a = a
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a a' : α
s✝ : Finmap β
s : AList β
⊢ (erase a (erase a' ⟦s⟧)).entries = (erase a' (erase a ⟦s⟧)).entries
[PROOFSTEP]
simp only [AList.erase_erase, erase_toFinmap]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s : AList β
⊢ insert a b ⟦s⟧ = ⟦AList.insert a b s⟧
[PROOFSTEP]
simp [insert]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s✝ : Finmap β
s : AList β
h : ¬a ∈ ⟦s⟧
⊢ (insert a b ⟦s⟧).entries = { fst := a, snd := b } ::ₘ ⟦s⟧.entries
[PROOFSTEP]
simp [AList.insert_entries_of_neg (mt mem_toFinmap.1 h), -insert_entries]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s✝ : Finmap β
s : AList β
⊢ lookup a (insert a b ⟦s⟧) = some b
[PROOFSTEP]
simp only [insert_toFinmap, lookup_toFinmap, AList.lookup_insert]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a a' : α
b : β a
s✝ : Finmap β
h : a' ≠ a
s : AList β
⊢ lookup a' (insert a b ⟦s⟧) = lookup a' ⟦s⟧
[PROOFSTEP]
simp only [insert_toFinmap, lookup_toFinmap, lookup_insert_ne h]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b b' : β a
s✝ : Finmap β
s : AList β
⊢ insert a b' (insert a b ⟦s⟧) = insert a b' ⟦s⟧
[PROOFSTEP]
simp only [insert_toFinmap, AList.insert_insert]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a a' : α
b : β a
b' : β a'
s✝ : Finmap β
h : a ≠ a'
s : AList β
⊢ insert a' b' (insert a b ⟦s⟧) = insert a b (insert a' b' ⟦s⟧)
[PROOFSTEP]
simp only [insert_toFinmap, AList.toFinmap_eq, AList.insert_insert_of_ne _ h]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
xs : List (Sigma β)
⊢ a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs
[PROOFSTEP]
induction' xs with x xs
[GOAL]
case nil
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
⊢ a ∈ List.toFinmap [] ↔ ∃ b, { fst := a, snd := b } ∈ []
[PROOFSTEP]
simp only [toFinmap_nil, not_mem_empty, find?, not_mem_nil, exists_false]
[GOAL]
case cons
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
x : Sigma β
xs : List (Sigma β)
tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs
⊢ a ∈ List.toFinmap (x :: xs) ↔ ∃ b, { fst := a, snd := b } ∈ x :: xs
[PROOFSTEP]
cases' x with fst_i snd_i
[GOAL]
case cons.mk
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
xs : List (Sigma β)
tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs
fst_i : α
snd_i : β fst_i
⊢ a ∈ List.toFinmap ({ fst := fst_i, snd := snd_i } :: xs) ↔
∃ b, { fst := a, snd := b } ∈ { fst := fst_i, snd := snd_i } :: xs
[PROOFSTEP]
simp only [toFinmap_cons, *, exists_or, mem_cons, mem_insert, exists_and_left, Sigma.mk.inj_iff]
[GOAL]
case cons.mk
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
xs : List (Sigma β)
tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs
fst_i : α
snd_i : β fst_i
⊢ (a = fst_i ∨ ∃ b, { fst := a, snd := b } ∈ xs) ↔ (a = fst_i ∧ ∃ x, HEq x snd_i) ∨ ∃ x, { fst := a, snd := x } ∈ xs
[PROOFSTEP]
refine (or_congr_left <| and_iff_left_of_imp ?_).symm
[GOAL]
case cons.mk
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
xs : List (Sigma β)
tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs
fst_i : α
snd_i : β fst_i
⊢ a = fst_i → ∃ x, HEq x snd_i
[PROOFSTEP]
rintro rfl
[GOAL]
case cons.mk
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
xs : List (Sigma β)
tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs
snd_i : β a
⊢ ∃ x, HEq x snd_i
[PROOFSTEP]
simp only [exists_eq, heq_iff_eq]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b b' : β a
⊢ insert a b (singleton a b') = singleton a b
[PROOFSTEP]
simp only [singleton, Finmap.insert_toFinmap, AList.insert_singleton_eq]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s : Finmap β
s₁ s₂ : AList β
p : s₁.entries ~ s₂.entries
⊢ Prod.map id AList.toFinmap (AList.extract a s₁) = Prod.map id AList.toFinmap (AList.extract a s₂)
[PROOFSTEP]
simp [perm_lookup p, toFinmap_eq, perm_erase p]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s✝ : Finmap β
s : AList β
⊢ extract a ⟦s⟧ = (lookup a ⟦s⟧, erase a ⟦s⟧)
[PROOFSTEP]
simp [extract]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁ s₂ : AList β
⊢ ⟦s₁⟧ ∪ ⟦s₂⟧ = ⟦s₁ ∪ s₂⟧
[PROOFSTEP]
simp [(· ∪ ·), union]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
⊢ ∀ (a : α), a ∈ keys (⟦s₁⟧ ∪ ⟦s₂⟧) ↔ a ∈ keys ⟦s₁⟧ ∪ keys ⟦s₂⟧
[PROOFSTEP]
simp [keys]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s₁ s₂ : Finmap β
h : ¬a ∈ s₂
⊢ lookup a (s₁ ∪ s₂) = lookup a s₁
[PROOFSTEP]
by_cases h' : a ∈ s₁
[GOAL]
case pos
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s₁ s₂ : Finmap β
h : ¬a ∈ s₂
h' : a ∈ s₁
⊢ lookup a (s₁ ∪ s₂) = lookup a s₁
[PROOFSTEP]
rw [lookup_union_left h']
[GOAL]
case neg
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
s₁ s₂ : Finmap β
h : ¬a ∈ s₂
h' : ¬a ∈ s₁
⊢ lookup a (s₁ ∪ s₂) = lookup a s₁
[PROOFSTEP]
rw [lookup_union_right h', lookup_eq_none.mpr h, lookup_eq_none.mpr h']
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s₁ s₂ : Finmap β
a₁ a₂ : AList β
⊢ insert a b (⟦a₁⟧ ∪ ⟦a₂⟧) = insert a b ⟦a₁⟧ ∪ ⟦a₂⟧
[PROOFSTEP]
simp [AList.insert_union]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ s₃✝ : Finmap β
s₁ s₂ s₃ : AList β
⊢ ⟦s₁⟧ ∪ ⟦s₂⟧ ∪ ⟦s₃⟧ = ⟦s₁⟧ ∪ (⟦s₂⟧ ∪ ⟦s₃⟧)
[PROOFSTEP]
simp only [AList.toFinmap_eq, union_toFinmap, AList.union_assoc]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ : Finmap β
s₁ : AList β
⊢ ∅ ∪ ⟦s₁⟧ = ⟦s₁⟧
[PROOFSTEP]
rw [← empty_toFinmap]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ : Finmap β
s₁ : AList β
⊢ ⟦∅⟧ ∪ ⟦s₁⟧ = ⟦s₁⟧
[PROOFSTEP]
simp [-empty_toFinmap, AList.toFinmap_eq, union_toFinmap, AList.union_assoc]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ : Finmap β
s₁ : AList β
⊢ ⟦s₁⟧ ∪ ∅ = ⟦s₁⟧
[PROOFSTEP]
rw [← empty_toFinmap]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ : Finmap β
s₁ : AList β
⊢ ⟦s₁⟧ ∪ ⟦∅⟧ = ⟦s₁⟧
[PROOFSTEP]
simp [-empty_toFinmap, AList.toFinmap_eq, union_toFinmap, AList.union_assoc]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s : Finmap β
h : lookup a s = some b
x : α
⊢ lookup x (erase a s ∪ singleton a b) = lookup x s
[PROOFSTEP]
by_cases h' : x = a
[GOAL]
case pos
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s : Finmap β
h : lookup a s = some b
x : α
h' : x = a
⊢ lookup x (erase a s ∪ singleton a b) = lookup x s
[PROOFSTEP]
subst a
[GOAL]
case pos
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s : Finmap β
x : α
b : β x
h : lookup x s = some b
⊢ lookup x (erase x s ∪ singleton x b) = lookup x s
[PROOFSTEP]
rw [lookup_union_right not_mem_erase_self, lookup_singleton_eq, h]
[GOAL]
case neg
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s : Finmap β
h : lookup a s = some b
x : α
h' : ¬x = a
⊢ lookup x (erase a s ∪ singleton a b) = lookup x s
[PROOFSTEP]
have : x ∉ singleton a b := by rwa [mem_singleton]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s : Finmap β
h : lookup a s = some b
x : α
h' : ¬x = a
⊢ ¬x ∈ singleton a b
[PROOFSTEP]
rwa [mem_singleton]
[GOAL]
case neg
α : Type u
β : α → Type v
inst✝ : DecidableEq α
a : α
b : β a
s : Finmap β
h : lookup a s = some b
x : α
h' : ¬x = a
this : ¬x ∈ singleton a b
⊢ lookup x (erase a s ∪ singleton a b) = lookup x s
[PROOFSTEP]
rw [lookup_union_left_of_not_in this, lookup_erase_ne h']
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x y : Finmap β
⊢ Decidable (Disjoint x y)
[PROOFSTEP]
dsimp only [Disjoint]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x y : Finmap β
⊢ Decidable (∀ (x_1 : α), x_1 ∈ x → ¬x_1 ∈ y)
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x y z : Finmap β
⊢ Disjoint (x ∪ y) z ↔ Disjoint x z ∧ Disjoint y z
[PROOFSTEP]
simp [Disjoint, Finmap.mem_union, or_imp, forall_and]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x y z : Finmap β
⊢ Disjoint x (y ∪ z) ↔ Disjoint x y ∧ Disjoint x z
[PROOFSTEP]
rw [Disjoint.symm_iff, disjoint_union_left, Disjoint.symm_iff _ x, Disjoint.symm_iff _ x]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
⊢ Disjoint ⟦s₁⟧ ⟦s₂⟧ → ⟦s₁⟧ ∪ ⟦s₂⟧ = ⟦s₂⟧ ∪ ⟦s₁⟧
[PROOFSTEP]
intro h
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁✝ s₂✝ : Finmap β
s₁ s₂ : AList β
h : Disjoint ⟦s₁⟧ ⟦s₂⟧
⊢ ⟦s₁⟧ ∪ ⟦s₂⟧ = ⟦s₂⟧ ∪ ⟦s₁⟧
[PROOFSTEP]
simp only [AList.toFinmap_eq, union_toFinmap, AList.union_comm_of_disjoint h]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁ s₂ s₃ : Finmap β
h : Disjoint s₁ s₃
h' : Disjoint s₂ s₃
h'' : s₁ ∪ s₃ = s₂ ∪ s₃
⊢ s₁ = s₂
[PROOFSTEP]
apply ext_lookup
[GOAL]
case a
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁ s₂ s₃ : Finmap β
h : Disjoint s₁ s₃
h' : Disjoint s₂ s₃
h'' : s₁ ∪ s₃ = s₂ ∪ s₃
⊢ ∀ (x : α), lookup x s₁ = lookup x s₂
[PROOFSTEP]
intro x
[GOAL]
case a
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁ s₂ s₃ : Finmap β
h : Disjoint s₁ s₃
h' : Disjoint s₂ s₃
h'' : s₁ ∪ s₃ = s₂ ∪ s₃
x : α
⊢ lookup x s₁ = lookup x s₂
[PROOFSTEP]
have : (s₁ ∪ s₃).lookup x = (s₂ ∪ s₃).lookup x := h'' ▸ rfl
[GOAL]
case a
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁ s₂ s₃ : Finmap β
h : Disjoint s₁ s₃
h' : Disjoint s₂ s₃
h'' : s₁ ∪ s₃ = s₂ ∪ s₃
x : α
this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃)
⊢ lookup x s₁ = lookup x s₂
[PROOFSTEP]
by_cases hs₁ : x ∈ s₁
[GOAL]
case pos
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁ s₂ s₃ : Finmap β
h : Disjoint s₁ s₃
h' : Disjoint s₂ s₃
h'' : s₁ ∪ s₃ = s₂ ∪ s₃
x : α
this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃)
hs₁ : x ∈ s₁
⊢ lookup x s₁ = lookup x s₂
[PROOFSTEP]
rwa [lookup_union_left hs₁, lookup_union_left_of_not_in (h _ hs₁)] at this
[GOAL]
case neg
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁ s₂ s₃ : Finmap β
h : Disjoint s₁ s₃
h' : Disjoint s₂ s₃
h'' : s₁ ∪ s₃ = s₂ ∪ s₃
x : α
this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃)
hs₁ : ¬x ∈ s₁
⊢ lookup x s₁ = lookup x s₂
[PROOFSTEP]
by_cases hs₂ : x ∈ s₂
[GOAL]
case pos
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁ s₂ s₃ : Finmap β
h : Disjoint s₁ s₃
h' : Disjoint s₂ s₃
h'' : s₁ ∪ s₃ = s₂ ∪ s₃
x : α
this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃)
hs₁ : ¬x ∈ s₁
hs₂ : x ∈ s₂
⊢ lookup x s₁ = lookup x s₂
[PROOFSTEP]
rwa [lookup_union_left_of_not_in (h' _ hs₂), lookup_union_left hs₂] at this
[GOAL]
case neg
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s₁ s₂ s₃ : Finmap β
h : Disjoint s₁ s₃
h' : Disjoint s₂ s₃
h'' : s₁ ∪ s₃ = s₂ ∪ s₃
x : α
this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃)
hs₁ : ¬x ∈ s₁
hs₂ : ¬x ∈ s₂
⊢ lookup x s₁ = lookup x s₂
[PROOFSTEP]
rw [lookup_eq_none.mpr hs₁, lookup_eq_none.mpr hs₂]
|
{"mathlib_filename": "Mathlib.Data.Finmap", "llama_tokens": 15362}
|
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
xs : List α
h : ∀ (x : α), x ∈ xs
h' : List.Nodup xs
x : α
⊢ List.indexOf x xs < List.length xs
[PROOFSTEP]
rw [List.indexOf_lt_length]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
xs : List α
h : ∀ (x : α), x ∈ xs
h' : List.Nodup xs
x : α
⊢ x ∈ xs
[PROOFSTEP]
apply h
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
xs : List α
h : ∀ (x : α), x ∈ xs
h' : List.Nodup xs
x : α
⊢ (fun x =>
match x with
| { val := i, isLt := h } => List.nthLe xs i h)
((fun x => { val := List.indexOf x xs, isLt := (_ : List.indexOf x xs < List.length xs) }) x) =
x
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
xs : List α
h✝ : ∀ (x : α), x ∈ xs
h' : List.Nodup xs
x✝ : Fin (List.length xs)
i : ℕ
h : i < List.length xs
⊢ (fun x => { val := List.indexOf x xs, isLt := (_ : List.indexOf x xs < List.length xs) })
((fun x =>
match x with
| { val := i, isLt := h } => List.nthLe xs i h)
{ val := i, isLt := h }) =
{ val := i, isLt := h }
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
xs : List α
h : ∀ (x : α), x ∈ xs
⊢ ∀ (x : α), x ∈ List.dedup xs
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
x : α
⊢ x ∈ toList α
[PROOFSTEP]
simp [toList]
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
x : α
⊢ ∃ a, ↑equiv.symm a = x
[PROOFSTEP]
exists equiv x
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
x : α
⊢ ↑equiv.symm (↑equiv x) = x
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
⊢ List.Nodup (toList α)
[PROOFSTEP]
simp [toList]
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
⊢ List.Nodup (List.map (↑equiv.symm) (List.finRange (card α)))
[PROOFSTEP]
apply List.Nodup.map <;> [apply Equiv.injective; apply List.nodup_finRange]
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
⊢ List.Nodup (List.map (↑equiv.symm) (List.finRange (card α)))
[PROOFSTEP]
apply List.Nodup.map
[GOAL]
case hf
α : Type u
β : α → Type v
inst✝ : FinEnum α
⊢ Injective ↑equiv.symm
[PROOFSTEP]
apply Equiv.injective
[GOAL]
case a
α : Type u
β : α → Type v
inst✝ : FinEnum α
⊢ List.Nodup (List.finRange (card α))
[PROOFSTEP]
apply List.nodup_finRange
[GOAL]
α : Type u
β✝ : α → Type v
β : Type ?u.8688
f : β → α
inst✝¹ : DecidableEq α
inst✝ : FinEnum β
h : Surjective f
⊢ ∀ (x : α), x ∈ List.map f (toList β)
[PROOFSTEP]
intro
[GOAL]
α : Type u
β✝ : α → Type v
β : Type ?u.8688
f : β → α
inst✝¹ : DecidableEq α
inst✝ : FinEnum β
h : Surjective f
x✝ : α
⊢ x✝ ∈ List.map f (toList β)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β✝ : α → Type v
β : Type ?u.8688
f : β → α
inst✝¹ : DecidableEq α
inst✝ : FinEnum β
h : Surjective f
x✝ : α
⊢ ∃ a, f a = x✝
[PROOFSTEP]
exact h _
[GOAL]
α✝ : Type u
β✝ : α✝ → Type v
α : Type ?u.11794
β : Type ?u.11876
f : α → β
inst✝¹ : DecidableEq α
inst✝ : FinEnum β
h : Injective f
⊢ ∀ (x : α), x ∈ List.filterMap (partialInv f) (toList β)
[PROOFSTEP]
intro x
[GOAL]
α✝ : Type u
β✝ : α✝ → Type v
α : Type ?u.11794
β : Type ?u.11876
f : α → β
inst✝¹ : DecidableEq α
inst✝ : FinEnum β
h : Injective f
x : α
⊢ x ∈ List.filterMap (partialInv f) (toList β)
[PROOFSTEP]
simp only [mem_toList, true_and_iff, List.mem_filterMap]
[GOAL]
α✝ : Type u
β✝ : α✝ → Type v
α : Type ?u.11794
β : Type ?u.11876
f : α → β
inst✝¹ : DecidableEq α
inst✝ : FinEnum β
h : Injective f
x : α
⊢ ∃ a, partialInv f a = some x
[PROOFSTEP]
use f x
[GOAL]
case h
α✝ : Type u
β✝ : α✝ → Type v
α : Type ?u.11794
β : Type ?u.11876
f : α → β
inst✝¹ : DecidableEq α
inst✝ : FinEnum β
h : Injective f
x : α
⊢ partialInv f (f x) = some x
[PROOFSTEP]
simp only [h, Function.partialInv_left]
[GOAL]
α : Type u
β : α → Type v
x : PUnit
⊢ x ∈ [PUnit.unit]
[PROOFSTEP]
cases x
[GOAL]
case unit
α : Type u
β : α → Type v
⊢ PUnit.unit ∈ [PUnit.unit]
[PROOFSTEP]
simp
[GOAL]
α : Type u
β✝ : α → Type v
β : Type ?u.13079
inst✝¹ : FinEnum α
inst✝ : FinEnum β
x : α × β
⊢ x ∈ toList α ×ˢ toList β
[PROOFSTEP]
cases x
[GOAL]
case mk
α : Type u
β✝ : α → Type v
β : Type ?u.13079
inst✝¹ : FinEnum α
inst✝ : FinEnum β
fst✝ : α
snd✝ : β
⊢ (fst✝, snd✝) ∈ toList α ×ˢ toList β
[PROOFSTEP]
simp
[GOAL]
α : Type u
β✝ : α → Type v
β : Type ?u.16461
inst✝¹ : FinEnum α
inst✝ : FinEnum β
x : α ⊕ β
⊢ x ∈ List.map Sum.inl (toList α) ++ List.map Sum.inr (toList β)
[PROOFSTEP]
cases x
[GOAL]
case inl
α : Type u
β✝ : α → Type v
β : Type ?u.16461
inst✝¹ : FinEnum α
inst✝ : FinEnum β
val✝ : α
⊢ Sum.inl val✝ ∈ List.map Sum.inl (toList α) ++ List.map Sum.inr (toList β)
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u
β✝ : α → Type v
β : Type ?u.16461
inst✝¹ : FinEnum α
inst✝ : FinEnum β
val✝ : β
⊢ Sum.inr val✝ ∈ List.map Sum.inl (toList α) ++ List.map Sum.inr (toList β)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
n : ℕ
⊢ ∀ (x : Fin n), x ∈ List.finRange n
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s : Finset α
xs : List α
⊢ s ∈ enum xs ↔ ∀ (x : α), x ∈ s → x ∈ xs
[PROOFSTEP]
induction' xs with xs_hd generalizing s
[GOAL]
case nil
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ s : Finset α
⊢ s ∈ enum [] ↔ ∀ (x : α), x ∈ s → x ∈ []
[PROOFSTEP]
simp [*, Finset.enum]
[GOAL]
case cons
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
⊢ s ∈ enum (xs_hd :: tail✝) ↔ ∀ (x : α), x ∈ s → x ∈ xs_hd :: tail✝
[PROOFSTEP]
simp [*, Finset.enum]
[GOAL]
case nil
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ s : Finset α
⊢ s = ∅ ↔ ∀ (x : α), x ∈ s → False
[PROOFSTEP]
simp [Finset.eq_empty_iff_forall_not_mem]
[GOAL]
case cons
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
⊢ (∃ a, (∀ (x : α), x ∈ a → x ∈ tail✝) ∧ (s = a ∨ s = {xs_hd} ∪ a)) ↔ ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝
[PROOFSTEP]
constructor
[GOAL]
case cons.mp
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
⊢ (∃ a, (∀ (x : α), x ∈ a → x ∈ tail✝) ∧ (s = a ∨ s = {xs_hd} ∪ a)) → ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝
[PROOFSTEP]
rintro ⟨a, h, h'⟩ x hx
[GOAL]
case cons.mp.intro.intro
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s a : Finset α
h : ∀ (x : α), x ∈ a → x ∈ tail✝
h' : s = a ∨ s = {xs_hd} ∪ a
x : α
hx : x ∈ s
⊢ x = xs_hd ∨ x ∈ tail✝
[PROOFSTEP]
cases' h' with _ h' a b
[GOAL]
case cons.mp.intro.intro.inl
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s a : Finset α
h : ∀ (x : α), x ∈ a → x ∈ tail✝
x : α
hx : x ∈ s
h✝ : s = a
⊢ x = xs_hd ∨ x ∈ tail✝
[PROOFSTEP]
right
[GOAL]
case cons.mp.intro.intro.inl.h
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s a : Finset α
h : ∀ (x : α), x ∈ a → x ∈ tail✝
x : α
hx : x ∈ s
h✝ : s = a
⊢ x ∈ tail✝
[PROOFSTEP]
apply h
[GOAL]
case cons.mp.intro.intro.inl.h.a
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s a : Finset α
h : ∀ (x : α), x ∈ a → x ∈ tail✝
x : α
hx : x ∈ s
h✝ : s = a
⊢ x ∈ a
[PROOFSTEP]
subst a
[GOAL]
case cons.mp.intro.intro.inl.h.a
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
x : α
hx : x ∈ s
h : ∀ (x : α), x ∈ s → x ∈ tail✝
⊢ x ∈ s
[PROOFSTEP]
exact hx
[GOAL]
case cons.mp.intro.intro.inr
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s a : Finset α
h : ∀ (x : α), x ∈ a → x ∈ tail✝
x : α
hx : x ∈ s
h' : s = {xs_hd} ∪ a
⊢ x = xs_hd ∨ x ∈ tail✝
[PROOFSTEP]
simp only [h', mem_union, mem_singleton] at hx ⊢
[GOAL]
case cons.mp.intro.intro.inr
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s a : Finset α
h : ∀ (x : α), x ∈ a → x ∈ tail✝
x : α
h' : s = {xs_hd} ∪ a
hx : x = xs_hd ∨ x ∈ a
⊢ x = xs_hd ∨ x ∈ tail✝
[PROOFSTEP]
cases' hx with hx hx'
[GOAL]
case cons.mp.intro.intro.inr.inl
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s a : Finset α
h : ∀ (x : α), x ∈ a → x ∈ tail✝
x : α
h' : s = {xs_hd} ∪ a
hx : x = xs_hd
⊢ x = xs_hd ∨ x ∈ tail✝
[PROOFSTEP]
exact Or.inl hx
[GOAL]
case cons.mp.intro.intro.inr.inr
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s a : Finset α
h : ∀ (x : α), x ∈ a → x ∈ tail✝
x : α
h' : s = {xs_hd} ∪ a
hx' : x ∈ a
⊢ x = xs_hd ∨ x ∈ tail✝
[PROOFSTEP]
exact Or.inr (h _ hx')
[GOAL]
case cons.mpr
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
⊢ (∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝) → ∃ a, (∀ (x : α), x ∈ a → x ∈ tail✝) ∧ (s = a ∨ s = {xs_hd} ∪ a)
[PROOFSTEP]
intro h
[GOAL]
case cons.mpr
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h : ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝
⊢ ∃ a, (∀ (x : α), x ∈ a → x ∈ tail✝) ∧ (s = a ∨ s = {xs_hd} ∪ a)
[PROOFSTEP]
exists s \ ({ xs_hd } : Finset α)
[GOAL]
case cons.mpr
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h : ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝
⊢ (∀ (x : α), x ∈ s \ {xs_hd} → x ∈ tail✝) ∧ (s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd})
[PROOFSTEP]
simp only [and_imp, mem_sdiff, mem_singleton]
[GOAL]
case cons.mpr
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h : ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝
⊢ (∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝) ∧ (s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd})
[PROOFSTEP]
simp only [or_iff_not_imp_left] at h
[GOAL]
case cons.mpr
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
⊢ (∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝) ∧ (s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd})
[PROOFSTEP]
exists h
[GOAL]
case cons.mpr
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd}
[PROOFSTEP]
by_cases h : xs_hd ∈ s
[GOAL]
case pos
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : xs_hd ∈ s
⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd}
[PROOFSTEP]
have : { xs_hd } ⊆ s
[GOAL]
case this
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : xs_hd ∈ s
⊢ {xs_hd} ⊆ s
case pos
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : xs_hd ∈ s
this : {xs_hd} ⊆ s
⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd}
[PROOFSTEP]
simp only [HasSubset.Subset, *, forall_eq, mem_singleton]
[GOAL]
case pos
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : xs_hd ∈ s
this : {xs_hd} ⊆ s
⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd}
[PROOFSTEP]
simp only [union_sdiff_of_subset this, or_true_iff, Finset.union_sdiff_of_subset, eq_self_iff_true]
[GOAL]
case neg
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : ¬xs_hd ∈ s
⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd}
[PROOFSTEP]
left
[GOAL]
case neg.h
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : ¬xs_hd ∈ s
⊢ s = s \ {xs_hd}
[PROOFSTEP]
symm
[GOAL]
case neg.h
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : ¬xs_hd ∈ s
⊢ s \ {xs_hd} = s
[PROOFSTEP]
simp only [sdiff_eq_self]
[GOAL]
case neg.h
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : ¬xs_hd ∈ s
⊢ s ∩ {xs_hd} ⊆ ∅
[PROOFSTEP]
intro a
[GOAL]
case neg.h
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : ¬xs_hd ∈ s
a : α
⊢ a ∈ s ∩ {xs_hd} → a ∈ ∅
[PROOFSTEP]
simp only [and_imp, mem_inter, mem_singleton]
[GOAL]
case neg.h
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
xs_hd : α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝
h : ¬xs_hd ∈ s
a : α
⊢ a ∈ s → a = xs_hd → a ∈ ∅
[PROOFSTEP]
rintro h₀ rfl
[GOAL]
case neg.h
α : Type u
β : α → Type v
inst✝ : DecidableEq α
s✝ : Finset α
tail✝ : List α
tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝
s : Finset α
a : α
h₀ : a ∈ s
h✝ : ∀ (x : α), x ∈ s → ¬x = a → x ∈ tail✝
h : ¬a ∈ s
⊢ a ∈ ∅
[PROOFSTEP]
exact (h h₀).elim
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
⊢ ∀ (x : Finset α), x ∈ enum (toList α)
[PROOFSTEP]
intro
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
x✝ : Finset α
⊢ x✝ ∈ enum (toList α)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝¹ : FinEnum α
p : α → Prop
inst✝ : DecidablePred p
⊢ ∀ (x : { x // p x }),
x ∈ List.filterMap (fun x => if h : p x then some { val := x, property := h } else none) (toList α)
[PROOFSTEP]
rintro ⟨x, h⟩
[GOAL]
case mk
α : Type u
β : α → Type v
inst✝¹ : FinEnum α
p : α → Prop
inst✝ : DecidablePred p
x : α
h : p x
⊢ { val := x, property := h } ∈
List.filterMap (fun x => if h : p x then some { val := x, property := h } else none) (toList α)
[PROOFSTEP]
simp
[GOAL]
case mk
α : Type u
β : α → Type v
inst✝¹ : FinEnum α
p : α → Prop
inst✝ : DecidablePred p
x : α
h : p x
⊢ ∃ a, (if h : p a then some { val := a, property := h } else none) = some { val := x, property := h }
[PROOFSTEP]
exists x
[GOAL]
case mk
α : Type u
β : α → Type v
inst✝¹ : FinEnum α
p : α → Prop
inst✝ : DecidablePred p
x : α
h : p x
⊢ (if h : p x then some { val := x, property := h } else none) = some { val := x, property := h }
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β✝ β : α → Type v
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
⊢ ∀ (x : Sigma β), x ∈ List.bind (toList α) fun a => List.map (Sigma.mk a) (toList (β a))
[PROOFSTEP]
intro x
[GOAL]
α : Type u
β✝ β : α → Type v
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
x : Sigma β
⊢ x ∈ List.bind (toList α) fun a => List.map (Sigma.mk a) (toList (β a))
[PROOFSTEP]
cases x
[GOAL]
case mk
α : Type u
β✝ β : α → Type v
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
fst✝ : α
snd✝ : β fst✝
⊢ { fst := fst✝, snd := snd✝ } ∈ List.bind (toList α) fun a => List.map (Sigma.mk a) (toList (β a))
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u
β✝ : α✝ → Type v
α : Prop
β : α → Type v
inst✝¹ : (a : α) → FinEnum (β a)
inst✝ : Decidable α
h : α
x✝ : (a : α) ×' β a
a : α
Ba : β a
⊢ { fst := a, snd := Ba } ∈ List.map (PSigma.mk h) (toList (β h))
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u
β✝ : α✝ → Type v
α : Prop
β : α → Prop
inst✝¹ : Decidable α
inst✝ : (a : α) → Decidable (β a)
h : ∃ a, β a
⊢ ∀ (x : (a : α) ×' β a), x ∈ [{ fst := (_ : α), snd := (_ : β (_ : α)) }]
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
case mk
α✝ : Type u
β✝ : α✝ → Type v
α : Prop
β : α → Prop
inst✝¹ : Decidable α
inst✝ : (a : α) → Decidable (β a)
h : ∃ a, β a
fst✝ : α
snd✝ : β fst✝
⊢ { fst := fst✝, snd := snd✝ } ∈ [{ fst := (_ : α), snd := (_ : β (_ : α)) }]
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
⊢ ∀ (x : α), x ∈ map (Equiv.toEmbedding equiv.symm) univ
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : α → Type v
inst✝ : FinEnum α
x✝ : α
⊢ x✝ ∈ map (Equiv.toEmbedding equiv.symm) univ
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : α → Type v
inst✝ : DecidableEq α
x : α
xs : List α
y : β x
f : (a : α) → a ∈ xs → β a
b : α
h : b ∈ x :: xs
h' : b = x
⊢ β x = β b
[PROOFSTEP]
rw [h']
[GOAL]
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f : (a : α) → a ∈ xs → β a
⊢ f ∈ pi xs fun x => toList (β x)
[PROOFSTEP]
induction' xs with xs_hd xs_tl xs_ih
[GOAL]
case nil
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
f : (a : α) → a ∈ [] → β a
⊢ f ∈ pi [] fun x => toList (β x)
[PROOFSTEP]
simp [pi, -List.map_eq_map, monad_norm, functor_norm]
[GOAL]
case cons
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
⊢ f ∈ pi (xs_hd :: xs_tl) fun x => toList (β x)
[PROOFSTEP]
simp [pi, -List.map_eq_map, monad_norm, functor_norm]
[GOAL]
case nil
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
f : (a : α) → a ∈ [] → β a
⊢ f = fun x h => False.elim (_ : False)
[PROOFSTEP]
ext a ⟨⟩
[GOAL]
case cons
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
⊢ ∃ a, (∃ a_1, a = Pi.cons xs_hd xs_tl a_1) ∧ ∃ a_1, (a_1 ∈ pi xs_tl fun x => toList (β x)) ∧ f = a a_1
[PROOFSTEP]
exists Pi.cons xs_hd xs_tl (f _ (List.mem_cons_self _ _))
[GOAL]
case cons
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
⊢ (∃ a, Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) = Pi.cons xs_hd xs_tl a) ∧
∃ a, (a ∈ pi xs_tl fun x => toList (β x)) ∧ f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) a
[PROOFSTEP]
constructor
[GOAL]
case cons.left
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
⊢ ∃ a, Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) = Pi.cons xs_hd xs_tl a
case cons.right
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
⊢ ∃ a, (a ∈ pi xs_tl fun x => toList (β x)) ∧ f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) a
[PROOFSTEP]
exact ⟨_, rfl⟩
[GOAL]
case cons.right
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
⊢ ∃ a, (a ∈ pi xs_tl fun x => toList (β x)) ∧ f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) a
[PROOFSTEP]
exists Pi.tail f
[GOAL]
case cons.right
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
⊢ (Pi.tail f ∈ pi xs_tl fun x => toList (β x)) ∧
f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) (Pi.tail f)
[PROOFSTEP]
constructor
[GOAL]
case cons.right.left
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
⊢ Pi.tail f ∈ pi xs_tl fun x => toList (β x)
[PROOFSTEP]
apply xs_ih
[GOAL]
case cons.right.right
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
⊢ f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) (Pi.tail f)
[PROOFSTEP]
ext x h
[GOAL]
case cons.right.right.h.h
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
x : α
h : x ∈ xs_hd :: xs_tl
⊢ f x h = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) (Pi.tail f) x h
[PROOFSTEP]
simp [Pi.cons]
[GOAL]
case cons.right.right.h.h
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
x : α
h : x ∈ xs_hd :: xs_tl
⊢ f x h =
if h' : x = xs_hd then cast (_ : β xs_hd = β x) (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl))
else Pi.tail f x (_ : x ∈ xs_tl)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
x : α
h : x ∈ xs_hd :: xs_tl
h✝ : x = xs_hd
⊢ f x h = cast (_ : β xs_hd = β x) (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl))
[PROOFSTEP]
subst x
[GOAL]
case pos
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
h : xs_hd ∈ xs_hd :: xs_tl
⊢ f xs_hd h = cast (_ : β xs_hd = β xs_hd) (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl))
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u
β✝ : α → Type v
β : α → Type (max u u_1)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
xs : List α
f✝ : (a : α) → a ∈ xs → β a
xs_hd : α
xs_tl : List α
xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x)
f : (a : α) → a ∈ xs_hd :: xs_tl → β a
x : α
h : x ∈ xs_hd :: xs_tl
h✝ : ¬x = xs_hd
⊢ f x h = Pi.tail f x (_ : x ∈ xs_tl)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β✝ : α → Type v
β : α → Type (max u v)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
f : (a : α) → β a
⊢ f ∈ enum β
[PROOFSTEP]
simp [pi.enum]
[GOAL]
α : Type u
β✝ : α → Type v
β : α → Type (max u v)
inst✝¹ : FinEnum α
inst✝ : (a : α) → FinEnum (β a)
f : (a : α) → β a
⊢ ∃ a, (a ∈ pi (toList α) fun x => toList (β x)) ∧ (fun x => a x (_ : x ∈ toList α)) = f
[PROOFSTEP]
refine' ⟨fun a _ => f a, mem_pi _ _, rfl⟩
[GOAL]
α✝ : Type u
β : α✝ → Type v
p : Prop
inst✝¹ : Decidable p
α : p → Type
inst✝ : (hp : p) → FinEnum (α hp)
hp : p
⊢ ∀ (x : (hp : p) → α hp), x ∈ List.map (fun x x_1 => x) (toList (α hp))
[PROOFSTEP]
intro x
[GOAL]
α✝ : Type u
β : α✝ → Type v
p : Prop
inst✝¹ : Decidable p
α : p → Type
inst✝ : (hp : p) → FinEnum (α hp)
hp : p
x : (hp : p) → α hp
⊢ x ∈ List.map (fun x x_1 => x) (toList (α hp))
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u
β : α✝ → Type v
p : Prop
inst✝¹ : Decidable p
α : p → Type
inst✝ : (hp : p) → FinEnum (α hp)
hp : p
x : (hp : p) → α hp
⊢ ∃ a, (fun x => a) = x
[PROOFSTEP]
exact ⟨x hp, rfl⟩
[GOAL]
α✝ : Type u
β : α✝ → Type v
p : Prop
inst✝¹ : Decidable p
α : p → Type
inst✝ : (hp : p) → FinEnum (α hp)
hp : ¬p
⊢ ∀ (x : (hp : p) → α hp), x ∈ [fun hp' => False.elim (_ : False)]
[PROOFSTEP]
intro
[GOAL]
α✝ : Type u
β : α✝ → Type v
p : Prop
inst✝¹ : Decidable p
α : p → Type
inst✝ : (hp : p) → FinEnum (α hp)
hp : ¬p
x✝ : (hp : p) → α hp
⊢ x✝ ∈ [fun hp' => False.elim (_ : False)]
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u
β : α✝ → Type v
p : Prop
inst✝¹ : Decidable p
α : p → Type
inst✝ : (hp : p) → FinEnum (α hp)
hp : ¬p
x✝ : (hp : p) → α hp
⊢ x✝ = fun hp' => False.elim (_ : False)
[PROOFSTEP]
ext hp'
[GOAL]
case h
α✝ : Type u
β : α✝ → Type v
p : Prop
inst✝¹ : Decidable p
α : p → Type
inst✝ : (hp : p) → FinEnum (α hp)
hp : ¬p
x✝ : (hp : p) → α hp
hp' : p
⊢ x✝ hp' = False.elim (_ : False)
[PROOFSTEP]
cases hp hp'
|
{"mathlib_filename": "Mathlib.Data.FinEnum", "llama_tokens": 14708}
|
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
⊢ TypeVec.id <$$> x = x
[PROOFSTEP]
rw [← abs_repr x]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
⊢ TypeVec.id <$$> abs (repr x) = abs (repr x)
[PROOFSTEP]
cases' repr x with a f
[GOAL]
case mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ TypeVec.id <$$> abs { fst := a, snd := f } = abs { fst := a, snd := f }
[PROOFSTEP]
rw [← abs_map]
[GOAL]
case mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ abs (TypeVec.id <$$> { fst := a, snd := f }) = abs { fst := a, snd := f }
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α β γ : TypeVec n
f : α ⟹ β
g : β ⟹ γ
x : F α
⊢ (g ⊚ f) <$$> x = g <$$> f <$$> x
[PROOFSTEP]
rw [← abs_repr x]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α β γ : TypeVec n
f : α ⟹ β
g : β ⟹ γ
x : F α
⊢ (g ⊚ f) <$$> abs (repr x) = g <$$> f <$$> abs (repr x)
[PROOFSTEP]
cases' repr x with a f
[GOAL]
case mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α β γ : TypeVec n
f✝ : α ⟹ β
g : β ⟹ γ
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ (g ⊚ f✝) <$$> abs { fst := a, snd := f } = g <$$> f✝ <$$> abs { fst := a, snd := f }
[PROOFSTEP]
rw [← abs_map, ← abs_map, ← abs_map]
[GOAL]
case mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α β γ : TypeVec n
f✝ : α ⟹ β
g : β ⟹ γ
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ abs ((g ⊚ f✝) <$$> { fst := a, snd := f }) = abs (g <$$> f✝ <$$> { fst := a, snd := f })
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
⊢ LiftP p x ↔ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j)
[PROOFSTEP]
constructor
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
⊢ LiftP p x → ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j)
[PROOFSTEP]
rintro ⟨y, hy⟩
[GOAL]
case mp.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
y : F fun i => Subtype p
hy : (fun i => Subtype.val) <$$> y = x
⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j)
[PROOFSTEP]
cases' h : repr y with a f
[GOAL]
case mp.intro.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
y : F fun i => Subtype p
hy : (fun i => Subtype.val) <$$> y = x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p
h : repr y = { fst := a, snd := f }
⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j)
[PROOFSTEP]
use a, fun i j => (f i j).val
[GOAL]
case h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
y : F fun i => Subtype p
hy : (fun i => Subtype.val) <$$> y = x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p
h : repr y = { fst := a, snd := f }
⊢ x = abs { fst := a, snd := fun i j => ↑(f i j) } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p ↑(f i j)
[PROOFSTEP]
constructor
[GOAL]
case h.left
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
y : F fun i => Subtype p
hy : (fun i => Subtype.val) <$$> y = x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p
h : repr y = { fst := a, snd := f }
⊢ x = abs { fst := a, snd := fun i j => ↑(f i j) }
[PROOFSTEP]
rw [← hy, ← abs_repr y, h, ← abs_map]
[GOAL]
case h.left
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
y : F fun i => Subtype p
hy : (fun i => Subtype.val) <$$> y = x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p
h : repr y = { fst := a, snd := f }
⊢ abs ((fun i => Subtype.val) <$$> { fst := a, snd := f }) = abs { fst := a, snd := fun i j => ↑(f i j) }
[PROOFSTEP]
rfl
[GOAL]
case h.right
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
y : F fun i => Subtype p
hy : (fun i => Subtype.val) <$$> y = x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p
h : repr y = { fst := a, snd := f }
⊢ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p ↑(f i j)
[PROOFSTEP]
intro i j
[GOAL]
case h.right
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
y : F fun i => Subtype p
hy : (fun i => Subtype.val) <$$> y = x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p
h : repr y = { fst := a, snd := f }
i : Fin2 n
j : MvPFunctor.B (P F) a i
⊢ p ↑(f i j)
[PROOFSTEP]
apply (f i j).property
[GOAL]
case mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j)) → LiftP p x
[PROOFSTEP]
rintro ⟨a, f, h₀, h₁⟩
[GOAL]
case mpr.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h₀ : x = abs { fst := a, snd := f }
h₁ : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j)
⊢ LiftP p x
[PROOFSTEP]
use abs ⟨a, fun i j => ⟨f i j, h₁ i j⟩⟩
[GOAL]
case h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h₀ : x = abs { fst := a, snd := f }
h₁ : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j)
⊢ (fun i => Subtype.val) <$$> abs { fst := a, snd := fun i j => { val := f i j, property := (_ : p (f i j)) } } = x
[PROOFSTEP]
rw [← abs_map, h₀]
[GOAL]
case h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h₀ : x = abs { fst := a, snd := f }
h₁ : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j)
⊢ abs ((fun i => Subtype.val) <$$> { fst := a, snd := fun i j => { val := f i j, property := (_ : p (f i j)) } }) =
abs { fst := a, snd := f }
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
⊢ LiftR (fun {i} => r) x y ↔
∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧
y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
[PROOFSTEP]
constructor
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
⊢ LiftR (fun {i} => r) x y →
∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧
y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
[PROOFSTEP]
rintro ⟨u, xeq, yeq⟩
[GOAL]
case mp.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
⊢ ∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧
y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
[PROOFSTEP]
cases' h : repr u with a f
[GOAL]
case mp.intro.intro.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ ∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧
y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
[PROOFSTEP]
use a, fun i j => (f i j).val.fst, fun i j => (f i j).val.snd
[GOAL]
case h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ x = abs { fst := a, snd := fun i j => (↑(f i j)).fst } ∧
y = abs { fst := a, snd := fun i j => (↑(f i j)).snd } ∧
∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (↑(f i j)).fst (↑(f i j)).snd
[PROOFSTEP]
constructor
[GOAL]
case h.left
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ x = abs { fst := a, snd := fun i j => (↑(f i j)).fst }
[PROOFSTEP]
rw [← xeq, ← abs_repr u, h, ← abs_map]
[GOAL]
case h.left
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ abs ((fun i t => (↑t).fst) <$$> { fst := a, snd := f }) = abs { fst := a, snd := fun i j => (↑(f i j)).fst }
[PROOFSTEP]
rfl
[GOAL]
case h.right
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ y = abs { fst := a, snd := fun i j => (↑(f i j)).snd } ∧
∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (↑(f i j)).fst (↑(f i j)).snd
[PROOFSTEP]
constructor
[GOAL]
case h.right.left
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ y = abs { fst := a, snd := fun i j => (↑(f i j)).snd }
[PROOFSTEP]
rw [← yeq, ← abs_repr u, h, ← abs_map]
[GOAL]
case h.right.left
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ abs ((fun i t => (↑t).snd) <$$> { fst := a, snd := f }) = abs { fst := a, snd := fun i j => (↑(f i j)).snd }
[PROOFSTEP]
rfl
[GOAL]
case h.right.right
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (↑(f i j)).fst (↑(f i j)).snd
[PROOFSTEP]
intro i j
[GOAL]
case h.right.right
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
u : F fun i => { p // (fun {i} => r) p.fst p.snd }
xeq : (fun i t => (↑t).fst) <$$> u = x
yeq : (fun i t => (↑t).snd) <$$> u = y
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd }
h : repr u = { fst := a, snd := f }
i : Fin2 n
j : MvPFunctor.B (P F) a i
⊢ r (↑(f i j)).fst (↑(f i j)).snd
[PROOFSTEP]
exact (f i j).property
[GOAL]
case mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
⊢ (∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧
y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)) →
LiftR (fun {i} => r) x y
[PROOFSTEP]
rintro ⟨a, f₀, f₁, xeq, yeq, h⟩
[GOAL]
case mpr.intro.intro.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
a : (P F).A
f₀ f₁ : MvPFunctor.B (P F) a ⟹ α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
⊢ LiftR (fun {i} => r) x y
[PROOFSTEP]
use abs ⟨a, fun i j => ⟨(f₀ i j, f₁ i j), h i j⟩⟩
[GOAL]
case h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
a : (P F).A
f₀ f₁ : MvPFunctor.B (P F) a ⟹ α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
⊢ (fun i t => (↑t).fst) <$$>
abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } =
x ∧
(fun i t => (↑t).snd) <$$>
abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } =
y
[PROOFSTEP]
dsimp
[GOAL]
case h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
a : (P F).A
f₀ f₁ : MvPFunctor.B (P F) a ⟹ α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
⊢ (fun i t => (↑t).fst) <$$>
abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } =
x ∧
(fun i t => (↑t).snd) <$$>
abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } =
y
[PROOFSTEP]
constructor
[GOAL]
case h.left
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
a : (P F).A
f₀ f₁ : MvPFunctor.B (P F) a ⟹ α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
⊢ (fun i t => (↑t).fst) <$$>
abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } =
x
[PROOFSTEP]
rw [xeq, ← abs_map]
[GOAL]
case h.left
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
a : (P F).A
f₀ f₁ : MvPFunctor.B (P F) a ⟹ α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
⊢ abs
((fun i t => (↑t).fst) <$$>
{ fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } }) =
abs { fst := a, snd := f₀ }
[PROOFSTEP]
rfl
[GOAL]
case h.right
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
a : (P F).A
f₀ f₁ : MvPFunctor.B (P F) a ⟹ α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
⊢ (fun i t => (↑t).snd) <$$>
abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } =
y
[PROOFSTEP]
rw [yeq, ← abs_map]
[GOAL]
case h.right
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
r : {i : Fin2 n} → α i → α i → Prop
x y : F α
a : (P F).A
f₀ f₁ : MvPFunctor.B (P F) a ⟹ α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)
⊢ abs
((fun i t => (↑t).snd) <$$>
{ fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } }) =
abs { fst := a, snd := f₁ }
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
⊢ u ∈ supp x i ↔ ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ
[PROOFSTEP]
rw [supp]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
⊢ u ∈ {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} ↔
∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ
[PROOFSTEP]
dsimp
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
⊢ (∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u) ↔
∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ
[PROOFSTEP]
constructor
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
⊢ (∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u) →
∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ
[PROOFSTEP]
intro h a f haf
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
haf : abs { fst := a, snd := f } = x
⊢ u ∈ f i '' univ
[PROOFSTEP]
have : LiftP (fun i u => u ∈ f i '' univ) x := by
rw [liftP_iff]
refine' ⟨a, f, haf.symm, _⟩
intro i u
exact mem_image_of_mem _ (mem_univ _)
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
haf : abs { fst := a, snd := f } = x
⊢ LiftP (fun i u => u ∈ f i '' univ) x
[PROOFSTEP]
rw [liftP_iff]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
haf : abs { fst := a, snd := f } = x
⊢ ∃ a_1 f_1, x = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_1 i), f_1 i j ∈ f i '' univ
[PROOFSTEP]
refine' ⟨a, f, haf.symm, _⟩
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
haf : abs { fst := a, snd := f } = x
⊢ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), f i j ∈ f i '' univ
[PROOFSTEP]
intro i u
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i✝ : Fin2 n
u✝ : α i✝
h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i✝ u✝
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
haf : abs { fst := a, snd := f } = x
i : Fin2 n
u : MvPFunctor.B (P F) a i
⊢ f i u ∈ f i '' univ
[PROOFSTEP]
exact mem_image_of_mem _ (mem_univ _)
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
haf : abs { fst := a, snd := f } = x
this : LiftP (fun i u => u ∈ f i '' univ) x
⊢ u ∈ f i '' univ
[PROOFSTEP]
exact h this
[GOAL]
case mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
⊢ (∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ) →
∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u
[PROOFSTEP]
intro h p
[GOAL]
case mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ
p : (i : Fin2 n) → α i → Prop
⊢ LiftP p x → p i u
[PROOFSTEP]
rw [liftP_iff]
[GOAL]
case mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ
p : (i : Fin2 n) → α i → Prop
⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)) → p i u
[PROOFSTEP]
rintro ⟨a, f, xeq, h'⟩
[GOAL]
case mpr.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i : Fin2 n
u : α i
h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)
⊢ p i u
[PROOFSTEP]
rcases h a f xeq.symm with ⟨i, _, hi⟩
[GOAL]
case mpr.intro.intro.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i✝ : Fin2 n
u : α i✝
h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i✝ '' univ
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)
i : MvPFunctor.B (P F) a i✝
left✝ : i ∈ univ
hi : f i✝ i = u
⊢ p i✝ u
[PROOFSTEP]
rw [← hi]
[GOAL]
case mpr.intro.intro.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
i✝ : Fin2 n
u : α i✝
h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i✝ '' univ
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)
i : MvPFunctor.B (P F) a i✝
left✝ : i ∈ univ
hi : f i✝ i = u
⊢ p i✝ (f i✝ i)
[PROOFSTEP]
apply h'
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
i : Fin2 n
x : F α
⊢ supp x i = {u | ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ}
[PROOFSTEP]
ext
[GOAL]
case h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
i : Fin2 n
x : F α
x✝ : α i
⊢ x✝ ∈ supp x i ↔
x✝ ∈ {u | ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ}
[PROOFSTEP]
apply mem_supp
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
⊢ (∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u) ↔
∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
[PROOFSTEP]
constructor
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
⊢ (∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u) →
∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
[PROOFSTEP]
intro h
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
⊢ ∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
[PROOFSTEP]
have : LiftP (supp x) x := by rw [h]; introv ; exact id
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
⊢ LiftP (supp x) x
[PROOFSTEP]
rw [h]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
⊢ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → supp x i u
[PROOFSTEP]
introv
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
i : Fin2 n
u : α i
⊢ u ∈ supp x i → supp x i u
[PROOFSTEP]
exact id
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
this : LiftP (supp x) x
⊢ ∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
[PROOFSTEP]
rw [liftP_iff] at this
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
this✝ : LiftP (supp x) x
this : ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j)
⊢ ∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
[PROOFSTEP]
rcases this with ⟨a, f, xeq, h'⟩
[GOAL]
case mp.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
this : LiftP (supp x) x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j)
⊢ ∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
[PROOFSTEP]
refine' ⟨a, f, xeq.symm, _⟩
[GOAL]
case mp.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
this : LiftP (supp x) x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j)
⊢ ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
[PROOFSTEP]
intro a' f' h''
[GOAL]
case mp.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
this : LiftP (supp x) x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j)
a' : Fin2 n
f' : (P F).A
h'' : MvPFunctor.B (P F) f' ⟹ α
⊢ abs { fst := f', snd := h'' } = x → f a' '' univ ⊆ h'' a' '' univ
[PROOFSTEP]
rintro hu u ⟨j, _h₂, hfi⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
this : LiftP (supp x) x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j)
a' : Fin2 n
f' : (P F).A
h'' : MvPFunctor.B (P F) f' ⟹ α
hu : abs { fst := f', snd := h'' } = x
u : α a'
j : MvPFunctor.B (P F) a a'
_h₂ : j ∈ univ
hfi : f a' j = u
⊢ u ∈ h'' a' '' univ
[PROOFSTEP]
have hh : u ∈ supp x a' := by rw [← hfi]; apply h'
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
this : LiftP (supp x) x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j)
a' : Fin2 n
f' : (P F).A
h'' : MvPFunctor.B (P F) f' ⟹ α
hu : abs { fst := f', snd := h'' } = x
u : α a'
j : MvPFunctor.B (P F) a a'
_h₂ : j ∈ univ
hfi : f a' j = u
⊢ u ∈ supp x a'
[PROOFSTEP]
rw [← hfi]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
this : LiftP (supp x) x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j)
a' : Fin2 n
f' : (P F).A
h'' : MvPFunctor.B (P F) f' ⟹ α
hu : abs { fst := f', snd := h'' } = x
u : α a'
j : MvPFunctor.B (P F) a a'
_h₂ : j ∈ univ
hfi : f a' j = u
⊢ f a' j ∈ supp x a'
[PROOFSTEP]
apply h'
[GOAL]
case mp.intro.intro.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
this : LiftP (supp x) x
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ fun i => α i
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j)
a' : Fin2 n
f' : (P F).A
h'' : MvPFunctor.B (P F) f' ⟹ α
hu : abs { fst := f', snd := h'' } = x
u : α a'
j : MvPFunctor.B (P F) a a'
_h₂ : j ∈ univ
hfi : f a' j = u
hh : u ∈ supp x a'
⊢ u ∈ h'' a' '' univ
[PROOFSTEP]
refine' (mem_supp x _ u).mp hh _ _ hu
[GOAL]
case mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
⊢ (∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ) →
∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
[PROOFSTEP]
rintro ⟨a, f, xeq, h⟩ p
[GOAL]
case mpr.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
⊢ LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
[PROOFSTEP]
rw [liftP_iff]
[GOAL]
case mpr.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)) ↔
∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
[PROOFSTEP]
constructor
[GOAL]
case mpr.intro.intro.intro.mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)) →
∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
[PROOFSTEP]
rintro ⟨a', f', xeq', h'⟩ i u usuppx
[GOAL]
case mpr.intro.intro.intro.mp.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ fun i => α i
xeq' : x = abs { fst := a', snd := f' }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j)
i : Fin2 n
u : α i
usuppx : u ∈ supp x i
⊢ p i u
[PROOFSTEP]
rcases(mem_supp x _ u).mp (@usuppx) a' f' xeq'.symm with ⟨i, _, f'ieq⟩
[GOAL]
case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ fun i => α i
xeq' : x = abs { fst := a', snd := f' }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j)
i✝ : Fin2 n
u : α i✝
usuppx : u ∈ supp x i✝
i : MvPFunctor.B (P F) a' i✝
left✝ : i ∈ univ
f'ieq : f' i✝ i = u
⊢ p i✝ u
[PROOFSTEP]
rw [← f'ieq]
[GOAL]
case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ fun i => α i
xeq' : x = abs { fst := a', snd := f' }
h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j)
i✝ : Fin2 n
u : α i✝
usuppx : u ∈ supp x i✝
i : MvPFunctor.B (P F) a' i✝
left✝ : i ∈ univ
f'ieq : f' i✝ i = u
⊢ p i✝ (f' i✝ i)
[PROOFSTEP]
apply h'
[GOAL]
case mpr.intro.intro.intro.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
⊢ (∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u) →
∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)
[PROOFSTEP]
intro h'
[GOAL]
case mpr.intro.intro.intro.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)
[PROOFSTEP]
refine' ⟨a, f, xeq.symm, _⟩
[GOAL]
case mpr.intro.intro.intro.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
⊢ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)
[PROOFSTEP]
intro j y
[GOAL]
case mpr.intro.intro.intro.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
j : Fin2 n
y : MvPFunctor.B (P F) a j
⊢ p j (f j y)
[PROOFSTEP]
apply h'
[GOAL]
case mpr.intro.intro.intro.mpr.a
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
j : Fin2 n
y : MvPFunctor.B (P F) a j
⊢ f j y ∈ supp x j
[PROOFSTEP]
rw [mem_supp]
[GOAL]
case mpr.intro.intro.intro.mpr.a
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
j : Fin2 n
y : MvPFunctor.B (P F) a j
⊢ ∀ (a : (P F).A) (f_1 : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f_1 } = x → f j y ∈ f_1 j '' univ
[PROOFSTEP]
intro a' f' xeq'
[GOAL]
case mpr.intro.intro.intro.mpr.a
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
j : Fin2 n
y : MvPFunctor.B (P F) a j
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ α
xeq' : abs { fst := a', snd := f' } = x
⊢ f j y ∈ f' j '' univ
[PROOFSTEP]
apply h _ a' f' xeq'
[GOAL]
case mpr.intro.intro.intro.mpr.a.a
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F α
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
xeq : abs { fst := a, snd := f } = x
h :
∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α),
abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ
p : (i : Fin2 n) → α i → Prop
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
j : Fin2 n
y : MvPFunctor.B (P F) a j
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ α
xeq' : abs { fst := a', snd := f' } = x
⊢ f j y ∈ f j '' univ
[PROOFSTEP]
apply mem_image_of_mem _ (mem_univ _)
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ ∀ (i : Fin2 n), supp (abs { fst := a, snd := f }) i = f i '' univ
[PROOFSTEP]
intro
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
i✝ : Fin2 n
⊢ supp (abs { fst := a, snd := f }) i✝ = f i✝ '' univ
[PROOFSTEP]
ext u
[GOAL]
case h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
i✝ : Fin2 n
u : α i✝
⊢ u ∈ supp (abs { fst := a, snd := f }) i✝ ↔ u ∈ f i✝ '' univ
[PROOFSTEP]
rw [mem_supp]
[GOAL]
case h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
i✝ : Fin2 n
u : α i✝
⊢ (∀ (a_1 : (P F).A) (f_1 : MvPFunctor.B (P F) a_1 ⟹ α),
abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 i✝ '' univ) ↔
u ∈ f i✝ '' univ
[PROOFSTEP]
constructor
[GOAL]
case h.mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
i✝ : Fin2 n
u : α i✝
⊢ (∀ (a_1 : (P F).A) (f_1 : MvPFunctor.B (P F) a_1 ⟹ α),
abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 i✝ '' univ) →
u ∈ f i✝ '' univ
[PROOFSTEP]
intro h'
[GOAL]
case h.mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
i✝ : Fin2 n
u : α i✝
h' :
∀ (a_1 : (P F).A) (f_1 : MvPFunctor.B (P F) a_1 ⟹ α),
abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 i✝ '' univ
⊢ u ∈ f i✝ '' univ
[PROOFSTEP]
apply h' _ _ rfl
[GOAL]
case h.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
i✝ : Fin2 n
u : α i✝
⊢ u ∈ f i✝ '' univ →
∀ (a_2 : (P F).A) (f_1 : MvPFunctor.B (P F) a_2 ⟹ α),
abs { fst := a_2, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 i✝ '' univ
[PROOFSTEP]
intro h' a' f' e
[GOAL]
case h.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
i✝ : Fin2 n
u : α i✝
h' : u ∈ f i✝ '' univ
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ α
e : abs { fst := a', snd := f' } = abs { fst := a, snd := f }
⊢ u ∈ f' i✝ '' univ
[PROOFSTEP]
rw [← h _ _ _ _ e.symm]
[GOAL]
case h.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
i✝ : Fin2 n
u : α i✝
h' : u ∈ f i✝ '' univ
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ α
e : abs { fst := a', snd := f' } = abs { fst := a, snd := f }
⊢ u ∈ f i✝ '' univ
[PROOFSTEP]
apply h'
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
⊢ LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u
[PROOFSTEP]
rw [liftP_iff, ← abs_repr x]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
⊢ (∃ a f, abs (repr x) = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)) ↔
∀ (i : Fin2 n) (u : α i), u ∈ supp (abs (repr x)) i → p i u
[PROOFSTEP]
cases' repr x with a f
[GOAL]
case mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ (∃ a_1 f_1,
abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧
∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_1 i), p i (f_1 i j)) ↔
∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u
[PROOFSTEP]
constructor
[GOAL]
case mk.mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ (∃ a_1 f_1,
abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧
∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_1 i), p i (f_1 i j)) →
∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u
[PROOFSTEP]
rintro ⟨a', f', abseq, hf⟩ u
[GOAL]
case mk.mp.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ fun i => α i
abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
hf : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j)
u : Fin2 n
⊢ ∀ (u_1 : α u), u_1 ∈ supp (abs { fst := a, snd := f }) u → p u u_1
[PROOFSTEP]
rw [supp_eq_of_isUniform h, h _ _ _ _ abseq]
[GOAL]
case mk.mp.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ fun i => α i
abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
hf : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j)
u : Fin2 n
⊢ ∀ (u_1 : α u), u_1 ∈ f' u '' univ → p u u_1
[PROOFSTEP]
rintro b ⟨i, _, hi⟩
[GOAL]
case mk.mp.intro.intro.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ fun i => α i
abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
hf : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j)
u : Fin2 n
b : α u
i : MvPFunctor.B (P F) a' u
left✝ : i ∈ univ
hi : f' u i = b
⊢ p u b
[PROOFSTEP]
rw [← hi]
[GOAL]
case mk.mp.intro.intro.intro.intro.intro
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
a' : (P F).A
f' : MvPFunctor.B (P F) a' ⟹ fun i => α i
abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
hf : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j)
u : Fin2 n
b : α u
i : MvPFunctor.B (P F) a' u
left✝ : i ∈ univ
hi : f' u i = b
⊢ p u (f' u i)
[PROOFSTEP]
apply hf
[GOAL]
case mk.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ (∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u) →
∃ a_2 f_1,
abs { fst := a, snd := f } = abs { fst := a_2, snd := f_1 } ∧
∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_2 i), p i (f_1 i j)
[PROOFSTEP]
intro h'
[GOAL]
case mk.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u
⊢ ∃ a_1 f_1,
abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧
∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_1 i), p i (f_1 i j)
[PROOFSTEP]
refine' ⟨a, f, rfl, fun _ i => h' _ _ _⟩
[GOAL]
case mk.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u
x✝ : Fin2 n
i : MvPFunctor.B (P F) a x✝
⊢ f x✝ i ∈ supp (abs { fst := a, snd := f }) x✝
[PROOFSTEP]
rw [supp_eq_of_isUniform h]
[GOAL]
case mk.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
x : F α
p : (i : Fin2 n) → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u
x✝ : Fin2 n
i : MvPFunctor.B (P F) a x✝
⊢ f x✝ i ∈ f x✝ '' univ
[PROOFSTEP]
exact ⟨i, mem_univ i, rfl⟩
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α β : TypeVec n
g : α ⟹ β
x : F α
i : Fin2 n
⊢ supp (g <$$> x) i = g i '' supp x i
[PROOFSTEP]
rw [← abs_repr x]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α β : TypeVec n
g : α ⟹ β
x : F α
i : Fin2 n
⊢ supp (g <$$> abs (repr x)) i = g i '' supp (abs (repr x)) i
[PROOFSTEP]
cases' repr x with a f
[GOAL]
case mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α β : TypeVec n
g : α ⟹ β
x : F α
i : Fin2 n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ supp (g <$$> abs { fst := a, snd := f }) i = g i '' supp (abs { fst := a, snd := f }) i
[PROOFSTEP]
rw [← abs_map, MvPFunctor.map_eq]
[GOAL]
case mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α β : TypeVec n
g : α ⟹ β
x : F α
i : Fin2 n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ supp (abs { fst := a, snd := g ⊚ f }) i = g i '' supp (abs { fst := a, snd := f }) i
[PROOFSTEP]
rw [supp_eq_of_isUniform h, supp_eq_of_isUniform h, ← image_comp]
[GOAL]
case mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α β : TypeVec n
g : α ⟹ β
x : F α
i : Fin2 n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ (g ⊚ f) i '' univ = g i ∘ f i '' univ
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
⊢ SuppPreservation ↔ IsUniform
[PROOFSTEP]
constructor
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
⊢ SuppPreservation → IsUniform
[PROOFSTEP]
intro h α a a' f f' h' i
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : SuppPreservation
α : TypeVec n
a a' : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
f' : MvPFunctor.B (P F) a' ⟹ α
h' : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
i : Fin2 n
⊢ f i '' univ = f' i '' univ
[PROOFSTEP]
rw [← MvPFunctor.supp_eq, ← MvPFunctor.supp_eq, ← h, h', h]
[GOAL]
case mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
⊢ IsUniform → SuppPreservation
[PROOFSTEP]
rintro h α ⟨a, f⟩
[GOAL]
case mpr.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }
[PROOFSTEP]
ext
[GOAL]
case mpr.mk.h.h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : IsUniform
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
x✝¹ : Fin2 n
x✝ : α x✝¹
⊢ x✝ ∈ supp (abs { fst := a, snd := f }) x✝¹ ↔ x✝ ∈ supp { fst := a, snd := f } x✝¹
[PROOFSTEP]
rwa [supp_eq_of_isUniform, MvPFunctor.supp_eq]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
⊢ SuppPreservation ↔ LiftPPreservation
[PROOFSTEP]
constructor
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
⊢ SuppPreservation → LiftPPreservation
[PROOFSTEP]
intro h
[GOAL]
case mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
⊢ LiftPPreservation → SuppPreservation
[PROOFSTEP]
intro h
[GOAL]
case mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : SuppPreservation
⊢ LiftPPreservation
[PROOFSTEP]
rintro α p ⟨a, f⟩
[GOAL]
case mp.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : SuppPreservation
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ LiftP p (abs { fst := a, snd := f }) ↔ LiftP p { fst := a, snd := f }
[PROOFSTEP]
have h' := h
[GOAL]
case mp.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : SuppPreservation
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : SuppPreservation
⊢ LiftP p (abs { fst := a, snd := f }) ↔ LiftP p { fst := a, snd := f }
[PROOFSTEP]
rw [suppPreservation_iff_isUniform] at h'
[GOAL]
case mp.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : SuppPreservation
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : IsUniform
⊢ LiftP p (abs { fst := a, snd := f }) ↔ LiftP p { fst := a, snd := f }
[PROOFSTEP]
dsimp only [SuppPreservation, supp] at h
[GOAL]
case mp.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h :
∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α),
(fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i =>
{y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y}
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : IsUniform
⊢ LiftP p (abs { fst := a, snd := f }) ↔ LiftP p { fst := a, snd := f }
[PROOFSTEP]
simp only [liftP_iff_of_isUniform, supp_eq_of_isUniform, MvPFunctor.liftP_iff', h', image_univ, mem_range, exists_imp]
[GOAL]
case mp.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h :
∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α),
(fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i =>
{y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y}
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : IsUniform
⊢ (∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u) ↔
∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x)
[PROOFSTEP]
constructor
[GOAL]
case mp.mk.mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h :
∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α),
(fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i =>
{y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y}
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : IsUniform
⊢ (∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u) →
∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x)
[PROOFSTEP]
intros
[GOAL]
case mp.mk.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h :
∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α),
(fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i =>
{y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y}
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : IsUniform
⊢ (∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x)) →
∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u
[PROOFSTEP]
intros
[GOAL]
case mp.mk.mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h :
∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α),
(fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i =>
{y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y}
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : IsUniform
a✝ : ∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u
i✝ : Fin2 n
x✝ : MvPFunctor.B (P F) a i✝
⊢ p (f i✝ x✝)
[PROOFSTEP]
subst_vars
[GOAL]
case mp.mk.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h :
∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α),
(fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i =>
{y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y}
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : IsUniform
a✝¹ : ∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x)
i✝ : Fin2 n
u✝ : α i✝
x✝ : MvPFunctor.B (P F) a i✝
a✝ : f i✝ x✝ = u✝
⊢ p u✝
[PROOFSTEP]
subst_vars
[GOAL]
case mp.mk.mp
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h :
∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α),
(fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i =>
{y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y}
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : IsUniform
a✝ : ∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u
i✝ : Fin2 n
x✝ : MvPFunctor.B (P F) a i✝
⊢ p (f i✝ x✝)
[PROOFSTEP]
solve_by_elim
[GOAL]
case mp.mk.mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h :
∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α),
(fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i =>
{y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y}
α : TypeVec n
p : ⦃i : Fin2 n⦄ → α i → Prop
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
h' : IsUniform
a✝ : ∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x)
i✝ : Fin2 n
x✝ : MvPFunctor.B (P F) a i✝
⊢ p (f i✝ x✝)
[PROOFSTEP]
solve_by_elim
[GOAL]
case mpr
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : LiftPPreservation
⊢ SuppPreservation
[PROOFSTEP]
rintro α ⟨a, f⟩
[GOAL]
case mpr.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : LiftPPreservation
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }
[PROOFSTEP]
simp only [LiftPPreservation] at h
[GOAL]
case mpr.mk
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : ∀ ⦃α : TypeVec n⦄ (p : ⦃i : Fin2 n⦄ → α i → Prop) (x : MvPFunctor.Obj (P F) α), LiftP p (abs x) ↔ LiftP p x
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }
[PROOFSTEP]
ext
[GOAL]
case mpr.mk.h.h
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
h : ∀ ⦃α : TypeVec n⦄ (p : ⦃i : Fin2 n⦄ → α i → Prop) (x : MvPFunctor.Obj (P F) α), LiftP p (abs x) ↔ LiftP p x
α : TypeVec n
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α
x✝¹ : Fin2 n
x✝ : α x✝¹
⊢ x✝ ∈ supp (abs { fst := a, snd := f }) x✝¹ ↔ x✝ ∈ supp { fst := a, snd := f } x✝¹
[PROOFSTEP]
simp only [supp, h, mem_setOf_eq]
[GOAL]
n : ℕ
F : TypeVec n → Type u_1
inst✝ : MvFunctor F
q : MvQPF F
⊢ LiftPPreservation ↔ IsUniform
[PROOFSTEP]
rw [← suppPreservation_iff_liftpPreservation, suppPreservation_iff_isUniform]
|
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Basic", "llama_tokens": 31440}
|
[GOAL]
n : ℕ
i : Fin2 n
⊢ ∀ {α : TypeVec n} (x : Prj i α), abs i (repr i x) = x
[PROOFSTEP]
intros
[GOAL]
n : ℕ
i : Fin2 n
α✝ : TypeVec n
x✝ : Prj i α✝
⊢ abs i (repr i x✝) = x✝
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
i : Fin2 n
⊢ ∀ {α β : TypeVec n} (f : α ⟹ β) (p : MvPFunctor.Obj (P i) α), abs i (f <$$> p) = f <$$> abs i p
[PROOFSTEP]
intros α β f P
[GOAL]
n : ℕ
i : Fin2 n
α β : TypeVec n
f : α ⟹ β
P : MvPFunctor.Obj (MvQPF.Prj.P i) α
⊢ abs i (f <$$> P) = f <$$> abs i P
[PROOFSTEP]
cases P
[GOAL]
case mk
n : ℕ
i : Fin2 n
α β : TypeVec n
f : α ⟹ β
fst✝ : (P i).A
snd✝ : MvPFunctor.B (P i) fst✝ ⟹ α
⊢ abs i (f <$$> { fst := fst✝, snd := snd✝ }) = f <$$> abs i { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rfl
|
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Prj", "llama_tokens": 436}
|
[GOAL]
F : Type u_1
K : Type u_2
inst✝³ : Field F
inst✝² : Field K
inst✝¹ : Algebra F K
h : Normal F K
inst✝ : FiniteDimensional F K
⊢ ∃ p, IsSplittingField F K p
[PROOFSTEP]
let s := Basis.ofVectorSpace F K
[GOAL]
F : Type u_1
K : Type u_2
inst✝³ : Field F
inst✝² : Field K
inst✝¹ : Algebra F K
h : Normal F K
inst✝ : FiniteDimensional F K
s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K
⊢ ∃ p, IsSplittingField F K p
[PROOFSTEP]
refine' ⟨∏ x, minpoly F (s x), splits_prod _ fun x _ => h.splits (s x), Subalgebra.toSubmodule.injective _⟩
[GOAL]
F : Type u_1
K : Type u_2
inst✝³ : Field F
inst✝² : Field K
inst✝¹ : Algebra F K
h : Normal F K
inst✝ : FiniteDimensional F K
s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K
⊢ ↑Subalgebra.toSubmodule (Algebra.adjoin F (rootSet (∏ x : ↑(Basis.ofVectorSpaceIndex F K), minpoly F (↑s x)) K)) =
↑Subalgebra.toSubmodule ⊤
[PROOFSTEP]
rw [Algebra.top_toSubmodule, eq_top_iff, ← s.span_eq, Submodule.span_le, Set.range_subset_iff]
[GOAL]
F : Type u_1
K : Type u_2
inst✝³ : Field F
inst✝² : Field K
inst✝¹ : Algebra F K
h : Normal F K
inst✝ : FiniteDimensional F K
s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K
⊢ ∀ (y : ↑(Basis.ofVectorSpaceIndex F K)),
↑s y ∈
↑(↑Subalgebra.toSubmodule
(Algebra.adjoin F (rootSet (∏ x : ↑(Basis.ofVectorSpaceIndex F K), minpoly F (↑s x)) K)))
[PROOFSTEP]
refine' fun x =>
Algebra.subset_adjoin
(Multiset.mem_toFinset.mpr <|
(mem_roots <| mt (Polynomial.map_eq_zero <| algebraMap F K).1 <| Finset.prod_ne_zero_iff.2 fun x _ => _).2 _)
[GOAL]
case refine'_1
F : Type u_1
K : Type u_2
inst✝³ : Field F
inst✝² : Field K
inst✝¹ : Algebra F K
h : Normal F K
inst✝ : FiniteDimensional F K
s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K
x✝¹ x : ↑(Basis.ofVectorSpaceIndex F K)
x✝ : x ∈ Finset.univ
⊢ minpoly F (↑s x) ≠ 0
[PROOFSTEP]
exact minpoly.ne_zero (h.isIntegral (s x))
[GOAL]
case refine'_2
F : Type u_1
K : Type u_2
inst✝³ : Field F
inst✝² : Field K
inst✝¹ : Algebra F K
h : Normal F K
inst✝ : FiniteDimensional F K
s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K
x : ↑(Basis.ofVectorSpaceIndex F K)
⊢ IsRoot (map (algebraMap F K) (∏ x : ↑(Basis.ofVectorSpaceIndex F K), minpoly F (↑s x))) (↑s x)
[PROOFSTEP]
rw [IsRoot.def, eval_map, ← aeval_def, AlgHom.map_prod]
[GOAL]
case refine'_2
F : Type u_1
K : Type u_2
inst✝³ : Field F
inst✝² : Field K
inst✝¹ : Algebra F K
h : Normal F K
inst✝ : FiniteDimensional F K
s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K
x : ↑(Basis.ofVectorSpaceIndex F K)
⊢ ∏ x_1 : ↑(Basis.ofVectorSpaceIndex F K), ↑(aeval (↑s x)) (minpoly F (↑s x_1)) = 0
[PROOFSTEP]
exact Finset.prod_eq_zero (Finset.mem_univ _) (minpoly.aeval _ _)
[GOAL]
F : Type u_1
K : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
E : Type u_3
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : Normal F E
x : E
⊢ IsIntegral K x ∧ Splits (algebraMap K E) (minpoly K x)
[PROOFSTEP]
cases' h.out x with hx hhx
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
E : Type u_3
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : Normal F E
x : E
hx : IsIntegral F x
hhx : Splits (algebraMap F E) (minpoly F x)
⊢ IsIntegral K x ∧ Splits (algebraMap K E) (minpoly K x)
[PROOFSTEP]
rw [algebraMap_eq F K E] at hhx
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
E : Type u_3
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : Normal F E
x : E
hx : IsIntegral F x
hhx : Splits (RingHom.comp (algebraMap K E) (algebraMap F K)) (minpoly F x)
⊢ IsIntegral K x ∧ Splits (algebraMap K E) (minpoly K x)
[PROOFSTEP]
exact
⟨isIntegral_of_isScalarTower hx,
Polynomial.splits_of_splits_of_dvd (algebraMap K E) (Polynomial.map_ne_zero (minpoly.ne_zero hx))
((Polynomial.splits_map_iff (algebraMap F K) (algebraMap K E)).mpr hhx) (minpoly.dvd_map_of_isScalarTower F K x)⟩
[GOAL]
F : Type u_1
K : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
E : Type u_3
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : Normal F E
ϕ : E →ₐ[F] K
x : K
⊢ ∃ a, ↑ϕ a = x
[PROOFSTEP]
letI : Algebra E K := ϕ.toRingHom.toAlgebra
[GOAL]
F : Type u_1
K : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
E : Type u_3
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : Normal F E
ϕ : E →ₐ[F] K
x : K
this : Algebra E K := RingHom.toAlgebra ↑ϕ
⊢ ∃ a, ↑ϕ a = x
[PROOFSTEP]
obtain ⟨h1, h2⟩ := h.out (algebraMap K E x)
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
E : Type u_3
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : Normal F E
ϕ : E →ₐ[F] K
x : K
this : Algebra E K := RingHom.toAlgebra ↑ϕ
h1 : IsIntegral F (↑(algebraMap K E) x)
h2 : Splits (algebraMap F E) (minpoly F (↑(algebraMap K E) x))
⊢ ∃ a, ↑ϕ a = x
[PROOFSTEP]
cases'
minpoly.mem_range_of_degree_eq_one E x
(h2.def.resolve_left (minpoly.ne_zero h1)
(minpoly.irreducible (isIntegral_of_isScalarTower ((isIntegral_algebraMap_iff (algebraMap K E).injective).mp h1)))
(minpoly.dvd E x
((algebraMap K E).injective
(by
rw [RingHom.map_zero, aeval_map_algebraMap, ← aeval_algebraMap_apply]
exact minpoly.aeval F (algebraMap K E x))))) with
y hy
[GOAL]
F : Type u_1
K : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
E : Type u_3
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : Normal F E
ϕ : E →ₐ[F] K
x : K
this : Algebra E K := RingHom.toAlgebra ↑ϕ
h1 : IsIntegral F (↑(algebraMap K E) x)
h2 : Splits (algebraMap F E) (minpoly F (↑(algebraMap K E) x))
⊢ ↑(algebraMap K E) (↑(aeval x) (map (algebraMap F E) (minpoly F (↑(algebraMap K E) x)))) = ↑(algebraMap K E) 0
[PROOFSTEP]
rw [RingHom.map_zero, aeval_map_algebraMap, ← aeval_algebraMap_apply]
[GOAL]
F : Type u_1
K : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
E : Type u_3
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : Normal F E
ϕ : E →ₐ[F] K
x : K
this : Algebra E K := RingHom.toAlgebra ↑ϕ
h1 : IsIntegral F (↑(algebraMap K E) x)
h2 : Splits (algebraMap F E) (minpoly F (↑(algebraMap K E) x))
⊢ ↑(aeval (↑(algebraMap K E) x)) (minpoly F (↑(algebraMap K E) x)) = 0
[PROOFSTEP]
exact minpoly.aeval F (algebraMap K E x)
[GOAL]
case intro.intro
F : Type u_1
K : Type u_2
inst✝⁶ : Field F
inst✝⁵ : Field K
inst✝⁴ : Algebra F K
E : Type u_3
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Algebra K E
inst✝ : IsScalarTower F K E
h : Normal F E
ϕ : E →ₐ[F] K
x : K
this : Algebra E K := RingHom.toAlgebra ↑ϕ
h1 : IsIntegral F (↑(algebraMap K E) x)
h2 : Splits (algebraMap F E) (minpoly F (↑(algebraMap K E) x))
y : E
hy : ↑(algebraMap E K) y = x
⊢ ∃ a, ↑ϕ a = x
[PROOFSTEP]
exact ⟨y, hy⟩
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
⊢ IsIntegral F x ∧ Splits (algebraMap F E') (minpoly F x)
[PROOFSTEP]
cases' h.out (f.symm x) with hx hhx
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
hx : IsIntegral F (↑(AlgEquiv.symm f) x)
hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x))
⊢ IsIntegral F x ∧ Splits (algebraMap F E') (minpoly F x)
[PROOFSTEP]
have H := map_isIntegral f.toAlgHom hx
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
hx : IsIntegral F (↑(AlgEquiv.symm f) x)
hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x))
H : IsIntegral F (↑↑f (↑(AlgEquiv.symm f) x))
⊢ IsIntegral F x ∧ Splits (algebraMap F E') (minpoly F x)
[PROOFSTEP]
simp [AlgEquiv.toAlgHom_eq_coe] at H
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
hx : IsIntegral F (↑(AlgEquiv.symm f) x)
hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x))
H : IsIntegral F x
⊢ IsIntegral F x ∧ Splits (algebraMap F E') (minpoly F x)
[PROOFSTEP]
use H
[GOAL]
case right
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
hx : IsIntegral F (↑(AlgEquiv.symm f) x)
hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x))
H : IsIntegral F x
⊢ Splits (algebraMap F E') (minpoly F x)
[PROOFSTEP]
apply Polynomial.splits_of_splits_of_dvd (algebraMap F E') (minpoly.ne_zero hx)
[GOAL]
case right.hf
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
hx : IsIntegral F (↑(AlgEquiv.symm f) x)
hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x))
H : IsIntegral F x
⊢ Splits (algebraMap F E') (minpoly F (↑(AlgEquiv.symm f) x))
[PROOFSTEP]
rw [← AlgHom.comp_algebraMap f.toAlgHom]
[GOAL]
case right.hf
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
hx : IsIntegral F (↑(AlgEquiv.symm f) x)
hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x))
H : IsIntegral F x
⊢ Splits (RingHom.comp (↑↑f) (algebraMap F E)) (minpoly F (↑(AlgEquiv.symm f) x))
[PROOFSTEP]
exact Polynomial.splits_comp_of_splits (algebraMap F E) f.toAlgHom.toRingHom hhx
[GOAL]
case right.hgf
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
hx : IsIntegral F (↑(AlgEquiv.symm f) x)
hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x))
H : IsIntegral F x
⊢ minpoly F x ∣ minpoly F (↑(AlgEquiv.symm f) x)
[PROOFSTEP]
apply minpoly.dvd _ _
[GOAL]
case right.hgf
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
hx : IsIntegral F (↑(AlgEquiv.symm f) x)
hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x))
H : IsIntegral F x
⊢ ↑(aeval x) (minpoly F (↑(AlgEquiv.symm f) x)) = 0
[PROOFSTEP]
rw [← AddEquiv.map_eq_zero_iff f.symm.toAddEquiv]
[GOAL]
case right.hgf
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
h : Normal F E
f : E ≃ₐ[F] E'
x : E'
hx : IsIntegral F (↑(AlgEquiv.symm f) x)
hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x))
H : IsIntegral F x
⊢ ↑(AlgEquiv.toAddEquiv (AlgEquiv.symm f)) (↑(aeval x) (minpoly F (↑(AlgEquiv.symm f) x))) = 0
[PROOFSTEP]
exact Eq.trans (Polynomial.aeval_algHom_apply f.symm.toAlgHom x (minpoly F (f.symm x))).symm (minpoly.aeval _ _)
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
⊢ Normal F E
[PROOFSTEP]
rcases eq_or_ne p 0 with (rfl | hp)
[GOAL]
case inl
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
hFEp : IsSplittingField F E 0
⊢ Normal F E
[PROOFSTEP]
have := hFEp.adjoin_rootSet
[GOAL]
case inl
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
hFEp : IsSplittingField F E 0
this : Algebra.adjoin F (rootSet 0 E) = ⊤
⊢ Normal F E
[PROOFSTEP]
simp only [rootSet_zero, Algebra.adjoin_empty] at this
[GOAL]
case inl
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
hFEp : IsSplittingField F E 0
this : ⊥ = ⊤
⊢ Normal F E
[PROOFSTEP]
exact Normal.of_algEquiv (AlgEquiv.ofBijective (Algebra.ofId F E) (Algebra.bijective_algebraMap_iff.2 this.symm))
[GOAL]
case inr
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
⊢ Normal F E
[PROOFSTEP]
refine' normal_iff.2 fun x => _
[GOAL]
case inr
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
⊢ IsIntegral F x ∧ Splits (algebraMap F E) (minpoly F x)
[PROOFSTEP]
have hFE : FiniteDimensional F E := IsSplittingField.finiteDimensional E p
[GOAL]
case inr
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
⊢ IsIntegral F x ∧ Splits (algebraMap F E) (minpoly F x)
[PROOFSTEP]
have Hx : IsIntegral F x := isIntegral_of_noetherian (IsNoetherian.iff_fg.2 hFE) x
[GOAL]
case inr
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
⊢ IsIntegral F x ∧ Splits (algebraMap F E) (minpoly F x)
[PROOFSTEP]
refine' ⟨Hx, Or.inr _⟩
[GOAL]
case inr
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
⊢ ∀ {g : E[X]}, Irreducible g → g ∣ map (algebraMap F E) (minpoly F x) → degree g = 1
[PROOFSTEP]
rintro q q_irred ⟨r, hr⟩
[GOAL]
case inr.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
⊢ degree q = 1
[PROOFSTEP]
let D := AdjoinRoot q
[GOAL]
case inr.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
⊢ degree q = 1
[PROOFSTEP]
haveI := Fact.mk q_irred
[GOAL]
case inr.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this : Fact (Irreducible q)
⊢ degree q = 1
[PROOFSTEP]
let pbED := AdjoinRoot.powerBasis q_irred.ne_zero
[GOAL]
case inr.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
⊢ degree q = 1
[PROOFSTEP]
haveI : FiniteDimensional E D := PowerBasis.finiteDimensional pbED
[GOAL]
case inr.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this : FiniteDimensional E D
⊢ degree q = 1
[PROOFSTEP]
have finrankED : FiniteDimensional.finrank E D = q.natDegree := by
rw [PowerBasis.finrank pbED, AdjoinRoot.powerBasis_dim]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this : FiniteDimensional E D
⊢ FiniteDimensional.finrank E D = natDegree q
[PROOFSTEP]
rw [PowerBasis.finrank pbED, AdjoinRoot.powerBasis_dim]
[GOAL]
case inr.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
⊢ degree q = 1
[PROOFSTEP]
haveI : FiniteDimensional F D := FiniteDimensional.trans F E D
[GOAL]
case inr.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
⊢ degree q = 1
[PROOFSTEP]
rsuffices ⟨ϕ⟩ :
Nonempty
(D →ₐ[F] E)
--Porting note: the `change` was `rw [← WithBot.coe_one]`
[GOAL]
case inr.intro.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
ϕ : D →ₐ[F] E
⊢ degree q = 1
[PROOFSTEP]
change degree q = ↑(1 : ℕ)
[GOAL]
case inr.intro.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
ϕ : D →ₐ[F] E
⊢ degree q = ↑1
[PROOFSTEP]
rw [degree_eq_iff_natDegree_eq q_irred.ne_zero, ← finrankED]
[GOAL]
case inr.intro.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
ϕ : D →ₐ[F] E
⊢ FiniteDimensional.finrank E D = 1
[PROOFSTEP]
have nat_lemma : ∀ a b c : ℕ, a * b = c → c ≤ a → 0 < c → b = 1 :=
by
intro a b c h1 h2 h3
nlinarith
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
ϕ : D →ₐ[F] E
⊢ ∀ (a b c : ℕ), a * b = c → c ≤ a → 0 < c → b = 1
[PROOFSTEP]
intro a b c h1 h2 h3
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
ϕ : D →ₐ[F] E
a b c : ℕ
h1 : a * b = c
h2 : c ≤ a
h3 : 0 < c
⊢ b = 1
[PROOFSTEP]
nlinarith
[GOAL]
case inr.intro.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
ϕ : D →ₐ[F] E
nat_lemma : ∀ (a b c : ℕ), a * b = c → c ≤ a → 0 < c → b = 1
⊢ FiniteDimensional.finrank E D = 1
[PROOFSTEP]
exact
nat_lemma _ _ _ (FiniteDimensional.finrank_mul_finrank F E D)
(LinearMap.finrank_le_finrank_of_injective (show Function.Injective ϕ.toLinearMap from ϕ.toRingHom.injective))
FiniteDimensional.finrank_pos
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
⊢ Nonempty (D →ₐ[F] E)
[PROOFSTEP]
let C := AdjoinRoot (minpoly F x)
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
⊢ Nonempty (D →ₐ[F] E)
[PROOFSTEP]
haveI Hx_irred :=
Fact.mk
(minpoly.irreducible Hx)
-- Porting note: `heval` added since now Lean wants the proof explicitly in several places.
