text
stringlengths
0
3.06M
meta
stringlengths
57
121
{"mathlib_filename": "Mathlib.Init.Data.Ordering.Basic", "llama_tokens": 0}
[GOAL] α β : Type u m : Type u → Type v x : OptionT m α inst✝¹ : Monad m f : α → β inst✝ : LawfulMonad m ⊢ run (f <$> x) = Option.map f <$> run x [PROOFSTEP] rw [← bind_pure_comp _ x.run] [GOAL] α β : Type u m : Type u → Type v x : OptionT m α inst✝¹ : Monad m f : α → β inst✝ : LawfulMonad m ⊢ run (f <$> x) = do let a ← run x pure (Option.map f a) [PROOFSTEP] change x.run >>= (fun | some a => OptionT.run (pure (f a)) | none => pure none) = _ [GOAL] α β : Type u m : Type u → Type v x : OptionT m α inst✝¹ : Monad m f : α → β inst✝ : LawfulMonad m ⊢ (do let x ← run x match x with | some a => run (pure (f a)) | none => pure none) = do let a ← run x pure (Option.map f a) [PROOFSTEP] apply bind_congr [GOAL] case h α β : Type u m : Type u → Type v x : OptionT m α inst✝¹ : Monad m f : α → β inst✝ : LawfulMonad m ⊢ ∀ (a : Option α), (match a with | some a => run (pure (f a)) | none => pure none) = pure (Option.map f a) [PROOFSTEP] intro a [GOAL] case h α β : Type u m : Type u → Type v x : OptionT m α inst✝¹ : Monad m f : α → β inst✝ : LawfulMonad m a : Option α ⊢ (match a with | some a => run (pure (f a)) | none => pure none) = pure (Option.map f a) [PROOFSTEP] cases a [GOAL] case h.none α β : Type u m : Type u → Type v x : OptionT m α inst✝¹ : Monad m f : α → β inst✝ : LawfulMonad m ⊢ (match none with | some a => run (pure (f a)) | none => pure none) = pure (Option.map f none) [PROOFSTEP] simp [Option.map, Option.bind] [GOAL] case h.some α β : Type u m : Type u → Type v x : OptionT m α inst✝¹ : Monad m f : α → β inst✝ : LawfulMonad m val✝ : α ⊢ (match some val✝ with | some a => run (pure (f a)) | none => pure none) = pure (Option.map f (some val✝)) [PROOFSTEP] simp [Option.map, Option.bind] [GOAL] m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m ⊢ ∀ {α : Type u} (x : OptionT m α), id <$> x = x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ : Type u x✝ : OptionT m α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] apply OptionT.ext [GOAL] case h m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ : Type u x✝ : OptionT m α✝ ⊢ OptionT.run (id <$> x✝) = OptionT.run x✝ [PROOFSTEP] simp only [OptionT.run_map] [GOAL] case h m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ : Type u x✝ : OptionT m α✝ ⊢ Option.map id <$> OptionT.run x✝ = OptionT.run x✝ [PROOFSTEP] rw [map_congr, id_map] [GOAL] case h m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ : Type u x✝ : OptionT m α✝ ⊢ ∀ (a : Option α✝), Option.map id a = id a [PROOFSTEP] intro a [GOAL] case h m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ : Type u x✝ : OptionT m α✝ a : Option α✝ ⊢ Option.map id a = id a [PROOFSTEP] cases a [GOAL] case h.none m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ : Type u x✝ : OptionT m α✝ ⊢ Option.map id none = id none [PROOFSTEP] rfl [GOAL] case h.some m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ : Type u x✝ : OptionT m α✝ val✝ : α✝ ⊢ Option.map id (some val✝) = id (some val✝) [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m ⊢ ∀ {α β : Type u} (x : α) (f : α → OptionT m β), pure x >>= f = f x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ β✝ : Type u x✝ : α✝ f✝ : α✝ → OptionT m β✝ ⊢ pure x✝ >>= f✝ = f✝ x✝ [PROOFSTEP] apply OptionT.ext [GOAL] case h m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ β✝ : Type u x✝ : α✝ f✝ : α✝ → OptionT m β✝ ⊢ OptionT.run (pure x✝ >>= f✝) = OptionT.run (f✝ x✝) [PROOFSTEP] simp [GOAL] m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m ⊢ ∀ {α β γ : Type u} (x : OptionT m α) (f : α → OptionT m β) (g : β → OptionT m γ), x >>= f >>= g = x >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ β✝ γ✝ : Type u x✝ : OptionT m α✝ f✝ : α✝ → OptionT m β✝ g✝ : β✝ → OptionT m γ✝ ⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] apply OptionT.ext [GOAL] case h m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ β✝ γ✝ : Type u x✝ : OptionT m α✝ f✝ : α✝ → OptionT m β✝ g✝ : β✝ → OptionT m γ✝ ⊢ OptionT.run (x✝ >>= f✝ >>= g✝) = OptionT.run (x✝ >>= fun x => f✝ x >>= g✝) [PROOFSTEP] simp only [OptionT.run_bind, bind_assoc] [GOAL] case h m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ β✝ γ✝ : Type u x✝ : OptionT m α✝ f✝ : α✝ → OptionT m β✝ g✝ : β✝ → OptionT m γ✝ ⊢ (do let x ← OptionT.run x✝ let x ← match x with | some a => OptionT.run (f✝ a) | none => pure none match x with | some a => OptionT.run (g✝ a) | none => pure none) = do let x ← OptionT.run x✝ match x with | some a => do let x ← OptionT.run (f✝ a) match x with | some a => OptionT.run (g✝ a) | none => pure none | none => pure none [PROOFSTEP] rw [bind_congr] [GOAL] case h m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ β✝ γ✝ : Type u x✝ : OptionT m α✝ f✝ : α✝ → OptionT m β✝ g✝ : β✝ → OptionT m γ✝ ⊢ ∀ (a : Option α✝), (do let x ← match a with | some a => OptionT.run (f✝ a) | none => pure none match x with | some a => OptionT.run (g✝ a) | none => pure none) = match a with | some a => do let x ← OptionT.run (f✝ a) match x with | some a => OptionT.run (g✝ a) | none => pure none | none => pure none [PROOFSTEP] intro a [GOAL] case h m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ β✝ γ✝ : Type u x✝ : OptionT m α✝ f✝ : α✝ → OptionT m β✝ g✝ : β✝ → OptionT m γ✝ a : Option α✝ ⊢ (do let x ← match a with | some a => OptionT.run (f✝ a) | none => pure none match x with | some a => OptionT.run (g✝ a) | none => pure none) = match a with | some a => do let x ← OptionT.run (f✝ a) match x with | some a => OptionT.run (g✝ a) | none => pure none | none => pure none [PROOFSTEP] cases a [GOAL] case h.none m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ β✝ γ✝ : Type u x✝ : OptionT m α✝ f✝ : α✝ → OptionT m β✝ g✝ : β✝ → OptionT m γ✝ ⊢ (do let x ← match none with | some a => OptionT.run (f✝ a) | none => pure none match x with | some a => OptionT.run (g✝ a) | none => pure none) = match none with | some a => do let x ← OptionT.run (f✝ a) match x with | some a => OptionT.run (g✝ a) | none => pure none | none => pure none [PROOFSTEP] simp [GOAL] case h.some m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α✝ β✝ γ✝ : Type u x✝ : OptionT m α✝ f✝ : α✝ → OptionT m β✝ g✝ : β✝ → OptionT m γ✝ val✝ : α✝ ⊢ (do let x ← match some val✝ with | some a => OptionT.run (f✝ a) | none => pure none match x with | some a => OptionT.run (g✝ a) | none => pure none) = match some val✝ with | some a => do let x ← OptionT.run (f✝ a) match x with | some a => OptionT.run (g✝ a) | none => pure none | none => pure none [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Init.Control.Lawful", "llama_tokens": 3649}
{"mathlib_filename": "Mathlib.Init.Control.Combinators", "llama_tokens": 0}
[GOAL] a : ℤ h₁ : a ≠ 0 h₂ : -a = 0 ⊢ False [PROOFSTEP] have : -a = -0 := by rwa [Int.neg_zero] [GOAL] a : ℤ h₁ : a ≠ 0 h₂ : -a = 0 ⊢ -a = -0 [PROOFSTEP] rwa [Int.neg_zero] [GOAL] a : ℤ h₁ : a ≠ 0 h₂ : -a = 0 this : -a = -0 ⊢ False [PROOFSTEP] have : a = 0 := Int.neg_eq_neg this [GOAL] a : ℤ h₁ : a ≠ 0 h₂ : -a = 0 this✝ : -a = -0 this : a = 0 ⊢ False [PROOFSTEP] contradiction [GOAL] a b : ℤ h₁ : 0 < a h₂ : 0 < b h : -a = b ⊢ False [PROOFSTEP] rw [← h] at h₂ [GOAL] a b : ℤ h₁ : 0 < a h₂ : 0 < -a h : -a = b ⊢ False [PROOFSTEP] exact absurd (le_of_lt h₁) (not_le_of_gt (Int.neg_of_neg_pos h₂)) [GOAL] n : ℕ ⊢ 0 + ↑n = ofNat n [PROOFSTEP] rw [Int.zero_add, Int.coe_nat_eq] [GOAL] a b : ℤ ha : 0 ≤ a hb : 0 ≤ b h✝ : natAbs a ≠ natAbs b h : a = b ⊢ False [PROOFSTEP] have : (natAbs a : ℤ) = natAbs b := by rwa [ofNat_natAbs_eq_of_nonneg _ ha, ofNat_natAbs_eq_of_nonneg _ hb] [GOAL] a b : ℤ ha : 0 ≤ a hb : 0 ≤ b h✝ : natAbs a ≠ natAbs b h : a = b ⊢ ↑(natAbs a) = ↑(natAbs b) [PROOFSTEP] rwa [ofNat_natAbs_eq_of_nonneg _ ha, ofNat_natAbs_eq_of_nonneg _ hb] [GOAL] a b : ℤ ha : 0 ≤ a hb : 0 ≤ b h✝ : natAbs a ≠ natAbs b h : a = b this : ↑(natAbs a) = ↑(natAbs b) ⊢ False [PROOFSTEP] injection this [GOAL] a b : ℤ ha : 0 ≤ a hb : 0 ≤ b h✝ : natAbs a ≠ natAbs b h : a = b a_eq✝ : natAbs a = natAbs b ⊢ False [PROOFSTEP] contradiction [GOAL] a b : ℤ n m : ℕ ha : 0 ≤ a hb : 0 ≤ b e1 : natAbs a = n e2 : natAbs b = m h : n ≠ m ⊢ natAbs a ≠ natAbs b [PROOFSTEP] rwa [e1, e2] [GOAL] n m : ℕ x✝¹ : 0 ≤ ofNat n x✝ : 0 ≤ ofNat m ⊢ natAbs (ofNat n + ofNat m) = natAbs (ofNat n) + natAbs (ofNat m) [PROOFSTEP] simp [natAbs_ofNat_core] [GOAL] n m : ℕ x✝¹ : -[n+1] < 0 x✝ : -[m+1] < 0 ⊢ natAbs (-[n+1] + -[m+1]) = natAbs -[n+1] + natAbs -[m+1] [PROOFSTEP] simp [natAbs_of_negSucc, Nat.succ_add, Nat.add_succ] [GOAL] a : ℤ n : ℕ h : natAbs a = n ⊢ natAbs (bit0 a) = bit0 n [PROOFSTEP] rw [← h] [GOAL] a : ℤ n : ℕ h : natAbs a = n ⊢ natAbs (bit0 a) = bit0 (natAbs a) [PROOFSTEP] apply Int.natAbs_bit0 [GOAL] a : ℤ h : 0 ≤ a ⊢ natAbs (bit0 a + 1) = bit0 (natAbs a) + natAbs 1 [PROOFSTEP] rw [Int.natAbs_add_nonneg (Int.bit0_nonneg h) (le_of_lt Int.zero_lt_one), Int.natAbs_bit0] [GOAL] a : ℤ n : ℕ h₁ : 0 ≤ a h₂ : natAbs a = n ⊢ natAbs (bit1 a) = bit1 n [PROOFSTEP] rw [← h₂] [GOAL] a : ℤ n : ℕ h₁ : 0 ≤ a h₂ : natAbs a = n ⊢ natAbs (bit1 a) = bit1 (natAbs a) [PROOFSTEP] apply Int.natAbs_bit1_nonneg h₁
{"mathlib_filename": "Mathlib.Init.Data.Int.CompLemmas", "llama_tokens": 1464}
[GOAL] x y : ℕ ⊢ gcd x y = if x = 0 then y else gcd (y % x) x [PROOFSTEP] cases x [GOAL] case zero y : ℕ ⊢ gcd zero y = if zero = 0 then y else gcd (y % zero) zero [PROOFSTEP] simp [Nat.gcd_succ] [GOAL] case succ y n✝ : ℕ ⊢ gcd (succ n✝) y = if succ n✝ = 0 then y else gcd (y % succ n✝) (succ n✝) [PROOFSTEP] simp [Nat.gcd_succ]
{"mathlib_filename": "Mathlib.Init.Data.Nat.GCD", "llama_tokens": 180}
{"mathlib_filename": "Mathlib.Init.Data.Bool.Basic", "llama_tokens": 0}
[GOAL] α : Type u β : Type v γ : Type w p : α → Prop a : α l : List α x✝ : ∃ x, x ∈ a :: l ∧ p x x : α h : x ∈ a :: l px : p x ⊢ p a ∨ ∃ x, x ∈ l ∧ p x [PROOFSTEP] simp only [find?, mem_cons] at h [GOAL] α : Type u β : Type v γ : Type w p : α → Prop a : α l : List α x✝ : ∃ x, x ∈ a :: l ∧ p x x : α px : p x h : x = a ∨ x ∈ l ⊢ p a ∨ ∃ x, x ∈ l ∧ p x [PROOFSTEP] cases' h with h h [GOAL] case inl α : Type u β : Type v γ : Type w p : α → Prop a : α l : List α x✝ : ∃ x, x ∈ a :: l ∧ p x x : α px : p x h : x = a ⊢ p a ∨ ∃ x, x ∈ l ∧ p x [PROOFSTEP] cases h [GOAL] case inl.refl α : Type u β : Type v γ : Type w p : α → Prop a : α l : List α x✝ : ∃ x, x ∈ a :: l ∧ p x px : p a ⊢ p a ∨ ∃ x, x ∈ l ∧ p x [PROOFSTEP] exact Or.inl px [GOAL] case inr α : Type u β : Type v γ : Type w p : α → Prop a : α l : List α x✝ : ∃ x, x ∈ a :: l ∧ p x x : α px : p x h : x ∈ l ⊢ p a ∨ ∃ x, x ∈ l ∧ p x [PROOFSTEP] exact Or.inr ⟨x, h, px⟩
{"mathlib_filename": "Mathlib.Init.Data.List.Lemmas", "llama_tokens": 538}
[GOAL] a b c d : Prop p : ?m.25026 h : Decidable True ⊢ decide True = true [PROOFSTEP] simp [GOAL] a b c d : Prop p : ?m.25099 h : Decidable False ⊢ decide False = false [PROOFSTEP] simp [GOAL] a b c d p : Prop h : Decidable p h₁ : p → Sort u h₂ : ¬p → Sort u h₃ : p h₄ : h₁ h₃ ⊢ h₁ h₃ = Decidable.recOn h h₂ h₁ [PROOFSTEP] match h with | .isTrue _ => rfl [GOAL] a b c d p : Prop h : Decidable p h₁ : p → Sort u h₂ : ¬p → Sort u h₃ : p h₄ : h₁ h₃ h✝ : p ⊢ h₁ h₃ = Decidable.recOn (isTrue h✝) h₂ h₁ [PROOFSTEP] rfl [GOAL] a b c d p : Prop h : Decidable p h₁ : p → Sort u h₂ : ¬p → Sort u h₃ : ¬p h₄ : h₂ h₃ ⊢ h₂ h₃ = Decidable.recOn h h₂ h₁ [PROOFSTEP] match h with | .isFalse _ => rfl [GOAL] a b c d p : Prop h : Decidable p h₁ : p → Sort u h₂ : ¬p → Sort u h₃ : ¬p h₄ : h₂ h₃ h✝ : ¬p ⊢ h₂ h₃ = Decidable.recOn (isFalse h✝) h₂ h₁ [PROOFSTEP] rfl [GOAL] a b c d : Prop p✝ : ?m.26639 α : Sort u p : α → α → Bool h₁ : IsDecEq p h₂ : IsDecRefl p x y : α hp : ¬p x y = true hxy : x = y ⊢ ¬p y y = true [PROOFSTEP] rwa [hxy] at hp [GOAL] a b c✝ d : Prop p : ?m.27547 c t e : Prop inst✝ : Decidable c h : if c then t else e hc : c ⊢ t [PROOFSTEP] have := if_pos hc ▸ h [GOAL] a b c✝ d : Prop p : ?m.27547 c t e : Prop inst✝ : Decidable c h : if c then t else e hc : c this : t ⊢ t [PROOFSTEP] exact this [GOAL] a b c✝ d : Prop p : ?m.27609 c t e : Prop inst✝ : Decidable c h : if c then t else e hnc : ¬c ⊢ e [PROOFSTEP] have := if_neg hnc ▸ h [GOAL] a b c✝ d : Prop p : ?m.27609 c t e : Prop inst✝ : Decidable c h : if c then t else e hnc : ¬c this : e ⊢ e [PROOFSTEP] exact this [GOAL] a b✝ c d : Prop p : ?m.29900 α : Sort v β : α → Sort u a₁ a₂ : α b : (x : α) → β x h : a₁ = a₂ ⊢ HEq (let x := a₁; b x) (let x := a₂; b x) [PROOFSTEP] cases h [GOAL] case refl a b✝ c d : Prop p : ?m.29900 α : Sort v β : α → Sort u a₁ : α b : (x : α) → β x ⊢ HEq (let x := a₁; b x) (let x := a₁; b x) [PROOFSTEP] rfl [GOAL] a✝ b c d : Prop p : ?m.30034 α : Sort v β : α → Sort u a : α b₁ b₂ : (x : α) → β x h : ∀ (x : α), b₁ x = b₂ x ⊢ (let x := a; b₁ x) = let x := a; b₂ x [PROOFSTEP] exact h _ ▸ rfl [GOAL] a b c d : Prop p : ?m.30108 α : Sort v β : Sort u a₁ a₂ : α b₁ b₂ : α → β h₁ : a₁ = a₂ h₂ : ∀ (x : α), b₁ x = b₂ x ⊢ (let x := a₁; b₁ x) = let x := a₂; b₂ x [PROOFSTEP] simp [h₁, h₂]
{"mathlib_filename": "Mathlib.Init.Logic", "llama_tokens": 1318}
[GOAL] a b : ℕ h : 0 < b ⊢ a + 0 < a + b [PROOFSTEP] apply Nat.add_lt_add_left [GOAL] case h a b : ℕ h : 0 < b ⊢ 0 < b [PROOFSTEP] assumption [GOAL] a : ℕ this : 0 < a + 1 ⊢ 0 < 1 + a [PROOFSTEP] simp [Nat.add_comm] [GOAL] a : ℕ this : 0 < a + 1 ⊢ 0 < a + 1 [PROOFSTEP] assumption
{"mathlib_filename": "Mathlib.Init.Meta.WellFoundedTactics", "llama_tokens": 168}
{"mathlib_filename": "Mathlib.Init.Data.Int.DivMod", "llama_tokens": 0}
[GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed K f : k →+* K p : k[X] h : Separable p ⊢ Splits f p [PROOFSTEP] convert IsSepClosed.splits_of_separable (p.map f) (Separable.map h) [GOAL] case a k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed K f : k →+* K p : k[X] h : Separable p ⊢ Splits f p ↔ Splits (RingHom.id K) (map f p) [PROOFSTEP] simp [splits_map_iff] [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n ⊢ ∃ z, z ^ n = x [PROOFSTEP] have hn' : 0 < n := Nat.pos_of_ne_zero <| fun h => by rw [h, Nat.cast_zero] at hn exact hn.out rfl [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n h : n = 0 ⊢ False [PROOFSTEP] rw [h, Nat.cast_zero] at hn [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero 0 h : n = 0 ⊢ False [PROOFSTEP] exact hn.out rfl [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n hn' : 0 < n ⊢ ∃ z, z ^ n = x [PROOFSTEP] have : degree (X ^ n - C x) ≠ 0 := by rw [degree_X_pow_sub_C hn' x] exact (WithBot.coe_lt_coe.2 hn').ne' [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n hn' : 0 < n ⊢ degree (X ^ n - ↑C x) ≠ 0 [PROOFSTEP] rw [degree_X_pow_sub_C hn' x] [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n hn' : 0 < n ⊢ ↑n ≠ 0 [PROOFSTEP] exact (WithBot.coe_lt_coe.2 hn').ne' [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n hn' : 0 < n this : degree (X ^ n - ↑C x) ≠ 0 ⊢ ∃ z, z ^ n = x [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n hn' : 0 < n this : degree (X ^ n - ↑C x) ≠ 0 hx : x = 0 ⊢ ∃ z, z ^ n = x [PROOFSTEP] exact ⟨0, by rw [hx, pow_eq_zero_iff hn']⟩ [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n hn' : 0 < n this : degree (X ^ n - ↑C x) ≠ 0 hx : x = 0 ⊢ 0 ^ n = x [PROOFSTEP] rw [hx, pow_eq_zero_iff hn'] [GOAL] case neg k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n hn' : 0 < n this : degree (X ^ n - ↑C x) ≠ 0 hx : ¬x = 0 ⊢ ∃ z, z ^ n = x [PROOFSTEP] obtain ⟨z, hz⟩ := exists_root _ this <| separable_X_pow_sub_C x hn.out hx [GOAL] case neg.intro k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n hn' : 0 < n this : degree (X ^ n - ↑C x) ≠ 0 hx : ¬x = 0 z : k hz : IsRoot (X ^ n - ↑C x) z ⊢ ∃ z, z ^ n = x [PROOFSTEP] use z [GOAL] case h k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k n : ℕ hn : NeZero ↑n hn' : 0 < n this : degree (X ^ n - ↑C x) ≠ 0 hx : ¬x = 0 z : k hz : IsRoot (X ^ n - ↑C x) z ⊢ z ^ n = x [PROOFSTEP] simpa [eval_C, eval_X, eval_pow, eval_sub, IsRoot.def, sub_eq_zero] using hz [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k x : k h2 : NeZero 2 ⊢ ∃ z, x = z * z [PROOFSTEP] rcases exists_pow_nat_eq x 2 with ⟨z, rfl⟩ [GOAL] case intro k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k h2 : NeZero 2 z : k ⊢ ∃ z_1, z ^ 2 = z_1 * z_1 [PROOFSTEP] exact ⟨z, sq z⟩ [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k p : k[X] hsep : Separable p ⊢ roots p = 0 ↔ p = ↑C (coeff p 0) [PROOFSTEP] refine' ⟨fun h => _, fun hp => by rw [hp, roots_C]⟩ [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k p : k[X] hsep : Separable p hp : p = ↑C (coeff p 0) ⊢ roots p = 0 [PROOFSTEP] rw [hp, roots_C] [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k p : k[X] hsep : Separable p h : roots p = 0 ⊢ p = ↑C (coeff p 0) [PROOFSTEP] cases' le_or_lt (degree p) 0 with hd hd [GOAL] case inl k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k p : k[X] hsep : Separable p h : roots p = 0 hd : degree p ≤ 0 ⊢ p = ↑C (coeff p 0) [PROOFSTEP] exact eq_C_of_degree_le_zero hd [GOAL] case inr k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k p : k[X] hsep : Separable p h : roots p = 0 hd : 0 < degree p ⊢ p = ↑C (coeff p 0) [PROOFSTEP] obtain ⟨z, hz⟩ := IsSepClosed.exists_root p hd.ne' hsep [GOAL] case inr.intro k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k p : k[X] hsep : Separable p h : roots p = 0 hd : 0 < degree p z : k hz : IsRoot p z ⊢ p = ↑C (coeff p 0) [PROOFSTEP] rw [← mem_roots (ne_zero_of_degree_gt hd), h] at hz [GOAL] case inr.intro k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed k p : k[X] hsep : Separable p h : roots p = 0 hd : 0 < degree p z : k hz : z ∈ 0 ⊢ p = ↑C (coeff p 0) [PROOFSTEP] simp at hz [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed K f : k →+* K p : k[X] hp : degree p ≠ 0 hsep : Separable p ⊢ degree (map f p) ≠ 0 [PROOFSTEP] rwa [degree_map_eq_of_injective f.injective] [GOAL] k : Type u inst✝² : Field k K : Type v inst✝¹ : Field K inst✝ : IsSepClosed K f : k →+* K p : k[X] hp : degree p ≠ 0 hsep : Separable p x : K hx : IsRoot (map f p) x ⊢ eval₂ f x p = 0 [PROOFSTEP] rwa [eval₂_eq_eval_map, ← IsRoot] [GOAL] k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 ⊢ IsSepClosed k [PROOFSTEP] refine ⟨fun p hsep ↦ Or.inr ?