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
⊢ Nonempty (D →ₐ[F] E)
[PROOFSTEP]
have heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 := by
rw [algebraMap_eq F E D, ← eval₂_map, hr, AdjoinRoot.algebraMap_eq, eval₂_mul, AdjoinRoot.eval₂_root, zero_mul]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
⊢ eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
[PROOFSTEP]
rw [algebraMap_eq F E D, ← eval₂_map, hr, AdjoinRoot.algebraMap_eq, eval₂_mul, AdjoinRoot.eval₂_root, zero_mul]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝¹ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
⊢ Nonempty (D →ₐ[F] E)
[PROOFSTEP]
letI : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝² : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝¹ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
⊢ Nonempty (D →ₐ[F] E)
[PROOFSTEP]
letI : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (minpoly.aeval F x))
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝³ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝² : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝¹ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
⊢ Nonempty (D →ₐ[F] E)
[PROOFSTEP]
haveI : IsScalarTower F C D := of_algebraMap_eq fun y => (AdjoinRoot.lift_of heval).symm
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁴ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝³ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝² : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝¹ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this : IsScalarTower F C D
⊢ Nonempty (D →ₐ[F] E)
[PROOFSTEP]
haveI : IsScalarTower F C E :=
by
refine' of_algebraMap_eq fun y => (AdjoinRoot.lift_of _).symm
rw [← aeval_def, minpoly.aeval]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁴ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝³ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝² : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝¹ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this : IsScalarTower F C D
⊢ IsScalarTower F C E
[PROOFSTEP]
refine' of_algebraMap_eq fun y => (AdjoinRoot.lift_of _).symm
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁴ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝³ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝² : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝¹ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this : IsScalarTower F C D
y : F
⊢ eval₂ (algebraMap F E) x (minpoly F x) = 0
[PROOFSTEP]
rw [← aeval_def, minpoly.aeval]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
⊢ Nonempty (D →ₐ[F] E)
[PROOFSTEP]
suffices Nonempty (D →ₐ[C] E) by exact Nonempty.map (AlgHom.restrictScalars F) this
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
this : Nonempty (D →ₐ[C] E)
⊢ Nonempty (D →ₐ[F] E)
[PROOFSTEP]
exact Nonempty.map (AlgHom.restrictScalars F) this
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
⊢ Nonempty (D →ₐ[C] E)
[PROOFSTEP]
let S : Set D := ((p.map (algebraMap F E)).roots.map (algebraMap E D)).toFinset
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
⊢ Nonempty (D →ₐ[C] E)
[PROOFSTEP]
suffices ⊤ ≤ IntermediateField.adjoin C S
by
refine' IntermediateField.algHom_mk_adjoin_splits' (top_le_iff.mp this) fun y hy => _
rcases Multiset.mem_map.mp (Multiset.mem_toFinset.mp hy) with ⟨z, hz1, hz2⟩
have Hz : IsIntegral F z := isIntegral_of_noetherian (IsNoetherian.iff_fg.2 hFE) z
use show IsIntegral C y from isIntegral_of_noetherian (IsNoetherian.iff_fg.2 (FiniteDimensional.right F C D)) y
apply splits_of_splits_of_dvd (algebraMap C E) (map_ne_zero (minpoly.ne_zero Hz))
· rw [splits_map_iff, ← algebraMap_eq F C E]
exact
splits_of_splits_of_dvd _ hp hFEp.splits
(minpoly.dvd F z (Eq.trans (eval₂_eq_eval_map _) ((mem_roots (map_ne_zero hp)).mp hz1)))
· apply minpoly.dvd
rw [← hz2, aeval_def, eval₂_map, ← algebraMap_eq F C D, algebraMap_eq F E D, ← hom_eval₂, ← aeval_def,
minpoly.aeval F z, RingHom.map_zero]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : ⊤ ≤ IntermediateField.adjoin C S
⊢ Nonempty (D →ₐ[C] E)
[PROOFSTEP]
refine' IntermediateField.algHom_mk_adjoin_splits' (top_le_iff.mp this) fun y hy => _
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : ⊤ ≤ IntermediateField.adjoin C S
y : D
hy : y ∈ S
⊢ IsIntegral C y ∧ Splits (algebraMap C E) (minpoly C y)
[PROOFSTEP]
rcases Multiset.mem_map.mp (Multiset.mem_toFinset.mp hy) with ⟨z, hz1, hz2⟩
[GOAL]
case intro.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : ⊤ ≤ IntermediateField.adjoin C S
y : D
hy : y ∈ S
z : E
hz1 : z ∈ roots (map (algebraMap F E) p)
hz2 : ↑(algebraMap E D) z = y
⊢ IsIntegral C y ∧ Splits (algebraMap C E) (minpoly C y)
[PROOFSTEP]
have Hz : IsIntegral F z := isIntegral_of_noetherian (IsNoetherian.iff_fg.2 hFE) z
[GOAL]
case intro.intro
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : ⊤ ≤ IntermediateField.adjoin C S
y : D
hy : y ∈ S
z : E
hz1 : z ∈ roots (map (algebraMap F E) p)
hz2 : ↑(algebraMap E D) z = y
Hz : IsIntegral F z
⊢ IsIntegral C y ∧ Splits (algebraMap C E) (minpoly C y)
[PROOFSTEP]
use show IsIntegral C y from isIntegral_of_noetherian (IsNoetherian.iff_fg.2 (FiniteDimensional.right F C D)) y
[GOAL]
case right
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : ⊤ ≤ IntermediateField.adjoin C S
y : D
hy : y ∈ S
z : E
hz1 : z ∈ roots (map (algebraMap F E) p)
hz2 : ↑(algebraMap E D) z = y
Hz : IsIntegral F z
⊢ Splits (algebraMap C E) (minpoly C y)
[PROOFSTEP]
apply splits_of_splits_of_dvd (algebraMap C E) (map_ne_zero (minpoly.ne_zero Hz))
[GOAL]
case right.hf
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : ⊤ ≤ IntermediateField.adjoin C S
y : D
hy : y ∈ S
z : E
hz1 : z ∈ roots (map (algebraMap F E) p)
hz2 : ↑(algebraMap E D) z = y
Hz : IsIntegral F z
⊢ Splits (algebraMap C E) (map ?m.184453 (minpoly F z))
[PROOFSTEP]
rw [splits_map_iff, ← algebraMap_eq F C E]
[GOAL]
case right.hf
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : ⊤ ≤ IntermediateField.adjoin C S
y : D
hy : y ∈ S
z : E
hz1 : z ∈ roots (map (algebraMap F E) p)
hz2 : ↑(algebraMap E D) z = y
Hz : IsIntegral F z
⊢ Splits (algebraMap F E) (minpoly F z)
[PROOFSTEP]
exact
splits_of_splits_of_dvd _ hp hFEp.splits
(minpoly.dvd F z (Eq.trans (eval₂_eq_eval_map _) ((mem_roots (map_ne_zero hp)).mp hz1)))
[GOAL]
case right.hgf
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : ⊤ ≤ IntermediateField.adjoin C S
y : D
hy : y ∈ S
z : E
hz1 : z ∈ roots (map (algebraMap F E) p)
hz2 : ↑(algebraMap E D) z = y
Hz : IsIntegral F z
⊢ minpoly C y ∣ map (algebraMap F C) (minpoly F z)
[PROOFSTEP]
apply minpoly.dvd
[GOAL]
case right.hgf.hp
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : ⊤ ≤ IntermediateField.adjoin C S
y : D
hy : y ∈ S
z : E
hz1 : z ∈ roots (map (algebraMap F E) p)
hz2 : ↑(algebraMap E D) z = y
Hz : IsIntegral F z
⊢ ↑(aeval y) (map (algebraMap F C) (minpoly F z)) = 0
[PROOFSTEP]
rw [← hz2, aeval_def, eval₂_map, ← algebraMap_eq F C D, algebraMap_eq F E D, ← hom_eval₂, ← aeval_def,
minpoly.aeval F z, RingHom.map_zero]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
⊢ ⊤ ≤ IntermediateField.adjoin C S
[PROOFSTEP]
rw [← IntermediateField.toSubalgebra_le_toSubalgebra, IntermediateField.top_toSubalgebra]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
⊢ ⊤ ≤ (IntermediateField.adjoin C S).toSubalgebra
[PROOFSTEP]
apply ge_trans (IntermediateField.algebra_adjoin_le_adjoin C S)
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
⊢ Algebra.adjoin C S ≥ ⊤
[PROOFSTEP]
suffices (Algebra.adjoin C S).restrictScalars F = (Algebra.adjoin E {AdjoinRoot.root q}).restrictScalars F
by
rw [AdjoinRoot.adjoinRoot_eq_top, Subalgebra.restrictScalars_top, ← @Subalgebra.restrictScalars_top F C] at this
exact
top_le_iff.mpr
(Subalgebra.restrictScalars_injective F this)
/- Porting note: the `change` was `dsimp only [S]`. This is the step that requires increasing
`maxHeartbeats`. Using `set S ... with hS` doesn't work. -/
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this :
Subalgebra.restrictScalars F (Algebra.adjoin C S) =
Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q})
⊢ Algebra.adjoin C S ≥ ⊤
[PROOFSTEP]
rw [AdjoinRoot.adjoinRoot_eq_top, Subalgebra.restrictScalars_top, ← @Subalgebra.restrictScalars_top F C] at this
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁶ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁵ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝⁴ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝¹ : IsScalarTower F C D
this✝ : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
this : Subalgebra.restrictScalars F (Algebra.adjoin C S) = Subalgebra.restrictScalars F ⊤
⊢ Algebra.adjoin C S ≥ ⊤
[PROOFSTEP]
exact
top_le_iff.mpr
(Subalgebra.restrictScalars_injective F this)
/- Porting note: the `change` was `dsimp only [S]`. This is the step that requires increasing
`maxHeartbeats`. Using `set S ... with hS` doesn't work. -/
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
⊢ Subalgebra.restrictScalars F (Algebra.adjoin C S) =
Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q})
[PROOFSTEP]
change
Subalgebra.restrictScalars F
(Algebra.adjoin C (((p.map (algebraMap F E)).roots.map (algebraMap E D)).toFinset : Set D)) =
_
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
⊢ Subalgebra.restrictScalars F
(Algebra.adjoin C ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))) =
Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q})
[PROOFSTEP]
rw [← Finset.image_toFinset, Finset.coe_image]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
⊢ Subalgebra.restrictScalars F
(Algebra.adjoin C (↑(algebraMap E D) '' ↑(Multiset.toFinset (roots (map (algebraMap F E) p))))) =
Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q})
[PROOFSTEP]
apply Eq.trans (Algebra.adjoin_res_eq_adjoin_res F E C D hFEp.adjoin_rootSet AdjoinRoot.adjoinRoot_eq_top)
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹¹ : Field F
inst✝¹⁰ : Field K
inst✝⁹ : Algebra F K
E : Type u_3
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra K E
inst✝⁵ : IsScalarTower F K E
E' : Type u_4
inst✝⁴ : Field F
inst✝³ : Field E
inst✝² : Algebra F E
inst✝¹ : Field E'
inst✝ : Algebra F E'
p : F[X]
hFEp : IsSplittingField F E p
hp : p ≠ 0
x : E
hFE : FiniteDimensional F E
Hx : IsIntegral F x
q : E[X]
q_irred : Irreducible q
r : E[X]
hr : map (algebraMap F E) (minpoly F x) = q * r
D : Type u_3 := AdjoinRoot q
this✝⁵ : Fact (Irreducible q)
pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0)
this✝⁴ : FiniteDimensional E D
finrankED : FiniteDimensional.finrank E D = natDegree q
this✝³ : FiniteDimensional F D
C : Type u_1 := AdjoinRoot (minpoly F x)
Hx_irred : Fact (Irreducible (minpoly F x))
heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0
this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval)
this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0))
this✝ : IsScalarTower F C D
this : IsScalarTower F C E
S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))
⊢ Subalgebra.restrictScalars F (Algebra.adjoin E (↑(algebraMap C D) '' {AdjoinRoot.root (minpoly F x)})) =
Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q})
[PROOFSTEP]
rw [Set.image_singleton, RingHom.algebraMap_toAlgebra, AdjoinRoot.lift_root]
[GOAL]
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
⊢ Normal F { x // x ∈ ⨆ (i : ι), t i }
[PROOFSTEP]
refine' ⟨isAlgebraic_iSup fun i => (h i).1, fun x => _⟩
[GOAL]
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x)
[PROOFSTEP]
obtain ⟨s, hx⟩ := exists_finset_of_mem_supr'' (fun i => (h i).1) x.2
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x)
[PROOFSTEP]
let E : IntermediateField F K := ⨆ i ∈ s, adjoin F ((minpoly F (i.2 : _)).rootSet K)
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x)
[PROOFSTEP]
have hF : Normal F E :=
by
haveI : IsSplittingField F E (∏ i in s, minpoly F i.snd) :=
by
refine' isSplittingField_iSup _ fun i _ => adjoin_rootSet_isSplittingField _
· exact Finset.prod_ne_zero_iff.mpr fun i _ => minpoly.ne_zero ((h i.1).isIntegral i.2)
· exact Polynomial.splits_comp_of_splits _ (algebraMap (t i.1) K) ((h i.1).splits i.2)
apply Normal.of_isSplittingField (∏ i in s, minpoly F i.2)
[GOAL]
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
⊢ Normal F { x // x ∈ E }
[PROOFSTEP]
haveI : IsSplittingField F E (∏ i in s, minpoly F i.snd) :=
by
refine' isSplittingField_iSup _ fun i _ => adjoin_rootSet_isSplittingField _
· exact Finset.prod_ne_zero_iff.mpr fun i _ => minpoly.ne_zero ((h i.1).isIntegral i.2)
· exact Polynomial.splits_comp_of_splits _ (algebraMap (t i.1) K) ((h i.1).splits i.2)
[GOAL]
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
⊢ IsSplittingField F { x // x ∈ E } (∏ i in s, minpoly F i.snd)
[PROOFSTEP]
refine' isSplittingField_iSup _ fun i _ => adjoin_rootSet_isSplittingField _
[GOAL]
case refine'_1
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
⊢ ∏ i in s, minpoly F i.snd ≠ 0
[PROOFSTEP]
exact Finset.prod_ne_zero_iff.mpr fun i _ => minpoly.ne_zero ((h i.1).isIntegral i.2)
[GOAL]
case refine'_2
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
i : (i : ι) × { x // x ∈ t i }
x✝ : i ∈ s
⊢ Splits (algebraMap F K) (minpoly F i.snd)
[PROOFSTEP]
exact Polynomial.splits_comp_of_splits _ (algebraMap (t i.1) K) ((h i.1).splits i.2)
[GOAL]
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
this : IsSplittingField F { x // x ∈ E } (∏ i in s, minpoly F i.snd)
⊢ Normal F { x // x ∈ E }
[PROOFSTEP]
apply Normal.of_isSplittingField (∏ i in s, minpoly F i.2)
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
hF : Normal F { x // x ∈ E }
⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x)
[PROOFSTEP]
have hE : E ≤ ⨆ i, t i := by
refine' iSup_le fun i => iSup_le fun _ => le_iSup_of_le i.1 _
rw [adjoin_le_iff, ← image_rootSet ((h i.1).splits i.2) (t i.1).val]
exact fun _ ⟨a, _, h⟩ => h ▸ a.2
[GOAL]
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
hF : Normal F { x // x ∈ E }
⊢ E ≤ ⨆ (i : ι), t i
[PROOFSTEP]
refine' iSup_le fun i => iSup_le fun _ => le_iSup_of_le i.1 _
[GOAL]
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
hF : Normal F { x // x ∈ E }
i : (i : ι) × { x // x ∈ t i }
x✝ : i ∈ s
⊢ adjoin F (rootSet (minpoly F i.snd) K) ≤ t i.fst
[PROOFSTEP]
rw [adjoin_le_iff, ← image_rootSet ((h i.1).splits i.2) (t i.1).val]
[GOAL]
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
hF : Normal F { x // x ∈ E }
i : (i : ι) × { x // x ∈ t i }
x✝ : i ∈ s
⊢ ↑(val (t i.fst)) '' rootSet (minpoly F i.snd) { x // x ∈ t i.fst } ≤ ↑(t i.fst)
[PROOFSTEP]
exact fun _ ⟨a, _, h⟩ => h ▸ a.2
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
hF : Normal F { x // x ∈ E }
hE : E ≤ ⨆ (i : ι), t i
⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x)
[PROOFSTEP]
have := hF.splits ⟨x, hx⟩
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
hF : Normal F { x // x ∈ E }
hE : E ≤ ⨆ (i : ι), t i
this : Splits (algebraMap F { x // x ∈ E }) (minpoly F { val := ↑x, property := hx })
⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x)
[PROOFSTEP]
rw [minpoly_eq, Subtype.coe_mk, ← minpoly_eq] at this
[GOAL]
case intro
F : Type u_1
K : Type u_2
inst✝² : Field F
inst✝¹ : Field K
inst✝ : Algebra F K
ι : Type u_3
t : ι → IntermediateField F K
h : ∀ (i : ι), Normal F { x // x ∈ t i }
x : { x // x ∈ ⨆ (i : ι), t i }
s : Finset ((i : ι) × { x // x ∈ t i })
hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K)
hF : Normal F { x // x ∈ E }
hE : E ≤ ⨆ (i : ι), t i
this : Splits (algebraMap F { x // x ∈ E }) (minpoly F x)
⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x)
[PROOFSTEP]
exact Polynomial.splits_comp_of_splits _ (inclusion hE).toRingHom this
[GOAL]
F : Type u_1
K : Type u_2
inst✝⁴ : Field F
inst✝³ : Field K
inst✝² : Algebra F K
E E' : IntermediateField F K
inst✝¹ : Normal F { x // x ∈ E }
inst✝ : Normal F { x // x ∈ E' }
⊢ ∀ (i : Bool), Normal F { x // x ∈ Bool.rec E' E i }
[PROOFSTEP]
intro i
[GOAL]
F : Type u_1
K : Type u_2
inst✝⁴ : Field F
inst✝³ : Field K
inst✝² : Algebra F K
E E' : IntermediateField F K
inst✝¹ : Normal F { x // x ∈ E }
inst✝ : Normal F { x // x ∈ E' }
i : Bool
⊢ Normal F { x // x ∈ Bool.rec E' E i }
[PROOFSTEP]
cases i
[GOAL]
case false
F : Type u_1
K : Type u_2
inst✝⁴ : Field F
inst✝³ : Field K
inst✝² : Algebra F K
E E' : IntermediateField F K
inst✝¹ : Normal F { x // x ∈ E }
inst✝ : Normal F { x // x ∈ E' }
⊢ Normal F { x // x ∈ Bool.rec E' E false }
[PROOFSTEP]
infer_instance
[GOAL]
case true
F : Type u_1
K : Type u_2
inst✝⁴ : Field F
inst✝³ : Field K
inst✝² : Algebra F K
E E' : IntermediateField F K
inst✝¹ : Normal F { x // x ∈ E }
inst✝ : Normal F { x // x ∈ E' }
⊢ Normal F { x // x ∈ Bool.rec E' E true }
[PROOFSTEP]
infer_instance
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
⊢ ↑ϕ ↑x ∈ AlgHom.range (toAlgHom F E K₂)
[PROOFSTEP]
suffices (toAlgHom F E K₁).range.map ϕ ≤ _ by exact this ⟨x, Subtype.mem x, rfl⟩
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
this : Subalgebra.map ϕ (AlgHom.range (toAlgHom F E K₁)) ≤ ?m.259090
⊢ ↑ϕ ↑x ∈ AlgHom.range (toAlgHom F E K₂)
[PROOFSTEP]
exact this ⟨x, Subtype.mem x, rfl⟩
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
⊢ Subalgebra.map ϕ (AlgHom.range (toAlgHom F E K₁)) ≤ AlgHom.range (toAlgHom F E K₂)
[PROOFSTEP]
rintro x ⟨y, ⟨z, hy⟩, hx⟩
[GOAL]
case intro.intro.intro
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
x : K₂
y : K₁
hx : ↑↑ϕ y = x
z : E
hy : ↑↑(toAlgHom F E K₁) z = y
⊢ x ∈ AlgHom.range (toAlgHom F E K₂)
[PROOFSTEP]
rw [← hx, ← hy]
[GOAL]
case intro.intro.intro
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
x : K₂
y : K₁
hx : ↑↑ϕ y = x
z : E
hy : ↑↑(toAlgHom F E K₁) z = y
⊢ ↑↑ϕ (↑↑(toAlgHom F E K₁) z) ∈ AlgHom.range (toAlgHom F E K₂)
[PROOFSTEP]
apply minpoly.mem_range_of_degree_eq_one E
[GOAL]
case intro.intro.intro.hx
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
x : K₂
y : K₁
hx : ↑↑ϕ y = x
z : E
hy : ↑↑(toAlgHom F E K₁) z = y
⊢ degree (minpoly E (↑↑ϕ (↑↑(toAlgHom F E K₁) z))) = 1
[PROOFSTEP]
refine'
Or.resolve_left (h.splits z).def (minpoly.ne_zero (h.isIntegral z)) (minpoly.irreducible _)
(minpoly.dvd E _ (by simp [aeval_algHom_apply]))
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
x : K₂
y : K₁
hx : ↑↑ϕ y = x
z : E
hy : ↑↑(toAlgHom F E K₁) z = y
⊢ ↑(aeval (↑↑ϕ (↑↑(toAlgHom F E K₁) z))) (map (algebraMap F E) (minpoly F z)) = 0
[PROOFSTEP]
simp [aeval_algHom_apply]
[GOAL]
case intro.intro.intro.hx
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
x : K₂
y : K₁
hx : ↑↑ϕ y = x
z : E
hy : ↑↑(toAlgHom F E K₁) z = y
⊢ IsIntegral E (↑↑ϕ (↑↑(toAlgHom F E K₁) z))
[PROOFSTEP]
simp only [AlgHom.toRingHom_eq_coe, AlgHom.coe_toRingHom]
[GOAL]
case intro.intro.intro.hx
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
x : K₂
y : K₁
hx : ↑↑ϕ y = x
z : E
hy : ↑↑(toAlgHom F E K₁) z = y
⊢ IsIntegral E (↑ϕ (↑(toAlgHom F E K₁) z))
[PROOFSTEP]
suffices IsIntegral F _ by exact isIntegral_of_isScalarTower this
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
x : K₂
y : K₁
hx : ↑↑ϕ y = x
z : E
hy : ↑↑(toAlgHom F E K₁) z = y
this : IsIntegral F ?m.268983
⊢ IsIntegral E (↑ϕ (↑(toAlgHom F E K₁) z))
[PROOFSTEP]
exact isIntegral_of_isScalarTower this
[GOAL]
case intro.intro.intro.hx
F : Type u_1
K : Type u_2
inst✝¹⁷ : Field F
inst✝¹⁶ : Field K
inst✝¹⁵ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁴ : Field F
inst✝¹³ : Field K₁
inst✝¹² : Field K₂
inst✝¹¹ : Field K₃
inst✝¹⁰ : Algebra F K₁
inst✝⁹ : Algebra F K₂
inst✝⁸ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁷ : Field E
inst✝⁶ : Algebra F E
inst✝⁵ : Algebra E K₁
inst✝⁴ : Algebra E K₂
inst✝³ : Algebra E K₃
inst✝² : IsScalarTower F E K₁
inst✝¹ : IsScalarTower F E K₂
inst✝ : IsScalarTower F E K₃
h : Normal F E
x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) }
x : K₂
y : K₁
hx : ↑↑ϕ y = x
z : E
hy : ↑↑(toAlgHom F E K₁) z = y
⊢ IsIntegral F (↑ϕ (↑(toAlgHom F E K₁) z))
[PROOFSTEP]
exact map_isIntegral ϕ (map_isIntegral (toAlgHom F E K₁) (h.isIntegral z))
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁸ : Field F
inst✝¹⁷ : Field K
inst✝¹⁶ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K₁
inst✝¹³ : Field K₂
inst✝¹² : Field K₃
inst✝¹¹ : Algebra F K₁
inst✝¹⁰ : Algebra F K₂
inst✝⁹ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra E K₁
inst✝⁵ : Algebra E K₂
inst✝⁴ : Algebra E K₃
inst✝³ : IsScalarTower F E K₁
inst✝² : IsScalarTower F E K₂
inst✝¹ : IsScalarTower F E K₃
inst✝ : Normal F E
x✝ : E
⊢ ↑(algebraMap E K₃) (↑(comp (restrictNormal ψ E) (restrictNormal ϕ E)) x✝) =
↑(algebraMap E K₃) (↑(restrictNormal (comp ψ ϕ) E) x✝)
[PROOFSTEP]
simp only [AlgHom.comp_apply, AlgHom.restrictNormal_commutes]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁹ : Field F
inst✝¹⁸ : Field K
inst✝¹⁷ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁶ : Field F
inst✝¹⁵ : Field K₁
inst✝¹⁴ : Field K₂
inst✝¹³ : Field K₃
inst✝¹² : Algebra F K₁
inst✝¹¹ : Algebra F K₂
inst✝¹⁰ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E✝ : Type u_6
inst✝⁹ : Field E✝
inst✝⁸ : Algebra F E✝
inst✝⁷ : Algebra E✝ K₁
inst✝⁶ : Algebra E✝ K₂
inst✝⁵ : Algebra E✝ K₃
inst✝⁴ : IsScalarTower F E✝ K₁
inst✝³ : IsScalarTower F E✝ K₂
inst✝² : IsScalarTower F E✝ K₃
inst✝¹ : Algebra F K
E : IntermediateField F K
inst✝ : Normal F { x // x ∈ E }
f : { x // x ∈ E } →ₐ[F] K
⊢ fieldRange f = E
[PROOFSTEP]
letI : Algebra E E := Algebra.id E
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁹ : Field F
inst✝¹⁸ : Field K
inst✝¹⁷ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁶ : Field F
inst✝¹⁵ : Field K₁
inst✝¹⁴ : Field K₂
inst✝¹³ : Field K₃
inst✝¹² : Algebra F K₁
inst✝¹¹ : Algebra F K₂
inst✝¹⁰ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E✝ : Type u_6
inst✝⁹ : Field E✝
inst✝⁸ : Algebra F E✝
inst✝⁷ : Algebra E✝ K₁
inst✝⁶ : Algebra E✝ K₂
inst✝⁵ : Algebra E✝ K₃
inst✝⁴ : IsScalarTower F E✝ K₁
inst✝³ : IsScalarTower F E✝ K₂
inst✝² : IsScalarTower F E✝ K₃
inst✝¹ : Algebra F K
E : IntermediateField F K
inst✝ : Normal F { x // x ∈ E }
f : { x // x ∈ E } →ₐ[F] K
this : Algebra { x // x ∈ E } { x // x ∈ E } := Algebra.id { x // x ∈ E }
⊢ fieldRange f = E
[PROOFSTEP]
let g := f.restrictNormal' E
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁹ : Field F
inst✝¹⁸ : Field K
inst✝¹⁷ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁶ : Field F
inst✝¹⁵ : Field K₁
inst✝¹⁴ : Field K₂
inst✝¹³ : Field K₃
inst✝¹² : Algebra F K₁
inst✝¹¹ : Algebra F K₂
inst✝¹⁰ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E✝ : Type u_6
inst✝⁹ : Field E✝
inst✝⁸ : Algebra F E✝
inst✝⁷ : Algebra E✝ K₁
inst✝⁶ : Algebra E✝ K₂
inst✝⁵ : Algebra E✝ K₃
inst✝⁴ : IsScalarTower F E✝ K₁
inst✝³ : IsScalarTower F E✝ K₂
inst✝² : IsScalarTower F E✝ K₃
inst✝¹ : Algebra F K
E : IntermediateField F K
inst✝ : Normal F { x // x ∈ E }
f : { x // x ∈ E } →ₐ[F] K
this : Algebra { x // x ∈ E } { x // x ∈ E } := Algebra.id { x // x ∈ E }
g : { x // x ∈ E } ≃ₐ[F] { x // x ∈ E } := restrictNormal' f { x // x ∈ E }
⊢ fieldRange f = E
[PROOFSTEP]
rw [← show E.val.comp ↑g = f from FunLike.ext_iff.mpr (f.restrictNormal_commutes E), ←
IntermediateField.AlgHom.map_fieldRange, IntermediateField.AlgEquiv.fieldRange_eq_top g, ←
IntermediateField.AlgHom.fieldRange_eq_map, IntermediateField.fieldRange_val]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁸ : Field F
inst✝¹⁷ : Field K
inst✝¹⁶ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K₁
inst✝¹³ : Field K₂
inst✝¹² : Field K₃
inst✝¹¹ : Algebra F K₁
inst✝¹⁰ : Algebra F K₂
inst✝⁹ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra E K₁
inst✝⁵ : Algebra E K₂
inst✝⁴ : Algebra E K₃
inst✝³ : IsScalarTower F E K₁
inst✝² : IsScalarTower F E K₂
inst✝¹ : IsScalarTower F E K₃
inst✝ : Normal F E
x✝ : E
⊢ ↑(algebraMap E K₃) (↑(restrictNormal (trans χ ω) E) x✝) =
↑(algebraMap E K₃) (↑(trans (restrictNormal χ E) (restrictNormal ω E)) x✝)
[PROOFSTEP]
simp only [AlgEquiv.trans_apply, AlgEquiv.restrictNormal_commutes]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁸ : Field F
inst✝¹⁷ : Field K
inst✝¹⁶ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K₁
inst✝¹³ : Field K₂
inst✝¹² : Field K₃
inst✝¹¹ : Algebra F K₁
inst✝¹⁰ : Algebra F K₂
inst✝⁹ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra E K₁
inst✝⁵ : Algebra E K₂
inst✝⁴ : Algebra E K₃
inst✝³ : IsScalarTower F E K₁
inst✝² : IsScalarTower F E K₂
inst✝¹ : IsScalarTower F E K₃
inst✝ : Normal F E
σ : E →ₐ[F] K₁
⊢ (fun σ => AlgHom.comp (toAlgHom F E K₁) ↑σ) ((fun σ => AlgHom.restrictNormal' σ E) σ) = σ
[PROOFSTEP]
ext
[GOAL]
case H
F : Type u_1
K : Type u_2
inst✝¹⁸ : Field F
inst✝¹⁷ : Field K
inst✝¹⁶ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K₁
inst✝¹³ : Field K₂
inst✝¹² : Field K₃
inst✝¹¹ : Algebra F K₁
inst✝¹⁰ : Algebra F K₂
inst✝⁹ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra E K₁
inst✝⁵ : Algebra E K₂
inst✝⁴ : Algebra E K₃
inst✝³ : IsScalarTower F E K₁
inst✝² : IsScalarTower F E K₂
inst✝¹ : IsScalarTower F E K₃
inst✝ : Normal F E
σ : E →ₐ[F] K₁
x✝ : E
⊢ ↑((fun σ => AlgHom.comp (toAlgHom F E K₁) ↑σ) ((fun σ => AlgHom.restrictNormal' σ E) σ)) x✝ = ↑σ x✝
[PROOFSTEP]
simp [AlgHom.restrictNormal']
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁸ : Field F
inst✝¹⁷ : Field K
inst✝¹⁶ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K₁
inst✝¹³ : Field K₂
inst✝¹² : Field K₃
inst✝¹¹ : Algebra F K₁
inst✝¹⁰ : Algebra F K₂
inst✝⁹ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra E K₁
inst✝⁵ : Algebra E K₂
inst✝⁴ : Algebra E K₃
inst✝³ : IsScalarTower F E K₁
inst✝² : IsScalarTower F E K₂
inst✝¹ : IsScalarTower F E K₃
inst✝ : Normal F E
σ : E ≃ₐ[F] E
⊢ (fun σ => AlgHom.restrictNormal' σ E) ((fun σ => AlgHom.comp (toAlgHom F E K₁) ↑σ) σ) = σ
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
K : Type u_2
inst✝¹⁸ : Field F
inst✝¹⁷ : Field K
inst✝¹⁶ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K₁
inst✝¹³ : Field K₂
inst✝¹² : Field K₃
inst✝¹¹ : Algebra F K₁
inst✝¹⁰ : Algebra F K₂
inst✝⁹ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra E K₁
inst✝⁵ : Algebra E K₂
inst✝⁴ : Algebra E K₃
inst✝³ : IsScalarTower F E K₁
inst✝² : IsScalarTower F E K₂
inst✝¹ : IsScalarTower F E K₃
inst✝ : Normal F E
σ : E ≃ₐ[F] E
a✝ : E
⊢ ↑((fun σ => AlgHom.restrictNormal' σ E) ((fun σ => AlgHom.comp (toAlgHom F E K₁) ↑σ) σ)) a✝ = ↑σ a✝
[PROOFSTEP]
simp only [AlgHom.restrictNormal', AlgEquiv.toAlgHom_eq_coe, AlgEquiv.coe_ofBijective]
[GOAL]
case h
F : Type u_1
K : Type u_2
inst✝¹⁸ : Field F
inst✝¹⁷ : Field K
inst✝¹⁶ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K₁
inst✝¹³ : Field K₂
inst✝¹² : Field K₃
inst✝¹¹ : Algebra F K₁
inst✝¹⁰ : Algebra F K₂
inst✝⁹ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra E K₁
inst✝⁵ : Algebra E K₂
inst✝⁴ : Algebra E K₃
inst✝³ : IsScalarTower F E K₁
inst✝² : IsScalarTower F E K₂
inst✝¹ : IsScalarTower F E K₃
inst✝ : Normal F E
σ : E ≃ₐ[F] E
a✝ : E
⊢ ↑(AlgHom.restrictNormal (AlgHom.comp (toAlgHom F E K₁) ↑σ) E) a✝ = ↑σ a✝
[PROOFSTEP]
apply NoZeroSMulDivisors.algebraMap_injective E K₁
[GOAL]
case h.a
F : Type u_1
K : Type u_2
inst✝¹⁸ : Field F
inst✝¹⁷ : Field K
inst✝¹⁶ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K₁
inst✝¹³ : Field K₂
inst✝¹² : Field K₃
inst✝¹¹ : Algebra F K₁
inst✝¹⁰ : Algebra F K₂
inst✝⁹ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra E K₁
inst✝⁵ : Algebra E K₂
inst✝⁴ : Algebra E K₃
inst✝³ : IsScalarTower F E K₁
inst✝² : IsScalarTower F E K₂
inst✝¹ : IsScalarTower F E K₃
inst✝ : Normal F E
σ : E ≃ₐ[F] E
a✝ : E
⊢ ↑(algebraMap E K₁) (↑(AlgHom.restrictNormal (AlgHom.comp (toAlgHom F E K₁) ↑σ) E) a✝) = ↑(algebraMap E K₁) (↑σ a✝)
[PROOFSTEP]
rw [AlgHom.restrictNormal_commutes]
[GOAL]
case h.a
F : Type u_1
K : Type u_2
inst✝¹⁸ : Field F
inst✝¹⁷ : Field K
inst✝¹⁶ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K₁
inst✝¹³ : Field K₂
inst✝¹² : Field K₃
inst✝¹¹ : Algebra F K₁
inst✝¹⁰ : Algebra F K₂
inst✝⁹ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁸ : Field E
inst✝⁷ : Algebra F E
inst✝⁶ : Algebra E K₁
inst✝⁵ : Algebra E K₂
inst✝⁴ : Algebra E K₃
inst✝³ : IsScalarTower F E K₁
inst✝² : IsScalarTower F E K₂
inst✝¹ : IsScalarTower F E K₃
inst✝ : Normal F E
σ : E ≃ₐ[F] E
a✝ : E
⊢ ↑(AlgHom.comp (toAlgHom F E K₁) ↑σ) (↑(algebraMap E E) a✝) = ↑(algebraMap E K₁) (↑σ a✝)
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K
inst✝¹³ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹² : Field F
inst✝¹¹ : Field K₁
inst✝¹⁰ : Field K₂
inst✝⁹ : Field K₃
inst✝⁸ : Algebra F K₁
inst✝⁷ : Algebra F K₂
inst✝⁶ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : Algebra K₁ E
inst✝² : Algebra K₂ E
inst✝¹ : IsScalarTower F K₁ E
inst✝ : IsScalarTower F K₂ E
h : Normal F E
x : E
x✝ : x ∈ Set.univ
⊢ Splits (algebraMap K₁ E) (map (algebraMap F K₁) (minpoly F x))
[PROOFSTEP]
rw [splits_map_iff, ← @IsScalarTower.algebraMap_eq _ _ _ _ _ _ (_) (_) (_)]
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁵ : Field F
inst✝¹⁴ : Field K
inst✝¹³ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹² : Field F
inst✝¹¹ : Field K₁
inst✝¹⁰ : Field K₂
inst✝⁹ : Field K₃
inst✝⁸ : Algebra F K₁
inst✝⁷ : Algebra F K₂
inst✝⁶ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁵ : Field E
inst✝⁴ : Algebra F E
inst✝³ : Algebra K₁ E
inst✝² : Algebra K₂ E
inst✝¹ : IsScalarTower F K₁ E
inst✝ : IsScalarTower F K₂ E
h : Normal F E
x : E
x✝ : x ∈ Set.univ
⊢ Splits (algebraMap F E) (minpoly F x)
[PROOFSTEP]
exact (h.out x).2
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁶ : Field F
inst✝¹⁵ : Field K
inst✝¹⁴ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹³ : Field F
inst✝¹² : Field K₁
inst✝¹¹ : Field K₂
inst✝¹⁰ : Field K₃
inst✝⁹ : Algebra F K₁
inst✝⁸ : Algebra F K₂
inst✝⁷ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁶ : Field E
inst✝⁵ : Algebra F E
inst✝⁴ : Algebra K₁ E
inst✝³ : Algebra K₂ E
inst✝² : IsScalarTower F K₁ E
inst✝¹ : IsScalarTower F K₂ E
inst✝ : Normal F K₁
h1 : IsSolvable (K₁ ≃ₐ[F] K₁)
h2 : IsSolvable (E ≃ₐ[K₁] E)
⊢ IsSolvable (E ≃ₐ[F] E)
[PROOFSTEP]
let f : (E ≃ₐ[K₁] E) →* E ≃ₐ[F] E :=
{ toFun := fun ϕ =>
AlgEquiv.ofAlgHom (ϕ.toAlgHom.restrictScalars F) (ϕ.symm.toAlgHom.restrictScalars F)
(AlgHom.ext fun x => ϕ.apply_symm_apply x) (AlgHom.ext fun x => ϕ.symm_apply_apply x)
map_one' := AlgEquiv.ext fun _ => rfl
map_mul' := fun _ _ => AlgEquiv.ext fun _ => rfl }
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁶ : Field F
inst✝¹⁵ : Field K
inst✝¹⁴ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹³ : Field F
inst✝¹² : Field K₁
inst✝¹¹ : Field K₂
inst✝¹⁰ : Field K₃
inst✝⁹ : Algebra F K₁
inst✝⁸ : Algebra F K₂
inst✝⁷ : Algebra F K₃
ϕ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁶ : Field E
inst✝⁵ : Algebra F E
inst✝⁴ : Algebra K₁ E
inst✝³ : Algebra K₂ E
inst✝² : IsScalarTower F K₁ E
inst✝¹ : IsScalarTower F K₂ E
inst✝ : Normal F K₁
h1 : IsSolvable (K₁ ≃ₐ[F] K₁)
h2 : IsSolvable (E ≃ₐ[K₁] E)
f : (E ≃ₐ[K₁] E) →* E ≃ₐ[F] E :=
{
toOneHom :=
{
toFun := fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E),
map_one' :=
(_ :
(fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E))
1 =
1) },
map_mul' :=
(_ :
∀ (x x_1 : E ≃ₐ[K₁] E),
OneHom.toFun
{
toFun := fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E),
map_one' :=
(_ :
(fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E))
1 =
1) }
(x * x_1) =
OneHom.toFun
{
toFun := fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E),
map_one' :=
(_ :
(fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ)
(AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ)
(AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E))
1 =
1) }
x *
OneHom.toFun
{
toFun := fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E),
map_one' :=
(_ :
(fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ)
(AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ)
(AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E))
1 =
1) }
x_1) }
⊢ IsSolvable (E ≃ₐ[F] E)
[PROOFSTEP]
refine'
solvable_of_ker_le_range f (AlgEquiv.restrictNormalHom K₁) fun ϕ hϕ =>
⟨{ ϕ with commutes' := fun x => _ }, AlgEquiv.ext fun _ => rfl⟩
[GOAL]
F : Type u_1
K : Type u_2
inst✝¹⁶ : Field F
inst✝¹⁵ : Field K
inst✝¹⁴ : Algebra F K
K₁ : Type u_3
K₂ : Type u_4
K₃ : Type u_5
inst✝¹³ : Field F
inst✝¹² : Field K₁
inst✝¹¹ : Field K₂
inst✝¹⁰ : Field K₃
inst✝⁹ : Algebra F K₁
inst✝⁸ : Algebra F K₂
inst✝⁷ : Algebra F K₃
ϕ✝ : K₁ →ₐ[F] K₂
χ : K₁ ≃ₐ[F] K₂
ψ : K₂ →ₐ[F] K₃
ω : K₂ ≃ₐ[F] K₃
E : Type u_6
inst✝⁶ : Field E
inst✝⁵ : Algebra F E
inst✝⁴ : Algebra K₁ E
inst✝³ : Algebra K₂ E
inst✝² : IsScalarTower F K₁ E
inst✝¹ : IsScalarTower F K₂ E
inst✝ : Normal F K₁
h1 : IsSolvable (K₁ ≃ₐ[F] K₁)
h2 : IsSolvable (E ≃ₐ[K₁] E)
f : (E ≃ₐ[K₁] E) →* E ≃ₐ[F] E :=
{
toOneHom :=
{
toFun := fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E),
map_one' :=
(_ :
(fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E))
1 =
1) },
map_mul' :=
(_ :
∀ (x x_1 : E ≃ₐ[K₁] E),
OneHom.toFun
{
toFun := fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E),
map_one' :=
(_ :
(fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E))
1 =
1) }
(x * x_1) =
OneHom.toFun
{
toFun := fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E),
map_one' :=
(_ :
(fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ)
(AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ)
(AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E))
1 =
1) }
x *
OneHom.toFun
{
toFun := fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E),
map_one' :=
(_ :
(fun ϕ =>
AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ)
(AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑ϕ)
(AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) =
AlgHom.id F E)
(_ :
AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ))
(AlgHom.restrictScalars F ↑ϕ) =
AlgHom.id F E))
1 =
1) }
x_1) }
ϕ : E ≃ₐ[F] E
hϕ : ϕ ∈ MonoidHom.ker (AlgEquiv.restrictNormalHom K₁)
x : K₁
⊢ Equiv.toFun ϕ.toEquiv (↑(algebraMap K₁ E) x) = ↑(algebraMap K₁ E) x
[PROOFSTEP]
exact Eq.trans (ϕ.restrictNormal_commutes K₁ x).symm (congr_arg _ (AlgEquiv.ext_iff.mp hϕ x))
|
{"mathlib_filename": "Mathlib.FieldTheory.Normal", "llama_tokens": 55946}
|
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
α : Type u_3
β : Type u_4
b : β
f : α → β
a : Option α
⊢ Option.elim' b f a = Option.elim a b f
[PROOFSTEP]
cases a
[GOAL]
case none
α✝ : Type u_1
β✝ : Type u_2
α : Type u_3
β : Type u_4
b : β
f : α → β
⊢ Option.elim' b f none = Option.elim none b f
[PROOFSTEP]
rfl
[GOAL]
case some
α✝ : Type u_1
β✝ : Type u_2
α : Type u_3
β : Type u_4
b : β
f : α → β
val✝ : α
⊢ Option.elim' b f (some val✝) = Option.elim (some val✝) b f
[PROOFSTEP]
rfl
[GOAL]
α✝ : Type u_1
β : Type u_2
α : Type u_3
a b : α
⊢ a ∈ some b ↔ b = a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
p : α → Prop
inst✝ : DecidablePred p
⊢ ∀ (a : α), a ∈ none → p a
[PROOFSTEP]
simp [false_imp_iff]
[GOAL]
α : Type u_1
β : Type u_2
p : α → Prop
inst✝ : DecidablePred p
x✝ : ∃ a, a ∈ none ∧ p a
a : α
h : a ∈ none
right✝ : p a
⊢ False
[PROOFSTEP]
cases h
[GOAL]
α : Type u_1
β : Type u_2
a : α
o : Option α
⊢ a ∈ toList o ↔ a ∈ o
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
a : α
⊢ a ∈ toList none ↔ a ∈ none
[PROOFSTEP]
simp [toList, eq_comm]
[GOAL]
case some
α : Type u_1
β : Type u_2
a val✝ : α
⊢ a ∈ toList (some val✝) ↔ a ∈ some val✝
[PROOFSTEP]
simp [toList, eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsCommutative α f
a b : Option α
⊢ liftOrGet f a b = liftOrGet f b a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsCommutative α f
b : Option α
⊢ liftOrGet f none b = liftOrGet f b none
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsCommutative α f
b : Option α
val✝ : α
⊢ liftOrGet f (some val✝) b = liftOrGet f b (some val✝)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsCommutative α f
⊢ liftOrGet f none none = liftOrGet f none none
[PROOFSTEP]
simp [liftOrGet, IsCommutative.comm]
[GOAL]
case none.some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsCommutative α f
val✝ : α
⊢ liftOrGet f none (some val✝) = liftOrGet f (some val✝) none
[PROOFSTEP]
simp [liftOrGet, IsCommutative.comm]
[GOAL]
case some.none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsCommutative α f
val✝ : α
⊢ liftOrGet f (some val✝) none = liftOrGet f none (some val✝)
[PROOFSTEP]
simp [liftOrGet, IsCommutative.comm]
[GOAL]
case some.some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsCommutative α f
val✝¹ val✝ : α
⊢ liftOrGet f (some val✝¹) (some val✝) = liftOrGet f (some val✝) (some val✝¹)
[PROOFSTEP]
simp [liftOrGet, IsCommutative.comm]
[GOAL]
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
a b c : Option α
⊢ liftOrGet f (liftOrGet f a b) c = liftOrGet f a (liftOrGet f b c)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
b c : Option α
⊢ liftOrGet f (liftOrGet f none b) c = liftOrGet f none (liftOrGet f b c)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
b c : Option α
val✝ : α
⊢ liftOrGet f (liftOrGet f (some val✝) b) c = liftOrGet f (some val✝) (liftOrGet f b c)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
c : Option α
⊢ liftOrGet f (liftOrGet f none none) c = liftOrGet f none (liftOrGet f none c)
[PROOFSTEP]
cases c
[GOAL]
case none.some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
c : Option α
val✝ : α
⊢ liftOrGet f (liftOrGet f none (some val✝)) c = liftOrGet f none (liftOrGet f (some val✝) c)
[PROOFSTEP]
cases c
[GOAL]
case some.none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
c : Option α
val✝ : α
⊢ liftOrGet f (liftOrGet f (some val✝) none) c = liftOrGet f (some val✝) (liftOrGet f none c)
[PROOFSTEP]
cases c
[GOAL]
case some.some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
c : Option α
val✝¹ val✝ : α
⊢ liftOrGet f (liftOrGet f (some val✝¹) (some val✝)) c = liftOrGet f (some val✝¹) (liftOrGet f (some val✝) c)
[PROOFSTEP]
cases c
[GOAL]
case none.none.none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
⊢ liftOrGet f (liftOrGet f none none) none = liftOrGet f none (liftOrGet f none none)
[PROOFSTEP]
simp [liftOrGet, IsAssociative.assoc]
[GOAL]
case none.none.some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
val✝ : α
⊢ liftOrGet f (liftOrGet f none none) (some val✝) = liftOrGet f none (liftOrGet f none (some val✝))
[PROOFSTEP]
simp [liftOrGet, IsAssociative.assoc]
[GOAL]
case none.some.none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
val✝ : α
⊢ liftOrGet f (liftOrGet f none (some val✝)) none = liftOrGet f none (liftOrGet f (some val✝) none)
[PROOFSTEP]
simp [liftOrGet, IsAssociative.assoc]
[GOAL]
case none.some.some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
val✝¹ val✝ : α
⊢ liftOrGet f (liftOrGet f none (some val✝¹)) (some val✝) = liftOrGet f none (liftOrGet f (some val✝¹) (some val✝))
[PROOFSTEP]
simp [liftOrGet, IsAssociative.assoc]
[GOAL]
case some.none.none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
val✝ : α
⊢ liftOrGet f (liftOrGet f (some val✝) none) none = liftOrGet f (some val✝) (liftOrGet f none none)
[PROOFSTEP]
simp [liftOrGet, IsAssociative.assoc]
[GOAL]
case some.none.some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
val✝¹ val✝ : α
⊢ liftOrGet f (liftOrGet f (some val✝¹) none) (some val✝) = liftOrGet f (some val✝¹) (liftOrGet f none (some val✝))
[PROOFSTEP]
simp [liftOrGet, IsAssociative.assoc]
[GOAL]
case some.some.none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
val✝¹ val✝ : α
⊢ liftOrGet f (liftOrGet f (some val✝¹) (some val✝)) none = liftOrGet f (some val✝¹) (liftOrGet f (some val✝) none)
[PROOFSTEP]
simp [liftOrGet, IsAssociative.assoc]
[GOAL]
case some.some.some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsAssociative α f
val✝² val✝¹ val✝ : α
⊢ liftOrGet f (liftOrGet f (some val✝²) (some val✝¹)) (some val✝) =
liftOrGet f (some val✝²) (liftOrGet f (some val✝¹) (some val✝))
[PROOFSTEP]
simp [liftOrGet, IsAssociative.assoc]
[GOAL]
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsIdempotent α f
a : Option α
⊢ liftOrGet f a a = a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsIdempotent α f
⊢ liftOrGet f none none = none
[PROOFSTEP]
simp [liftOrGet, IsIdempotent.idempotent]
[GOAL]
case some
α : Type u_1
β : Type u_2
f : α → α → α
inst✝ : IsIdempotent α f
val✝ : α
⊢ liftOrGet f (some val✝) (some val✝) = some val✝
[PROOFSTEP]
simp [liftOrGet, IsIdempotent.idempotent]
[GOAL]
α : Type u_1
β : Type u_2
f : α → α → α
a : Option α
⊢ liftOrGet f none a = a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
f : α → α → α
⊢ liftOrGet f none none = none
[PROOFSTEP]
simp [liftOrGet]
[GOAL]
case some
α : Type u_1
β : Type u_2
f : α → α → α
val✝ : α
⊢ liftOrGet f none (some val✝) = some val✝
[PROOFSTEP]
simp [liftOrGet]
[GOAL]
α : Type u_1
β : Type u_2
f : α → α → α
a : Option α
⊢ liftOrGet f a none = a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
f : α → α → α
⊢ liftOrGet f none none = none
[PROOFSTEP]
simp [liftOrGet]
[GOAL]
case some
α : Type u_1
β : Type u_2
f : α → α → α
val✝ : α
⊢ liftOrGet f (some val✝) none = some val✝
[PROOFSTEP]
simp [liftOrGet]
|
{"mathlib_filename": "Mathlib.Data.Option.Defs", "llama_tokens": 3607}
|
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
⊢ id <$> x = x
[PROOFSTEP]
rw [← abs_repr x]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
⊢ id <$> abs (repr x) = abs (repr x)
[PROOFSTEP]
cases' repr x with a f
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ id <$> abs { fst := a, snd := f } = abs { fst := a, snd := f }
[PROOFSTEP]
rw [← abs_map]
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ abs (id <$> { fst := a, snd := f }) = abs { fst := a, snd := f }
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α β γ : Type u
f : α → β
g : β → γ
x : F α
⊢ (g ∘ f) <$> x = g <$> f <$> x
[PROOFSTEP]
rw [← abs_repr x]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α β γ : Type u
f : α → β
g : β → γ
x : F α
⊢ (g ∘ f) <$> abs (repr x) = g <$> f <$> abs (repr x)
[PROOFSTEP]
cases' repr x with a f
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α β γ : Type u
f✝ : α → β
g : β → γ
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ (g ∘ f✝) <$> abs { fst := a, snd := f } = g <$> f✝ <$> abs { fst := a, snd := f }
[PROOFSTEP]
rw [← abs_map, ← abs_map, ← abs_map]
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α β γ : Type u
f✝ : α → β
g : β → γ
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ abs ((g ∘ f✝) <$> { fst := a, snd := f }) = abs (g <$> f✝ <$> { fst := a, snd := f })
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
⊢ Liftp p x ↔ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
⊢ Liftp p x → ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
rintro ⟨y, hy⟩
[GOAL]
case mp.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
cases' h : repr y with a f
[GOAL]
case mp.intro.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
use a, fun i => (f i).val
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ x = abs { fst := a, snd := fun i => ↑(f i) } ∧ ∀ (i : PFunctor.B (P F) a), p ↑(f i)
[PROOFSTEP]
constructor
[GOAL]
case h.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ x = abs { fst := a, snd := fun i => ↑(f i) }
[PROOFSTEP]
rw [← hy, ← abs_repr y, h, ← abs_map]
[GOAL]
case h.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ abs (Subtype.val <$> { fst := a, snd := f }) = abs { fst := a, snd := fun i => ↑(f i) }
[PROOFSTEP]
rfl
[GOAL]
case h.right
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ ∀ (i : PFunctor.B (P F) a), p ↑(f i)
[PROOFSTEP]
intro i
[GOAL]
case h.right
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
i : PFunctor.B (P F) a
⊢ p ↑(f i)
[PROOFSTEP]
apply (f i).property
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) → Liftp p x
[PROOFSTEP]
rintro ⟨a, f, h₀, h₁⟩
[GOAL]
case mpr.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
h₀ : x = abs { fst := a, snd := f }
h₁ : ∀ (i : PFunctor.B (P F) a), p (f i)
⊢ Liftp p x
[PROOFSTEP]
use abs ⟨a, fun i => ⟨f i, h₁ i⟩⟩
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
h₀ : x = abs { fst := a, snd := f }
h₁ : ∀ (i : PFunctor.B (P F) a), p (f i)
⊢ Subtype.val <$> abs { fst := a, snd := fun i => { val := f i, property := (_ : p (f i)) } } = x
[PROOFSTEP]
rw [← abs_map, h₀]
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
h₀ : x = abs { fst := a, snd := f }
h₁ : ∀ (i : PFunctor.B (P F) a), p (f i)
⊢ abs (Subtype.val <$> { fst := a, snd := fun i => { val := f i, property := (_ : p (f i)) } }) =
abs { fst := a, snd := f }
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
⊢ Liftp p x ↔ ∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i)
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
⊢ Liftp p x → ∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i)
[PROOFSTEP]
rintro ⟨y, hy⟩
[GOAL]
case mp.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
⊢ ∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i)
[PROOFSTEP]
cases' h : repr y with a f
[GOAL]
case mp.intro.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ ∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i)
[PROOFSTEP]
use⟨a, fun i => (f i).val⟩
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ abs { fst := a, snd := fun i => ↑(f i) } = x ∧
∀ (i : PFunctor.B (P F) { fst := a, snd := fun i => ↑(f i) }.fst),
p (Sigma.snd { fst := a, snd := fun i => ↑(f i) } i)
[PROOFSTEP]
dsimp
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ abs { fst := a, snd := fun i => ↑(f i) } = x ∧ ∀ (i : PFunctor.B (P F) a), p ↑(f i)
[PROOFSTEP]
constructor
[GOAL]
case h.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ abs { fst := a, snd := fun i => ↑(f i) } = x
[PROOFSTEP]
rw [← hy, ← abs_repr y, h, ← abs_map]
[GOAL]
case h.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ abs { fst := a, snd := fun i => ↑(f i) } = abs (Subtype.val <$> { fst := a, snd := f })
[PROOFSTEP]
rfl
[GOAL]
case h.right
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
⊢ ∀ (i : PFunctor.B (P F) a), p ↑(f i)
[PROOFSTEP]
intro i
[GOAL]
case h.right
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
y : F (Subtype p)
hy : Subtype.val <$> y = x
a : (P F).A
f : PFunctor.B (P F) a → Subtype p
h : repr y = { fst := a, snd := f }
i : PFunctor.B (P F) a
⊢ p ↑(f i)
[PROOFSTEP]
apply (f i).property
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
⊢ (∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i)) → Liftp p x
[PROOFSTEP]
rintro ⟨⟨a, f⟩, h₀, h₁⟩
[GOAL]
case mpr.intro.mk.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
h₀ : abs { fst := a, snd := f } = x
h₁ : ∀ (i : PFunctor.B (P F) { fst := a, snd := f }.fst), p (Sigma.snd { fst := a, snd := f } i)
⊢ Liftp p x
[PROOFSTEP]
dsimp at *
[GOAL]
case mpr.intro.mk.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
h₀ : abs { fst := a, snd := f } = x
h₁ : ∀ (i : PFunctor.B (P F) a), p (f i)
⊢ Liftp p x
[PROOFSTEP]
use abs ⟨a, fun i => ⟨f i, h₁ i⟩⟩
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
h₀ : abs { fst := a, snd := f } = x
h₁ : ∀ (i : PFunctor.B (P F) a), p (f i)
⊢ Subtype.val <$> abs { fst := a, snd := fun i => { val := f i, property := (_ : p (f i)) } } = x
[PROOFSTEP]
rw [← abs_map, ← h₀]
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
p : α → Prop
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
h₀ : abs { fst := a, snd := f } = x
h₁ : ∀ (i : PFunctor.B (P F) a), p (f i)
⊢ abs (Subtype.val <$> { fst := a, snd := fun i => { val := f i, property := (_ : p (f i)) } }) =
abs { fst := a, snd := f }
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
⊢ Liftr r x y ↔
∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
⊢ Liftr r x y →
∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
[PROOFSTEP]
rintro ⟨u, xeq, yeq⟩
[GOAL]
case mp.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
⊢ ∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
[PROOFSTEP]
cases' h : repr u with a f
[GOAL]
case mp.intro.intro.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
a : (P F).A
f : PFunctor.B (P F) a → { p // r p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ ∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
[PROOFSTEP]
use a, fun i => (f i).val.fst, fun i => (f i).val.snd
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
a : (P F).A
f : PFunctor.B (P F) a → { p // r p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ x = abs { fst := a, snd := fun i => (↑(f i)).fst } ∧
y = abs { fst := a, snd := fun i => (↑(f i)).snd } ∧ ∀ (i : PFunctor.B (P F) a), r (↑(f i)).fst (↑(f i)).snd
[PROOFSTEP]
constructor
[GOAL]
case h.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
a : (P F).A
f : PFunctor.B (P F) a → { p // r p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ x = abs { fst := a, snd := fun i => (↑(f i)).fst }
[PROOFSTEP]
rw [← xeq, ← abs_repr u, h, ← abs_map]
[GOAL]
case h.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
a : (P F).A
f : PFunctor.B (P F) a → { p // r p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ abs ((fun t => (↑t).fst) <$> { fst := a, snd := f }) = abs { fst := a, snd := fun i => (↑(f i)).fst }
[PROOFSTEP]
rfl
[GOAL]
case h.right
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
a : (P F).A
f : PFunctor.B (P F) a → { p // r p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ y = abs { fst := a, snd := fun i => (↑(f i)).snd } ∧ ∀ (i : PFunctor.B (P F) a), r (↑(f i)).fst (↑(f i)).snd
[PROOFSTEP]
constructor
[GOAL]
case h.right.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
a : (P F).A
f : PFunctor.B (P F) a → { p // r p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ y = abs { fst := a, snd := fun i => (↑(f i)).snd }
[PROOFSTEP]
rw [← yeq, ← abs_repr u, h, ← abs_map]
[GOAL]
case h.right.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
a : (P F).A
f : PFunctor.B (P F) a → { p // r p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ abs ((fun t => (↑t).snd) <$> { fst := a, snd := f }) = abs { fst := a, snd := fun i => (↑(f i)).snd }
[PROOFSTEP]
rfl
[GOAL]
case h.right.right
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
a : (P F).A
f : PFunctor.B (P F) a → { p // r p.fst p.snd }
h : repr u = { fst := a, snd := f }
⊢ ∀ (i : PFunctor.B (P F) a), r (↑(f i)).fst (↑(f i)).snd
[PROOFSTEP]
intro i
[GOAL]
case h.right.right
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
u : F { p // r p.fst p.snd }
xeq : (fun t => (↑t).fst) <$> u = x
yeq : (fun t => (↑t).snd) <$> u = y
a : (P F).A
f : PFunctor.B (P F) a → { p // r p.fst p.snd }
h : repr u = { fst := a, snd := f }
i : PFunctor.B (P F) a
⊢ r (↑(f i)).fst (↑(f i)).snd
[PROOFSTEP]
exact (f i).property
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
⊢ (∃ a f₀ f₁,
x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)) →
Liftr r x y
[PROOFSTEP]
rintro ⟨a, f₀, f₁, xeq, yeq, h⟩
[GOAL]
case mpr.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
⊢ Liftr r x y
[PROOFSTEP]
use abs ⟨a, fun i => ⟨(f₀ i, f₁ i), h i⟩⟩
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
⊢ (fun t => (↑t).fst) <$> abs { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } } =
x ∧
(fun t => (↑t).snd) <$>
abs { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } } =
y
[PROOFSTEP]
constructor
[GOAL]
case h.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
⊢ (fun t => (↑t).fst) <$> abs { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } } =
x
[PROOFSTEP]
rw [xeq, ← abs_map]
[GOAL]
case h.left
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
⊢ abs
((fun t => (↑t).fst) <$>
{ fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } }) =
abs { fst := a, snd := f₀ }
[PROOFSTEP]
rfl
[GOAL]
case h.right
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
⊢ (fun t => (↑t).snd) <$> abs { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } } =
y
[PROOFSTEP]
rw [yeq, ← abs_map]
[GOAL]
case h.right
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
r : α → α → Prop
x y : F α
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f₀ }
yeq : y = abs { fst := a, snd := f₁ }
h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
⊢ abs
((fun t => (↑t).snd) <$>
{ fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } }) =
abs { fst := a, snd := f₁ }
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : PFunctor.W (P F)
⊢ recF g x = g (abs (recF g <$> PFunctor.W.dest x))
[PROOFSTEP]
cases x
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
a✝ : (P F).A
f✝ : PFunctor.B (P F) a✝ → WType (P F).B
⊢ recF g (WType.mk a✝ f✝) = g (abs (recF g <$> PFunctor.W.dest (WType.mk a✝ f✝)))
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y : PFunctor.W (P F)
⊢ Wequiv x y → recF u x = recF u y
[PROOFSTEP]
intro h
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y : PFunctor.W (P F)
h : Wequiv x y
⊢ recF u x = recF u y
[PROOFSTEP]
induction h
[GOAL]
case ind
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y : PFunctor.W (P F)
a✝¹ : (P F).A
f✝ f'✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F)
a✝ : ∀ (x : PFunctor.B (P F) a✝¹), Wequiv (f✝ x) (f'✝ x)
a_ih✝ : ∀ (x : PFunctor.B (P F) a✝¹), recF u (f✝ x) = recF u (f'✝ x)
⊢ recF u (WType.mk a✝¹ f✝) = recF u (WType.mk a✝¹ f'✝)
case abs
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y : PFunctor.W (P F)
a✝¹ : (P F).A
f✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F)
a'✝ : (P F).A
f'✝ : PFunctor.B (P F) a'✝ → PFunctor.W (P F)
a✝ : abs { fst := a✝¹, snd := f✝ } = abs { fst := a'✝, snd := f'✝ }
⊢ recF u (WType.mk a✝¹ f✝) = recF u (WType.mk a'✝ f'✝)
case trans
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y u✝ v✝ w✝ : PFunctor.W (P F)
a✝¹ : Wequiv u✝ v✝
a✝ : Wequiv v✝ w✝
a_ih✝¹ : recF u u✝ = recF u v✝
a_ih✝ : recF u v✝ = recF u w✝
⊢ recF u u✝ = recF u w✝
[PROOFSTEP]
case ind a f f' _ ih => simp only [recF_eq', PFunctor.map_eq, Function.comp, ih]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y : PFunctor.W (P F)
a : (P F).A
f f' : PFunctor.B (P F) a → PFunctor.W (P F)
a✝ : ∀ (x : PFunctor.B (P F) a), Wequiv (f x) (f' x)
ih : ∀ (x : PFunctor.B (P F) a), recF u (f x) = recF u (f' x)
⊢ recF u (WType.mk a f) = recF u (WType.mk a f')
[PROOFSTEP]
case ind a f f' _ ih => simp only [recF_eq', PFunctor.map_eq, Function.comp, ih]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y : PFunctor.W (P F)
a : (P F).A
f f' : PFunctor.B (P F) a → PFunctor.W (P F)
a✝ : ∀ (x : PFunctor.B (P F) a), Wequiv (f x) (f' x)
ih : ∀ (x : PFunctor.B (P F) a), recF u (f x) = recF u (f' x)
⊢ recF u (WType.mk a f) = recF u (WType.mk a f')
[PROOFSTEP]
simp only [recF_eq', PFunctor.map_eq, Function.comp, ih]
[GOAL]
case abs
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y : PFunctor.W (P F)
a✝¹ : (P F).A
f✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F)
a'✝ : (P F).A
f'✝ : PFunctor.B (P F) a'✝ → PFunctor.W (P F)
a✝ : abs { fst := a✝¹, snd := f✝ } = abs { fst := a'✝, snd := f'✝ }
⊢ recF u (WType.mk a✝¹ f✝) = recF u (WType.mk a'✝ f'✝)
case trans
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y u✝ v✝ w✝ : PFunctor.W (P F)
a✝¹ : Wequiv u✝ v✝
a✝ : Wequiv v✝ w✝
a_ih✝¹ : recF u u✝ = recF u v✝
a_ih✝ : recF u v✝ = recF u w✝
⊢ recF u u✝ = recF u w✝
[PROOFSTEP]
case abs a f a' f' h => simp only [recF_eq', abs_map, h]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y : PFunctor.W (P F)
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
a' : (P F).A
f' : PFunctor.B (P F) a' → PFunctor.W (P F)
h : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
⊢ recF u (WType.mk a f) = recF u (WType.mk a' f')
[PROOFSTEP]
case abs a f a' f' h => simp only [recF_eq', abs_map, h]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y : PFunctor.W (P F)
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
a' : (P F).A
f' : PFunctor.B (P F) a' → PFunctor.W (P F)
h : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
⊢ recF u (WType.mk a f) = recF u (WType.mk a' f')
[PROOFSTEP]
simp only [recF_eq', abs_map, h]
[GOAL]
case trans
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x y u✝ v✝ w✝ : PFunctor.W (P F)
a✝¹ : Wequiv u✝ v✝
a✝ : Wequiv v✝ w✝
a_ih✝¹ : recF u u✝ = recF u v✝
a_ih✝ : recF u v✝ = recF u w✝
⊢ recF u u✝ = recF u w✝
[PROOFSTEP]
case trans x y z _ _ ih₁ ih₂ => exact Eq.trans ih₁ ih₂
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x✝ y✝ x y z : PFunctor.W (P F)
a✝¹ : Wequiv x y
a✝ : Wequiv y z
ih₁ : recF u x = recF u y
ih₂ : recF u y = recF u z
⊢ recF u x = recF u z
[PROOFSTEP]
case trans x y z _ _ ih₁ ih₂ => exact Eq.trans ih₁ ih₂
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
u : F α → α
x✝ y✝ x y z : PFunctor.W (P F)
a✝¹ : Wequiv x y
a✝ : Wequiv y z
ih₁ : recF u x = recF u y
ih₂ : recF u y = recF u z
⊢ recF u x = recF u z
[PROOFSTEP]
exact Eq.trans ih₁ ih₂
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
h : Qpf.abs (PFunctor.W.dest x) = Qpf.abs (PFunctor.W.dest y)
⊢ Wequiv x y
[PROOFSTEP]
cases x
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
y : PFunctor.W (P F)
a✝ : (P F).A
f✝ : PFunctor.B (P F) a✝ → WType (P F).B
h : Qpf.abs (PFunctor.W.dest (WType.mk a✝ f✝)) = Qpf.abs (PFunctor.W.dest y)
⊢ Wequiv (WType.mk a✝ f✝) y
[PROOFSTEP]
cases y
[GOAL]
case mk.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a✝¹ : (P F).A
f✝¹ : PFunctor.B (P F) a✝¹ → WType (P F).B
a✝ : (P F).A
f✝ : PFunctor.B (P F) a✝ → WType (P F).B
h : Qpf.abs (PFunctor.W.dest (WType.mk a✝¹ f✝¹)) = Qpf.abs (PFunctor.W.dest (WType.mk a✝ f✝))
⊢ Wequiv (WType.mk a✝¹ f✝¹) (WType.mk a✝ f✝)
[PROOFSTEP]
apply Wequiv.abs
[GOAL]
case mk.mk.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a✝¹ : (P F).A
f✝¹ : PFunctor.B (P F) a✝¹ → WType (P F).B
a✝ : (P F).A
f✝ : PFunctor.B (P F) a✝ → WType (P F).B
h : Qpf.abs (PFunctor.W.dest (WType.mk a✝¹ f✝¹)) = Qpf.abs (PFunctor.W.dest (WType.mk a✝ f✝))
⊢ Qpf.abs { fst := a✝¹, snd := f✝¹ } = Qpf.abs { fst := a✝, snd := f✝ }
[PROOFSTEP]
apply h
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : PFunctor.W (P F)
⊢ Wequiv x x
[PROOFSTEP]
cases' x with a f
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
⊢ Wequiv (WType.mk a f) (WType.mk a f)
[PROOFSTEP]
exact Wequiv.abs a f a f rfl
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
⊢ Wequiv x y → Wequiv y x
[PROOFSTEP]
intro h
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
h : Wequiv x y
⊢ Wequiv y x
[PROOFSTEP]
induction h
[GOAL]
case ind
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
a✝¹ : (P F).A
f✝ f'✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F)
a✝ : ∀ (x : PFunctor.B (P F) a✝¹), Wequiv (f✝ x) (f'✝ x)
a_ih✝ : ∀ (x : PFunctor.B (P F) a✝¹), Wequiv (f'✝ x) (f✝ x)
⊢ Wequiv (WType.mk a✝¹ f'✝) (WType.mk a✝¹ f✝)
case abs
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
a✝¹ : (P F).A
f✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F)
a'✝ : (P F).A
f'✝ : PFunctor.B (P F) a'✝ → PFunctor.W (P F)
a✝ : Qpf.abs { fst := a✝¹, snd := f✝ } = Qpf.abs { fst := a'✝, snd := f'✝ }
⊢ Wequiv (WType.mk a'✝ f'✝) (WType.mk a✝¹ f✝)
case trans
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y u✝ v✝ w✝ : PFunctor.W (P F)
a✝¹ : Wequiv u✝ v✝
a✝ : Wequiv v✝ w✝
a_ih✝¹ : Wequiv v✝ u✝
a_ih✝ : Wequiv w✝ v✝
⊢ Wequiv w✝ u✝
[PROOFSTEP]
case ind a f f' _ ih => exact Wequiv.ind _ _ _ ih
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
a : (P F).A
f f' : PFunctor.B (P F) a → PFunctor.W (P F)
a✝ : ∀ (x : PFunctor.B (P F) a), Wequiv (f x) (f' x)
ih : ∀ (x : PFunctor.B (P F) a), Wequiv (f' x) (f x)
⊢ Wequiv (WType.mk a f') (WType.mk a f)
[PROOFSTEP]
case ind a f f' _ ih => exact Wequiv.ind _ _ _ ih
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
a : (P F).A
f f' : PFunctor.B (P F) a → PFunctor.W (P F)
a✝ : ∀ (x : PFunctor.B (P F) a), Wequiv (f x) (f' x)
ih : ∀ (x : PFunctor.B (P F) a), Wequiv (f' x) (f x)
⊢ Wequiv (WType.mk a f') (WType.mk a f)
[PROOFSTEP]
exact Wequiv.ind _ _ _ ih
[GOAL]
case abs
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
a✝¹ : (P F).A
f✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F)
a'✝ : (P F).A
f'✝ : PFunctor.B (P F) a'✝ → PFunctor.W (P F)
a✝ : Qpf.abs { fst := a✝¹, snd := f✝ } = Qpf.abs { fst := a'✝, snd := f'✝ }
⊢ Wequiv (WType.mk a'✝ f'✝) (WType.mk a✝¹ f✝)
case trans
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y u✝ v✝ w✝ : PFunctor.W (P F)
a✝¹ : Wequiv u✝ v✝
a✝ : Wequiv v✝ w✝
a_ih✝¹ : Wequiv v✝ u✝
a_ih✝ : Wequiv w✝ v✝
⊢ Wequiv w✝ u✝
[PROOFSTEP]
case abs a f a' f' h => exact Wequiv.abs _ _ _ _ h.symm
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
a' : (P F).A
f' : PFunctor.B (P F) a' → PFunctor.W (P F)
h : Qpf.abs { fst := a, snd := f } = Qpf.abs { fst := a', snd := f' }
⊢ Wequiv (WType.mk a' f') (WType.mk a f)
[PROOFSTEP]
case abs a f a' f' h => exact Wequiv.abs _ _ _ _ h.symm
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.W (P F)
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
a' : (P F).A
f' : PFunctor.B (P F) a' → PFunctor.W (P F)
h : Qpf.abs { fst := a, snd := f } = Qpf.abs { fst := a', snd := f' }
⊢ Wequiv (WType.mk a' f') (WType.mk a f)
[PROOFSTEP]
exact Wequiv.abs _ _ _ _ h.symm
[GOAL]
case trans
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y u✝ v✝ w✝ : PFunctor.W (P F)
a✝¹ : Wequiv u✝ v✝
a✝ : Wequiv v✝ w✝
a_ih✝¹ : Wequiv v✝ u✝
a_ih✝ : Wequiv w✝ v✝
⊢ Wequiv w✝ u✝
[PROOFSTEP]
case trans x y z _ _ ih₁ ih₂ => exact Qpf.Wequiv.trans _ _ _ ih₂ ih₁
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x✝ y✝ x y z : PFunctor.W (P F)
a✝¹ : Wequiv x y
a✝ : Wequiv y z
ih₁ : Wequiv y x
ih₂ : Wequiv z y
⊢ Wequiv z x
[PROOFSTEP]
case trans x y z _ _ ih₁ ih₂ => exact Qpf.Wequiv.trans _ _ _ ih₂ ih₁
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x✝ y✝ x y z : PFunctor.W (P F)
a✝¹ : Wequiv x y
a✝ : Wequiv y z
ih₁ : Wequiv y x
ih₂ : Wequiv z y
⊢ Wequiv z x
[PROOFSTEP]
exact Qpf.Wequiv.trans _ _ _ ih₂ ih₁
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : PFunctor.W (P F)
⊢ Wequiv (Wrepr x) x
[PROOFSTEP]
induction' x with a f ih
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a)
⊢ Wequiv (Wrepr (WType.mk a f)) (WType.mk a f)
[PROOFSTEP]
apply Wequiv.trans
[GOAL]
case mk.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a)
⊢ Wequiv (Wrepr (WType.mk a f)) ?mk.v
[PROOFSTEP]
change Wequiv (Wrepr ⟨a, f⟩) (PFunctor.W.mk (Wrepr <$> ⟨a, f⟩))
[GOAL]
case mk.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a)
⊢ Wequiv (Wrepr (WType.mk a f)) (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f }))
[PROOFSTEP]
apply Wequiv.abs'
[GOAL]
case mk.a.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a)
⊢ abs (PFunctor.W.dest (Wrepr (WType.mk a f))) =
abs (PFunctor.W.dest (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f })))
[PROOFSTEP]
have : Wrepr ⟨a, f⟩ = PFunctor.W.mk (repr (abs (Wrepr <$> ⟨a, f⟩))) := rfl
[GOAL]
case mk.a.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a)
this : Wrepr (WType.mk a f) = PFunctor.W.mk (repr (abs (Wrepr <$> { fst := a, snd := f })))
⊢ abs (PFunctor.W.dest (Wrepr (WType.mk a f))) =
abs (PFunctor.W.dest (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f })))
[PROOFSTEP]
rw [this, PFunctor.W.dest_mk, abs_repr]
[GOAL]
case mk.a.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a)
this : Wrepr (WType.mk a f) = PFunctor.W.mk (repr (abs (Wrepr <$> { fst := a, snd := f })))
⊢ abs (Wrepr <$> { fst := a, snd := f }) = abs (PFunctor.W.dest (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f })))
[PROOFSTEP]
rfl
[GOAL]
case mk.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a)
⊢ Wequiv (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f })) (WType.mk a f)
[PROOFSTEP]
apply Wequiv.ind
[GOAL]
case mk.a.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a)
⊢ ∀ (x : PFunctor.B (P F) a), Wequiv ((Wrepr ∘ f) x) (f x)
[PROOFSTEP]
exact ih
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
⊢ rec g (mk x) = g (rec g <$> x)
[PROOFSTEP]
have : recF g ∘ fixToW = Fix.rec g := by
apply funext
apply Quotient.ind
intro x
apply recF_eq_of_Wequiv
rw [fixToW]
apply Wrepr_equiv
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
⊢ recF g ∘ fixToW = rec g
[PROOFSTEP]
apply funext
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
⊢ ∀ (x : Fix F), (recF g ∘ fixToW) x = rec g x
[PROOFSTEP]
apply Quotient.ind
[GOAL]
case h.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
⊢ ∀ (a : PFunctor.W (P F)), (recF g ∘ fixToW) (Quotient.mk Wsetoid a) = rec g (Quotient.mk Wsetoid a)
[PROOFSTEP]
intro x
[GOAL]
case h.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x✝ : F (Fix F)
x : PFunctor.W (P F)
⊢ (recF g ∘ fixToW) (Quotient.mk Wsetoid x) = rec g (Quotient.mk Wsetoid x)
[PROOFSTEP]
apply recF_eq_of_Wequiv
[GOAL]
case h.a.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x✝ : F (Fix F)
x : PFunctor.W (P F)
⊢ Wequiv (fixToW (Quotient.mk Wsetoid x)) x
[PROOFSTEP]
rw [fixToW]
[GOAL]
case h.a.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x✝ : F (Fix F)
x : PFunctor.W (P F)
⊢ Wequiv
(Quotient.lift Wrepr
(_ :
∀ (x y : PFunctor.W (P F)),
Wequiv x y → recF (fun x => PFunctor.W.mk (repr x)) x = recF (fun x => PFunctor.W.mk (repr x)) y)
(Quotient.mk Wsetoid x))
x
[PROOFSTEP]
apply Wrepr_equiv
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
this : recF g ∘ fixToW = rec g
⊢ rec g (mk x) = g (rec g <$> x)
[PROOFSTEP]
conv =>
lhs
rw [Fix.rec, Fix.mk]
dsimp
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
this : recF g ∘ fixToW = rec g
| rec g (mk x) = g (rec g <$> x)
[PROOFSTEP]
lhs
rw [Fix.rec, Fix.mk]
dsimp
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
this : recF g ∘ fixToW = rec g
| rec g (mk x) = g (rec g <$> x)
[PROOFSTEP]
lhs
rw [Fix.rec, Fix.mk]
dsimp
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
this : recF g ∘ fixToW = rec g
| rec g (mk x) = g (rec g <$> x)
[PROOFSTEP]
lhs
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
this : recF g ∘ fixToW = rec g
| rec g (mk x)
[PROOFSTEP]
rw [Fix.rec, Fix.mk]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
this : recF g ∘ fixToW = rec g
| Quot.lift (recF g) (_ : ∀ (x y : PFunctor.W (P F)), Wequiv x y → recF g x = recF g y)
(Quot.mk Setoid.r (PFunctor.W.mk (fixToW <$> repr x)))
[PROOFSTEP]
dsimp
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
this : recF g ∘ fixToW = rec g
⊢ recF g (PFunctor.W.mk (fixToW <$> repr x)) = g (rec g <$> x)
[PROOFSTEP]
cases' h : repr x with a f
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
x : F (Fix F)
this : recF g ∘ fixToW = rec g
a : (P F).A
f : PFunctor.B (P F) a → Fix F
h : repr x = { fst := a, snd := f }
⊢ recF g (PFunctor.W.mk (fixToW <$> { fst := a, snd := f })) = g (rec g <$> x)
[PROOFSTEP]
rw [PFunctor.map_eq, recF_eq, ← PFunctor.map_eq, PFunctor.W.dest_mk, ← PFunctor.comp_map, abs_map, ← h, abs_repr, this]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
⊢ mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (WType.mk a f)
[PROOFSTEP]
have : Fix.mk (abs ⟨a, fun x => ⟦f x⟧⟩) = ⟦Wrepr ⟨a, f⟩⟧ :=
by
apply Quot.sound; apply Wequiv.abs'
rw [PFunctor.W.dest_mk, abs_map, abs_repr, ← abs_map, PFunctor.map_eq]
conv =>
rhs
simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
⊢ mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (Wrepr (WType.mk a f))
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
⊢ Setoid.r (PFunctor.W.mk (fixToW <$> repr (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) })))
(Wrepr (WType.mk a f))
[PROOFSTEP]
apply Wequiv.abs'
[GOAL]
case a.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
⊢ abs
(PFunctor.W.dest
(PFunctor.W.mk (fixToW <$> repr (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) })))) =
abs (PFunctor.W.dest (Wrepr (WType.mk a f)))
[PROOFSTEP]
rw [PFunctor.W.dest_mk, abs_map, abs_repr, ← abs_map, PFunctor.map_eq]
[GOAL]
case a.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
⊢ abs { fst := a, snd := fixToW ∘ fun x => Quotient.mk Wsetoid (f x) } = abs (PFunctor.W.dest (Wrepr (WType.mk a f)))
[PROOFSTEP]
conv =>
rhs
simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
| abs { fst := a, snd := fixToW ∘ fun x => Quotient.mk Wsetoid (f x) } = abs (PFunctor.W.dest (Wrepr (WType.mk a f)))
[PROOFSTEP]
rhs
simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
| abs { fst := a, snd := fixToW ∘ fun x => Quotient.mk Wsetoid (f x) } = abs (PFunctor.W.dest (Wrepr (WType.mk a f)))
[PROOFSTEP]
rhs
simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
| abs { fst := a, snd := fixToW ∘ fun x => Quotient.mk Wsetoid (f x) } = abs (PFunctor.W.dest (Wrepr (WType.mk a f)))
[PROOFSTEP]
rhs
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
| abs (PFunctor.W.dest (Wrepr (WType.mk a f)))
[PROOFSTEP]
simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
this : mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (Wrepr (WType.mk a f))
⊢ mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (WType.mk a f)
[PROOFSTEP]
rw [this]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
this : mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (Wrepr (WType.mk a f))
⊢ Quotient.mk Wsetoid (Wrepr (WType.mk a f)) = Quotient.mk Wsetoid (WType.mk a f)
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
a : (P F).A
f : PFunctor.B (P F) a → PFunctor.W (P F)
this : mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (Wrepr (WType.mk a f))
⊢ Setoid.r (Wrepr (WType.mk a f)) (WType.mk a f)
[PROOFSTEP]
apply Wrepr_equiv
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g₁ g₂ : Fix F → α
h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x)
⊢ ∀ (x : Fix F), g₁ x = g₂ x
[PROOFSTEP]
apply Quot.ind
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g₁ g₂ : Fix F → α
h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x)
⊢ ∀ (a : PFunctor.W (P F)), g₁ (Quot.mk Setoid.r a) = g₂ (Quot.mk Setoid.r a)
[PROOFSTEP]
intro x
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g₁ g₂ : Fix F → α
h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x)
x : PFunctor.W (P F)
⊢ g₁ (Quot.mk Setoid.r x) = g₂ (Quot.mk Setoid.r x)
[PROOFSTEP]
induction' x with a f ih
[GOAL]
case mk.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g₁ g₂ : Fix F → α
h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a))
⊢ g₁ (Quot.mk Setoid.r (WType.mk a f)) = g₂ (Quot.mk Setoid.r (WType.mk a f))
[PROOFSTEP]
change g₁ ⟦⟨a, f⟩⟧ = g₂ ⟦⟨a, f⟩⟧
[GOAL]
case mk.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g₁ g₂ : Fix F → α
h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a))
⊢ g₁ (Quotient.mk Wsetoid (WType.mk a f)) = g₂ (Quotient.mk Wsetoid (WType.mk a f))
[PROOFSTEP]
rw [← Fix.ind_aux a f]
[GOAL]
case mk.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g₁ g₂ : Fix F → α
h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a))
⊢ g₁ (mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) })) =
g₂ (mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }))
[PROOFSTEP]
apply h
[GOAL]
case mk.mk.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g₁ g₂ : Fix F → α
h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a))
⊢ g₁ <$> abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) } =
g₂ <$> abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }
[PROOFSTEP]
rw [← abs_map, ← abs_map, PFunctor.map_eq, PFunctor.map_eq]
[GOAL]
case mk.mk.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g₁ g₂ : Fix F → α
h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a))
⊢ abs { fst := a, snd := g₁ ∘ fun x => Quotient.mk Wsetoid (f x) } =
abs { fst := a, snd := g₂ ∘ fun x => Quotient.mk Wsetoid (f x) }
[PROOFSTEP]
congr with x
[GOAL]
case mk.mk.a.e_a.e_snd.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g₁ g₂ : Fix F → α
h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a))
x : PFunctor.B (P F) a
⊢ (g₁ ∘ fun x => Quotient.mk Wsetoid (f x)) x = (g₂ ∘ fun x => Quotient.mk Wsetoid (f x)) x
[PROOFSTEP]
apply ih
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
h : Fix F → α
hyp : ∀ (x : F (Fix F)), h (mk x) = g (h <$> x)
⊢ rec g = h
[PROOFSTEP]
ext x
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
h : Fix F → α
hyp : ∀ (x : F (Fix F)), h (mk x) = g (h <$> x)
x : Fix F
⊢ rec g x = h x
[PROOFSTEP]
apply Fix.ind_rec
[GOAL]
case h.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
h : Fix F → α
hyp : ∀ (x : F (Fix F)), h (mk x) = g (h <$> x)
x : Fix F
⊢ ∀ (x : F (Fix F)), rec g <$> x = (fun x => h x) <$> x → rec g (mk x) = h (mk x)
[PROOFSTEP]
intro x hyp'
[GOAL]
case h.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : F α → α
h : Fix F → α
hyp : ∀ (x : F (Fix F)), h (mk x) = g (h <$> x)
x✝ : Fix F
x : F (Fix F)
hyp' : rec g <$> x = (fun x => h x) <$> x
⊢ rec g (mk x) = h (mk x)
[PROOFSTEP]
rw [hyp, ← hyp', Fix.rec_eq]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : Fix F
⊢ mk (dest x) = x
[PROOFSTEP]
change (Fix.mk ∘ Fix.dest) x = id x
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : Fix F
⊢ (mk ∘ dest) x = id x
[PROOFSTEP]
apply Fix.ind_rec (mk ∘ dest) id
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : Fix F
⊢ ∀ (x : F (Fix F)), (mk ∘ dest) <$> x = id <$> x → (mk ∘ dest) (mk x) = id (mk x)
[PROOFSTEP]
intro x
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x✝ : Fix F
x : F (Fix F)
⊢ (mk ∘ dest) <$> x = id <$> x → (mk ∘ dest) (mk x) = id (mk x)
[PROOFSTEP]
rw [Function.comp_apply, id_eq, Fix.dest, Fix.rec_eq, id_map, comp_map]
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x✝ : Fix F
x : F (Fix F)
⊢ mk <$> rec (Functor.map mk) <$> x = x → mk (mk <$> rec (Functor.map mk) <$> x) = mk x
[PROOFSTEP]
intro h
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x✝ : Fix F
x : F (Fix F)
h : mk <$> rec (Functor.map mk) <$> x = x
⊢ mk (mk <$> rec (Functor.map mk) <$> x) = mk x
[PROOFSTEP]
rw [h]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : F (Fix F)
⊢ dest (mk x) = x
[PROOFSTEP]
unfold Fix.dest
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : F (Fix F)
⊢ rec (Functor.map mk) (mk x) = x
[PROOFSTEP]
rw [Fix.rec_eq, ← Fix.dest, ← comp_map]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : F (Fix F)
⊢ (mk ∘ dest) <$> x = x
[PROOFSTEP]
conv =>
rhs
rw [← id_map x]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : F (Fix F)
| (mk ∘ dest) <$> x = x
[PROOFSTEP]
rhs
rw [← id_map x]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : F (Fix F)
| (mk ∘ dest) <$> x = x
[PROOFSTEP]
rhs
rw [← id_map x]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : F (Fix F)
| (mk ∘ dest) <$> x = x
[PROOFSTEP]
rhs
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : F (Fix F)
| x
[PROOFSTEP]
rw [← id_map x]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x : F (Fix F)
⊢ (mk ∘ dest) <$> x = id <$> x
[PROOFSTEP]
congr with x
[GOAL]
case e_a.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x✝ : F (Fix F)
x : Fix F
⊢ (mk ∘ dest) x = id x
[PROOFSTEP]
apply Fix.mk_dest
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
p : Fix F → Prop
h : ∀ (x : F (Fix F)), Liftp p x → p (mk x)
⊢ ∀ (x : Fix F), p x
[PROOFSTEP]
apply Quot.ind
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
p : Fix F → Prop
h : ∀ (x : F (Fix F)), Liftp p x → p (mk x)
⊢ ∀ (a : PFunctor.W (P F)), p (Quot.mk Setoid.r a)
[PROOFSTEP]
intro x
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
p : Fix F → Prop
h : ∀ (x : F (Fix F)), Liftp p x → p (mk x)
x : PFunctor.W (P F)
⊢ p (Quot.mk Setoid.r x)
[PROOFSTEP]
induction' x with a f ih
[GOAL]
case mk.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
p : Fix F → Prop
h : ∀ (x : F (Fix F)), Liftp p x → p (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a))
⊢ p (Quot.mk Setoid.r (WType.mk a f))
[PROOFSTEP]
change p ⟦⟨a, f⟩⟧