_⟩ [GOAL] k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 p : k[X] hsep : Separable p ⊢ ∀ {g : k[X]}, Irreducible g → g ∣ map (RingHom.id k) p → degree g = 1 [PROOFSTEP] intro q hq hdvd [GOAL] k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 p : k[X] hsep : Separable p q : k[X] hq : Irreducible q hdvd : q ∣ map (RingHom.id k) p ⊢ degree q = 1 [PROOFSTEP] simp only [map_id] at hdvd [GOAL] k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 p : k[X] hsep : Separable p q : k[X] hq : Irreducible q hdvd : q ∣ p ⊢ degree q = 1 [PROOFSTEP] have hlc : IsUnit (leadingCoeff q)⁻¹ := IsUnit.inv <| Ne.isUnit <| leadingCoeff_ne_zero.2 <| Irreducible.ne_zero hq [GOAL] k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 p : k[X] hsep : Separable p q : k[X] hq : Irreducible q hdvd : q ∣ p hlc : IsUnit (leadingCoeff q)⁻¹ ⊢ degree q = 1 [PROOFSTEP] have hsep' : Separable (q * C (leadingCoeff q)⁻¹) := Separable.mul (Separable.of_dvd hsep hdvd) ((separable_C _).2 hlc) (by simpa only [← isCoprime_mul_unit_right_right (isUnit_C.2 hlc) q 1, one_mul] using isCoprime_one_right (x := q)) [GOAL] k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 p : k[X] hsep : Separable p q : k[X] hq : Irreducible q hdvd : q ∣ p hlc : IsUnit (leadingCoeff q)⁻¹ ⊢ IsCoprime q (↑C (leadingCoeff q)⁻¹) [PROOFSTEP] simpa only [← isCoprime_mul_unit_right_right (isUnit_C.2 hlc) q 1, one_mul] using isCoprime_one_right (x := q) [GOAL] k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 p : k[X] hsep : Separable p q : k[X] hq : Irreducible q hdvd : q ∣ p hlc : IsUnit (leadingCoeff q)⁻¹ hsep' : Separable (q * ↑C (leadingCoeff q)⁻¹) ⊢ degree q = 1 [PROOFSTEP] have hirr' := hq [GOAL] k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 p : k[X] hsep : Separable p q : k[X] hq : Irreducible q hdvd : q ∣ p hlc : IsUnit (leadingCoeff q)⁻¹ hsep' : Separable (q * ↑C (leadingCoeff q)⁻¹) hirr' : Irreducible q ⊢ degree q = 1 [PROOFSTEP] rw [← irreducible_mul_isUnit (isUnit_C.2 hlc)] at hirr' [GOAL] k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 p : k[X] hsep : Separable p q : k[X] hq : Irreducible q hdvd : q ∣ p hlc : IsUnit (leadingCoeff q)⁻¹ hsep' : Separable (q * ↑C (leadingCoeff q)⁻¹) hirr' : Irreducible (q * ↑C (leadingCoeff q)⁻¹) ⊢ degree q = 1 [PROOFSTEP] obtain ⟨x, hx⟩ := H (q * C (leadingCoeff q)⁻¹) (monic_mul_leadingCoeff_inv hq.ne_zero) hirr' hsep' [GOAL] case intro k : Type u inst✝¹ : Field k K : Type v inst✝ : Field K H : ∀ (p : k[X]), Monic p → Irreducible p → Separable p → ∃ x, eval x p = 0 p : k[X] hsep : Separable p q : k[X] hq : Irreducible q hdvd : q ∣ p hlc : IsUnit (leadingCoeff q)⁻¹ hsep' : Separable (q * ↑C (leadingCoeff q)⁻¹) hirr' : Irreducible (q * ↑C (leadingCoeff q)⁻¹) x : k hx : eval x (q * ↑C (leadingCoeff q)⁻¹) = 0 ⊢ degree q = 1 [PROOFSTEP] exact degree_mul_leadingCoeff_inv q hq.ne_zero ▸ degree_eq_one_of_irreducible_of_root hirr' hx [GOAL] k : Type u inst✝⁴ : Field k K : Type v inst✝³ : Field K inst✝² : IsSepClosed k inst✝¹ : Algebra k K inst✝ : IsSeparable k K ⊢ Function.Surjective ↑(algebraMap k K) [PROOFSTEP] refine fun x => ⟨-(minpoly k x).coeff 0, ?_⟩ [GOAL] k : Type u inst✝⁴ : Field k K : Type v inst✝³ : Field K inst✝² : IsSepClosed k inst✝¹ : Algebra k K inst✝ : IsSeparable k K x : K ⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x [PROOFSTEP] have hq : (minpoly k x).leadingCoeff = 1 := minpoly.monic (IsSeparable.isIntegral k x) [GOAL] k : Type u inst✝⁴ : Field k K : Type v inst✝³ : Field K inst✝² : IsSepClosed k inst✝¹ : Algebra k K inst✝ : IsSeparable k K x : K hq : leadingCoeff (minpoly k x) = 1 ⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x [PROOFSTEP] have hsep : (minpoly k x).Separable := IsSeparable.separable k x [GOAL] k : Type u inst✝⁴ : Field k K : Type v inst✝³ : Field K inst✝² : IsSepClosed k inst✝¹ : Algebra k K inst✝ : IsSeparable k K x : K hq : leadingCoeff (minpoly k x) = 1 hsep : Separable (minpoly k x) ⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x [PROOFSTEP] have h : (minpoly k x).degree = 1 := degree_eq_one_of_irreducible k (minpoly.irreducible (IsSeparable.isIntegral k x)) hsep [GOAL] k : Type u inst✝⁴ : Field k K : Type v inst✝³ : Field K inst✝² : IsSepClosed k inst✝¹ : Algebra k K inst✝ : IsSeparable k K x : K hq : leadingCoeff (minpoly k x) = 1 hsep : Separable (minpoly k x) h : degree (minpoly k x) = 1 ⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x [PROOFSTEP] have : aeval x (minpoly k x) = 0 := minpoly.aeval k x [GOAL] k : Type u inst✝⁴ : Field k K : Type v inst✝³ : Field K inst✝² : IsSepClosed k inst✝¹ : Algebra k K inst✝ : IsSeparable k K x : K hq : leadingCoeff (minpoly k x) = 1 hsep : Separable (minpoly k x) h : degree (minpoly k x) = 1 this : ↑(aeval x) (minpoly k x) = 0 ⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x [PROOFSTEP] rw [eq_X_add_C_of_degree_eq_one h, hq, C_1, one_mul, aeval_add, aeval_X, aeval_C, add_eq_zero_iff_eq_neg] at this [GOAL] k : Type u inst✝⁴ : Field k K : Type v inst✝³ : Field K inst✝² : IsSepClosed k inst✝¹ : Algebra k K inst✝ : IsSeparable k K x : K hq : leadingCoeff (minpoly k x) = 1 hsep : Separable (minpoly k x) h : degree (minpoly k x) = 1 this : x = -↑(algebraMap k K) (coeff (minpoly k x) 0) ⊢ ↑(algebraMap k K) (-coeff (minpoly k x) 0) = x [PROOFSTEP] exact (RingHom.map_neg (algebraMap k K) ((minpoly k x).coeff 0)).symm ▸ this.symm [GOAL] k : Type u inst✝³ : Field k K : Type v inst✝² : Field K inst✝¹ : Algebra k K inst✝ : IsSepClosure k K x : K ⊢ IsAlgebraic k x [PROOFSTEP] apply IsIntegral.isAlgebraic [GOAL] case a k : Type u inst✝³ : Field k K : Type v inst✝² : Field K inst✝¹ : Algebra k K inst✝ : IsSepClosure k K x : K ⊢ IsIntegral k x [PROOFSTEP] exact IsSepClosure.separable.isIntegral' x [GOAL] k : Type u inst✝³ : Field k K : Type v inst✝² : Field K inst✝¹ : Algebra k K inst✝ : IsSepClosure k K x : K ⊢ Separable (minpoly k x) [PROOFSTEP] have : IsSeparable k K := IsSepClosure.separable [GOAL] k : Type u inst✝³ : Field k K : Type v inst✝² : Field K inst✝¹ : Algebra k K inst✝ : IsSepClosure k K x : K this : IsSeparable k K ⊢ Separable (minpoly k x) [PROOFSTEP] exact IsSeparable.separable k x