[GOAL]
case mk.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
p : Fix F → Prop
h : ∀ (x : F (Fix F)), Liftp p x → p (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a))
⊢ p (Quotient.mk Wsetoid (WType.mk a f))
[PROOFSTEP]
rw [← Fix.ind_aux a f]
[GOAL]
case mk.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
p : Fix F → Prop
h : ∀ (x : F (Fix F)), Liftp p x → p (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a))
⊢ p (mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }))
[PROOFSTEP]
apply h
[GOAL]
case mk.mk.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
p : Fix F → Prop
h : ∀ (x : F (Fix F)), Liftp p x → p (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a))
⊢ Liftp p (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) })
[PROOFSTEP]
rw [liftp_iff]
[GOAL]
case mk.mk.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
p : Fix F → Prop
h : ∀ (x : F (Fix F)), Liftp p x → p (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a))
⊢ ∃ a_1 f_1,
abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) } = abs { fst := a_1, snd := f_1 } ∧
∀ (i : PFunctor.B (P F) a_1), p (f_1 i)
[PROOFSTEP]
refine' ⟨_, _, rfl, _⟩
[GOAL]
case mk.mk.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
p : Fix F → Prop
h : ∀ (x : F (Fix F)), Liftp p x → p (mk x)
a : (P F).A
f : PFunctor.B (P F) a → WType (P F).B
ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a))
⊢ ∀ (i : PFunctor.B (P F) a), p (Quotient.mk Wsetoid (f i))
[PROOFSTEP]
convert ih
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : α → F α
x : α
⊢ PFunctor.M.dest (corecF g x) = corecF g <$> repr (g x)
[PROOFSTEP]
rw [corecF, PFunctor.M.dest_corec]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
⊢ ∀ (a b : PFunctor.M (P F)),
Mcongr a b →
(fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) a = (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) b
[PROOFSTEP]
rintro x y ⟨r, pr, rxy⟩
[GOAL]
case intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x y
⊢ (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) x = (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) y
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x y
⊢ Quot.mk Mcongr <$> abs (PFunctor.M.dest x) = Quot.mk Mcongr <$> abs (PFunctor.M.dest y)
[PROOFSTEP]
have : ∀ x y, r x y → Mcongr x y := by
intro x y h
exact ⟨r, pr, h⟩
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x y
⊢ ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y
[PROOFSTEP]
intro x y h
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x✝ y✝ : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x✝ y✝
x y : PFunctor.M (P F)
h : r x y
⊢ Mcongr x y
[PROOFSTEP]
exact ⟨r, pr, h⟩
[GOAL]
case intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x y
this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y
⊢ Quot.mk Mcongr <$> abs (PFunctor.M.dest x) = Quot.mk Mcongr <$> abs (PFunctor.M.dest y)
[PROOFSTEP]
rw [← Quot.factor_mk_eq _ _ this]
[GOAL]
case intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x y
this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y
⊢ (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x) =
(Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest y)
[PROOFSTEP]
conv =>
lhs
rw [comp_map, ← abs_map, pr rxy, abs_map, ← comp_map]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x y
this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y
| (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x) =
(Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest y)
[PROOFSTEP]
lhs
rw [comp_map, ← abs_map, pr rxy, abs_map, ← comp_map]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x y
this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y
| (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x) =
(Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest y)
[PROOFSTEP]
lhs
rw [comp_map, ← abs_map, pr rxy, abs_map, ← comp_map]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x y
this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y
| (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x) =
(Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest y)
[PROOFSTEP]
lhs
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
x y : PFunctor.M (P F)
r : PFunctor.M (P F) → PFunctor.M (P F) → Prop
pr : IsPrecongr r
rxy : r x y
this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y
| (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x)
[PROOFSTEP]
rw [comp_map, ← abs_map, pr rxy, abs_map, ← comp_map]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : α → F α
x : α
⊢ dest (corec g x) = corec g <$> g x
[PROOFSTEP]
conv =>
lhs
rw [Cofix.dest, Cofix.corec];
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : α → F α
x : α
| dest (corec g x) = corec g <$> g x
[PROOFSTEP]
lhs
rw [Cofix.dest, Cofix.corec];
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : α → F α
x : α
| dest (corec g x) = corec g <$> g x
[PROOFSTEP]
lhs
rw [Cofix.dest, Cofix.corec];
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : α → F α
x : α
| dest (corec g x) = corec g <$> g x
[PROOFSTEP]
lhs
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : α → F α
x : α
| dest (corec g x)
[PROOFSTEP]
rw [Cofix.dest, Cofix.corec]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : α → F α
x : α
⊢ Quot.lift (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x))
(_ :
∀ (x y : PFunctor.M (P F)),
Mcongr x y →
(fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) x =
(fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) y)
(Quot.mk Mcongr (corecF g x)) =
corec g <$> g x
[PROOFSTEP]
dsimp
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : α → F α
x : α
⊢ Quot.mk Mcongr <$> abs (PFunctor.M.dest (corecF g x)) = corec g <$> g x
[PROOFSTEP]
rw [corecF_eq, abs_map, abs_repr, ← comp_map]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
g : α → F α
x : α
⊢ (Quot.mk Mcongr ∘ corecF g) <$> g x = corec g <$> g x
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
⊢ ∀ (x y : Cofix F), r x y → x = y
[PROOFSTEP]
intro x
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x : Cofix F
⊢ ∀ (y : Cofix F), r x y → x = y
[PROOFSTEP]
apply Quot.inductionOn (motive := _) x
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x : Cofix F
⊢ ∀ (a : PFunctor.M (P F)) (y : Cofix F), r (Quot.mk Mcongr a) y → Quot.mk Mcongr a = y
[PROOFSTEP]
clear x
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
⊢ ∀ (a : PFunctor.M (P F)) (y : Cofix F), r (Quot.mk Mcongr a) y → Quot.mk Mcongr a = y
[PROOFSTEP]
intro x y
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x : PFunctor.M (P F)
y : Cofix F
⊢ r (Quot.mk Mcongr x) y → Quot.mk Mcongr x = y
[PROOFSTEP]
apply Quot.inductionOn (motive := _) y
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x : PFunctor.M (P F)
y : Cofix F
⊢ ∀ (a : PFunctor.M (P F)), r (Quot.mk Mcongr x) (Quot.mk Mcongr a) → Quot.mk Mcongr x = Quot.mk Mcongr a
[PROOFSTEP]
clear y
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x : PFunctor.M (P F)
⊢ ∀ (a : PFunctor.M (P F)), r (Quot.mk Mcongr x) (Quot.mk Mcongr a) → Quot.mk Mcongr x = Quot.mk Mcongr a
[PROOFSTEP]
intro y rxy
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
⊢ Quot.mk Mcongr x = Quot.mk Mcongr y
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
⊢ Mcongr x y
[PROOFSTEP]
let r' x y := r (Quot.mk _ x) (Quot.mk _ y)
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
⊢ Mcongr x y
[PROOFSTEP]
have : IsPrecongr r' := by
intro a b r'ab
have h₀ :
Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) =
Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) :=
h _ _ r'ab
have h₁ : ∀ u v : q.P.M, Mcongr u v → Quot.mk r' u = Quot.mk r' v :=
by
intro u v cuv
apply Quot.sound
simp only
rw [Quot.sound cuv]
apply h'
let f : Quot r → Quot r' :=
Quot.lift (Quot.lift (Quot.mk r') h₁)
(by
intro c; apply Quot.inductionOn (motive := _) c; clear c
intro c d; apply Quot.inductionOn (motive := _) d; clear d
intro d rcd; apply Quot.sound; apply rcd)
have : f ∘ Quot.mk r ∘ Quot.mk Mcongr = Quot.mk r' := rfl
rw [← this, PFunctor.comp_map _ _ f, PFunctor.comp_map _ _ (Quot.mk r), abs_map, abs_map, abs_map, h₀]
rw [PFunctor.comp_map _ _ f, PFunctor.comp_map _ _ (Quot.mk r), abs_map, abs_map, abs_map]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
⊢ IsPrecongr r'
[PROOFSTEP]
intro a b r'ab
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b)
[PROOFSTEP]
have h₀ :
Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) :=
h _ _ r'ab
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b)
[PROOFSTEP]
have h₁ : ∀ u v : q.P.M, Mcongr u v → Quot.mk r' u = Quot.mk r' v :=
by
intro u v cuv
apply Quot.sound
simp only
rw [Quot.sound cuv]
apply h'
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
⊢ ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
[PROOFSTEP]
intro u v cuv
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
u v : PFunctor.M (P F)
cuv : Mcongr u v
⊢ Quot.mk r' u = Quot.mk r' v
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
u v : PFunctor.M (P F)
cuv : Mcongr u v
⊢ r' u v
[PROOFSTEP]
simp only
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
u v : PFunctor.M (P F)
cuv : Mcongr u v
⊢ r (Quot.mk Mcongr u) (Quot.mk Mcongr v)
[PROOFSTEP]
rw [Quot.sound cuv]
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
u v : PFunctor.M (P F)
cuv : Mcongr u v
⊢ r (Quot.mk Mcongr v) (Quot.mk Mcongr v)
[PROOFSTEP]
apply h'
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b)
[PROOFSTEP]
let f : Quot r → Quot r' :=
Quot.lift (Quot.lift (Quot.mk r') h₁)
(by
intro c; apply Quot.inductionOn (motive := _) c; clear c
intro c d; apply Quot.inductionOn (motive := _) d; clear d
intro d rcd; apply Quot.sound; apply rcd)
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
⊢ ∀ (a b : Cofix F), r a b → Quot.lift (Quot.mk r') h₁ a = Quot.lift (Quot.mk r') h₁ b
[PROOFSTEP]
intro c
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
c : Cofix F
⊢ ∀ (b : Cofix F), r c b → Quot.lift (Quot.mk r') h₁ c = Quot.lift (Quot.mk r') h₁ b
[PROOFSTEP]
apply Quot.inductionOn (motive := _) c
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
c : Cofix F
⊢ ∀ (a : PFunctor.M (P F)) (b : Cofix F),
r (Quot.mk Mcongr a) b → Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr a) = Quot.lift (Quot.mk r') h₁ b
[PROOFSTEP]
clear c
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
⊢ ∀ (a : PFunctor.M (P F)) (b : Cofix F),
r (Quot.mk Mcongr a) b → Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr a) = Quot.lift (Quot.mk r') h₁ b
[PROOFSTEP]
intro c d
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
c : PFunctor.M (P F)
d : Cofix F
⊢ r (Quot.mk Mcongr c) d → Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ d
[PROOFSTEP]
apply Quot.inductionOn (motive := _) d
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
c : PFunctor.M (P F)
d : Cofix F
⊢ ∀ (a : PFunctor.M (P F)),
r (Quot.mk Mcongr c) (Quot.mk Mcongr a) →
Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr a)
[PROOFSTEP]
clear d
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
c : PFunctor.M (P F)
⊢ ∀ (a : PFunctor.M (P F)),
r (Quot.mk Mcongr c) (Quot.mk Mcongr a) →
Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr a)
[PROOFSTEP]
intro d rcd
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
c d : PFunctor.M (P F)
rcd : r (Quot.mk Mcongr c) (Quot.mk Mcongr d)
⊢ Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr d)
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
c d : PFunctor.M (P F)
rcd : r (Quot.mk Mcongr c) (Quot.mk Mcongr d)
⊢ r' c d
[PROOFSTEP]
apply rcd
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
f : Quot r → Quot r' :=
Quot.lift (Quot.lift (Quot.mk r') h₁)
(_ : ∀ (c b : Cofix F), r c b → Quot.lift (Quot.mk r') h₁ c = Quot.lift (Quot.mk r') h₁ b)
⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b)
[PROOFSTEP]
have : f ∘ Quot.mk r ∘ Quot.mk Mcongr = Quot.mk r' := rfl
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
f : Quot r → Quot r' :=
Quot.lift (Quot.lift (Quot.mk r') h₁)
(_ : ∀ (c b : Cofix F), r c b → Quot.lift (Quot.mk r') h₁ c = Quot.lift (Quot.mk r') h₁ b)
this : f ∘ Quot.mk r ∘ Quot.mk Mcongr = Quot.mk r'
⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b)
[PROOFSTEP]
rw [← this, PFunctor.comp_map _ _ f, PFunctor.comp_map _ _ (Quot.mk r), abs_map, abs_map, abs_map, h₀]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
a b : PFunctor.M (P F)
r'ab : r' a b
h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b)
h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v
f : Quot r → Quot r' :=
Quot.lift (Quot.lift (Quot.mk r') h₁)
(_ : ∀ (c b : Cofix F), r c b → Quot.lift (Quot.mk r') h₁ c = Quot.lift (Quot.mk r') h₁ b)
this : f ∘ Quot.mk r ∘ Quot.mk Mcongr = Quot.mk r'
⊢ f <$> Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) =
abs ((f ∘ Quot.mk r ∘ Quot.mk Mcongr) <$> PFunctor.M.dest b)
[PROOFSTEP]
rw [PFunctor.comp_map _ _ f, PFunctor.comp_map _ _ (Quot.mk r), abs_map, abs_map, abs_map]
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h' : ∀ (x : Cofix F), r x x
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
x y : PFunctor.M (P F)
rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y)
this : IsPrecongr r'
⊢ Mcongr x y
[PROOFSTEP]
refine' ⟨r', this, rxy⟩
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
⊢ ∀ (x y : Cofix F), r x y → x = y
[PROOFSTEP]
let r' (x y) := x = y ∨ r x y
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
⊢ ∀ (x y : Cofix F), r x y → x = y
[PROOFSTEP]
intro x y rxy
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x y : Cofix F
rxy : r x y
⊢ x = y
[PROOFSTEP]
apply Cofix.bisim_aux r'
[GOAL]
case h'
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x y : Cofix F
rxy : r x y
⊢ ∀ (x : Cofix F), r' x x
[PROOFSTEP]
intro x
[GOAL]
case h'
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x✝ y : Cofix F
rxy : r x✝ y
x : Cofix F
⊢ r' x x
[PROOFSTEP]
left
[GOAL]
case h'.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x✝ y : Cofix F
rxy : r x✝ y
x : Cofix F
⊢ x = x
[PROOFSTEP]
rfl
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x y : Cofix F
rxy : r x y
⊢ ∀ (x y : Cofix F), r' x y → Quot.mk r' <$> dest x = Quot.mk r' <$> dest y
[PROOFSTEP]
intro x y r'xy
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x✝ y✝ : Cofix F
rxy : r x✝ y✝
x y : Cofix F
r'xy : r' x y
⊢ Quot.mk r' <$> dest x = Quot.mk r' <$> dest y
[PROOFSTEP]
cases' r'xy with r'xy r'xy
[GOAL]
case h.inl
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x✝ y✝ : Cofix F
rxy : r x✝ y✝
x y : Cofix F
r'xy : x = y
⊢ Quot.mk r' <$> dest x = Quot.mk r' <$> dest y
[PROOFSTEP]
rw [r'xy]
[GOAL]
case h.inr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x✝ y✝ : Cofix F
rxy : r x✝ y✝
x y : Cofix F
r'xy : r x y
⊢ Quot.mk r' <$> dest x = Quot.mk r' <$> dest y
[PROOFSTEP]
have : ∀ x y, r x y → r' x y := fun x y h => Or.inr h
[GOAL]
case h.inr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x✝ y✝ : Cofix F
rxy : r x✝ y✝
x y : Cofix F
r'xy : r x y
this : ∀ (x y : Cofix F), r x y → r' x y
⊢ Quot.mk r' <$> dest x = Quot.mk r' <$> dest y
[PROOFSTEP]
rw [← Quot.factor_mk_eq _ _ this]
[GOAL]
case h.inr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x✝ y✝ : Cofix F
rxy : r x✝ y✝
x y : Cofix F
r'xy : r x y
this : ∀ (x y : Cofix F), r x y → r' x y
⊢ (Quot.factor (fun x y => r x y) (fun x y => r' x y) this ∘ Quot.mk fun x y => r x y) <$> dest x =
(Quot.factor (fun x y => r x y) (fun x y => r' x y) this ∘ Quot.mk fun x y => r x y) <$> dest y
[PROOFSTEP]
dsimp
[GOAL]
case h.inr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x✝ y✝ : Cofix F
rxy : r x✝ y✝
x y : Cofix F
r'xy : r x y
this : ∀ (x y : Cofix F), r x y → r' x y
⊢ (Quot.factor (fun x y => r x y) (fun x y => x = y ∨ r x y) this ∘ Quot.mk fun x y => r x y) <$> dest x =
(Quot.factor (fun x y => r x y) (fun x y => x = y ∨ r x y) this ∘ Quot.mk fun x y => r x y) <$> dest y
[PROOFSTEP]
rw [@comp_map _ _ q _ _ _ (Quot.mk r), @comp_map _ _ q _ _ _ (Quot.mk r)]
[GOAL]
case h.inr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x✝ y✝ : Cofix F
rxy : r x✝ y✝
x y : Cofix F
r'xy : r x y
this : ∀ (x y : Cofix F), r x y → r' x y
⊢ Quot.factor (fun x y => r x y) (fun x y => x = y ∨ r x y) this <$> Quot.mk r <$> dest x =
Quot.factor (fun x y => r x y) (fun x y => x = y ∨ r x y) this <$> Quot.mk r <$> dest y
[PROOFSTEP]
rw [h _ _ r'xy]
[GOAL]
case a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x y : Cofix F
rxy : r x y
⊢ r' x y
[PROOFSTEP]
right
[GOAL]
case a.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y
r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y
x y : Cofix F
rxy : r x y
⊢ r x y
[PROOFSTEP]
exact rxy
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y)
⊢ ∀ (x y : Cofix F), r x y → x = y
[PROOFSTEP]
apply Cofix.bisim_rel
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y)
⊢ ∀ (x y : Cofix F), r x y → (Quot.mk fun x y => r x y) <$> dest x = (Quot.mk fun x y => r x y) <$> dest y
[PROOFSTEP]
intro x y rxy
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y)
x y : Cofix F
rxy : r x y
⊢ (Quot.mk fun x y => r x y) <$> dest x = (Quot.mk fun x y => r x y) <$> dest y
[PROOFSTEP]
rcases(liftr_iff r _ _).mp (h x y rxy) with ⟨a, f₀, f₁, dxeq, dyeq, h'⟩
[GOAL]
case h.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y)
x y : Cofix F
rxy : r x y
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → Cofix F
dxeq : dest x = abs { fst := a, snd := f₀ }
dyeq : dest y = abs { fst := a, snd := f₁ }
h' : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
⊢ (Quot.mk fun x y => r x y) <$> dest x = (Quot.mk fun x y => r x y) <$> dest y
[PROOFSTEP]
rw [dxeq, dyeq, ← abs_map, ← abs_map, PFunctor.map_eq, PFunctor.map_eq]
[GOAL]
case h.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y)
x y : Cofix F
rxy : r x y
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → Cofix F
dxeq : dest x = abs { fst := a, snd := f₀ }
dyeq : dest y = abs { fst := a, snd := f₁ }
h' : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
⊢ abs { fst := a, snd := (Quot.mk fun x y => r x y) ∘ f₀ } = abs { fst := a, snd := (Quot.mk fun x y => r x y) ∘ f₁ }
[PROOFSTEP]
congr 2 with i
[GOAL]
case h.intro.intro.intro.intro.intro.e_a.e_snd.h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y)
x y : Cofix F
rxy : r x y
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → Cofix F
dxeq : dest x = abs { fst := a, snd := f₀ }
dyeq : dest y = abs { fst := a, snd := f₁ }
h' : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
i : PFunctor.B (P F) a
⊢ ((Quot.mk fun x y => r x y) ∘ f₀) i = ((Quot.mk fun x y => r x y) ∘ f₁) i
[PROOFSTEP]
apply Quot.sound
[GOAL]
case h.intro.intro.intro.intro.intro.e_a.e_snd.h.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
r : Cofix F → Cofix F → Prop
h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y)
x y : Cofix F
rxy : r x y
a : (P F).A
f₀ f₁ : PFunctor.B (P F) a → Cofix F
dxeq : dest x = abs { fst := a, snd := f₀ }
dyeq : dest y = abs { fst := a, snd := f₁ }
h' : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)
i : PFunctor.B (P F) a
⊢ r (f₀ i) (f₁ i)
[PROOFSTEP]
apply h'
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u_1
Q : α → Prop
u v : α → Cofix F
h :
∀ (x : α),
Q x →
∃ a f f',
dest (u x) = abs { fst := a, snd := f } ∧
dest (v x) = abs { fst := a, snd := f' } ∧ ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x'
x✝¹ : α
Qx : Q x✝¹
R : Cofix F → Cofix F → Prop := fun w z => ∃ x', Q x' ∧ w = u x' ∧ z = v x'
x y : Cofix F
x✝ : R x y
x' : α
Qx' : Q x'
xeq : x = u x'
yeq : y = v x'
⊢ Liftr R (dest x) (dest y)
[PROOFSTEP]
rcases h x' Qx' with ⟨a, f, f', ux'eq, vx'eq, h'⟩
[GOAL]
case intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u_1
Q : α → Prop
u v : α → Cofix F
h :
∀ (x : α),
Q x →
∃ a f f',
dest (u x) = abs { fst := a, snd := f } ∧
dest (v x) = abs { fst := a, snd := f' } ∧ ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x'
x✝¹ : α
Qx : Q x✝¹
R : Cofix F → Cofix F → Prop := fun w z => ∃ x', Q x' ∧ w = u x' ∧ z = v x'
x y : Cofix F
x✝ : R x y
x' : α
Qx' : Q x'
xeq : x = u x'
yeq : y = v x'
a : (P F).A
f f' : PFunctor.B (P F) a → Cofix F
ux'eq : dest (u x') = abs { fst := a, snd := f }
vx'eq : dest (v x') = abs { fst := a, snd := f' }
h' : ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x'
⊢ Liftr R (dest x) (dest y)
[PROOFSTEP]
rw [liftr_iff]
[GOAL]
case intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u_1
Q : α → Prop
u v : α → Cofix F
h :
∀ (x : α),
Q x →
∃ a f f',
dest (u x) = abs { fst := a, snd := f } ∧
dest (v x) = abs { fst := a, snd := f' } ∧ ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x'
x✝¹ : α
Qx : Q x✝¹
R : Cofix F → Cofix F → Prop := fun w z => ∃ x', Q x' ∧ w = u x' ∧ z = v x'
x y : Cofix F
x✝ : R x y
x' : α
Qx' : Q x'
xeq : x = u x'
yeq : y = v x'
a : (P F).A
f f' : PFunctor.B (P F) a → Cofix F
ux'eq : dest (u x') = abs { fst := a, snd := f }
vx'eq : dest (v x') = abs { fst := a, snd := f' }
h' : ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x'
⊢ ∃ a f₀ f₁,
dest x = abs { fst := a, snd := f₀ } ∧
dest y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), R (f₀ i) (f₁ i)
[PROOFSTEP]
refine' ⟨a, f, f', xeq.symm ▸ ux'eq, yeq.symm ▸ vx'eq, h'⟩
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
⊢ PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α → Functor.Comp F₂ F₁ α
[PROOFSTEP]
dsimp [Functor.Comp]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
⊢ PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α → F₂ (F₁ α)
[PROOFSTEP]
intro p
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
p : PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α
⊢ F₂ (F₁ α)
[PROOFSTEP]
exact abs ⟨p.1.1, fun x => abs ⟨p.1.2 x, fun y => p.2 ⟨x, y⟩⟩⟩
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
⊢ Functor.Comp F₂ F₁ α → PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α
[PROOFSTEP]
dsimp [Functor.Comp]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
⊢ F₂ (F₁ α) → PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α
[PROOFSTEP]
intro y
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
y : F₂ (F₁ α)
⊢ PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α
[PROOFSTEP]
refine' ⟨⟨(repr y).1, fun u => (repr ((repr y).2 u)).1⟩, _⟩
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
y : F₂ (F₁ α)
⊢ PFunctor.B (PFunctor.comp (P F₂) (P F₁)) { fst := (repr y).fst, snd := fun u => (repr (Sigma.snd (repr y) u)).fst } →
α
[PROOFSTEP]
dsimp [PFunctor.comp]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
y : F₂ (F₁ α)
⊢ (u : PFunctor.B (P F₂) (repr y).fst) × PFunctor.B (P F₁) (repr (Sigma.snd (repr y) u)).fst → α
[PROOFSTEP]
intro x
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
y : F₂ (F₁ α)
x : (u : PFunctor.B (P F₂) (repr y).fst) × PFunctor.B (P F₁) (repr (Sigma.snd (repr y) u)).fst
⊢ α
[PROOFSTEP]
exact (repr ((repr y).2 x.1)).snd x.2
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
⊢ ∀ (x : Functor.Comp F₂ F₁ α),
(fun {α} =>
id fun p =>
abs
{ fst := p.fst.fst,
snd := fun x => abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } })
((fun {α} =>
id fun y =>
{ fst := { fst := (repr y).fst, snd := fun u => (repr (Sigma.snd (repr y) u)).fst },
snd := id fun x => Sigma.snd (repr (Sigma.snd (repr y) x.fst)) x.snd })
x) =
x
[PROOFSTEP]
dsimp [Functor.Comp]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
⊢ ∀ (x : F₂ (F₁ α)),
abs
{ fst := (repr x).fst,
snd := fun x_1 =>
abs
{ fst := (repr (Sigma.snd (repr x) x_1)).fst,
snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } =
x
[PROOFSTEP]
intro x
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x : F₂ (F₁ α)
⊢ abs
{ fst := (repr x).fst,
snd := fun x_1 =>
abs
{ fst := (repr (Sigma.snd (repr x) x_1)).fst,
snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } =
x
[PROOFSTEP]
conv =>
rhs
rw [← abs_repr x]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x : F₂ (F₁ α)
| abs
{ fst := (repr x).fst,
snd := fun x_1 =>
abs
{ fst := (repr (Sigma.snd (repr x) x_1)).fst,
snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } =
x
[PROOFSTEP]
rhs
rw [← abs_repr x]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x : F₂ (F₁ α)
| abs
{ fst := (repr x).fst,
snd := fun x_1 =>
abs
{ fst := (repr (Sigma.snd (repr x) x_1)).fst,
snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } =
x
[PROOFSTEP]
rhs
rw [← abs_repr x]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x : F₂ (F₁ α)
| abs
{ fst := (repr x).fst,
snd := fun x_1 =>
abs
{ fst := (repr (Sigma.snd (repr x) x_1)).fst,
snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } =
x
[PROOFSTEP]
rhs
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x : F₂ (F₁ α)
| x
[PROOFSTEP]
rw [← abs_repr x]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x : F₂ (F₁ α)
⊢ abs
{ fst := (repr x).fst,
snd := fun x_1 =>
abs
{ fst := (repr (Sigma.snd (repr x) x_1)).fst,
snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } =
abs (repr x)
[PROOFSTEP]
cases' h : repr x with a f
[GOAL]
case mk
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x : F₂ (F₁ α)
a : (P F₂).A
f : PFunctor.B (P F₂) a → F₁ α
h : repr x = { fst := a, snd := f }
⊢ abs
{ fst := { fst := a, snd := f }.fst,
snd := fun x =>
abs
{ fst := (repr (Sigma.snd { fst := a, snd := f } x)).fst,
snd := fun y => Sigma.snd (repr (Sigma.snd { fst := a, snd := f } x)) y } } =
abs { fst := a, snd := f }
[PROOFSTEP]
dsimp
[GOAL]
case mk
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x : F₂ (F₁ α)
a : (P F₂).A
f : PFunctor.B (P F₂) a → F₁ α
h : repr x = { fst := a, snd := f }
⊢ abs { fst := a, snd := fun x => abs { fst := (repr (f x)).fst, snd := fun y => Sigma.snd (repr (f x)) y } } =
abs { fst := a, snd := f }
[PROOFSTEP]
congr with x
[GOAL]
case mk.e_a.e_snd.h
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x✝ : F₂ (F₁ α)
a : (P F₂).A
f : PFunctor.B (P F₂) a → F₁ α
h : repr x✝ = { fst := a, snd := f }
x : PFunctor.B (P F₂) a
⊢ abs { fst := (repr (f x)).fst, snd := fun y => Sigma.snd (repr (f x)) y } = f x
[PROOFSTEP]
cases' h' : repr (f x) with b g
[GOAL]
case mk.e_a.e_snd.h.mk
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x✝ : F₂ (F₁ α)
a : (P F₂).A
f : PFunctor.B (P F₂) a → F₁ α
h : repr x✝ = { fst := a, snd := f }
x : PFunctor.B (P F₂) a
b : (P F₁).A
g : PFunctor.B (P F₁) b → α
h' : repr (f x) = { fst := b, snd := g }
⊢ abs { fst := { fst := b, snd := g }.fst, snd := fun y => Sigma.snd { fst := b, snd := g } y } = f x
[PROOFSTEP]
dsimp
[GOAL]
case mk.e_a.e_snd.h.mk
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α : Type u
x✝ : F₂ (F₁ α)
a : (P F₂).A
f : PFunctor.B (P F₂) a → F₁ α
h : repr x✝ = { fst := a, snd := f }
x : PFunctor.B (P F₂) a
b : (P F₁).A
g : PFunctor.B (P F₁) b → α
h' : repr (f x) = { fst := b, snd := g }
⊢ abs { fst := b, snd := fun y => g y } = f x
[PROOFSTEP]
rw [← h', abs_repr]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
⊢ ∀ (p : PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α),
(fun {α} =>
id fun p =>
abs
{ fst := p.fst.fst,
snd := fun x => abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } })
(f <$> p) =
f <$>
(fun {α} =>
id fun p =>
abs
{ fst := p.fst.fst,
snd := fun x =>
abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } })
p
[PROOFSTEP]
dsimp [Functor.Comp, PFunctor.comp]
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
⊢ ∀
(p :
PFunctor.Obj
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
α),
abs
{ fst := (f <$> p).fst.fst,
snd := fun x =>
abs { fst := Sigma.snd (f <$> p).fst x, snd := fun y => Sigma.snd (f <$> p) { fst := x, snd := y } } } =
f <$>
abs
{ fst := p.fst.fst,
snd := fun x => abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } }
[PROOFSTEP]
intro p
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
p :
PFunctor.Obj
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
α
⊢ abs
{ fst := (f <$> p).fst.fst,
snd := fun x =>
abs { fst := Sigma.snd (f <$> p).fst x, snd := fun y => Sigma.snd (f <$> p) { fst := x, snd := y } } } =
f <$>
abs
{ fst := p.fst.fst,
snd := fun x => abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } }
[PROOFSTEP]
cases' p with a g
[GOAL]
case mk
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
a :
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }.A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
a →
α
⊢ abs
{ fst := (f <$> { fst := a, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := a, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := a, snd := g }) { fst := x, snd := y } } } =
f <$>
abs
{ fst := { fst := a, snd := g }.fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd { fst := a, snd := g }.fst x,
snd := fun y => Sigma.snd { fst := a, snd := g } { fst := x, snd := y } } }
[PROOFSTEP]
dsimp
[GOAL]
case mk
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
a :
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }.A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
a →
α
⊢ abs
{ fst := (f <$> { fst := a, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := a, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := a, snd := g }) { fst := x, snd := y } } } =
f <$> abs { fst := a.fst, snd := fun x => abs { fst := Sigma.snd a x, snd := fun y => g { fst := x, snd := y } } }
[PROOFSTEP]
cases' a with b h
[GOAL]
case mk.mk
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ abs
{ fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } =
f <$>
abs
{ fst := { fst := b, snd := h }.fst,
snd := fun x => abs { fst := Sigma.snd { fst := b, snd := h } x, snd := fun y => g { fst := x, snd := y } } }
[PROOFSTEP]
dsimp
[GOAL]
case mk.mk
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ abs
{ fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } =
f <$> abs { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } }
[PROOFSTEP]
symm
[GOAL]
case mk.mk
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ f <$> abs { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } =
abs
{ fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } }
[PROOFSTEP]
trans
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ f <$> abs { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } = ?m.45227
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ ?m.45227 =
abs
{ fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } }
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ F₂ (F₁ β)
[PROOFSTEP]
symm
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ ?a = f <$> abs { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } }
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ ?a =
abs
{ fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } }
[PROOFSTEP]
apply abs_map
[GOAL]
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ abs
((fun x x_1 => x <$> x_1) f <$>
{ fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } }) =
abs
{ fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } }
[PROOFSTEP]
congr
[GOAL]
case e_a
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ (fun x x_1 => x <$> x_1) f <$>
{ fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } =
{ fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } }
[PROOFSTEP]
rw [PFunctor.map_eq]
[GOAL]
case e_a
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ { fst := b,
snd := (fun x x_1 => x <$> x_1) f ∘ fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } =
{ fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } }
[PROOFSTEP]
dsimp [Function.comp]
[GOAL]
case e_a
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ { fst := b, snd := fun x => f <$> abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } =
{ fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst,
snd := fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } }
[PROOFSTEP]
congr
[GOAL]
case e_a.e_snd
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
⊢ (fun x => f <$> abs { fst := h x, snd := fun y => g { fst := x, snd := y } }) = fun x =>
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } }
[PROOFSTEP]
ext x
[GOAL]
case e_a.e_snd.h
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
x : PFunctor.B (P F₂) b
⊢ f <$> abs { fst := h x, snd := fun y => g { fst := x, snd := y } } =
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } }
[PROOFSTEP]
rw [← abs_map]
[GOAL]
case e_a.e_snd.h
F₂ : Type u → Type u
inst✝¹ : Functor F₂
q₂ : Qpf F₂
F₁ : Type u → Type u
inst✝ : Functor F₁
q₁ : Qpf F₁
α β : Type u
f : α → β
b : (P F₂).A
h : PFunctor.B (P F₂) b → (P F₁).A
g :
PFunctor.B
{ A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A),
B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }
{ fst := b, snd := h } →
α
x : PFunctor.B (P F₂) b
⊢ abs (f <$> { fst := h x, snd := fun y => g { fst := x, snd := y } }) =
abs
{ fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x,
snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } }
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type u
inst✝¹ : Functor F
q : Qpf F
G : Type u → Type u
inst✝ : Functor G
FG_abs : {α : Type u} → F α → G α
FG_repr : {α : Type u} → G α → F α
FG_abs_repr : ∀ {α : Type u} (x : G α), FG_abs (FG_repr x) = x
FG_abs_map : ∀ {α β : Type u} (f : α → β) (x : F α), FG_abs (f <$> x) = f <$> FG_abs x
α : Type u
x : G α
⊢ (fun {α} p => FG_abs (abs p)) ((fun {α} x => repr (FG_repr x)) x) = x
[PROOFSTEP]
simp only
[GOAL]
F : Type u → Type u
inst✝¹ : Functor F
q : Qpf F
G : Type u → Type u
inst✝ : Functor G
FG_abs : {α : Type u} → F α → G α
FG_repr : {α : Type u} → G α → F α
FG_abs_repr : ∀ {α : Type u} (x : G α), FG_abs (FG_repr x) = x
FG_abs_map : ∀ {α β : Type u} (f : α → β) (x : F α), FG_abs (f <$> x) = f <$> FG_abs x
α : Type u
x : G α
⊢ FG_abs (abs (repr (FG_repr x))) = x
[PROOFSTEP]
rw [abs_repr, FG_abs_repr]
[GOAL]
F : Type u → Type u
inst✝¹ : Functor F
q : Qpf F
G : Type u → Type u
inst✝ : Functor G
FG_abs : {α : Type u} → F α → G α
FG_repr : {α : Type u} → G α → F α
FG_abs_repr : ∀ {α : Type u} (x : G α), FG_abs (FG_repr x) = x
FG_abs_map : ∀ {α β : Type u} (f : α → β) (x : F α), FG_abs (f <$> x) = f <$> FG_abs x
α β : Type u
f : α → β
x : PFunctor.Obj (P F) α
⊢ (fun {α} p => FG_abs (abs p)) (f <$> x) = f <$> (fun {α} p => FG_abs (abs p)) x
[PROOFSTEP]
simp only
[GOAL]
F : Type u → Type u
inst✝¹ : Functor F
q : Qpf F
G : Type u → Type u
inst✝ : Functor G
FG_abs : {α : Type u} → F α → G α
FG_repr : {α : Type u} → G α → F α
FG_abs_repr : ∀ {α : Type u} (x : G α), FG_abs (FG_repr x) = x
FG_abs_map : ∀ {α β : Type u} (f : α → β) (x : F α), FG_abs (f <$> x) = f <$> FG_abs x
α β : Type u
f : α → β
x : PFunctor.Obj (P F) α
⊢ FG_abs (abs (f <$> x)) = f <$> FG_abs (abs x)
[PROOFSTEP]
rw [abs_map, FG_abs_map]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
⊢ u ∈ supp x ↔ ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ
[PROOFSTEP]
rw [supp]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
⊢ u ∈ {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} ↔
∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ
[PROOFSTEP]
dsimp
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
⊢ (∀ ⦃p : α → Prop⦄, Liftp p x → p u) ↔
∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
⊢ (∀ ⦃p : α → Prop⦄, Liftp p x → p u) →
∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ
[PROOFSTEP]
intro h a f haf
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
h : ∀ ⦃p : α → Prop⦄, Liftp p x → p u
a : (P F).A
f : PFunctor.B (P F) a → α
haf : abs { fst := a, snd := f } = x
⊢ u ∈ f '' univ
[PROOFSTEP]
have : Liftp (fun u => u ∈ f '' univ) x := by
rw [liftp_iff]
refine' ⟨a, f, haf.symm, fun i => mem_image_of_mem _ (mem_univ _)⟩
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
h : ∀ ⦃p : α → Prop⦄, Liftp p x → p u
a : (P F).A
f : PFunctor.B (P F) a → α
haf : abs { fst := a, snd := f } = x
⊢ Liftp (fun u => u ∈ f '' univ) x
[PROOFSTEP]
rw [liftp_iff]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
h : ∀ ⦃p : α → Prop⦄, Liftp p x → p u
a : (P F).A
f : PFunctor.B (P F) a → α
haf : abs { fst := a, snd := f } = x
⊢ ∃ a_1 f_1, x = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_1), f_1 i ∈ f '' univ
[PROOFSTEP]
refine' ⟨a, f, haf.symm, fun i => mem_image_of_mem _ (mem_univ _)⟩
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
h : ∀ ⦃p : α → Prop⦄, Liftp p x → p u
a : (P F).A
f : PFunctor.B (P F) a → α
haf : abs { fst := a, snd := f } = x
this : Liftp (fun u => u ∈ f '' univ) x
⊢ u ∈ f '' univ
[PROOFSTEP]
exact h this
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
⊢ (∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ) →
∀ ⦃p : α → Prop⦄, Liftp p x → p u
[PROOFSTEP]
intro h p
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ
p : α → Prop
⊢ Liftp p x → p u
[PROOFSTEP]
rw [liftp_iff]
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ
p : α → Prop
⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) → p u
[PROOFSTEP]
rintro ⟨a, f, xeq, h'⟩
[GOAL]
case mpr.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), p (f i)
⊢ p u
[PROOFSTEP]
rcases h a f xeq.symm with ⟨i, _, hi⟩
[GOAL]
case mpr.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), p (f i)
i : PFunctor.B (P F) a
left✝ : i ∈ univ
hi : f i = u
⊢ p u
[PROOFSTEP]
rw [← hi]
[GOAL]
case mpr.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
u : α
h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), p (f i)
i : PFunctor.B (P F) a
left✝ : i ∈ univ
hi : f i = u
⊢ p (f i)
[PROOFSTEP]
apply h'
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
⊢ supp x = {u | ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ}
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
x✝ : α
⊢ x✝ ∈ supp x ↔ x✝ ∈ {u | ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ}
[PROOFSTEP]
apply mem_supp
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
⊢ (∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u) ↔
∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
⊢ (∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u) →
∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
[PROOFSTEP]
intro h
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
⊢ ∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
[PROOFSTEP]
have : Liftp (supp x) x := by rw [h]; intro u; exact id
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
⊢ Liftp (supp x) x
[PROOFSTEP]
rw [h]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
⊢ ∀ (u : α), u ∈ supp x → supp x u
[PROOFSTEP]
intro u
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
u : α
⊢ u ∈ supp x → supp x u
[PROOFSTEP]
exact id
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
this : Liftp (supp x) x
⊢ ∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
[PROOFSTEP]
rw [liftp_iff] at this
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
this✝ : Liftp (supp x) x
this : ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), supp x (f i)
⊢ ∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
[PROOFSTEP]
rcases this with ⟨a, f, xeq, h'⟩
[GOAL]
case mp.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
this : Liftp (supp x) x
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), supp x (f i)
⊢ ∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
[PROOFSTEP]
refine' ⟨a, f, xeq.symm, _⟩
[GOAL]
case mp.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
this : Liftp (supp x) x
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), supp x (f i)
⊢ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
[PROOFSTEP]
intro a' f' h''
[GOAL]
case mp.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
this : Liftp (supp x) x
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), supp x (f i)
a' : (P F).A
f' : PFunctor.B (P F) a' → α
h'' : abs { fst := a', snd := f' } = x
⊢ f '' univ ⊆ f' '' univ
[PROOFSTEP]
rintro u ⟨i, _, hfi⟩
[GOAL]
case mp.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
this : Liftp (supp x) x
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), supp x (f i)
a' : (P F).A
f' : PFunctor.B (P F) a' → α
h'' : abs { fst := a', snd := f' } = x
u : α
i : PFunctor.B (P F) a
left✝ : i ∈ univ
hfi : f i = u
⊢ u ∈ f' '' univ
[PROOFSTEP]
have : u ∈ supp x := by rw [← hfi]; apply h'
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
this : Liftp (supp x) x
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), supp x (f i)
a' : (P F).A
f' : PFunctor.B (P F) a' → α
h'' : abs { fst := a', snd := f' } = x
u : α
i : PFunctor.B (P F) a
left✝ : i ∈ univ
hfi : f i = u
⊢ u ∈ supp x
[PROOFSTEP]
rw [← hfi]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
this : Liftp (supp x) x
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), supp x (f i)
a' : (P F).A
f' : PFunctor.B (P F) a' → α
h'' : abs { fst := a', snd := f' } = x
u : α
i : PFunctor.B (P F) a
left✝ : i ∈ univ
hfi : f i = u
⊢ f i ∈ supp x
[PROOFSTEP]
apply h'
[GOAL]
case mp.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
this✝ : Liftp (supp x) x
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : x = abs { fst := a, snd := f }
h' : ∀ (i : PFunctor.B (P F) a), supp x (f i)
a' : (P F).A
f' : PFunctor.B (P F) a' → α
h'' : abs { fst := a', snd := f' } = x
u : α
i : PFunctor.B (P F) a
left✝ : i ∈ univ
hfi : f i = u
this : u ∈ supp x
⊢ u ∈ f' '' univ
[PROOFSTEP]
exact (mem_supp x u).mp this _ _ h''
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
⊢ (∃ a f,
abs { fst := a, snd := f } = x ∧
∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ) →
∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
[PROOFSTEP]
rintro ⟨a, f, xeq, h⟩ p
[GOAL]
case mpr.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
⊢ Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
[PROOFSTEP]
rw [liftp_iff]
[GOAL]
case mpr.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) ↔ ∀ (u : α), u ∈ supp x → p u
[PROOFSTEP]
constructor
[GOAL]
case mpr.intro.intro.intro.mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) → ∀ (u : α), u ∈ supp x → p u
[PROOFSTEP]
rintro ⟨a', f', xeq', h'⟩ u usuppx
[GOAL]
case mpr.intro.intro.intro.mp.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
a' : (P F).A
f' : PFunctor.B (P F) a' → α
xeq' : x = abs { fst := a', snd := f' }
h' : ∀ (i : PFunctor.B (P F) a'), p (f' i)
u : α
usuppx : u ∈ supp x
⊢ p u
[PROOFSTEP]
rcases(mem_supp x u).mp usuppx a' f' xeq'.symm with ⟨i, _, f'ieq⟩
[GOAL]
case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
a' : (P F).A
f' : PFunctor.B (P F) a' → α
xeq' : x = abs { fst := a', snd := f' }
h' : ∀ (i : PFunctor.B (P F) a'), p (f' i)
u : α
usuppx : u ∈ supp x
i : PFunctor.B (P F) a'
left✝ : i ∈ univ
f'ieq : f' i = u
⊢ p u
[PROOFSTEP]
rw [← f'ieq]
[GOAL]
case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
a' : (P F).A
f' : PFunctor.B (P F) a' → α
xeq' : x = abs { fst := a', snd := f' }
h' : ∀ (i : PFunctor.B (P F) a'), p (f' i)
u : α
usuppx : u ∈ supp x
i : PFunctor.B (P F) a'
left✝ : i ∈ univ
f'ieq : f' i = u
⊢ p (f' i)
[PROOFSTEP]
apply h'
[GOAL]
case mpr.intro.intro.intro.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
⊢ (∀ (u : α), u ∈ supp x → p u) → ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
intro h'
[GOAL]
case mpr.intro.intro.intro.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
h' : ∀ (u : α), u ∈ supp x → p u
⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
refine' ⟨a, f, xeq.symm, _⟩
[GOAL]
case mpr.intro.intro.intro.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
h' : ∀ (u : α), u ∈ supp x → p u
⊢ ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
intro i
[GOAL]
case mpr.intro.intro.intro.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
h' : ∀ (u : α), u ∈ supp x → p u
i : PFunctor.B (P F) a
⊢ p (f i)
[PROOFSTEP]
apply h'
[GOAL]
case mpr.intro.intro.intro.mpr.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
h' : ∀ (u : α), u ∈ supp x → p u
i : PFunctor.B (P F) a
⊢ f i ∈ supp x
[PROOFSTEP]
rw [mem_supp]
[GOAL]
case mpr.intro.intro.intro.mpr.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
h' : ∀ (u : α), u ∈ supp x → p u
i : PFunctor.B (P F) a
⊢ ∀ (a : (P F).A) (f_1 : PFunctor.B (P F) a → α), abs { fst := a, snd := f_1 } = x → f i ∈ f_1 '' univ
[PROOFSTEP]
intro a' f' xeq'
[GOAL]
case mpr.intro.intro.intro.mpr.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
h' : ∀ (u : α), u ∈ supp x → p u
i : PFunctor.B (P F) a
a' : (P F).A
f' : PFunctor.B (P F) a' → α
xeq' : abs { fst := a', snd := f' } = x
⊢ f i ∈ f' '' univ
[PROOFSTEP]
apply h a' f' xeq'
[GOAL]
case mpr.intro.intro.intro.mpr.a.a
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
α : Type u
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
xeq : abs { fst := a, snd := f } = x
h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ
p : α → Prop
h' : ∀ (u : α), u ∈ supp x → p u
i : PFunctor.B (P F) a
a' : (P F).A
f' : PFunctor.B (P F) a' → α
xeq' : abs { fst := a', snd := f' } = x
⊢ f i ∈ f '' univ
[PROOFSTEP]
apply mem_image_of_mem _ (mem_univ _)
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ supp (abs { fst := a, snd := f }) = f '' univ
[PROOFSTEP]
ext u
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
u : α
⊢ u ∈ supp (abs { fst := a, snd := f }) ↔ u ∈ f '' univ
[PROOFSTEP]
rw [mem_supp]
[GOAL]
case h
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
u : α
⊢ (∀ (a_1 : (P F).A) (f_1 : PFunctor.B (P F) a_1 → α),
abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 '' univ) ↔
u ∈ f '' univ
[PROOFSTEP]
constructor
[GOAL]
case h.mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
u : α
⊢ (∀ (a_1 : (P F).A) (f_1 : PFunctor.B (P F) a_1 → α),
abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 '' univ) →
u ∈ f '' univ
[PROOFSTEP]
intro h'
[GOAL]
case h.mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
u : α
h' :
∀ (a_1 : (P F).A) (f_1 : PFunctor.B (P F) a_1 → α),
abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 '' univ
⊢ u ∈ f '' univ
[PROOFSTEP]
apply h' _ _ rfl
[GOAL]
case h.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
u : α
⊢ u ∈ f '' univ →
∀ (a_2 : (P F).A) (f_1 : PFunctor.B (P F) a_2 → α),
abs { fst := a_2, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 '' univ
[PROOFSTEP]
intro h' a' f' e
[GOAL]
case h.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
u : α
h' : u ∈ f '' univ
a' : (P F).A
f' : PFunctor.B (P F) a' → α
e : abs { fst := a', snd := f' } = abs { fst := a, snd := f }
⊢ u ∈ f' '' univ
[PROOFSTEP]
rw [← h _ _ _ _ e.symm]
[GOAL]
case h.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
u : α
h' : u ∈ f '' univ
a' : (P F).A
f' : PFunctor.B (P F) a' → α
e : abs { fst := a', snd := f' } = abs { fst := a, snd := f }
⊢ u ∈ f '' univ
[PROOFSTEP]
apply h'
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
⊢ Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u
[PROOFSTEP]
rw [liftp_iff, ← abs_repr x]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
⊢ (∃ a f, abs (repr x) = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) ↔
∀ (u : α), u ∈ supp (abs (repr x)) → p u
[PROOFSTEP]
cases' repr x with a f
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ (∃ a_1 f_1, abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_1), p (f_1 i)) ↔
∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u
[PROOFSTEP]
constructor
[GOAL]
case mk.mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ (∃ a_1 f_1, abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_1), p (f_1 i)) →
∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u
[PROOFSTEP]
rintro ⟨a', f', abseq, hf⟩ u
[GOAL]
case mk.mp.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
a' : (P F).A
f' : PFunctor.B (P F) a' → α
abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
hf : ∀ (i : PFunctor.B (P F) a'), p (f' i)
u : α
⊢ u ∈ supp (abs { fst := a, snd := f }) → p u
[PROOFSTEP]
rw [supp_eq_of_isUniform h, h _ _ _ _ abseq]
[GOAL]
case mk.mp.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
a' : (P F).A
f' : PFunctor.B (P F) a' → α
abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
hf : ∀ (i : PFunctor.B (P F) a'), p (f' i)
u : α
⊢ u ∈ f' '' univ → p u
[PROOFSTEP]
rintro ⟨i, _, hi⟩
[GOAL]
case mk.mp.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
a' : (P F).A
f' : PFunctor.B (P F) a' → α
abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
hf : ∀ (i : PFunctor.B (P F) a'), p (f' i)
u : α
i : PFunctor.B (P F) a'
left✝ : i ∈ univ
hi : f' i = u
⊢ p u
[PROOFSTEP]
rw [← hi]
[GOAL]
case mk.mp.intro.intro.intro.intro.intro
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
a' : (P F).A
f' : PFunctor.B (P F) a' → α
abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
hf : ∀ (i : PFunctor.B (P F) a'), p (f' i)
u : α
i : PFunctor.B (P F) a'
left✝ : i ∈ univ
hi : f' i = u
⊢ p (f' i)
[PROOFSTEP]
apply hf
[GOAL]
case mk.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ (∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u) →
∃ a_2 f_1, abs { fst := a, snd := f } = abs { fst := a_2, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_2), p (f_1 i)
[PROOFSTEP]
intro h'
[GOAL]
case mk.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : ∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u
⊢ ∃ a_1 f_1, abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_1), p (f_1 i)
[PROOFSTEP]
refine' ⟨a, f, rfl, fun i => h' _ _⟩
[GOAL]
case mk.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : ∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u
i : PFunctor.B (P F) a
⊢ f i ∈ supp (abs { fst := a, snd := f })
[PROOFSTEP]
rw [supp_eq_of_isUniform h]
[GOAL]
case mk.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
x : F α
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : ∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u
i : PFunctor.B (P F) a
⊢ f i ∈ f '' univ
[PROOFSTEP]
exact ⟨i, mem_univ i, rfl⟩
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α β : Type u
g : α → β
x : F α
⊢ supp (g <$> x) = g '' supp x
[PROOFSTEP]
rw [← abs_repr x]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α β : Type u
g : α → β
x : F α
⊢ supp (g <$> abs (repr x)) = g '' supp (abs (repr x))
[PROOFSTEP]
cases' repr x with a f
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α β : Type u
g : α → β
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ supp (g <$> abs { fst := a, snd := f }) = g '' supp (abs { fst := a, snd := f })
[PROOFSTEP]
rw [← abs_map, PFunctor.map_eq]
[GOAL]
case mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α β : Type u
g : α → β
x : F α
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ supp (abs { fst := a, snd := g ∘ f }) = g '' supp (abs { fst := a, snd := f })
[PROOFSTEP]
rw [supp_eq_of_isUniform h, supp_eq_of_isUniform h, image_comp]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
⊢ SuppPreservation ↔ IsUniform
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
⊢ SuppPreservation → IsUniform
[PROOFSTEP]
intro h α a a' f f' h'
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : SuppPreservation
α : Type u
a a' : (P F).A
f : PFunctor.B (P F) a → α
f' : PFunctor.B (P F) a' → α
h' : abs { fst := a, snd := f } = abs { fst := a', snd := f' }
⊢ f '' univ = f' '' univ
[PROOFSTEP]
rw [← PFunctor.supp_eq, ← PFunctor.supp_eq, ← h, h', h]
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
⊢ IsUniform → SuppPreservation
[PROOFSTEP]
rintro h α ⟨a, f⟩
[GOAL]
case mpr.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : IsUniform
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }
[PROOFSTEP]
rwa [supp_eq_of_isUniform, PFunctor.supp_eq]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
⊢ SuppPreservation ↔ LiftpPreservation
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
⊢ SuppPreservation → LiftpPreservation
[PROOFSTEP]
intro h
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
⊢ LiftpPreservation → SuppPreservation
[PROOFSTEP]
intro h
[GOAL]
case mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : SuppPreservation
⊢ LiftpPreservation
[PROOFSTEP]
rintro α p ⟨a, f⟩
[GOAL]
case mp.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : SuppPreservation
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }
[PROOFSTEP]
have h' := h
[GOAL]
case mp.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : SuppPreservation
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : SuppPreservation
⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }
[PROOFSTEP]
rw [suppPreservation_iff_uniform] at h'
[GOAL]
case mp.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : SuppPreservation
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }
[PROOFSTEP]
dsimp only [SuppPreservation, supp] at h
[GOAL]
case mp.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h :
∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),
{y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }
[PROOFSTEP]
rw [liftp_iff_of_isUniform h', supp_eq_of_isUniform h', PFunctor.liftp_iff']
[GOAL]
case mp.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h :
∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),
{y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
⊢ (∀ (u : α), u ∈ f '' univ → p u) ↔ ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
simp only [image_univ, mem_range, exists_imp]
[GOAL]
case mp.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h :
∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),
{y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
⊢ (∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u) ↔ ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
constructor
[GOAL]
case mp.mk.mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h :
∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),
{y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
⊢ (∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u) → ∀ (i : PFunctor.B (P F) a), p (f i)
[PROOFSTEP]
intros
[GOAL]
case mp.mk.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h :
∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),
{y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
⊢ (∀ (i : PFunctor.B (P F) a), p (f i)) → ∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u
[PROOFSTEP]
intros
[GOAL]
case mp.mk.mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h :
∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),
{y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
a✝ : ∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u
i✝ : PFunctor.B (P F) a
⊢ p (f i✝)
[PROOFSTEP]
subst_vars
[GOAL]
case mp.mk.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h :
∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),
{y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
a✝¹ : ∀ (i : PFunctor.B (P F) a), p (f i)
u✝ : α
x✝ : PFunctor.B (P F) a
a✝ : f x✝ = u✝
⊢ p u✝
[PROOFSTEP]
subst_vars
[GOAL]
case mp.mk.mp
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h :
∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),
{y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
a✝ : ∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u
i✝ : PFunctor.B (P F) a
⊢ p (f i✝)
[PROOFSTEP]
solve_by_elim
[GOAL]
case mp.mk.mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h :
∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),
{y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}
α : Type u
p : α → Prop
a : (P F).A
f : PFunctor.B (P F) a → α
h' : IsUniform
a✝ : ∀ (i : PFunctor.B (P F) a), p (f i)
x✝ : PFunctor.B (P F) a
⊢ p (f x✝)
[PROOFSTEP]
solve_by_elim
[GOAL]
case mpr
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : LiftpPreservation
⊢ SuppPreservation
[PROOFSTEP]
rintro α ⟨a, f⟩
[GOAL]
case mpr.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : LiftpPreservation
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }
[PROOFSTEP]
simp only [LiftpPreservation] at h
[GOAL]
case mpr.mk
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
h : ∀ ⦃α : Type u⦄ (p : α → Prop) (x : PFunctor.Obj (P F) α), Liftp p (abs x) ↔ Liftp p x
α : Type u
a : (P F).A
f : PFunctor.B (P F) a → α
⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }
[PROOFSTEP]
simp only [supp, h]
[GOAL]
F : Type u → Type u
inst✝ : Functor F
q : Qpf F
⊢ LiftpPreservation ↔ IsUniform
[PROOFSTEP]
rw [← suppPreservation_iff_liftpPreservation, suppPreservation_iff_uniform]
|
{"mathlib_filename": "Mathlib.Data.QPF.Univariate.Basic", "llama_tokens": 74022}
|
[GOAL]
α✝ : Type ?u.229
β✝ : Type ?u.232
γ✝ : Type ?u.235
f✝ : α✝ → β✝ → γ✝
a✝ : Option α✝
b✝ : Option β✝
c : Option γ✝
α β γ : Type u_1
f : α → β → γ
a : Option α
b : Option β
⊢ map₂ f a b = Seq.seq (f <$> a) fun x => b
[PROOFSTEP]
cases a
[GOAL]
case none
α✝ : Type ?u.229
β✝ : Type ?u.232
γ✝ : Type ?u.235
f✝ : α✝ → β✝ → γ✝
a : Option α✝
b✝ : Option β✝
c : Option γ✝
α β γ : Type u_1
f : α → β → γ
b : Option β
⊢ map₂ f none b = Seq.seq (f <$> none) fun x => b
[PROOFSTEP]
rfl
[GOAL]
case some
α✝ : Type ?u.229
β✝ : Type ?u.232
γ✝ : Type ?u.235
f✝ : α✝ → β✝ → γ✝
a : Option α✝
b✝ : Option β✝
c : Option γ✝
α β γ : Type u_1
f : α → β → γ
b : Option β
val✝ : α
⊢ map₂ f (some val✝) b = Seq.seq (f <$> some val✝) fun x => b
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_3
γ : Type u_2
f✝ : α → β → γ
a✝ : Option α
b : Option β
c : Option γ
f : α → β → γ
a : Option α
⊢ map₂ f a none = none
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_3
γ : Type u_2
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
f : α → β → γ
⊢ map₂ f none none = none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_3
γ : Type u_2
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
f : α → β → γ
val✝ : α
⊢ map₂ f (some val✝) none = none
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_3
γ : Type u_2
f✝ : α → β → γ
a✝ : Option α
b✝ : Option β
c : Option γ
f : α → β → γ
a : Option α
b : β
⊢ map₂ f a (some b) = Option.map (fun a => f a b) a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_3
γ : Type u_2
f✝ : α → β → γ
a : Option α
b✝ : Option β
c : Option γ
f : α → β → γ
b : β
⊢ map₂ f none (some b) = Option.map (fun a => f a b) none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_3
γ : Type u_2
f✝ : α → β → γ
a : Option α
b✝ : Option β
c : Option γ
f : α → β → γ
b : β
val✝ : α
⊢ map₂ f (some val✝) (some b) = Option.map (fun a => f a b) (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
a : Option α
b : Option β
c✝ : Option γ
c : γ
⊢ c ∈ map₂ f a b ↔ ∃ a' b', a' ∈ a ∧ b' ∈ b ∧ f a' b' = c
[PROOFSTEP]
simp [map₂]
[GOAL]
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
a : Option α
b : Option β
c : Option γ
⊢ map₂ f a b = none ↔ a = none ∨ b = none
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
b : Option β
c : Option γ
⊢ map₂ f none b = none ↔ none = none ∨ b = none
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
b : Option β
c : Option γ
val✝ : α
⊢ map₂ f (some val✝) b = none ↔ some val✝ = none ∨ b = none
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
c : Option γ
⊢ map₂ f none none = none ↔ none = none ∨ none = none
[PROOFSTEP]
simp
[GOAL]
case none.some
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
c : Option γ
val✝ : β
⊢ map₂ f none (some val✝) = none ↔ none = none ∨ some val✝ = none
[PROOFSTEP]
simp
[GOAL]
case some.none
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
c : Option γ
val✝ : α
⊢ map₂ f (some val✝) none = none ↔ some val✝ = none ∨ none = none
[PROOFSTEP]
simp
[GOAL]
case some.some
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
c : Option γ
val✝¹ : α
val✝ : β
⊢ map₂ f (some val✝¹) (some val✝) = none ↔ some val✝¹ = none ∨ some val✝ = none
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f✝ : α → β → γ
a✝ : Option α
b✝ : Option β
c : Option γ
f : α → β → γ
a : Option α
b : Option β
⊢ map₂ f a b = map₂ (fun a b => f b a) b a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
f✝ : α → β → γ
a : Option α
b✝ : Option β
c : Option γ
f : α → β → γ
b : Option β
⊢ map₂ f none b = map₂ (fun a b => f b a) b none
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
f✝ : α → β → γ
a : Option α
b✝ : Option β
c : Option γ
f : α → β → γ
b : Option β
val✝ : α
⊢ map₂ f (some val✝) b = map₂ (fun a b => f b a) b (some val✝)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_1
β : Type u_2
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
f : α → β → γ
⊢ map₂ f none none = map₂ (fun a b => f b a) none none
[PROOFSTEP]
rfl
[GOAL]
case none.some
α : Type u_1
β : Type u_2
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
f : α → β → γ
val✝ : β
⊢ map₂ f none (some val✝) = map₂ (fun a b => f b a) (some val✝) none
[PROOFSTEP]
rfl
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
f : α → β → γ
val✝ : α
⊢ map₂ f (some val✝) none = map₂ (fun a b => f b a) none (some val✝)
[PROOFSTEP]
rfl
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
f : α → β → γ
val✝¹ : α
val✝ : β
⊢ map₂ f (some val✝¹) (some val✝) = map₂ (fun a b => f b a) (some val✝) (some val✝¹)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_3
β : Type u_4
γ : Type u_2
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
f : α → β → γ
g : γ → δ
⊢ Option.map g (map₂ f a b) = map₂ (fun a b => g (f a b)) a b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_3
β : Type u_4
γ : Type u_2
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
f : α → β → γ
g : γ → δ
⊢ Option.map g (map₂ f none b) = map₂ (fun a b => g (f a b)) none b
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_3
β : Type u_4
γ : Type u_2
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
f : α → β → γ
g : γ → δ
val✝ : α
⊢ Option.map g (map₂ f (some val✝) b) = map₂ (fun a b => g (f a b)) (some val✝) b
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_3
β : Type u_4
γ : Type u_2
f✝ : α → β → γ
c : Option γ
δ : Type u_1
f : α → β → γ
g : γ → δ
⊢ Option.map g (map₂ f none none) = map₂ (fun a b => g (f a b)) none none
[PROOFSTEP]
rfl
[GOAL]
case none.some
α : Type u_3
β : Type u_4
γ : Type u_2
f✝ : α → β → γ
c : Option γ
δ : Type u_1
f : α → β → γ
g : γ → δ
val✝ : β
⊢ Option.map g (map₂ f none (some val✝)) = map₂ (fun a b => g (f a b)) none (some val✝)
[PROOFSTEP]
rfl
[GOAL]
case some.none
α : Type u_3
β : Type u_4
γ : Type u_2
f✝ : α → β → γ
c : Option γ
δ : Type u_1
f : α → β → γ
g : γ → δ
val✝ : α
⊢ Option.map g (map₂ f (some val✝) none) = map₂ (fun a b => g (f a b)) (some val✝) none
[PROOFSTEP]
rfl
[GOAL]
case some.some
α : Type u_3
β : Type u_4
γ : Type u_2
f✝ : α → β → γ
c : Option γ
δ : Type u_1
f : α → β → γ
g : γ → δ
val✝¹ : α
val✝ : β
⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ (fun a b => g (f a b)) (some val✝¹) (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_4
β : Type u_3
γ : Type u_2
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
f : γ → β → δ
g : α → γ
⊢ map₂ f (Option.map g a) b = map₂ (fun a b => f (g a) b) a b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_4
β : Type u_3
γ : Type u_2
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
f : γ → β → δ
g : α → γ
⊢ map₂ f (Option.map g none) b = map₂ (fun a b => f (g a) b) none b
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_4
β : Type u_3
γ : Type u_2
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
f : γ → β → δ
g : α → γ
val✝ : α
⊢ map₂ f (Option.map g (some val✝)) b = map₂ (fun a b => f (g a) b) (some val✝) b
[PROOFSTEP]
rfl
[GOAL]
α : Type u_2
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
f : α → γ → δ
g : β → γ
⊢ map₂ f a (Option.map g b) = map₂ (fun a b => f a (g b)) a b
[PROOFSTEP]
cases b
[GOAL]
case none
α : Type u_2
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
a : Option α
c : Option γ
δ : Type u_1
f : α → γ → δ
g : β → γ
⊢ map₂ f a (Option.map g none) = map₂ (fun a b => f a (g b)) a none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_2
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
a : Option α
c : Option γ
δ : Type u_1
f : α → γ → δ
g : β → γ
val✝ : β
⊢ map₂ f a (Option.map g (some val✝)) = map₂ (fun a b => f a (g b)) a (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_2
β : Type u_1
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
f : α → β → γ
x : Option (α × β)
⊢ Option.map (uncurry f) x = map₂ f (Option.map Prod.fst x) (Option.map Prod.snd x)
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_2
β : Type u_1
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
f : α → β → γ
⊢ Option.map (uncurry f) none = map₂ f (Option.map Prod.fst none) (Option.map Prod.snd none)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_2
β : Type u_1
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
f : α → β → γ
val✝ : α × β
⊢ Option.map (uncurry f) (some val✝) = map₂ f (Option.map Prod.fst (some val✝)) (Option.map Prod.snd (some val✝))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
⊢ map₂ f (map₂ g a b) c = map₂ f' a (map₂ g' b c)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
⊢ map₂ f (map₂ g none b) c = map₂ f' none (map₂ g' b c)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝ : α
⊢ map₂ f (map₂ g (some val✝) b) c = map₂ f' (some val✝) (map₂ g' b c)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
⊢ map₂ f (map₂ g none none) c = map₂ f' none (map₂ g' none c)
[PROOFSTEP]
cases c
[GOAL]
case none.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝ : β
⊢ map₂ f (map₂ g none (some val✝)) c = map₂ f' none (map₂ g' (some val✝) c)
[PROOFSTEP]
cases c
[GOAL]
case some.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝ : α
⊢ map₂ f (map₂ g (some val✝) none) c = map₂ f' (some val✝) (map₂ g' none c)
[PROOFSTEP]
cases c
[GOAL]
case some.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝¹ : α
val✝ : β
⊢ map₂ f (map₂ g (some val✝¹) (some val✝)) c = map₂ f' (some val✝¹) (map₂ g' (some val✝) c)
[PROOFSTEP]
cases c
[GOAL]
case none.none.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
⊢ map₂ f (map₂ g none none) none = map₂ f' none (map₂ g' none none)
[PROOFSTEP]
simp [h_assoc]
[GOAL]
case none.none.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝ : γ
⊢ map₂ f (map₂ g none none) (some val✝) = map₂ f' none (map₂ g' none (some val✝))
[PROOFSTEP]
simp [h_assoc]
[GOAL]
case none.some.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝ : β
⊢ map₂ f (map₂ g none (some val✝)) none = map₂ f' none (map₂ g' (some val✝) none)
[PROOFSTEP]
simp [h_assoc]
[GOAL]
case none.some.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝¹ : β
val✝ : γ
⊢ map₂ f (map₂ g none (some val✝¹)) (some val✝) = map₂ f' none (map₂ g' (some val✝¹) (some val✝))
[PROOFSTEP]
simp [h_assoc]
[GOAL]
case some.none.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝ : α
⊢ map₂ f (map₂ g (some val✝) none) none = map₂ f' (some val✝) (map₂ g' none none)
[PROOFSTEP]
simp [h_assoc]
[GOAL]
case some.none.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝¹ : α
val✝ : γ
⊢ map₂ f (map₂ g (some val✝¹) none) (some val✝) = map₂ f' (some val✝¹) (map₂ g' none (some val✝))
[PROOFSTEP]
simp [h_assoc]
[GOAL]
case some.some.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝¹ : α
val✝ : β
⊢ map₂ f (map₂ g (some val✝¹) (some val✝)) none = map₂ f' (some val✝¹) (map₂ g' (some val✝) none)
[PROOFSTEP]
simp [h_assoc]
[GOAL]
case some.some.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
ε' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → ε' → ε
g' : β → γ → ε'
h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c)
val✝² : α
val✝¹ : β
val✝ : γ
⊢ map₂ f (map₂ g (some val✝²) (some val✝¹)) (some val✝) = map₂ f' (some val✝²) (map₂ g' (some val✝¹) (some val✝))
[PROOFSTEP]
simp [h_assoc]
[GOAL]
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
a : Option α
b : Option β
c : Option γ
g : β → α → γ
h_comm : ∀ (a : α) (b : β), f a b = g b a
⊢ map₂ f a b = map₂ g b a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
b : Option β
c : Option γ
g : β → α → γ
h_comm : ∀ (a : α) (b : β), f a b = g b a
⊢ map₂ f none b = map₂ g b none
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
b : Option β
c : Option γ
g : β → α → γ
h_comm : ∀ (a : α) (b : β), f a b = g b a
val✝ : α
⊢ map₂ f (some val✝) b = map₂ g b (some val✝)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
c : Option γ
g : β → α → γ
h_comm : ∀ (a : α) (b : β), f a b = g b a
⊢ map₂ f none none = map₂ g none none
[PROOFSTEP]
simp [h_comm]
[GOAL]
case none.some
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
c : Option γ
g : β → α → γ
h_comm : ∀ (a : α) (b : β), f a b = g b a
val✝ : β
⊢ map₂ f none (some val✝) = map₂ g (some val✝) none
[PROOFSTEP]
simp [h_comm]
[GOAL]
case some.none
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
c : Option γ
g : β → α → γ
h_comm : ∀ (a : α) (b : β), f a b = g b a
val✝ : α
⊢ map₂ f (some val✝) none = map₂ g none (some val✝)
[PROOFSTEP]
simp [h_comm]
[GOAL]
case some.some
α : Type u_2
β : Type u_3
γ : Type u_1
f : α → β → γ
c : Option γ
g : β → α → γ
h_comm : ∀ (a : α) (b : β), f a b = g b a
val✝¹ : α
val✝ : β
⊢ map₂ f (some val✝¹) (some val✝) = map₂ g (some val✝) (some val✝¹)
[PROOFSTEP]
simp [h_comm]
[GOAL]
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
⊢ map₂ f a (map₂ g b c) = map₂ g' b (map₂ f' a c)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
⊢ map₂ f none (map₂ g b c) = map₂ g' b (map₂ f' none c)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝ : α
⊢ map₂ f (some val✝) (map₂ g b c) = map₂ g' b (map₂ f' (some val✝) c)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
⊢ map₂ f none (map₂ g none c) = map₂ g' none (map₂ f' none c)
[PROOFSTEP]
cases c
[GOAL]
case none.some
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝ : β
⊢ map₂ f none (map₂ g (some val✝) c) = map₂ g' (some val✝) (map₂ f' none c)
[PROOFSTEP]
cases c
[GOAL]
case some.none
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝ : α
⊢ map₂ f (some val✝) (map₂ g none c) = map₂ g' none (map₂ f' (some val✝) c)
[PROOFSTEP]
cases c
[GOAL]
case some.some
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝¹ : α
val✝ : β
⊢ map₂ f (some val✝¹) (map₂ g (some val✝) c) = map₂ g' (some val✝) (map₂ f' (some val✝¹) c)
[PROOFSTEP]
cases c
[GOAL]
case none.none.none
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
⊢ map₂ f none (map₂ g none none) = map₂ g' none (map₂ f' none none)
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case none.none.some
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝ : γ
⊢ map₂ f none (map₂ g none (some val✝)) = map₂ g' none (map₂ f' none (some val✝))
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case none.some.none
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝ : β
⊢ map₂ f none (map₂ g (some val✝) none) = map₂ g' (some val✝) (map₂ f' none none)
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case none.some.some
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝¹ : β
val✝ : γ
⊢ map₂ f none (map₂ g (some val✝¹) (some val✝)) = map₂ g' (some val✝¹) (map₂ f' none (some val✝))
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case some.none.none
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝ : α
⊢ map₂ f (some val✝) (map₂ g none none) = map₂ g' none (map₂ f' (some val✝) none)
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case some.none.some
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝¹ : α
val✝ : γ
⊢ map₂ f (some val✝¹) (map₂ g none (some val✝)) = map₂ g' none (map₂ f' (some val✝¹) (some val✝))
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case some.some.none
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝¹ : α
val✝ : β
⊢ map₂ f (some val✝¹) (map₂ g (some val✝) none) = map₂ g' (some val✝) (map₂ f' (some val✝¹) none)
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case some.some.some
α : Type u_4
β : Type u_5
γ : Type u_6
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : α → δ → ε
g : β → γ → δ
f' : α → γ → δ'
g' : β → δ' → ε
h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c)
val✝² : α
val✝¹ : β
val✝ : γ
⊢ map₂ f (some val✝²) (map₂ g (some val✝¹) (some val✝)) = map₂ g' (some val✝¹) (map₂ f' (some val✝²) (some val✝))
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
⊢ map₂ f (map₂ g a b) c = map₂ g' (map₂ f' a c) b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
⊢ map₂ f (map₂ g none b) c = map₂ g' (map₂ f' none c) b
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝ : α
⊢ map₂ f (map₂ g (some val✝) b) c = map₂ g' (map₂ f' (some val✝) c) b
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
⊢ map₂ f (map₂ g none none) c = map₂ g' (map₂ f' none c) none
[PROOFSTEP]
cases c
[GOAL]
case none.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝ : β
⊢ map₂ f (map₂ g none (some val✝)) c = map₂ g' (map₂ f' none c) (some val✝)
[PROOFSTEP]
cases c
[GOAL]
case some.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝ : α
⊢ map₂ f (map₂ g (some val✝) none) c = map₂ g' (map₂ f' (some val✝) c) none
[PROOFSTEP]
cases c
[GOAL]
case some.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
c : Option γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝¹ : α
val✝ : β
⊢ map₂ f (map₂ g (some val✝¹) (some val✝)) c = map₂ g' (map₂ f' (some val✝¹) c) (some val✝)
[PROOFSTEP]
cases c
[GOAL]
case none.none.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
⊢ map₂ f (map₂ g none none) none = map₂ g' (map₂ f' none none) none
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case none.none.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝ : γ
⊢ map₂ f (map₂ g none none) (some val✝) = map₂ g' (map₂ f' none (some val✝)) none
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case none.some.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝ : β
⊢ map₂ f (map₂ g none (some val✝)) none = map₂ g' (map₂ f' none none) (some val✝)
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case none.some.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝¹ : β
val✝ : γ
⊢ map₂ f (map₂ g none (some val✝¹)) (some val✝) = map₂ g' (map₂ f' none (some val✝)) (some val✝¹)
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case some.none.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝ : α
⊢ map₂ f (map₂ g (some val✝) none) none = map₂ g' (map₂ f' (some val✝) none) none
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case some.none.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝¹ : α
val✝ : γ
⊢ map₂ f (map₂ g (some val✝¹) none) (some val✝) = map₂ g' (map₂ f' (some val✝¹) (some val✝)) none
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case some.some.none
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝¹ : α
val✝ : β
⊢ map₂ f (map₂ g (some val✝¹) (some val✝)) none = map₂ g' (map₂ f' (some val✝¹) none) (some val✝)
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case some.some.some
α : Type u_5
β : Type u_6
γ : Type u_4
f✝ : α → β → γ
δ : Type u_1
ε : Type u_2
δ' : Type u_3
f : δ → γ → ε
g : α → β → δ
f' : α → γ → δ'
g' : δ' → β → ε
h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b
val✝² : α
val✝¹ : β
val✝ : γ
⊢ map₂ f (map₂ g (some val✝²) (some val✝¹)) (some val✝) = map₂ g' (map₂ f' (some val✝²) (some val✝)) (some val✝¹)
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
α' : Type u_2
β' : Type u_3
g : γ → δ
f' : α' → β' → δ
g₁ : α → α'
g₂ : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b)
⊢ Option.map g (map₂ f a b) = map₂ f' (Option.map g₁ a) (Option.map g₂ b)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
α' : Type u_2
β' : Type u_3
g : γ → δ
f' : α' → β' → δ
g₁ : α → α'
g₂ : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b)
⊢ Option.map g (map₂ f none b) = map₂ f' (Option.map g₁ none) (Option.map g₂ b)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
α' : Type u_2
β' : Type u_3
g : γ → δ
f' : α' → β' → δ
g₁ : α → α'
g₂ : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b)
val✝ : α
⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (Option.map g₁ (some val✝)) (Option.map g₂ b)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
β' : Type u_3
g : γ → δ
f' : α' → β' → δ
g₁ : α → α'
g₂ : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b)
⊢ Option.map g (map₂ f none none) = map₂ f' (Option.map g₁ none) (Option.map g₂ none)
[PROOFSTEP]
simp [h_distrib]
[GOAL]
case none.some
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
β' : Type u_3
g : γ → δ
f' : α' → β' → δ
g₁ : α → α'
g₂ : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b)
val✝ : β
⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (Option.map g₁ none) (Option.map g₂ (some val✝))
[PROOFSTEP]
simp [h_distrib]
[GOAL]
case some.none
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
β' : Type u_3
g : γ → δ
f' : α' → β' → δ
g₁ : α → α'
g₂ : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b)
val✝ : α
⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (Option.map g₁ (some val✝)) (Option.map g₂ none)
[PROOFSTEP]
simp [h_distrib]
[GOAL]
case some.some
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
β' : Type u_3
g : γ → δ
f' : α' → β' → δ
g₁ : α → α'
g₂ : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b)
val✝¹ : α
val✝ : β
⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (Option.map g₁ (some val✝¹)) (Option.map g₂ (some val✝))
[PROOFSTEP]
simp [h_distrib]
[GOAL]
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : α' → β → δ
g' : α → α'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b
⊢ Option.map g (map₂ f a b) = map₂ f' (Option.map g' a) b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : α' → β → δ
g' : α → α'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b
⊢ Option.map g (map₂ f none b) = map₂ f' (Option.map g' none) b
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : α' → β → δ
g' : α → α'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b
val✝ : α
⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (Option.map g' (some val✝)) b
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : α' → β → δ
g' : α → α'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b
⊢ Option.map g (map₂ f none none) = map₂ f' (Option.map g' none) none
[PROOFSTEP]
simp [h_distrib]
[GOAL]
case none.some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : α' → β → δ
g' : α → α'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b
val✝ : β
⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (Option.map g' none) (some val✝)
[PROOFSTEP]
simp [h_distrib]
[GOAL]
case some.none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : α' → β → δ
g' : α → α'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b
val✝ : α
⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (Option.map g' (some val✝)) none
[PROOFSTEP]
simp [h_distrib]
[GOAL]
case some.some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : α' → β → δ
g' : α → α'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b
val✝¹ : α
val✝ : β
⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (Option.map g' (some val✝¹)) (some val✝)
[PROOFSTEP]
simp [h_distrib]
[GOAL]
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : α → β' → δ
g' : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b)
⊢ Option.map g (map₂ f a b) = map₂ f' a (Option.map g' b)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : α → β' → δ
g' : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b)
⊢ Option.map g (map₂ f none b) = map₂ f' none (Option.map g' b)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : α → β' → δ
g' : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b)
val✝ : α
⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (some val✝) (Option.map g' b)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : α → β' → δ
g' : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b)
⊢ Option.map g (map₂ f none none) = map₂ f' none (Option.map g' none)
[PROOFSTEP]
simp [h_distrib]
[GOAL]
case none.some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : α → β' → δ
g' : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b)
val✝ : β
⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' none (Option.map g' (some val✝))
[PROOFSTEP]
simp [h_distrib]
[GOAL]
case some.none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : α → β' → δ
g' : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b)
val✝ : α
⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (some val✝) (Option.map g' none)
[PROOFSTEP]
simp [h_distrib]
[GOAL]
case some.some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : α → β' → δ
g' : β → β'
h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b)
val✝¹ : α
val✝ : β
⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (some val✝¹) (Option.map g' (some val✝))
[PROOFSTEP]
simp [h_distrib]
[GOAL]
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : α → β → δ
g' : δ → γ
h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b)
⊢ map₂ f (Option.map g a) b = Option.map g' (map₂ f' a b)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
b : Option β
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : α → β → δ
g' : δ → γ
h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b)
⊢ map₂ f (Option.map g none) b = Option.map g' (map₂ f' none b)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
b : Option β
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : α → β → δ
g' : δ → γ
h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b)
val✝ : α
⊢ map₂ f (Option.map g (some val✝)) b = Option.map g' (map₂ f' (some val✝) b)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : α → β → δ
g' : δ → γ
h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b)
⊢ map₂ f (Option.map g none) none = Option.map g' (map₂ f' none none)
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case none.some
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : α → β → δ
g' : δ → γ
h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b)
val✝ : β
⊢ map₂ f (Option.map g none) (some val✝) = Option.map g' (map₂ f' none (some val✝))
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case some.none
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : α → β → δ
g' : δ → γ
h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b)
val✝ : α
⊢ map₂ f (Option.map g (some val✝)) none = Option.map g' (map₂ f' (some val✝) none)
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
case some.some
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : α → β → δ
g' : δ → γ
h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b)
val✝¹ : α
val✝ : β
⊢ map₂ f (Option.map g (some val✝¹)) (some val✝) = Option.map g' (map₂ f' (some val✝¹) (some val✝))
[PROOFSTEP]
simp [h_left_comm]
[GOAL]
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : α → β → δ
g' : δ → γ
h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b)
⊢ map₂ f a (Option.map g b) = Option.map g' (map₂ f' a b)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
b : Option β
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : α → β → δ
g' : δ → γ
h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b)
⊢ map₂ f none (Option.map g b) = Option.map g' (map₂ f' none b)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
b : Option β
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : α → β → δ
g' : δ → γ
h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b)
val✝ : α
⊢ map₂ f (some val✝) (Option.map g b) = Option.map g' (map₂ f' (some val✝) b)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : α → β → δ
g' : δ → γ
h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b)
⊢ map₂ f none (Option.map g none) = Option.map g' (map₂ f' none none)
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case none.some
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : α → β → δ
g' : δ → γ
h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b)
val✝ : β
⊢ map₂ f none (Option.map g (some val✝)) = Option.map g' (map₂ f' none (some val✝))
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case some.none
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : α → β → δ
g' : δ → γ
h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b)
val✝ : α
⊢ map₂ f (some val✝) (Option.map g none) = Option.map g' (map₂ f' (some val✝) none)
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
case some.some
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : α → β → δ
g' : δ → γ
h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b)
val✝¹ : α
val✝ : β
⊢ map₂ f (some val✝¹) (Option.map g (some val✝)) = Option.map g' (map₂ f' (some val✝¹) (some val✝))
[PROOFSTEP]
simp [h_right_comm]
[GOAL]
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
β' : Type u_2
α' : Type u_3
g : γ → δ
f' : β' → α' → δ
g₁ : β → β'
g₂ : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a)
⊢ Option.map g (map₂ f a b) = map₂ f' (Option.map g₁ b) (Option.map g₂ a)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
β' : Type u_2
α' : Type u_3
g : γ → δ
f' : β' → α' → δ
g₁ : β → β'
g₂ : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a)
⊢ Option.map g (map₂ f none b) = map₂ f' (Option.map g₁ b) (Option.map g₂ none)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
β' : Type u_2
α' : Type u_3
g : γ → δ
f' : β' → α' → δ
g₁ : β → β'
g₂ : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a)
val✝ : α
⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (Option.map g₁ b) (Option.map g₂ (some val✝))
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
α' : Type u_3
g : γ → δ
f' : β' → α' → δ
g₁ : β → β'
g₂ : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a)
⊢ Option.map g (map₂ f none none) = map₂ f' (Option.map g₁ none) (Option.map g₂ none)
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
case none.some
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
α' : Type u_3
g : γ → δ
f' : β' → α' → δ
g₁ : β → β'
g₂ : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a)
val✝ : β
⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (Option.map g₁ (some val✝)) (Option.map g₂ none)
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
case some.none
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
α' : Type u_3
g : γ → δ
f' : β' → α' → δ
g₁ : β → β'
g₂ : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a)
val✝ : α
⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (Option.map g₁ none) (Option.map g₂ (some val✝))
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
case some.some
α : Type u_5
β : Type u_6
γ : Type u_4
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
α' : Type u_3
g : γ → δ
f' : β' → α' → δ
g₁ : β → β'
g₂ : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a)
val✝¹ : α
val✝ : β
⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (Option.map g₁ (some val✝)) (Option.map g₂ (some val✝¹))
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : β' → α → δ
g' : β → β'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a
⊢ Option.map g (map₂ f a b) = map₂ f' (Option.map g' b) a
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : β' → α → δ
g' : β → β'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a
⊢ Option.map g (map₂ f none b) = map₂ f' (Option.map g' b) none
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : β' → α → δ
g' : β → β'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a
val✝ : α
⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (Option.map g' b) (some val✝)
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : β' → α → δ
g' : β → β'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a
⊢ Option.map g (map₂ f none none) = map₂ f' (Option.map g' none) none
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
case none.some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : β' → α → δ
g' : β → β'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a
val✝ : β
⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (Option.map g' (some val✝)) none
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
case some.none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : β' → α → δ
g' : β → β'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a
val✝ : α
⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (Option.map g' none) (some val✝)
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
case some.some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
β' : Type u_2
g : γ → δ
f' : β' → α → δ
g' : β → β'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a
val✝¹ : α
val✝ : β
⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (Option.map g' (some val✝)) (some val✝¹)
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
a : Option α
b : Option β
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : β → α' → δ
g' : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a)
⊢ Option.map g (map₂ f a b) = map₂ f' b (Option.map g' a)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : β → α' → δ
g' : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a)
⊢ Option.map g (map₂ f none b) = map₂ f' b (Option.map g' none)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
b : Option β
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : β → α' → δ
g' : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a)
val✝ : α
⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' b (Option.map g' (some val✝))
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : β → α' → δ
g' : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a)
⊢ Option.map g (map₂ f none none) = map₂ f' none (Option.map g' none)
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
case none.some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : β → α' → δ
g' : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a)
val✝ : β
⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (some val✝) (Option.map g' none)
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
case some.none
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : β → α' → δ
g' : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a)
val✝ : α
⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' none (Option.map g' (some val✝))
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
case some.some
α : Type u_4
β : Type u_5
γ : Type u_3
f : α → β → γ
c : Option γ
δ : Type u_1
α' : Type u_2
g : γ → δ
f' : β → α' → δ
g' : α → α'
h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a)
val✝¹ : α
val✝ : β
⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (some val✝) (Option.map g' (some val✝¹))
[PROOFSTEP]
simp [h_antidistrib]
[GOAL]
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : β → α → δ
g' : δ → γ
h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a)
⊢ map₂ f (Option.map g a) b = Option.map g' (map₂ f' b a)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
b : Option β
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : β → α → δ
g' : δ → γ
h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a)
⊢ map₂ f (Option.map g none) b = Option.map g' (map₂ f' b none)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
b : Option β
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : β → α → δ
g' : δ → γ
h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a)
val✝ : α
⊢ map₂ f (Option.map g (some val✝)) b = Option.map g' (map₂ f' b (some val✝))
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : β → α → δ
g' : δ → γ
h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a)
⊢ map₂ f (Option.map g none) none = Option.map g' (map₂ f' none none)
[PROOFSTEP]
simp [h_left_anticomm]
[GOAL]
case none.some
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : β → α → δ
g' : δ → γ
h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a)
val✝ : β
⊢ map₂ f (Option.map g none) (some val✝) = Option.map g' (map₂ f' (some val✝) none)
[PROOFSTEP]
simp [h_left_anticomm]
[GOAL]
case some.none
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : β → α → δ
g' : δ → γ
h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a)
val✝ : α
⊢ map₂ f (Option.map g (some val✝)) none = Option.map g' (map₂ f' none (some val✝))
[PROOFSTEP]
simp [h_left_anticomm]
[GOAL]
case some.some
α : Type u_5
β : Type u_4
γ : Type u_3
f✝ : α → β → γ
c : Option γ
α' : Type u_1
δ : Type u_2
f : α' → β → γ
g : α → α'
f' : β → α → δ
g' : δ → γ
h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a)
val✝¹ : α
val✝ : β
⊢ map₂ f (Option.map g (some val✝¹)) (some val✝) = Option.map g' (map₂ f' (some val✝) (some val✝¹))
[PROOFSTEP]
simp [h_left_anticomm]
[GOAL]
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
a : Option α
b : Option β
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : β → α → δ
g' : δ → γ
h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a)
⊢ map₂ f a (Option.map g b) = Option.map g' (map₂ f' b a)
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
b : Option β
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : β → α → δ
g' : δ → γ
h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a)
⊢ map₂ f none (Option.map g b) = Option.map g' (map₂ f' b none)
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
b : Option β
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : β → α → δ
g' : δ → γ
h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a)
val✝ : α
⊢ map₂ f (some val✝) (Option.map g b) = Option.map g' (map₂ f' b (some val✝))
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : β → α → δ
g' : δ → γ
h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a)
⊢ map₂ f none (Option.map g none) = Option.map g' (map₂ f' none none)
[PROOFSTEP]
simp [h_right_anticomm]
[GOAL]
case none.some
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : β → α → δ
g' : δ → γ
h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a)
val✝ : β
⊢ map₂ f none (Option.map g (some val✝)) = Option.map g' (map₂ f' (some val✝) none)
[PROOFSTEP]
simp [h_right_anticomm]
[GOAL]
case some.none
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : β → α → δ
g' : δ → γ
h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a)
val✝ : α
⊢ map₂ f (some val✝) (Option.map g none) = Option.map g' (map₂ f' none (some val✝))
[PROOFSTEP]
simp [h_right_anticomm]
[GOAL]
case some.some
α : Type u_4
β : Type u_5
γ : Type u_3
f✝ : α → β → γ
c : Option γ
β' : Type u_1
δ : Type u_2
f : α → β' → γ
g : β → β'
f' : β → α → δ
g' : δ → γ
h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a)
val✝¹ : α
val✝ : β
⊢ map₂ f (some val✝¹) (Option.map g (some val✝)) = Option.map g' (map₂ f' (some val✝) (some val✝¹))
[PROOFSTEP]
simp [h_right_anticomm]
[GOAL]
α : Type u_2
β : Type u_1
γ : Type ?u.32843
f✝ : α → β → γ
a✝ : Option α
b : Option β
c : Option γ
f : α → β → β
a : α
h : ∀ (b : β), f a b = b
o : Option β
⊢ map₂ f (some a) o = o
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_2
β : Type u_1
γ : Type ?u.32843
f✝ : α → β → γ
a✝ : Option α
b : Option β
c : Option γ
f : α → β → β
a : α
h : ∀ (b : β), f a b = b
⊢ map₂ f (some a) none = none
case some
α : Type u_2
β : Type u_1
γ : Type ?u.32843
f✝ : α → β → γ
a✝ : Option α
b : Option β
c : Option γ
f : α → β → β
a : α
h : ∀ (b : β), f a b = b
val✝ : β
⊢ map₂ f (some a) (some val✝) = some val✝
[PROOFSTEP]
exacts [rfl, congr_arg some (h _)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type ?u.33033
f✝ : α → β → γ
a : Option α
b✝ : Option β
c : Option γ
f : α → β → α
b : β
h : ∀ (a : α), f a b = a
o : Option α
⊢ map₂ f o (some b) = o
[PROOFSTEP]
simp [h, map₂]
|
{"mathlib_filename": "Mathlib.Data.Option.NAry", "llama_tokens": 29634}
|
[GOAL]
n m : ℕ
F : TypeVec n → Type u_1
fF : MvFunctor F
q : MvQPF F
G : Fin2 n → TypeVec m → Type u
fG : (i : Fin2 n) → MvFunctor (G i)
q' : (i : Fin2 n) → MvQPF (G i)
α β : TypeVec m
f : α ⟹ β
⊢ ∀ {α : TypeVec m} (x : Comp F G α),
(fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get)
((fun {α} => comp.mk ∘ repr ∘ (MvFunctor.map fun i => repr) ∘ Comp.get) x) =
x
[PROOFSTEP]
intros
[GOAL]
n m : ℕ
F : TypeVec n → Type u_1
fF : MvFunctor F
q : MvQPF F
G : Fin2 n → TypeVec m → Type u
fG : (i : Fin2 n) → MvFunctor (G i)
q' : (i : Fin2 n) → MvQPF (G i)
α β : TypeVec m
f : α ⟹ β
α✝ : TypeVec m
x✝ : Comp F G α✝
⊢ (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get)
((fun {α} => comp.mk ∘ repr ∘ (MvFunctor.map fun i => repr) ∘ Comp.get) x✝) =
x✝
[PROOFSTEP]
simp only [(· ∘ ·), comp.get_mk, abs_repr, map_map, TypeVec.comp, MvFunctor.id_map', Comp.mk_get]
[GOAL]
n m : ℕ
F : TypeVec n → Type u_1
fF : MvFunctor F
q : MvQPF F
G : Fin2 n → TypeVec m → Type u
fG : (i : Fin2 n) → MvFunctor (G i)
q' : (i : Fin2 n) → MvQPF (G i)
α β : TypeVec m
f : α ⟹ β
⊢ ∀ {α β : TypeVec m} (f : α ⟹ β) (p : Obj (comp (P F) fun i => P (G i)) α),
(fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) (f <$$> p) =
f <$$> (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) p
[PROOFSTEP]
intros
[GOAL]
n m : ℕ
F : TypeVec n → Type u_1
fF : MvFunctor F
q : MvQPF F
G : Fin2 n → TypeVec m → Type u
fG : (i : Fin2 n) → MvFunctor (G i)
q' : (i : Fin2 n) → MvQPF (G i)
α β : TypeVec m
f : α ⟹ β
α✝ β✝ : TypeVec m
f✝ : α✝ ⟹ β✝
p✝ : Obj (comp (P F) fun i => P (G i)) α✝
⊢ (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) (f✝ <$$> p✝) =
f✝ <$$> (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) p✝
[PROOFSTEP]
simp only [(· ∘ ·)]
[GOAL]
n m : ℕ
F : TypeVec n → Type u_1
fF : MvFunctor F
q : MvQPF F
G : Fin2 n → TypeVec m → Type u
fG : (i : Fin2 n) → MvFunctor (G i)
q' : (i : Fin2 n) → MvQPF (G i)
α β : TypeVec m
f : α ⟹ β
α✝ β✝ : TypeVec m
f✝ : α✝ ⟹ β✝
p✝ : Obj (comp (P F) fun i => P (G i)) α✝
⊢ Comp.mk ((fun i => abs) <$$> abs (comp.get (f✝ <$$> p✝))) = f✝ <$$> Comp.mk ((fun i => abs) <$$> abs (comp.get p✝))
[PROOFSTEP]
rw [← abs_map]
[GOAL]
n m : ℕ
F : TypeVec n → Type u_1
fF : MvFunctor F
q : MvQPF F
G : Fin2 n → TypeVec m → Type u
fG : (i : Fin2 n) → MvFunctor (G i)
q' : (i : Fin2 n) → MvQPF (G i)
α β : TypeVec m
f : α ⟹ β
α✝ β✝ : TypeVec m
f✝ : α✝ ⟹ β✝
p✝ : Obj (comp (P F) fun i => P (G i)) α✝
⊢ Comp.mk (abs ((fun i => abs) <$$> comp.get (f✝ <$$> p✝))) = f✝ <$$> Comp.mk ((fun i => abs) <$$> abs (comp.get p✝))
[PROOFSTEP]
simp only [comp.get_map, map_map, TypeVec.comp, abs_map, map_mk]
|
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Comp", "llama_tokens": 1511}
|
[GOAL]
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
⊢ Lex r s a b ↔ r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
⊢ Lex r s a b → r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd
[PROOFSTEP]
rintro (⟨a, b, hij⟩ | ⟨a, b, hab⟩)
[GOAL]
case mp.left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i✝ j✝ : ι
a : α i✝
b : α j✝
hij : r i✝ j✝
⊢ r { fst := i✝, snd := a }.fst { fst := j✝, snd := b }.fst ∨
∃ h, s { fst := j✝, snd := b }.fst (h ▸ { fst := i✝, snd := a }.snd) { fst := j✝, snd := b }.snd
[PROOFSTEP]
exact Or.inl hij
[GOAL]
case mp.right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i✝ : ι
a b : α i✝
hab : s i✝ a b
⊢ r { fst := i✝, snd := a }.fst { fst := i✝, snd := b }.fst ∨
∃ h, s { fst := i✝, snd := b }.fst (h ▸ { fst := i✝, snd := a }.snd) { fst := i✝, snd := b }.snd
[PROOFSTEP]
exact Or.inr ⟨rfl, hab⟩
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
⊢ (r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd) → Lex r s a b
[PROOFSTEP]
obtain ⟨i, a⟩ := a
[GOAL]
case mpr.mk
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
b : (i : ι) × α i
i : ι
a : α i
⊢ (r { fst := i, snd := a }.fst b.fst ∨ ∃ h, s b.fst (h ▸ { fst := i, snd := a }.snd) b.snd) →
Lex r s { fst := i, snd := a } b
[PROOFSTEP]
obtain ⟨j, b⟩ := b
[GOAL]
case mpr.mk.mk
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i : ι
a : α i
j : ι
b : α j
⊢ (r { fst := i, snd := a }.fst { fst := j, snd := b }.fst ∨
∃ h, s { fst := j, snd := b }.fst (h ▸ { fst := i, snd := a }.snd) { fst := j, snd := b }.snd) →
Lex r s { fst := i, snd := a } { fst := j, snd := b }
[PROOFSTEP]
dsimp only
[GOAL]
case mpr.mk.mk
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i : ι
a : α i
j : ι
b : α j
⊢ (r i j ∨ ∃ h, s j (h ▸ a) b) → Lex r s { fst := i, snd := a } { fst := j, snd := b }
[PROOFSTEP]
rintro (h | ⟨rfl, h⟩)
[GOAL]
case mpr.mk.mk.inl
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i : ι
a : α i
j : ι
b : α j
h : r i j
⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b }
[PROOFSTEP]
exact Lex.left _ _ h
[GOAL]
case mpr.mk.mk.inr.intro
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i : ι
a b : α i
h : s i ((_ : i = i) ▸ a) b
⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b }
[PROOFSTEP]
exact Lex.right _ _ h
[GOAL]
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
hr : ∀ (a b : ι), r₁ a b → r₂ a b
hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b
a b : (i : ι) × α i
h : Lex r₁ s₁ a b
⊢ Lex r₂ s₂ a b
[PROOFSTEP]
obtain ⟨a, b, hij⟩ | ⟨a, b, hab⟩ := h
[GOAL]
case left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
hr : ∀ (a b : ι), r₁ a b → r₂ a b
hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b
i✝ j✝ : ι
a : α i✝
b : α j✝
hij : r₁ i✝ j✝
⊢ Lex r₂ s₂ { fst := i✝, snd := a } { fst := j✝, snd := b }
[PROOFSTEP]
exact Lex.left _ _ (hr _ _ hij)
[GOAL]
case right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
hr : ∀ (a b : ι), r₁ a b → r₂ a b
hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b
i✝ : ι
a b : α i✝
hab : s₁ i✝ a b
⊢ Lex r₂ s₂ { fst := i✝, snd := a } { fst := i✝, snd := b }
[PROOFSTEP]
exact Lex.right _ _ (hs _ _ _ hab)
[GOAL]
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
⊢ Lex (Function.swap r) s a b ↔ Lex r (fun i => Function.swap (s i)) b a
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
⊢ Lex (Function.swap r) s a b → Lex r (fun i => Function.swap (s i)) b a
[PROOFSTEP]
rintro (⟨a, b, h⟩ | ⟨a, b, h⟩)
[GOAL]
case mp.left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i✝ j✝ : ι
a : α i✝
b : α j✝
h : Function.swap r i✝ j✝
⊢ Lex r (fun i => Function.swap (s i)) { fst := j✝, snd := b } { fst := i✝, snd := a }
case mp.right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i✝ : ι
a b : α i✝
h : s i✝ a b
⊢ Lex r (fun i => Function.swap (s i)) { fst := i✝, snd := b } { fst := i✝, snd := a }
[PROOFSTEP]
exacts [Lex.left _ _ h, Lex.right _ _ h]
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
⊢ Lex r (fun i => Function.swap (s i)) b a → Lex (Function.swap r) s a b
[PROOFSTEP]
rintro (⟨a, b, h⟩ | ⟨a, b, h⟩)
[GOAL]
case mpr.left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i✝ j✝ : ι
a : α i✝
b : α j✝
h : r i✝ j✝
⊢ Lex (Function.swap r) s { fst := j✝, snd := b } { fst := i✝, snd := a }
case mpr.right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i✝ : ι
a b : α i✝
h : Function.swap (s i✝) a b
⊢ Lex (Function.swap r) s { fst := i✝, snd := b } { fst := i✝, snd := a }
[PROOFSTEP]
exacts [Lex.left _ _ h, Lex.right _ _ h]
[GOAL]
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
inst✝¹ : IsIrrefl ι r
inst✝ : ∀ (i : ι), IsIrrefl (α i) (s i)
⊢ ∀ (a : (i : ι) × α i), ¬Lex r s a a
[PROOFSTEP]
rintro _ (⟨a, b, hi⟩ | ⟨a, b, ha⟩)
[GOAL]
case left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b : (i : ι) × α i
inst✝¹ : IsIrrefl ι r
inst✝ : ∀ (i : ι), IsIrrefl (α i) (s i)
i✝ : ι
a : α i✝
hi : r i✝ i✝
⊢ False
[PROOFSTEP]
exact irrefl _ hi
[GOAL]
case right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b : (i : ι) × α i
inst✝¹ : IsIrrefl ι r
inst✝ : ∀ (i : ι), IsIrrefl (α i) (s i)
i✝ : ι
a : α i✝
ha : s i✝ a a
⊢ False
[PROOFSTEP]
exact irrefl _ ha
[GOAL]
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
inst✝¹ : IsTrans ι r
inst✝ : ∀ (i : ι), IsTrans (α i) (s i)
⊢ ∀ (a b c : (i : ι) × α i), Lex r s a b → Lex r s b c → Lex r s a c
[PROOFSTEP]
rintro _ _ _ (⟨a, b, hij⟩ | ⟨a, b, hab⟩) (⟨_, c, hk⟩ | ⟨_, c, hc⟩)
[GOAL]
case left.left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrans ι r
inst✝ : ∀ (i : ι), IsTrans (α i) (s i)
i✝ j✝¹ : ι
a : α i✝
b : α j✝¹
hij : r i✝ j✝¹
j✝ : ι
c : α j✝
hk : r j✝¹ j✝
⊢ Lex r s { fst := i✝, snd := a } { fst := j✝, snd := c }
[PROOFSTEP]
exact Lex.left _ _ (_root_.trans hij hk)
[GOAL]
case left.right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrans ι r
inst✝ : ∀ (i : ι), IsTrans (α i) (s i)
i✝ j✝ : ι
a : α i✝
b : α j✝
hij : r i✝ j✝
c : α j✝
hc : s j✝ b c
⊢ Lex r s { fst := i✝, snd := a } { fst := j✝, snd := c }
[PROOFSTEP]
exact Lex.left _ _ hij
[GOAL]
case right.left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrans ι r
inst✝ : ∀ (i : ι), IsTrans (α i) (s i)
i✝ : ι
a b : α i✝
hab : s i✝ a b
j✝ : ι
c : α j✝
hk : r i✝ j✝
⊢ Lex r s { fst := i✝, snd := a } { fst := j✝, snd := c }
[PROOFSTEP]
exact Lex.left _ _ hk
[GOAL]
case right.right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrans ι r
inst✝ : ∀ (i : ι), IsTrans (α i) (s i)
i✝ : ι
a b : α i✝
hab : s i✝ a b
c : α i✝
hc : s i✝ b c
⊢ Lex r s { fst := i✝, snd := a } { fst := i✝, snd := c }
[PROOFSTEP]
exact Lex.right _ _ (_root_.trans hab hc)
[GOAL]
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
inst✝¹ : IsSymm ι r
inst✝ : ∀ (i : ι), IsSymm (α i) (s i)
⊢ ∀ (a b : (i : ι) × α i), Lex r s a b → Lex r s b a
[PROOFSTEP]
rintro _ _ (⟨a, b, hij⟩ | ⟨a, b, hab⟩)
[GOAL]
case left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsSymm ι r
inst✝ : ∀ (i : ι), IsSymm (α i) (s i)
i✝ j✝ : ι
a : α i✝
b : α j✝
hij : r i✝ j✝
⊢ Lex r s { fst := j✝, snd := b } { fst := i✝, snd := a }
[PROOFSTEP]
exact Lex.left _ _ (symm hij)
[GOAL]
case right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsSymm ι r
inst✝ : ∀ (i : ι), IsSymm (α i) (s i)
i✝ : ι
a b : α i✝
hab : s i✝ a b
⊢ Lex r s { fst := i✝, snd := b } { fst := i✝, snd := a }
[PROOFSTEP]
exact Lex.right _ _ (symm hab)
[GOAL]
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
inst✝¹ : IsAsymm ι r
inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i)
⊢ ∀ (a b : (i : ι) × α i), Lex r s a b → Lex r s b a → a = b
[PROOFSTEP]
rintro _ _ (⟨a, b, hij⟩ | ⟨a, b, hab⟩) (⟨_, _, hji⟩ | ⟨_, _, hba⟩)
[GOAL]
case left.left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsAsymm ι r
inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i)
i✝ j✝ : ι
a : α i✝
b : α j✝
hij : r i✝ j✝
hji : r j✝ i✝
⊢ { fst := i✝, snd := a } = { fst := j✝, snd := b }
[PROOFSTEP]
exact (asymm hij hji).elim
[GOAL]
case left.right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsAsymm ι r
inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i)
i✝ : ι
a b : α i✝
hij : r i✝ i✝
hba : s i✝ b a
⊢ { fst := i✝, snd := a } = { fst := i✝, snd := b }
[PROOFSTEP]
exact (irrefl _ hij).elim
[GOAL]
case right.left
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsAsymm ι r
inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i)
i✝ : ι
a b : α i✝
hab : s i✝ a b
hji : r i✝ i✝
⊢ { fst := i✝, snd := a } = { fst := i✝, snd := b }
[PROOFSTEP]
exact (irrefl _ hji).elim
[GOAL]
case right.right
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsAsymm ι r
inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i)
i✝ : ι
a b : α i✝
hab : s i✝ a b
hba : s i✝ b a
⊢ { fst := i✝, snd := a } = { fst := i✝, snd := b }
[PROOFSTEP]
exact ext rfl (heq_of_eq $ antisymm hab hba)
[GOAL]
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTotal (α i) (s i)
⊢ ∀ (a b : (i : ι) × α i), Lex r s a b ∨ Lex r s b a
[PROOFSTEP]
rintro ⟨i, a⟩ ⟨j, b⟩
[GOAL]
case mk.mk
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTotal (α i) (s i)
i : ι
a : α i
j : ι
b : α j
⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a }
[PROOFSTEP]
obtain hij | rfl | hji := trichotomous_of r i j
[GOAL]
case mk.mk.inl
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTotal (α i) (s i)
i : ι
a : α i
j : ι
b : α j
hij : r i j
⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a }
[PROOFSTEP]
exact Or.inl (Lex.left _ _ hij)
[GOAL]
case mk.mk.inr.inl
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTotal (α i) (s i)
i : ι
a b : α i
⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a }
[PROOFSTEP]
obtain hab | hba := total_of (s i) a b
[GOAL]
case mk.mk.inr.inl.inl
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTotal (α i) (s i)
i : ι
a b : α i
hab : s i a b
⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a }
[PROOFSTEP]
exact Or.inl (Lex.right _ _ hab)
[GOAL]
case mk.mk.inr.inl.inr
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTotal (α i) (s i)
i : ι
a b : α i
hba : s i b a
⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a }
[PROOFSTEP]
exact Or.inr (Lex.right _ _ hba)
[GOAL]
case mk.mk.inr.inr
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTotal (α i) (s i)
i : ι
a : α i
j : ι
b : α j
hji : r j i
⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a }
[PROOFSTEP]
exact Or.inr (Lex.left _ _ hji)
[GOAL]
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i)
⊢ ∀ (a b : (i : ι) × α i), Lex r s a b ∨ a = b ∨ Lex r s b a
[PROOFSTEP]
rintro ⟨i, a⟩ ⟨j, b⟩
[GOAL]
case mk.mk
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i)
i : ι
a : α i
j : ι
b : α j
⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨
{ fst := i, snd := a } = { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a }
[PROOFSTEP]
obtain hij | rfl | hji := trichotomous_of r i j
[GOAL]
case mk.mk.inl
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i)
i : ι
a : α i
j : ι
b : α j
hij : r i j
⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨
{ fst := i, snd := a } = { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a }
[PROOFSTEP]
exact Or.inl (Lex.left _ _ hij)
[GOAL]
case mk.mk.inr.inl
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i)
i : ι
a b : α i
⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨
{ fst := i, snd := a } = { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a }
[PROOFSTEP]
obtain hab | rfl | hba := trichotomous_of (s i) a b
[GOAL]
case mk.mk.inr.inl.inl
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i)
i : ι
a b : α i
hab : s i a b
⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨
{ fst := i, snd := a } = { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a }
[PROOFSTEP]
exact Or.inl (Lex.right _ _ hab)
[GOAL]
case mk.mk.inr.inl.inr.inl
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i)
i : ι
a : α i
⊢ Lex r s { fst := i, snd := a } { fst := i, snd := a } ∨
{ fst := i, snd := a } = { fst := i, snd := a } ∨ Lex r s { fst := i, snd := a } { fst := i, snd := a }
[PROOFSTEP]
exact Or.inr (Or.inl rfl)
[GOAL]
case mk.mk.inr.inl.inr.inr
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i)
i : ι
a b : α i
hba : s i b a
⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨
{ fst := i, snd := a } = { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a }
[PROOFSTEP]
exact Or.inr (Or.inr $ Lex.right _ _ hba)
[GOAL]
case mk.mk.inr.inr
ι : Type u_1
α : ι → Type u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a✝ b✝ : (i : ι) × α i
inst✝¹ : IsTrichotomous ι r
inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i)
i : ι
a : α i
j : ι
b : α j
hji : r j i
⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨
{ fst := i, snd := a } = { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a }
[PROOFSTEP]
exact Or.inr (Or.inr $ Lex.left _ _ hji)
[GOAL]
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) ×' α i
⊢ Lex r s a b ↔ r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) ×' α i
⊢ Lex r s a b → r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd
[PROOFSTEP]
rintro (⟨a, b, hij⟩ | ⟨i, hab⟩)
[GOAL]
case mp.left
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a₁✝ : ι
a : α a₁✝
a₂✝ : ι
b : α a₂✝
hij : r a₁✝ a₂✝
⊢ r { fst := a₁✝, snd := a }.fst { fst := a₂✝, snd := b }.fst ∨
∃ h, s { fst := a₂✝, snd := b }.fst (h ▸ { fst := a₁✝, snd := a }.snd) { fst := a₂✝, snd := b }.snd
[PROOFSTEP]
exact Or.inl hij
[GOAL]
case mp.right
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i : ι
b₁✝ b₂✝ : α i
hab : s i b₁✝ b₂✝
⊢ r { fst := i, snd := b₁✝ }.fst { fst := i, snd := b₂✝ }.fst ∨
∃ h, s { fst := i, snd := b₂✝ }.fst (h ▸ { fst := i, snd := b₁✝ }.snd) { fst := i, snd := b₂✝ }.snd
[PROOFSTEP]
exact Or.inr ⟨rfl, hab⟩
[GOAL]
case mpr
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
a b : (i : ι) ×' α i
⊢ (r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd) → Lex r s a b
[PROOFSTEP]
obtain ⟨i, a⟩ := a
[GOAL]
case mpr.mk
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
b : (i : ι) ×' α i
i : ι
a : α i
⊢ (r { fst := i, snd := a }.fst b.fst ∨ ∃ h, s b.fst (h ▸ { fst := i, snd := a }.snd) b.snd) →
Lex r s { fst := i, snd := a } b
[PROOFSTEP]
obtain ⟨j, b⟩ := b
[GOAL]
case mpr.mk.mk
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i : ι
a : α i
j : ι
b : α j
⊢ (r { fst := i, snd := a }.fst { fst := j, snd := b }.fst ∨
∃ h, s { fst := j, snd := b }.fst (h ▸ { fst := i, snd := a }.snd) { fst := j, snd := b }.snd) →
Lex r s { fst := i, snd := a } { fst := j, snd := b }
[PROOFSTEP]
dsimp only
[GOAL]
case mpr.mk.mk
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i : ι
a : α i
j : ι
b : α j
⊢ (r i j ∨ ∃ h, s j (h ▸ a) b) → Lex r s { fst := i, snd := a } { fst := j, snd := b }
[PROOFSTEP]
rintro (h | ⟨rfl, h⟩)
[GOAL]
case mpr.mk.mk.inl
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i : ι
a : α i
j : ι
b : α j
h : r i j
⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b }
[PROOFSTEP]
exact Lex.left _ _ h
[GOAL]
case mpr.mk.mk.inr.intro
ι : Sort u_1
α : ι → Sort u_2
r r₁ r₂ : ι → ι → Prop
s s₁ s₂ : (i : ι) → α i → α i → Prop
i : ι
a b : α i
h : s i ((_ : i = i) ▸ a) b
⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b }
[PROOFSTEP]
exact Lex.right _ h
[GOAL]
ι : Sort u_1
α : ι → Sort u_2
r r₁✝ r₂✝ : ι → ι → Prop
s s₁✝ s₂✝ : (i : ι) → α i → α i → Prop
r₁ r₂ : ι → ι → Prop
s₁ s₂ : (i : ι) → α i → α i → Prop
hr : ∀ (a b : ι), r₁ a b → r₂ a b
hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b
a b : (i : ι) ×' α i
h : Lex r₁ s₁ a b
⊢ Lex r₂ s₂ a b
[PROOFSTEP]
obtain ⟨a, b, hij⟩ | ⟨i, hab⟩ := h
[GOAL]
case left
ι : Sort u_1
α : ι → Sort u_2
r r₁✝ r₂✝ : ι → ι → Prop
s s₁✝ s₂✝ : (i : ι) → α i → α i → Prop
r₁ r₂ : ι → ι → Prop
s₁ s₂ : (i : ι) → α i → α i → Prop
hr : ∀ (a b : ι), r₁ a b → r₂ a b
hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b
a₁✝ : ι
a : α a₁✝
a₂✝ : ι
b : α a₂✝
hij : r₁ a₁✝ a₂✝
⊢ Lex r₂ s₂ { fst := a₁✝, snd := a } { fst := a₂✝, snd := b }
[PROOFSTEP]
exact Lex.left _ _ (hr _ _ hij)
[GOAL]
case right
ι : Sort u_1
α : ι → Sort u_2
r r₁✝ r₂✝ : ι → ι → Prop
s s₁✝ s₂✝ : (i : ι) → α i → α i → Prop
r₁ r₂ : ι → ι → Prop
s₁ s₂ : (i : ι) → α i → α i → Prop
hr : ∀ (a b : ι), r₁ a b → r₂ a b
hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b
i : ι
b₁✝ b₂✝ : α i
hab : s₁ i b₁✝ b₂✝
⊢ Lex r₂ s₂ { fst := i, snd := b₁✝ } { fst := i, snd := b₂✝ }
[PROOFSTEP]
exact Lex.right _ (hs _ _ _ hab)
|
{"mathlib_filename": "Mathlib.Data.Sigma.Lex", "llama_tokens": 12368}
|
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : α → β
y : β
o : Option α
⊢ y ∈ Option.map f o ↔ ∃ x, x ∈ o ∧ f x = y
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : α → β
H : Function.Injective f
a : α
o : Option α
⊢ f a ∈ Option.map f o ↔ a ∈ o
[PROOFSTEP]
aesop
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : α → β
o : Option α
p : β → Prop
⊢ (∀ (y : β), y ∈ Option.map f o → p y) ↔ ∀ (x : α), x ∈ o → p (f x)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : α → β
o : Option α
p : β → Prop
⊢ (∃ y, y ∈ Option.map f o ∧ p y) ↔ ∃ x, x ∈ o ∧ p (f x)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : α → β
Hf : Function.Injective f
a₁ a₂ : α
H : Option.map f (some a₁) = Option.map f (some a₂)
⊢ some a₁ = some a₂
[PROOFSTEP]
rw [Hf (Option.some.inj H)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
x : Option α
f : α → Option β
b : β
⊢ Option.bind x f = some b ↔ ∃ a, x = some a ∧ f a = some b
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : α → Option β
b : β
⊢ Option.bind none f = some b ↔ ∃ a, none = some a ∧ f a = some b
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : α → Option β
b : β
val✝ : α
⊢ Option.bind (some val✝) f = some b ↔ ∃ a, some val✝ = some a ∧ f a = some b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
o : Option α
f : α → Option β
⊢ Option.bind o f = none ↔ ∀ (b : β) (a : α), a ∈ o → ¬b ∈ f a
[PROOFSTEP]
simp only [eq_none_iff_forall_not_mem, mem_def, bind_eq_some, not_exists, not_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f g : α → β
h : Option.map f = Option.map g
x : α
⊢ some (f x) = some (g x)
[PROOFSTEP]
simp only [← map_some', h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f₁ : α → β
f₂ : α → γ
g₁ : β → δ
g₂ : γ → δ
h : g₁ ∘ f₁ = g₂ ∘ f₂
a : α
⊢ Option.map g₁ (Option.map f₁ (some a)) = Option.map g₂ (Option.map f₂ (some a))
[PROOFSTEP]
rw [map_map, h, ← map_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x✝ : Option α
f : α → Option β
x : Option α
⊢ (pbind x fun a x => f a) = Option.bind x f
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : α → Option β
⊢ (pbind none fun a x => f a) = Option.bind none f
[PROOFSTEP]
simp only [pbind, none_bind', some_bind']
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : α → Option β
val✝ : α
⊢ (pbind (some val✝) fun a x => f a) = Option.bind (some val✝) f
[PROOFSTEP]
simp only [pbind, none_bind', some_bind']
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
δ : Type u_4
p : α✝ → Prop
f✝ : (a : α✝) → p a → β✝
x✝ : Option α✝
α β γ : Type u_5
f : β → γ
x : Option α
g : α → Option β
⊢ Option.map f (x >>= g) = do
let a ← x
Option.map f (g a)
[PROOFSTEP]
simp only [← map_eq_map, ← bind_pure_comp, LawfulMonad.bind_assoc]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x✝ : Option α
f : β → γ
x : Option α
g : α → Option β
⊢ Option.map f (Option.bind x g) = Option.bind x fun a => Option.map f (g a)
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : β → γ
g : α → Option β
⊢ Option.map f (Option.bind none g) = Option.bind none fun a => Option.map f (g a)
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : β → γ
g : α → Option β
val✝ : α
⊢ Option.map f (Option.bind (some val✝) g) = Option.bind (some val✝) fun a => Option.map f (g a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x✝ : Option α
f : β → γ
x : Option α
g : (a : α) → a ∈ x → Option β
⊢ Option.map f (pbind x g) = pbind x fun a H => Option.map f (g a H)
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : β → γ
g : (a : α) → a ∈ none → Option β
⊢ Option.map f (pbind none g) = pbind none fun a H => Option.map f (g a H)
[PROOFSTEP]
simp only [pbind, map_none']
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : β → γ
val✝ : α
g : (a : α) → a ∈ some val✝ → Option β
⊢ Option.map f (pbind (some val✝) g) = pbind (some val✝) fun a H => Option.map f (g a H)
[PROOFSTEP]
simp only [pbind, map_none']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x✝ : Option α
f : α → β
x : Option α
g : (b : β) → b ∈ Option.map f x → Option γ
⊢ pbind (Option.map f x) g = pbind x fun a h => g (f a) (_ : f a ∈ Option.map f x)
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : α → β
g : (b : β) → b ∈ Option.map f none → Option γ
⊢ pbind (Option.map f none) g = pbind none fun a h => g (f a) (_ : f a ∈ Option.map f none)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : α → β
val✝ : α
g : (b : β) → b ∈ Option.map f (some val✝) → Option γ
⊢ pbind (Option.map f (some val✝)) g = pbind (some val✝) fun a h => g (f a) (_ : f a ∈ Option.map f (some val✝))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
x : Option α
a : α
h : ∀ (a : α), a ∈ x → p a
ha : a ∈ x
⊢ f a (_ : p a) ∈ pmap f x h
[PROOFSTEP]
rw [mem_def] at ha ⊢
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
x : Option α
a : α
h : ∀ (a : α), a ∈ x → p a
ha✝ : a ∈ x
ha : x = some a
⊢ pmap f x h = some (f a (_ : p a))
[PROOFSTEP]
subst ha
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
a : α
h : ∀ (a_1 : α), a_1 ∈ some a → p a_1
ha : a ∈ some a
⊢ pmap f (some a) h = some (f a (_ : p a))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
x✝ : Option α
g : γ → α
x : Option γ
H : ∀ (a : α), a ∈ Option.map g x → p a
⊢ pmap f (Option.map g x) H = pmap (fun a h => f (g a) h) x (_ : ∀ (a : γ), a ∈ x → p (g a))
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
x : Option α
g : γ → α
H : ∀ (a : α), a ∈ Option.map g none → p a
⊢ pmap f (Option.map g none) H = pmap (fun a h => f (g a) h) none (_ : ∀ (a : γ), a ∈ none → p (g a))
[PROOFSTEP]
simp only [map_none', map_some', pmap]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
x : Option α
g : γ → α
val✝ : γ
H : ∀ (a : α), a ∈ Option.map g (some val✝) → p a
⊢ pmap f (Option.map g (some val✝)) H = pmap (fun a h => f (g a) h) (some val✝) (_ : ∀ (a : γ), a ∈ some val✝ → p (g a))
[PROOFSTEP]
simp only [map_none', map_some', pmap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x✝ : Option α
g : β → γ
f : (a : α) → p a → β
x : Option α
H : ∀ (a : α), a ∈ x → p a
⊢ Option.map g (pmap f x H) = pmap (fun a h => g (f a h)) x H
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
g : β → γ
f : (a : α) → p a → β
H : ∀ (a : α), a ∈ none → p a
⊢ Option.map g (pmap f none H) = pmap (fun a h => g (f a h)) none H
[PROOFSTEP]
simp only [map_none', map_some', pmap]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
g : β → γ
f : (a : α) → p a → β
val✝ : α
H : ∀ (a : α), a ∈ some val✝ → p a
⊢ Option.map g (pmap f (some val✝) H) = pmap (fun a h => g (f a h)) (some val✝) H
[PROOFSTEP]
simp only [map_none', map_some', pmap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p✝ : α → Prop
f✝ : (a : α) → p✝ a → β
x✝ : Option α
p : α → Prop
f : α → β
x : Option α
H : ∀ (a : α), a ∈ x → p a
⊢ pmap (fun a x => f a) x H = Option.map f x
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p✝ : α → Prop
f✝ : (a : α) → p✝ a → β
x : Option α
p : α → Prop
f : α → β
H : ∀ (a : α), a ∈ none → p a
⊢ pmap (fun a x => f a) none H = Option.map f none
[PROOFSTEP]
simp only [map_none', map_some', pmap]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p✝ : α → Prop
f✝ : (a : α) → p✝ a → β
x : Option α
p : α → Prop
f : α → β
val✝ : α
H : ∀ (a : α), a ∈ some val✝ → p a
⊢ pmap (fun a x => f a) (some val✝) H = Option.map f (some val✝)
[PROOFSTEP]
simp only [map_none', map_some', pmap]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
δ : Type u_4
p✝ : α✝ → Prop
f✝ : (a : α✝) → p✝ a → β✝
x✝ : Option α✝
α β γ : Type u_5
x : Option α
g : α → Option β
p : β → Prop
f : (b : β) → p b → γ
H : ∀ (a : β), a ∈ x >>= g → p a
H' : ∀ (a : α) (b : β), b ∈ g a → b ∈ x >>= g
⊢ pmap f (x >>= g) H = do
let a ← x
pmap f (g a) (_ : ∀ (b : β), b ∈ g a → p b)
[PROOFSTEP]
cases x
[GOAL]
case none
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
δ : Type u_4
p✝ : α✝ → Prop
f✝ : (a : α✝) → p✝ a → β✝
x : Option α✝
α β γ : Type u_5
g : α → Option β
p : β → Prop
f : (b : β) → p b → γ
H : ∀ (a : β), a ∈ none >>= g → p a
H' : ∀ (a : α) (b : β), b ∈ g a → b ∈ none >>= g
⊢ pmap f (none >>= g) H = do
let a ← none
pmap f (g a) (_ : ∀ (b : β), b ∈ g a → p b)
[PROOFSTEP]
simp only [pmap, bind_eq_bind, none_bind, some_bind]
[GOAL]
case some
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
δ : Type u_4
p✝ : α✝ → Prop
f✝ : (a : α✝) → p✝ a → β✝
x : Option α✝
α β γ : Type u_5
g : α → Option β
p : β → Prop
f : (b : β) → p b → γ
val✝ : α
H : ∀ (a : β), a ∈ some val✝ >>= g → p a
H' : ∀ (a : α) (b : β), b ∈ g a → b ∈ some val✝ >>= g
⊢ pmap f (some val✝ >>= g) H = do
let a ← some val✝
pmap f (g a) (_ : ∀ (b : β), b ∈ g a → p b)
[PROOFSTEP]
simp only [pmap, bind_eq_bind, none_bind, some_bind]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
δ : Type u_4
p✝ : α✝ → Prop
f✝ : (a : α✝) → p✝ a → β✝
x✝ : Option α✝
α : Type u_5
β γ : Type u_6
p : α → Prop
f : (a : α) → p a → β
x : Option α
g : β → Option γ
H : ∀ (a : α), a ∈ x → p a
⊢ pmap f x H >>= g = pbind x fun a h => g (f a (_ : p a))
[PROOFSTEP]
cases x
[GOAL]
case none
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
δ : Type u_4
p✝ : α✝ → Prop
f✝ : (a : α✝) → p✝ a → β✝
x : Option α✝
α : Type u_5
β γ : Type u_6
p : α → Prop
f : (a : α) → p a → β
g : β → Option γ
H : ∀ (a : α), a ∈ none → p a
⊢ pmap f none H >>= g = pbind none fun a h => g (f a (_ : p a))
[PROOFSTEP]
simp only [pmap, bind_eq_bind, none_bind, some_bind, pbind]
[GOAL]
case some
α✝ : Type u_1
β✝ : Type u_2
γ✝ : Type u_3
δ : Type u_4
p✝ : α✝ → Prop
f✝ : (a : α✝) → p✝ a → β✝
x : Option α✝
α : Type u_5
β γ : Type u_6
p : α → Prop
f : (a : α) → p a → β
g : β → Option γ
val✝ : α
H : ∀ (a : α), a ∈ some val✝ → p a
⊢ pmap f (some val✝) H >>= g = pbind (some val✝) fun a h => g (f a (_ : p a))
[PROOFSTEP]
simp only [pmap, bind_eq_bind, none_bind, some_bind, pbind]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : (a : α) → a ∈ x → Option β
h' : ∀ (a : α) (H : a ∈ x), f a H = none → x = none
⊢ pbind x f = none ↔ x = none
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
f : (a : α) → a ∈ none → Option β
h' : ∀ (a : α) (H : a ∈ none), f a H = none → none = none
⊢ pbind none f = none ↔ none = none
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
val✝ : α
f : (a : α) → a ∈ some val✝ → Option β
h' : ∀ (a : α) (H : a ∈ some val✝), f a H = none → some val✝ = none
⊢ pbind (some val✝) f = none ↔ some val✝ = none
[PROOFSTEP]
simp only [pbind, iff_false]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
val✝ : α
f : (a : α) → a ∈ some val✝ → Option β
h' : ∀ (a : α) (H : a ∈ some val✝), f a H = none → some val✝ = none
⊢ ¬f val✝ (_ : some val✝ = some val✝) = none
[PROOFSTEP]
intro h
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
val✝ : α
f : (a : α) → a ∈ some val✝ → Option β
h' : ∀ (a : α) (H : a ∈ some val✝), f a H = none → some val✝ = none
h : f val✝ (_ : some val✝ = some val✝) = none
⊢ False
[PROOFSTEP]
cases h' _ rfl h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : (a : α) → a ∈ x → Option β
y : β
⊢ pbind x f = some y ↔ ∃ z H, f z H = some y
[PROOFSTEP]
rcases x with (_ | x)
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
y : β
f : (a : α) → a ∈ none → Option β
⊢ pbind none f = some y ↔ ∃ z H, f z H = some y
[PROOFSTEP]
simp only [pbind, false_iff, not_exists]
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
y : β
f : (a : α) → a ∈ none → Option β
⊢ ∀ (x : α) (x_1 : x ∈ none), ¬f x x_1 = some y
[PROOFSTEP]
intro z h
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
y : β
f : (a : α) → a ∈ none → Option β
z : α
h : z ∈ none
⊢ ¬f z h = some y
[PROOFSTEP]
simp at h
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
y : β
x : α
f : (a : α) → a ∈ some x → Option β
⊢ pbind (some x) f = some y ↔ ∃ z H, f z H = some y
[PROOFSTEP]
simp only [pbind]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
y : β
x : α
f : (a : α) → a ∈ some x → Option β
⊢ f x (_ : some x = some x) = some y ↔ ∃ z H, f z H = some y
[PROOFSTEP]
refine ⟨λ h => ⟨x, rfl, h⟩, ?_⟩
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
y : β
x : α
f : (a : α) → a ∈ some x → Option β
⊢ (∃ z H, f z H = some y) → f x (_ : some x = some x) = some y
[PROOFSTEP]
rintro ⟨z, H, hz⟩
[GOAL]
case some.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
y : β
x : α
f : (a : α) → a ∈ some x → Option β
z : α
H : z ∈ some x
hz : f z H = some y
⊢ f x (_ : some x = some x) = some y
[PROOFSTEP]
simp only [mem_def, Option.some_inj] at H
[GOAL]
case some.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
y : β
x : α
f : (a : α) → a ∈ some x → Option β
z : α
H✝ : z ∈ some x
hz : f z H✝ = some y
H : x = z
⊢ f x (_ : some x = some x) = some y
[PROOFSTEP]
simpa [H] using hz
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
x : Option α
h : ∀ (a : α), a ∈ x → p a
⊢ pmap f x h = none ↔ x = none
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
h : ∀ (a : α), a ∈ none → p a
⊢ pmap f none h = none ↔ none = none
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
val✝ : α
h : ∀ (a : α), a ∈ some val✝ → p a
⊢ pmap f (some val✝) h = none ↔ some val✝ = none
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
x : Option α
hf : ∀ (a : α), a ∈ x → p a
y : β
⊢ pmap f x hf = some y ↔ ∃ a H, f a (_ : p a) = y
[PROOFSTEP]
rcases x with (_ | x)
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
y : β
hf : ∀ (a : α), a ∈ none → p a
⊢ pmap f none hf = some y ↔ ∃ a H, f a (_ : p a) = y
[PROOFSTEP]
simp only [not_mem_none, exists_false, pmap, not_false_iff, exists_prop_of_false]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
y : β
x : α
hf : ∀ (a : α), a ∈ some x → p a
⊢ pmap f (some x) hf = some y ↔ ∃ a H, f a (_ : p a) = y
[PROOFSTEP]
constructor
[GOAL]
case some.mp
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
y : β
x : α
hf : ∀ (a : α), a ∈ some x → p a
⊢ pmap f (some x) hf = some y → ∃ a H, f a (_ : p a) = y
[PROOFSTEP]
intro h
[GOAL]
case some.mp
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
y : β
x : α
hf : ∀ (a : α), a ∈ some x → p a
h : pmap f (some x) hf = some y
⊢ ∃ a H, f a (_ : p a) = y
[PROOFSTEP]
simp only [pmap, Option.some_inj] at h
[GOAL]
case some.mp
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
y : β
x : α
hf : ∀ (a : α), a ∈ some x → p a
h : f x (_ : p x) = y
⊢ ∃ a H, f a (_ : p a) = y
[PROOFSTEP]
refine ⟨x, rfl, h⟩
[GOAL]
case some.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
y : β
x : α
hf : ∀ (a : α), a ∈ some x → p a
⊢ (∃ a H, f a (_ : p a) = y) → pmap f (some x) hf = some y
[PROOFSTEP]
rintro ⟨a, H, rfl⟩
[GOAL]
case some.mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
x : α
hf : ∀ (a : α), a ∈ some x → p a
a : α
H : some x = some a
⊢ pmap f (some x) hf = some (f a (_ : p a))
[PROOFSTEP]
simp only [mem_def, Option.some_inj] at H
[GOAL]
case some.mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f : (a : α) → p a → β
x : α
hf : ∀ (a : α), a ∈ some x → p a
a : α
H✝ : some x = some a
H : x = a
⊢ pmap f (some x) hf = some (f a (_ : p a))
[PROOFSTEP]
simp only [H, pmap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x✝ : Option α
f : (a : α) → p a → β
x : Option (Option α)
H : ∀ (a : Option α), a ∈ x → ∀ (a_2 : α), a_2 ∈ a → p a_2
⊢ join (pmap (pmap f) x H) = pmap f (join x) (_ : ∀ (a : α), a ∈ join x → p a)
[PROOFSTEP]
rcases x with (_ | _ | x)
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : (a : α) → p a → β
H : ∀ (a : Option α), a ∈ none → ∀ (a_2 : α), a_2 ∈ a → p a_2
⊢ join (pmap (pmap f) none H) = pmap f (join none) (_ : ∀ (a : α), a ∈ join none → p a)
[PROOFSTEP]
simp
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x : Option α
f : (a : α) → p a → β
H : ∀ (a : Option α), a ∈ some none → ∀ (a_2 : α), a_2 ∈ a → p a_2
⊢ join (pmap (pmap f) (some none) H) = pmap f (join (some none)) (_ : ∀ (a : α), a ∈ join (some none) → p a)
[PROOFSTEP]
simp
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : α → Prop
f✝ : (a : α) → p a → β
x✝ : Option α
f : (a : α) → p a → β
x : α
H : ∀ (a : Option α), a ∈ some (some x) → ∀ (a_2 : α), a_2 ∈ a → p a_2
⊢ join (pmap (pmap f) (some (some x)) H) = pmap f (join (some (some x))) (_ : ∀ (a : α), a ∈ join (some (some x)) → p a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
x : Option α
⊢ (Option.orElse none fun x_1 => x) = x
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
⊢ (Option.orElse none fun x => none) = none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
val✝ : α
⊢ (Option.orElse none fun x => some val✝) = some val✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
x : Option α
⊢ (Option.orElse x fun x => none) = x
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
⊢ (Option.orElse none fun x => none) = none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
val✝ : α
⊢ (Option.orElse (some val✝) fun x => none) = some val✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : Inhabited α
o : Option α
⊢ getD o default = iget o
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : Inhabited α
⊢ getD none default = iget none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : Inhabited α
val✝ : α
⊢ getD (some val✝) default = iget (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : Prop
inst✝ : Decidable p
u : Unit
⊢ _root_.guard p = some u ↔ p
[PROOFSTEP]
cases u
[GOAL]
case unit
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : Prop
inst✝ : Decidable p
⊢ _root_.guard p = some PUnit.unit ↔ p
[PROOFSTEP]
by_cases h : p
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : Prop
inst✝ : Decidable p
h : p
⊢ _root_.guard p = some PUnit.unit ↔ p
[PROOFSTEP]
simp [_root_.guard, h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
p : Prop
inst✝ : Decidable p
h : ¬p
⊢ _root_.guard p = some PUnit.unit ↔ p
[PROOFSTEP]
simp [_root_.guard, h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : α → α → α
h : ∀ (a b : α), f a b = a ∨ f a b = b
a b : α
⊢ liftOrGet f (some a) (some b) = some a ∨ liftOrGet f (some a) (some b) = some b
[PROOFSTEP]
simpa [liftOrGet] using h a b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : Option α → β
o : Option α
⊢ casesOn' o (f none) (f ∘ fun a => some a) = f o
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : Option α → β
⊢ casesOn' none (f none) (f ∘ fun a => some a) = f none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : Option α → β
val✝ : α
⊢ casesOn' (some val✝) (f none) (f ∘ fun a => some a) = f (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
o o' : Option α
x : α
⊢ (HOrElse.hOrElse o fun x => o') = some x ↔ o = some x ∨ o = none ∧ o' = some x
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
o' : Option α
x : α
⊢ (HOrElse.hOrElse none fun x => o') = some x ↔ none = some x ∨ none = none ∧ o' = some x
[PROOFSTEP]
simp only [true_and, false_or, eq_self_iff_true, none_orElse]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
o' : Option α
x val✝ : α
⊢ (HOrElse.hOrElse (some val✝) fun x => o') = some x ↔ some val✝ = some x ∨ some val✝ = none ∧ o' = some x
[PROOFSTEP]
simp only [some_orElse, or_false, false_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
o o' : Option α
⊢ (HOrElse.hOrElse o fun x => o') = none ↔ o = none ∧ o' = none
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
o' : Option α
⊢ (HOrElse.hOrElse none fun x => o') = none ↔ none = none ∧ o' = none
[PROOFSTEP]
simp only [true_and, none_orElse, eq_self_iff_true]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
o' : Option α
val✝ : α
⊢ (HOrElse.hOrElse (some val✝) fun x => o') = none ↔ some val✝ = none ∧ o' = none
[PROOFSTEP]
simp only [some_orElse, false_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : Option α → β
o : Option α
⊢ Option.elim o (f none) (f ∘ some) = f o
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : Option α → β
⊢ Option.elim none (f none) (f ∘ some) = f none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
f : Option α → β
val✝ : α
⊢ Option.elim (some val✝) (f none) (f ∘ some) = f (some val✝)
[PROOFSTEP]
rfl
|
{"mathlib_filename": "Mathlib.Data.Option.Basic", "llama_tokens": 12465}
|
[GOAL]
α : Type u
β : Type v
γ : Type w
c : Computation α
n : ℕ
a : α
h : Stream'.cons none (↑c) n = some a
⊢ Stream'.cons none (↑c) (n + 1) = some a
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
c : Computation α
a : α
h : Stream'.cons none (↑c) Nat.zero = some a
⊢ Stream'.cons none (↑c) (Nat.zero + 1) = some a
[PROOFSTEP]
contradiction
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
c : Computation α
a : α
n : ℕ
h : Stream'.cons none (↑c) (Nat.succ n) = some a
⊢ Stream'.cons none (↑c) (Nat.succ n + 1) = some a
[PROOFSTEP]
exact c.2 h
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
⊢ destruct s = Sum.inl a → s = pure a
[PROOFSTEP]
dsimp [destruct]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
⊢ (match ↑s 0 with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inl a →
s = pure a
[PROOFSTEP]
induction' f0 : s.1 0 with _
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
x✝ : Option α
f0✝ : ↑s 0 = x✝
f0 : ↑s 0 = none
⊢ (match none with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inl a →
s = pure a
[PROOFSTEP]
intro h
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
x✝ : Option α
f0✝ : ↑s 0 = x✝
val✝ : α
f0 : ↑s 0 = some val✝
⊢ (match some val✝ with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inl a →
s = pure a
[PROOFSTEP]
intro h
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
x✝ : Option α
f0✝ : ↑s 0 = x✝
f0 : ↑s 0 = none
h :
(match none with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inl a
⊢ s = pure a
[PROOFSTEP]
contradiction
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
x✝ : Option α
f0✝ : ↑s 0 = x✝
val✝ : α
f0 : ↑s 0 = some val✝
h :
(match some val✝ with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inl a
⊢ s = pure a
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case some.a
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
x✝ : Option α
f0✝ : ↑s 0 = x✝
val✝ : α
f0 : ↑s 0 = some val✝
h :
(match some val✝ with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inl a
⊢ ↑s = ↑(pure a)
[PROOFSTEP]
funext n
[GOAL]
case some.a.h
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
x✝ : Option α
f0✝ : ↑s 0 = x✝
val✝ : α
f0 : ↑s 0 = some val✝
h :
(match some val✝ with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inl a
n : ℕ
⊢ ↑s n = ↑(pure a) n
[PROOFSTEP]
induction' n with n IH
[GOAL]
case some.a.h.zero
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
x✝ : Option α
f0✝ : ↑s 0 = x✝
val✝ : α
f0 : ↑s 0 = some val✝
h :
(match some val✝ with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inl a
⊢ ↑s Nat.zero = ↑(pure a) Nat.zero
[PROOFSTEP]
injection h with h'
[GOAL]
case some.a.h.zero
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
x✝ : Option α
f0✝ : ↑s 0 = x✝
val✝ : α
f0 : ↑s 0 = some val✝
h' : val✝ = a
⊢ ↑s Nat.zero = ↑(pure a) Nat.zero
[PROOFSTEP]
rwa [h'] at f0
[GOAL]
case some.a.h.succ
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
x✝ : Option α
f0✝ : ↑s 0 = x✝
val✝ : α
f0 : ↑s 0 = some val✝
h :
(match some val✝ with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inl a
n : ℕ
IH : ↑s n = ↑(pure a) n
⊢ ↑s (Nat.succ n) = ↑(pure a) (Nat.succ n)
[PROOFSTEP]
exact s.2 IH
[GOAL]
α : Type u
β : Type v
γ : Type w
s s' : Computation α
⊢ destruct s = Sum.inr s' → s = think s'
[PROOFSTEP]
dsimp [destruct]
[GOAL]
α : Type u
β : Type v
γ : Type w
s s' : Computation α
⊢ (match ↑s 0 with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inr s' →
s = think s'
[PROOFSTEP]
induction' f0 : s.1 0 with a'
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s s' : Computation α
x✝ : Option α
f0✝ : ↑s 0 = x✝
f0 : ↑s 0 = none
⊢ (match none with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inr s' →
s = think s'
[PROOFSTEP]
intro h
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s s' : Computation α
x✝ : Option α
f0✝ : ↑s 0 = x✝
a' : α
f0 : ↑s 0 = some a'
⊢ (match some a' with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inr s' →
s = think s'
[PROOFSTEP]
intro h
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s s' : Computation α
x✝ : Option α
f0✝ : ↑s 0 = x✝
f0 : ↑s 0 = none
h :
(match none with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inr s'
⊢ s = think s'
[PROOFSTEP]
injection h with h'
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s s' : Computation α
x✝ : Option α
f0✝ : ↑s 0 = x✝
f0 : ↑s 0 = none
h' : tail s = s'
⊢ s = think s'
[PROOFSTEP]
rw [← h']
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s s' : Computation α
x✝ : Option α
f0✝ : ↑s 0 = x✝
f0 : ↑s 0 = none
h' : tail s = s'
⊢ s = think (tail s)
[PROOFSTEP]
cases' s with f al
[GOAL]
case none.mk
α : Type u
β : Type v
γ : Type w
s' : Computation α
x✝ : Option α
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
f0✝ : ↑{ val := f, property := al } 0 = x✝
f0 : ↑{ val := f, property := al } 0 = none
h' : tail { val := f, property := al } = s'
⊢ { val := f, property := al } = think (tail { val := f, property := al })
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case none.mk.a
α : Type u
β : Type v
γ : Type w
s' : Computation α
x✝ : Option α
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
f0✝ : ↑{ val := f, property := al } 0 = x✝
f0 : ↑{ val := f, property := al } 0 = none
h' : tail { val := f, property := al } = s'
⊢ ↑{ val := f, property := al } = ↑(think (tail { val := f, property := al }))
[PROOFSTEP]
dsimp [think, tail]
[GOAL]
case none.mk.a
α : Type u
β : Type v
γ : Type w
s' : Computation α
x✝ : Option α
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
f0✝ : ↑{ val := f, property := al } 0 = x✝
f0 : ↑{ val := f, property := al } 0 = none
h' : tail { val := f, property := al } = s'
⊢ f = Stream'.cons none (Stream'.tail f)
[PROOFSTEP]
rw [← f0]
[GOAL]
case none.mk.a
α : Type u
β : Type v
γ : Type w
s' : Computation α
x✝ : Option α
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
f0✝ : ↑{ val := f, property := al } 0 = x✝
f0 : ↑{ val := f, property := al } 0 = none
h' : tail { val := f, property := al } = s'
⊢ f = Stream'.cons (↑{ val := f, property := al } 0) (Stream'.tail f)
[PROOFSTEP]
exact (Stream'.eta f).symm
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s s' : Computation α
x✝ : Option α
f0✝ : ↑s 0 = x✝
a' : α
f0 : ↑s 0 = some a'
h :
(match some a' with
| none => Sum.inr (tail s)
| some a => Sum.inl a) =
Sum.inr s'
⊢ s = think s'
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
⊢ tail (think s) = s
[PROOFSTEP]
cases' s with f al
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
⊢ tail (think { val := f, property := al }) = { val := f, property := al }
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case mk.a
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
⊢ ↑(tail (think { val := f, property := al })) = ↑{ val := f, property := al }
[PROOFSTEP]
dsimp [tail, think]
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
s : Computation α
h1 : (a : α) → C (pure a)
h2 : (s : Computation α) → C (think s)
v : α
H : destruct s = Sum.inl v
⊢ C s
[PROOFSTEP]
rw [destruct_eq_pure H]
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
s : Computation α
h1 : (a : α) → C (pure a)
h2 : (s : Computation α) → C (think s)
v : α
H : destruct s = Sum.inl v
⊢ C (pure v)
[PROOFSTEP]
apply h1
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
s : Computation α
h1 : (a : α) → C (pure a)
h2 : (s : Computation α) → C (think s)
v : Computation α
a : Stream' (Option α)
s' : ∀ ⦃n : ℕ⦄ ⦃a_1 : α⦄, a n = some a_1 → a (n + 1) = some a_1
H : destruct s = Sum.inr { val := a, property := s' }
⊢ C s
[PROOFSTEP]
rw [destruct_eq_think H]
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
s : Computation α
h1 : (a : α) → C (pure a)
h2 : (s : Computation α) → C (think s)
v : Computation α
a : Stream' (Option α)
s' : ∀ ⦃n : ℕ⦄ ⦃a_1 : α⦄, a n = some a_1 → a (n + 1) = some a_1
H : destruct s = Sum.inr { val := a, property := s' }
⊢ C (think { val := a, property := s' })
[PROOFSTEP]
apply h2
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
⊢ Computation α
[PROOFSTEP]
refine' ⟨Stream'.corec' (Corec.f f) (Sum.inr b), fun n a' h => _⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
n : ℕ
a' : α
h : Stream'.corec' (Corec.f f) (Sum.inr b) n = some a'
⊢ Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a'
[PROOFSTEP]
rw [Stream'.corec'_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
n : ℕ
a' : α
h : Stream'.corec' (Corec.f f) (Sum.inr b) n = some a'
⊢ Stream'.cons (Corec.f f (Sum.inr b)).fst (Stream'.corec' (Corec.f f) (Corec.f f (Sum.inr b)).snd) (n + 1) = some a'
[PROOFSTEP]
change Stream'.corec' (Corec.f f) (Corec.f f (Sum.inr b)).2 n = some a'
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
n : ℕ
a' : α
h : Stream'.corec' (Corec.f f) (Sum.inr b) n = some a'
⊢ Stream'.corec' (Corec.f f) (Corec.f f (Sum.inr b)).snd n = some a'
[PROOFSTEP]
revert h
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
n : ℕ
a' : α
⊢ Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Corec.f f (Sum.inr b)).snd n = some a'
[PROOFSTEP]
generalize Sum.inr b = o
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
n : ℕ
a' : α
o : α ⊕ β
⊢ Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a'
[PROOFSTEP]
revert o
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
n : ℕ
a' : α
⊢ ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a'
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
a' : α
⊢ ∀ (o : α ⊕ β),
Stream'.corec' (Corec.f f) o Nat.zero = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd Nat.zero = some a'
[PROOFSTEP]
intro o
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
a' : α
n : ℕ
IH : ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a'
⊢ ∀ (o : α ⊕ β),
Stream'.corec' (Corec.f f) o (Nat.succ n) = some a' →
Stream'.corec' (Corec.f f) (Corec.f f o).snd (Nat.succ n) = some a'
[PROOFSTEP]
intro o
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
a' : α
o : α ⊕ β
⊢ Stream'.corec' (Corec.f f) o Nat.zero = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd Nat.zero = some a'
[PROOFSTEP]
change (Corec.f f o).1 = some a' → (Corec.f f (Corec.f f o).2).1 = some a'
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
a' : α
o : α ⊕ β
⊢ (Corec.f f o).fst = some a' → (Corec.f f (Corec.f f o).snd).fst = some a'
[PROOFSTEP]
cases' o with _ b
[GOAL]
case zero.inl
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
a' val✝ : α
⊢ (Corec.f f (Sum.inl val✝)).fst = some a' → (Corec.f f (Corec.f f (Sum.inl val✝)).snd).fst = some a'
[PROOFSTEP]
intro h
[GOAL]
case zero.inr
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b✝ : β
a' : α
b : β
⊢ (Corec.f f (Sum.inr b)).fst = some a' → (Corec.f f (Corec.f f (Sum.inr b)).snd).fst = some a'
[PROOFSTEP]
intro h
[GOAL]
case zero.inl
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
a' val✝ : α
h : (Corec.f f (Sum.inl val✝)).fst = some a'
⊢ (Corec.f f (Corec.f f (Sum.inl val✝)).snd).fst = some a'
[PROOFSTEP]
exact h
[GOAL]
case zero.inr
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b✝ : β
a' : α
b : β
h : (Corec.f f (Sum.inr b)).fst = some a'
⊢ (Corec.f f (Corec.f f (Sum.inr b)).snd).fst = some a'
[PROOFSTEP]
unfold Corec.f at *
[GOAL]
case zero.inr
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b✝ : β
a' : α
b : β
h :
(match Sum.inr b with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b)).fst =
some a'
⊢ (match
(match Sum.inr b with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b)).snd with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b)).fst =
some a'
[PROOFSTEP]
split
[GOAL]
case zero.inr.h_1
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b✝ : β
a' : α
b : β
h :
(match Sum.inr b with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b)).fst =
some a'
x✝ : α ⊕ β
a✝ : α
heq✝ :
(match Sum.inr b with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b)).snd =
Sum.inl a✝
⊢ (some a✝, Sum.inl a✝).fst = some a'
[PROOFSTEP]
simp_all
[GOAL]
case zero.inr.h_2
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b✝ : β
a' : α
b : β
h :
(match Sum.inr b with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b)).fst =
some a'
x✝ : α ⊕ β
val✝ : β
heq✝ :
(match Sum.inr b with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b)).snd =
Sum.inr val✝
⊢ (match f val✝ with
| Sum.inl a => some a
| Sum.inr val => none,
f val✝).fst =
some a'
[PROOFSTEP]
simp_all
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
a' : α
n : ℕ
IH : ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a'
o : α ⊕ β
⊢ Stream'.corec' (Corec.f f) o (Nat.succ n) = some a' →
Stream'.corec' (Corec.f f) (Corec.f f o).snd (Nat.succ n) = some a'
[PROOFSTEP]
rw [Stream'.corec'_eq (Corec.f f) (Corec.f f o).2, Stream'.corec'_eq (Corec.f f) o]
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
a' : α
n : ℕ
IH : ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a'
o : α ⊕ β
⊢ Stream'.cons (Corec.f f o).fst (Stream'.corec' (Corec.f f) (Corec.f f o).snd) (Nat.succ n) = some a' →
Stream'.cons (Corec.f f (Corec.f f o).snd).fst (Stream'.corec' (Corec.f f) (Corec.f f (Corec.f f o).snd).snd)
(Nat.succ n) =
some a'
[PROOFSTEP]
exact IH (Corec.f f o).2
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
⊢ destruct (corec f b) = rmap (corec f) (f b)
[PROOFSTEP]
dsimp [corec, destruct]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
⊢ (match Stream'.corec' (Corec.f f) (Sum.inr b) 0 with
| none =>
Sum.inr
(tail
{ val := Stream'.corec' (Corec.f f) (Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') })
| some a => Sum.inl a) =
match f b with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
{ val := Stream'.corec' (Corec.f f) (Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }
[PROOFSTEP]
rw [show Stream'.corec' (Corec.f f) (Sum.inr b) 0 = Sum.rec Option.some (λ _ => none) (f b)
by
dsimp [Corec.f, Stream'.corec', Stream'.corec, Stream'.map, Stream'.nth, Stream'.iterate]
match (f b) with
| Sum.inl x => rfl
| Sum.inr x => rfl]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
⊢ Stream'.corec' (Corec.f f) (Sum.inr b) 0 = Sum.rec some (fun x => none) (f b)
[PROOFSTEP]
dsimp [Corec.f, Stream'.corec', Stream'.corec, Stream'.map, Stream'.nth, Stream'.iterate]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
⊢ (match f b with
| Sum.inl a => some a
| Sum.inr val => none) =
Sum.rec some (fun x => none) (f b)
[PROOFSTEP]
match (f b) with
| Sum.inl x => rfl
| Sum.inr x => rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
x : α
⊢ (match Sum.inl x with
| Sum.inl a => some a
| Sum.inr val => none) =
Sum.rec some (fun x => none) (Sum.inl x)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b x : β
⊢ (match Sum.inr x with
| Sum.inl a => some a
| Sum.inr val => none) =
Sum.rec some (fun x => none) (Sum.inr x)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
⊢ (match Sum.rec some (fun x => none) (f b) with
| none =>
Sum.inr
(tail
{ val := Stream'.corec' (Corec.f f) (Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') })
| some a => Sum.inl a) =
match f b with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
{ val := Stream'.corec' (Corec.f f) (Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }
[PROOFSTEP]
induction' h : f b with a b'
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
x✝ : α ⊕ β
h✝ : f b = x✝
a : α
h : f b = Sum.inl a
⊢ (match Sum.rec some (fun x => none) (Sum.inl a) with
| none =>
Sum.inr
(tail
{ val := Stream'.corec' (Corec.f f) (Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') })
| some a => Sum.inl a) =
match Sum.inl a with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
{ val := Stream'.corec' (Corec.f f) (Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }
[PROOFSTEP]
rfl
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
x✝ : α ⊕ β
h✝ : f b = x✝
b' : β
h : f b = Sum.inr b'
⊢ (match Sum.rec some (fun x => none) (Sum.inr b') with
| none =>
Sum.inr
(tail
{ val := Stream'.corec' (Corec.f f) (Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') })
| some a => Sum.inl a) =
match Sum.inr b' with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
{ val := Stream'.corec' (Corec.f f) (Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }
[PROOFSTEP]
dsimp [Corec.f, destruct]
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
x✝ : α ⊕ β
h✝ : f b = x✝
b' : β
h : f b = Sum.inr b'
⊢ Sum.inr
(tail
{
val :=
Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }) =
Sum.inr
{
val :=
Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b'),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b') n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b') (n + 1) = some a') }
[PROOFSTEP]
apply congr_arg
[GOAL]
case inr.h
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
x✝ : α ⊕ β
h✝ : f b = x✝
b' : β
h : f b = Sum.inr b'
⊢ tail
{
val :=
Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') } =