{"mathlib_filename": "Mathlib.FieldTheory.IsSepClosed", "llama_tokens": 6437}
[GOAL] n : ℕ ⊢ bodd (succ n) = !bodd n [PROOFSTEP] simp only [bodd, boddDiv2] [GOAL] n : ℕ ⊢ (match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m)).fst = !(boddDiv2 n).fst [PROOFSTEP] let ⟨b, m⟩ := boddDiv2 n [GOAL] n : ℕ b : Bool m : ℕ ⊢ (match (b, m) with | (false, m) => (true, m) | (true, m) => (false, succ m)).fst = !(b, m).fst [PROOFSTEP] cases b [GOAL] case false n m : ℕ ⊢ (match (false, m) with | (false, m) => (true, m) | (true, m) => (false, succ m)).fst = !(false, m).fst [PROOFSTEP] rfl [GOAL] case true n m : ℕ ⊢ (match (true, m) with | (false, m) => (true, m) | (true, m) => (false, succ m)).fst = !(true, m).fst [PROOFSTEP] rfl [GOAL] m n : ℕ ⊢ bodd (m + n) = bxor (bodd m) (bodd n) [PROOFSTEP] induction' n with n IH [GOAL] case zero m : ℕ ⊢ bodd (m + zero) = bxor (bodd m) (bodd zero) [PROOFSTEP] simp [GOAL] case succ m n : ℕ IH : bodd (m + n) = bxor (bodd m) (bodd n) ⊢ bodd (m + succ n) = bxor (bodd m) (bodd (succ n)) [PROOFSTEP] simp [add_succ, IH] [GOAL] case succ m n : ℕ IH : bodd (m + n) = bxor (bodd m) (bodd n) ⊢ (!bxor (bodd m) (bodd n)) = bxor (bodd m) !bodd n [PROOFSTEP] cases bodd m [GOAL] case succ.false m n : ℕ IH : bodd (m + n) = bxor (bodd m) (bodd n) ⊢ (!bxor false (bodd n)) = bxor false !bodd n [PROOFSTEP] cases bodd n [GOAL] case succ.true m n : ℕ IH : bodd (m + n) = bxor (bodd m) (bodd n) ⊢ (!bxor true (bodd n)) = bxor true !bodd n [PROOFSTEP] cases bodd n [GOAL] case succ.false.false m n : ℕ IH : bodd (m + n) = bxor (bodd m) (bodd n) ⊢ (!bxor false false) = bxor false !false [PROOFSTEP] rfl [GOAL] case succ.false.true m n : ℕ IH : bodd (m + n) = bxor (bodd m) (bodd n) ⊢ (!bxor false true) = bxor false !true [PROOFSTEP] rfl [GOAL] case succ.true.false m n : ℕ IH : bodd (m + n) = bxor (bodd m) (bodd n) ⊢ (!bxor true false) = bxor true !false [PROOFSTEP] rfl [GOAL] case succ.true.true m n : ℕ IH : bodd (m + n) = bxor (bodd m) (bodd n) ⊢ (!bxor true true) = bxor true !true [PROOFSTEP] rfl [GOAL] m n : ℕ ⊢ bodd (m * n) = (bodd m && bodd n) [PROOFSTEP] induction' n with n IH [GOAL] case zero m : ℕ ⊢ bodd (m * zero) = (bodd m && bodd zero) [PROOFSTEP] simp [GOAL] case succ m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bodd (m * succ n) = (bodd m && bodd (succ n)) [PROOFSTEP] simp [mul_succ, IH] [GOAL] case succ m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (bodd m && bodd n) (bodd m) = (bodd m && !bodd n) [PROOFSTEP] cases bodd m [GOAL] case succ.false m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (false && bodd n) false = (false && !bodd n) [PROOFSTEP] cases bodd n [GOAL] case succ.true m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (true && bodd n) true = (true && !bodd n) [PROOFSTEP] cases bodd n [GOAL] case succ.false.false m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (false && false) false = (false && !false) [PROOFSTEP] rfl [GOAL] case succ.false.true m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (false && true) false = (false && !true) [PROOFSTEP] rfl [GOAL] case succ.true.false m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (true && false) true = (true && !false) [PROOFSTEP] rfl [GOAL] case succ.true.true m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (true && true) true = (true && !true) [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ n % 2 = bif bodd n then 1 else 0 [PROOFSTEP] have := congr_arg bodd (mod_add_div n 2) [GOAL] n : ℕ this : bodd (n % 2 + 2 * (n / 2)) = bodd n ⊢ n % 2 = bif bodd n then 1 else 0 [PROOFSTEP] simp [not] at this [GOAL] n : ℕ this : bodd (n % 2) = bodd n ⊢ n % 2 = bif bodd n then 1 else 0 [PROOFSTEP] have _ : ∀ b, and false b = false := by intro b cases b <;> rfl [GOAL] n : ℕ this : bodd (n % 2) = bodd n ⊢ ∀ (b : Bool), (false && b) = false [PROOFSTEP] intro b [GOAL] n : ℕ this : bodd (n % 2) = bodd n b : Bool ⊢ (false && b) = false [PROOFSTEP] cases b [GOAL] case false n : ℕ this : bodd (n % 2) = bodd n ⊢ (false && false) = false [PROOFSTEP] rfl [GOAL] case true n : ℕ this : bodd (n % 2) = bodd n ⊢ (false && true) = false [PROOFSTEP] rfl [GOAL] n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false ⊢ n % 2 = bif bodd n then 1 else 0 [PROOFSTEP] have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl [GOAL] n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false ⊢ ∀ (b : Bool), bxor b false = b [PROOFSTEP] intro b [GOAL] n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false b : Bool ⊢ bxor b false = b [PROOFSTEP] cases b [GOAL] case false n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false ⊢ bxor false false = false [PROOFSTEP] rfl [GOAL] case true n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false ⊢ bxor true false = true [PROOFSTEP] rfl [GOAL] n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b ⊢ n % 2 = bif bodd n then 1 else 0 [PROOFSTEP] rw [← this] [GOAL] n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b ⊢ n % 2 = bif bodd (n % 2) then 1 else 0 [PROOFSTEP] cases' mod_two_eq_zero_or_one n with h h [GOAL] case inl n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b h : n % 2 = 0 ⊢ n % 2 = bif bodd (n % 2) then 1 else 0 [PROOFSTEP] rw [h] [GOAL] case inr n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b h : n % 2 = 1 ⊢ n % 2 = bif bodd (n % 2) then 1 else 0 [PROOFSTEP] rw [h] [GOAL] case inl n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b h : n % 2 = 0 ⊢ 0 = bif bodd 0 then 1 else 0 [PROOFSTEP] rfl [GOAL] case inr n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b h : n % 2 = 1 ⊢ 1 = bif bodd 1 then 1 else 0 [PROOFSTEP] rfl [GOAL] n : ℕ ⊢ div2 (succ n) = bif bodd n then succ (div2 n) else div2 n [PROOFSTEP] simp only [bodd, boddDiv2, div2] [GOAL] n : ℕ ⊢ (match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (boddDiv2 n).fst then succ (boddDiv2 n).snd else (boddDiv2 n).snd [PROOFSTEP] cases' boddDiv2 n with fst snd [GOAL] case mk n : ℕ fst : Bool snd : ℕ ⊢ (match (fst, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (fst, snd).fst then succ (fst, snd).snd else (fst, snd).snd [PROOFSTEP] cases fst [GOAL] case mk.false n snd : ℕ ⊢ (match (false, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (false, snd).fst then succ (false, snd).snd else (false, snd).snd case mk.true n snd : ℕ ⊢ (match (true, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd [PROOFSTEP] case mk.false => simp [GOAL] n snd : ℕ ⊢ (match (false, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (false, snd).fst then succ (false, snd).snd else (false, snd).snd [PROOFSTEP] case mk.false => simp [GOAL] n snd : ℕ ⊢ (match (false, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (false, snd).fst then succ (false, snd).snd else (false, snd).snd [PROOFSTEP] simp [GOAL] case mk.true n snd : ℕ ⊢ (match (true, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd [PROOFSTEP] case mk.true => simp [GOAL] n snd : ℕ ⊢ (match (true, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd [PROOFSTEP] case mk.true => simp [GOAL] n snd : ℕ ⊢ (match (true, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd [PROOFSTEP] simp [GOAL] n : ℕ ⊢ (bif bodd (succ n) then 1 else 0) + 2 * div2 (succ n) = succ n [PROOFSTEP] simp [GOAL] n : ℕ ⊢ (bif bodd n then 0 else 1) + (bif bodd n then succ (div2 n) else div2 n) * 2 = succ n [PROOFSTEP] refine' Eq.trans _ (congr_arg succ (bodd_add_div2 n)) [GOAL] n : ℕ ⊢ (bif bodd n then 0 else 1) + (bif bodd n then succ (div2 n) else div2 n) * 2 = succ ((bif bodd n then 1 else 0) + 2 * div2 n) [PROOFSTEP] cases bodd n [GOAL] case false n : ℕ ⊢ (bif false then 0 else 1) + (bif false then succ (div2 n) else div2 n) * 2 = succ ((bif false then 1 else 0) + 2 * div2 n) [PROOFSTEP] simp [cond, not] [GOAL] case true n : ℕ ⊢ (bif true then 0 else 1) + (bif true then succ (div2 n) else div2 n) * 2 = succ ((bif true then 1 else 0) + 2 * div2 n) [PROOFSTEP] simp [cond, not] [GOAL] case false n : ℕ ⊢ 1 + div2 n * 2 = succ (div2 n * 2) [PROOFSTEP] rw [Nat.add_comm, Nat.add_succ] [GOAL] case true n : ℕ ⊢ succ (div2 n) * 2 = succ (1 + div2 n * 2) [PROOFSTEP] rw [succ_mul, Nat.add_comm 1, Nat.add_succ] [GOAL] n : ℕ ⊢ div2 n = n / 2 [PROOFSTEP] refine' Nat.eq_of_mul_eq_mul_left (by decide) (Nat.add_left_cancel (Eq.trans _ (Nat.mod_add_div n 2).symm)) [GOAL] n : ℕ ⊢ 0 < 2 [PROOFSTEP] decide [GOAL] n : ℕ ⊢ n % 2 + 2 * div2 n = n [PROOFSTEP] rw [mod_two_of_bodd, bodd_add_div2] [GOAL] n : ℕ ⊢ n + n = 0 + n + n [PROOFSTEP] rw [Nat.zero_add] [GOAL] b : Bool n : ℕ ⊢ bit b n = 2 * n + bif b then 1 else 0 [PROOFSTEP] cases b [GOAL] case false n : ℕ ⊢ bit false n = 2 * n + bif false then 1 else 0 case true n : ℕ ⊢ bit true n = 2 * n + bif true then 1 else 0 [PROOFSTEP] apply bit0_val [GOAL] case true n : ℕ ⊢ bit true n = 2 * n + bif true then 1 else 0 [PROOFSTEP] apply bit1_val [GOAL] ⊢ ∀ (n : ℕ), shiftr 0 n = 0 [PROOFSTEP] intro n [GOAL] n : ℕ ⊢ shiftr 0 n = 0 [PROOFSTEP] induction' n with n IH [GOAL] case zero ⊢ shiftr 0 zero = 0 case succ n : ℕ IH : shiftr 0 n = 0 ⊢ shiftr 0 (succ n) = 0 [PROOFSTEP] case zero => rw [shiftr] [GOAL] ⊢ shiftr 0 zero = 0 [PROOFSTEP] case zero => rw [shiftr] [GOAL] ⊢ shiftr 0 zero = 0 [PROOFSTEP] rw [shiftr] [GOAL] case succ n : ℕ IH : shiftr 0 n = 0 ⊢ shiftr 0 (succ n) = 0 [PROOFSTEP] case succ => rw [shiftr, div2, IH] rfl [GOAL] n : ℕ IH : shiftr 0 n = 0 ⊢ shiftr 0 (succ n) = 0 [PROOFSTEP] case succ => rw [shiftr, div2, IH] rfl [GOAL] n : ℕ IH : shiftr 0 n = 0 ⊢ shiftr 0 (succ n) = 0 [PROOFSTEP] rw [shiftr, div2, IH] [GOAL] n : ℕ IH : shiftr 0 n = 0 ⊢ (boddDiv2 0).snd = 0 [PROOFSTEP] rfl [GOAL] n : ℕ h : n ≠ 0 ⊢ div2 n < n [PROOFSTEP] rw [div2_val] [GOAL] n : ℕ h : n ≠ 0 ⊢ n / 2 < n [PROOFSTEP] apply (div_lt_iff_lt_mul <| succ_pos 1).2 [GOAL] n : ℕ h : n ≠ 0 ⊢ n < n * succ 1 [PROOFSTEP] have := Nat.mul_lt_mul_of_pos_left (lt_succ_self 1) (lt_of_le_of_ne n.zero_le h.symm) [GOAL] n : ℕ h : n ≠ 0 this : n * 1 < n * succ 1 ⊢ n < n * succ 1 [PROOFSTEP] rwa [Nat.mul_one] at this [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) n : ℕ n0 : n = 0 ⊢ C n [PROOFSTEP] simp [n0] [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) n : ℕ n0 : n = 0 ⊢ C 0 [PROOFSTEP] exact z [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) n : ℕ n0 : ¬n = 0 ⊢ C n [PROOFSTEP] let n' := div2 n [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) n : ℕ n0 : ¬n = 0 n' : ℕ := div2 n ⊢ C n [PROOFSTEP] have _x : bit (bodd n) n' = n := by apply bit_decomp n [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) n : ℕ n0 : ¬n = 0 n' : ℕ := div2 n ⊢ bit (bodd n) n' = n [PROOFSTEP] apply bit_decomp n [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) n : ℕ n0 : ¬n = 0 n' : ℕ := div2 n _x : bit (bodd n) n' = n ⊢ C n [PROOFSTEP] rw [← _x] [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) n : ℕ n0 : ¬n = 0 n' : ℕ := div2 n _x : bit (bodd n) n' = n ⊢ C (bit (bodd n) n') [PROOFSTEP] exact f (bodd n) n' (binaryRec z f n') [GOAL] n : ℕ n0 : ¬n = 0 n' : ℕ := div2 n _x : bit (bodd n) n' = n ⊢ (invImage (fun a => sizeOf a) instWellFoundedRelation).1 n' n [PROOFSTEP] exact binaryRec_decreasing n0 [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) ⊢ binaryRec z f 0 = z [PROOFSTEP] rw [binaryRec] [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) ⊢ (if n0 : 0 = 0 then Eq.mpr (_ : C 0 = C 0) z else let n' := div2 0; let_fun _x := (_ : bit (bodd 0) (div2 0) = 0); Eq.mpr (_ : C 0 = C (bit (bodd 0) n')) (f (bodd 0) n' (binaryRec z f n'))) = z [PROOFSTEP] rfl [GOAL] b : Bool n : ℕ ⊢ bodd (bit b n) = b [PROOFSTEP] rw [bit_val] [GOAL] b : Bool n : ℕ ⊢ bodd (2 * n + bif b then 1 else 0) = b [PROOFSTEP] simp [GOAL] b : Bool n : ℕ ⊢ bodd (bif b then 1 else 0) = b [PROOFSTEP] cases b [GOAL] case false n : ℕ ⊢ bodd (bif false then 1 else 0) = false [PROOFSTEP] cases bodd n [GOAL] case true n : ℕ ⊢ bodd (bif true then 1 else 0) = true [PROOFSTEP] cases bodd n [GOAL] case false.false n : ℕ ⊢ bodd (bif false then 1 else 0) = false [PROOFSTEP] rfl [GOAL] case false.true n : ℕ ⊢ bodd (bif false then 1 else 0) = false [PROOFSTEP] rfl [GOAL] case true.false n : ℕ ⊢ bodd (bif true then 1 else 0) = true [PROOFSTEP] rfl [GOAL] case true.true n : ℕ ⊢ bodd (bif true then 1 else 0) = true [PROOFSTEP] rfl [GOAL] b : Bool n : ℕ ⊢ div2 (bit b n) = n [PROOFSTEP] rw [bit_val, div2_val, Nat.add_comm, add_mul_div_left, div_eq_of_lt, Nat.zero_add] [GOAL] b : Bool n : ℕ ⊢ (bif b then 1 else 0) < 2 [PROOFSTEP] cases b [GOAL] case H b : Bool n : ℕ ⊢ 0 < 2 [PROOFSTEP] cases b [GOAL] case false n : ℕ ⊢ (bif false then 1 else 0) < 2 [PROOFSTEP] exact by decide [GOAL] n : ℕ ⊢ (bif false then 1 else 0) < 2 [PROOFSTEP] decide [GOAL] case true n : ℕ ⊢ (bif true then 1 else 0) < 2 [PROOFSTEP] exact by decide [GOAL] n : ℕ ⊢ (bif true then 1 else 0) < 2 [PROOFSTEP] decide [GOAL] case H.false n : ℕ ⊢ 0 < 2 [PROOFSTEP] exact by decide [GOAL] n : ℕ ⊢ 0 < 2 [PROOFSTEP] decide [GOAL] case H.true n : ℕ ⊢ 0 < 2 [PROOFSTEP] exact by decide [GOAL] n : ℕ ⊢ 0 < 2 [PROOFSTEP] decide [GOAL] b : Bool m n k : ℕ h : k + 1 ≤ n + 1 ⊢ shiftl' b m (n + 1 - (k + 1)) = shiftr (shiftl' b m (n + 1)) (k + 1) [PROOFSTEP] simp [shiftl'] [GOAL] b : Bool m n k : ℕ h : k + 1 ≤ n + 1 ⊢ shiftl' b m (n - k) = shiftr (bit b (shiftl' b m n)) (k + 1) [PROOFSTEP] rw [Nat.add_comm, shiftr_add] [GOAL] b : Bool m n k : ℕ h : k + 1 ≤ n + 1 ⊢ shiftl' b m (n - k) = shiftr (shiftr (bit b (shiftl' b m n)) 1) k [PROOFSTEP] simp [shiftr, div2_bit] [GOAL] b : Bool m n k : ℕ h : k + 1 ≤ n + 1 ⊢ shiftl' b m (n - k) = shiftr (shiftl' b m n) k [PROOFSTEP] simp [shiftl'_sub, (Nat.le_of_succ_le_succ h)] [GOAL] m : ℕ b : Bool n : ℕ ⊢ testBit (bit b n) (succ m) = testBit n m [PROOFSTEP] have : bodd (shiftr (shiftr (bit b n) 1) m) = bodd (shiftr n m) := by dsimp [shiftr] rw [div2_bit] [GOAL] m : ℕ b : Bool n : ℕ ⊢ bodd (shiftr (shiftr (bit b n) 1) m) = bodd (shiftr n m) [PROOFSTEP] dsimp [shiftr] [GOAL] m : ℕ b : Bool n : ℕ ⊢ bodd (shiftr (div2 (bit b n)) m) = bodd (shiftr n m) [PROOFSTEP] rw [div2_bit] [GOAL] m : ℕ b : Bool n : ℕ this : bodd (shiftr (shiftr (bit b n) 1) m) = bodd (shiftr n m) ⊢ testBit (bit b n) (succ m) = testBit n m [PROOFSTEP] rw [← shiftr_add, Nat.add_comm] at this [GOAL] m : ℕ b : Bool n : ℕ this : bodd (shiftr (bit b n) (m + 1)) = bodd (shiftr n m) ⊢ testBit (bit b n) (succ m) = testBit n m [PROOFSTEP] exact this [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h : f false 0 z = z b : Bool n : ℕ ⊢ binaryRec z f (bit b n) = f b n (binaryRec z f n) [PROOFSTEP] rw [binaryRec] [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h : f false 0 z = z b : Bool n : ℕ ⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z else let n' := div2 (bit b n); let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n); Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) = f b n (binaryRec z f n) [PROOFSTEP] by_cases h : bit b n = 0 -- Note: this renames the original `h : f false 0 z = z` to `h'` and leaves `h : bit b n = 0` [GOAL] case pos C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h✝ : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 ⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z else let n' := div2 (bit b n); let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n); Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) = f b n (binaryRec z f n) case neg C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h✝ : f false 0 z = z b : Bool n : ℕ h : ¬bit b n = 0 ⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z else let n' := div2 (bit b n); let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n); Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) = f b n (binaryRec z f n) [PROOFSTEP] case pos h' => simp [dif_pos h] generalize binaryRec z f (bit b n) = e revert e have bf := bodd_bit b n have n0 := div2_bit b n rw [h] at bf n0 simp at bf n0 subst bf n0 rw [binaryRec_zero] intros rw [h'] rfl [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 ⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z else let n' := div2 (bit b n); let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n); Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) = f b n (binaryRec z f n) [PROOFSTEP] case pos h' => simp [dif_pos h] generalize binaryRec z f (bit b n) = e revert e have bf := bodd_bit b n have n0 := div2_bit b n rw [h] at bf n0 simp at bf n0 subst bf n0 rw [binaryRec_zero] intros rw [h'] rfl [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 ⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z else let n' := div2 (bit b n); let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n); Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) = f b n (binaryRec z f n) [PROOFSTEP] simp [dif_pos h] [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 ⊢ Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n) [PROOFSTEP] generalize binaryRec