{
val :=
Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b'),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b') n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b') (n + 1) = some a') }
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case inr.h.a
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
x✝ : α ⊕ β
h✝ : f b = x✝
b' : β
h : f b = Sum.inr b'
⊢ ↑(tail
{
val :=
Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }) =
↑{
val :=
Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b'),
property :=
(_ :
∀ (n : ℕ) (a' : α),
Stream'.corec' (Corec.f f) (Sum.inr b') n = some a' →
Stream'.corec' (Corec.f f) (Sum.inr b') (n + 1) = some a') }
[PROOFSTEP]
dsimp [corec, tail]
[GOAL]
case inr.h.a
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
x✝ : α ⊕ β
h✝ : f b = x✝
b' : β
h : f b = Sum.inr b'
⊢ Stream'.tail
(Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b)) =
Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b')
[PROOFSTEP]
rw [Stream'.corec'_eq, Stream'.tail_cons]
[GOAL]
case inr.h.a
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
x✝ : α ⊕ β
h✝ : f b = x✝
b' : β
h : f b = Sum.inr b'
⊢ Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(match Sum.inr b with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b)).snd =
Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b')
[PROOFSTEP]
dsimp [Corec.f]
[GOAL]
case inr.h.a
α : Type u
β : Type v
γ : Type w
f : β → α ⊕ β
b : β
x✝ : α ⊕ β
h✝ : f b = x✝
b' : β
h : f b = Sum.inr b'
⊢ Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(f b) =
Stream'.corec'
(fun x =>
match x with
| Sum.inl a => (some a, Sum.inl a)
| Sum.inr b =>
(match f b with
| Sum.inl a => some a
| Sum.inr val => none,
f b))
(Sum.inr b')
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
⊢ s₁ = s₂
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
⊢ ↑s₁ = ↑s₂
[PROOFSTEP]
apply Stream'.eq_of_bisim fun x y => ∃ s s' : Computation α, s.1 = x ∧ s'.1 = y ∧ R s s'
[GOAL]
case a.bisim
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
⊢ Stream'.IsBisimulation fun x y => ∃ s s', ↑s = x ∧ ↑s' = y ∧ R s s'
case a.a
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s'
[PROOFSTEP]
dsimp [Stream'.IsBisimulation]
[GOAL]
case a.bisim
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
⊢ ∀ ⦃s₁ s₂ : Stream' (Option α)⦄,
(∃ s s', ↑s = s₁ ∧ ↑s' = s₂ ∧ R s s') →
Stream'.head s₁ = Stream'.head s₂ ∧ ∃ s s', ↑s = Stream'.tail s₁ ∧ ↑s' = Stream'.tail s₂ ∧ R s s'
case a.a
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s'
[PROOFSTEP]
intro t₁ t₂ e
[GOAL]
case a.bisim
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
⊢ Stream'.head t₁ = Stream'.head t₂ ∧ ∃ s s', ↑s = Stream'.tail t₁ ∧ ↑s' = Stream'.tail t₂ ∧ R s s'
case a.a
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s'
[PROOFSTEP]
exact
match t₁, t₂, e with
| _, _, ⟨s, s', rfl, rfl, r⟩ =>
by
suffices head s = head s' ∧ R (tail s) (tail s') from
And.imp id (fun r => ⟨tail s, tail s', by cases s; rfl, by cases s'; rfl, r⟩) this
have h := bisim r; revert r h
apply recOn s _ _ <;> intro r' <;> apply recOn s' _ _ <;> intro a' r h
· constructor <;> dsimp at h
· rw [h]
· rw [h] at r
rw [tail_pure, tail_pure, h]
assumption
· rw [destruct_pure, destruct_think] at h
exact False.elim h
· rw [destruct_pure, destruct_think] at h
exact False.elim h
· simp at h
simp [*]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r : R s s'
⊢ Stream'.head ↑s = Stream'.head ↑s' ∧ ∃ s_1 s'_1, ↑s_1 = Stream'.tail ↑s ∧ ↑s'_1 = Stream'.tail ↑s' ∧ R s_1 s'_1
[PROOFSTEP]
suffices head s = head s' ∧ R (tail s) (tail s') from
And.imp id (fun r => ⟨tail s, tail s', by cases s; rfl, by cases s'; rfl, r⟩) this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝¹ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r✝ : R s s'
this : head s = head s' ∧ R (tail s) (tail s')
r : R (tail s) (tail s')
⊢ ↑(tail s) = Stream'.tail ↑s
[PROOFSTEP]
cases s
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝¹ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s' : Computation α
val✝ : Stream' (Option α)
property✝ : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, val✝ n = some a → val✝ (n + 1) = some a
r✝ : R { val := val✝, property := property✝ } s'
this : head { val := val✝, property := property✝ } = head s' ∧ R (tail { val := val✝, property := property✝ }) (tail s')
r : R (tail { val := val✝, property := property✝ }) (tail s')
⊢ ↑(tail { val := val✝, property := property✝ }) = Stream'.tail ↑{ val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝¹ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r✝ : R s s'
this : head s = head s' ∧ R (tail s) (tail s')
r : R (tail s) (tail s')
⊢ ↑(tail s') = Stream'.tail ↑s'
[PROOFSTEP]
cases s'
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝¹ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s : Computation α
val✝ : Stream' (Option α)
property✝ : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, val✝ n = some a → val✝ (n + 1) = some a
r✝ : R s { val := val✝, property := property✝ }
this : head s = head { val := val✝, property := property✝ } ∧ R (tail s) (tail { val := val✝, property := property✝ })
r : R (tail s) (tail { val := val✝, property := property✝ })
⊢ ↑(tail { val := val✝, property := property✝ }) = Stream'.tail ↑{ val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r : R s s'
⊢ head s = head s' ∧ R (tail s) (tail s')
[PROOFSTEP]
have h := bisim r
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r : R s s'
h : BisimO R (destruct s) (destruct s')
⊢ head s = head s' ∧ R (tail s) (tail s')
[PROOFSTEP]
revert r h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
⊢ R s s' → BisimO R (destruct s) (destruct s') → head s = head s' ∧ R (tail s) (tail s')
[PROOFSTEP]
apply recOn s _ _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
⊢ ∀ (a : α),
R (pure a) s' → BisimO R (destruct (pure a)) (destruct s') → head (pure a) = head s' ∧ R (tail (pure a)) (tail s')
[PROOFSTEP]
intro r'
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
⊢ ∀ (s : Computation α),
R (think s) s' →
BisimO R (destruct (think s)) (destruct s') → head (think s) = head s' ∧ R (tail (think s)) (tail s')
[PROOFSTEP]
intro r'
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' : α
⊢ R (pure r') s' → BisimO R (destruct (pure r')) (destruct s') → head (pure r') = head s' ∧ R (tail (pure r')) (tail s')
[PROOFSTEP]
apply recOn s' _ _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' r' : Computation α
⊢ R (think r') s' →
BisimO R (destruct (think r')) (destruct s') → head (think r') = head s' ∧ R (tail (think r')) (tail s')
[PROOFSTEP]
apply recOn s' _ _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' : α
⊢ ∀ (a : α),
R (pure r') (pure a) →
BisimO R (destruct (pure r')) (destruct (pure a)) →
head (pure r') = head (pure a) ∧ R (tail (pure r')) (tail (pure a))
[PROOFSTEP]
intro a' r h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' : α
⊢ ∀ (s : Computation α),
R (pure r') (think s) →
BisimO R (destruct (pure r')) (destruct (think s)) →
head (pure r') = head (think s) ∧ R (tail (pure r')) (tail (think s))
[PROOFSTEP]
intro a' r h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' r' : Computation α
⊢ ∀ (a : α),
R (think r') (pure a) →
BisimO R (destruct (think r')) (destruct (pure a)) →
head (think r') = head (pure a) ∧ R (tail (think r')) (tail (pure a))
[PROOFSTEP]
intro a' r h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' r' : Computation α
⊢ ∀ (s : Computation α),
R (think r') (think s) →
BisimO R (destruct (think r')) (destruct (think s)) →
head (think r') = head (think s) ∧ R (tail (think r')) (tail (think s))
[PROOFSTEP]
intro a' r h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' a' : α
r : R (pure r') (pure a')
h : BisimO R (destruct (pure r')) (destruct (pure a'))
⊢ head (pure r') = head (pure a') ∧ R (tail (pure r')) (tail (pure a'))
[PROOFSTEP]
constructor
[GOAL]
case left
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' a' : α
r : R (pure r') (pure a')
h : BisimO R (destruct (pure r')) (destruct (pure a'))
⊢ head (pure r') = head (pure a')
[PROOFSTEP]
dsimp at h
[GOAL]
case right
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' a' : α
r : R (pure r') (pure a')
h : BisimO R (destruct (pure r')) (destruct (pure a'))
⊢ R (tail (pure r')) (tail (pure a'))
[PROOFSTEP]
dsimp at h
[GOAL]
case left
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' a' : α
r : R (pure r') (pure a')
h : r' = a'
⊢ head (pure r') = head (pure a')
[PROOFSTEP]
rw [h]
[GOAL]
case right
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' a' : α
r : R (pure r') (pure a')
h : r' = a'
⊢ R (tail (pure r')) (tail (pure a'))
[PROOFSTEP]
rw [h] at r
[GOAL]
case right
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' a' : α
r : R (pure a') (pure a')
h : r' = a'
⊢ R (tail (pure r')) (tail (pure a'))
[PROOFSTEP]
rw [tail_pure, tail_pure, h]
[GOAL]
case right
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' a' : α
r : R (pure a') (pure a')
h : r' = a'
⊢ R (pure a') (pure a')
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' : α
a' : Computation α
r : R (pure r') (think a')
h : BisimO R (destruct (pure r')) (destruct (think a'))
⊢ head (pure r') = head (think a') ∧ R (tail (pure r')) (tail (think a'))
[PROOFSTEP]
rw [destruct_pure, destruct_think] at h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Computation α
r' : α
a' : Computation α
r : R (pure r') (think a')
h : BisimO R (Sum.inl r') (Sum.inr a')
⊢ head (pure r') = head (think a') ∧ R (tail (pure r')) (tail (think a'))
[PROOFSTEP]
exact False.elim h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' r' : Computation α
a' : α
r : R (think r') (pure a')
h : BisimO R (destruct (think r')) (destruct (pure a'))
⊢ head (think r') = head (pure a') ∧ R (tail (think r')) (tail (pure a'))
[PROOFSTEP]
rw [destruct_pure, destruct_think] at h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' r' : Computation α
a' : α
r : R (think r') (pure a')
h : BisimO R (Sum.inr r') (Sum.inl a')
⊢ head (think r') = head (pure a') ∧ R (tail (think r')) (tail (pure a'))
[PROOFSTEP]
exact False.elim h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' r' a' : Computation α
r : R (think r') (think a')
h : BisimO R (destruct (think r')) (destruct (think a'))
⊢ head (think r') = head (think a') ∧ R (tail (think r')) (tail (think a'))
[PROOFSTEP]
simp at h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' r' a' : Computation α
r : R (think r') (think a')
h : R r' a'
⊢ head (think r') = head (think a') ∧ R (tail (think r')) (tail (think a'))
[PROOFSTEP]
simp [*]
[GOAL]
case a.a
α : Type u
β : Type v
γ : Type w
R : Computation α → Computation α → Prop
bisim : IsBisimulation R
s₁ s₂ : Computation α
r : R s₁ s₂
⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s'
[PROOFSTEP]
exact ⟨s₁, s₂, rfl, rfl, r⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
m n : ℕ
h : m ≤ n
⊢ ↑s m = some a → ↑s n = some a
[PROOFSTEP]
cases' s with f al
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
a : α
m n : ℕ
h : m ≤ n
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
⊢ ↑{ val := f, property := al } m = some a → ↑{ val := f, property := al } n = some a
[PROOFSTEP]
induction' h with n _ IH
[GOAL]
case mk.refl
α : Type u
β : Type v
γ : Type w
a : α
m n : ℕ
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
⊢ ↑{ val := f, property := al } m = some a → ↑{ val := f, property := al } m = some a
case mk.step
α : Type u
β : Type v
γ : Type w
a : α
m n✝ : ℕ
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
n : ℕ
a✝ : Nat.le m n
IH : ↑{ val := f, property := al } m = some a → ↑{ val := f, property := al } n = some a
⊢ ↑{ val := f, property := al } m = some a → ↑{ val := f, property := al } (Nat.succ n) = some a
[PROOFSTEP]
exacts [id, fun h2 => al (IH h2)]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a b : α
m : ℕ
ha : (fun b => some a = b) (Stream'.nth (↑s) m)
n : ℕ
hb : (fun b_1 => some b = b_1) (Stream'.nth (↑s) n)
⊢ a = b
[PROOFSTEP]
injection (le_stable s (le_max_left m n) ha.symm).symm.trans (le_stable s (le_max_right m n) hb.symm)
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
x✝ : Terminates s
a : α
n : ℕ
h : (fun b => some a = b) (Stream'.nth (↑s) n)
⊢ Option.isSome (↑s n) = true
[PROOFSTEP]
dsimp [Stream'.nth] at h
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
x✝ : Terminates s
a : α
n : ℕ
h : some a = ↑s n
⊢ Option.isSome (↑s n) = true
[PROOFSTEP]
rw [← h]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
x✝ : Terminates s
a : α
n : ℕ
h : some a = ↑s n
⊢ Option.isSome (some a) = true
[PROOFSTEP]
exact rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : (fun b => some a = b) (Stream'.nth (↑(think s)) n)
⊢ a ∈ s
[PROOFSTEP]
cases' n with n'
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
h : some a = Stream'.nth (↑(think s)) Nat.zero
⊢ a ∈ s
case succ
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n' : ℕ
h : some a = Stream'.nth (↑(think s)) (Nat.succ n')
⊢ a ∈ s
[PROOFSTEP]
contradiction
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n' : ℕ
h : some a = Stream'.nth (↑(think s)) (Nat.succ n')
⊢ a ∈ s
[PROOFSTEP]
exact ⟨n', h⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
x✝ : a ∈ empty α
n : ℕ
h : (fun b => some a = b) (Stream'.nth (↑(empty α)) n)
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
H : ¬Terminates s
⊢ s = empty α
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
s : Computation α
H : ¬Terminates s
⊢ ↑s = ↑(empty α)
[PROOFSTEP]
funext n
[GOAL]
case a.h
α : Type u
β : Type v
γ : Type w
s : Computation α
H : ¬Terminates s
n : ℕ
⊢ ↑s n = ↑(empty α) n
[PROOFSTEP]
induction' h : s.val n with _
[GOAL]
case a.h.none
α : Type u
β : Type v
γ : Type w
s : Computation α
H : ¬Terminates s
n : ℕ
x✝ : Option α
h✝ : ↑s n = x✝
h : ↑s n = none
⊢ none = ↑(empty α) n
[PROOFSTEP]
rfl
[GOAL]
case a.h.some
α : Type u
β : Type v
γ : Type w
s : Computation α
H : ¬Terminates s
n : ℕ
x✝ : Option α
h✝ : ↑s n = x✝
val✝ : α
h : ↑s n = some val✝
⊢ some val✝ = ↑(empty α) n
[PROOFSTEP]
refine' absurd _ H
[GOAL]
case a.h.some
α : Type u
β : Type v
γ : Type w
s : Computation α
H : ¬Terminates s
n : ℕ
x✝ : Option α
h✝ : ↑s n = x✝
val✝ : α
h : ↑s n = some val✝
⊢ Terminates s
[PROOFSTEP]
exact ⟨⟨_, _, h.symm⟩⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
a : α
⊢ get s = a → a ∈ s
[PROOFSTEP]
intro h
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
h✝ : Terminates s
a : α
h : get s = a
⊢ a ∈ s
[PROOFSTEP]
rw [← h]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
h✝ : Terminates s
a : α
h : get s = a
⊢ get s ∈ s
[PROOFSTEP]
apply get_mem
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
a : α
p : s ~> a
⊢ a ∈ s
[PROOFSTEP]
cases' h with h
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
p : s ~> a
h : ∃ a, a ∈ s
⊢ a ∈ s
[PROOFSTEP]
cases' h with a' h
[GOAL]
case mk.intro
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
p : s ~> a
a' : α
h : a' ∈ s
⊢ a ∈ s
[PROOFSTEP]
rw [p h]
[GOAL]
case mk.intro
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
p : s ~> a
a' : α
h : a' ∈ s
⊢ a' ∈ s
[PROOFSTEP]
exact h
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
T : Terminates s
a : α
h : a ∈ s
⊢ Results s a (length s)
[PROOFSTEP]
rw [← get_eq_of_mem _ h]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
T : Terminates s
a : α
h : a ∈ s
⊢ Results s (get s) (length s)
[PROOFSTEP]
apply results_of_terminates
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a b : α
m n : ℕ
h1 : Results s a m
h2 : Results s b n
⊢ m = n
[PROOFSTEP]
haveI := h1.terminates
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a b : α
m n : ℕ
h1 : Results s a m
h2 : Results s b n
this : Terminates s
⊢ m = n
[PROOFSTEP]
haveI := h2.terminates
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a b : α
m n : ℕ
h1 : Results s a m
h2 : Results s b n
this✝ this : Terminates s
⊢ m = n
[PROOFSTEP]
rw [← h1.length, h2.length]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
⊢ length (think s) = length s + 1
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
⊢ length (think s) ≤ length s + 1
[PROOFSTEP]
exact Nat.find_min' _ (Nat.find_spec ((terminates_def _).1 h))
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
⊢ length s + 1 ≤ length (think s)
[PROOFSTEP]
have : (Option.isSome ((think s).val (length (think s))) : Prop) :=
Nat.find_spec ((terminates_def _).1 s.think_terminates)
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
this : Option.isSome (↑(think s) (length (think s))) = true
⊢ length s + 1 ≤ length (think s)
[PROOFSTEP]
revert this
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
⊢ Option.isSome (↑(think s) (length (think s))) = true → length s + 1 ≤ length (think s)
[PROOFSTEP]
cases' length (think s) with n
[GOAL]
case a.zero
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
⊢ Option.isSome (↑(think s) Nat.zero) = true → length s + 1 ≤ Nat.zero
[PROOFSTEP]
intro this
[GOAL]
case a.succ
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
n : ℕ
⊢ Option.isSome (↑(think s) (Nat.succ n)) = true → length s + 1 ≤ Nat.succ n
[PROOFSTEP]
intro this
[GOAL]
case a.zero
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
this : Option.isSome (↑(think s) Nat.zero) = true
⊢ length s + 1 ≤ Nat.zero
[PROOFSTEP]
simp [think, Stream'.cons] at this
[GOAL]
case a.succ
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
n : ℕ
this : Option.isSome (↑(think s) (Nat.succ n)) = true
⊢ length s + 1 ≤ Nat.succ n
[PROOFSTEP]
apply Nat.succ_le_succ
[GOAL]
case a.succ.a
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
n : ℕ
this : Option.isSome (↑(think s) (Nat.succ n)) = true
⊢ length s ≤ n
[PROOFSTEP]
apply Nat.find_min'
[GOAL]
case a.succ.a.h
α : Type u
β : Type v
γ : Type w
s : Computation α
h : Terminates s
n : ℕ
this : Option.isSome (↑(think s) (Nat.succ n)) = true
⊢ Option.isSome (↑s n) = true
[PROOFSTEP]
apply this
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : Results s a n
this : Terminates s
⊢ length (think s) = n + 1
[PROOFSTEP]
rw [length_think, h.length]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : Results (think s) a n
⊢ ∃ m, Results s a m ∧ n = m + 1
[PROOFSTEP]
haveI := of_think_terminates h.terminates
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : Results (think s) a n
this : Terminates s
⊢ ∃ m, Results s a m ∧ n = m + 1
[PROOFSTEP]
have := results_of_terminates' _ (of_think_mem h.mem)
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : Results (think s) a n
this✝ : Terminates s
this : Results s a (length s)
⊢ ∃ m, Results s a m ∧ n = m + 1
[PROOFSTEP]
exact ⟨_, this, Results.len_unique h (results_think this)⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : Results (think s) a (n + 1)
⊢ Results s a n
[PROOFSTEP]
let ⟨n', r, e⟩ := of_results_think h
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : Results (think s) a (n + 1)
n' : ℕ
r : Results s a n'
e : n + 1 = n' + 1
⊢ Results s a n
[PROOFSTEP]
injection e with h'
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : Results (think s) a (n + 1)
n' : ℕ
r : Results s a n'
h' : Nat.add n 0 = Nat.add n' 0
⊢ Results s a n
[PROOFSTEP]
rw [Nat.add, Nat.add] at h'
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : Results (think s) a (n + 1)
n' : ℕ
r : Results s a n'
h' : n = n'
⊢ Results s a n
[PROOFSTEP]
rwa [h']
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
n : ℕ
⊢ Results (thinkN (pure a) n) a n
[PROOFSTEP]
have := results_thinkN n (results_pure a)
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
n : ℕ
this : Results (thinkN (pure a) n) a (0 + n)
⊢ Results (thinkN (pure a) n) a n
[PROOFSTEP]
rwa [Nat.zero_add] at this
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
a : α
n : ℕ
h : Results s a n
⊢ s = thinkN (pure a) n
[PROOFSTEP]
revert s
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
n : ℕ
⊢ ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
a : α
⊢ ∀ {s : Computation α}, Results s a Nat.zero → s = thinkN (pure a) Nat.zero
[PROOFSTEP]
intro s
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
a : α
n : ℕ
IH : ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n
⊢ ∀ {s : Computation α}, Results s a (Nat.succ n) → s = thinkN (pure a) (Nat.succ n)
[PROOFSTEP]
intro s
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
a : α
s : Computation α
⊢ Results s a Nat.zero → s = thinkN (pure a) Nat.zero
[PROOFSTEP]
apply recOn s (fun a' => _) fun s => _
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
a : α
n : ℕ
IH : ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n
s : Computation α
⊢ Results s a (Nat.succ n) → s = thinkN (pure a) (Nat.succ n)
[PROOFSTEP]
apply recOn s (fun a' => _) fun s => _
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Computation α
⊢ ∀ (a' : α), Results (pure a') a Nat.zero → pure a' = thinkN (pure a) Nat.zero
[PROOFSTEP]
intro a h
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Computation α
⊢ ∀ (s : Computation α), Results (think s) a Nat.zero → think s = thinkN (pure a) Nat.zero
[PROOFSTEP]
intro a h
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
n : ℕ
IH : ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n
s : Computation α
⊢ ∀ (a' : α), Results (pure a') a (Nat.succ n) → pure a' = thinkN (pure a) (Nat.succ n)
[PROOFSTEP]
intro a h
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
n : ℕ
IH : ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n
s : Computation α
⊢ ∀ (s : Computation α), Results (think s) a (Nat.succ n) → think s = thinkN (pure a) (Nat.succ n)
[PROOFSTEP]
intro a h
[GOAL]
α : Type u
β : Type v
γ : Type w
a✝ : α
s : Computation α
a : α
h : Results (pure a) a✝ Nat.zero
⊢ pure a = thinkN (pure a✝) Nat.zero
[PROOFSTEP]
rw [← eq_of_pure_mem h.mem]
[GOAL]
α : Type u
β : Type v
γ : Type w
a✝ : α
s : Computation α
a : α
h : Results (pure a) a✝ Nat.zero
⊢ pure a✝ = thinkN (pure a✝) Nat.zero
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
a✝ : α
s a : Computation α
h : Results (think a) a✝ Nat.zero
⊢ think a = thinkN (pure a✝) Nat.zero
[PROOFSTEP]
cases' of_results_think h with n h
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
a✝ : α
s a : Computation α
h✝ : Results (think a) a✝ Nat.zero
n : ℕ
h : Results a a✝ n ∧ Nat.zero = n + 1
⊢ think a = thinkN (pure a✝) Nat.zero
[PROOFSTEP]
cases h
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
a✝ : α
s a : Computation α
h : Results (think a) a✝ Nat.zero
n : ℕ
left✝ : Results a a✝ n
right✝ : Nat.zero = n + 1
⊢ think a = thinkN (pure a✝) Nat.zero
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
γ : Type w
a✝ : α
n : ℕ
IH : ∀ {s : Computation α}, Results s a✝ n → s = thinkN (pure a✝) n
s : Computation α
a : α
h : Results (pure a) a✝ (Nat.succ n)
⊢ pure a = thinkN (pure a✝) (Nat.succ n)
[PROOFSTEP]
have := h.len_unique (results_pure _)
[GOAL]
α : Type u
β : Type v
γ : Type w
a✝ : α
n : ℕ
IH : ∀ {s : Computation α}, Results s a✝ n → s = thinkN (pure a✝) n
s : Computation α
a : α
h : Results (pure a) a✝ (Nat.succ n)
this : Nat.succ n = 0
⊢ pure a = thinkN (pure a✝) (Nat.succ n)
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
γ : Type w
a✝ : α
n : ℕ
IH : ∀ {s : Computation α}, Results s a✝ n → s = thinkN (pure a✝) n
s a : Computation α
h : Results (think a) a✝ (Nat.succ n)
⊢ think a = thinkN (pure a✝) (Nat.succ n)
[PROOFSTEP]
rw [IH (results_think_iff.1 h)]
[GOAL]
α : Type u
β : Type v
γ : Type w
a✝ : α
n : ℕ
IH : ∀ {s : Computation α}, Results s a✝ n → s = thinkN (pure a✝) n
s a : Computation α
h : Results (think a) a✝ (Nat.succ n)
⊢ think (thinkN (pure a✝) n) = thinkN (pure a✝) (Nat.succ n)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
a : α
s : Computation α
M : a ∈ s
h1 : C (pure a)
h2 : (s : Computation α) → C s → C (think s)
⊢ C s
[PROOFSTEP]
haveI T := terminates_of_mem M
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
a : α
s : Computation α
M : a ∈ s
h1 : C (pure a)
h2 : (s : Computation α) → C s → C (think s)
T : Terminates s
⊢ C s
[PROOFSTEP]
rw [eq_thinkN' s, get_eq_of_mem s M]
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
a : α
s : Computation α
M : a ∈ s
h1 : C (pure a)
h2 : (s : Computation α) → C s → C (think s)
T : Terminates s
⊢ C (thinkN (pure a) (length s))
[PROOFSTEP]
generalize length s = n
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
a : α
s : Computation α
M : a ∈ s
h1 : C (pure a)
h2 : (s : Computation α) → C s → C (think s)
T : Terminates s
n : ℕ
⊢ C (thinkN (pure a) n)
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
a : α
s : Computation α
M : a ∈ s
h1 : C (pure a)
h2 : (s : Computation α) → C s → C (think s)
T : Terminates s
⊢ C (thinkN (pure a) Nat.zero)
case succ
α : Type u
β : Type v
γ : Type w
C : Computation α → Sort v
a : α
s : Computation α
M : a ∈ s
h1 : C (pure a)
h2 : (s : Computation α) → C s → C (think s)
T : Terminates s
n : ℕ
IH : C (thinkN (pure a) n)
⊢ C (thinkN (pure a) (Nat.succ n))
[PROOFSTEP]
exacts [h1, h2 _ IH]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
n : ℕ
b : β
⊢ Stream'.map (fun o => Option.casesOn o none (some ∘ f)) s n = some b →
Stream'.map (fun o => Option.casesOn o none (some ∘ f)) s (n + 1) = some b
[PROOFSTEP]
dsimp [Stream'.map, Stream'.nth]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
n : ℕ
b : β
⊢ Option.rec none (fun val => some (f val)) (s n) = some b →
Option.rec none (fun val => some (f val)) (s (n + 1)) = some b
[PROOFSTEP]
induction' e : s n with a
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
n : ℕ
b : β
x✝ : Option α
e✝ : s n = x✝
e : s n = none
⊢ Option.rec none (fun val => some (f val)) none = some b →
Option.rec none (fun val => some (f val)) (s (n + 1)) = some b
[PROOFSTEP]
intro h
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
n : ℕ
b : β
x✝ : Option α
e✝ : s n = x✝
a : α
e : s n = some a
⊢ Option.rec none (fun val => some (f val)) (some a) = some b →
Option.rec none (fun val => some (f val)) (s (n + 1)) = some b
[PROOFSTEP]
intro h
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
n : ℕ
b : β
x✝ : Option α
e✝ : s n = x✝
e : s n = none
h : Option.rec none (fun val => some (f val)) none = some b
⊢ Option.rec none (fun val => some (f val)) (s (n + 1)) = some b
[PROOFSTEP]
contradiction
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
n : ℕ
b : β
x✝ : Option α
e✝ : s n = x✝
a : α
e : s n = some a
h : Option.rec none (fun val => some (f val)) (some a) = some b
⊢ Option.rec none (fun val => some (f val)) (s (n + 1)) = some b
[PROOFSTEP]
rw [al e]
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
n : ℕ
b : β
x✝ : Option α
e✝ : s n = x✝
a : α
e : s n = some a
h : Option.rec none (fun val => some (f val)) (some a) = some b
⊢ Option.rec none (fun val => some (f val)) (some a) = some b
[PROOFSTEP]
exact h
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
⊢ map f (think { val := s, property := al }) = think (map f { val := s, property := al })
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
⊢ ↑(map f (think { val := s, property := al })) = ↑(think (map f { val := s, property := al }))
[PROOFSTEP]
dsimp [think, map]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
⊢ Stream'.map (fun o => Option.rec none (fun val => some (f val)) o) (Stream'.cons none s) =
Stream'.cons none (Stream'.map (fun o => Option.rec none (fun val => some (f val)) o) s)
[PROOFSTEP]
rw [Stream'.map_cons]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
⊢ destruct (map f s) = lmap f (rmap (map f) (destruct s))
[PROOFSTEP]
apply s.recOn
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
⊢ ∀ (a : α), destruct (map f (pure a)) = lmap f (rmap (map f) (destruct (pure a)))
[PROOFSTEP]
intro
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
⊢ ∀ (s : Computation α), destruct (map f (think s)) = lmap f (rmap (map f) (destruct (think s)))
[PROOFSTEP]
intro
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
a✝ : α
⊢ destruct (map f (pure a✝)) = lmap f (rmap (map f) (destruct (pure a✝)))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
s s✝ : Computation α
⊢ destruct (map f (think s✝)) = lmap f (rmap (map f) (destruct (think s✝)))
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
⊢ map id { val := f, property := al } = { val := f, property := al }
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
⊢ ↑(map id { val := f, property := al }) = ↑{ val := f, property := al }
[PROOFSTEP]
simp [map, Function.comp]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
⊢ Stream'.map (fun o => Option.rec none (fun val => some val) o) f = f
[PROOFSTEP]
have e : @Option.rec α (fun _ => Option α) none some = id := by ext ⟨⟩ <;> rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
⊢ Option.rec none some = id
[PROOFSTEP]
ext ⟨⟩
[GOAL]
case h.none.a
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
a✝ : α
⊢ a✝ ∈ Option.rec none some none ↔ a✝ ∈ id none
[PROOFSTEP]
rfl
[GOAL]
case h.some.a
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
val✝ a✝ : α
⊢ a✝ ∈ Option.rec none some (some val✝) ↔ a✝ ∈ id (some val✝)
[PROOFSTEP]
rfl
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
e : Option.rec none some = id
⊢ Stream'.map (fun o => Option.rec none (fun val => some val) o) f = f
[PROOFSTEP]
have h : ((fun x : Option α => x) = id) := by rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
e : Option.rec none some = id
⊢ (fun x => x) = id
[PROOFSTEP]
rfl
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a
e : Option.rec none some = id
h : (fun x => x) = id
⊢ Stream'.map (fun o => Option.rec none (fun val => some val) o) f = f
[PROOFSTEP]
simp [e, h, Stream'.map_id]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
⊢ map (g ∘ f) { val := s, property := al } = map g (map f { val := s, property := al })
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
⊢ ↑(map (g ∘ f) { val := s, property := al }) = ↑(map g (map f { val := s, property := al }))
[PROOFSTEP]
dsimp [map]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
⊢ Stream'.map (fun o => Option.rec none (fun val => some (g (f val))) o) s =
Stream'.map
((fun o => Option.rec none (fun val => some (g val)) o) ∘ fun o => Option.rec none (fun val => some (f val)) o) s
[PROOFSTEP]
apply congr_arg fun f : _ → Option γ => Stream'.map f s
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
⊢ (fun o => Option.rec none (fun val => some (g (f val))) o) =
(fun o => Option.rec none (fun val => some (g val)) o) ∘ fun o => Option.rec none (fun val => some (f val)) o
[PROOFSTEP]
ext ⟨⟩
[GOAL]
case a.h.none.a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
a✝ : γ
⊢ a✝ ∈ Option.rec none (fun val => some (g (f val))) none ↔
a✝ ∈
((fun o => Option.rec none (fun val => some (g val)) o) ∘ fun o => Option.rec none (fun val => some (f val)) o)
none
[PROOFSTEP]
rfl
[GOAL]
case a.h.some.a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a
val✝ : α
a✝ : γ
⊢ a✝ ∈ Option.rec none (fun val => some (g (f val))) (some val✝) ↔
a✝ ∈
((fun o => Option.rec none (fun val => some (g val)) o) ∘ fun o => Option.rec none (fun val => some (f val)) o)
(some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
⊢ bind (pure a) f = f a
[PROOFSTEP]
apply eq_of_bisim fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
⊢ IsBisimulation fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
[PROOFSTEP]
intro c₁ c₂ h
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
c₁ c₂ : Computation β
h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
⊢ BisimO (fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)) (destruct c₁) (destruct c₂)
[PROOFSTEP]
exact
match c₁, c₂, h with
| _, _, Or.inl ⟨rfl, rfl⟩ => by
simp [bind, Bind.f]
cases' destruct (f a) with b cb <;> simp [Bind.g]
| _, c, Or.inr rfl => by
simp [Bind.f]
cases' destruct c with b cb <;> simp [Bind.g]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
c₁ c₂ : Computation β
h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
⊢ BisimO (fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂))
(destruct (bind (pure a) f)) (destruct (f a))
[PROOFSTEP]
simp [bind, Bind.f]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
c₁ c₂ : Computation β
h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
⊢ match
match Bind.g (destruct (f a)) with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
(corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
b),
destruct (f a) with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' =>
s =
corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
(Sum.inl (pure a)) ∧
s' = f a ∨
s =
corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
(Sum.inr s')
| x, x_1 => False
[PROOFSTEP]
cases' destruct (f a) with b cb
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
c₁ c₂ : Computation β
h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
b : β
⊢ match
match Bind.g (Sum.inl b) with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
(corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
b),
Sum.inl b with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' =>
s =
corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
(Sum.inl (pure a)) ∧
s' = f a ∨
s =
corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
(Sum.inr s')
| x, x_1 => False
[PROOFSTEP]
simp [Bind.g]
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
c₁ c₂ : Computation β
h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
cb : Computation β
⊢ match
match Bind.g (Sum.inr cb) with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
(corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
b),
Sum.inr cb with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' =>
s =
corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
(Sum.inl (pure a)) ∧
s' = f a ∨
s =
corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
(Sum.inr s')
| x, x_1 => False
[PROOFSTEP]
simp [Bind.g]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
c₁ c₂ : Computation β
h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
c : Computation β
⊢ BisimO (fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂))
(destruct (corec (Bind.f f) (Sum.inr c))) (destruct c)
[PROOFSTEP]
simp [Bind.f]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
c₁ c₂ : Computation β
h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
c : Computation β
⊢ match
match Bind.g (destruct c) with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
(corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
b),
destruct c with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' =>
s = bind (pure a) f ∧ s' = f a ∨
s =
corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
(Sum.inr s')
| x, x_1 => False
[PROOFSTEP]
cases' destruct c with b cb
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
c₁ c₂ : Computation β
h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
c : Computation β
b : β
⊢ match
match Bind.g (Sum.inl b) with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
(corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
b),
Sum.inl b with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' =>
s = bind (pure a) f ∧ s' = f a ∨
s =
corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
(Sum.inr s')
| x, x_1 => False
[PROOFSTEP]
simp [Bind.g]
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
c₁ c₂ : Computation β
h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)
c cb : Computation β
⊢ match
match Bind.g (Sum.inr cb) with
| Sum.inl a => Sum.inl a
| Sum.inr b =>
Sum.inr
(corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
b),
Sum.inr cb with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' =>
s = bind (pure a) f ∧ s' = f a ∨
s =
corec
(fun x =>
match x with
| Sum.inl ca =>
match destruct ca with
| Sum.inl a => Bind.g (destruct (f a))
| Sum.inr ca' => Sum.inr (Sum.inl ca')
| Sum.inr cb => Bind.g (destruct cb))
(Sum.inr s')
| x, x_1 => False
[PROOFSTEP]
simp [Bind.g]
[GOAL]
case r
α : Type u
β : Type v
γ : Type w
a : α
f : α → Computation β
⊢ bind (pure a) f = bind (pure a) f ∧ f a = f a ∨ bind (pure a) f = corec (Bind.f f) (Sum.inr (f a))
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
c : Computation α
f : α → Computation β
⊢ destruct (bind (think c) f) = Sum.inr (bind c f)
[PROOFSTEP]
simp [bind, Bind.f]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
⊢ bind s (pure ∘ f) = map f s
[PROOFSTEP]
apply eq_of_bisim fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
⊢ IsBisimulation fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s
[PROOFSTEP]
intro c₁ c₂ h
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
c₁ c₂ : Computation β
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct c₁) (destruct c₂)
[PROOFSTEP]
exact
match c₁, c₂, h with
| _, c₂, Or.inl (Eq.refl _) => by cases' destruct c₂ with b cb <;> simp
| _, _, Or.inr ⟨s, rfl, rfl⟩ => by
apply recOn s <;> intro s <;> simp
exact Or.inr ⟨s, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
c₁ c₂✝ : Computation β
h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂✝ = map f s
c₂ : Computation β
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct c₂) (destruct c₂)
[PROOFSTEP]
cases' destruct c₂ with b cb
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
c₁ c₂✝ : Computation β
h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂✝ = map f s
c₂ : Computation β
b : β
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (Sum.inl b) (Sum.inl b)
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
c₁ c₂✝ : Computation β
h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂✝ = map f s
c₂ cb : Computation β
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (Sum.inr cb) (Sum.inr cb)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ : Computation α
c₁ c₂ : Computation β
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s
s : Computation α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind s (pure ∘ f)))
(destruct (map f s))
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ : Computation α
c₁ c₂ : Computation β
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s
s : Computation α
⊢ ∀ (a : α),
BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind (pure a) (pure ∘ f)))
(destruct (map f (pure a)))
[PROOFSTEP]
intro s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ : Computation α
c₁ c₂ : Computation β
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s
s : Computation α
⊢ ∀ (s : Computation α),
BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind (think s) (pure ∘ f)))
(destruct (map f (think s)))
[PROOFSTEP]
intro s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
s✝¹ : Computation α
c₁ c₂ : Computation β
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s
s✝ : Computation α
s : α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind (pure s) (pure ∘ f)))
(destruct (map f (pure s)))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝¹ : Computation α
c₁ c₂ : Computation β
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s
s✝ s : Computation α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind (think s) (pure ∘ f)))
(destruct (map f (think s)))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝¹ : Computation α
c₁ c₂ : Computation β
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s
s✝ s : Computation α
⊢ bind s (pure ∘ f) = map f s ∨ ∃ s_1, bind s (pure ∘ f) = bind s_1 (pure ∘ f) ∧ map f s = map f s_1
[PROOFSTEP]
exact Or.inr ⟨s, rfl, rfl⟩
[GOAL]
case r
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
⊢ bind s (pure ∘ f) = map f s ∨ ∃ s_1, bind s (pure ∘ f) = bind s_1 (pure ∘ f) ∧ map f s = map f s_1
[PROOFSTEP]
exact Or.inr ⟨s, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
⊢ bind s pure = s
[PROOFSTEP]
apply eq_of_bisim fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure) ∧ c₂ = s
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
s : Computation α
⊢ IsBisimulation fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s
[PROOFSTEP]
intro c₁ c₂ h
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
s c₁ c₂ : Computation α
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct c₁) (destruct c₂)
[PROOFSTEP]
exact
match c₁, c₂, h with
| _, c₂, Or.inl (Eq.refl _) => by cases' destruct c₂ with b cb <;> simp
| _, _, Or.inr ⟨s, rfl, rfl⟩ => by apply recOn s <;> intro s <;> simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s c₁ c₂✝ : Computation α
h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s pure ∧ c₂✝ = s
c₂ : Computation α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct c₂) (destruct c₂)
[PROOFSTEP]
cases' destruct c₂ with b cb
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
s c₁ c₂✝ : Computation α
h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s pure ∧ c₂✝ = s
c₂ : Computation α
b : α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (Sum.inl b) (Sum.inl b)
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
s c₁ c₂✝ : Computation α
h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s pure ∧ c₂✝ = s
c₂ cb : Computation α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (Sum.inr cb) (Sum.inr cb)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ c₁ c₂ : Computation α
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s
s : Computation α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind s pure)) (destruct s)
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
s✝ c₁ c₂ : Computation α
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s
s : Computation α
⊢ ∀ (a : α),
BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind (pure a) pure)) (destruct (pure a))
[PROOFSTEP]
intro s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
s✝ c₁ c₂ : Computation α
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s
s : Computation α
⊢ ∀ (s : Computation α),
BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind (think s) pure)) (destruct (think s))
[PROOFSTEP]
intro s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
s✝¹ c₁ c₂ : Computation α
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s
s✝ : Computation α
s : α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind (pure s) pure)) (destruct (pure s))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
s✝¹ c₁ c₂ : Computation α
h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s
s✝ s : Computation α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind (think s) pure)) (destruct (think s))
[PROOFSTEP]
simp
[GOAL]
case r
α : Type u
β : Type v
γ : Type w
s : Computation α
⊢ bind s pure = s ∨ ∃ s_1, bind s pure = bind s_1 pure ∧ s = s_1
[PROOFSTEP]
exact Or.inr ⟨s, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
g : β → Computation γ
⊢ bind (bind s f) g = bind s fun x => bind (f x) g
[PROOFSTEP]
apply eq_of_bisim fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x : α => bind (f x) g
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
g : β → Computation γ
⊢ IsBisimulation fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
[PROOFSTEP]
intro c₁ c₂ h
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (destruct c₁)
(destruct c₂)
[PROOFSTEP]
exact
match c₁, c₂, h with
| _, c₂, Or.inl (Eq.refl _) => by cases' destruct c₂ with b cb <;> simp
| _, _, Or.inr ⟨s, rfl, rfl⟩ => by
apply recOn s <;> intro s <;> simp
· generalize f s = fs
apply recOn fs <;> intro t <;> simp
· cases' destruct (g t) with b cb <;> simp
· exact Or.inr ⟨s, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂✝ : Computation γ
h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂✝ = bind s fun x => bind (f x) g
c₂ : Computation γ
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (destruct c₂)
(destruct c₂)
[PROOFSTEP]
cases' destruct c₂ with b cb
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂✝ : Computation γ
h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂✝ = bind s fun x => bind (f x) g
c₂ : Computation γ
b : γ
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (Sum.inl b)
(Sum.inl b)
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂✝ : Computation γ
h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂✝ = bind s fun x => bind (f x) g
c₂ cb : Computation γ
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (Sum.inr cb)
(Sum.inr cb)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s : Computation α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g)
(destruct (bind (bind s f) g)) (destruct (bind s fun x => bind (f x) g))
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s : Computation α
⊢ ∀ (a : α),
BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g)
(destruct (bind (bind (pure a) f) g)) (destruct (bind (pure a) fun x => bind (f x) g))
[PROOFSTEP]
intro s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s : Computation α
⊢ ∀ (s : Computation α),
BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g)
(destruct (bind (bind (think s) f) g)) (destruct (bind (think s) fun x => bind (f x) g))
[PROOFSTEP]
intro s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g)
(destruct (bind (bind (pure s) f) g)) (destruct (bind (pure s) fun x => bind (f x) g))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ s : Computation α
⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g)
(destruct (bind (bind (think s) f) g)) (destruct (bind (think s) fun x => bind (f x) g))
[PROOFSTEP]
simp
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
⊢ match destruct (bind (f s) g), destruct (bind (f s) g) with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g
| x, x_1 => False
[PROOFSTEP]
generalize f s = fs
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
fs : Computation β
⊢ match destruct (bind fs g), destruct (bind fs g) with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g
| x, x_1 => False
[PROOFSTEP]
apply recOn fs
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
fs : Computation β
⊢ ∀ (a : β),
match destruct (bind (pure a) g), destruct (bind (pure a) g) with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g
| x, x_1 => False
[PROOFSTEP]
intro t
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
fs : Computation β
⊢ ∀ (s : Computation β),
match destruct (bind (think s) g), destruct (bind (think s) g) with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g
| x, x_1 => False
[PROOFSTEP]
intro t
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
fs : Computation β
t : β
⊢ match destruct (bind (pure t) g), destruct (bind (pure t) g) with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
fs t : Computation β
⊢ match destruct (bind (think t) g), destruct (bind (think t) g) with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
fs : Computation β
t : β
⊢ match destruct (g t), destruct (g t) with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g
| x, x_1 => False
[PROOFSTEP]
cases' destruct (g t) with b cb
[GOAL]
case h1.h1.inl
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
fs : Computation β
t : β
b : γ
⊢ match Sum.inl b, Sum.inl b with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h1.inr
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ : Computation α
s : α
fs : Computation β
t : β
cb : Computation γ
⊢ match Sum.inr cb, Sum.inr cb with
| Sum.inl a, Sum.inl a' => a = a'
| Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
s✝¹ : Computation α
f : α → Computation β
g : β → Computation γ
c₁ c₂ : Computation γ
h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g
s✝ s : Computation α
⊢ (bind (bind s f) g = bind s fun x => bind (f x) g) ∨
∃ s_1, bind (bind s f) g = bind (bind s_1 f) g ∧ (bind s fun x => bind (f x) g) = bind s_1 fun x => bind (f x) g
[PROOFSTEP]
exact Or.inr ⟨s, rfl, rfl⟩
[GOAL]
case r
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
g : β → Computation γ
⊢ (bind (bind s f) g = bind s fun x => bind (f x) g) ∨
∃ s_1, bind (bind s f) g = bind (bind s_1 f) g ∧ (bind s fun x => bind (f x) g) = bind s_1 fun x => bind (f x) g
[PROOFSTEP]
exact Or.inr ⟨s, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
m n : ℕ
h1 : Results s a m
h2 : Results (f a) b n
⊢ Results (bind s f) b (n + m)
[PROOFSTEP]
have := h1.mem
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
m n : ℕ
h1 : Results s a m
h2 : Results (f a) b n
this : a ∈ s
⊢ Results (bind s f) b (n + m)
[PROOFSTEP]
revert m
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
⊢ ∀ {m : ℕ}, Results s a m → Results (bind s f) b (n + m)
[PROOFSTEP]
apply memRecOn this _ fun s IH => _
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
⊢ ∀ {m : ℕ}, Results (pure a) a m → Results (bind (pure a) f) b (n + m)
[PROOFSTEP]
intro _ h1
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
m✝ : ℕ
h1 : Results (pure a) a m✝
⊢ Results (bind (pure a) f) b (n + m✝)
[PROOFSTEP]
rw [ret_bind]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
m✝ : ℕ
h1 : Results (pure a) a m✝
⊢ Results (f a) b (n + m✝)
[PROOFSTEP]
rw [h1.len_unique (results_pure _)]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
m✝ : ℕ
h1 : Results (pure a) a m✝
⊢ Results (f a) b (n + 0)
[PROOFSTEP]
exact h2
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
⊢ ∀ (s : Computation α),
(∀ {m : ℕ}, Results s a m → Results (bind s f) b (n + m)) →
∀ {m : ℕ}, Results (think s) a m → Results (bind (think s) f) b (n + m)
[PROOFSTEP]
intro _ h3 _ h1
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
s✝ : Computation α
h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m)
m✝ : ℕ
h1 : Results (think s✝) a m✝
⊢ Results (bind (think s✝) f) b (n + m✝)
[PROOFSTEP]
rw [think_bind]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
s✝ : Computation α
h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m)
m✝ : ℕ
h1 : Results (think s✝) a m✝
⊢ Results (think (bind s✝ f)) b (n + m✝)
[PROOFSTEP]
cases' of_results_think h1 with m' h
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
s✝ : Computation α
h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m)
m✝ : ℕ
h1 : Results (think s✝) a m✝
m' : ℕ
h : Results s✝ a m' ∧ m✝ = m' + 1
⊢ Results (think (bind s✝ f)) b (n + m✝)
[PROOFSTEP]
cases' h with h1 e
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
s✝ : Computation α
h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m)
m✝ : ℕ
h1✝ : Results (think s✝) a m✝
m' : ℕ
h1 : Results s✝ a m'
e : m✝ = m' + 1
⊢ Results (think (bind s✝ f)) b (n + m✝)
[PROOFSTEP]
rw [e]
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
n : ℕ
h2 : Results (f a) b n
this : a ∈ s
s✝ : Computation α
h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m)
m✝ : ℕ
h1✝ : Results (think s✝) a m✝
m' : ℕ
h1 : Results s✝ a m'
e : m✝ = m' + 1
⊢ Results (think (bind s✝ f)) b (n + (m' + 1))
[PROOFSTEP]
exact results_think (h3 h1)
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
b : β
k : ℕ
⊢ Results (bind s f) b k → ∃ a m n, Results s a m ∧ Results (f a) b n ∧ k = n + m
[PROOFSTEP]
induction' k with n IH generalizing s
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
s : Computation α
⊢ Results (bind s f) b Nat.zero → ∃ a m n, Results s a m ∧ Results (f a) b n ∧ Nat.zero = n + m
[PROOFSTEP]
apply recOn s (fun a => _) fun s' => _
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s : Computation α
⊢ Results (bind s f) b (Nat.succ n) → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m
[PROOFSTEP]
apply recOn s (fun a => _) fun s' => _
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
s : Computation α
⊢ ∀ (a : α),
Results (bind (pure a) f) b Nat.zero → ∃ a_2 m n, Results (pure a) a_2 m ∧ Results (f a_2) b n ∧ Nat.zero = n + m
[PROOFSTEP]
intro e h
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
s : Computation α
⊢ ∀ (s' : Computation α),
Results (bind (think s') f) b Nat.zero → ∃ a m n, Results (think s') a m ∧ Results (f a) b n ∧ Nat.zero = n + m
[PROOFSTEP]
intro e h
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s : Computation α
⊢ ∀ (a : α),
Results (bind (pure a) f) b (Nat.succ n) →
∃ a_2 m n_1, Results (pure a) a_2 m ∧ Results (f a_2) b n_1 ∧ Nat.succ n = n_1 + m
[PROOFSTEP]
intro e h
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s : Computation α
⊢ ∀ (s' : Computation α),
Results (bind (think s') f) b (Nat.succ n) →
∃ a m n_1, Results (think s') a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m
[PROOFSTEP]
intro e h
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
s : Computation α
e : α
h : Results (bind (pure e) f) b Nat.zero
⊢ ∃ a m n, Results (pure e) a m ∧ Results (f a) b n ∧ Nat.zero = n + m
[PROOFSTEP]
simp [thinkN] at h
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
s : Computation α
e : α
h : Results (f e) b 0
⊢ ∃ a m n, Results (pure e) a m ∧ Results (f a) b n ∧ Nat.zero = n + m
[PROOFSTEP]
refine' ⟨e, _, _, results_pure _, h, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
s e : Computation α
h : Results (bind (think e) f) b Nat.zero
⊢ ∃ a m n, Results (think e) a m ∧ Results (f a) b n ∧ Nat.zero = n + m
[PROOFSTEP]
have := congr_arg head (eq_thinkN h)
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
s e : Computation α
h : Results (bind (think e) f) b Nat.zero
this : head (bind (think e) f) = head (thinkN (pure b) Nat.zero)
⊢ ∃ a m n, Results (think e) a m ∧ Results (f a) b n ∧ Nat.zero = n + m
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s : Computation α
e : α
h : Results (bind (pure e) f) b (Nat.succ n)
⊢ ∃ a m n_1, Results (pure e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m
[PROOFSTEP]
simp at h
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s : Computation α
e : α
h : Results (f e) b (Nat.succ n)
⊢ ∃ a m n_1, Results (pure e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m
[PROOFSTEP]
refine' ⟨e, _, n + 1, results_pure _, h, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s e : Computation α
h : Results (bind (think e) f) b (Nat.succ n)
⊢ ∃ a m n_1, Results (think e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m
[PROOFSTEP]
simp at h
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s e : Computation α
h : Results (bind e f) b n
⊢ ∃ a m n_1, Results (think e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m
[PROOFSTEP]
exact by
let ⟨a, m, n', h1, h2, e'⟩ := IH h
rw [e']; exact ⟨a, m.succ, n', results_think h1, h2, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s e : Computation α
h : Results (bind e f) b n
⊢ ∃ a m n_1, Results (think e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m
[PROOFSTEP]
let ⟨a, m, n', h1, h2, e'⟩ := IH h
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s e : Computation α
h : Results (bind e f) b n
a : α
m n' : ℕ
h1 : Results e a m
h2 : Results (f a) b n'
e' : n = n' + m
⊢ ∃ a m n_1, Results (think e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m
[PROOFSTEP]
rw [e']
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ : Computation α
f : α → Computation β
b : β
n : ℕ
IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m
s e : Computation α
h : Results (bind e f) b n
a : α
m n' : ℕ
h1 : Results e a m
h2 : Results (f a) b n'
e' : n = n' + m
⊢ ∃ a m_1 n, Results (think e) a m_1 ∧ Results (f a) b n ∧ Nat.succ (n' + m) = n + m_1
[PROOFSTEP]
exact ⟨a, m.succ, n', results_think h1, h2, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
h1 : s ~> a
h2 : f a ~> b
b' : β
bB : b' ∈ bind s f
⊢ b = b'
[PROOFSTEP]
rcases exists_of_mem_bind bB with ⟨a', a's, ba'⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
h1 : s ~> a
h2 : f a ~> b
b' : β
bB : b' ∈ bind s f
a' : α
a's : a' ∈ s
ba' : b' ∈ f a'
⊢ b = b'
[PROOFSTEP]
rw [← h1 a's] at ba'
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
s : Computation α
f : α → Computation β
a : α
b : β
h1 : s ~> a
h2 : f a ~> b
b' : β
bB : b' ∈ bind s f
a' : α
a's : a' ∈ s
ba' : b' ∈ f a
⊢ b = b'
[PROOFSTEP]
exact h2 ba'
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Computation α
m : a ∈ s
⊢ f a ∈ map f s
[PROOFSTEP]
rw [← bind_pure]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Computation α
m : a ∈ s
⊢ f a ∈ bind s (pure ∘ f)
[PROOFSTEP]
apply mem_bind m
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Computation α
m : a ∈ s
⊢ f a ∈ (pure ∘ f) a
[PROOFSTEP]
apply ret_mem
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
b : β
s : Computation α
h : b ∈ map f s
⊢ ∃ a, a ∈ s ∧ f a = b
[PROOFSTEP]
rw [← bind_pure] at h
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
b : β
s : Computation α
h : b ∈ bind s (pure ∘ f)
⊢ ∃ a, a ∈ s ∧ f a = b
[PROOFSTEP]
exact
let ⟨a, as, fb⟩ := exists_of_mem_bind h
⟨a, as, mem_unique (ret_mem _) fb⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
inst✝ : Terminates s
⊢ Terminates (map f s)
[PROOFSTEP]
rw [← bind_pure]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Computation α
inst✝ : Terminates s
⊢ Terminates (bind s (pure ∘ f))
[PROOFSTEP]
exact terminates_of_mem (mem_bind (get_mem s) (get_mem (f (get s))))
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
c₂ : Computation α
⊢ destruct (HOrElse.hOrElse (pure a) fun x => c₂) = Sum.inl a
[PROOFSTEP]
unfold HOrElse.hOrElse instHOrElse
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
c₂ : Computation α
⊢ destruct ({ hOrElse := fun a b => OrElse.orElse a b }.1 (pure a) fun x => c₂) = Sum.inl a
[PROOFSTEP]
unfold OrElse.orElse instOrElse Alternative.orElse instAlternativeComputation
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
c₂ : Computation α
⊢ destruct
({
hOrElse := fun a b =>
{
orElse :=
(let src := monad;
Alternative.mk empty @orElse).3 }.1
a b }.1
(pure a) fun x => c₂) =
Sum.inl a
[PROOFSTEP]
simp [orElse]
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ : Computation α
a : α
⊢ destruct (HOrElse.hOrElse (think c₁) fun x => pure a) = Sum.inl a
[PROOFSTEP]
unfold HOrElse.hOrElse instHOrElse
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ : Computation α
a : α
⊢ destruct ({ hOrElse := fun a b => OrElse.orElse a b }.1 (think c₁) fun x => pure a) = Sum.inl a
[PROOFSTEP]
unfold OrElse.orElse instOrElse Alternative.orElse instAlternativeComputation
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ : Computation α
a : α
⊢ destruct
({
hOrElse := fun a b =>
{
orElse :=
(let src := monad;
Alternative.mk empty @orElse).3 }.1
a b }.1
(think c₁) fun x => pure a) =
Sum.inl a
[PROOFSTEP]
simp [orElse]
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ c₂ : Computation α
⊢ destruct (HOrElse.hOrElse (think c₁) fun x => think c₂) = Sum.inr (HOrElse.hOrElse c₁ fun x => c₂)
[PROOFSTEP]
unfold HOrElse.hOrElse instHOrElse
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ c₂ : Computation α
⊢ destruct ({ hOrElse := fun a b => OrElse.orElse a b }.1 (think c₁) fun x => think c₂) =
Sum.inr ({ hOrElse := fun a b => OrElse.orElse a b }.1 c₁ fun x => c₂)
[PROOFSTEP]
unfold OrElse.orElse instOrElse Alternative.orElse instAlternativeComputation
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ c₂ : Computation α
⊢ destruct
({
hOrElse := fun a b =>
{
orElse :=
(let src := monad;
Alternative.mk empty @orElse).3 }.1
a b }.1
(think c₁) fun x => think c₂) =
Sum.inr
({
hOrElse := fun a b =>
{
orElse :=
(let src := monad;
Alternative.mk empty @orElse).3 }.1
a b }.1
c₁ fun x => c₂)
[PROOFSTEP]
simp [orElse]
[GOAL]
α : Type u
β : Type v
γ : Type w
c : Computation α
⊢ (HOrElse.hOrElse (empty α) fun x => c) = c
[PROOFSTEP]
apply eq_of_bisim (fun c₁ c₂ => (empty α <|> c₂) = c₁) _ rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
c : Computation α
⊢ IsBisimulation fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁
[PROOFSTEP]
intro s' s h
[GOAL]
α : Type u
β : Type v
γ : Type w
c s' s : Computation α
h : (HOrElse.hOrElse (empty α) fun x => s) = s'
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁) (destruct s') (destruct s)
[PROOFSTEP]
rw [← h]
[GOAL]
α : Type u
β : Type v
γ : Type w
c s' s : Computation α
h : (HOrElse.hOrElse (empty α) fun x => s) = s'
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁) (destruct (HOrElse.hOrElse (empty α) fun x => s))
(destruct s)
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
c s' s : Computation α
h : (HOrElse.hOrElse (empty α) fun x => s) = s'
⊢ ∀ (a : α),
BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁)
(destruct (HOrElse.hOrElse (empty α) fun x => pure a)) (destruct (pure a))
[PROOFSTEP]
intro s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
c s' s : Computation α
h : (HOrElse.hOrElse (empty α) fun x => s) = s'
⊢ ∀ (s : Computation α),
BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁)
(destruct (HOrElse.hOrElse (empty α) fun x => think s)) (destruct (think s))
[PROOFSTEP]
intro s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse (empty α) fun x => s✝) = s'
s : α
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁)
(destruct (HOrElse.hOrElse (empty α) fun x => pure s)) (destruct (pure s))
[PROOFSTEP]
rw [think_empty]
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse (empty α) fun x => s✝) = s'
s : Computation α
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁)
(destruct (HOrElse.hOrElse (empty α) fun x => think s)) (destruct (think s))
[PROOFSTEP]
rw [think_empty]
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse (empty α) fun x => s✝) = s'
s : α
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (think (empty α)) fun x => c₂) = c₁)
(destruct (HOrElse.hOrElse (think (empty α)) fun x => pure s)) (destruct (pure s))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse (empty α) fun x => s✝) = s'
s : Computation α
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (think (empty α)) fun x => c₂) = c₁)
(destruct (HOrElse.hOrElse (think (empty α)) fun x => think s)) (destruct (think s))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse (empty α) fun x => s✝) = s'
s : Computation α
⊢ (HOrElse.hOrElse (think (empty α)) fun x => s) = HOrElse.hOrElse (empty α) fun x => s
[PROOFSTEP]
rw [← think_empty]
[GOAL]
α : Type u
β : Type v
γ : Type w
c : Computation α
⊢ (HOrElse.hOrElse c fun x => empty α) = c
[PROOFSTEP]
apply eq_of_bisim (fun c₁ c₂ => (c₂ <|> empty α) = c₁) _ rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
c : Computation α
⊢ IsBisimulation fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁
[PROOFSTEP]
intro s' s h
[GOAL]
α : Type u
β : Type v
γ : Type w
c s' s : Computation α
h : (HOrElse.hOrElse s fun x => empty α) = s'
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁) (destruct s') (destruct s)
[PROOFSTEP]
rw [← h]
[GOAL]
α : Type u
β : Type v
γ : Type w
c s' s : Computation α
h : (HOrElse.hOrElse s fun x => empty α) = s'
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁) (destruct (HOrElse.hOrElse s fun x => empty α))
(destruct s)
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
c s' s : Computation α
h : (HOrElse.hOrElse s fun x => empty α) = s'
⊢ ∀ (a : α),
BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁)
(destruct (HOrElse.hOrElse (pure a) fun x => empty α)) (destruct (pure a))
[PROOFSTEP]
intro s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
c s' s : Computation α
h : (HOrElse.hOrElse s fun x => empty α) = s'
⊢ ∀ (s : Computation α),
BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁)
(destruct (HOrElse.hOrElse (think s) fun x => empty α)) (destruct (think s))
[PROOFSTEP]
intro s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse s✝ fun x => empty α) = s'
s : α
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁)
(destruct (HOrElse.hOrElse (pure s) fun x => empty α)) (destruct (pure s))
[PROOFSTEP]
rw [think_empty]
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse s✝ fun x => empty α) = s'
s : Computation α
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁)
(destruct (HOrElse.hOrElse (think s) fun x => empty α)) (destruct (think s))
[PROOFSTEP]
rw [think_empty]
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse s✝ fun x => empty α) = s'
s : α
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => think (empty α)) = c₁)
(destruct (HOrElse.hOrElse (pure s) fun x => think (empty α))) (destruct (pure s))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse s✝ fun x => empty α) = s'
s : Computation α
⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => think (empty α)) = c₁)
(destruct (HOrElse.hOrElse (think s) fun x => think (empty α))) (destruct (think s))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
c s' s✝ : Computation α
h : (HOrElse.hOrElse s✝ fun x => empty α) = s'
s : Computation α
⊢ (HOrElse.hOrElse s fun x => think (empty α)) = HOrElse.hOrElse s fun x => empty α
[PROOFSTEP]
rw [← think_empty]
[GOAL]
α : Type u
β : Type v
γ : Type w
s t : Computation α
a : α
h1 : a ∈ s
h2 : a ∈ t
a' : α
ma : a' ∈ s
⊢ a' ∈ t
[PROOFSTEP]
rw [mem_unique ma h1]
[GOAL]
α : Type u
β : Type v
γ : Type w
s t : Computation α
a : α
h1 : a ∈ s
h2 : a ∈ t
a' : α
ma : a' ∈ s
⊢ a ∈ t
[PROOFSTEP]
exact h2
[GOAL]
α : Type u
β : Type v
γ : Type w
s t : Computation α
a : α
h1 : a ∈ s
h2 : a ∈ t
a' : α
ma : a' ∈ t
⊢ a' ∈ s
[PROOFSTEP]
rw [mem_unique ma h2]
[GOAL]
α : Type u
β : Type v
γ : Type w
s t : Computation α
a : α
h1 : a ∈ s
h2 : a ∈ t
a' : α
ma : a' ∈ t
⊢ a ∈ s
[PROOFSTEP]
exact h1
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ c₂ : Computation α
h : c₁ ~ c₂
⊢ Terminates c₁ ↔ Terminates c₂
[PROOFSTEP]
simp only [terminates_iff, exists_congr h]
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ c₂ : Computation α
x✝ : LiftRel (fun x x_1 => x = x_1) c₁ c₂
a : α
h1 : ∀ {a : α}, a ∈ c₁ → ∃ b, b ∈ c₂ ∧ (fun x x_1 => x = x_1) a b
h2 : ∀ {b : α}, b ∈ c₂ → ∃ a, a ∈ c₁ ∧ (fun x x_1 => x = x_1) a b
a1 : a ∈ c₁
⊢ a ∈ c₂
[PROOFSTEP]
let ⟨b, b2, ab⟩ := h1 a1
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ c₂ : Computation α
x✝ : LiftRel (fun x x_1 => x = x_1) c₁ c₂
a : α
h1 : ∀ {a : α}, a ∈ c₁ → ∃ b, b ∈ c₂ ∧ (fun x x_1 => x = x_1) a b
h2 : ∀ {b : α}, b ∈ c₂ → ∃ a, a ∈ c₁ ∧ (fun x x_1 => x = x_1) a b
a1 : a ∈ c₁
b : α
b2 : b ∈ c₂
ab : (fun x x_1 => x = x_1) a b
⊢ a ∈ c₂
[PROOFSTEP]
rwa [ab]
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ c₂ : Computation α
x✝ : LiftRel (fun x x_1 => x = x_1) c₁ c₂
a : α
h1 : ∀ {a : α}, a ∈ c₁ → ∃ b, b ∈ c₂ ∧ (fun x x_1 => x = x_1) a b
h2 : ∀ {b : α}, b ∈ c₂ → ∃ a, a ∈ c₁ ∧ (fun x x_1 => x = x_1) a b
a2 : a ∈ c₂
⊢ a ∈ c₁
[PROOFSTEP]
let ⟨b, b1, ab⟩ := h2 a2
[GOAL]
α : Type u
β : Type v
γ : Type w
c₁ c₂ : Computation α
x✝ : LiftRel (fun x x_1 => x = x_1) c₁ c₂
a : α
h1 : ∀ {a : α}, a ∈ c₁ → ∃ b, b ∈ c₂ ∧ (fun x x_1 => x = x_1) a b
h2 : ∀ {b : α}, b ∈ c₂ → ∃ a, a ∈ c₁ ∧ (fun x x_1 => x = x_1) a b
a2 : a ∈ c₂
b : α
b1 : b ∈ c₁
ab : (fun x x_1 => x = x_1) b a
⊢ a ∈ c₁
[PROOFSTEP]
rwa [← ab]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → α → Prop
refl : ∀ (x : α), R x x
symm : ∀ {x y : α}, R x y → R y x
trans : ∀ {x y z : α}, R x y → R y z → R x z
⊢ ∀ {x y : Computation α}, LiftRel R x y → LiftRel R y x
[PROOFSTEP]
apply LiftRel.symm
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
R : α → α → Prop
refl : ∀ (x : α), R x x
symm : ∀ {x y : α}, R x y → R y x
trans : ∀ {x y z : α}, R x y → R y z → R x z
⊢ Symmetric R
[PROOFSTEP]
apply symm
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → α → Prop
refl : ∀ (x : α), R x x
symm : ∀ {x y : α}, R x y → R y x
trans : ∀ {x y z : α}, R x y → R y z → R x z
⊢ ∀ {x y z : Computation α}, LiftRel R x y → LiftRel R y z → LiftRel R x z
[PROOFSTEP]
apply LiftRel.trans
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
R : α → α → Prop
refl : ∀ (x : α), R x x
symm : ∀ {x y : α}, R x y → R y x
trans : ∀ {x y z : α}, R x y → R y z → R x z
⊢ Transitive R
[PROOFSTEP]
apply trans
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
ca : Computation α
cb : Computation β
l : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b
right✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b
a : α
b : β
ma : a ∈ ca
mb : b ∈ cb
⊢ R a b
[PROOFSTEP]
let ⟨b', mb', ab'⟩ := l ma
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
ca : Computation α
cb : Computation β
l : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b
right✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b
a : α
b : β
ma : a ∈ ca
mb : b ∈ cb
b' : β
mb' : b' ∈ cb
ab' : R a b'
⊢ R a b
[PROOFSTEP]
rw [mem_unique mb mb']
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
ca : Computation α
cb : Computation β
l : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b
right✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b
a : α
b : β
ma : a ∈ ca
mb : b ∈ cb
b' : β
mb' : b' ∈ cb
ab' : R a b'
⊢ R a b'
[PROOFSTEP]
exact ab'
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
b : β
ca : Computation α
cb : Computation β
ma : a ∈ ca
mb : b ∈ cb
ab : R a b
a' : α
ma' : a' ∈ ca
⊢ ∃ b, b ∈ cb ∧ R a' b
[PROOFSTEP]
rw [mem_unique ma' ma]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
b : β
ca : Computation α
cb : Computation β
ma : a ∈ ca
mb : b ∈ cb
ab : R a b
a' : α
ma' : a' ∈ ca
⊢ ∃ b, b ∈ cb ∧ R a b
[PROOFSTEP]
exact ⟨b, mb, ab⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
b : β
ca : Computation α
cb : Computation β
ma : a ∈ ca
mb : b ∈ cb
ab : R a b
b' : β
mb' : b' ∈ cb
⊢ ∃ a, a ∈ ca ∧ R a b'
[PROOFSTEP]
rw [mem_unique mb' mb]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
b : β
ca : Computation α
cb : Computation β
ma : a ∈ ca
mb : b ∈ cb
ab : R a b
b' : β
mb' : b' ∈ cb
⊢ ∃ a, a ∈ ca ∧ R a b
[PROOFSTEP]
exact ⟨a, ma, ab⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
ca : Computation α
cb : Computation β
h : LiftRel R ca cb
a : α
b : β
ma : a ∈ ca
mb : b ∈ cb
⊢ R a b
[PROOFSTEP]
let ⟨b', mb', ab⟩ := h.left ma
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
ca : Computation α
cb : Computation β
h : LiftRel R ca cb
a : α
b : β
ma : a ∈ ca
mb : b ∈ cb
b' : β
mb' : b' ∈ cb
ab : R a b'
⊢ R a b
[PROOFSTEP]
rwa [mem_unique mb mb']
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
cb : Computation β
x✝ : ∃ b, b ∈ cb ∧ R a b
b : β
mb : b ∈ cb
ab : R a b
a' : α
ma' : a' ∈ pure a
⊢ ∃ b, b ∈ cb ∧ R a' b
[PROOFSTEP]
rw [eq_of_pure_mem ma']
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
cb : Computation β
x✝ : ∃ b, b ∈ cb ∧ R a b
b : β
mb : b ∈ cb
ab : R a b
a' : α
ma' : a' ∈ pure a
⊢ ∃ b, b ∈ cb ∧ R a b
[PROOFSTEP]
exact ⟨b, mb, ab⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
cb : Computation β
x✝ : ∃ b, b ∈ cb ∧ R a b
b : β
mb : b ∈ cb
ab : R a b
b' : β
mb' : b' ∈ cb
⊢ R a b'
[PROOFSTEP]
rw [mem_unique mb' mb]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
cb : Computation β
x✝ : ∃ b, b ∈ cb ∧ R a b
b : β
mb : b ∈ cb
ab : R a b
b' : β
mb' : b' ∈ cb
⊢ R a b
[PROOFSTEP]
exact ab
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
ca : Computation α
b : β
⊢ LiftRel R ca (pure b) ↔ ∃ a, a ∈ ca ∧ R a b
[PROOFSTEP]
rw [LiftRel.swap, liftRel_pure_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
b : β
⊢ LiftRel R (pure a) (pure b) ↔ R a b
[PROOFSTEP]
rw [liftRel_pure_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
b : β
⊢ (∃ b_1, b_1 ∈ pure b ∧ R a b_1) ↔ R a b
[PROOFSTEP]
exact ⟨fun ⟨b', mb', ab'⟩ => by rwa [eq_of_pure_mem mb'] at ab' , fun ab => ⟨_, ret_mem _, ab⟩⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
a : α
b : β
x✝ : ∃ b_1, b_1 ∈ pure b ∧ R a b_1
b' : β
mb' : b' ∈ pure b
ab' : R a b'
⊢ R a b
[PROOFSTEP]
rwa [eq_of_pure_mem mb'] at ab'
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
ca : Computation α
cb : Computation β
⊢ LiftRel R ca (think cb) ↔ LiftRel R ca cb
[PROOFSTEP]
rw [← LiftRel.swap R, ← LiftRel.swap R]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
ca : Computation α
cb : Computation β
⊢ LiftRel (swap R) (think cb) ca ↔ LiftRel (swap R) cb ca
[PROOFSTEP]
apply liftRel_think_left
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
R : α → β → Prop
S : γ → δ → Prop
s1 : Computation α
s2 : Computation β
f1 : α → γ
f2 : β → δ
h1 : LiftRel R s1 s2
h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b)
⊢ LiftRel S (map f1 s1) (map f2 s2)
[PROOFSTEP]
rw [← bind_pure, ← bind_pure]
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
R : α → β → Prop
S : γ → δ → Prop
s1 : Computation α
s2 : Computation β
f1 : α → γ
f2 : β → δ
h1 : LiftRel R s1 s2
h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b)
⊢ LiftRel S (bind s1 (pure ∘ f1)) (bind s2 (pure ∘ f2))
[PROOFSTEP]
apply liftRel_bind _ _ h1
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
R : α → β → Prop
S : γ → δ → Prop
s1 : Computation α
s2 : Computation β
f1 : α → γ
f2 : β → δ
h1 : LiftRel R s1 s2
h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b)
⊢ ∀ {a : α} {b : β}, R a b → LiftRel S ((pure ∘ f1) a) ((pure ∘ f2) b)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
R : α → β → Prop
S : γ → δ → Prop
s1 : Computation α
s2 : Computation β
f1 : α → γ
f2 : β → δ
h1 : LiftRel R s1 s2
h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b)
⊢ ∀ {a : α} {b : β}, R a b → ∃ a_2, a_2 ∈ pure (f1 a) ∧ S a_2 (f2 b)
[PROOFSTEP]
intros a b h
[GOAL]
α : Type u
β : Type v
γ : Type w
δ : Type u_1
R : α → β → Prop
S : γ → δ → Prop
s1 : Computation α
s2 : Computation β
f1 : α → γ
f2 : β → δ
h1 : LiftRel R s1 s2
h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b)
a : α
b : β
h : R a b
⊢ ∃ a_1, a_1 ∈ pure (f1 a) ∧ S a_1 (f2 b)
[PROOFSTEP]
exact ⟨f1 a, ⟨ret_mem _, @h2 a b h⟩⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s1 s2 : Computation α
f : α → β
h1 : s1 ~ s2
⊢ map f s1 ~ map f s2
[PROOFSTEP]
rw [← lift_eq_iff_equiv]
[GOAL]
α : Type u
β : Type v
γ : Type w
s1 s2 : Computation α
f : α → β
h1 : s1 ~ s2
⊢ LiftRel (fun x x_1 => x = x_1) (map f s1) (map f s2)
[PROOFSTEP]
exact liftRel_map Eq _ ((lift_eq_iff_equiv _ _).2 h1) fun {a} b => congr_arg _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
cb : Computation β
⊢ LiftRelAux R C (Sum.inl a) (destruct cb) ↔ ∃ b, b ∈ cb ∧ R a b
[PROOFSTEP]
apply cb.recOn (fun b => _) fun cb => _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
cb : Computation β
⊢ ∀ (b : β), LiftRelAux R C (Sum.inl a) (destruct (pure b)) ↔ ∃ b_1, b_1 ∈ pure b ∧ R a b_1
[PROOFSTEP]
intro b
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
cb : Computation β
b : β
⊢ LiftRelAux R C (Sum.inl a) (destruct (pure b)) ↔ ∃ b_1, b_1 ∈ pure b ∧ R a b_1
[PROOFSTEP]
exact ⟨fun h => ⟨_, ret_mem _, h⟩, fun ⟨b', mb, h⟩ => by rw [mem_unique (ret_mem _) mb]; exact h⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
cb : Computation β
b : β
x✝ : ∃ b_1, b_1 ∈ pure b ∧ R a b_1
b' : β
mb : b' ∈ pure b
h : R a b'
⊢ LiftRelAux R C (Sum.inl a) (destruct (pure b))
[PROOFSTEP]
rw [mem_unique (ret_mem _) mb]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
cb : Computation β
b : β
x✝ : ∃ b_1, b_1 ∈ pure b ∧ R a b_1
b' : β
mb : b' ∈ pure b
h : R a b'
⊢ LiftRelAux R C (Sum.inl a) (destruct (pure b'))
[PROOFSTEP]
exact h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
cb : Computation β
⊢ ∀ (cb : Computation β), LiftRelAux R C (Sum.inl a) (destruct (think cb)) ↔ ∃ b, b ∈ think cb ∧ R a b
[PROOFSTEP]
intro
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
cb cb✝ : Computation β
⊢ LiftRelAux R C (Sum.inl a) (destruct (think cb✝)) ↔ ∃ b, b ∈ think cb✝ ∧ R a b
[PROOFSTEP]
rw [destruct_think]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
cb cb✝ : Computation β
⊢ LiftRelAux R C (Sum.inl a) (Sum.inr cb✝) ↔ ∃ b, b ∈ think cb✝ ∧ R a b
[PROOFSTEP]
exact ⟨fun ⟨b, h, r⟩ => ⟨b, think_mem h, r⟩, fun ⟨b, h, r⟩ => ⟨b, of_think_mem h, r⟩⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α ⊕ Computation α
b : β ⊕ Computation β
⊢ LiftRelAux (Function.swap R) (Function.swap C) b a = LiftRelAux R C a b
[PROOFSTEP]
cases' a with a ca
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
b : β ⊕ Computation β
a : α
⊢ LiftRelAux (Function.swap R) (Function.swap C) b (Sum.inl a) = LiftRelAux R C (Sum.inl a) b
[PROOFSTEP]
cases' b with b cb
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
b : β ⊕ Computation β
ca : Computation α
⊢ LiftRelAux (Function.swap R) (Function.swap C) b (Sum.inr ca) = LiftRelAux R C (Sum.inr ca) b
[PROOFSTEP]
cases' b with b cb
[GOAL]
case inl.inl
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
b : β
⊢ LiftRelAux (Function.swap R) (Function.swap C) (Sum.inl b) (Sum.inl a) = LiftRelAux R C (Sum.inl a) (Sum.inl b)
[PROOFSTEP]
simp only [LiftRelAux]
[GOAL]
case inl.inr
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
a : α
cb : Computation β
⊢ LiftRelAux (Function.swap R) (Function.swap C) (Sum.inr cb) (Sum.inl a) = LiftRelAux R C (Sum.inl a) (Sum.inr cb)
[PROOFSTEP]
simp only [LiftRelAux]
[GOAL]
case inr.inl
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
ca : Computation α
b : β
⊢ LiftRelAux (Function.swap R) (Function.swap C) (Sum.inl b) (Sum.inr ca) = LiftRelAux R C (Sum.inr ca) (Sum.inl b)
[PROOFSTEP]
simp only [LiftRelAux]
[GOAL]
case inr.inr
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
ca : Computation α
cb : Computation β
⊢ LiftRelAux (Function.swap R) (Function.swap C) (Sum.inr cb) (Sum.inr ca) = LiftRelAux R C (Sum.inr ca) (Sum.inr cb)
[PROOFSTEP]
simp only [LiftRelAux]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
b : β
ca : Computation α
⊢ LiftRelAux R C (destruct ca) (Sum.inl b) ↔ ∃ a, a ∈ ca ∧ R a b
[PROOFSTEP]
rw [← LiftRelAux.swap, LiftRelAux.ret_left]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
cb : Computation β
Hc : C ca cb
a : α
ha : a ∈ ca
⊢ LiftRel R ca cb
[PROOFSTEP]
revert cb
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
⊢ ∀ (cb : Computation β), C ca cb → LiftRel R ca cb
[PROOFSTEP]
refine' memRecOn (C := (λ ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb)) ha _ (fun ca' IH => _)
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
⊢ (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) (pure a)
[PROOFSTEP]
intro cb Hc
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
⊢ (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) (think ca')
[PROOFSTEP]
intro cb Hc
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
cb : Computation β
Hc : C (pure a) cb
⊢ LiftRel R (pure a) cb
[PROOFSTEP]
have h := H Hc
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
⊢ LiftRel R (think ca') cb
[PROOFSTEP]
have h := H Hc
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
cb : Computation β
Hc : C (pure a) cb
h : LiftRelAux R C (destruct (pure a)) (destruct cb)
⊢ LiftRel R (pure a) cb
[PROOFSTEP]
simp at h
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
cb : Computation β
Hc : C (pure a) cb
h : ∃ b, b ∈ cb ∧ R a b
⊢ LiftRel R (pure a) cb
[PROOFSTEP]
simp [h]
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
h : LiftRelAux R C (destruct (think ca')) (destruct cb)
⊢ LiftRel R (think ca') cb
[PROOFSTEP]
simp
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
h : LiftRelAux R C (destruct (think ca')) (destruct cb)
⊢ LiftRel R ca' cb
[PROOFSTEP]
revert h
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
⊢ LiftRelAux R C (destruct (think ca')) (destruct cb) → LiftRel R ca' cb
[PROOFSTEP]
apply cb.recOn (fun b => _) fun cb' => _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
⊢ ∀ (b : β), LiftRelAux R C (destruct (think ca')) (destruct (pure b)) → LiftRel R ca' (pure b)
[PROOFSTEP]
intros _ h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
⊢ ∀ (cb' : Computation β), LiftRelAux R C (destruct (think ca')) (destruct (think cb')) → LiftRel R ca' (think cb')
[PROOFSTEP]
intros _ h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
b✝ : β
h : LiftRelAux R C (destruct (think ca')) (destruct (pure b✝))
⊢ LiftRel R ca' (pure b✝)
[PROOFSTEP]
simp at h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
cb'✝ : Computation β
h : LiftRelAux R C (destruct (think ca')) (destruct (think cb'✝))
⊢ LiftRel R ca' (think cb'✝)
[PROOFSTEP]
simp at h
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
b✝ : β
h : ∃ a, a ∈ ca' ∧ R a b✝
⊢ LiftRel R ca' (pure b✝)
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
cb'✝ : Computation β
h : C ca' cb'✝
⊢ LiftRel R ca' (think cb'✝)
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : α → β → Prop
C : Computation α → Computation β → Prop
H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb)
ca : Computation α
a : α
ha : a ∈ ca
ca' : Computation α
IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca'
cb : Computation β
Hc : C (think ca') cb
cb'✝ : Computation β
h : C ca' cb'✝
⊢ LiftRel R ca' cb'✝
[PROOFSTEP]
exact IH _ h
|
{"mathlib_filename": "Mathlib.Data.Seq.Computation", "llama_tokens": 62856}
|
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
a₁ a₂ : α
b₁ : β a₁
b₂ : β a₂
h : { fst := a₁, snd := b₁ } = { fst := a₂, snd := b₂ }
⊢ a₁ = a₂ ∧ HEq b₁ b₂
[PROOFSTEP]
cases h
[GOAL]
case refl
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
a₁ : α
b₁ : β a₁
⊢ a₁ = a₁ ∧ HEq b₁ b₁
[PROOFSTEP]
exact ⟨rfl, heq_of_eq rfl⟩
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
a₁ a₂ : α
b₁ : β a₁
b₂ : β a₂
x✝ : a₁ = a₂ ∧ HEq b₁ b₂
h₁ : a₁ = a₂
h₂ : HEq b₁ b₂
⊢ { fst := a₁, snd := b₁ } = { fst := a₂, snd := b₂ }
[PROOFSTEP]
subst h₁
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
a₁ : α
b₁ b₂ : β a₁
x✝ : a₁ = a₁ ∧ HEq b₁ b₂
h₂ : HEq b₁ b₂
⊢ { fst := a₁, snd := b₁ } = { fst := a₁, snd := b₂ }
[PROOFSTEP]
rw [eq_of_heq h₂]
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
x₀ x₁ : Sigma β
h₀ : x₀.fst = x₁.fst
h₁ : HEq x₀.snd x₁.snd
⊢ x₀ = x₁
[PROOFSTEP]
cases x₀
[GOAL]
case mk
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
x₁ : Sigma β
fst✝ : α
snd✝ : β fst✝
h₀ : { fst := fst✝, snd := snd✝ }.fst = x₁.fst
h₁ : HEq { fst := fst✝, snd := snd✝ }.snd x₁.snd
⊢ { fst := fst✝, snd := snd✝ } = x₁
[PROOFSTEP]
cases x₁
[GOAL]
case mk.mk
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
fst✝¹ : α
snd✝¹ : β fst✝¹
fst✝ : α
snd✝ : β fst✝
h₀ : { fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst
h₁ : HEq { fst := fst✝¹, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd
⊢ { fst := fst✝¹, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
cases h₀
[GOAL]
case mk.mk.refl
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
fst✝ : α
snd✝¹ snd✝ : β fst✝
h₁ : HEq { fst := fst✝, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd
⊢ { fst := fst✝, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
cases h₁
[GOAL]
case mk.mk.refl.refl
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
fst✝ : α
snd✝ : β fst✝
⊢ { fst := fst✝, snd := snd✝ } = { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
x₀ x₁ : Sigma β
⊢ x₀ = x₁ ↔ x₀.fst = x₁.fst ∧ HEq x₀.snd x₁.snd
[PROOFSTEP]
cases x₀
[GOAL]
case mk
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
x₁ : Sigma β
fst✝ : α
snd✝ : β fst✝
⊢ { fst := fst✝, snd := snd✝ } = x₁ ↔
{ fst := fst✝, snd := snd✝ }.fst = x₁.fst ∧ HEq { fst := fst✝, snd := snd✝ }.snd x₁.snd
[PROOFSTEP]
cases x₁
[GOAL]
case mk.mk
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
fst✝¹ : α
snd✝¹ : β fst✝¹
fst✝ : α
snd✝ : β fst✝
⊢ { fst := fst✝¹, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ } ↔
{ fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst ∧
HEq { fst := fst✝¹, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd
[PROOFSTEP]
exact Sigma.mk.inj_iff
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
γ : Type u_7
inst✝ : Nonempty γ
a b : α
f : γ → β a
g : γ → β b
h : mk a ∘ f = mk b ∘ g
⊢ a = b ∧ HEq f g
[PROOFSTEP]
rcases‹Nonempty γ› with ⟨i⟩
[GOAL]
case intro
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
γ : Type u_7
inst✝ : Nonempty γ
a b : α
f : γ → β a
g : γ → β b
h : mk a ∘ f = mk b ∘ g
i : γ
⊢ a = b ∧ HEq f g
[PROOFSTEP]
obtain rfl : a = b := congr_arg Sigma.fst (congr_fun h i)
[GOAL]
case intro
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
γ : Type u_7
inst✝ : Nonempty γ
a : α
f : γ → β a
i : γ
g : γ → β a
h : mk a ∘ f = mk a ∘ g
⊢ a = a ∧ HEq f g
[PROOFSTEP]
simpa [Function.funext_iff] using h
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
f₁ : α₁ → α₂
f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)
h₁ : Injective f₁
h₂ : ∀ (a : α₁), Injective (f₂ a)
i : α₁
x : β₁ i
j : α₁
y : β₁ j
h : Sigma.map f₁ f₂ { fst := i, snd := x } = Sigma.map f₁ f₂ { fst := j, snd := y }
⊢ { fst := i, snd := x } = { fst := j, snd := y }
[PROOFSTEP]
obtain rfl : i = j := h₁ (Sigma.mk.inj_iff.mp h).1
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
f₁ : α₁ → α₂
f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)
h₁ : Injective f₁
h₂ : ∀ (a : α₁), Injective (f₂ a)
i : α₁
x y : β₁ i
h : Sigma.map f₁ f₂ { fst := i, snd := x } = Sigma.map f₁ f₂ { fst := i, snd := y }
⊢ { fst := i, snd := x } = { fst := i, snd := y }
[PROOFSTEP]
obtain rfl : x = y := h₂ i (sigma_mk_injective h)
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
f₁ : α₁ → α₂
f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)
h₁ : Injective f₁
h₂ : ∀ (a : α₁), Injective (f₂ a)
i : α₁
x : β₁ i
h : Sigma.map f₁ f₂ { fst := i, snd := x } = Sigma.map f₁ f₂ { fst := i, snd := x }
⊢ { fst := i, snd := x } = { fst := i, snd := x }
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
f₁ : α₁ → α₂
f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)
h₁ : Surjective f₁
h₂ : ∀ (a : α₁), Surjective (f₂ a)
⊢ Surjective (Sigma.map f₁ f₂)
[PROOFSTEP]
simp only [Function.Surjective, Sigma.forall, h₁.forall]
[GOAL]
α : Type u_1
α₁ : Type u_2
α₂ : Type u_3
β : α → Type u_4
β₁ : α₁ → Type u_5
β₂ : α₂ → Type u_6
f₁ : α₁ → α₂
f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)
h₁ : Surjective f₁
h₂ : ∀ (a : α₁), Surjective (f₂ a)
⊢ ∀ (x : α₁) (b : β₂ (f₁ x)), ∃ a, Sigma.map f₁ f₂ a = { fst := f₁ x, snd := b }
[PROOFSTEP]
exact fun i ↦ (h₂ _).forall.2 fun x ↦ ⟨⟨i, x⟩, rfl⟩
[GOAL]
α : Sort u_1
β : α → Sort u_2
x₀ x₁ : PSigma β
h₀ : x₀.fst = x₁.fst
h₁ : HEq x₀.snd x₁.snd
⊢ x₀ = x₁
[PROOFSTEP]
cases x₀
[GOAL]
case mk
α : Sort u_1
β : α → Sort u_2
x₁ : PSigma β
fst✝ : α
snd✝ : β fst✝
h₀ : { fst := fst✝, snd := snd✝ }.fst = x₁.fst
h₁ : HEq { fst := fst✝, snd := snd✝ }.snd x₁.snd
⊢ { fst := fst✝, snd := snd✝ } = x₁
[PROOFSTEP]
cases x₁
[GOAL]
case mk.mk
α : Sort u_1
β : α → Sort u_2
fst✝¹ : α
snd✝¹ : β fst✝¹
fst✝ : α
snd✝ : β fst✝
h₀ : { fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst
h₁ : HEq { fst := fst✝¹, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd
⊢ { fst := fst✝¹, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
cases h₀
[GOAL]
case mk.mk.refl
α : Sort u_1
β : α → Sort u_2
fst✝ : α
snd✝¹ snd✝ : β fst✝
h₁ : HEq { fst := fst✝, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd
⊢ { fst := fst✝, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
cases h₁
[GOAL]
case mk.mk.refl.refl
α : Sort u_1
β : α → Sort u_2
fst✝ : α
snd✝ : β fst✝
⊢ { fst := fst✝, snd := snd✝ } = { fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Sort u_1
β : α → Sort u_2
x₀ x₁ : PSigma β
⊢ x₀ = x₁ ↔ x₀.fst = x₁.fst ∧ HEq x₀.snd x₁.snd
[PROOFSTEP]
cases x₀
[GOAL]
case mk
α : Sort u_1
β : α → Sort u_2
x₁ : PSigma β
fst✝ : α
snd✝ : β fst✝
⊢ { fst := fst✝, snd := snd✝ } = x₁ ↔
{ fst := fst✝, snd := snd✝ }.fst = x₁.fst ∧ HEq { fst := fst✝, snd := snd✝ }.snd x₁.snd
[PROOFSTEP]
cases x₁
[GOAL]
case mk.mk
α : Sort u_1
β : α → Sort u_2
fst✝¹ : α
snd✝¹ : β fst✝¹
fst✝ : α
snd✝ : β fst✝
⊢ { fst := fst✝¹, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ } ↔
{ fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst ∧
HEq { fst := fst✝¹, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd
[PROOFSTEP]
exact PSigma.mk.inj_iff
|
{"mathlib_filename": "Mathlib.Data.Sigma.Basic", "llama_tokens": 4766}
|
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LE (α i)
a b : (i : ι) × α i
⊢ a ≤ b ↔ ∃ h, h ▸ a.snd ≤ b.snd
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LE (α i)
a b : (i : ι) × α i
⊢ a ≤ b → ∃ h, h ▸ a.snd ≤ b.snd
[PROOFSTEP]
rintro ⟨i, a, b, h⟩
[GOAL]
case mp.fiber
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LE (α i)
i : ι
a b : α i
h : a ≤ b
⊢ ∃ h, h ▸ { fst := i, snd := a }.snd ≤ { fst := i, snd := b }.snd
[PROOFSTEP]
exact ⟨rfl, h⟩
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LE (α i)
a b : (i : ι) × α i
⊢ (∃ h, h ▸ a.snd ≤ b.snd) → a ≤ b
[PROOFSTEP]
obtain ⟨i, a⟩ := a
[GOAL]
case mpr.mk
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LE (α i)
b : (i : ι) × α i
i : ι
a : α i
⊢ (∃ h, h ▸ { fst := i, snd := a }.snd ≤ b.snd) → { fst := i, snd := a } ≤ b
[PROOFSTEP]
obtain ⟨j, b⟩ := b
[GOAL]
case mpr.mk.mk
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LE (α i)
i : ι
a : α i
j : ι
b : α j
⊢ (∃ h, h ▸ { fst := i, snd := a }.snd ≤ { fst := j, snd := b }.snd) → { fst := i, snd := a } ≤ { fst := j, snd := b }
[PROOFSTEP]
rintro ⟨rfl : i = j, h⟩
[GOAL]
case mpr.mk.mk.intro
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LE (α i)
i : ι
a b : α i
h : (_ : i = i) ▸ { fst := i, snd := a }.snd ≤ { fst := i, snd := b }.snd
⊢ { fst := i, snd := a } ≤ { fst := i, snd := b }
[PROOFSTEP]
exact le.fiber _ _ _ h
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LT (α i)
a b : (i : ι) × α i
⊢ a < b ↔ ∃ h, h ▸ a.snd < b.snd
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LT (α i)
a b : (i : ι) × α i
⊢ a < b → ∃ h, h ▸ a.snd < b.snd
[PROOFSTEP]
rintro ⟨i, a, b, h⟩
[GOAL]
case mp.fiber
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LT (α i)
i : ι
a b : α i
h : a < b
⊢ ∃ h, h ▸ { fst := i, snd := a }.snd < { fst := i, snd := b }.snd
[PROOFSTEP]
exact ⟨rfl, h⟩
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LT (α i)
a b : (i : ι) × α i
⊢ (∃ h, h ▸ a.snd < b.snd) → a < b
[PROOFSTEP]
obtain ⟨i, a⟩ := a
[GOAL]
case mpr.mk
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LT (α i)
b : (i : ι) × α i
i : ι
a : α i
⊢ (∃ h, h ▸ { fst := i, snd := a }.snd < b.snd) → { fst := i, snd := a } < b
[PROOFSTEP]
obtain ⟨j, b⟩ := b
[GOAL]
case mpr.mk.mk
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LT (α i)
i : ι
a : α i
j : ι
b : α j
⊢ (∃ h, h ▸ { fst := i, snd := a }.snd < { fst := j, snd := b }.snd) → { fst := i, snd := a } < { fst := j, snd := b }
[PROOFSTEP]
rintro ⟨rfl : i = j, h⟩
[GOAL]
case mpr.mk.mk.intro
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → LT (α i)
i : ι
a b : α i
h : (_ : i = i) ▸ { fst := i, snd := a }.snd < { fst := i, snd := b }.snd
⊢ { fst := i, snd := a } < { fst := i, snd := b }
[PROOFSTEP]
exact lt.fiber _ _ _ h
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE ((i : ι) × α i) := Sigma.LE
src✝ : LT ((i : ι) × α i) := Sigma.LT
⊢ ∀ (a b c : (i : ι) × α i), a ≤ b → b ≤ c → a ≤ c
[PROOFSTEP]
rintro _ _ _ ⟨i, a, b, hab⟩ ⟨_, _, c, hbc⟩
[GOAL]
case fiber.fiber
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE ((i : ι) × α i) := Sigma.LE
src✝ : LT ((i : ι) × α i) := Sigma.LT
i : ι
a b : α i
hab : a ≤ b
c : α i
hbc : b ≤ c
⊢ { fst := i, snd := a } ≤ { fst := i, snd := c }
[PROOFSTEP]
exact le.fiber i a c (hab.trans hbc)
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE ((i : ι) × α i) := Sigma.LE
src✝ : LT ((i : ι) × α i) := Sigma.LT
x✝¹ x✝ : (i : ι) × α i
⊢ x✝¹ < x✝ ↔ x✝¹ ≤ x✝ ∧ ¬x✝ ≤ x✝¹
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE ((i : ι) × α i) := Sigma.LE
src✝ : LT ((i : ι) × α i) := Sigma.LT
x✝¹ x✝ : (i : ι) × α i
⊢ x✝¹ < x✝ → x✝¹ ≤ x✝ ∧ ¬x✝ ≤ x✝¹
[PROOFSTEP]
rintro ⟨i, a, b, hab⟩
[GOAL]
case mp.fiber
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE ((i : ι) × α i) := Sigma.LE
src✝ : LT ((i : ι) × α i) := Sigma.LT
i : ι
a b : α i
hab : a < b
⊢ { fst := i, snd := a } ≤ { fst := i, snd := b } ∧ ¬{ fst := i, snd := b } ≤ { fst := i, snd := a }
[PROOFSTEP]
rwa [mk_le_mk_iff, mk_le_mk_iff, ← lt_iff_le_not_le]
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE ((i : ι) × α i) := Sigma.LE
src✝ : LT ((i : ι) × α i) := Sigma.LT
x✝¹ x✝ : (i : ι) × α i
⊢ x✝¹ ≤ x✝ ∧ ¬x✝ ≤ x✝¹ → x✝¹ < x✝
[PROOFSTEP]
rintro ⟨⟨i, a, b, hab⟩, h⟩
[GOAL]
case mpr.intro.fiber
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE ((i : ι) × α i) := Sigma.LE
src✝ : LT ((i : ι) × α i) := Sigma.LT
i : ι
a b : α i
hab : a ≤ b
h : ¬{ fst := i, snd := b } ≤ { fst := i, snd := a }
⊢ { fst := i, snd := a } < { fst := i, snd := b }
[PROOFSTEP]
rw [mk_le_mk_iff] at h
[GOAL]
case mpr.intro.fiber
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE ((i : ι) × α i) := Sigma.LE
src✝ : LT ((i : ι) × α i) := Sigma.LT
i : ι
a b : α i
hab : a ≤ b
h : ¬b ≤ a
⊢ { fst := i, snd := a } < { fst := i, snd := b }
[PROOFSTEP]
exact mk_lt_mk_iff.2 (hab.lt_of_not_le h)
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → PartialOrder (α i)
src✝ : Preorder ((i : ι) × α i) := Sigma.preorder
⊢ ∀ (a b : (i : ι) × α i), a ≤ b → b ≤ a → a = b
[PROOFSTEP]
rintro _ _ ⟨i, a, b, hab⟩ ⟨_, _, _, hba⟩
[GOAL]
case fiber.fiber
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → PartialOrder (α i)
src✝ : Preorder ((i : ι) × α i) := Sigma.preorder
i : ι
a b : (fun i => α i) i
hab : a ≤ b
hba : b ≤ a
⊢ { fst := i, snd := a } = { fst := i, snd := b }
[PROOFSTEP]
exact ext rfl (heq_of_eq <| hab.antisymm hba)
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
⊢ ∀ (a₁ a₂ : (i : ι) × α i), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂
[PROOFSTEP]
rintro ⟨i, a⟩ ⟨_, _⟩ ⟨_, _, b, h⟩
[GOAL]
case mk.mk.fiber
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
i : ι
a b : α i
h : a < b
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b }
[PROOFSTEP]
obtain ⟨c, ha, hb⟩ := exists_between h
[GOAL]
case mk.mk.fiber.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
i : ι
a b : α i
h : a < b
c : α i
ha : a < c
hb : c < b
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b }
[PROOFSTEP]
exact ⟨⟨i, c⟩, lt.fiber i a c ha, lt.fiber i c b hb⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
⊢ ∀ (a b : Σₗ (i : ι), α i), a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
refine' fun a b => ⟨fun hab => ⟨hab.mono_right fun i a b => le_of_lt, _⟩, _⟩
[GOAL]
case refine'_1
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
a b : Σₗ (i : ι), α i
hab : a < b
⊢ ¬b ≤ a
[PROOFSTEP]
rintro (⟨b, a, hji⟩ | ⟨b, a, hba⟩)
[GOAL]
case refine'_1.left
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
i✝ j✝ : ι
b : α i✝
a : α j✝
hji : i✝ < j✝
hab : { fst := j✝, snd := a } < { fst := i✝, snd := b }
⊢ False
[PROOFSTEP]
obtain ⟨_, _, hij⟩ | ⟨_, _, hab⟩ := hab
[GOAL]
case refine'_1.right
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
i✝ : ι
b a : α i✝
hba : b ≤ a
hab : { fst := i✝, snd := a } < { fst := i✝, snd := b }
⊢ False
[PROOFSTEP]
obtain ⟨_, _, hij⟩ | ⟨_, _, hab⟩ := hab
[GOAL]
case refine'_1.left.left
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
i✝ j✝ : ι
b : α i✝
a : α j✝
hji : i✝ < j✝
hij : j✝ < i✝
⊢ False
[PROOFSTEP]
exact hij.not_lt hji
[GOAL]
case refine'_1.left.right
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
i✝ : ι
b a : α i✝
hji : i✝ < i✝
hab : a < b
⊢ False
[PROOFSTEP]
exact lt_irrefl _ hji
[GOAL]
case refine'_1.right.left
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
i✝ : ι
b a : α i✝
hba : b ≤ a
hij : i✝ < i✝
⊢ False
[PROOFSTEP]
exact lt_irrefl _ hij
[GOAL]
case refine'_1.right.right
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
i✝ : ι
b a : α i✝
hba : b ≤ a
hab : a < b
⊢ False
[PROOFSTEP]
exact hab.not_le hba
[GOAL]
case refine'_2
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
a b : Σₗ (i : ι), α i
⊢ a ≤ b ∧ ¬b ≤ a → a < b
[PROOFSTEP]
rintro ⟨⟨a, b, hij⟩ | ⟨a, b, hab⟩, hba⟩
[GOAL]
case refine'_2.intro.left
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
i✝ j✝ : ι
a : α i✝
b : α j✝
hij : i✝ < j✝
hba : ¬{ fst := j✝, snd := b } ≤ { fst := i✝, snd := a }
⊢ { fst := i✝, snd := a } < { fst := j✝, snd := b }
[PROOFSTEP]
exact Sigma.Lex.left _ _ hij
[GOAL]
case refine'_2.intro.right
ι : Type u_1
α : ι → Type u_2
inst✝¹ : Preorder ι
inst✝ : (i : ι) → Preorder (α i)
src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE
src✝ : LT (Σₗ (i : ι), α i) := Lex.LT
i✝ : ι
a b : α i✝
hab : a ≤ b
hba : ¬{ fst := i✝, snd := b } ≤ { fst := i✝, snd := a }
⊢ { fst := i✝, snd := a } < { fst := i✝, snd := b }
[PROOFSTEP]
exact Sigma.Lex.right _ _ (hab.lt_of_not_le fun h => hba <| Sigma.Lex.right _ _ h)
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝³ : PartialOrder ι
inst✝² : OrderBot ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : OrderBot (α ⊥)
x✝ : Σₗ (i : ι), α i
a : ι
b : α a
⊢ ⊥ ≤ { fst := a, snd := b }
[PROOFSTEP]
obtain rfl | ha := eq_bot_or_bot_lt a
[GOAL]
case inl
ι : Type u_1
α : ι → Type u_2
inst✝³ : PartialOrder ι
inst✝² : OrderBot ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : OrderBot (α ⊥)
x✝ : Σₗ (i : ι), α i
b : α ⊥
⊢ ⊥ ≤ { fst := ⊥, snd := b }
[PROOFSTEP]
exact Lex.right _ _ bot_le
[GOAL]
case inr
ι : Type u_1
α : ι → Type u_2
inst✝³ : PartialOrder ι
inst✝² : OrderBot ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : OrderBot (α ⊥)
x✝ : Σₗ (i : ι), α i
a : ι
b : α a
ha : ⊥ < a
⊢ ⊥ ≤ { fst := a, snd := b }
[PROOFSTEP]
exact Lex.left _ _ ha
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝³ : PartialOrder ι
inst✝² : OrderTop ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : OrderTop (α ⊤)
x✝ : Σₗ (i : ι), α i
a : ι
b : α a
⊢ { fst := a, snd := b } ≤ ⊤
[PROOFSTEP]
obtain rfl | ha := eq_top_or_lt_top a
[GOAL]
case inl
ι : Type u_1
α : ι → Type u_2
inst✝³ : PartialOrder ι
inst✝² : OrderTop ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : OrderTop (α ⊤)
x✝ : Σₗ (i : ι), α i
b : α ⊤
⊢ { fst := ⊤, snd := b } ≤ ⊤
[PROOFSTEP]
exact Lex.right _ _ le_top
[GOAL]
case inr
ι : Type u_1
α : ι → Type u_2
inst✝³ : PartialOrder ι
inst✝² : OrderTop ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : OrderTop (α ⊤)
x✝ : Σₗ (i : ι), α i
a : ι
b : α a
ha : a < ⊤
⊢ { fst := a, snd := b } ≤ ⊤
[PROOFSTEP]
exact Lex.left _ _ ha
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝⁴ : Preorder ι
inst✝³ : DenselyOrdered ι
inst✝² : ∀ (i : ι), Nonempty (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
⊢ ∀ (a₁ a₂ : Σₗ (i : ι), α i), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂
[PROOFSTEP]
rintro ⟨i, a⟩ ⟨j, b⟩ (⟨_, _, h⟩ | ⟨_, b, h⟩)
[GOAL]
case mk.mk.left
ι : Type u_1
α : ι → Type u_2
inst✝⁴ : Preorder ι
inst✝³ : DenselyOrdered ι
inst✝² : ∀ (i : ι), Nonempty (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
i : ι
a : α i
j : ι
b : α j
h : i < j
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b }
[PROOFSTEP]
obtain ⟨k, hi, hj⟩ := exists_between h
[GOAL]
case mk.mk.left.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝⁴ : Preorder ι
inst✝³ : DenselyOrdered ι
inst✝² : ∀ (i : ι), Nonempty (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
i : ι
a : α i
j : ι
b : α j
h : i < j
k : ι
hi : i < k
hj : k < j
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b }
[PROOFSTEP]
obtain ⟨c⟩ : Nonempty (α k) := inferInstance
[GOAL]
case mk.mk.left.intro.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝⁴ : Preorder ι
inst✝³ : DenselyOrdered ι
inst✝² : ∀ (i : ι), Nonempty (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
i : ι
a : α i
j : ι
b : α j
h : i < j
k : ι
hi : i < k
hj : k < j
c : α k
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b }
[PROOFSTEP]
exact ⟨⟨k, c⟩, left _ _ hi, left _ _ hj⟩
[GOAL]
case mk.mk.right
ι : Type u_1
α : ι → Type u_2
inst✝⁴ : Preorder ι
inst✝³ : DenselyOrdered ι
inst✝² : ∀ (i : ι), Nonempty (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
i : ι
a b : α i
h : a < b
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b }
[PROOFSTEP]
obtain ⟨c, ha, hb⟩ := exists_between h
[GOAL]
case mk.mk.right.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝⁴ : Preorder ι
inst✝³ : DenselyOrdered ι
inst✝² : ∀ (i : ι), Nonempty (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), DenselyOrdered (α i)
i : ι
a b : α i
h : a < b
c : α i
ha : a < c
hb : c < b
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b }
[PROOFSTEP]
exact ⟨⟨i, c⟩, right _ _ ha, right _ _ hb⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMaxOrder (α i)
⊢ ∀ (a₁ a₂ : Σₗ (i : ι), α i), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂
[PROOFSTEP]
rintro ⟨i, a⟩ ⟨j, b⟩ (⟨_, _, h⟩ | ⟨_, b, h⟩)
[GOAL]
case mk.mk.left
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMaxOrder (α i)
i : ι
a : α i
j : ι
b : α j
h : i < j
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b }
[PROOFSTEP]
obtain ⟨c, ha⟩ := exists_gt a
[GOAL]
case mk.mk.left.intro
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMaxOrder (α i)
i : ι
a : α i
j : ι
b : α j
h : i < j
c : α i
ha : a < c
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b }
[PROOFSTEP]
exact ⟨⟨i, c⟩, right _ _ ha, left _ _ h⟩
[GOAL]
case mk.mk.right
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMaxOrder (α i)
i : ι
a b : α i
h : a < b
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b }
[PROOFSTEP]
obtain ⟨c, ha, hb⟩ := exists_between h
[GOAL]
case mk.mk.right.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMaxOrder (α i)
i : ι
a b : α i
h : a < b
c : α i
ha : a < c
hb : c < b
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b }
[PROOFSTEP]
exact ⟨⟨i, c⟩, right _ _ ha, right _ _ hb⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMinOrder (α i)
⊢ ∀ (a₁ a₂ : Σₗ (i : ι), α i), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂
[PROOFSTEP]
rintro ⟨i, a⟩ ⟨j, b⟩ (⟨_, _, h⟩ | ⟨_, b, h⟩)
[GOAL]
case mk.mk.left
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMinOrder (α i)
i : ι
a : α i
j : ι
b : α j
h : i < j
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b }
[PROOFSTEP]
obtain ⟨c, hb⟩ := exists_lt b
[GOAL]
case mk.mk.left.intro
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMinOrder (α i)
i : ι
a : α i
j : ι
b : α j
h : i < j
c : α j
hb : c < b
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b }
[PROOFSTEP]
exact ⟨⟨j, c⟩, left _ _ h, right _ _ hb⟩
[GOAL]
case mk.mk.right
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMinOrder (α i)
i : ι
a b : α i
h : a < b
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b }
[PROOFSTEP]
obtain ⟨c, ha, hb⟩ := exists_between h
[GOAL]
case mk.mk.right.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : ∀ (i : ι), DenselyOrdered (α i)
inst✝ : ∀ (i : ι), NoMinOrder (α i)
i : ι
a b : α i
h : a < b
c : α i
ha : a < c
hb : c < b
⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b }
[PROOFSTEP]
exact ⟨⟨i, c⟩, right _ _ ha, right _ _ hb⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : NoMaxOrder ι
inst✝ : ∀ (i : ι), Nonempty (α i)
⊢ ∀ (a : Σₗ (i : ι), α i), ∃ b, a < b
[PROOFSTEP]
rintro ⟨i, a⟩
[GOAL]
case mk
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : NoMaxOrder ι
inst✝ : ∀ (i : ι), Nonempty (α i)
i : ι
a : α i
⊢ ∃ b, { fst := i, snd := a } < b
[PROOFSTEP]
obtain ⟨j, h⟩ := exists_gt i
[GOAL]
case mk.intro
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : NoMaxOrder ι
inst✝ : ∀ (i : ι), Nonempty (α i)
i : ι
a : α i
j : ι
h : i < j
⊢ ∃ b, { fst := i, snd := a } < b
[PROOFSTEP]
obtain ⟨b⟩ : Nonempty (α j) := inferInstance
[GOAL]
case mk.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : NoMaxOrder ι
inst✝ : ∀ (i : ι), Nonempty (α i)
i : ι
a : α i
j : ι
h : i < j
b : α j
⊢ ∃ b, { fst := i, snd := a } < b
[PROOFSTEP]
exact ⟨⟨j, b⟩, left _ _ h⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : NoMinOrder ι
inst✝ : ∀ (i : ι), Nonempty (α i)
⊢ ∀ (a : Σₗ (i : ι), α i), ∃ b, b < a
[PROOFSTEP]
rintro ⟨i, a⟩
[GOAL]
case mk
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : NoMinOrder ι
inst✝ : ∀ (i : ι), Nonempty (α i)
i : ι
a : α i
⊢ ∃ b, b < { fst := i, snd := a }
[PROOFSTEP]
obtain ⟨j, h⟩ := exists_lt i
[GOAL]
case mk.intro
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : NoMinOrder ι
inst✝ : ∀ (i : ι), Nonempty (α i)
i : ι
a : α i
j : ι
h : j < i
⊢ ∃ b, b < { fst := i, snd := a }
[PROOFSTEP]
obtain ⟨b⟩ : Nonempty (α j) := inferInstance
[GOAL]
case mk.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝³ : Preorder ι
inst✝² : (i : ι) → Preorder (α i)
inst✝¹ : NoMinOrder ι
inst✝ : ∀ (i : ι), Nonempty (α i)
i : ι
a : α i
j : ι
h : j < i
b : α j
⊢ ∃ b, b < { fst := i, snd := a }
[PROOFSTEP]
exact ⟨⟨j, b⟩, left _ _ h⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : Preorder ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), NoMaxOrder (α i)
⊢ ∀ (a : Σₗ (i : ι), α i), ∃ b, a < b
[PROOFSTEP]
rintro ⟨i, a⟩
[GOAL]
case mk
ι : Type u_1
α : ι → Type u_2
inst✝² : Preorder ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), NoMaxOrder (α i)
i : ι
a : α i
⊢ ∃ b, { fst := i, snd := a } < b
[PROOFSTEP]
obtain ⟨b, h⟩ := exists_gt a
[GOAL]
case mk.intro
ι : Type u_1
α : ι → Type u_2
inst✝² : Preorder ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), NoMaxOrder (α i)
i : ι
a b : α i
h : a < b
⊢ ∃ b, { fst := i, snd := a } < b
[PROOFSTEP]
exact ⟨⟨i, b⟩, right _ _ h⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : Preorder ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), NoMinOrder (α i)
⊢ ∀ (a : Σₗ (i : ι), α i), ∃ b, b < a
[PROOFSTEP]
rintro ⟨i, a⟩
[GOAL]
case mk
ι : Type u_1
α : ι → Type u_2
inst✝² : Preorder ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), NoMinOrder (α i)
i : ι
a : α i
⊢ ∃ b, b < { fst := i, snd := a }
[PROOFSTEP]
obtain ⟨b, h⟩ := exists_lt a
[GOAL]
case mk.intro
ι : Type u_1
α : ι → Type u_2
inst✝² : Preorder ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), NoMinOrder (α i)
i : ι
a b : α i
h : b < a
⊢ ∃ b, b < { fst := i, snd := a }
[PROOFSTEP]
exact ⟨⟨i, b⟩, right _ _ h⟩
|
{"mathlib_filename": "Mathlib.Data.Sigma.Order", "llama_tokens": 11980}
|
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : Countable ι
inst✝ : ∀ (i : ι), Countable (α i)
⊢ Countable (Π₀ (i : ι), α i)
[PROOFSTEP]
classical
let _ := Encodable.ofCountable ι
let _ := fun i ↦ Encodable.ofCountable (α i)
infer_instance
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : Countable ι
inst✝ : ∀ (i : ι), Countable (α i)
⊢ Countable (Π₀ (i : ι), α i)
[PROOFSTEP]
let _ := Encodable.ofCountable ι
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : Countable ι
inst✝ : ∀ (i : ι), Countable (α i)
x✝ : Encodable ι := Encodable.ofCountable ι
⊢ Countable (Π₀ (i : ι), α i)
[PROOFSTEP]
let _ := fun i ↦ Encodable.ofCountable (α i)
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : Countable ι
inst✝ : ∀ (i : ι), Countable (α i)
x✝¹ : Encodable ι := Encodable.ofCountable ι
x✝ : (i : ι) → Encodable (α i) := fun i => Encodable.ofCountable (α i)
⊢ Countable (Π₀ (i : ι), α i)
[PROOFSTEP]
infer_instance
|
{"mathlib_filename": "Mathlib.Data.DFinsupp.Encodable", "llama_tokens": 539}
|
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝² x✝¹ x✝ : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
⊢ { fst := k, snd := c } ∈ sigmaLift (fun x => Icc) { fst := i, snd := a } { fst := j, snd := b } ↔
{ fst := i, snd := a } ≤ { fst := k, snd := c } ∧ { fst := k, snd := c } ≤ { fst := j, snd := b }
[PROOFSTEP]
simp_rw [mem_sigmaLift, le_def, mem_Icc, exists_and_left, ← exists_and_right, ← exists_prop]
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝² x✝¹ x✝ : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
⊢ (∃ h _h x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔
∃ h _h h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
[PROOFSTEP]
exact bex_congr fun _ _ => by constructor <;> rintro ⟨⟨⟩, ht⟩ <;> exact ⟨rfl, ht⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a ≤ c
⊢ (∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔
∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a ≤ c
⊢ (∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) →
∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
[PROOFSTEP]
rintro ⟨⟨⟩, ht⟩
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a ≤ c
⊢ (∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b) →
∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b
[PROOFSTEP]
rintro ⟨⟨⟩, ht⟩
[GOAL]
case mp.intro.refl
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b c : α j
x✝¹ : i = j
x✝ : (_ : i = j) ▸ a ≤ c
ht : c ≤ (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b
⊢ ∃ h, (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
[PROOFSTEP]
exact ⟨rfl, ht⟩
[GOAL]
case mpr.intro.refl
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b c : α j
x✝¹ : i = j
x✝ : (_ : i = j) ▸ a ≤ c
ht : (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
⊢ ∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b
[PROOFSTEP]
exact ⟨rfl, ht⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝² x✝¹ x✝ : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
⊢ { fst := k, snd := c } ∈ sigmaLift (fun x => Ico) { fst := i, snd := a } { fst := j, snd := b } ↔
{ fst := i, snd := a } ≤ { fst := k, snd := c } ∧ { fst := k, snd := c } < { fst := j, snd := b }
[PROOFSTEP]
simp_rw [mem_sigmaLift, le_def, lt_def, mem_Ico, exists_and_left, ← exists_and_right, ← exists_prop]
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝² x✝¹ x✝ : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
⊢ (∃ h _h x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔
∃ h _h h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
[PROOFSTEP]
exact bex_congr fun _ _ => by constructor <;> rintro ⟨⟨⟩, ht⟩ <;> exact ⟨rfl, ht⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a ≤ c
⊢ (∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔
∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a ≤ c
⊢ (∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) →
∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
[PROOFSTEP]
rintro ⟨⟨⟩, ht⟩
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a ≤ c
⊢ (∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b) →
∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b
[PROOFSTEP]
rintro ⟨⟨⟩, ht⟩
[GOAL]
case mp.intro.refl
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b c : α j
x✝¹ : i = j
x✝ : (_ : i = j) ▸ a ≤ c
ht : c < (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b
⊢ ∃ h, (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
[PROOFSTEP]
exact ⟨rfl, ht⟩
[GOAL]
case mpr.intro.refl
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b c : α j
x✝¹ : i = j
x✝ : (_ : i = j) ▸ a ≤ c
ht : (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
⊢ ∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b
[PROOFSTEP]
exact ⟨rfl, ht⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝² x✝¹ x✝ : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
⊢ { fst := k, snd := c } ∈ sigmaLift (fun x => Ioc) { fst := i, snd := a } { fst := j, snd := b } ↔
{ fst := i, snd := a } < { fst := k, snd := c } ∧ { fst := k, snd := c } ≤ { fst := j, snd := b }
[PROOFSTEP]
simp_rw [mem_sigmaLift, le_def, lt_def, mem_Ioc, exists_and_left, ← exists_and_right, ← exists_prop]
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝² x✝¹ x✝ : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
⊢ (∃ h _h x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔
∃ h _h h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
[PROOFSTEP]
exact bex_congr fun _ _ => by constructor <;> rintro ⟨⟨⟩, ht⟩ <;> exact ⟨rfl, ht⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a < c
⊢ (∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔
∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a < c
⊢ (∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) →
∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
[PROOFSTEP]
rintro ⟨⟨⟩, ht⟩
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a < c
⊢ (∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b) →
∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b
[PROOFSTEP]
rintro ⟨⟨⟩, ht⟩
[GOAL]
case mp.intro.refl
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b c : α j
x✝¹ : i = j
x✝ : (_ : i = j) ▸ a < c
ht : c ≤ (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b
⊢ ∃ h, (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
[PROOFSTEP]
exact ⟨rfl, ht⟩
[GOAL]
case mpr.intro.refl
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b c : α j
x✝¹ : i = j
x✝ : (_ : i = j) ▸ a < c
ht : (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b
⊢ ∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b
[PROOFSTEP]
exact ⟨rfl, ht⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝² x✝¹ x✝ : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
⊢ { fst := k, snd := c } ∈ sigmaLift (fun x => Ioo) { fst := i, snd := a } { fst := j, snd := b } ↔
{ fst := i, snd := a } < { fst := k, snd := c } ∧ { fst := k, snd := c } < { fst := j, snd := b }
[PROOFSTEP]
simp_rw [mem_sigmaLift, lt_def, mem_Ioo, exists_and_left, ← exists_and_right, ← exists_prop]
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝² x✝¹ x✝ : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
⊢ (∃ h _h x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔
∃ h _h h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
[PROOFSTEP]
exact bex_congr fun _ _ => by constructor <;> rintro ⟨⟨⟩, ht⟩ <;> exact ⟨rfl, ht⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a < c
⊢ (∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔
∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a < c
⊢ (∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) →
∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
[PROOFSTEP]
rintro ⟨⟨⟩, ht⟩
[GOAL]
case mpr
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b : α j
k : ι
c : α k
x✝¹ : i = k
x✝ : (_ : i = k) ▸ a < c
⊢ (∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b) →
∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b
[PROOFSTEP]
rintro ⟨⟨⟩, ht⟩
[GOAL]
case mp.intro.refl
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b c : α j
x✝¹ : i = j
x✝ : (_ : i = j) ▸ a < c
ht : c < (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b
⊢ ∃ h, (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
[PROOFSTEP]
exact ⟨rfl, ht⟩
[GOAL]
case mpr.intro.refl
ι : Type u_1
α : ι → Type u_2
inst✝² : DecidableEq ι
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : (i : ι) → LocallyFiniteOrder (α i)
x✝⁴ x✝³ x✝² : (i : ι) × α i
i : ι
a : α i
j : ι
b c : α j
x✝¹ : i = j
x✝ : (_ : i = j) ▸ a < c
ht : (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b
⊢ ∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b
[PROOFSTEP]
exact ⟨rfl, ht⟩
|
{"mathlib_filename": "Mathlib.Data.Sigma.Interval", "llama_tokens": 7513}
|
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ recF g (MvPFunctor.wMk (P F) a f' f) = g (abs { fst := a, snd := splitFun f' (recF g ∘ f) })
[PROOFSTEP]
rw [recF, MvPFunctor.wRec_eq]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ g
(abs
{ fst := a,
snd :=
splitFun f' fun i =>
MvPFunctor.wRec (P F) (fun a f' _f rec => g (abs { fst := a, snd := splitFun f' rec })) (f i) }) =
g
(abs
{ fst := a,
snd :=
splitFun f' ((MvPFunctor.wRec (P F) fun a f' _f rec => g (abs { fst := a, snd := splitFun f' rec })) ∘ f) })
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : MvPFunctor.W (P F) α
⊢ recF g x = g (abs ((TypeVec.id ::: recF g) <$$> MvPFunctor.wDest' (P F) x))
[PROOFSTEP]
apply q.P.w_cases _ x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : MvPFunctor.W (P F) α
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),
recF g (MvPFunctor.wMk (P F) a f' f) =
g (abs ((TypeVec.id ::: recF g) <$$> MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a f' f)))
[PROOFSTEP]
intro a f' f
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ recF g (MvPFunctor.wMk (P F) a f' f) =
g (abs ((TypeVec.id ::: recF g) <$$> MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a f' f)))
[PROOFSTEP]
rw [recF_eq, q.P.wDest'_wMk, MvPFunctor.map_eq, appendFun_comp_splitFun, TypeVec.id_comp]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
⊢ WEquiv x y → recF u x = recF u y
[PROOFSTEP]
apply q.P.w_cases _ x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),
WEquiv (MvPFunctor.wMk (P F) a f' f) y → recF u (MvPFunctor.wMk (P F) a f' f) = recF u y
[PROOFSTEP]
intro a₀ f'₀ f₀
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
⊢ WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) y → recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u y
[PROOFSTEP]
apply q.P.w_cases _ y
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),
WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a f' f) →
recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
intro a₁ f'₁ f₁
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
⊢ WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) →
recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
[PROOFSTEP]
intro h
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
⊢ recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
[PROOFSTEP]
refine' @WEquiv.recOn _ _ _ _ _ (λ a a' _ => recF u a = recF u a') _ _ h _ _ _
[GOAL]
case refine'_1
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α)
(a_1 : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)),
(∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),
(fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))) →
(fun a a' x => recF u a = recF u a') (MvPFunctor.wMk (P F) a f' f₀) (MvPFunctor.wMk (P F) a f' f₁)
(_ : WEquiv (MvPFunctor.wMk (P F) a f' f₀) (MvPFunctor.wMk (P F) a f' f₁))
[PROOFSTEP]
intros a f' f₀ f₁ _h ih
[GOAL]
case refine'_1
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih :
∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),
(fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))
⊢ recF u (MvPFunctor.wMk (P F) a f' f₀) = recF u (MvPFunctor.wMk (P F) a f' f₁)
[PROOFSTEP]
simp only [recF_eq, Function.comp]
[GOAL]
case refine'_1
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih :
∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),
(fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))
⊢ u (abs { fst := a, snd := splitFun f' fun x => recF u (f₀ x) }) =
u (abs { fst := a, snd := splitFun f' fun x => recF u (f₁ x) })
[PROOFSTEP]
congr
[GOAL]
case refine'_1.e_a.e_a.e_snd
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih :
∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),
(fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))
⊢ (splitFun f' fun x => recF u (f₀ x)) = splitFun f' fun x => recF u (f₁ x)
[PROOFSTEP]
funext
[GOAL]
case refine'_1.e_a.e_a.e_snd.h.h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih :
∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),
(fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))
x✝¹ : Fin2 (n + 1)
x✝ : MvPFunctor.B (P F) a x✝¹
⊢ splitFun f' (fun x => recF u (f₀ x)) x✝¹ x✝ = splitFun f' (fun x => recF u (f₁ x)) x✝¹ x✝
[PROOFSTEP]
congr
[GOAL]
case refine'_1.e_a.e_a.e_snd.h.h.e_g
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih :
∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),
(fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))
x✝¹ : Fin2 (n + 1)
x✝ : MvPFunctor.B (P F) a x✝¹
⊢ (fun x => recF u (f₀ x)) = fun x => recF u (f₁ x)
[PROOFSTEP]
funext
[GOAL]
case refine'_1.e_a.e_a.e_snd.h.h.e_g.h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih :
∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),
(fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))
x✝² : Fin2 (n + 1)
x✝¹ : MvPFunctor.B (P F) a x✝²
x✝ : last (MvPFunctor.B (P F) a)
⊢ recF u (f₀ x✝) = recF u (f₁ x✝)
[PROOFSTEP]
apply ih
[GOAL]
case refine'_2
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
⊢ ∀ (a₀ : (P F).A) (f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α)
(f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α) (a₁ : (P F).A)
(f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α)
(f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α)
(a :
abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }),
(fun a a' x => recF u a = recF u a') (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
(_ : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁))
[PROOFSTEP]
intros a₀ f'₀ f₀ a₁ f'₁ f₁ h
[GOAL]
case refine'_2
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀✝ : (P F).A
f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α
a₁✝ : (P F).A
f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α
h✝ : WEquiv (MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) (MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝)
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h :
abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }
⊢ recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
[PROOFSTEP]
simp only [recF_eq', abs_map, MvPFunctor.wDest'_wMk, h]
[GOAL]
case refine'_3
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
⊢ ∀ (u_1 v w : MvPFunctor.W (P F) α) (a : WEquiv u_1 v) (a_1 : WEquiv v w),
(fun a a' x => recF u a = recF u a') u_1 v a →
(fun a a' x => recF u a = recF u a') v w a_1 → (fun a a' x => recF u a = recF u a') u_1 w (_ : WEquiv u_1 w)
[PROOFSTEP]
intros x y z _e₁ _e₂ ih₁ ih₂
[GOAL]
case refine'_3
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
u : F (α ::: β) → β
x✝ y✝ : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
x y z : MvPFunctor.W (P F) α
_e₁ : WEquiv x y
_e₂ : WEquiv y z
ih₁ : recF u x = recF u y
ih₂ : recF u y = recF u z
⊢ recF u x = recF u z
[PROOFSTEP]
exact Eq.trans ih₁ ih₂
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
h : abs (MvPFunctor.wDest' (P F) x) = abs (MvPFunctor.wDest' (P F) y)
⊢ WEquiv x y
[PROOFSTEP]
revert h
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
⊢ abs (MvPFunctor.wDest' (P F) x) = abs (MvPFunctor.wDest' (P F) y) → WEquiv x y
[PROOFSTEP]
apply q.P.w_cases _ x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),
abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a f' f)) = abs (MvPFunctor.wDest' (P F) y) →
WEquiv (MvPFunctor.wMk (P F) a f' f) y
[PROOFSTEP]
intro a₀ f'₀ f₀
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
⊢ abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a₀ f'₀ f₀)) = abs (MvPFunctor.wDest' (P F) y) →
WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) y
[PROOFSTEP]
apply q.P.w_cases _ y
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),
abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a₀ f'₀ f₀)) =
abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a f' f)) →
WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
intro a₁ f'₁ f₁
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
⊢ abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a₀ f'₀ f₀)) =
abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)) →
WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)
[PROOFSTEP]
apply WEquiv.abs
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
⊢ WEquiv x x
[PROOFSTEP]
apply q.P.w_cases _ x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),
WEquiv (MvPFunctor.wMk (P F) a f' f) (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
intro a f' f
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ WEquiv (MvPFunctor.wMk (P F) a f' f) (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
exact WEquiv.abs a f' f a f' f rfl
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
⊢ WEquiv x y → WEquiv y x
[PROOFSTEP]
intro h
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
h : WEquiv x y
⊢ WEquiv y x
[PROOFSTEP]
induction h
[GOAL]
case ind
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a✝¹ : (P F).A
f'✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a✝¹ ⟹ α
f₀✝ f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a✝¹ → MvPFunctor.W (P F) α
a✝ : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a✝¹), WEquiv (f₀✝ x) (f₁✝ x)
a_ih✝ : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a✝¹), WEquiv (f₁✝ x) (f₀✝ x)
⊢ WEquiv (MvPFunctor.wMk (P F) a✝¹ f'✝ f₁✝) (MvPFunctor.wMk (P F) a✝¹ f'✝ f₀✝)
case abs
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a₀✝ : (P F).A
f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α
a₁✝ : (P F).A
f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α
a✝ :
abs { fst := a₀✝, snd := MvPFunctor.appendContents (P F) f'₀✝ f₀✝ } =
abs { fst := a₁✝, snd := MvPFunctor.appendContents (P F) f'₁✝ f₁✝ }
⊢ WEquiv (MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝) (MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝)
case trans
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y u✝ v✝ w✝ : MvPFunctor.W (P F) α
a✝¹ : WEquiv u✝ v✝
a✝ : WEquiv v✝ w✝
a_ih✝¹ : WEquiv v✝ u✝
a_ih✝ : WEquiv w✝ v✝
⊢ WEquiv w✝ u✝
[PROOFSTEP]
case ind a f' f₀ f₁ _h ih => exact WEquiv.ind _ _ _ _ ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₁ x) (f₀ x)
⊢ WEquiv (MvPFunctor.wMk (P F) a f' f₁) (MvPFunctor.wMk (P F) a f' f₀)
[PROOFSTEP]
case ind a f' f₀ f₁ _h ih => exact WEquiv.ind _ _ _ _ ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₁ x) (f₀ x)
⊢ WEquiv (MvPFunctor.wMk (P F) a f' f₁) (MvPFunctor.wMk (P F) a f' f₀)
[PROOFSTEP]
exact WEquiv.ind _ _ _ _ ih
[GOAL]
case abs
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a₀✝ : (P F).A
f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α
a₁✝ : (P F).A
f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α
a✝ :
abs { fst := a₀✝, snd := MvPFunctor.appendContents (P F) f'₀✝ f₀✝ } =
abs { fst := a₁✝, snd := MvPFunctor.appendContents (P F) f'₁✝ f₁✝ }
⊢ WEquiv (MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝) (MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝)
case trans
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y u✝ v✝ w✝ : MvPFunctor.W (P F) α
a✝¹ : WEquiv u✝ v✝
a✝ : WEquiv v✝ w✝
a_ih✝¹ : WEquiv v✝ u✝
a_ih✝ : WEquiv w✝ v✝
⊢ WEquiv w✝ u✝
[PROOFSTEP]
case abs a₀ f'₀ f₀ a₁ f'₁ f₁ h => exact WEquiv.abs _ _ _ _ _ _ h.symm
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h :
abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }
⊢ WEquiv (MvPFunctor.wMk (P F) a₁ f'₁ f₁) (MvPFunctor.wMk (P F) a₀ f'₀ f₀)
[PROOFSTEP]
case abs a₀ f'₀ f₀ a₁ f'₁ f₁ h => exact WEquiv.abs _ _ _ _ _ _ h.symm
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h :
abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }
⊢ WEquiv (MvPFunctor.wMk (P F) a₁ f'₁ f₁) (MvPFunctor.wMk (P F) a₀ f'₀ f₀)
[PROOFSTEP]
exact WEquiv.abs _ _ _ _ _ _ h.symm
[GOAL]
case trans
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x y u✝ v✝ w✝ : MvPFunctor.W (P F) α
a✝¹ : WEquiv u✝ v✝
a✝ : WEquiv v✝ w✝
a_ih✝¹ : WEquiv v✝ u✝
a_ih✝ : WEquiv w✝ v✝
⊢ WEquiv w✝ u✝
[PROOFSTEP]
case trans x y z _e₁ _e₂ ih₁ ih₂ => exact MvQPF.WEquiv.trans _ _ _ ih₂ ih₁
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x✝ y✝ x y z : MvPFunctor.W (P F) α
_e₁ : WEquiv x y
_e₂ : WEquiv y z
ih₁ : WEquiv y x
ih₂ : WEquiv z y
⊢ WEquiv z x
[PROOFSTEP]
case trans x y z _e₁ _e₂ ih₁ ih₂ => exact MvQPF.WEquiv.trans _ _ _ ih₂ ih₁
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x✝ y✝ x y z : MvPFunctor.W (P F) α
_e₁ : WEquiv x y
_e₂ : WEquiv y z
ih₁ : WEquiv y x
ih₂ : WEquiv z y
⊢ WEquiv z x
[PROOFSTEP]
exact MvQPF.WEquiv.trans _ _ _ ih₂ ih₁
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ wrepr (MvPFunctor.wMk (P F) a f' f) =
MvPFunctor.wMk' (P F)
(repr (abs ((TypeVec.id ::: wrepr) <$$> { fst := a, snd := MvPFunctor.appendContents (P F) f' f })))
[PROOFSTEP]
rw [wrepr, recF_eq', q.P.wDest'_wMk]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ (MvPFunctor.wMk' (P F) ∘ repr)
(abs ((TypeVec.id ::: recF (MvPFunctor.wMk' (P F) ∘ repr)) <$$> { fst := a, snd := splitFun f' f })) =
MvPFunctor.wMk' (P F)
(repr
(abs
((TypeVec.id ::: recF (MvPFunctor.wMk' (P F) ∘ repr)) <$$>
{ fst := a, snd := MvPFunctor.appendContents (P F) f' f })))
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
⊢ WEquiv (wrepr x) x
[PROOFSTEP]
apply q.P.w_ind _ x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),
(∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i)) →
WEquiv (wrepr (MvPFunctor.wMk (P F) a f' f)) (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
intro a f' f ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i)
⊢ WEquiv (wrepr (MvPFunctor.wMk (P F) a f' f)) (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
apply WEquiv.trans _ (q.P.wMk' (appendFun id wrepr <$$> ⟨a, q.P.appendContents f' f⟩))
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i)
⊢ WEquiv (wrepr (MvPFunctor.wMk (P F) a f' f))
(MvPFunctor.wMk' (P F) ((TypeVec.id ::: wrepr) <$$> { fst := a, snd := MvPFunctor.appendContents (P F) f' f }))
[PROOFSTEP]
apply wEquiv.abs'
[GOAL]
case a.h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i)
⊢ abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f))) =
abs
(MvPFunctor.wDest' (P F)
(MvPFunctor.wMk' (P F) ((TypeVec.id ::: wrepr) <$$> { fst := a, snd := MvPFunctor.appendContents (P F) f' f })))
[PROOFSTEP]
rw [wrepr_wMk, q.P.wDest'_wMk', q.P.wDest'_wMk', abs_repr]
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i)
⊢ WEquiv (MvPFunctor.wMk' (P F) ((TypeVec.id ::: wrepr) <$$> { fst := a, snd := MvPFunctor.appendContents (P F) f' f }))
(MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
rw [q.P.map_eq, MvPFunctor.wMk', appendFun_comp_splitFun, id_comp]
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i)
⊢ WEquiv
(match { fst := a, snd := splitFun f' (wrepr ∘ f) } with
| { fst := a, snd := f } => MvPFunctor.wMk (P F) a (dropFun f) (lastFun f))
(MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
apply WEquiv.ind
[GOAL]
case a.a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i)
⊢ ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (lastFun (splitFun f' (wrepr ∘ f)) x) (f x)
[PROOFSTEP]
exact ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
⊢ WEquiv x y → WEquiv (g <$$> x) (g <$$> y)
[PROOFSTEP]
intro h
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
h : WEquiv x y
⊢ WEquiv (g <$$> x) (g <$$> y)
[PROOFSTEP]
induction h
[GOAL]
case ind
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a✝¹ : (P F).A
f'✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a✝¹ ⟹ α
f₀✝ f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a✝¹ → MvPFunctor.W (P F) α
a✝ : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a✝¹), WEquiv (f₀✝ x) (f₁✝ x)
a_ih✝ : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a✝¹), WEquiv (g <$$> f₀✝ x) (g <$$> f₁✝ x)
⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a✝¹ f'✝ f₀✝) (g <$$> MvPFunctor.wMk (P F) a✝¹ f'✝ f₁✝)
case abs
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a₀✝ : (P F).A
f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α
a₁✝ : (P F).A
f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α
a✝ :
abs { fst := a₀✝, snd := MvPFunctor.appendContents (P F) f'₀✝ f₀✝ } =
abs { fst := a₁✝, snd := MvPFunctor.appendContents (P F) f'₁✝ f₁✝ }
⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) (g <$$> MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝)
case trans
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y u✝ v✝ w✝ : MvPFunctor.W (P F) α
a✝¹ : WEquiv u✝ v✝
a✝ : WEquiv v✝ w✝
a_ih✝¹ : WEquiv (g <$$> u✝) (g <$$> v✝)
a_ih✝ : WEquiv (g <$$> v✝) (g <$$> w✝)
⊢ WEquiv (g <$$> u✝) (g <$$> w✝)
[PROOFSTEP]
case ind a f' f₀ f₁ h ih => rw [q.P.w_map_wMk, q.P.w_map_wMk]; apply WEquiv.ind; exact ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x)
⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a f' f₀) (g <$$> MvPFunctor.wMk (P F) a f' f₁)
[PROOFSTEP]
case ind a f' f₀ f₁ h ih => rw [q.P.w_map_wMk, q.P.w_map_wMk]; apply WEquiv.ind; exact ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x)
⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a f' f₀) (g <$$> MvPFunctor.wMk (P F) a f' f₁)
[PROOFSTEP]
rw [q.P.w_map_wMk, q.P.w_map_wMk]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x)
⊢ WEquiv (MvPFunctor.wMk (P F) a (g ⊚ f') fun i => g <$$> f₀ i) (MvPFunctor.wMk (P F) a (g ⊚ f') fun i => g <$$> f₁ i)
[PROOFSTEP]
apply WEquiv.ind
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)
ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x)
⊢ ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x)
[PROOFSTEP]
exact ih
[GOAL]
case abs
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a₀✝ : (P F).A
f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α
f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α
a₁✝ : (P F).A
f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α
f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α
a✝ :
abs { fst := a₀✝, snd := MvPFunctor.appendContents (P F) f'₀✝ f₀✝ } =
abs { fst := a₁✝, snd := MvPFunctor.appendContents (P F) f'₁✝ f₁✝ }
⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) (g <$$> MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝)
case trans
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y u✝ v✝ w✝ : MvPFunctor.W (P F) α
a✝¹ : WEquiv u✝ v✝
a✝ : WEquiv v✝ w✝
a_ih✝¹ : WEquiv (g <$$> u✝) (g <$$> v✝)
a_ih✝ : WEquiv (g <$$> v✝) (g <$$> w✝)
⊢ WEquiv (g <$$> u✝) (g <$$> w✝)
[PROOFSTEP]
case abs a₀ f'₀ f₀ a₁ f'₁ f₁ h =>
rw [q.P.w_map_wMk, q.P.w_map_wMk]; apply WEquiv.abs
show
abs (q.P.objAppend1 a₀ (g ⊚ f'₀) fun x => q.P.wMap g (f₀ x)) =
abs (q.P.objAppend1 a₁ (g ⊚ f'₁) fun x => q.P.wMap g (f₁ x))
rw [← q.P.map_objAppend1, ← q.P.map_objAppend1, abs_map, abs_map, h]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h :
abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }
⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a₀ f'₀ f₀) (g <$$> MvPFunctor.wMk (P F) a₁ f'₁ f₁)
[PROOFSTEP]
case abs a₀ f'₀ f₀ a₁ f'₁ f₁ h =>
rw [q.P.w_map_wMk, q.P.w_map_wMk]; apply WEquiv.abs
show
abs (q.P.objAppend1 a₀ (g ⊚ f'₀) fun x => q.P.wMap g (f₀ x)) =
abs (q.P.objAppend1 a₁ (g ⊚ f'₁) fun x => q.P.wMap g (f₁ x))
rw [← q.P.map_objAppend1, ← q.P.map_objAppend1, abs_map, abs_map, h]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h :
abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }
⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a₀ f'₀ f₀) (g <$$> MvPFunctor.wMk (P F) a₁ f'₁ f₁)
[PROOFSTEP]
rw [q.P.w_map_wMk, q.P.w_map_wMk]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h :
abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }
⊢ WEquiv (MvPFunctor.wMk (P F) a₀ (g ⊚ f'₀) fun i => g <$$> f₀ i)
(MvPFunctor.wMk (P F) a₁ (g ⊚ f'₁) fun i => g <$$> f₁ i)
[PROOFSTEP]
apply WEquiv.abs
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h :
abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }
⊢ abs { fst := a₀, snd := MvPFunctor.appendContents (P F) (g ⊚ f'₀) fun i => g <$$> f₀ i } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) (g ⊚ f'₁) fun i => g <$$> f₁ i }
[PROOFSTEP]
show
abs (q.P.objAppend1 a₀ (g ⊚ f'₀) fun x => q.P.wMap g (f₀ x)) =
abs (q.P.objAppend1 a₁ (g ⊚ f'₁) fun x => q.P.wMap g (f₁ x))
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y : MvPFunctor.W (P F) α
a₀ : (P F).A
f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α
f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α
a₁ : (P F).A
f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α
f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α
h :
abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =
abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }
⊢ abs (MvPFunctor.objAppend1 (P F) a₀ (g ⊚ f'₀) fun x => MvPFunctor.wMap (P F) g (f₀ x)) =
abs (MvPFunctor.objAppend1 (P F) a₁ (g ⊚ f'₁) fun x => MvPFunctor.wMap (P F) g (f₁ x))
[PROOFSTEP]
rw [← q.P.map_objAppend1, ← q.P.map_objAppend1, abs_map, abs_map, h]
[GOAL]
case trans
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x y u✝ v✝ w✝ : MvPFunctor.W (P F) α
a✝¹ : WEquiv u✝ v✝
a✝ : WEquiv v✝ w✝
a_ih✝¹ : WEquiv (g <$$> u✝) (g <$$> v✝)
a_ih✝ : WEquiv (g <$$> v✝) (g <$$> w✝)
⊢ WEquiv (g <$$> u✝) (g <$$> w✝)
[PROOFSTEP]
case trans x y z _ _ ih₁ ih₂ => apply MvQPF.WEquiv.trans; apply ih₁; apply ih₂
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x✝ y✝ x y z : MvPFunctor.W (P F) α
a✝¹ : WEquiv x y
a✝ : WEquiv y z
ih₁ : WEquiv (g <$$> x) (g <$$> y)
ih₂ : WEquiv (g <$$> y) (g <$$> z)
⊢ WEquiv (g <$$> x) (g <$$> z)
[PROOFSTEP]
case trans x y z _ _ ih₁ ih₂ => apply MvQPF.WEquiv.trans; apply ih₁; apply ih₂
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x✝ y✝ x y z : MvPFunctor.W (P F) α
a✝¹ : WEquiv x y
a✝ : WEquiv y z
ih₁ : WEquiv (g <$$> x) (g <$$> y)
ih₂ : WEquiv (g <$$> y) (g <$$> z)
⊢ WEquiv (g <$$> x) (g <$$> z)
[PROOFSTEP]
apply MvQPF.WEquiv.trans
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x✝ y✝ x y z : MvPFunctor.W (P F) α
a✝¹ : WEquiv x y
a✝ : WEquiv y z
ih₁ : WEquiv (g <$$> x) (g <$$> y)
ih₂ : WEquiv (g <$$> y) (g <$$> z)
⊢ WEquiv (g <$$> x) ?v
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x✝ y✝ x y z : MvPFunctor.W (P F) α
a✝¹ : WEquiv x y
a✝ : WEquiv y z
ih₁ : WEquiv (g <$$> x) (g <$$> y)
ih₂ : WEquiv (g <$$> y) (g <$$> z)
⊢ WEquiv ?v (g <$$> z)
case v
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x✝ y✝ x y z : MvPFunctor.W (P F) α
a✝¹ : WEquiv x y
a✝ : WEquiv y z
ih₁ : WEquiv (g <$$> x) (g <$$> y)
ih₂ : WEquiv (g <$$> y) (g <$$> z)
⊢ MvPFunctor.W (P F) β
[PROOFSTEP]
apply ih₁
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α β : TypeVec n
g : α ⟹ β
x✝ y✝ x y z : MvPFunctor.W (P F) α
a✝¹ : WEquiv x y
a✝ : WEquiv y z
ih₁ : WEquiv (g <$$> x) (g <$$> y)
ih₂ : WEquiv (g <$$> y) (g <$$> z)
⊢ WEquiv (g <$$> y) (g <$$> z)
[PROOFSTEP]
apply ih₂
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
⊢ rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x)
[PROOFSTEP]
have : recF g ∘ fixToW = Fix.rec g := by
apply funext
apply Quotient.ind
intro x
apply recF_eq_of_wEquiv
apply wrepr_equiv
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
⊢ recF g ∘ fixToW = rec g
[PROOFSTEP]
apply funext
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
⊢ ∀ (x : Fix F α), (recF g ∘ fixToW) x = rec g x
[PROOFSTEP]
apply Quotient.ind
[GOAL]
case h.a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
⊢ ∀ (a : MvPFunctor.W (P F) α), (recF g ∘ fixToW) (Quotient.mk (wSetoid α) a) = rec g (Quotient.mk (wSetoid α) a)
[PROOFSTEP]
intro x
[GOAL]
case h.a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x✝ : F (α ::: Fix F α)
x : MvPFunctor.W (P F) α
⊢ (recF g ∘ fixToW) (Quotient.mk (wSetoid α) x) = rec g (Quotient.mk (wSetoid α) x)
[PROOFSTEP]
apply recF_eq_of_wEquiv
[GOAL]
case h.a.a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x✝ : F (α ::: Fix F α)
x : MvPFunctor.W (P F) α
⊢ WEquiv (fixToW (Quotient.mk (wSetoid α) x)) x
[PROOFSTEP]
apply wrepr_equiv
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
this : recF g ∘ fixToW = rec g
⊢ rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x)
[PROOFSTEP]
conv =>
lhs
rw [Fix.rec, Fix.mk]
dsimp
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
this : recF g ∘ fixToW = rec g
| rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x)
[PROOFSTEP]
lhs
rw [Fix.rec, Fix.mk]
dsimp
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
this : recF g ∘ fixToW = rec g
| rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x)
[PROOFSTEP]
lhs
rw [Fix.rec, Fix.mk]
dsimp
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
this : recF g ∘ fixToW = rec g
| rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x)
[PROOFSTEP]
lhs
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
this : recF g ∘ fixToW = rec g
| rec g (mk x)
[PROOFSTEP]
rw [Fix.rec, Fix.mk]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
this : recF g ∘ fixToW = rec g
| Quot.lift (recF g) (_ : ∀ (x y : MvPFunctor.W (P F) α), WEquiv x y → recF g x = recF g y)
(Quot.mk Setoid.r (MvPFunctor.wMk' (P F) ((TypeVec.id ::: fixToW) <$$> repr x)))
[PROOFSTEP]
dsimp
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
this : recF g ∘ fixToW = rec g
⊢ recF g (MvPFunctor.wMk' (P F) ((TypeVec.id ::: fixToW) <$$> repr x)) = g ((TypeVec.id ::: rec g) <$$> x)
[PROOFSTEP]
cases' h : repr x with a f
[GOAL]
case mk
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
this : recF g ∘ fixToW = rec g
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α ::: Fix F α
h : repr x = { fst := a, snd := f }
⊢ recF g (MvPFunctor.wMk' (P F) ((TypeVec.id ::: fixToW) <$$> { fst := a, snd := f })) =
g ((TypeVec.id ::: rec g) <$$> x)
[PROOFSTEP]
rw [MvPFunctor.map_eq, recF_eq', ← MvPFunctor.map_eq, MvPFunctor.wDest'_wMk']
[GOAL]
case mk
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
x : F (α ::: Fix F α)
this : recF g ∘ fixToW = rec g
a : (P F).A
f : MvPFunctor.B (P F) a ⟹ α ::: Fix F α
h : repr x = { fst := a, snd := f }
⊢ g (abs ((TypeVec.id ::: recF g) <$$> (TypeVec.id ::: fixToW) <$$> { fst := a, snd := f })) =
g ((TypeVec.id ::: rec g) <$$> x)
[PROOFSTEP]
rw [← MvPFunctor.comp_map, abs_map, ← h, abs_repr, ← appendFun_comp, id_comp, this]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) =
Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
have : Fix.mk (abs ⟨a, q.P.appendContents f' fun x => ⟦f x⟧⟩) = ⟦wrepr (q.P.wMk a f' f)⟧ :=
by
apply Quot.sound; apply wEquiv.abs'
rw [MvPFunctor.wDest'_wMk', abs_map, abs_repr, ← abs_map, MvPFunctor.map_eq]
conv =>
rhs
rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq]
congr 2; rw [MvPFunctor.appendContents, MvPFunctor.appendContents]
rw [appendFun, appendFun, ← splitFun_comp, ← splitFun_comp]
rfl
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) =
Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f))
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ Setoid.r
(MvPFunctor.wMk' (P F)
((TypeVec.id ::: fixToW) <$$>
repr (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) })))
(wrepr (MvPFunctor.wMk (P F) a f' f))
[PROOFSTEP]
apply wEquiv.abs'
[GOAL]
case a.h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ abs
(MvPFunctor.wDest' (P F)
(MvPFunctor.wMk' (P F)
((TypeVec.id ::: fixToW) <$$>
repr
(abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) })))) =
abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f)))
[PROOFSTEP]
rw [MvPFunctor.wDest'_wMk', abs_map, abs_repr, ← abs_map, MvPFunctor.map_eq]
[GOAL]
case a.h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ abs
{ fst := a,
snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } =
abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f)))
[PROOFSTEP]
conv =>
rhs
rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
| abs
{ fst := a,
snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } =
abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f)))
[PROOFSTEP]
rhs
rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
| abs
{ fst := a,
snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } =
abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f)))
[PROOFSTEP]
rhs
rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
| abs
{ fst := a,
snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } =
abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f)))
[PROOFSTEP]
rhs
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
| abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f)))
[PROOFSTEP]
rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq]
[GOAL]
case a.h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ abs
{ fst := a,
snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } =
abs { fst := a, snd := (TypeVec.id ::: wrepr) ⊚ MvPFunctor.appendContents (P F) f' f }
[PROOFSTEP]
congr 2
[GOAL]
case a.h.e_a.e_snd
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ ((TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x)) =
(TypeVec.id ::: wrepr) ⊚ MvPFunctor.appendContents (P F) f' f
[PROOFSTEP]
rw [MvPFunctor.appendContents, MvPFunctor.appendContents]
[GOAL]
case a.h.e_a.e_snd
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ ((TypeVec.id ::: fixToW) ⊚ splitFun f' fun x => Quotient.mk (wSetoid α) (f x)) =
(TypeVec.id ::: wrepr) ⊚ splitFun f' f
[PROOFSTEP]
rw [appendFun, appendFun, ← splitFun_comp, ← splitFun_comp]
[GOAL]
case a.h.e_a.e_snd
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
⊢ splitFun (TypeVec.id ⊚ f') (fixToW ∘ fun x => Quotient.mk (wSetoid α) (f x)) = splitFun (TypeVec.id ⊚ f') (wrepr ∘ f)
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
this :
mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) =
Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f))
⊢ mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) =
Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
rw [this]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
this :
mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) =
Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f))
⊢ Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f)) = Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
apply Quot.sound
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
this :
mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) =
Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f))
⊢ Setoid.r (wrepr (MvPFunctor.wMk (P F) a f' f)) (MvPFunctor.wMk (P F) a f' f)
[PROOFSTEP]
apply wrepr_equiv
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
⊢ ∀ (x : Fix F α), g₁ x = g₂ x
[PROOFSTEP]
apply Quot.ind
[GOAL]
case mk
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
⊢ ∀ (a : MvPFunctor.W (P F) α), g₁ (Quot.mk Setoid.r a) = g₂ (Quot.mk Setoid.r a)
[PROOFSTEP]
intro x
[GOAL]
case mk
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
⊢ g₁ (Quot.mk Setoid.r x) = g₂ (Quot.mk Setoid.r x)
[PROOFSTEP]
apply q.P.w_ind _ x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),
(∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))) →
g₁ (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f)) = g₂ (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f))
[PROOFSTEP]
intro a f' f ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
⊢ g₁ (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f)) = g₂ (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f))
[PROOFSTEP]
show g₁ ⟦q.P.wMk a f' f⟧ = g₂ ⟦q.P.wMk a f' f⟧
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
⊢ g₁ (Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f)) =
g₂ (Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f))
[PROOFSTEP]
rw [← Fix.ind_aux a f' f]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
⊢ g₁ (mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) })) =
g₂ (mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }))
[PROOFSTEP]
apply h
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
⊢ (TypeVec.id ::: g₁) <$$>
abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } =
(TypeVec.id ::: g₂) <$$>
abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }
[PROOFSTEP]
rw [← abs_map, ← abs_map, MvPFunctor.map_eq, MvPFunctor.map_eq]
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
⊢ abs
{ fst := a,
snd := (TypeVec.id ::: g₁) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } =
abs
{ fst := a,
snd := (TypeVec.id ::: g₂) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }
[PROOFSTEP]
congr 2
[GOAL]
case a.e_a.e_snd
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
⊢ ((TypeVec.id ::: g₁) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x)) =
(TypeVec.id ::: g₂) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x)
[PROOFSTEP]
rw [MvPFunctor.appendContents, appendFun, appendFun, ← splitFun_comp, ← splitFun_comp]
[GOAL]
case a.e_a.e_snd
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
⊢ splitFun (TypeVec.id ⊚ f') (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) =
splitFun (TypeVec.id ⊚ f') (g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x))
[PROOFSTEP]
have : (g₁ ∘ fun x => ⟦f x⟧) = g₂ ∘ fun x => ⟦f x⟧ := by
ext x
exact ih x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
⊢ (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) = g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x)
[PROOFSTEP]
ext x
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x✝ : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
x : PFunctor.B (MvPFunctor.last (P F)) a
⊢ (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) x = (g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x)) x
[PROOFSTEP]
exact ih x
[GOAL]
case a.e_a.e_snd
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g₁ g₂ : Fix F α → β
h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))
this : (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) = g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x)
⊢ splitFun (TypeVec.id ⊚ f') (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) =
splitFun (TypeVec.id ⊚ f') (g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x))
[PROOFSTEP]
rw [this]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
h : Fix F α → β
hyp : ∀ (x : F (α ::: Fix F α)), h (mk x) = g ((TypeVec.id ::: h) <$$> x)
⊢ rec g = h
[PROOFSTEP]
ext x
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
h : Fix F α → β
hyp : ∀ (x : F (α ::: Fix F α)), h (mk x) = g ((TypeVec.id ::: h) <$$> x)
x : Fix F α
⊢ rec g x = h x
[PROOFSTEP]
apply Fix.ind_rec
[GOAL]
case h.h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
h : Fix F α → β
hyp : ∀ (x : F (α ::: Fix F α)), h (mk x) = g ((TypeVec.id ::: h) <$$> x)
x : Fix F α
⊢ ∀ (x : F (α ::: Fix F α)),
(TypeVec.id ::: rec g) <$$> x = (TypeVec.id ::: fun x => h x) <$$> x → rec g (mk x) = h (mk x)
[PROOFSTEP]
intro x hyp'
[GOAL]
case h.h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Type u
g : F (α ::: β) → β
h : Fix F α → β
hyp : ∀ (x : F (α ::: Fix F α)), h (mk x) = g ((TypeVec.id ::: h) <$$> x)
x✝ : Fix F α
x : F (α ::: Fix F α)
hyp' : (TypeVec.id ::: rec g) <$$> x = (TypeVec.id ::: fun x => h x) <$$> x
⊢ rec g (mk x) = h (mk x)
[PROOFSTEP]
rw [hyp, ← hyp', Fix.rec_eq]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : Fix F α
⊢ mk (dest x) = x
[PROOFSTEP]
change (Fix.mk ∘ Fix.dest) x = x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : Fix F α
⊢ (mk ∘ dest) x = x
[PROOFSTEP]
apply Fix.ind_rec
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : Fix F α
⊢ ∀ (x : F (α ::: Fix F α)),
(TypeVec.id ::: mk ∘ dest) <$$> x = (TypeVec.id ::: fun x => x) <$$> x → (mk ∘ dest) (mk x) = mk x
[PROOFSTEP]
intro x
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x✝ : Fix F α
x : F (α ::: Fix F α)
⊢ (TypeVec.id ::: mk ∘ dest) <$$> x = (TypeVec.id ::: fun x => x) <$$> x → (mk ∘ dest) (mk x) = mk x
[PROOFSTEP]
dsimp
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x✝ : Fix F α
x : F (α ::: Fix F α)
⊢ (TypeVec.id ::: mk ∘ dest) <$$> x = (TypeVec.id ::: fun x => x) <$$> x → mk (dest (mk x)) = mk x
[PROOFSTEP]
rw [Fix.dest, Fix.rec_eq, ← comp_map, ← appendFun_comp, id_comp]
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x✝ : Fix F α
x : F (α ::: Fix F α)
⊢ (TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x = (TypeVec.id ::: fun x => x) <$$> x →
mk ((TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x) = mk x
[PROOFSTEP]
intro h
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x✝ : Fix F α
x : F (α ::: Fix F α)
h : (TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x = (TypeVec.id ::: fun x => x) <$$> x
⊢ mk ((TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x) = mk x
[PROOFSTEP]
rw [h]
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x✝ : Fix F α
x : F (α ::: Fix F α)
h : (TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x = (TypeVec.id ::: fun x => x) <$$> x
⊢ mk ((TypeVec.id ::: fun x => x) <$$> x) = mk x
[PROOFSTEP]
show Fix.mk (appendFun id id <$$> x) = Fix.mk x
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x✝ : Fix F α
x : F (α ::: Fix F α)
h : (TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x = (TypeVec.id ::: fun x => x) <$$> x
⊢ mk ((TypeVec.id ::: _root_.id) <$$> x) = mk x
[PROOFSTEP]
rw [appendFun_id_id, MvFunctor.id_map]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
⊢ dest (mk x) = x
[PROOFSTEP]
unfold Fix.dest
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
⊢ rec (MvFunctor.map (TypeVec.id ::: mk)) (mk x) = x
[PROOFSTEP]
rw [Fix.rec_eq, ← Fix.dest, ← comp_map]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
⊢ ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = x
[PROOFSTEP]
conv =>
rhs
rw [← MvFunctor.id_map x]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
| ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = x
[PROOFSTEP]
rhs
rw [← MvFunctor.id_map x]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
| ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = x
[PROOFSTEP]
rhs
rw [← MvFunctor.id_map x]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
| ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = x
[PROOFSTEP]
rhs
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
| x
[PROOFSTEP]
rw [← MvFunctor.id_map x]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
⊢ ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = TypeVec.id <$$> x
[PROOFSTEP]
rw [← appendFun_comp, id_comp]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
⊢ (TypeVec.id ::: mk ∘ dest) <$$> x = TypeVec.id <$$> x
[PROOFSTEP]
have : Fix.mk ∘ Fix.dest = _root_.id := by
ext (x : Fix F α)
apply Fix.mk_dest
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
⊢ mk ∘ dest = _root_.id
[PROOFSTEP]
ext (x : Fix F α)
[GOAL]
case h
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x✝ : F (α ::: Fix F α)
x : Fix F α
⊢ (mk ∘ dest) x = _root_.id x
[PROOFSTEP]
apply Fix.mk_dest
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
x : F (α ::: Fix F α)
this : mk ∘ dest = _root_.id
⊢ (TypeVec.id ::: mk ∘ dest) <$$> x = TypeVec.id <$$> x
[PROOFSTEP]
rw [this, appendFun_id_id]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
⊢ ∀ (x : Fix F α), p x
[PROOFSTEP]
apply Quot.ind
[GOAL]
case mk
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
⊢ ∀ (a : MvPFunctor.W (P F) α), p (Quot.mk Setoid.r a)
[PROOFSTEP]
intro x
[GOAL]
case mk
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
⊢ p (Quot.mk Setoid.r x)
[PROOFSTEP]
apply q.P.w_ind _ x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)
(f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),
(∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))) →
p (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f))
[PROOFSTEP]
intro a f' f ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))
⊢ p (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f))
[PROOFSTEP]
change p ⟦q.P.wMk a f' f⟧
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))
⊢ p (Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f))
[PROOFSTEP]
rw [← Fix.ind_aux a f' f]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))
⊢ p (mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }))
[PROOFSTEP]
apply h
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))
⊢ LiftP (PredLast α p)
(abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) })
[PROOFSTEP]
rw [MvQPF.liftP_iff]
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))
⊢ ∃ a_1 f_1,
abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } =
abs { fst := a_1, snd := f_1 } ∧
∀ (i : Fin2 (n + 1)) (j : MvPFunctor.B (P F) a_1 i), PredLast α p (f_1 i j)
[PROOFSTEP]
refine' ⟨_, _, rfl, _⟩
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))
⊢ ∀ (i : Fin2 (n + 1)) (j : MvPFunctor.B (P F) a i),
PredLast α p (MvPFunctor.appendContents (P F) f' (fun x => Quotient.mk (wSetoid α) (f x)) i j)
[PROOFSTEP]
intro i j
[GOAL]
case a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))
i : Fin2 (n + 1)
j : MvPFunctor.B (P F) a i
⊢ PredLast α p (MvPFunctor.appendContents (P F) f' (fun x => Quotient.mk (wSetoid α) (f x)) i j)
[PROOFSTEP]
cases i
[GOAL]
case a.fz
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))
j : MvPFunctor.B (P F) a Fin2.fz
⊢ PredLast α p (MvPFunctor.appendContents (P F) f' (fun x => Quotient.mk (wSetoid α) (f x)) Fin2.fz j)
[PROOFSTEP]
apply ih
[GOAL]
case a.fs
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
p : Fix F α → Prop
h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x)
x : MvPFunctor.W (P F) α
a : (P F).A
f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α
f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α
ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))
a✝ : Fin2 (Nat.add n 0)
j : MvPFunctor.B (P F) a (Fin2.fs a✝)
⊢ PredLast α p (MvPFunctor.appendContents (P F) f' (fun x => Quotient.mk (wSetoid α) (f x)) (Fin2.fs a✝) j)
[PROOFSTEP]
trivial
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
⊢ ∀ {α : TypeVec n} (x : Fix F α), (fun {α} α_1 => Quot.mk WEquiv α_1) ((fun {α} α_1 => fixToW α_1) x) = x
[PROOFSTEP]
intro α
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
⊢ ∀ (x : Fix F α), (fun {α} α_1 => Quot.mk WEquiv α_1) ((fun {α} α_1 => fixToW α_1) x) = x
[PROOFSTEP]
apply Quot.ind
[GOAL]
case mk
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
⊢ ∀ (a : MvPFunctor.W (P F) α),
(fun {α} α_1 => Quot.mk WEquiv α_1) ((fun {α} α_1 => fixToW α_1) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a
[PROOFSTEP]
intro a
[GOAL]
case mk
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
a : MvPFunctor.W (P F) α
⊢ (fun {α} α_1 => Quot.mk WEquiv α_1) ((fun {α} α_1 => fixToW α_1) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a
[PROOFSTEP]
apply Quot.sound
[GOAL]
case mk.a
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α : TypeVec n
a : MvPFunctor.W (P F) α
⊢ WEquiv ((fun {α} α_1 => fixToW α_1) (Quot.mk Setoid.r a)) a
[PROOFSTEP]
apply wrepr_equiv
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
⊢ ∀ {α β : TypeVec n} (f : α ⟹ β) (p : MvPFunctor.Obj (MvPFunctor.wp (P F)) α),
(fun {α} α_1 => Quot.mk WEquiv α_1) (f <$$> p) = f <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) p
[PROOFSTEP]
intro α β g x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α β : TypeVec n
g : α ⟹ β
x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α
⊢ (fun {α} α_1 => Quot.mk WEquiv α_1) (g <$$> x) = g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x
[PROOFSTEP]
conv =>
rhs
dsimp [MvFunctor.map]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α β : TypeVec n
g : α ⟹ β
x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α
| (fun {α} α_1 => Quot.mk WEquiv α_1) (g <$$> x) = g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x
[PROOFSTEP]
rhs
dsimp [MvFunctor.map]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α β : TypeVec n
g : α ⟹ β
x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α
| (fun {α} α_1 => Quot.mk WEquiv α_1) (g <$$> x) = g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x
[PROOFSTEP]
rhs
dsimp [MvFunctor.map]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α β : TypeVec n
g : α ⟹ β
x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α
| (fun {α} α_1 => Quot.mk WEquiv α_1) (g <$$> x) = g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x
[PROOFSTEP]
rhs
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α✝ α β : TypeVec n
g : α ⟹ β
x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α
| g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x
[PROOFSTEP]
dsimp [MvFunctor.map]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
⊢ x = y.fst
[PROOFSTEP]
symm
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
⊢ y.fst = x
[PROOFSTEP]
dsimp
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
⊢ (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst = x
[PROOFSTEP]
apply Fix.ind_rec _ id _ x
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
⊢ ∀ (x : F (α ::: Fix F α)),
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x =
(TypeVec.id ::: _root_.id) <$$> x →
(rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) (mk x)).fst = _root_.id (mk x)
[PROOFSTEP]
intro x' ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
(TypeVec.id ::: _root_.id) <$$> x'
⊢ (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) (mk x')).fst = _root_.id (mk x')
[PROOFSTEP]
rw [Fix.rec_eq]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
(TypeVec.id ::: _root_.id) <$$> x'
⊢ {
fst :=
mk
((TypeVec.id ::: Sigma.fst) <$$>
(TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x'),
snd :=
g
((TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$>
x') }.fst =
_root_.id (mk x')
[PROOFSTEP]
dsimp
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
(TypeVec.id ::: _root_.id) <$$> x'
⊢ mk
((TypeVec.id ::: Sigma.fst) <$$>
(TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x') =
mk x'
[PROOFSTEP]
simp [appendFun_id_id] at ih
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
x'
⊢ mk
((TypeVec.id ::: Sigma.fst) <$$>
(TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x') =
mk x'
[PROOFSTEP]
congr
[GOAL]
case e_x
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
x'
⊢ (TypeVec.id ::: Sigma.fst) <$$>
(TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' =
x'
[PROOFSTEP]
conv =>
rhs
rw [← ih]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
x'
| (TypeVec.id ::: Sigma.fst) <$$>
(TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' =
x'
[PROOFSTEP]
rhs
rw [← ih]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
x'
| (TypeVec.id ::: Sigma.fst) <$$>
(TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' =
x'
[PROOFSTEP]
rhs
rw [← ih]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
x'
| (TypeVec.id ::: Sigma.fst) <$$>
(TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' =
x'
[PROOFSTEP]
rhs
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
x'
| x'
[PROOFSTEP]
rw [← ih]
[GOAL]
case e_x
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
x'
⊢ (TypeVec.id ::: Sigma.fst) <$$>
(TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' =
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x'
[PROOFSTEP]
rw [MvFunctor.map_map, ← appendFun_comp, id_comp]
[GOAL]
case e_x
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
x' : F (α ::: Fix F α)
ih :
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x' =
x'
⊢ (TypeVec.id ::: Sigma.fst ∘ rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' =
(TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$>
x'
[PROOFSTEP]
simp only [Function.comp]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u
inst✝ : MvFunctor F
q : MvQPF F
α : TypeVec n
β : Fix F α → Type u
g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x))
x : Fix F α
y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x
this : x = y.fst
⊢ β y.fst = β x
[PROOFSTEP]
rw [this]
|
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Fix", "llama_tokens": 48558}
|
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
⊢ IsSeq (some a :: ↑s)
[PROOFSTEP]
rintro (n | _) h
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
h : (some a :: ↑s) Nat.zero = none
⊢ (some a :: ↑s) (Nat.zero + 1) = none
[PROOFSTEP]
contradiction
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
n✝ : ℕ
h : (some a :: ↑s) (Nat.succ n✝) = none
⊢ (some a :: ↑s) (Nat.succ n✝ + 1) = none
[PROOFSTEP]
exact s.2 h
[GOAL]
α : Type u
β : Type v
γ : Type w
x y : α
s t : Seq α
h : cons x s = cons y t
⊢ x = y
[PROOFSTEP]
rw [← Option.some_inj, ← get?_cons_zero, h, get?_cons_zero]
[GOAL]
α : Type u
β : Type v
γ : Type w
x y : α
s t : Seq α
h : cons x s = cons y t
n : ℕ
⊢ get? s n = get? t n
[PROOFSTEP]
simp_rw [← get?_cons_succ x s n, h, get?_cons_succ]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
n : ℕ
⊢ TerminatedAt s n ↔ Option.isNone (get? s n) = true
[PROOFSTEP]
unfold TerminatedAt
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
n : ℕ
⊢ get? s n = none ↔ Option.isNone (get? s n) = true
[PROOFSTEP]
cases s.get? n
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s : Seq α
n : ℕ
⊢ none = none ↔ Option.isNone none = true
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s : Seq α
n : ℕ
val✝ : α
⊢ some val✝ = none ↔ Option.isNone (some val✝) = true
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ ¬Terminates s ↔ ∀ (n : ℕ), Option.isSome (get? s n) = true
[PROOFSTEP]
simp only [Terminates, TerminatedAt, ← Ne.def, Option.ne_none_iff_isSome, not_exists, iff_self]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
n✝ : ℕ
n' : Stream'.tail (↑s) n✝ = none
⊢ Stream'.tail (↑s) (n✝ + 1) = none
[PROOFSTEP]
cases' s with f al
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
n✝ : ℕ
f : Stream' (Option α)
al : IsSeq f
n' : Stream'.tail (↑{ val := f, property := al }) n✝ = none
⊢ Stream'.tail (↑{ val := f, property := al }) (n✝ + 1) = none
[PROOFSTEP]
exact al n'
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
m n : ℕ
h : m ≤ n
⊢ get? s m = none → get? s n = none
[PROOFSTEP]
cases' s with f al
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
m n : ℕ
h : m ≤ n
f : Stream' (Option α)
al : IsSeq f
⊢ get? { val := f, property := al } m = none → get? { val := f, property := al } n = none
[PROOFSTEP]
induction' h with n _ IH
[GOAL]
case mk.refl
α : Type u
β : Type v
γ : Type w
m n : ℕ
f : Stream' (Option α)
al : IsSeq f
⊢ get? { val := f, property := al } m = none → get? { val := f, property := al } m = none
case mk.step
α : Type u
β : Type v
γ : Type w
m n✝ : ℕ
f : Stream' (Option α)
al : IsSeq f
n : ℕ
a✝ : Nat.le m n
IH : get? { val := f, property := al } m = none → get? { val := f, property := al } n = none
⊢ get? { val := f, property := al } m = none → get? { val := f, property := al } (Nat.succ n) = none
[PROOFSTEP]
exacts [id, fun h2 => al (IH h2)]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
aₙ : α
n m : ℕ
m_le_n : m ≤ n
s_nth_eq_some : get? s n = some aₙ
⊢ get? s n ≠ none
[PROOFSTEP]
simp [s_nth_eq_some]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
x✝ : a ∈ nil
w✝ : ℕ
h : some a = none
⊢ False
[PROOFSTEP]
injection h
[GOAL]
α : Type u
β : Type v
γ : Type w
a b : α
f : Stream' (Option α)
al : IsSeq f
h✝ : a ∈ cons b { val := f, property := al }
h : some a = some b
⊢ a = b
[PROOFSTEP]
injection h
[GOAL]
α : Type u
β : Type v
γ : Type w
a b : α
s : Seq α
⊢ a = b ∨ a ∈ s → a ∈ cons b s
[PROOFSTEP]
rintro (rfl | m) <;> [apply mem_cons; exact mem_cons_of_mem _ m]
[GOAL]
α : Type u
β : Type v
γ : Type w
a b : α
s : Seq α
⊢ a = b ∨ a ∈ s → a ∈ cons b s
[PROOFSTEP]
rintro (rfl | m)
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
⊢ a ∈ cons a s
[PROOFSTEP]
apply mem_cons
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
a b : α
s : Seq α
m : a ∈ s
⊢ a ∈ cons b s
[PROOFSTEP]
exact mem_cons_of_mem _ m
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ destruct s = none → s = nil
[PROOFSTEP]
dsimp [destruct]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ Option.map (fun a' => (a', tail s)) (get? s 0) = none → s = nil
[PROOFSTEP]
induction' f0 : get? s 0
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
f0 : get? s 0 = none
⊢ Option.map (fun a' => (a', tail s)) none = none → s = nil
[PROOFSTEP]
intro h
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
val✝ : α
f0 : get? s 0 = some val✝
⊢ Option.map (fun a' => (a', tail s)) (some val✝) = none → s = nil
[PROOFSTEP]
intro h
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
f0 : get? s 0 = none
h : Option.map (fun a' => (a', tail s)) none = none
⊢ s = nil
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case none.a
α : Type u
β : Type v
γ : Type w
s : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
f0 : get? s 0 = none
h : Option.map (fun a' => (a', tail s)) none = none
⊢ ↑s = ↑nil
[PROOFSTEP]
funext n
[GOAL]
case none.a.h
α : Type u
β : Type v
γ : Type w
s : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
f0 : get? s 0 = none
h : Option.map (fun a' => (a', tail s)) none = none
n : ℕ
⊢ ↑s n = ↑nil n
[PROOFSTEP]
induction' n with n IH
[GOAL]
case none.a.h.zero
α : Type u
β : Type v
γ : Type w
s : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
f0 : get? s 0 = none
h : Option.map (fun a' => (a', tail s)) none = none
⊢ ↑s Nat.zero = ↑nil Nat.zero
case none.a.h.succ
α : Type u
β : Type v
γ : Type w
s : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
f0 : get? s 0 = none
h : Option.map (fun a' => (a', tail s)) none = none
n : ℕ
IH : ↑s n = ↑nil n
⊢ ↑s (Nat.succ n) = ↑nil (Nat.succ n)
[PROOFSTEP]
exacts [f0, s.2 IH]
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
val✝ : α
f0 : get? s 0 = some val✝
h : Option.map (fun a' => (a', tail s)) (some val✝) = none
⊢ s = nil
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
a : α
s' : Seq α
⊢ destruct s = some (a, s') → s = cons a s'
[PROOFSTEP]
dsimp [destruct]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
a : α
s' : Seq α
⊢ Option.map (fun a' => (a', tail s)) (get? s 0) = some (a, s') → s = cons a s'
[PROOFSTEP]
induction' f0 : get? s 0 with a'
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s : Seq α
a : α
s' : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
f0 : get? s 0 = none
⊢ Option.map (fun a' => (a', tail s)) none = some (a, s') → s = cons a s'
[PROOFSTEP]
intro h
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s : Seq α
a : α
s' : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
a' : α
f0 : get? s 0 = some a'
⊢ Option.map (fun a' => (a', tail s)) (some a') = some (a, s') → s = cons a s'
[PROOFSTEP]
intro h
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s : Seq α
a : α
s' : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
f0 : get? s 0 = none
h : Option.map (fun a' => (a', tail s)) none = some (a, s')
⊢ s = cons a s'
[PROOFSTEP]
contradiction
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s : Seq α
a : α
s' : Seq α
x✝ : Option α
f0✝ : get? s 0 = x✝
a' : α
f0 : get? s 0 = some a'
h : Option.map (fun a' => (a', tail s)) (some a') = some (a, s')
⊢ s = cons a s'
[PROOFSTEP]
cases' s with f al
[GOAL]
case some.mk
α : Type u
β : Type v
γ : Type w
a : α
s' : Seq α
x✝ : Option α
a' : α
f : Stream' (Option α)
al : IsSeq f
f0✝ : get? { val := f, property := al } 0 = x✝
f0 : get? { val := f, property := al } 0 = some a'
h : Option.map (fun a' => (a', tail { val := f, property := al })) (some a') = some (a, s')
⊢ { val := f, property := al } = cons a s'
[PROOFSTEP]
injections _ h1 h2
[GOAL]
case some.mk
α : Type u
β : Type v
γ : Type w
a : α
s' : Seq α
x✝ : Option α
a' : α
f : Stream' (Option α)
al : IsSeq f
f0✝ : get? { val := f, property := al } 0 = x✝
f0 : get? { val := f, property := al } 0 = some a'
h1 : a' = a
h2 : tail { val := f, property := al } = s'
⊢ { val := f, property := al } = cons a s'
[PROOFSTEP]
rw [← h2]
[GOAL]
case some.mk
α : Type u
β : Type v
γ : Type w
a : α
s' : Seq α
x✝ : Option α
a' : α
f : Stream' (Option α)
al : IsSeq f
f0✝ : get? { val := f, property := al } 0 = x✝
f0 : get? { val := f, property := al } 0 = some a'
h1 : a' = a
h2 : tail { val := f, property := al } = s'
⊢ { val := f, property := al } = cons a (tail { val := f, property := al })
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case some.mk.a
α : Type u
β : Type v
γ : Type w
a : α
s' : Seq α
x✝ : Option α
a' : α
f : Stream' (Option α)
al : IsSeq f
f0✝ : get? { val := f, property := al } 0 = x✝
f0 : get? { val := f, property := al } 0 = some a'
h1 : a' = a
h2 : tail { val := f, property := al } = s'
⊢ ↑{ val := f, property := al } = ↑(cons a (tail { val := f, property := al }))
[PROOFSTEP]
dsimp [tail, cons]
[GOAL]
case some.mk.a
α : Type u
β : Type v
γ : Type w
a : α
s' : Seq α
x✝ : Option α
a' : α
f : Stream' (Option α)
al : IsSeq f
f0✝ : get? { val := f, property := al } 0 = x✝
f0 : get? { val := f, property := al } 0 = some a'
h1 : a' = a
h2 : tail { val := f, property := al } = s'
⊢ f = some a :: Stream'.tail f
[PROOFSTEP]
rw [h1] at f0
[GOAL]
case some.mk.a
α : Type u
β : Type v
γ : Type w
a : α
s' : Seq α
x✝ : Option α
a' : α
f : Stream' (Option α)
al : IsSeq f
f0✝ : get? { val := f, property := al } 0 = x✝
f0 : get? { val := f, property := al } 0 = some a
h1 : a' = a
h2 : tail { val := f, property := al } = s'
⊢ f = some a :: Stream'.tail f
[PROOFSTEP]
rw [← f0]
[GOAL]
case some.mk.a
α : Type u
β : Type v
γ : Type w
a : α
s' : Seq α
x✝ : Option α
a' : α
f : Stream' (Option α)
al : IsSeq f
f0✝ : get? { val := f, property := al } 0 = x✝
f0 : get? { val := f, property := al } 0 = some a
h1 : a' = a
h2 : tail { val := f, property := al } = s'
⊢ f = get? { val := f, property := al } 0 :: Stream'.tail f
[PROOFSTEP]
exact (Stream'.eta f).symm
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : Stream' (Option α)
al : IsSeq f
⊢ destruct (cons a { val := f, property := al }) = some (a, { val := f, property := al })
[PROOFSTEP]
unfold cons destruct Functor.map
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : Stream' (Option α)
al : IsSeq f
⊢ instFunctorOption.1
(fun a' =>
(a',
tail
{ val := some a :: ↑{ val := f, property := al },
property :=
(_ :
∀ {n : ℕ},
(some a :: ↑{ val := f, property := al }) n = none →
(some a :: ↑{ val := f, property := al }) (n + 1) = none) }))
(get?
{ val := some a :: ↑{ val := f, property := al },
property :=
(_ :
∀ {n : ℕ},
(some a :: ↑{ val := f, property := al }) n = none →
(some a :: ↑{ val := f, property := al }) (n + 1) = none) }
0) =
some (a, { val := f, property := al })
[PROOFSTEP]
apply congr_arg fun s => some (a, s)
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : Stream' (Option α)
al : IsSeq f
⊢ tail
{ val := some a :: ↑{ val := f, property := al },
property :=
(_ :
∀ {n : ℕ},
(some a :: ↑{ val := f, property := al }) n = none →
(some a :: ↑{ val := f, property := al }) (n + 1) = none) } =
{ val := f, property := al }
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
a : α
f : Stream' (Option α)
al : IsSeq f
⊢ ↑(tail
{ val := some a :: ↑{ val := f, property := al },
property :=
(_ :
∀ {n : ℕ},
(some a :: ↑{ val := f, property := al }) n = none →
(some a :: ↑{ val := f, property := al }) (n + 1) = none) }) =
↑{ val := f, property := al }
[PROOFSTEP]
dsimp [tail]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ head s = Prod.fst <$> destruct s
[PROOFSTEP]
unfold destruct head
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ get? s 0 = Prod.fst <$> (fun a' => (a', tail s)) <$> get? s 0
[PROOFSTEP]
cases get? s 0
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ none = Prod.fst <$> (fun a' => (a', tail s)) <$> none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
s : Seq α
val✝ : α
⊢ some val✝ = Prod.fst <$> (fun a' => (a', tail s)) <$> some val✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
⊢ head (cons a s) = some a
[PROOFSTEP]
rw [head_eq_destruct, destruct_cons, Option.map_eq_map, Option.map_some']
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
⊢ tail (cons a s) = s
[PROOFSTEP]
cases' s with f al
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
a : α
f : Stream' (Option α)
al : IsSeq f
⊢ tail (cons a { val := f, property := al }) = { val := f, property := al }
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case mk.a
α : Type u
β : Type v
γ : Type w
a : α
f : Stream' (Option α)
al : IsSeq f
⊢ ↑(tail (cons a { val := f, property := al })) = ↑{ val := f, property := al }
[PROOFSTEP]
dsimp [tail, cons]
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Sort v
s : Seq α
h1 : C nil
h2 : (x : α) → (s : Seq α) → C (cons x s)
⊢ C s
[PROOFSTEP]
cases' H : destruct s with v
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
C : Seq α → Sort v
s : Seq α
h1 : C nil
h2 : (x : α) → (s : Seq α) → C (cons x s)
H : destruct s = none
⊢ C s
[PROOFSTEP]
rw [destruct_eq_nil H]
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
C : Seq α → Sort v
s : Seq α
h1 : C nil
h2 : (x : α) → (s : Seq α) → C (cons x s)
H : destruct s = none
⊢ C nil
[PROOFSTEP]
apply h1
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
C : Seq α → Sort v
s : Seq α
h1 : C nil
h2 : (x : α) → (s : Seq α) → C (cons x s)
v : Seq1 α
H : destruct s = some v
⊢ C s
[PROOFSTEP]
cases' v with a s'
[GOAL]
case some.mk
α : Type u
β : Type v
γ : Type w
C : Seq α → Sort v
s : Seq α
h1 : C nil
h2 : (x : α) → (s : Seq α) → C (cons x s)
a : α
s' : Seq α
H : destruct s = some (a, s')
⊢ C s
[PROOFSTEP]
rw [destruct_eq_cons H]
[GOAL]
case some.mk
α : Type u
β : Type v
γ : Type w
C : Seq α → Sort v
s : Seq α
h1 : C nil
h2 : (x : α) → (s : Seq α) → C (cons x s)
a : α
s' : Seq α
H : destruct s = some (a, s')
⊢ C (cons a s')
[PROOFSTEP]
apply h2
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s : Seq α
M : a ∈ s
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
⊢ C s
[PROOFSTEP]
cases' M with k e
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k : ℕ
e : (fun b => some a = b) (nth (↑s) k)
⊢ C s
[PROOFSTEP]
unfold Stream'.nth at e
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k : ℕ
e : (fun b => some a = b) (↑s k)
⊢ C s
[PROOFSTEP]
induction' k with k IH generalizing s
[GOAL]
case intro.zero
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k : ℕ
e✝ : (fun b => some a = b) (↑s✝ k)
s : Seq α
e : some a = ↑s Nat.zero
⊢ C s
[PROOFSTEP]
have TH : s = cons a (tail s) := by
apply destruct_eq_cons
unfold destruct get? Functor.map
rw [← e]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k : ℕ
e✝ : (fun b => some a = b) (↑s✝ k)
s : Seq α
e : some a = ↑s Nat.zero
⊢ s = cons a (tail s)
[PROOFSTEP]
apply destruct_eq_cons
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k : ℕ
e✝ : (fun b => some a = b) (↑s✝ k)
s : Seq α
e : some a = ↑s Nat.zero
⊢ destruct s = some (a, tail s)
[PROOFSTEP]
unfold destruct get? Functor.map
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k : ℕ
e✝ : (fun b => some a = b) (↑s✝ k)
s : Seq α
e : some a = ↑s Nat.zero
⊢ instFunctorOption.1 (fun a' => (a', tail s)) (↑s 0) = some (a, tail s)
[PROOFSTEP]
rw [← e]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k : ℕ
e✝ : (fun b => some a = b) (↑s✝ k)
s : Seq α
e : some a = ↑s Nat.zero
⊢ instFunctorOption.1 (fun a' => (a', tail s)) (some a) = some (a, tail s)
[PROOFSTEP]
rfl
[GOAL]
case intro.zero
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k : ℕ
e✝ : (fun b => some a = b) (↑s✝ k)
s : Seq α
e : some a = ↑s Nat.zero
TH : s = cons a (tail s)
⊢ C s
[PROOFSTEP]
rw [TH]
[GOAL]
case intro.zero
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k : ℕ
e✝ : (fun b => some a = b) (↑s✝ k)
s : Seq α
e : some a = ↑s Nat.zero
TH : s = cons a (tail s)
⊢ C (cons a (tail s))
[PROOFSTEP]
apply
h1 _ _
(Or.inl rfl)
-- porting note: had to reshuffle `intro`
[GOAL]
case intro.succ
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e✝ : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
e : some a = ↑s (Nat.succ k)
⊢ C s
[PROOFSTEP]
revert e
[GOAL]
case intro.succ
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
⊢ some a = ↑s (Nat.succ k) → C s
[PROOFSTEP]
apply s.recOn _ fun b s' => _
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
⊢ some a = ↑nil (Nat.succ k) → C nil
[PROOFSTEP]
intro e
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e✝ : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
e : some a = ↑nil (Nat.succ k)
⊢ C nil
[PROOFSTEP]
injection e
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
⊢ ∀ (b : α) (s' : Seq α), some a = ↑(cons b s') (Nat.succ k) → C (cons b s')
[PROOFSTEP]
intro b s' e
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e✝ : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
b : α
s' : Seq α
e : some a = ↑(cons b s') (Nat.succ k)
⊢ C (cons b s')
[PROOFSTEP]
have h_eq : (cons b s').val (Nat.succ k) = s'.val k := by cases s'; rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e✝ : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
b : α
s' : Seq α
e : some a = ↑(cons b s') (Nat.succ k)
⊢ ↑(cons b s') (Nat.succ k) = ↑s' k
[PROOFSTEP]
cases s'
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e✝ : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
b : α
val✝ : Stream' (Option α)
property✝ : IsSeq val✝
e : some a = ↑(cons b { val := val✝, property := property✝ }) (Nat.succ k)
⊢ ↑(cons b { val := val✝, property := property✝ }) (Nat.succ k) = ↑{ val := val✝, property := property✝ } k
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e✝ : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
b : α
s' : Seq α
e : some a = ↑(cons b s') (Nat.succ k)
h_eq : ↑(cons b s') (Nat.succ k) = ↑s' k
⊢ C (cons b s')
[PROOFSTEP]
rw [h_eq] at e
[GOAL]
α : Type u
β : Type v
γ : Type w
C : Seq α → Prop
a : α
s✝ : Seq α
h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s')
k✝ : ℕ
e✝ : (fun b => some a = b) (↑s✝ k✝)
k : ℕ
IH : ∀ {s : Seq α}, some a = ↑s k → C s
s : Seq α
b : α
s' : Seq α
e : some a = ↑s' k
h_eq : ↑(cons b s') (Nat.succ k) = ↑s' k
⊢ C (cons b s')
[PROOFSTEP]
apply h1 _ _ (Or.inr (IH e))
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
⊢ Seq α
[PROOFSTEP]
refine' ⟨Stream'.corec' (Corec.f f) (some b), fun {n} h => _⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
n : ℕ
h : corec' (Corec.f f) (some b) n = none
⊢ corec' (Corec.f f) (some b) (n + 1) = none
[PROOFSTEP]
rw [Stream'.corec'_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
n : ℕ
h : corec' (Corec.f f) (some b) n = none
⊢ ((Corec.f f (some b)).fst :: corec' (Corec.f f) (Corec.f f (some b)).snd) (n + 1) = none
[PROOFSTEP]
change Stream'.corec' (Corec.f f) (Corec.f f (some b)).2 n = none
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
n : ℕ
h : corec' (Corec.f f) (some b) n = none
⊢ corec' (Corec.f f) (Corec.f f (some b)).snd n = none
[PROOFSTEP]
revert h
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
n : ℕ
⊢ corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (Corec.f f (some b)).snd n = none
[PROOFSTEP]
generalize some b = o
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
n : ℕ
o : Option β
⊢ corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none
[PROOFSTEP]
revert o
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
n : ℕ
⊢ ∀ (o : Option β), corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
⊢ ∀ (o : Option β), corec' (Corec.f f) o Nat.zero = none → corec' (Corec.f f) (Corec.f f o).snd Nat.zero = none
[PROOFSTEP]
intro o
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
n : ℕ
IH : ∀ (o : Option β), corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none
⊢ ∀ (o : Option β), corec' (Corec.f f) o (Nat.succ n) = none → corec' (Corec.f f) (Corec.f f o).snd (Nat.succ n) = none
[PROOFSTEP]
intro o
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
o : Option β
⊢ corec' (Corec.f f) o Nat.zero = none → corec' (Corec.f f) (Corec.f f o).snd Nat.zero = none
[PROOFSTEP]
change (Corec.f f o).1 = none → (Corec.f f (Corec.f f o).2).1 = none
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
o : Option β
⊢ (Corec.f f o).fst = none → (Corec.f f (Corec.f f o).snd).fst = none
[PROOFSTEP]
cases' o with b
[GOAL]
case zero.none
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
⊢ (Corec.f f none).fst = none → (Corec.f f (Corec.f f none).snd).fst = none
[PROOFSTEP]
intro h
[GOAL]
case zero.some
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
⊢ (Corec.f f (some b)).fst = none → (Corec.f f (Corec.f f (some b)).snd).fst = none
[PROOFSTEP]
intro h
[GOAL]
case zero.none
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h : (Corec.f f none).fst = none
⊢ (Corec.f f (Corec.f f none).snd).fst = none
[PROOFSTEP]
rfl
[GOAL]
case zero.some
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
h : (Corec.f f (some b)).fst = none
⊢ (Corec.f f (Corec.f f (some b)).snd).fst = none
[PROOFSTEP]
dsimp [Corec.f] at h
[GOAL]
case zero.some
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
h :
(match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
⊢ (Corec.f f (Corec.f f (some b)).snd).fst = none
[PROOFSTEP]
dsimp [Corec.f]
[GOAL]
case zero.some
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
h :
(match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
⊢ (match
(match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).snd with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
[PROOFSTEP]
revert h
[GOAL]
case zero.some
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
⊢ (match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none →
(match
(match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).snd with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
[PROOFSTEP]
cases' h₁ : f b with s
[GOAL]
case zero.some.none
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
h₁ : f b = none
⊢ (match none with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none →
(match
(match none with
| none => (none, none)
| some (a, b') => (some a, some b')).snd with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
[PROOFSTEP]
intro h
[GOAL]
case zero.some.some
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
s : α × β
h₁ : f b = some s
⊢ (match some s with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none →
(match
(match some s with
| none => (none, none)
| some (a, b') => (some a, some b')).snd with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
[PROOFSTEP]
intro h
[GOAL]
case zero.some.none
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
h₁ : f b = none
h :
(match none with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
⊢ (match
(match none with
| none => (none, none)
| some (a, b') => (some a, some b')).snd with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
[PROOFSTEP]
rfl
[GOAL]
case zero.some.some
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
s : α × β
h₁ : f b = some s
h :
(match some s with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
⊢ (match
(match some s with
| none => (none, none)
| some (a, b') => (some a, some b')).snd with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
[PROOFSTEP]
cases' s with a b'
[GOAL]
case zero.some.some.mk
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b✝ b : β
a : α
b' : β
h₁ : f b = some (a, b')
h :
(match some (a, b') with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
⊢ (match
(match some (a, b') with
| none => (none, none)
| some (a, b') => (some a, some b')).snd with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
none
[PROOFSTEP]
contradiction
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
n : ℕ
IH : ∀ (o : Option β), corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none
o : Option β
⊢ corec' (Corec.f f) o (Nat.succ n) = none → corec' (Corec.f f) (Corec.f f o).snd (Nat.succ n) = none
[PROOFSTEP]
rw [Stream'.corec'_eq (Corec.f f) (Corec.f f o).2, Stream'.corec'_eq (Corec.f f) o]
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
n : ℕ
IH : ∀ (o : Option β), corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none
o : Option β
⊢ ((Corec.f f o).fst :: corec' (Corec.f f) (Corec.f f o).snd) (Nat.succ n) = none →
((Corec.f f (Corec.f f o).snd).fst :: corec' (Corec.f f) (Corec.f f (Corec.f f o).snd).snd) (Nat.succ n) = none
[PROOFSTEP]
exact IH (Corec.f f o).2
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
⊢ destruct (corec f b) = omap (corec f) (f b)
[PROOFSTEP]
dsimp [corec, destruct, nth]
-- porting note: next two lines were `change`...`with`...
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
⊢ Option.map
(fun a' =>
(a',
tail
{ val := corec' (Corec.f f) (some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }))
(corec' (Corec.f f) (some b) 0) =
match f b with
| none => none
| some (a, b) =>
some
(a,
{ val := corec' (Corec.f f) (some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })
[PROOFSTEP]
have h : Stream'.corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).1 := rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
⊢ Option.map
(fun a' =>
(a',
tail
{ val := corec' (Corec.f f) (some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }))
(corec' (Corec.f f) (some b) 0) =
match f b with
| none => none
| some (a, b) =>
some
(a,
{ val := corec' (Corec.f f) (some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
⊢ Option.map
(fun a' =>
(a',
tail
{ val := corec' (Corec.f f) (some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }))
(Corec.f f (some b)).fst =
match f b with
| none => none
| some (a, b) =>
some
(a,
{ val := corec' (Corec.f f) (some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })
[PROOFSTEP]
dsimp [Corec.f]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
⊢ Option.map
(fun a' =>
(a',
tail
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }))
(match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
match f b with
| none => none
| some (a, b) =>
some
(a,
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })
[PROOFSTEP]
induction' h : f b with s
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
x✝ : Option (α × β)
h✝ : f b = x✝
h : f b = none
⊢ Option.map
(fun a' =>
(a',
tail
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }))
(match none with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
match none with
| none => none
| some (a, b) =>
some
(a,
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
x✝ : Option (α × β)
h✝ : f b = x✝
s : α × β
h : f b = some s
⊢ Option.map
(fun a' =>
(a',
tail
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }))
(match some s with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
match some s with
| none => none
| some (a, b) =>
some
(a,
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })
[PROOFSTEP]
cases' s with a b'
[GOAL]
case some.mk
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
x✝ : Option (α × β)
h✝ : f b = x✝
a : α
b' : β
h : f b = some (a, b')
⊢ Option.map
(fun a' =>
(a',
tail
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }))
(match some (a, b') with
| none => (none, none)
| some (a, b') => (some a, some b')).fst =
match some (a, b') with
| none => none
| some (a, b) =>
some
(a,
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })
[PROOFSTEP]
dsimp [Corec.f]
[GOAL]
case some.mk
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
x✝ : Option (α × β)
h✝ : f b = x✝
a : α
b' : β
h : f b = some (a, b')
⊢ some
(a,
tail
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) =
some
(a,
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b'),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b') n = none → corec' (Corec.f f) (some b') (n + 1) = none) })
[PROOFSTEP]
apply congr_arg fun b' => some (a, b')
[GOAL]
case some.mk
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
x✝ : Option (α × β)
h✝ : f b = x✝
a : α
b' : β
h : f b = some (a, b')
⊢ tail
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) } =
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b'),
property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b') n = none → corec' (Corec.f f) (some b') (n + 1) = none) }
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case some.mk.a
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
x✝ : Option (α × β)
h✝ : f b = x✝
a : α
b' : β
h : f b = some (a, b')
⊢ ↑(tail
{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) =
↑{
val :=
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b'),
property :=
(_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b') n = none → corec' (Corec.f f) (some b') (n + 1) = none) }
[PROOFSTEP]
dsimp [corec, tail]
[GOAL]
case some.mk.a
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
x✝ : Option (α × β)
h✝ : f b = x✝
a : α
b' : β
h : f b = some (a, b')
⊢ Stream'.tail
(corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b)) =
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b')
[PROOFSTEP]
rw [Stream'.corec'_eq, Stream'.tail_cons]
[GOAL]
case some.mk.a
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
x✝ : Option (α × β)
h✝ : f b = x✝
a : α
b' : β
h : f b = some (a, b')
⊢ corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(match some b with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).snd =
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b')
[PROOFSTEP]
dsimp [Corec.f]
[GOAL]
case some.mk.a
α : Type u
β : Type v
γ : Type w
f : β → Option (α × β)
b : β
h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst
x✝ : Option (α × β)
h✝ : f b = x✝
a : α
b' : β
h : f b = some (a, b')
⊢ corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(match f b with
| none => (none, none)
| some (a, b') => (some a, some b')).snd =
corec'
(fun x =>
match x with
| none => (none, none)
| some b =>
match f b with
| none => (none, none)
| some (a, b') => (some a, some b'))
(some b')
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
⊢ s₁ = s₂
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
⊢ ↑s₁ = ↑s₂
[PROOFSTEP]
apply Stream'.eq_of_bisim fun x y => ∃ s s' : Seq α, s.1 = x ∧ s'.1 = y ∧ R s s'
[GOAL]
case a.bisim
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
⊢ Stream'.IsBisimulation fun x y => ∃ s s', ↑s = x ∧ ↑s' = y ∧ R s s'
case a.a
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s'
[PROOFSTEP]
dsimp [Stream'.IsBisimulation]
[GOAL]
case a.bisim
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
⊢ ∀ ⦃s₁ s₂ : Stream' (Option α)⦄,
(∃ s s', ↑s = s₁ ∧ ↑s' = s₂ ∧ R s s') →
Stream'.head s₁ = Stream'.head s₂ ∧ ∃ s s', ↑s = Stream'.tail s₁ ∧ ↑s' = Stream'.tail s₂ ∧ R s s'
case a.a
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s'
[PROOFSTEP]
intro t₁ t₂ e
[GOAL]
case a.bisim
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
⊢ Stream'.head t₁ = Stream'.head t₂ ∧ ∃ s s', ↑s = Stream'.tail t₁ ∧ ↑s' = Stream'.tail t₂ ∧ R s s'
case a.a
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s'
[PROOFSTEP]
exact
match t₁, t₂, e with
| _, _, ⟨s, s', rfl, rfl, r⟩ =>
by
suffices head s = head s' ∧ R (tail s) (tail s') from
And.imp id (fun r => ⟨tail s, tail s', by cases s; rfl, by cases s'; rfl, r⟩) this
have := bisim r; revert r this
apply recOn s _ _ <;> apply recOn s' _ _
· intro r _
constructor
· rfl
· assumption
· intro x s _ this
rw [destruct_nil, destruct_cons] at this
exact False.elim this
· intro x s _ this
rw [destruct_nil, destruct_cons] at this
exact False.elim this
· intro x s x' s' _ this
rw [destruct_cons, destruct_cons] at this
rw [head_cons, head_cons, tail_cons, tail_cons]
cases' this with h1 h2
constructor
rw [h1]
exact h2
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
r : R s s'
⊢ Stream'.head ↑s = Stream'.head ↑s' ∧ ∃ s_1 s'_1, ↑s_1 = Stream'.tail ↑s ∧ ↑s'_1 = Stream'.tail ↑s' ∧ R s_1 s'_1
[PROOFSTEP]
suffices head s = head s' ∧ R (tail s) (tail s') from
And.imp id (fun r => ⟨tail s, tail s', by cases s; rfl, by cases s'; rfl, r⟩) this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝¹ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
r✝ : R s s'
this : head s = head s' ∧ R (tail s) (tail s')
r : R (tail s) (tail s')
⊢ ↑(tail s) = Stream'.tail ↑s
[PROOFSTEP]
cases s
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝¹ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s' : Seq α
val✝ : Stream' (Option α)
property✝ : IsSeq val✝
r✝ : R { val := val✝, property := property✝ } s'
this : head { val := val✝, property := property✝ } = head s' ∧ R (tail { val := val✝, property := property✝ }) (tail s')
r : R (tail { val := val✝, property := property✝ }) (tail s')
⊢ ↑(tail { val := val✝, property := property✝ }) = Stream'.tail ↑{ val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝¹ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
r✝ : R s s'
this : head s = head s' ∧ R (tail s) (tail s')
r : R (tail s) (tail s')
⊢ ↑(tail s') = Stream'.tail ↑s'
[PROOFSTEP]
cases s'
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝¹ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s : Seq α
val✝ : Stream' (Option α)
property✝ : IsSeq val✝
r✝ : R s { val := val✝, property := property✝ }
this : head s = head { val := val✝, property := property✝ } ∧ R (tail s) (tail { val := val✝, property := property✝ })
r : R (tail s) (tail { val := val✝, property := property✝ })
⊢ ↑(tail { val := val✝, property := property✝ }) = Stream'.tail ↑{ val := val✝, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
r : R s s'
⊢ head s = head s' ∧ R (tail s) (tail s')
[PROOFSTEP]
have := bisim r
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
r : R s s'
this : BisimO R (destruct s) (destruct s')
⊢ head s = head s' ∧ R (tail s) (tail s')
[PROOFSTEP]
revert r this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
⊢ R s s' → BisimO R (destruct s) (destruct s') → head s = head s' ∧ R (tail s) (tail s')
[PROOFSTEP]
apply recOn s _ _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
⊢ R nil s' → BisimO R (destruct nil) (destruct s') → head nil = head s' ∧ R (tail nil) (tail s')
[PROOFSTEP]
apply recOn s' _ _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
⊢ ∀ (x : α) (s : Seq α),
R (cons x s) s' →
BisimO R (destruct (cons x s)) (destruct s') → head (cons x s) = head s' ∧ R (tail (cons x s)) (tail s')
[PROOFSTEP]
apply recOn s' _ _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
⊢ R nil nil → BisimO R (destruct nil) (destruct nil) → head nil = head nil ∧ R (tail nil) (tail nil)
[PROOFSTEP]
intro r _
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
r : R nil nil
this✝ : BisimO R (destruct nil) (destruct nil)
⊢ head nil = head nil ∧ R (tail nil) (tail nil)
[PROOFSTEP]
constructor
[GOAL]
case left
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
r : R nil nil
this✝ : BisimO R (destruct nil) (destruct nil)
⊢ head nil = head nil
[PROOFSTEP]
rfl
[GOAL]
case right
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r✝ : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
r : R nil nil
this✝ : BisimO R (destruct nil) (destruct nil)
⊢ R (tail nil) (tail nil)
[PROOFSTEP]
assumption
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
⊢ ∀ (x : α) (s : Seq α),
R nil (cons x s) →
BisimO R (destruct nil) (destruct (cons x s)) → head nil = head (cons x s) ∧ R (tail nil) (tail (cons x s))
[PROOFSTEP]
intro x s _ this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s' : Seq α
x : α
s : Seq α
r✝ : R nil (cons x s)
this : BisimO R (destruct nil) (destruct (cons x s))
⊢ head nil = head (cons x s) ∧ R (tail nil) (tail (cons x s))
[PROOFSTEP]
rw [destruct_nil, destruct_cons] at this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s' : Seq α
x : α
s : Seq α
r✝ : R nil (cons x s)
this : BisimO R none (some (x, s))
⊢ head nil = head (cons x s) ∧ R (tail nil) (tail (cons x s))
[PROOFSTEP]
exact False.elim this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
⊢ ∀ (x : α) (s : Seq α),
R (cons x s) nil →
BisimO R (destruct (cons x s)) (destruct nil) → head (cons x s) = head nil ∧ R (tail (cons x s)) (tail nil)
[PROOFSTEP]
intro x s _ this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s' : Seq α
x : α
s : Seq α
r✝ : R (cons x s) nil
this : BisimO R (destruct (cons x s)) (destruct nil)
⊢ head (cons x s) = head nil ∧ R (tail (cons x s)) (tail nil)
[PROOFSTEP]
rw [destruct_nil, destruct_cons] at this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s' : Seq α
x : α
s : Seq α
r✝ : R (cons x s) nil
this : BisimO R (some (x, s)) none
⊢ head (cons x s) = head nil ∧ R (tail (cons x s)) (tail nil)
[PROOFSTEP]
exact False.elim this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s s' : Seq α
⊢ ∀ (x : α) (s : Seq α) (x_1 : α) (s_1 : Seq α),
R (cons x_1 s_1) (cons x s) →
BisimO R (destruct (cons x_1 s_1)) (destruct (cons x s)) →
head (cons x_1 s_1) = head (cons x s) ∧ R (tail (cons x_1 s_1)) (tail (cons x s))
[PROOFSTEP]
intro x s x' s' _ this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s'✝ : Seq α
x : α
s : Seq α
x' : α
s' : Seq α
r✝ : R (cons x' s') (cons x s)
this : BisimO R (destruct (cons x' s')) (destruct (cons x s))
⊢ head (cons x' s') = head (cons x s) ∧ R (tail (cons x' s')) (tail (cons x s))
[PROOFSTEP]
rw [destruct_cons, destruct_cons] at this
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s'✝ : Seq α
x : α
s : Seq α
x' : α
s' : Seq α
r✝ : R (cons x' s') (cons x s)
this : BisimO R (some (x', s')) (some (x, s))
⊢ head (cons x' s') = head (cons x s) ∧ R (tail (cons x' s')) (tail (cons x s))
[PROOFSTEP]
rw [head_cons, head_cons, tail_cons, tail_cons]
[GOAL]
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s'✝ : Seq α
x : α
s : Seq α
x' : α
s' : Seq α
r✝ : R (cons x' s') (cons x s)
this : BisimO R (some (x', s')) (some (x, s))
⊢ some x' = some x ∧ R s' s
[PROOFSTEP]
cases' this with h1 h2
[GOAL]
case intro
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s'✝ : Seq α
x : α
s : Seq α
x' : α
s' : Seq α
r✝ : R (cons x' s') (cons x s)
h1 : x' = x
h2 : R s' s
⊢ some x' = some x ∧ R s' s
[PROOFSTEP]
constructor
[GOAL]
case intro.left
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s'✝ : Seq α
x : α
s : Seq α
x' : α
s' : Seq α
r✝ : R (cons x' s') (cons x s)
h1 : x' = x
h2 : R s' s
⊢ some x' = some x
case intro.right
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s'✝ : Seq α
x : α
s : Seq α
x' : α
s' : Seq α
r✝ : R (cons x' s') (cons x s)
h1 : x' = x
h2 : R s' s
⊢ R s' s
[PROOFSTEP]
rw [h1]
[GOAL]
case intro.right
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
t₁ t₂ : Stream' (Option α)
e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s'
s✝ s'✝ : Seq α
x : α
s : Seq α
x' : α
s' : Seq α
r✝ : R (cons x' s') (cons x s)
h1 : x' = x
h2 : R s' s
⊢ R s' s
[PROOFSTEP]
exact h2
[GOAL]
case a.a
α : Type u
β : Type v
γ : Type w
R : Seq α → Seq α → Prop
bisim : IsBisimulation R
s₁ s₂ : Seq α
r : R s₁ s₂
⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s'
[PROOFSTEP]
exact ⟨s₁, s₂, rfl, rfl, r⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
f g : Seq α → Seq β
H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))
⊢ f s = g s
[PROOFSTEP]
refine' eq_of_bisim (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) _ ⟨s, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
f g : Seq α → Seq β
H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))
⊢ IsBisimulation fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s
[PROOFSTEP]
intro s1 s2 h
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
f g : Seq α → Seq β
H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))
s1 s2 : Seq β
h : ∃ s, s1 = f s ∧ s2 = g s
⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct s1) (destruct s2)
[PROOFSTEP]
rcases h with ⟨s, h1, h2⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
s✝ : Seq α
f g : Seq α → Seq β
H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))
s1 s2 : Seq β
s : Seq α
h1 : s1 = f s
h2 : s2 = g s
⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct s1) (destruct s2)
[PROOFSTEP]
rw [h1, h2]
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
s✝ : Seq α
f g : Seq α → Seq β
H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))
s1 s2 : Seq β
s : Seq α
h1 : s1 = f s
h2 : s2 = g s
⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))
[PROOFSTEP]
apply H
[GOAL]
α : Type u
β : Type v
γ : Type w
l : List α
n : ℕ
h : List.get? l n = none
⊢ List.get? l (n + 1) = none
[PROOFSTEP]
rw [List.get?_eq_none] at h ⊢
[GOAL]
α : Type u
β : Type v
γ : Type w
l : List α
n : ℕ
h : List.length l ≤ n
⊢ List.length l ≤ n + 1
[PROOFSTEP]
exact h.trans (Nat.le_succ n)
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
l : List α
⊢ ↑(a :: l) = cons a ↑l
[PROOFSTEP]
ext1 (_ | n)
[GOAL]
case h.zero
α : Type u
β : Type v
γ : Type w
a : α
l : List α
⊢ get? (↑(a :: l)) Nat.zero = get? (cons a ↑l) Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case h.succ
α : Type u
β : Type v
γ : Type w
a : α
l : List α
n : ℕ
⊢ get? (↑(a :: l)) (Nat.succ n) = get? (cons a ↑l) (Nat.succ n)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Stream' α
n : ℕ
h : map some s n = none
⊢ map some s (n + 1) = none
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : IsSeq s
n : ℕ
⊢ Stream'.map (Option.map f) s n = none → Stream'.map (Option.map f) s (n + 1) = none
[PROOFSTEP]
dsimp [Stream'.map, Stream'.nth]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : IsSeq s
n : ℕ
⊢ Option.map f (s n) = none → Option.map f (s (n + 1)) = none
[PROOFSTEP]
induction' e : s n with e
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : IsSeq s
n : ℕ
x✝ : Option α
e✝ : s n = x✝
e : s n = none
⊢ Option.map f none = none → Option.map f (s (n + 1)) = none
[PROOFSTEP]
intro
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : IsSeq s
n : ℕ
x✝ : Option α
e✝¹ : s n = x✝
e✝ : α
e : s n = some e✝
⊢ Option.map f (some e✝) = none → Option.map f (s (n + 1)) = none
[PROOFSTEP]
intro
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : IsSeq s
n : ℕ
x✝ : Option α
e✝ : s n = x✝
e : s n = none
a✝ : Option.map f none = none
⊢ Option.map f (s (n + 1)) = none
[PROOFSTEP]
rw [al e]
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : IsSeq s
n : ℕ
x✝ : Option α
e✝ : s n = x✝
e : s n = none
a✝ : Option.map f none = none
⊢ Option.map f none = none
[PROOFSTEP]
assumption
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : IsSeq s
n : ℕ
x✝ : Option α
e✝¹ : s n = x✝
e✝ : α
e : s n = some e✝
a✝ : Option.map f (some e✝) = none
⊢ Option.map f (s (n + 1)) = none
[PROOFSTEP]
contradiction
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ append nil s = s
[PROOFSTEP]
apply coinduction2
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = append nil s ∧ s2 = s) (destruct (append nil s)) (destruct s)
[PROOFSTEP]
intro s
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ BisimO (fun s1 s2 => ∃ s, s1 = append nil s ∧ s2 = s) (destruct (append nil s)) (destruct s)
[PROOFSTEP]
dsimp [append]
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ match
destruct
(corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s)),
destruct s with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧
∃ s_1,
s =
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s_1) ∧
s' = s_1
| x, x_1 => False
[PROOFSTEP]
rw [corec_eq]
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ match
omap
(corec fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(match destruct (nil, s).fst with
| none =>
match destruct (nil, s).snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', (nil, s).snd)),
destruct s with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧
∃ s_1,
s =
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s_1) ∧
s' = s_1
| x, x_1 => False
[PROOFSTEP]
dsimp [append]
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ match
match
match destruct s with
| none => none
| some (a, b) => some (a, nil, b) with
| none => none
| some (a, b) =>
some
(a,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
b),
destruct s with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧
∃ s_1,
s =
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s_1) ∧
s' = s_1
| x, x_1 => False
[PROOFSTEP]
apply recOn s _ _
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ match
match
match destruct nil with
| none => none
| some (a, b) => some (a, nil, b) with
| none => none
| some (a, b) =>
some
(a,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
b),
destruct nil with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧
∃ s_1,
s =
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s_1) ∧
s' = s_1
| x, x_1 => False
[PROOFSTEP]
trivial
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ ∀ (x : α) (s : Seq α),
match
match
match destruct (cons x s) with
| none => none
| some (a, b) => some (a, nil, b) with
| none => none
| some (a, b) =>
some
(a,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
b),
destruct (cons x s) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧
∃ s_1,
s =
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s_1) ∧
s' = s_1
| x, x_1 => False
[PROOFSTEP]
intro x s
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝¹ s✝ : Seq α
x : α
s : Seq α
⊢ match
match
match destruct (cons x s) with
| none => none
| some (a, b) => some (a, nil, b) with
| none => none
| some (a, b) =>
some
(a,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
b),
destruct (cons x s) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧
∃ s_1,
s =
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s_1) ∧
s' = s_1
| x, x_1 => False
[PROOFSTEP]
rw [destruct_cons]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝¹ s✝ : Seq α
x : α
s : Seq α
⊢ match
match
match some (x, s) with
| none => none
| some (a, b) => some (a, nil, b) with
| none => none
| some (a, b) =>
some
(a,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
b),
some (x, s) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧
∃ s_1,
s =
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s_1) ∧
s' = s_1
| x, x_1 => False
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝¹ s✝ : Seq α
x : α
s : Seq α
⊢ x = x ∧
∃ s_1,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s) =
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(nil, s_1) ∧
s = s_1
[PROOFSTEP]
exact ⟨rfl, s, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s t : Seq α
⊢ destruct (append (cons a s) t) = some (a, append s t)
[PROOFSTEP]
dsimp [append]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s t : Seq α
⊢ destruct
(corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(cons a s, t)) =
some
(a,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(s, t))
[PROOFSTEP]
rw [corec_eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s t : Seq α
⊢ omap
(corec fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(match destruct (cons a s, t).fst with
| none =>
match destruct (cons a s, t).snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a_1, s₁') => some (a_1, s₁', (cons a s, t).snd)) =
some
(a,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(s, t))
[PROOFSTEP]
dsimp [append]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s t : Seq α
⊢ (match
match destruct (cons a s) with
| none =>
match destruct t with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', t) with
| none => none
| some (a, b) =>
some
(a,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
b)) =
some
(a,
corec
(fun x =>
match destruct x.fst with
| none =>
match destruct x.snd with
| none => none
| some (a, b) => some (a, nil, b)
| some (a, s₁') => some (a, s₁', x.snd))
(s, t))
[PROOFSTEP]
rw [destruct_cons]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ append s nil = s
[PROOFSTEP]
apply coinduction2 s
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append s nil)) (destruct s)
[PROOFSTEP]
intro s
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append s nil)) (destruct s)
[PROOFSTEP]
apply recOn s _ _
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append nil nil)) (destruct nil)
[PROOFSTEP]
trivial
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ ∀ (x : α) (s : Seq α),
BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append (cons x s) nil)) (destruct (cons x s))
[PROOFSTEP]
intro x s
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝¹ s✝ : Seq α
x : α
s : Seq α
⊢ BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append (cons x s) nil)) (destruct (cons x s))
[PROOFSTEP]
rw [cons_append, destruct_cons, destruct_cons]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝¹ s✝ : Seq α
x : α
s : Seq α
⊢ BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (some (x, append s nil)) (some (x, s))
[PROOFSTEP]
dsimp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝¹ s✝ : Seq α
x : α
s : Seq α
⊢ x = x ∧ ∃ s_1, append s nil = append s_1 nil ∧ s = s_1
[PROOFSTEP]
exact ⟨rfl, s, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s t u : Seq α
⊢ append (append s t) u = append s (append t u)
[PROOFSTEP]
apply eq_of_bisim fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
s t u : Seq α
⊢ IsBisimulation fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
[PROOFSTEP]
intro s1 s2 h
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
s t u s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
⊢ BisimO (fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)) (destruct s1) (destruct s2)
[PROOFSTEP]
exact
match s1, s2, h with
| _, _, ⟨s, t, u, rfl, rfl⟩ => by
apply recOn s <;> simp
· apply recOn t <;> simp
· apply recOn u <;> simp
· intro _ u
refine' ⟨nil, nil, u, _, _⟩ <;> simp
· intro _ t
refine' ⟨nil, t, u, _, _⟩ <;> simp
· intro _ s
exact ⟨s, t, u, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ BisimO (fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u))
(destruct (append (append s t) u)) (destruct (append s (append t u)))
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ BisimO (fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u))
(destruct (append (append nil t) u)) (destruct (append nil (append t u)))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ ∀ (x : α) (s : Seq α),
BisimO (fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u))
(destruct (append (append (cons x s) t) u)) (destruct (append (cons x s) (append t u)))
[PROOFSTEP]
simp
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ match destruct (append t u), destruct (append t u) with
| none, none => True
| some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u)
| x, x_1 => False
[PROOFSTEP]
apply recOn t
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ match destruct (append nil u), destruct (append nil u) with
| none, none => True
| some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u)
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ ∀ (x : α) (s : Seq α),
match destruct (append (cons x s) u), destruct (append (cons x s) u) with
| none, none => True
| some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u)
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ match destruct u, destruct u with
| none, none => True
| some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u)
| x, x_1 => False
[PROOFSTEP]
apply recOn u
[GOAL]
case h1.h1.h1
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ match destruct nil, destruct nil with
| none, none => True
| some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u)
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h1.h2
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ ∀ (x : α) (s : Seq α),
match destruct (cons x s), destruct (cons x s) with
| none, none => True
| some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u)
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h1.h2
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ α → ∀ (s : Seq α), ∃ s_1 t u, s = append (append s_1 t) u ∧ s = append s_1 (append t u)
[PROOFSTEP]
intro _ u
[GOAL]
case h1.h1.h2
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝¹ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u✝ : Seq α
x✝ : α
u : Seq α
⊢ ∃ s t u_1, u = append (append s t) u_1 ∧ u = append s (append t u_1)
[PROOFSTEP]
refine' ⟨nil, nil, u, _, _⟩
[GOAL]
case h1.h1.h2.refine'_1
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝¹ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u✝ : Seq α
x✝ : α
u : Seq α
⊢ u = append (append nil nil) u
[PROOFSTEP]
simp
[GOAL]
case h1.h1.h2.refine'_2
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝¹ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u✝ : Seq α
x✝ : α
u : Seq α
⊢ u = append nil (append nil u)
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ α → ∀ (s : Seq α), ∃ s_1 t u_1, append s u = append (append s_1 t) u_1 ∧ append s u = append s_1 (append t u_1)
[PROOFSTEP]
intro _ t
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
s✝ t✝¹ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t✝ u : Seq α
x✝ : α
t : Seq α
⊢ ∃ s t_1 u_1, append t u = append (append s t_1) u_1 ∧ append t u = append s (append t_1 u_1)
[PROOFSTEP]
refine' ⟨nil, t, u, _, _⟩
[GOAL]
case h1.h2.refine'_1
α : Type u
β : Type v
γ : Type w
s✝ t✝¹ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t✝ u : Seq α
x✝ : α
t : Seq α
⊢ append t u = append (append nil t) u
[PROOFSTEP]
simp
[GOAL]
case h1.h2.refine'_2
α : Type u
β : Type v
γ : Type w
s✝ t✝¹ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t✝ u : Seq α
x✝ : α
t : Seq α
⊢ append t u = append nil (append t u)
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
s✝ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s t u : Seq α
⊢ α →
∀ (s : Seq α),
∃ s_1 t_1 u_1,
append (append s t) u = append (append s_1 t_1) u_1 ∧ append s (append t u) = append s_1 (append t_1 u_1)
[PROOFSTEP]
intro _ s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
s✝¹ t✝ u✝ s1 s2 : Seq α
h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)
s✝ t u : Seq α
x✝ : α
s : Seq α
⊢ ∃ s_1 t_1 u_1,
append (append s t) u = append (append s_1 t_1) u_1 ∧ append s (append t u) = append s_1 (append t_1 u_1)
[PROOFSTEP]
exact ⟨s, t, u, rfl, rfl⟩
[GOAL]
case r
α : Type u
β : Type v
γ : Type w
s t u : Seq α
⊢ ∃ s_1 t_1 u_1,
append (append s t) u = append (append s_1 t_1) u_1 ∧ append s (append t u) = append s_1 (append t_1 u_1)
[PROOFSTEP]
exact ⟨s, t, u, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Stream' (Option α)
al : IsSeq s
⊢ map f (cons a { val := s, property := al }) = cons (f a) (map f { val := s, property := al })
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Stream' (Option α)
al : IsSeq s
⊢ ↑(map f (cons a { val := s, property := al })) = ↑(cons (f a) (map f { val := s, property := al }))
[PROOFSTEP]
dsimp [cons, map]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Stream' (Option α)
al : IsSeq s
⊢ Stream'.map (Option.map f) (some a :: s) = some (f a) :: Stream'.map (Option.map f) s
[PROOFSTEP]
rw [Stream'.map_cons]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Stream' (Option α)
al : IsSeq s
⊢ Option.map f (some a) :: Stream'.map (Option.map f) s = some (f a) :: Stream'.map (Option.map f) s
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Stream' (Option α)
al : IsSeq s
⊢ map id { val := s, property := al } = { val := s, property := al }
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
s : Stream' (Option α)
al : IsSeq s
⊢ ↑(map id { val := s, property := al }) = ↑{ val := s, property := al }
[PROOFSTEP]
dsimp [map]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
s : Stream' (Option α)
al : IsSeq s
⊢ Stream'.map (Option.map id) s = s
[PROOFSTEP]
rw [Option.map_id, Stream'.map_id]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : IsSeq s
⊢ map f (tail { val := s, property := al }) = tail (map f { val := s, property := al })
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
s : Stream' (Option α)
al : IsSeq s
⊢ ↑(map f (tail { val := s, property := al })) = ↑(tail (map f { val := s, property := al }))
[PROOFSTEP]
dsimp [tail, map]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : IsSeq s
⊢ map (g ∘ f) { val := s, property := al } = map g (map f { val := s, property := al })
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : IsSeq s
⊢ ↑(map (g ∘ f) { val := s, property := al }) = ↑(map g (map f { val := s, property := al }))
[PROOFSTEP]
dsimp [map]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : IsSeq s
⊢ Stream'.map (Option.map (g ∘ f)) s = Stream'.map (Option.map g ∘ Option.map f) s
[PROOFSTEP]
apply congr_arg fun f : _ → Option γ => Stream'.map f s
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : IsSeq s
⊢ Option.map (g ∘ f) = Option.map g ∘ Option.map f
[PROOFSTEP]
ext ⟨⟩
[GOAL]
case a.h.none.a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : IsSeq s
a✝ : γ
⊢ a✝ ∈ Option.map (g ∘ f) none ↔ a✝ ∈ (Option.map g ∘ Option.map f) none
[PROOFSTEP]
rfl
[GOAL]
case a.h.some.a
α : Type u
β : Type v
γ : Type w
f : α → β
g : β → γ
s : Stream' (Option α)
al : IsSeq s
val✝ : α
a✝ : γ
⊢ a✝ ∈ Option.map (g ∘ f) (some val✝) ↔ a✝ ∈ (Option.map g ∘ Option.map f) (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s t : Seq α
⊢ map f (append s t) = append (map f s) (map f t)
[PROOFSTEP]
apply eq_of_bisim (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)) _ ⟨s, t, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s t : Seq α
⊢ IsBisimulation fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
[PROOFSTEP]
intro s1 s2 h
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s t : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
⊢ BisimO (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)) (destruct s1) (destruct s2)
[PROOFSTEP]
exact
match s1, s2, h with
| _, _, ⟨s, t, rfl, rfl⟩ => by
apply recOn s <;> simp
· apply recOn t <;> simp
· intro _ t
refine' ⟨nil, t, _, _⟩ <;> simp
· intro _ s
refine' ⟨s, t, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t : Seq α
⊢ BisimO (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)) (destruct (map f (append s t)))
(destruct (append (map f s) (map f t)))
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t : Seq α
⊢ BisimO (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t))
(destruct (map f (append nil t))) (destruct (append (map f nil) (map f t)))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t : Seq α
⊢ ∀ (x : α) (s : Seq α),
BisimO (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t))
(destruct (map f (append (cons x s) t))) (destruct (append (map f (cons x s)) (map f t)))
[PROOFSTEP]
simp
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t : Seq α
⊢ match destruct (map f t), destruct (map f t) with
| none, none => True
| some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t, s = map f (append s_1 t) ∧ s' = append (map f s_1) (map f t)
| x, x_1 => False
[PROOFSTEP]
apply recOn t
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t : Seq α
⊢ match destruct (map f nil), destruct (map f nil) with
| none, none => True
| some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t, s = map f (append s_1 t) ∧ s' = append (map f s_1) (map f t)
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t : Seq α
⊢ ∀ (x : α) (s : Seq α),
match destruct (map f (cons x s)), destruct (map f (cons x s)) with
| none, none => True
| some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t, s = map f (append s_1 t) ∧ s' = append (map f s_1) (map f t)
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t : Seq α
⊢ α → ∀ (s : Seq α), ∃ s_1 t, map f s = map f (append s_1 t) ∧ map f s = append (map f s_1) (map f t)
[PROOFSTEP]
intro _ t
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝¹ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t✝ : Seq α
x✝ : α
t : Seq α
⊢ ∃ s t_1, map f t = map f (append s t_1) ∧ map f t = append (map f s) (map f t_1)
[PROOFSTEP]
refine' ⟨nil, t, _, _⟩
[GOAL]
case h1.h2.refine'_1
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝¹ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t✝ : Seq α
x✝ : α
t : Seq α
⊢ map f t = map f (append nil t)
[PROOFSTEP]
simp
[GOAL]
case h1.h2.refine'_2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝¹ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t✝ : Seq α
x✝ : α
t : Seq α
⊢ map f t = append (map f nil) (map f t)
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝ t✝ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s t : Seq α
⊢ α →
∀ (s : Seq α),
∃ s_1 t_1,
map f (append s t) = map f (append s_1 t_1) ∧ append (map f s) (map f t) = append (map f s_1) (map f t_1)
[PROOFSTEP]
intro _ s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
s✝¹ t✝ : Seq α
s1 s2 : Seq β
h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)
s✝ t : Seq α
x✝ : α
s : Seq α
⊢ ∃ s_1 t_1, map f (append s t) = map f (append s_1 t_1) ∧ append (map f s) (map f t) = append (map f s_1) (map f t_1)
[PROOFSTEP]
refine' ⟨s, t, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
S : Seq (Seq1 α)
⊢ destruct (join (cons (a, nil) S)) = some (a, join S)
[PROOFSTEP]
simp [join]
[GOAL]
α : Type u
β : Type v
γ : Type w
a b : α
s : Seq α
S : Seq (Seq1 α)
⊢ destruct (join (cons (a, cons b s) S)) = some (a, join (cons (b, s) S))
[PROOFSTEP]
simp [join]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
S : Seq (Seq1 α)
⊢ join (cons (a, s) S) = cons a (append s (join S))
[PROOFSTEP]
apply
eq_of_bisim (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) _
(Or.inr ⟨a, s, S, rfl, rfl⟩)
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
S : Seq (Seq1 α)
⊢ IsBisimulation fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
[PROOFSTEP]
intro s1 s2 h
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
S : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct s1)
(destruct s2)
[PROOFSTEP]
exact
match s1, s2, h with
| s, _, Or.inl <| Eq.refl s => by
apply recOn s; · trivial
· intro x s
rw [destruct_cons]
exact ⟨rfl, Or.inl rfl⟩
| _, _, Or.inr ⟨a, s, S, rfl, rfl⟩ => by
apply recOn s
· simp [join_cons_cons, join_cons_nil]
· intro x s
simp [join_cons_cons, join_cons_nil]
refine' Or.inr ⟨x, s, S, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s✝ : Seq α
S : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
s : Seq α
⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct s)
(destruct s)
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
a : α
s✝ : Seq α
S : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
s : Seq α
⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct nil)
(destruct nil)
[PROOFSTEP]
trivial
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
a : α
s✝ : Seq α
S : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
s : Seq α
⊢ ∀ (x : α) (s : Seq α),
BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)))
(destruct (cons x s)) (destruct (cons x s))
[PROOFSTEP]
intro x s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
a : α
s✝¹ : Seq α
S : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
s✝ : Seq α
x : α
s : Seq α
⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)))
(destruct (cons x s)) (destruct (cons x s))
[PROOFSTEP]
rw [destruct_cons]
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
a : α
s✝¹ : Seq α
S : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
s✝ : Seq α
x : α
s : Seq α
⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (some (x, s))
(some (x, s))
[PROOFSTEP]
exact ⟨rfl, Or.inl rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
a✝ : α
s✝ : Seq α
S✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
a : α
s : Seq α
S : Seq (Seq1 α)
⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)))
(destruct (join (cons (a, s) S))) (destruct (cons a (append s (join S))))
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
a✝ : α
s✝ : Seq α
S✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
a : α
s : Seq α
S : Seq (Seq1 α)
⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)))
(destruct (join (cons (a, nil) S))) (destruct (cons a (append nil (join S))))
[PROOFSTEP]
simp [join_cons_cons, join_cons_nil]
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
a✝ : α
s✝ : Seq α
S✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
a : α
s : Seq α
S : Seq (Seq1 α)
⊢ ∀ (x : α) (s : Seq α),
BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)))
(destruct (join (cons (a, cons x s) S))) (destruct (cons a (append (cons x s) (join S))))
[PROOFSTEP]
intro x s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
a✝ : α
s✝¹ : Seq α
S✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
a : α
s✝ : Seq α
S : Seq (Seq1 α)
x : α
s : Seq α
⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)))
(destruct (join (cons (a, cons x s) S))) (destruct (cons a (append (cons x s) (join S))))
[PROOFSTEP]
simp [join_cons_cons, join_cons_nil]
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
a✝ : α
s✝¹ : Seq α
S✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))
a : α
s✝ : Seq α
S : Seq (Seq1 α)
x : α
s : Seq α
⊢ join (cons (x, s) S) = cons x (append s (join S)) ∨
∃ a s_1 S_1,
join (cons (x, s) S) = join (cons (a, s_1) S_1) ∧ cons x (append s (join S)) = cons a (append s_1 (join S_1))
[PROOFSTEP]
refine' Or.inr ⟨x, s, S, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
S T : Seq (Seq1 α)
⊢ join (append S T) = append (join S) (join T)
[PROOFSTEP]
apply eq_of_bisim fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
S T : Seq (Seq1 α)
⊢ IsBisimulation fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
[PROOFSTEP]
intro s1 s2 h
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
S T : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
⊢ BisimO (fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)))
(destruct s1) (destruct s2)
[PROOFSTEP]
exact
match s1, s2, h with
| _, _, ⟨s, S, T, rfl, rfl⟩ => by
apply recOn s <;> simp
· apply recOn S <;> simp
· apply recOn T
· simp
· intro s T
cases' s with a s; simp
refine' ⟨s, nil, T, _, _⟩ <;> simp
· intro s S
cases' s with a s; simp
exact ⟨s, S, T, rfl, rfl⟩
· intro _ s
exact ⟨s, S, T, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ BisimO (fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)))
(destruct (append s (join (append S T)))) (destruct (append s (append (join S) (join T))))
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ BisimO (fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)))
(destruct (append nil (join (append S T)))) (destruct (append nil (append (join S) (join T))))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ ∀ (x : α) (s : Seq α),
BisimO (fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)))
(destruct (append (cons x s) (join (append S T)))) (destruct (append (cons x s) (append (join S) (join T))))
[PROOFSTEP]
simp
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ match destruct (join (append S T)), destruct (append (join S) (join T)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
apply recOn S
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ match destruct (join (append nil T)), destruct (append (join nil) (join T)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)),
match destruct (join (append (cons x s) T)), destruct (append (join (cons x s)) (join T)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ match destruct (join T), destruct (join T) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
apply recOn T
[GOAL]
case h1.h1.h1
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ match destruct (join nil), destruct (join nil) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h1.h2
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)),
match destruct (join (cons x s)), destruct (join (cons x s)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
intro s T
[GOAL]
case h1.h1.h2
α : Type u
β : Type v
γ : Type w
S✝ T✝¹ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s✝ : Seq α
S T✝ : Seq (Seq1 α)
s : Seq1 α
T : Seq (Seq1 α)
⊢ match destruct (join (cons s T)), destruct (join (cons s T)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
cases' s with a s
[GOAL]
case h1.h1.h2.mk
α : Type u
β : Type v
γ : Type w
S✝ T✝¹ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s✝ : Seq α
S T✝ T : Seq (Seq1 α)
a : α
s : Seq α
⊢ match destruct (join (cons (a, s) T)), destruct (join (cons (a, s) T)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h1.h2.mk
α : Type u
β : Type v
γ : Type w
S✝ T✝¹ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s✝ : Seq α
S T✝ T : Seq (Seq1 α)
a : α
s : Seq α
⊢ ∃ s_1 S T_1,
append s (join T) = append s_1 (join (append S T_1)) ∧ append s (join T) = append s_1 (append (join S) (join T_1))
[PROOFSTEP]
refine' ⟨s, nil, T, _, _⟩
[GOAL]
case h1.h1.h2.mk.refine'_1
α : Type u
β : Type v
γ : Type w
S✝ T✝¹ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s✝ : Seq α
S T✝ T : Seq (Seq1 α)
a : α
s : Seq α
⊢ append s (join T) = append s (join (append nil T))
[PROOFSTEP]
simp
[GOAL]
case h1.h1.h2.mk.refine'_2
α : Type u
β : Type v
γ : Type w
S✝ T✝¹ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s✝ : Seq α
S T✝ T : Seq (Seq1 α)
a : α
s : Seq α
⊢ append s (join T) = append s (append (join nil) (join T))
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)),
match destruct (join (cons x (append s T))), destruct (append (join (cons x s)) (join T)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
intro s S
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
S✝¹ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s✝ : Seq α
S✝ T : Seq (Seq1 α)
s : Seq1 α
S : Seq (Seq1 α)
⊢ match destruct (join (cons s (append S T))), destruct (append (join (cons s S)) (join T)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
cases' s with a s
[GOAL]
case h1.h2.mk
α : Type u
β : Type v
γ : Type w
S✝¹ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s✝ : Seq α
S✝ T S : Seq (Seq1 α)
a : α
s : Seq α
⊢ match destruct (join (cons (a, s) (append S T))), destruct (append (join (cons (a, s) S)) (join T)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2.mk
α : Type u
β : Type v
γ : Type w
S✝¹ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s✝ : Seq α
S✝ T S : Seq (Seq1 α)
a : α
s : Seq α
⊢ ∃ s_1 S_1 T_1,
append s (join (append S T)) = append s_1 (join (append S_1 T_1)) ∧
append s (append (join S) (join T)) = append s_1 (append (join S_1) (join T_1))
[PROOFSTEP]
exact ⟨s, S, T, rfl, rfl⟩
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s : Seq α
S T : Seq (Seq1 α)
⊢ α →
∀ (s : Seq α),
∃ s_1 S_1 T_1,
append s (join (append S T)) = append s_1 (join (append S_1 T_1)) ∧
append s (append (join S) (join T)) = append s_1 (append (join S_1) (join T_1))
[PROOFSTEP]
intro _ s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
S✝ T✝ : Seq (Seq1 α)
s1 s2 : Seq α
h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))
s✝ : Seq α
S T : Seq (Seq1 α)
x✝ : α
s : Seq α
⊢ ∃ s_1 S_1 T_1,
append s (join (append S T)) = append s_1 (join (append S_1 T_1)) ∧
append s (append (join S) (join T)) = append s_1 (append (join S_1) (join T_1))
[PROOFSTEP]
exact ⟨s, S, T, rfl, rfl⟩
[GOAL]
case r
α : Type u
β : Type v
γ : Type w
S T : Seq (Seq1 α)
⊢ ∃ s S_1 T_1,
join (append S T) = append s (join (append S_1 T_1)) ∧
append (join S) (join T) = append s (append (join S_1) (join T_1))
[PROOFSTEP]
refine' ⟨nil, S, T, _, _⟩
[GOAL]
case r.refine'_1
α : Type u
β : Type v
γ : Type w
S T : Seq (Seq1 α)
⊢ join (append S T) = append nil (join (append S T))
[PROOFSTEP]
simp
[GOAL]
case r.refine'_2
α : Type u
β : Type v
γ : Type w
S T : Seq (Seq1 α)
⊢ append (join S) (join T) = append nil (append (join S) (join T))
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Stream' α
⊢ ↑(a :: s) = cons a ↑s
[PROOFSTEP]
apply Subtype.eq
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
a : α
s : Stream' α
⊢ ↑↑(a :: s) = ↑(cons a ↑s)
[PROOFSTEP]
simp [ofStream, cons]
[GOAL]
case a
α : Type u
β : Type v
γ : Type w
a : α
s : Stream' α
⊢ Stream'.map some (a :: s) = some a :: Stream'.map some s
[PROOFSTEP]
rw [Stream'.map_cons]
[GOAL]
α : Type u
β : Type v
γ : Type w
l l' : List α
⊢ ↑(l ++ l') = append ↑l ↑l'
[PROOFSTEP]
induction l
[GOAL]
case nil
α : Type u
β : Type v
γ : Type w
l' : List α
⊢ ↑([] ++ l') = append ↑[] ↑l'
[PROOFSTEP]
simp [*]
[GOAL]
case cons
α : Type u
β : Type v
γ : Type w
l' : List α
head✝ : α
tail✝ : List α
tail_ih✝ : ↑(tail✝ ++ l') = append ↑tail✝ ↑l'
⊢ ↑(head✝ :: tail✝ ++ l') = append ↑(head✝ :: tail✝) ↑l'
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
γ : Type w
l : List α
s : Stream' α
⊢ ↑(l ++ₛ s) = append ↑l ↑s
[PROOFSTEP]
induction l
[GOAL]
case nil
α : Type u
β : Type v
γ : Type w
s : Stream' α
⊢ ↑([] ++ₛ s) = append ↑[] ↑s
[PROOFSTEP]
simp [*, Stream'.nil_append_stream, Stream'.cons_append_stream]
[GOAL]
case cons
α : Type u
β : Type v
γ : Type w
s : Stream' α
head✝ : α
tail✝ : List α
tail_ih✝ : ↑(tail✝ ++ₛ s) = append ↑tail✝ ↑s
⊢ ↑(head✝ :: tail✝ ++ₛ s) = append ↑(head✝ :: tail✝) ↑s
[PROOFSTEP]
simp [*, Stream'.nil_append_stream, Stream'.cons_append_stream]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
n : ℕ
⊢ drop (tail s) n = drop s (n + 1)
[PROOFSTEP]
rw [add_comm]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
n : ℕ
⊢ drop (tail s) n = drop s (1 + n)
[PROOFSTEP]
symm
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
n : ℕ
⊢ drop s (1 + n) = drop (tail s) n
[PROOFSTEP]
apply dropn_add
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
n : ℕ
⊢ head (drop s n) = get? s n
[PROOFSTEP]
induction' n with n IH generalizing s
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ head (drop s Nat.zero) = get? s Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
s✝ : Seq α
n : ℕ
IH : ∀ (s : Seq α), head (drop s n) = get? s n
s : Seq α
⊢ head (drop s (Nat.succ n)) = get? s (Nat.succ n)
[PROOFSTEP]
rw [Nat.succ_eq_add_one, ← get?_tail, ← dropn_tail]
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
s✝ : Seq α
n : ℕ
IH : ∀ (s : Seq α), head (drop s n) = get? s n
s : Seq α
⊢ head (drop (tail s) n) = get? (tail s) n
[PROOFSTEP]
apply IH
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
b : β
s : Seq α
h : b ∈ map f s
⊢ ∃ a, a ∈ s ∧ f a = b
[PROOFSTEP]
match s with
| ⟨g, al⟩ =>
let ⟨o, om, oe⟩ := @Stream'.exists_of_mem_map _ _ (Option.map f) (some b) g h
cases' o with a
· injection oe
· injection oe with h'; exact ⟨a, om, h'⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
b : β
s : Seq α
g : Stream' (Option α)
al : IsSeq g
h : b ∈ map f { val := g, property := al }
⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b
[PROOFSTEP]
let ⟨o, om, oe⟩ := @Stream'.exists_of_mem_map _ _ (Option.map f) (some b) g h
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
b : β
s : Seq α
g : Stream' (Option α)
al : IsSeq g
h : b ∈ map f { val := g, property := al }
o : Option α
om : o ∈ g
oe : Option.map f o = some b
⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b
[PROOFSTEP]
cases' o with a
[GOAL]
case none
α : Type u
β : Type v
γ : Type w
f : α → β
b : β
s : Seq α
g : Stream' (Option α)
al : IsSeq g
h : b ∈ map f { val := g, property := al }
om : none ∈ g
oe : Option.map f none = some b
⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b
[PROOFSTEP]
injection oe
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
f : α → β
b : β
s : Seq α
g : Stream' (Option α)
al : IsSeq g
h : b ∈ map f { val := g, property := al }
a : α
om : some a ∈ g
oe : Option.map f (some a) = some b
⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b
[PROOFSTEP]
injection oe with h'
[GOAL]
case some
α : Type u
β : Type v
γ : Type w
f : α → β
b : β
s : Seq α
g : Stream' (Option α)
al : IsSeq g
h : b ∈ map f { val := g, property := al }
a : α
om : some a ∈ g
h' : f a = b
⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b
[PROOFSTEP]
exact ⟨a, om, h'⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
s₁ s₂ : Seq α
a : α
h : a ∈ append s₁ s₂
⊢ a ∈ s₁ ∨ a ∈ s₂
[PROOFSTEP]
have := h
[GOAL]
α : Type u
β : Type v
γ : Type w
s₁ s₂ : Seq α
a : α
h this : a ∈ append s₁ s₂
⊢ a ∈ s₁ ∨ a ∈ s₂
[PROOFSTEP]
revert this
[GOAL]
α : Type u
β : Type v
γ : Type w
s₁ s₂ : Seq α
a : α
h : a ∈ append s₁ s₂
⊢ a ∈ append s₁ s₂ → a ∈ s₁ ∨ a ∈ s₂
[PROOFSTEP]
generalize e : append s₁ s₂ = ss
[GOAL]
α : Type u
β : Type v
γ : Type w
s₁ s₂ : Seq α
a : α
h : a ∈ append s₁ s₂
ss : Seq α
e : append s₁ s₂ = ss
⊢ a ∈ ss → a ∈ s₁ ∨ a ∈ s₂
[PROOFSTEP]
intro h
[GOAL]
α : Type u
β : Type v
γ : Type w
s₁ s₂ : Seq α
a : α
h✝ : a ∈ append s₁ s₂
ss : Seq α
e : append s₁ s₂ = ss
h : a ∈ ss
⊢ a ∈ s₁ ∨ a ∈ s₂
[PROOFSTEP]
revert s₁
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
⊢ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = ss → a ∈ s₁ ∨ a ∈ s₂
[PROOFSTEP]
apply mem_rec_on h _
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
⊢ ∀ (b : α) (s' : Seq α),
(a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂) →
∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = cons b s' → a ∈ s₁ ∨ a ∈ s₂
[PROOFSTEP]
intro b s' o s₁
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
⊢ a ∈ append s₁ s₂ → append s₁ s₂ = cons b s' → a ∈ s₁ ∨ a ∈ s₂
[PROOFSTEP]
apply s₁.recOn _ fun c t₁ => _
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
⊢ a ∈ append nil s₂ → append nil s₂ = cons b s' → a ∈ nil ∨ a ∈ s₂
[PROOFSTEP]
intro m _
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
m : a ∈ append nil s₂
e✝ : append nil s₂ = cons b s'
⊢ a ∈ nil ∨ a ∈ s₂
[PROOFSTEP]
apply Or.inr
[GOAL]
case h
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
m : a ∈ append nil s₂
e✝ : append nil s₂ = cons b s'
⊢ a ∈ s₂
[PROOFSTEP]
simpa using m
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
⊢ ∀ (c : α) (t₁ : Seq α), a ∈ append (cons c t₁) s₂ → append (cons c t₁) s₂ = cons b s' → a ∈ cons c t₁ ∨ a ∈ s₂
[PROOFSTEP]
intro c t₁ m e
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
c : α
t₁ : Seq α
m : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
⊢ a ∈ cons c t₁ ∨ a ∈ s₂
[PROOFSTEP]
have this := congr_arg destruct e
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
c : α
t₁ : Seq α
m : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
this : destruct (append (cons c t₁) s₂) = destruct (cons b s')
⊢ a ∈ cons c t₁ ∨ a ∈ s₂
[PROOFSTEP]
cases' show a = c ∨ a ∈ append t₁ s₂ by simpa using m with e' m
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
c : α
t₁ : Seq α
m : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
this : destruct (append (cons c t₁) s₂) = destruct (cons b s')
⊢ a = c ∨ a ∈ append t₁ s₂
[PROOFSTEP]
simpa using m
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
c : α
t₁ : Seq α
m : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
this : destruct (append (cons c t₁) s₂) = destruct (cons b s')
e' : a = c
⊢ a ∈ cons c t₁ ∨ a ∈ s₂
[PROOFSTEP]
rw [e']
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
c : α
t₁ : Seq α
m : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
this : destruct (append (cons c t₁) s₂) = destruct (cons b s')
e' : a = c
⊢ c ∈ cons c t₁ ∨ c ∈ s₂
[PROOFSTEP]
exact Or.inl (mem_cons _ _)
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
c : α
t₁ : Seq α
m✝ : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
this : destruct (append (cons c t₁) s₂) = destruct (cons b s')
m : a ∈ append t₁ s₂
⊢ a ∈ cons c t₁ ∨ a ∈ s₂
[PROOFSTEP]
cases' show c = b ∧ append t₁ s₂ = s' by simpa with i1 i2
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
c : α
t₁ : Seq α
m✝ : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
this : destruct (append (cons c t₁) s₂) = destruct (cons b s')
m : a ∈ append t₁ s₂
⊢ c = b ∧ append t₁ s₂ = s'
[PROOFSTEP]
simpa
[GOAL]
case inr.intro
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' : Seq α
o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
s₁ : Seq α
c : α
t₁ : Seq α
m✝ : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
this : destruct (append (cons c t₁) s₂) = destruct (cons b s')
m : a ∈ append t₁ s₂
i1 : c = b
i2 : append t₁ s₂ = s'
⊢ a ∈ cons c t₁ ∨ a ∈ s₂
[PROOFSTEP]
cases' o with e' IH
[GOAL]
case inr.intro.inl
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' s₁ : Seq α
c : α
t₁ : Seq α
m✝ : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
this : destruct (append (cons c t₁) s₂) = destruct (cons b s')
m : a ∈ append t₁ s₂
i1 : c = b
i2 : append t₁ s₂ = s'
e' : a = b
⊢ a ∈ cons c t₁ ∨ a ∈ s₂
[PROOFSTEP]
simp [i1, e']
[GOAL]
case inr.intro.inr
α : Type u
β : Type v
γ : Type w
s₂ : Seq α
a : α
ss : Seq α
h : a ∈ ss
b : α
s' s₁ : Seq α
c : α
t₁ : Seq α
m✝ : a ∈ append (cons c t₁) s₂
e : append (cons c t₁) s₂ = cons b s'
this : destruct (append (cons c t₁) s₂) = destruct (cons b s')
m : a ∈ append t₁ s₂
i1 : c = b
i2 : append t₁ s₂ = s'
IH : ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂
⊢ a ∈ cons c t₁ ∨ a ∈ s₂
[PROOFSTEP]
exact Or.imp_left (mem_cons_of_mem _) (IH m i2)
[GOAL]
α : Type u
β : Type v
γ : Type w
s₁ s₂ : Seq α
a : α
h : a ∈ s₁
⊢ a ∈ append s₁ s₂
[PROOFSTEP]
apply mem_rec_on h
[GOAL]
α : Type u
β : Type v
γ : Type w
s₁ s₂ : Seq α
a : α
h : a ∈ s₁
⊢ ∀ (b : α) (s' : Seq α), a = b ∨ a ∈ append s' s₂ → a ∈ append (cons b s') s₂
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
γ : Type w
s₁ s₂ : Seq α
a : α
h : a ∈ s₁
b✝ : α
s'✝ : Seq α
a✝ : a = b✝ ∨ a ∈ append s'✝ s₂
⊢ a ∈ append (cons b✝ s'✝) s₂
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
x : α
⊢ enum (cons x s) = cons (0, x) (map (Prod.map Nat.succ id) (enum s))
[PROOFSTEP]
ext ⟨n⟩ : 1
[GOAL]
case h.zero
α : Type u
β : Type v
γ : Type w
s : Seq α
x : α
⊢ get? (enum (cons x s)) Nat.zero = get? (cons (0, x) (map (Prod.map Nat.succ id) (enum s))) Nat.zero
[PROOFSTEP]
simp
[GOAL]
case h.succ
α : Type u
β : Type v
γ : Type w
s : Seq α
x : α
n✝ : ℕ
⊢ get? (enum (cons x s)) (Nat.succ n✝) = get? (cons (0, x) (map (Prod.map Nat.succ id) (enum s))) (Nat.succ n✝)
[PROOFSTEP]
simp only [get?_enum, get?_cons_succ, map_get?, Option.map_map]
[GOAL]
case h.succ
α : Type u
β : Type v
γ : Type w
s : Seq α
x : α
n✝ : ℕ
⊢ Option.map (Prod.mk (Nat.succ n✝)) (get? s n✝) = Option.map (Prod.map Nat.succ id ∘ Prod.mk n✝) (get? s n✝)
[PROOFSTEP]
congr
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
s : Seq α
⊢ map id (a, s) = (a, s)
[PROOFSTEP]
simp [map]
[GOAL]
α : Type u
β : Type v
γ : Type w
a b : α
s : Seq α
S : Seq (Seq1 α)
⊢ join ((a, Seq.cons b s), S) = (a, Seq.join (Seq.cons (b, s) S))
[PROOFSTEP]
dsimp [join]
[GOAL]
α : Type u
β : Type v
γ : Type w
a b : α
s : Seq α
S : Seq (Seq1 α)
⊢ (match destruct (Seq.cons b s) with
| none => (a, Seq.join S)
| some s' => (a, Seq.join (Seq.cons s' S))) =
(a, Seq.join (Seq.cons (b, s) S))
[PROOFSTEP]
rw [destruct_cons]
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ Seq.join (Seq.map ret s) = s
[PROOFSTEP]
apply coinduction2 s
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
s : Seq α
⊢ ∀ (s : Seq α),
BisimO (fun s1 s2 => ∃ s, s1 = Seq.join (Seq.map ret s) ∧ s2 = s) (destruct (Seq.join (Seq.map ret s))) (destruct s)
[PROOFSTEP]
intro s
[GOAL]
case H
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ BisimO (fun s1 s2 => ∃ s, s1 = Seq.join (Seq.map ret s) ∧ s2 = s) (destruct (Seq.join (Seq.map ret s))) (destruct s)
[PROOFSTEP]
apply recOn s
[GOAL]
case H.h1
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ BisimO (fun s1 s2 => ∃ s, s1 = Seq.join (Seq.map ret s) ∧ s2 = s) (destruct (Seq.join (Seq.map ret nil)))
(destruct nil)
[PROOFSTEP]
simp [ret]
[GOAL]
case H.h2
α : Type u
β : Type v
γ : Type w
s✝ s : Seq α
⊢ ∀ (x : α) (s : Seq α),
BisimO (fun s1 s2 => ∃ s, s1 = Seq.join (Seq.map ret s) ∧ s2 = s) (destruct (Seq.join (Seq.map ret (Seq.cons x s))))
(destruct (Seq.cons x s))
[PROOFSTEP]
simp [ret]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Seq α
⊢ bind (a, s) (ret ∘ f) = map f (a, s)
[PROOFSTEP]
dsimp [bind, map]
-- Porting note: Was `rw [map_comp]; simp [Function.comp, ret]`
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Seq α
⊢ join (ret (f a), Seq.map (ret ∘ f) s) = (f a, Seq.map f s)
[PROOFSTEP]
rw [map_comp, ret]
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Seq α
⊢ join ((f a, nil), Seq.map ret (Seq.map f s)) = (f a, Seq.map f s)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : α → Seq1 β
⊢ bind (ret a) f = f a
[PROOFSTEP]
simp [ret, bind, map]
[GOAL]
α : Type u
β : Type v
γ : Type w
a : α
f : α → Seq1 β
⊢ join (f a, nil) = f a
[PROOFSTEP]
cases' f a with a s
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
a✝ : α
f : α → Seq1 β
a : β
s : Seq β
⊢ join ((a, s), nil) = (a, s)
[PROOFSTEP]
apply recOn s
[GOAL]
case mk.h1
α : Type u
β : Type v
γ : Type w
a✝ : α
f : α → Seq1 β
a : β
s : Seq β
⊢ join ((a, nil), nil) = (a, nil)
[PROOFSTEP]
intros
[GOAL]
case mk.h2
α : Type u
β : Type v
γ : Type w
a✝ : α
f : α → Seq1 β
a : β
s : Seq β
⊢ ∀ (x : β) (s : Seq β), join ((a, Seq.cons x s), nil) = (a, Seq.cons x s)
[PROOFSTEP]
intros
[GOAL]
case mk.h1
α : Type u
β : Type v
γ : Type w
a✝ : α
f : α → Seq1 β
a : β
s : Seq β
⊢ join ((a, nil), nil) = (a, nil)
[PROOFSTEP]
simp
[GOAL]
case mk.h2
α : Type u
β : Type v
γ : Type w
a✝ : α
f : α → Seq1 β
a : β
s : Seq β
x✝ : β
s✝ : Seq β
⊢ join ((a, Seq.cons x✝ s✝), nil) = (a, Seq.cons x✝ s✝)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
S : Seq (Seq1 α)
⊢ Seq.map f (Seq.join S) = Seq.join (Seq.map (map f) S)
[PROOFSTEP]
apply
Seq.eq_of_bisim fun s1 s2 =>
∃ s S, s1 = Seq.append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
f : α → β
S : Seq (Seq1 α)
⊢ Seq.IsBisimulation fun s1 s2 =>
∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
[PROOFSTEP]
intro s1 s2 h
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
f : α → β
S : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
⊢ BisimO (fun s1 s2 => ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)))
(destruct s1) (destruct s2)
[PROOFSTEP]
exact
match s1, s2, h with
| _, _, ⟨s, S, rfl, rfl⟩ => by
apply recOn s <;> simp
· apply recOn S <;> simp
· intro x S
cases' x with a s; simp [map]
exact ⟨_, _, rfl, rfl⟩
· intro _ s
refine' ⟨s, S, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
S✝ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s : Seq β
S : Seq (Seq1 α)
⊢ BisimO (fun s1 s2 => ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)))
(destruct (append s (Seq.map f (Seq.join S)))) (destruct (append s (Seq.join (Seq.map (map f) S))))
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
S✝ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s : Seq β
S : Seq (Seq1 α)
⊢ BisimO (fun s1 s2 => ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)))
(destruct (append nil (Seq.map f (Seq.join S)))) (destruct (append nil (Seq.join (Seq.map (map f) S))))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
S✝ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s : Seq β
S : Seq (Seq1 α)
⊢ ∀ (x : β) (s : Seq β),
BisimO (fun s1 s2 => ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)))
(destruct (append (Seq.cons x s) (Seq.map f (Seq.join S))))
(destruct (append (Seq.cons x s) (Seq.join (Seq.map (map f) S))))
[PROOFSTEP]
simp
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
S✝ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s : Seq β
S : Seq (Seq1 α)
⊢ match destruct (Seq.map f (Seq.join S)), destruct (Seq.join (Seq.map (map f) S)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S))
| x, x_1 => False
[PROOFSTEP]
apply recOn S
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
f : α → β
S✝ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s : Seq β
S : Seq (Seq1 α)
⊢ match destruct (Seq.map f (Seq.join nil)), destruct (Seq.join (Seq.map (map f) nil)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
f : α → β
S✝ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s : Seq β
S : Seq (Seq1 α)
⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)),
match destruct (Seq.map f (Seq.join (Seq.cons x s))), destruct (Seq.join (Seq.map (map f) (Seq.cons x s))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
f : α → β
S✝ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s : Seq β
S : Seq (Seq1 α)
⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)),
match destruct (Seq.map f (Seq.join (Seq.cons x s))),
destruct (Seq.join (Seq.cons (map f x) (Seq.map (map f) s))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S))
| x, x_1 => False
[PROOFSTEP]
intro x S
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
f : α → β
S✝¹ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s : Seq β
S✝ : Seq (Seq1 α)
x : Seq1 α
S : Seq (Seq1 α)
⊢ match destruct (Seq.map f (Seq.join (Seq.cons x S))),
destruct (Seq.join (Seq.cons (map f x) (Seq.map (map f) S))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S))
| x, x_1 => False
[PROOFSTEP]
cases' x with a s
[GOAL]
case h1.h2.mk
α : Type u
β : Type v
γ : Type w
f : α → β
S✝¹ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s✝ : Seq β
S✝ S : Seq (Seq1 α)
a : α
s : Seq α
⊢ match destruct (Seq.map f (Seq.join (Seq.cons (a, s) S))),
destruct (Seq.join (Seq.cons (map f (a, s)) (Seq.map (map f) S))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S))
| x, x_1 => False
[PROOFSTEP]
simp [map]
[GOAL]
case h1.h2.mk
α : Type u
β : Type v
γ : Type w
f : α → β
S✝¹ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s✝ : Seq β
S✝ S : Seq (Seq1 α)
a : α
s : Seq α
⊢ ∃ s_1 S_1,
append (Seq.map f s) (Seq.map f (Seq.join S)) = append s_1 (Seq.map f (Seq.join S_1)) ∧
append (Seq.map f s)
(Seq.join
(Seq.map
(fun x =>
match x with
| (a, s) => (f a, Seq.map f s))
S)) =
append s_1
(Seq.join
(Seq.map
(fun x =>
match x with
| (a, s) => (f a, Seq.map f s))
S_1))
[PROOFSTEP]
exact ⟨_, _, rfl, rfl⟩
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
S✝ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s : Seq β
S : Seq (Seq1 α)
⊢ β →
∀ (s : Seq β),
∃ s_1 S_1,
append s (Seq.map f (Seq.join S)) = append s_1 (Seq.map f (Seq.join S_1)) ∧
append s (Seq.join (Seq.map (map f) S)) = append s_1 (Seq.join (Seq.map (map f) S_1))
[PROOFSTEP]
intro _ s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
S✝ : Seq (Seq1 α)
s1 s2 : Seq β
h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))
s✝ : Seq β
S : Seq (Seq1 α)
x✝ : β
s : Seq β
⊢ ∃ s_1 S_1,
append s (Seq.map f (Seq.join S)) = append s_1 (Seq.map f (Seq.join S_1)) ∧
append s (Seq.join (Seq.map (map f) S)) = append s_1 (Seq.join (Seq.map (map f) S_1))
[PROOFSTEP]
refine' ⟨s, S, rfl, rfl⟩
[GOAL]
case r
α : Type u
β : Type v
γ : Type w
f : α → β
S : Seq (Seq1 α)
⊢ ∃ s S_1,
Seq.map f (Seq.join S) = append s (Seq.map f (Seq.join S_1)) ∧
Seq.join (Seq.map (map f) S) = append s (Seq.join (Seq.map (map f) S_1))
[PROOFSTEP]
refine' ⟨nil, S, _, _⟩
[GOAL]
case r.refine'_1
α : Type u
β : Type v
γ : Type w
f : α → β
S : Seq (Seq1 α)
⊢ Seq.map f (Seq.join S) = append nil (Seq.map f (Seq.join S))
[PROOFSTEP]
simp
[GOAL]
case r.refine'_2
α : Type u
β : Type v
γ : Type w
f : α → β
S : Seq (Seq1 α)
⊢ Seq.join (Seq.map (map f) S) = append nil (Seq.join (Seq.map (map f) S))
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Seq α
S : Seq (Seq1 α)
⊢ map f (join ((a, s), S)) = join (map (map f) ((a, s), S))
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Seq α
S : Seq (Seq1 α)
⊢ map f (join ((a, nil), S)) = join (map (map f) ((a, nil), S))
[PROOFSTEP]
intros
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Seq α
S : Seq (Seq1 α)
⊢ ∀ (x : α) (s : Seq α), map f (join ((a, Seq.cons x s), S)) = join (map (map f) ((a, Seq.cons x s), S))
[PROOFSTEP]
intros
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Seq α
S : Seq (Seq1 α)
⊢ map f (join ((a, nil), S)) = join (map (map f) ((a, nil), S))
[PROOFSTEP]
simp [map]
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
f : α → β
a : α
s : Seq α
S : Seq (Seq1 α)
x✝ : α
s✝ : Seq α
⊢ map f (join ((a, Seq.cons x✝ s✝), S)) = join (map (map f) ((a, Seq.cons x✝ s✝), S))
[PROOFSTEP]
simp [map]
[GOAL]
α : Type u
β : Type v
γ : Type w
SS : Seq (Seq1 (Seq1 α))
⊢ Seq.join (Seq.join SS) = Seq.join (Seq.map join SS)
[PROOFSTEP]
apply
Seq.eq_of_bisim fun s1 s2 =>
∃ s SS, s1 = Seq.append s (Seq.join (Seq.join SS)) ∧ s2 = Seq.append s (Seq.join (Seq.map join SS))
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
SS : Seq (Seq1 (Seq1 α))
⊢ Seq.IsBisimulation fun s1 s2 =>
∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
[PROOFSTEP]
intro s1 s2 h
[GOAL]
case bisim
α : Type u
β : Type v
γ : Type w
SS : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
⊢ BisimO (fun s1 s2 => ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)))
(destruct s1) (destruct s2)
[PROOFSTEP]
exact
match s1, s2, h with
| _, _, ⟨s, SS, rfl, rfl⟩ => by
apply recOn s <;> simp
· apply recOn SS <;> simp
· intro S SS
cases' S with s S; cases' s with x s; simp [map]
apply recOn s <;> simp
· exact ⟨_, _, rfl, rfl⟩
· intro x s
refine' ⟨Seq.cons x (append s (Seq.join S)), SS, _, _⟩ <;> simp
· intro _ s
exact ⟨s, SS, rfl, rfl⟩
[GOAL]
α : Type u
β : Type v
γ : Type w
SS✝ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s : Seq α
SS : Seq (Seq1 (Seq1 α))
⊢ BisimO (fun s1 s2 => ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)))
(destruct (append s (Seq.join (Seq.join SS)))) (destruct (append s (Seq.join (Seq.map join SS))))
[PROOFSTEP]
apply recOn s
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
SS✝ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s : Seq α
SS : Seq (Seq1 (Seq1 α))
⊢ BisimO (fun s1 s2 => ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)))
(destruct (append nil (Seq.join (Seq.join SS)))) (destruct (append nil (Seq.join (Seq.map join SS))))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
SS✝ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s : Seq α
SS : Seq (Seq1 (Seq1 α))
⊢ ∀ (x : α) (s : Seq α),
BisimO (fun s1 s2 => ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)))
(destruct (append (Seq.cons x s) (Seq.join (Seq.join SS))))
(destruct (append (Seq.cons x s) (Seq.join (Seq.map join SS))))
[PROOFSTEP]
simp
[GOAL]
case h1
α : Type u
β : Type v
γ : Type w
SS✝ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s : Seq α
SS : Seq (Seq1 (Seq1 α))
⊢ match destruct (Seq.join (Seq.join SS)), destruct (Seq.join (Seq.map join SS)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_1 => False
[PROOFSTEP]
apply recOn SS
[GOAL]
case h1.h1
α : Type u
β : Type v
γ : Type w
SS✝ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s : Seq α
SS : Seq (Seq1 (Seq1 α))
⊢ match destruct (Seq.join (Seq.join nil)), destruct (Seq.join (Seq.map join nil)) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
SS✝ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s : Seq α
SS : Seq (Seq1 (Seq1 α))
⊢ ∀ (x : Seq1 (Seq1 α)) (s : Seq (Seq1 (Seq1 α))),
match destruct (Seq.join (Seq.join (Seq.cons x s))), destruct (Seq.join (Seq.map join (Seq.cons x s))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
SS✝ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s : Seq α
SS : Seq (Seq1 (Seq1 α))
⊢ ∀ (x : Seq1 (Seq1 α)) (s : Seq (Seq1 (Seq1 α))),
match destruct (Seq.join (Seq.join (Seq.cons x s))), destruct (Seq.join (Seq.cons (join x) (Seq.map join s))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_1 => False
[PROOFSTEP]
intro S SS
[GOAL]
case h1.h2
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s : Seq α
SS✝ : Seq (Seq1 (Seq1 α))
S : Seq1 (Seq1 α)
SS : Seq (Seq1 (Seq1 α))
⊢ match destruct (Seq.join (Seq.join (Seq.cons S SS))), destruct (Seq.join (Seq.cons (join S) (Seq.map join SS))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_1 => False
[PROOFSTEP]
cases' S with s S
[GOAL]
case h1.h2.mk
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
s : Seq1 α
S : Seq (Seq1 α)
⊢ match destruct (Seq.join (Seq.join (Seq.cons (s, S) SS))),
destruct (Seq.join (Seq.cons (join (s, S)) (Seq.map join SS))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_1 => False
[PROOFSTEP]
cases' s with x s
[GOAL]
case h1.h2.mk.mk
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
S : Seq (Seq1 α)
x : α
s : Seq α
⊢ match destruct (Seq.join (Seq.join (Seq.cons ((x, s), S) SS))),
destruct (Seq.join (Seq.cons (join ((x, s), S)) (Seq.map join SS))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_1 => False
[PROOFSTEP]
simp [map]
[GOAL]
case h1.h2.mk.mk
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
S : Seq (Seq1 α)
x : α
s : Seq α
⊢ match some (x, append s (append (Seq.join S) (Seq.join (Seq.join SS)))),
destruct (Seq.join (Seq.cons (join ((x, s), S)) (Seq.map join SS))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_1 => False
[PROOFSTEP]
apply recOn s
[GOAL]
case h1.h2.mk.mk.h1
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
S : Seq (Seq1 α)
x : α
s : Seq α
⊢ match some (x, append nil (append (Seq.join S) (Seq.join (Seq.join SS)))),
destruct (Seq.join (Seq.cons (join ((x, nil), S)) (Seq.map join SS))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_1 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2.mk.mk.h2
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
S : Seq (Seq1 α)
x : α
s : Seq α
⊢ ∀ (x_1 : α) (s : Seq α),
match some (x, append (Seq.cons x_1 s) (append (Seq.join S) (Seq.join (Seq.join SS)))),
destruct (Seq.join (Seq.cons (join ((x, Seq.cons x_1 s), S)) (Seq.map join SS))) with
| none, none => True
| some (a, s), some (a', s') =>
a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS))
| x, x_2 => False
[PROOFSTEP]
simp
[GOAL]
case h1.h2.mk.mk.h1
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
S : Seq (Seq1 α)
x : α
s : Seq α
⊢ ∃ s SS_1,
append (Seq.join S) (Seq.join (Seq.join SS)) = append s (Seq.join (Seq.join SS_1)) ∧
append (Seq.join S) (Seq.join (Seq.map join SS)) = append s (Seq.join (Seq.map join SS_1))
[PROOFSTEP]
exact ⟨_, _, rfl, rfl⟩
[GOAL]
case h1.h2.mk.mk.h2
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
S : Seq (Seq1 α)
x : α
s : Seq α
⊢ ∀ (x : α) (s : Seq α),
∃ s_1 SS_1,
Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.join SS)))) = append s_1 (Seq.join (Seq.join SS_1)) ∧
Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.map join SS)))) =
append s_1 (Seq.join (Seq.map join SS_1))
[PROOFSTEP]
intro x s
[GOAL]
case h1.h2.mk.mk.h2
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝¹ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
S : Seq (Seq1 α)
x✝ : α
s✝ : Seq α
x : α
s : Seq α
⊢ ∃ s_1 SS_1,
Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.join SS)))) = append s_1 (Seq.join (Seq.join SS_1)) ∧
Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.map join SS)))) =
append s_1 (Seq.join (Seq.map join SS_1))
[PROOFSTEP]
refine' ⟨Seq.cons x (append s (Seq.join S)), SS, _, _⟩
[GOAL]
case h1.h2.mk.mk.h2.refine'_1
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝¹ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
S : Seq (Seq1 α)
x✝ : α
s✝ : Seq α
x : α
s : Seq α
⊢ Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.join SS)))) =
append (Seq.cons x (append s (Seq.join S))) (Seq.join (Seq.join SS))
[PROOFSTEP]
simp
[GOAL]
case h1.h2.mk.mk.h2.refine'_2
α : Type u
β : Type v
γ : Type w
SS✝¹ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝¹ : Seq α
SS✝ SS : Seq (Seq1 (Seq1 α))
S : Seq (Seq1 α)
x✝ : α
s✝ : Seq α
x : α
s : Seq α
⊢ Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.map join SS)))) =
append (Seq.cons x (append s (Seq.join S))) (Seq.join (Seq.map join SS))
[PROOFSTEP]
simp
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
SS✝ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s : Seq α
SS : Seq (Seq1 (Seq1 α))
⊢ α →
∀ (s : Seq α),
∃ s_1 SS_1,
append s (Seq.join (Seq.join SS)) = append s_1 (Seq.join (Seq.join SS_1)) ∧
append s (Seq.join (Seq.map join SS)) = append s_1 (Seq.join (Seq.map join SS_1))
[PROOFSTEP]
intro _ s
[GOAL]
case h2
α : Type u
β : Type v
γ : Type w
SS✝ : Seq (Seq1 (Seq1 α))
s1 s2 : Seq α
h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))
s✝ : Seq α
SS : Seq (Seq1 (Seq1 α))
x✝ : α
s : Seq α
⊢ ∃ s_1 SS_1,
append s (Seq.join (Seq.join SS)) = append s_1 (Seq.join (Seq.join SS_1)) ∧
append s (Seq.join (Seq.map join SS)) = append s_1 (Seq.join (Seq.map join SS_1))
[PROOFSTEP]
exact ⟨s, SS, rfl, rfl⟩
[GOAL]
case r
α : Type u
β : Type v
γ : Type w
SS : Seq (Seq1 (Seq1 α))
⊢ ∃ s SS_1,
Seq.join (Seq.join SS) = append s (Seq.join (Seq.join SS_1)) ∧
Seq.join (Seq.map join SS) = append s (Seq.join (Seq.map join SS_1))
[PROOFSTEP]
refine' ⟨nil, SS, _, _⟩
[GOAL]
case r.refine'_1
α : Type u
β : Type v
γ : Type w
SS : Seq (Seq1 (Seq1 α))
⊢ Seq.join (Seq.join SS) = append nil (Seq.join (Seq.join SS))
[PROOFSTEP]
simp
[GOAL]
case r.refine'_2
α : Type u
β : Type v
γ : Type w
SS : Seq (Seq1 (Seq1 α))
⊢ Seq.join (Seq.map join SS) = append nil (Seq.join (Seq.map join SS))
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s : Seq1 α
f : α → Seq1 β
g : β → Seq1 γ
⊢ bind (bind s f) g = bind s fun x => bind (f x) g
[PROOFSTEP]
cases' s with a s
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a : α
s : Seq α
⊢ bind (bind (a, s) f) g = bind (a, s) fun x => bind (f x) g
[PROOFSTEP]
simp only [bind, map_pair, map_join]
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a : α
s : Seq α
⊢ join (join (map g (f a), Seq.map (map g) (Seq.map f s))) =
join (join (map g (f a)), Seq.map (fun x => join (map g (f x))) s)
[PROOFSTEP]
rw [← map_comp]
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a : α
s : Seq α
⊢ join (join (map g (f a), Seq.map (map g ∘ f) s)) = join (join (map g (f a)), Seq.map (fun x => join (map g (f x))) s)
[PROOFSTEP]
simp only [show (fun x => join (map g (f x))) = join ∘ (map g ∘ f) from rfl]
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a : α
s : Seq α
⊢ join (join (map g (f a), Seq.map (map g ∘ f) s)) = join (join (map g (f a)), Seq.map (join ∘ map g ∘ f) s)
[PROOFSTEP]
rw [map_comp _ join]
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a : α
s : Seq α
⊢ join (join (map g (f a), Seq.map (map g ∘ f) s)) = join (join (map g (f a)), Seq.map join (Seq.map (map g ∘ f) s))
[PROOFSTEP]
generalize Seq.map (map g ∘ f) s = SS
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
⊢ join (join (map g (f a), SS)) = join (join (map g (f a)), Seq.map join SS)
[PROOFSTEP]
rcases map g (f a) with
⟨⟨a, s⟩, S⟩
-- Porting note: Instead of `apply recOn s <;> intros`, `induction'` are used to
-- give names to variables.
[GOAL]
case mk.mk.mk
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s✝ : Seq α
SS : Seq (Seq1 (Seq1 γ))
S : Seq (Seq1 γ)
a : γ
s : Seq γ
⊢ join (join (((a, s), S), SS)) = join (join ((a, s), S), Seq.map join SS)
[PROOFSTEP]
induction' s using recOn with x s_1
[GOAL]
case mk.mk.mk.h1
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
S : Seq (Seq1 γ)
a : γ
⊢ join (join (((a, nil), S), SS)) = join (join ((a, nil), S), Seq.map join SS)
[PROOFSTEP]
induction' S using recOn with x_1 s_2
[GOAL]
case mk.mk.mk.h2
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
S : Seq (Seq1 γ)
a x : γ
s_1 : Seq γ
⊢ join (join (((a, Seq.cons x s_1), S), SS)) = join (join ((a, Seq.cons x s_1), S), Seq.map join SS)
[PROOFSTEP]
induction' S using recOn with x_1 s_2
[GOAL]
case mk.mk.mk.h1.h1
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a : γ
⊢ join (join (((a, nil), nil), SS)) = join (join ((a, nil), nil), Seq.map join SS)
[PROOFSTEP]
simp
[GOAL]
case mk.mk.mk.h1.h2
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a : γ
x_1 : Seq1 γ
s_2 : Seq (Seq1 γ)
⊢ join (join (((a, nil), Seq.cons x_1 s_2), SS)) = join (join ((a, nil), Seq.cons x_1 s_2), Seq.map join SS)
[PROOFSTEP]
simp
[GOAL]
case mk.mk.mk.h2.h1
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a x : γ
s_1 : Seq γ
⊢ join (join (((a, Seq.cons x s_1), nil), SS)) = join (join ((a, Seq.cons x s_1), nil), Seq.map join SS)
[PROOFSTEP]
simp
[GOAL]
case mk.mk.mk.h2.h2
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a x : γ
s_1 : Seq γ
x_1 : Seq1 γ
s_2 : Seq (Seq1 γ)
⊢ join (join (((a, Seq.cons x s_1), Seq.cons x_1 s_2), SS)) =
join (join ((a, Seq.cons x s_1), Seq.cons x_1 s_2), Seq.map join SS)
[PROOFSTEP]
simp
[GOAL]
case mk.mk.mk.h1.h2
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a : γ
x_1 : Seq1 γ
s_2 : Seq (Seq1 γ)
⊢ (a, Seq.join (Seq.cons x_1 (append s_2 (Seq.join SS)))) = join ((a, Seq.join (Seq.cons x_1 s_2)), Seq.map join SS)
[PROOFSTEP]
cases' x_1 with x t
[GOAL]
case mk.mk.mk.h1.h2.mk
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a : γ
s_2 : Seq (Seq1 γ)
x : γ
t : Seq γ
⊢ (a, Seq.join (Seq.cons (x, t) (append s_2 (Seq.join SS)))) =
join ((a, Seq.join (Seq.cons (x, t) s_2)), Seq.map join SS)
[PROOFSTEP]
apply recOn t
[GOAL]
case mk.mk.mk.h1.h2.mk.h1
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a : γ
s_2 : Seq (Seq1 γ)
x : γ
t : Seq γ
⊢ (a, Seq.join (Seq.cons (x, nil) (append s_2 (Seq.join SS)))) =
join ((a, Seq.join (Seq.cons (x, nil) s_2)), Seq.map join SS)
[PROOFSTEP]
intros
[GOAL]
case mk.mk.mk.h1.h2.mk.h2
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a : γ
s_2 : Seq (Seq1 γ)
x : γ
t : Seq γ
⊢ ∀ (x_1 : γ) (s : Seq γ),
(a, Seq.join (Seq.cons (x, Seq.cons x_1 s) (append s_2 (Seq.join SS)))) =
join ((a, Seq.join (Seq.cons (x, Seq.cons x_1 s) s_2)), Seq.map join SS)
[PROOFSTEP]
intros
[GOAL]
case mk.mk.mk.h1.h2.mk.h1
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a : γ
s_2 : Seq (Seq1 γ)
x : γ
t : Seq γ
⊢ (a, Seq.join (Seq.cons (x, nil) (append s_2 (Seq.join SS)))) =
join ((a, Seq.join (Seq.cons (x, nil) s_2)), Seq.map join SS)
[PROOFSTEP]
simp
[GOAL]
case mk.mk.mk.h1.h2.mk.h2
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a : γ
s_2 : Seq (Seq1 γ)
x : γ
t : Seq γ
x✝ : γ
s✝ : Seq γ
⊢ (a, Seq.join (Seq.cons (x, Seq.cons x✝ s✝) (append s_2 (Seq.join SS)))) =
join ((a, Seq.join (Seq.cons (x, Seq.cons x✝ s✝) s_2)), Seq.map join SS)
[PROOFSTEP]
simp
[GOAL]
case mk.mk.mk.h2.h2
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a x : γ
s_1 : Seq γ
x_1 : Seq1 γ
s_2 : Seq (Seq1 γ)
⊢ (a, Seq.cons x (append s_1 (Seq.join (Seq.cons x_1 (append s_2 (Seq.join SS)))))) =
(a, Seq.cons x (append s_1 (append (Seq.join (Seq.cons x_1 s_2)) (Seq.join (Seq.map join SS)))))
[PROOFSTEP]
cases' x_1 with y t
[GOAL]
case mk.mk.mk.h2.h2.mk
α : Type u
β : Type v
γ : Type w
f : α → Seq1 β
g : β → Seq1 γ
a✝ : α
s : Seq α
SS : Seq (Seq1 (Seq1 γ))
a x : γ
s_1 : Seq γ
s_2 : Seq (Seq1 γ)
y : γ
t : Seq γ
⊢ (a, Seq.cons x (append s_1 (Seq.join (Seq.cons (y, t) (append s_2 (Seq.join SS)))))) =
(a, Seq.cons x (append s_1 (append (Seq.join (Seq.cons (y, t) s_2)) (Seq.join (Seq.map join SS)))))
[PROOFSTEP]
simp
|
{"mathlib_filename": "Mathlib.Data.Seq.Seq", "llama_tokens": 69499}
|
{"mathlib_filename": "Mathlib.Data.MLList.Heartbeats", "llama_tokens": 0}
|
|
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
⊢ Fibration (InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd) (DFinsupp.Lex r s) fun x =>
piecewise x.snd.fst x.snd.snd x.fst
[PROOFSTEP]
rintro ⟨p, x₁, x₂⟩ x ⟨i, hr, hs⟩
[GOAL]
case mk.mk.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = ↑((fun x => piecewise x.snd.fst x.snd.snd x.fst) (p, x₁, x₂)) j
hs : s i (↑x i) (↑((fun x => piecewise x.snd.fst x.snd.snd x.fst) (p, x₁, x₂)) i)
⊢ ∃ a',
InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧
(fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x
[PROOFSTEP]
simp_rw [piecewise_apply] at hs hr
[GOAL]
case mk.mk.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hs : s i (↑x i) (if i ∈ p then ↑x₁ i else ↑x₂ i)
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
⊢ ∃ a',
InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧
(fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x
[PROOFSTEP]
split_ifs at hs with hp
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
⊢ ∃ a',
InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧
(fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x
[PROOFSTEP]
refine ⟨⟨{j | r j i → j ∈ p}, piecewise x₁ x {j | r j i}, x₂⟩, .fst ⟨i, fun j hj ↦ ?_, ?_⟩, ?_⟩
[GOAL]
case pos.refine_1
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
hj : r j i
⊢ ↑(piecewise x₁ x {j | r j i}) j = ↑x₁ j
[PROOFSTEP]
simp only [piecewise_apply, Set.mem_setOf_eq]
[GOAL]
case pos.refine_2
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
⊢ (fun {i} => s i) (↑(piecewise x₁ x {j | r j i}) i) (↑x₁ i)
[PROOFSTEP]
simp only [piecewise_apply, Set.mem_setOf_eq]
[GOAL]
case pos.refine_3
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
⊢ (fun x => piecewise x.snd.fst x.snd.snd x.fst) ({j | r j i → j ∈ p}, piecewise x₁ x {j | r j i}, x₂) = x
[PROOFSTEP]
simp only [piecewise_apply, Set.mem_setOf_eq]
[GOAL]
case pos.refine_1
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
hj : r j i
⊢ (if r j i then ↑x₁ j else ↑x j) = ↑x₁ j
[PROOFSTEP]
simp only [if_pos hj]
[GOAL]
case pos.refine_2
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
⊢ s i (if r i i then ↑x₁ i else ↑x i) (↑x₁ i)
[PROOFSTEP]
split_ifs with hi
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
hi : r i i
⊢ s i (↑x₁ i) (↑x₁ i)
[PROOFSTEP]
rwa [hr i hi, if_pos hp] at hs
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
hi : ¬r i i
⊢ s i (↑x i) (↑x₁ i)
[PROOFSTEP]
assumption
[GOAL]
case pos.refine_3
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
⊢ piecewise (piecewise x₁ x {j | r j i}) x₂ {j | r j i → j ∈ p} = x
[PROOFSTEP]
ext1 j
[GOAL]
case pos.refine_3.h
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
⊢ ↑(piecewise (piecewise x₁ x {j | r j i}) x₂ {j | r j i → j ∈ p}) j = ↑x j
[PROOFSTEP]
simp only [piecewise_apply, Set.mem_setOf_eq]
[GOAL]
case pos.refine_3.h
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
⊢ (if r j i → j ∈ p then if r j i then ↑x₁ j else ↑x j else ↑x₂ j) = ↑x j
[PROOFSTEP]
split_ifs with h₁ h₂
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
h₁ : r j i → j ∈ p
h₂ : r j i
⊢ ↑x₁ j = ↑x j
[PROOFSTEP]
try rfl
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
h₁ : r j i → j ∈ p
h₂ : r j i
⊢ ↑x₁ j = ↑x j
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
h₁ : r j i → j ∈ p
h₂ : ¬r j i
⊢ ↑x j = ↑x j
[PROOFSTEP]
try rfl
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
h₁ : r j i → j ∈ p
h₂ : ¬r j i
⊢ ↑x j = ↑x j
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
h₁ : ¬(r j i → j ∈ p)
⊢ ↑x₂ j = ↑x j
[PROOFSTEP]
try rfl
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
h₁ : ¬(r j i → j ∈ p)
⊢ ↑x₂ j = ↑x j
[PROOFSTEP]
rfl
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
h₁ : r j i → j ∈ p
h₂ : r j i
⊢ ↑x₁ j = ↑x j
[PROOFSTEP]
rw [hr j h₂, if_pos (h₁ h₂)]
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
h₁ : ¬(r j i → j ∈ p)
⊢ ↑x₂ j = ↑x j
[PROOFSTEP]
rw [not_imp] at h₁
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : i ∈ p
hs : s i (↑x i) (↑x₁ i)
j : ι
h₁ : r j i ∧ ¬j ∈ p
⊢ ↑x₂ j = ↑x j
[PROOFSTEP]
rw [hr j h₁.1, if_neg h₁.2]
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
⊢ ∃ a',
InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧
(fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x
[PROOFSTEP]
refine ⟨⟨{j | r j i ∧ j ∈ p}, x₁, piecewise x₂ x {j | r j i}⟩, .snd ⟨i, fun j hj ↦ ?_, ?_⟩, ?_⟩
[GOAL]
case neg.refine_1
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
hj : r j i
⊢ ↑(piecewise x₂ x {j | r j i}) j = ↑x₂ j
[PROOFSTEP]
simp only [piecewise_apply, Set.mem_setOf_eq]
[GOAL]
case neg.refine_2
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
⊢ (fun {i} => s i) (↑(piecewise x₂ x {j | r j i}) i) (↑x₂ i)
[PROOFSTEP]
simp only [piecewise_apply, Set.mem_setOf_eq]
[GOAL]
case neg.refine_3
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
⊢ (fun x => piecewise x.snd.fst x.snd.snd x.fst) ({j | r j i ∧ j ∈ p}, x₁, piecewise x₂ x {j | r j i}) = x
[PROOFSTEP]
simp only [piecewise_apply, Set.mem_setOf_eq]
[GOAL]
case neg.refine_1
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
hj : r j i
⊢ (if r j i then ↑x₂ j else ↑x j) = ↑x₂ j
[PROOFSTEP]
exact if_pos hj
[GOAL]
case neg.refine_2
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
⊢ s i (if r i i then ↑x₂ i else ↑x i) (↑x₂ i)
[PROOFSTEP]
split_ifs with hi
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
hi : r i i
⊢ s i (↑x₂ i) (↑x₂ i)
[PROOFSTEP]
rwa [hr i hi, if_neg hp] at hs
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
hi : ¬r i i
⊢ s i (↑x i) (↑x₂ i)
[PROOFSTEP]
assumption
[GOAL]
case neg.refine_3
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
⊢ piecewise x₁ (piecewise x₂ x {j | r j i}) {j | r j i ∧ j ∈ p} = x
[PROOFSTEP]
ext1 j
[GOAL]
case neg.refine_3.h
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
⊢ ↑(piecewise x₁ (piecewise x₂ x {j | r j i}) {j | r j i ∧ j ∈ p}) j = ↑x j
[PROOFSTEP]
simp only [piecewise_apply, Set.mem_setOf_eq]
[GOAL]
case neg.refine_3.h
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
⊢ (if r j i ∧ j ∈ p then ↑x₁ j else if r j i then ↑x₂ j else ↑x j) = ↑x j
[PROOFSTEP]
split_ifs with h₁ h₂
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
h₁ : r j i ∧ j ∈ p
⊢ ↑x₁ j = ↑x j
[PROOFSTEP]
try rfl
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
h₁ : r j i ∧ j ∈ p
⊢ ↑x₁ j = ↑x j
[PROOFSTEP]
rfl
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
h₁ : ¬(r j i ∧ j ∈ p)
h₂ : r j i
⊢ ↑x₂ j = ↑x j
[PROOFSTEP]
try rfl
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
h₁ : ¬(r j i ∧ j ∈ p)
h₂ : r j i
⊢ ↑x₂ j = ↑x j
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
h₁ : ¬(r j i ∧ j ∈ p)
h₂ : ¬r j i
⊢ ↑x j = ↑x j
[PROOFSTEP]
try rfl
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
h₁ : ¬(r j i ∧ j ∈ p)
h₂ : ¬r j i
⊢ ↑x j = ↑x j
[PROOFSTEP]
rfl
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
h₁ : r j i ∧ j ∈ p
⊢ ↑x₁ j = ↑x j
[PROOFSTEP]
rw [hr j h₁.1, if_pos h₁.2]
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
h₁ : ¬(r j i ∧ j ∈ p)
h₂ : r j i
⊢ ↑x₂ j = ↑x j
[PROOFSTEP]
rw [hr j h₂, if_neg]
[GOAL]
case pos.hnc
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s)
p : Set ι
x₁ x₂ x : Π₀ (i : ι), α i
i : ι
hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j
hp : ¬i ∈ p
hs : s i (↑x i) (↑x₂ i)
j : ι
h₁ : ¬(r j i ∧ j ∈ p)
h₂ : r j i
⊢ ¬j ∈ p
[PROOFSTEP]
simpa [h₂] using h₁
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : DecidableEq ι
x : Π₀ (i : ι), α i
i : ι
hs : Acc (DFinsupp.Lex r s) (single i (↑x i))
hu : Acc (DFinsupp.Lex r s) (erase i x)
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
classical
convert ← @Acc.of_fibration _ _ _ _ _ (lex_fibration r s) ⟨{ i }, _⟩ (InvImage.accessible snd <| hs.prod_gameAdd hu)
convert piecewise_single_erase x i
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : DecidableEq ι
x : Π₀ (i : ι), α i
i : ι
hs : Acc (DFinsupp.Lex r s) (single i (↑x i))
hu : Acc (DFinsupp.Lex r s) (erase i x)
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
convert ← @Acc.of_fibration _ _ _ _ _ (lex_fibration r s) ⟨{ i }, _⟩ (InvImage.accessible snd <| hs.prod_gameAdd hu)
[GOAL]
case h.e'_3
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝ : DecidableEq ι
x : Π₀ (i : ι), α i
i : ι
hs : Acc (DFinsupp.Lex r s) (single i (↑x i))
hu : Acc (DFinsupp.Lex r s) (erase i x)
⊢ piecewise ({i}, single i (↑x i), erase i x).snd.fst ({i}, single i (↑x i), erase i x).snd.snd
({i}, single i (↑x i), erase i x).fst =
x
[PROOFSTEP]
convert piecewise_single_erase x i
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
x : Π₀ (i : ι), α i
⊢ (∀ (i : ι), i ∈ support x → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
generalize ht : x.support = t
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
x : Π₀ (i : ι), α i
t : Finset ι
ht : support x = t
⊢ (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
revert x
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
t : Finset ι
⊢ ∀ (x : Π₀ (i : ι), α i),
support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
classical
induction' t using Finset.induction with b t hb ih
· intro x ht
rw [support_eq_empty.1 ht]
exact fun _ => Lex.acc_zero hbot
refine' fun x ht h => Lex.acc_of_single_erase b (h b <| t.mem_insert_self b) _
refine' ih _ (by rw [support_erase, ht, Finset.erase_insert hb]) fun a ha => _
rw [erase_ne (ha.ne_of_not_mem hb)]
exact h a (Finset.mem_insert_of_mem ha)
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
t : Finset ι
⊢ ∀ (x : Π₀ (i : ι), α i),
support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
induction' t using Finset.induction with b t hb ih
[GOAL]
case empty
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
⊢ ∀ (x : Π₀ (i : ι), α i),
support x = ∅ → (∀ (i : ι), i ∈ ∅ → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
intro x ht
[GOAL]
case empty
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
x : Π₀ (i : ι), α i
ht : support x = ∅
⊢ (∀ (i : ι), i ∈ ∅ → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
rw [support_eq_empty.1 ht]
[GOAL]
case empty
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
x : Π₀ (i : ι), α i
ht : support x = ∅
⊢ (∀ (i : ι), i ∈ ∅ → Acc (DFinsupp.Lex r s) (single i (↑0 i))) → Acc (DFinsupp.Lex r s) 0
[PROOFSTEP]
exact fun _ => Lex.acc_zero hbot
[GOAL]
case insert
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
b : ι
t : Finset ι
hb : ¬b ∈ t
ih :
∀ (x : Π₀ (i : ι), α i),
support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
⊢ ∀ (x : Π₀ (i : ι), α i),
support x = insert b t →
(∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
refine' fun x ht h => Lex.acc_of_single_erase b (h b <| t.mem_insert_self b) _
[GOAL]
case insert
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
b : ι
t : Finset ι
hb : ¬b ∈ t
ih :
∀ (x : Π₀ (i : ι), α i),
support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
x : Π₀ (i : ι), α i
ht : support x = insert b t
h : ∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i))
⊢ Acc (DFinsupp.Lex r s) (erase b x)
[PROOFSTEP]
refine' ih _ (by rw [support_erase, ht, Finset.erase_insert hb]) fun a ha => _
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
b : ι
t : Finset ι
hb : ¬b ∈ t
ih :
∀ (x : Π₀ (i : ι), α i),
support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
x : Π₀ (i : ι), α i
ht : support x = insert b t
h : ∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i))
⊢ support (erase b x) = t
[PROOFSTEP]
rw [support_erase, ht, Finset.erase_insert hb]
[GOAL]
case insert
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
b : ι
t : Finset ι
hb : ¬b ∈ t
ih :
∀ (x : Π₀ (i : ι), α i),
support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
x : Π₀ (i : ι), α i
ht : support x = insert b t
h : ∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i))
a : ι
ha : a ∈ t
⊢ Acc (DFinsupp.Lex r s) (single a (↑(erase b x) a))
[PROOFSTEP]
rw [erase_ne (ha.ne_of_not_mem hb)]
[GOAL]
case insert
ι : Type u_1
α : ι → Type u_2
inst✝² : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
inst✝¹ : DecidableEq ι
inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0)
b : ι
t : Finset ι
hb : ¬b ∈ t
ih :
∀ (x : Π₀ (i : ι), α i),
support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x
x : Π₀ (i : ι), α i
ht : support x = insert b t
h : ∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i))
a : ι
ha : a ∈ t
⊢ Acc (DFinsupp.Lex r s) (single a (↑x a))
[PROOFSTEP]
exact h a (Finset.mem_insert_of_mem ha)
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i : ι
hi : Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) i
⊢ ∀ (a : α i), Acc (DFinsupp.Lex r s) (single i a)
[PROOFSTEP]
induction' hi with i _ ih
[GOAL]
case intro
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
⊢ ∀ (a : α i), Acc (DFinsupp.Lex r s) (single i a)
[PROOFSTEP]
refine fun a => WellFounded.induction (hs i) (C := fun x ↦ Acc (DFinsupp.Lex r s) (single i x)) a fun a ha ↦ ?_
[GOAL]
case intro
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
⊢ (fun x => Acc (DFinsupp.Lex r s) (single i x)) a
[PROOFSTEP]
refine Acc.intro _ fun x ↦ ?_
[GOAL]
case intro
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
⊢ DFinsupp.Lex r s x (single i a) → Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
rintro ⟨k, hr, hs⟩
[GOAL]
case intro.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
k : ι
hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j
hs : s k (↑x k) (↑(single i a) k)
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
rw [single_apply] at hs
[GOAL]
case intro.intro.intro
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
k : ι
hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j
hs : s k (↑x k) (if h : i = k then Eq.recOn h a else 0)
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
split_ifs at hs with hik
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
k : ι
hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j
hik : i = k
hs : s k (↑x k) (Eq.recOn hik a)
⊢ Acc (DFinsupp.Lex r s) x
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
k : ι
hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j
hik : ¬i = k
hs : s k (↑x k) 0
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
swap
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
k : ι
hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j
hik : ¬i = k
hs : s k (↑x k) 0
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
exact (hbot hs).elim
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
k : ι
hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j
hik : i = k
hs : s k (↑x k) (Eq.recOn hik a)
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
subst hik
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j
hs : s i (↑x i) (Eq.recOn (_ : i = i) a)
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
classical
refine Lex.acc_of_single hbot x fun j hj ↦ ?_
obtain rfl | hij := eq_or_ne i j
· exact ha _ hs
by_cases r j i
· rw [hr j h, single_eq_of_ne hij, single_zero]
exact Lex.acc_zero hbot
· exact ih _ ⟨h, hij.symm⟩ _
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j
hs : s i (↑x i) (Eq.recOn (_ : i = i) a)
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
refine Lex.acc_of_single hbot x fun j hj ↦ ?_
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j
hs : s i (↑x i) (Eq.recOn (_ : i = i) a)
j : ι
hj : j ∈ support x
⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j))
[PROOFSTEP]
obtain rfl | hij := eq_or_ne i j
[GOAL]
case pos.inl
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j
hs : s i (↑x i) (Eq.recOn (_ : i = i) a)
hj : i ∈ support x
⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single i (↑x i))
[PROOFSTEP]
exact ha _ hs
[GOAL]
case pos.inr
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j
hs : s i (↑x i) (Eq.recOn (_ : i = i) a)
j : ι
hj : j ∈ support x
hij : i ≠ j
⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j))
[PROOFSTEP]
by_cases r j i
[GOAL]
case pos.inr
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j
hs : s i (↑x i) (Eq.recOn (_ : i = i) a)
j : ι
hj : j ∈ support x
hij : i ≠ j
⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j))
[PROOFSTEP]
by_cases r j i
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j
hs : s i (↑x i) (Eq.recOn (_ : i = i) a)
j : ι
hj : j ∈ support x
hij : i ≠ j
h : r j i
⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j))
[PROOFSTEP]
rw [hr j h, single_eq_of_ne hij, single_zero]
[GOAL]
case pos
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j
hs : s i (↑x i) (Eq.recOn (_ : i = i) a)
j : ι
hj : j ∈ support x
hij : i ≠ j
h : r j i
⊢ Acc (DFinsupp.Lex r fun i a => s i a) 0
[PROOFSTEP]
exact Lex.acc_zero hbot
[GOAL]
case neg
ι : Type u_1
α : ι → Type u_2
inst✝¹ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs✝ : ∀ (i : ι), WellFounded (s i)
inst✝ : DecidableEq ι
i✝ i : ι
h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y
ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a)
a✝ a : α i
ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y
x : Π₀ (i : ι), α i
hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j
hs : s i (↑x i) (Eq.recOn (_ : i = i) a)
j : ι
hj : j ∈ support x
hij : i ≠ j
h : ¬r j i
⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j))
[PROOFSTEP]
exact ih _ ⟨h, hij.symm⟩ _
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs : ∀ (i : ι), WellFounded (s i)
hr : WellFounded (rᶜ ⊓ fun x x_1 => x ≠ x_1)
x : Π₀ (i : ι), α i
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
classical exact Lex.acc hbot hs x fun i _ => hr.apply i
[GOAL]
ι : Type u_1
α : ι → Type u_2
inst✝ : (i : ι) → Zero (α i)
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0
hs : ∀ (i : ι), WellFounded (s i)
hr : WellFounded (rᶜ ⊓ fun x x_1 => x ≠ x_1)
x : Π₀ (i : ι), α i
⊢ Acc (DFinsupp.Lex r s) x
[PROOFSTEP]
exact Lex.acc hbot hs x fun i _ => hr.apply i
[GOAL]
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : IsStrictTotalOrder ι r
inst✝ : Finite ι
hs : ∀ (i : ι), WellFounded (s i)
⊢ WellFounded (Pi.Lex r fun {i} => s i)
[PROOFSTEP]
obtain h | ⟨⟨x⟩⟩ := isEmpty_or_nonempty (∀ i, α i)
[GOAL]
case inl
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : IsStrictTotalOrder ι r
inst✝ : Finite ι
hs : ∀ (i : ι), WellFounded (s i)
h : IsEmpty ((i : ι) → α i)
⊢ WellFounded (Pi.Lex r fun {i} => s i)
[PROOFSTEP]
convert emptyWf.wf
[GOAL]
case inr.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : IsStrictTotalOrder ι r
inst✝ : Finite ι
hs : ∀ (i : ι), WellFounded (s i)
x : (i : ι) → α i
⊢ WellFounded (Pi.Lex r fun {i} => s i)
[PROOFSTEP]
letI : ∀ i, Zero (α i) := fun i => ⟨(hs i).min ⊤ ⟨x i, trivial⟩⟩
[GOAL]
case inr.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : IsStrictTotalOrder ι r
inst✝ : Finite ι
hs : ∀ (i : ι), WellFounded (s i)
x : (i : ι) → α i
this : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) }
⊢ WellFounded (Pi.Lex r fun {i} => s i)
[PROOFSTEP]
haveI := IsTrans.swap r
[GOAL]
case inr.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : IsStrictTotalOrder ι r
inst✝ : Finite ι
hs : ∀ (i : ι), WellFounded (s i)
x : (i : ι) → α i
this✝ : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) }
this : IsTrans ι (Function.swap r)
⊢ WellFounded (Pi.Lex r fun {i} => s i)
[PROOFSTEP]
haveI := IsIrrefl.swap r
[GOAL]
case inr.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : IsStrictTotalOrder ι r
inst✝ : Finite ι
hs : ∀ (i : ι), WellFounded (s i)
x : (i : ι) → α i
this✝¹ : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) }
this✝ : IsTrans ι (Function.swap r)
this : IsIrrefl ι (Function.swap r)
⊢ WellFounded (Pi.Lex r fun {i} => s i)
[PROOFSTEP]
haveI := Fintype.ofFinite ι
[GOAL]
case inr.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : IsStrictTotalOrder ι r
inst✝ : Finite ι
hs : ∀ (i : ι), WellFounded (s i)
x : (i : ι) → α i
this✝² : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) }
this✝¹ : IsTrans ι (Function.swap r)
this✝ : IsIrrefl ι (Function.swap r)
this : Fintype ι
⊢ WellFounded (Pi.Lex r fun {i} => s i)
[PROOFSTEP]
refine' InvImage.wf equivFunOnFintype.symm (Lex.wellFounded' (fun i a => _) hs _)
[GOAL]
case inr.intro.refine'_1
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : IsStrictTotalOrder ι r
inst✝ : Finite ι
hs : ∀ (i : ι), WellFounded (s i)
x : (i : ι) → α i
this✝² : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) }
this✝¹ : IsTrans ι (Function.swap r)
this✝ : IsIrrefl ι (Function.swap r)
this : Fintype ι
i : ι
a : α i
⊢ ¬s i a 0
case inr.intro.refine'_2
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : IsStrictTotalOrder ι r
inst✝ : Finite ι
hs : ∀ (i : ι), WellFounded (s i)
x : (i : ι) → α i
this✝² : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) }
this✝¹ : IsTrans ι (Function.swap r)
this✝ : IsIrrefl ι (Function.swap r)
this : Fintype ι
⊢ WellFounded (Function.swap fun j i => r j i)
[PROOFSTEP]
exacts [(hs i).not_lt_min ⊤ _ trivial, Finite.wellFounded_of_trans_of_irrefl (Function.swap r)]
[GOAL]
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
set β := fun i ↦ Antisymmetrization (α i) (· ≤ ·)
[GOAL]
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
set e : (i : ι) → α i → β i := fun i ↦ toAntisymmetrization (· ≤ ·)
[GOAL]
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
let _ : ∀ i, Zero (β i) := fun i ↦ ⟨e i 0⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
have : WellFounded (DFinsupp.Lex (Function.swap <| @WellOrderingRel ι) (fun _ ↦ (· < ·) : (i : ι) → β i → β i → Prop))
[GOAL]
case this
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
⊢ WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2)
[PROOFSTEP]
have := IsTrichotomous.swap (@WellOrderingRel ι)
[GOAL]
case this
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
this : IsTrichotomous ι (Function.swap WellOrderingRel)
⊢ WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2)
[PROOFSTEP]
refine Lex.wellFounded' ?_ (fun i ↦ IsWellFounded.wf) ?_
[GOAL]
case this.refine_1
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
this : IsTrichotomous ι (Function.swap WellOrderingRel)
⊢ ∀ ⦃i : ι⦄ ⦃a : β i⦄, ¬a < 0
[PROOFSTEP]
rintro i ⟨a⟩
[GOAL]
case this.refine_1.mk
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
this : IsTrichotomous ι (Function.swap WellOrderingRel)
i : ι
a✝ : β i
a : α i
⊢ ¬Quot.mk Setoid.r a < 0
[PROOFSTEP]
apply hbot
[GOAL]
case this.refine_2
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
this : IsTrichotomous ι (Function.swap WellOrderingRel)
⊢ WellFounded (Function.swap (Function.swap WellOrderingRel))
[PROOFSTEP]
simp only [Function.swap]
[GOAL]
case this.refine_2
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
this : IsTrichotomous ι (Function.swap WellOrderingRel)
⊢ WellFounded fun y x => WellOrderingRel y x
[PROOFSTEP]
exact IsWellFounded.wf
[GOAL]
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
this : WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2)
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
refine Subrelation.wf (fun h => ?_) <| InvImage.wf (mapRange (fun i ↦ e i) fun _ ↦ rfl) this
[GOAL]
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝¹ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
this : WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2)
x✝ y✝ : Π₀ (i : ι), α i
h : x✝ < y✝
⊢ InvImage (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2)
(mapRange (fun i => e i) (_ : ∀ (x : ι), (fun i => e i) x 0 = (fun i => e i) x 0)) x✝ y✝
[PROOFSTEP]
have := IsStrictOrder.swap (@WellOrderingRel ι)
[GOAL]
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝¹ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
this✝ : WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2)
x✝ y✝ : Π₀ (i : ι), α i
h : x✝ < y✝
this : IsStrictOrder ι (Function.swap WellOrderingRel)
⊢ InvImage (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2)
(mapRange (fun i => e i) (_ : ∀ (x : ι), (fun i => e i) x 0 = (fun i => e i) x 0)) x✝ y✝
[PROOFSTEP]
obtain ⟨i, he, hl⟩ := lex_lt_of_lt_of_preorder (Function.swap WellOrderingRel) h
[GOAL]
case intro.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝² : (i : ι) → Zero (α i)
inst✝¹ : (i : ι) → Preorder (α i)
inst✝ : ∀ (i : ι), WellFoundedLT (α i)
hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0
β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1
e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1
x✝¹ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 }
this✝ : WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2)
x✝ y✝ : Π₀ (i : ι), α i
h : x✝ < y✝
this : IsStrictOrder ι (Function.swap WellOrderingRel)
i : ι
he : ∀ (j : ι), Function.swap WellOrderingRel j i → ↑x✝ j ≤ ↑y✝ j ∧ ↑y✝ j ≤ ↑x✝ j
hl : ↑x✝ i < ↑y✝ i
⊢ InvImage (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2)
(mapRange (fun i => e i) (_ : ∀ (x : ι), (fun i => e i) x 0 = (fun i => e i) x 0)) x✝ y✝
[PROOFSTEP]
exact ⟨i, fun j hj ↦ Quot.sound (he j hj), hl⟩
[GOAL]
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : Finite ι
inst✝ : (i : ι) → Preorder (α i)
hw : ∀ (i : ι), WellFoundedLT (α i)
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
obtain h | ⟨⟨x⟩⟩ := isEmpty_or_nonempty (∀ i, α i)
[GOAL]
case inl
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : Finite ι
inst✝ : (i : ι) → Preorder (α i)
hw : ∀ (i : ι), WellFoundedLT (α i)
h : IsEmpty ((i : ι) → α i)
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
convert emptyWf.wf
[GOAL]
case inr.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : Finite ι
inst✝ : (i : ι) → Preorder (α i)
hw : ∀ (i : ι), WellFoundedLT (α i)
x : (i : ι) → α i
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
letI : ∀ i, Zero (α i) := fun i => ⟨(hw i).wf.min ⊤ ⟨x i, trivial⟩⟩
[GOAL]
case inr.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : Finite ι
inst✝ : (i : ι) → Preorder (α i)
hw : ∀ (i : ι), WellFoundedLT (α i)
x : (i : ι) → α i
this : (i : ι) → Zero (α i) :=
fun i => { zero := WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) ⊤ (_ : ∃ x, x ∈ ⊤) }
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
haveI := Fintype.ofFinite ι
[GOAL]
case inr.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : Finite ι
inst✝ : (i : ι) → Preorder (α i)
hw : ∀ (i : ι), WellFoundedLT (α i)
x : (i : ι) → α i
this✝ : (i : ι) → Zero (α i) :=
fun i => { zero := WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) ⊤ (_ : ∃ x, x ∈ ⊤) }
this : Fintype ι
⊢ WellFounded fun x x_1 => x < x_1
[PROOFSTEP]
refine' InvImage.wf equivFunOnFintype.symm (DFinsupp.wellFoundedLT fun i a => _).wf
[GOAL]
case inr.intro
ι : Type u_1
α : ι → Type u_2
r : ι → ι → Prop
s : (i : ι) → α i → α i → Prop
inst✝¹ : Finite ι
inst✝ : (i : ι) → Preorder (α i)
hw : ∀ (i : ι), WellFoundedLT (α i)
x : (i : ι) → α i
this✝ : (i : ι) → Zero (α i) :=
fun i => { zero := WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) ⊤ (_ : ∃ x, x ∈ ⊤) }
this : Fintype ι
i : ι
a : α i
⊢ ¬a < 0
[PROOFSTEP]
exact (hw i).wf.not_lt_min ⊤ _ trivial
|
{"mathlib_filename": "Mathlib.Data.DFinsupp.WellFounded", "llama_tokens": 31298}
|
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → Zero (N a)
f✝ g✝ f g : Π₀ (a : α), N a
a : α
⊢ a ∈ neLocus f g ↔ ↑f a ≠ ↑g a
[PROOFSTEP]
simpa only [neLocus, Finset.mem_filter, Finset.mem_union, mem_support_iff, and_iff_right_iff_imp] using Ne.ne_or_ne _
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → Zero (N a)
f✝ g✝ f g : Π₀ (a : α), N a
h : f = g
⊢ neLocus f f = ∅
[PROOFSTEP]
simp only [neLocus, Ne.def, eq_self_iff_true, not_true, Finset.filter_False]
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → Zero (N a)
f g : Π₀ (a : α), N a
⊢ neLocus f g = neLocus g f
[PROOFSTEP]
simp_rw [neLocus, Finset.union_comm, ne_comm]
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → Zero (N a)
f g : Π₀ (a : α), N a
⊢ neLocus f 0 = support f
[PROOFSTEP]
ext
[GOAL]
case a
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → Zero (N a)
f g : Π₀ (a : α), N a
a✝ : α
⊢ a✝ ∈ neLocus f 0 ↔ a✝ ∈ support f
[PROOFSTEP]
rw [mem_neLocus, mem_support_iff, coe_zero, Pi.zero_apply]
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝⁵ : DecidableEq α
M : α → Type u_3
P : α → Type u_4
inst✝⁴ : (a : α) → Zero (N a)
inst✝³ : (a : α) → Zero (M a)
inst✝² : (a : α) → Zero (P a)
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → DecidableEq (M a)
f g : Π₀ (a : α), N a
F : (a : α) → N a → M a
F0 : ∀ (a : α), F a 0 = 0
a : α
⊢ a ∈ neLocus (mapRange F F0 f) (mapRange F F0 g) → a ∈ neLocus f g
[PROOFSTEP]
simpa only [mem_neLocus, mapRange_apply, not_imp_not] using congr_arg (F a)
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝⁵ : DecidableEq α
M : α → Type u_3
P : α → Type u_4
inst✝⁴ : (a : α) → Zero (N a)
inst✝³ : (a : α) → Zero (M a)
inst✝² : (a : α) → Zero (P a)
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → DecidableEq (P a)
F : (a : α) → M a → N a → P a
F0 : ∀ (a : α), F a 0 0 = 0
f : Π₀ (a : α), M a
g₁ g₂ : Π₀ (a : α), N a
hF : ∀ (a : α) (f : M a), Function.Injective fun g => F a f g
⊢ neLocus (zipWith F F0 f g₁) (zipWith F F0 f g₂) = neLocus g₁ g₂
[PROOFSTEP]
ext a
[GOAL]
case a
α : Type u_1
N : α → Type u_2
inst✝⁵ : DecidableEq α
M : α → Type u_3
P : α → Type u_4
inst✝⁴ : (a : α) → Zero (N a)
inst✝³ : (a : α) → Zero (M a)
inst✝² : (a : α) → Zero (P a)
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → DecidableEq (P a)
F : (a : α) → M a → N a → P a
F0 : ∀ (a : α), F a 0 0 = 0
f : Π₀ (a : α), M a
g₁ g₂ : Π₀ (a : α), N a
hF : ∀ (a : α) (f : M a), Function.Injective fun g => F a f g
a : α
⊢ a ∈ neLocus (zipWith F F0 f g₁) (zipWith F F0 f g₂) ↔ a ∈ neLocus g₁ g₂
[PROOFSTEP]
simpa only [mem_neLocus] using (hF a _).ne_iff
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝⁵ : DecidableEq α
M : α → Type u_3
P : α → Type u_4
inst✝⁴ : (a : α) → Zero (N a)
inst✝³ : (a : α) → Zero (M a)
inst✝² : (a : α) → Zero (P a)
inst✝¹ : (a : α) → DecidableEq (M a)
inst✝ : (a : α) → DecidableEq (P a)
F : (a : α) → M a → N a → P a
F0 : ∀ (a : α), F a 0 0 = 0
f₁ f₂ : Π₀ (a : α), M a
g : Π₀ (a : α), N a
hF : ∀ (a : α) (g : N a), Function.Injective fun f => F a f g
⊢ neLocus (zipWith F F0 f₁ g) (zipWith F F0 f₂ g) = neLocus f₁ f₂
[PROOFSTEP]
ext a
[GOAL]
case a
α : Type u_1
N : α → Type u_2
inst✝⁵ : DecidableEq α
M : α → Type u_3
P : α → Type u_4
inst✝⁴ : (a : α) → Zero (N a)
inst✝³ : (a : α) → Zero (M a)
inst✝² : (a : α) → Zero (P a)
inst✝¹ : (a : α) → DecidableEq (M a)
inst✝ : (a : α) → DecidableEq (P a)
F : (a : α) → M a → N a → P a
F0 : ∀ (a : α), F a 0 0 = 0
f₁ f₂ : Π₀ (a : α), M a
g : Π₀ (a : α), N a
hF : ∀ (a : α) (g : N a), Function.Injective fun f => F a f g
a : α
⊢ a ∈ neLocus (zipWith F F0 f₁ g) (zipWith F F0 f₂ g) ↔ a ∈ neLocus f₁ f₂
[PROOFSTEP]
simpa only [mem_neLocus] using (hF a _).ne_iff
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝⁵ : DecidableEq α
M : α → Type u_3
P : α → Type u_4
inst✝⁴ : (a : α) → Zero (N a)
inst✝³ : (a : α) → Zero (M a)
inst✝² : (a : α) → Zero (P a)
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → DecidableEq (M a)
f g : Π₀ (a : α), N a
F : (a : α) → N a → M a
F0 : ∀ (a : α), F a 0 = 0
hF : ∀ (a : α), Function.Injective (F a)
⊢ neLocus (mapRange F F0 f) (mapRange F F0 g) = neLocus f g
[PROOFSTEP]
ext a
[GOAL]
case a
α : Type u_1
N : α → Type u_2
inst✝⁵ : DecidableEq α
M : α → Type u_3
P : α → Type u_4
inst✝⁴ : (a : α) → Zero (N a)
inst✝³ : (a : α) → Zero (M a)
inst✝² : (a : α) → Zero (P a)
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → DecidableEq (M a)
f g : Π₀ (a : α), N a
F : (a : α) → N a → M a
F0 : ∀ (a : α), F a 0 = 0
hF : ∀ (a : α), Function.Injective (F a)
a : α
⊢ a ∈ neLocus (mapRange F F0 f) (mapRange F F0 g) ↔ a ∈ neLocus f g
[PROOFSTEP]
simpa only [mem_neLocus] using (hF a).ne_iff
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → AddGroup (N a)
f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a
⊢ neLocus (-f) g = neLocus f (-g)
[PROOFSTEP]
rw [← neLocus_neg_neg, neg_neg]
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → AddGroup (N a)
f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a
⊢ neLocus f g = support (f - g)
[PROOFSTEP]
rw [← @neLocus_add_right α N _ _ _ _ _ (-g), add_right_neg, neLocus_zero_right, sub_eq_add_neg]
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → AddGroup (N a)
f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a
⊢ neLocus (f - g₁) (f - g₂) = neLocus g₁ g₂
[PROOFSTEP]
simp only [sub_eq_add_neg, @neLocus_add_left α N _ _ _, neLocus_neg_neg]
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → AddGroup (N a)
f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a
⊢ neLocus (f₁ - g) (f₂ - g) = neLocus f₁ f₂
[PROOFSTEP]
simpa only [sub_eq_add_neg] using @neLocus_add_right α N _ _ _ _ _ _
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → AddGroup (N a)
f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a
⊢ neLocus f (f + g) = support g
[PROOFSTEP]
rw [← neLocus_zero_left, ← @neLocus_add_left α N _ _ _ f 0 g, add_zero]
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → AddGroup (N a)
f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a
⊢ neLocus (f + g) f = support g
[PROOFSTEP]
rw [neLocus_comm, neLocus_self_add_right]
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → AddGroup (N a)
f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a
⊢ neLocus f (f - g) = support g
[PROOFSTEP]
rw [sub_eq_add_neg, neLocus_self_add_right, support_neg]
[GOAL]
α : Type u_1
N : α → Type u_2
inst✝² : DecidableEq α
inst✝¹ : (a : α) → DecidableEq (N a)
inst✝ : (a : α) → AddGroup (N a)
f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a
⊢ neLocus (f - g) f = support g
[PROOFSTEP]
rw [neLocus_comm, neLocus_self_sub_right]
|
{"mathlib_filename": "Mathlib.Data.DFinsupp.NeLocus", "llama_tokens": 3860}
|
{"mathlib_filename": "Mathlib.Data.Stream.Defs", "llama_tokens": 0}
|
|
{"mathlib_filename": "Mathlib.Data.MLList.Split", "llama_tokens": 0}
|
|
{"mathlib_filename": "Mathlib.Data.MLList.IO", "llama_tokens": 0}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.