z f (bit b n) = e [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 e : C (bit b n) ⊢ Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n) [PROOFSTEP] revert e [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 ⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n) [PROOFSTEP] have bf := bodd_bit b n [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 bf : bodd (bit b n) = b ⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n) [PROOFSTEP] have n0 := div2_bit b n [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 bf : bodd (bit b n) = b n0 : div2 (bit b n) = n ⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n) [PROOFSTEP] rw [h] at bf n0 [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 bf : bodd 0 = b n0 : div2 0 = n ⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n) [PROOFSTEP] simp at bf n0 [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : bit b n = 0 bf : false = b n0 : 0 = n ⊢ C (bit b n) → Eq.mpr (_ : C (bit b n) = C 0) z = f b n (binaryRec z f n) [PROOFSTEP] subst bf n0 [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z h : bit false 0 = 0 ⊢ C (bit false 0) → Eq.mpr (_ : C (bit false 0) = C 0) z = f false 0 (binaryRec z f 0) [PROOFSTEP] rw [binaryRec_zero] [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z h : bit false 0 = 0 ⊢ C (bit false 0) → Eq.mpr (_ : C (bit false 0) = C 0) z = f false 0 z [PROOFSTEP] intros [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z h : bit false 0 = 0 e✝ : C (bit false 0) ⊢ Eq.mpr (_ : C (bit false 0) = C 0) z = f false 0 z [PROOFSTEP] rw [h'] [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z h : bit false 0 = 0 e✝ : C (bit false 0) ⊢ Eq.mpr (_ : C (bit false 0) = C 0) z = z [PROOFSTEP] rfl [GOAL] case neg C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h✝ : f false 0 z = z b : Bool n : ℕ h : ¬bit b n = 0 ⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z else let n' := div2 (bit b n); let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n); Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) = f b n (binaryRec z f n) [PROOFSTEP] case neg h' => simp [dif_neg h] generalize @id (C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n)))) (Eq.symm (bit_decomp (bit b n)) ▸ Eq.refl (C (bit b n))) = e revert e rw [bodd_bit, div2_bit] intros; rfl [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : ¬bit b n = 0 ⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z else let n' := div2 (bit b n); let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n); Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) = f b n (binaryRec z f n) [PROOFSTEP] case neg h' => simp [dif_neg h] generalize @id (C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n)))) (Eq.symm (bit_decomp (bit b n)) ▸ Eq.refl (C (bit b n))) = e revert e rw [bodd_bit, div2_bit] intros; rfl [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : ¬bit b n = 0 ⊢ (if n0 : bit b n = 0 then Eq.mpr (_ : C (bit b n) = C 0) z else let n' := div2 (bit b n); let_fun _x := (_ : bit (bodd (bit b n)) (div2 (bit b n)) = bit b n); Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) n')) (f (bodd (bit b n)) n' (binaryRec z f n'))) = f b n (binaryRec z f n) [PROOFSTEP] simp [dif_neg h] [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : ¬bit b n = 0 ⊢ Eq.mpr (_ : C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n)))) (f (bodd (bit b n)) (div2 (bit b n)) (binaryRec z f (div2 (bit b n)))) = f b n (binaryRec z f n) [PROOFSTEP] generalize @id (C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n)))) (Eq.symm (bit_decomp (bit b n)) ▸ Eq.refl (C (bit b n))) = e [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : ¬bit b n = 0 e : C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n))) ⊢ Eq.mpr e (f (bodd (bit b n)) (div2 (bit b n)) (binaryRec z f (div2 (bit b n)))) = f b n (binaryRec z f n) [PROOFSTEP] revert e [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : ¬bit b n = 0 ⊢ ∀ (e : C (bit b n) = C (bit (bodd (bit b n)) (div2 (bit b n)))), Eq.mpr e (f (bodd (bit b n)) (div2 (bit b n)) (binaryRec z f (div2 (bit b n)))) = f b n (binaryRec z f n) [PROOFSTEP] rw [bodd_bit, div2_bit] [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : ¬bit b n = 0 ⊢ ∀ (e : C (bit b n) = C (bit b n)), Eq.mpr e (f b n (binaryRec z f n)) = f b n (binaryRec z f n) [PROOFSTEP] intros [GOAL] C : ℕ → Sort u z : C 0 f : (b : Bool) → (n : ℕ) → C n → C (bit b n) h' : f false 0 z = z b : Bool n : ℕ h : ¬bit b n = 0 e✝ : C (bit b n) = C (bit b n) ⊢ Eq.mpr e✝ (f b n (binaryRec z f n)) = f b n (binaryRec z f n) [PROOFSTEP] rfl [GOAL] f : Bool → Bool → Bool h : f false false = false ⊢ (binaryRec (bif f true false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) = fun n => bif f false true then n else 0 [PROOFSTEP] funext n [GOAL] case h f : Bool → Bool → Bool h : f false false = false n : ℕ ⊢ binaryRec (bif f true false then bit false 0 else 0) (fun b n x => bit (f false b) (bif f false true then n else 0)) n = bif f false true then n else 0 [PROOFSTEP] apply bitCasesOn n [GOAL] case h f : Bool → Bool → Bool h : f false false = false n : ℕ ⊢ ∀ (b : Bool) (n : ℕ), binaryRec (bif f true false then bit false 0 else 0) (fun b n x => bit (f false b) (bif f false true then n else 0)) (bit b n) = bif f false true then bit b n else 0 [PROOFSTEP] intro b n [GOAL] case h f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ binaryRec (bif f true false then bit false 0 else 0) (fun b n x => bit (f false b) (bif f false true then n else 0)) (bit b n) = bif f false true then bit b n else 0 [PROOFSTEP] rw [binaryRec_eq] [GOAL] case h f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ bit (f false b) (bif f false true then n else 0) = bif f false true then bit b n else 0 [PROOFSTEP] cases b [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit (f false false) (bif f false true then n else 0) = bif f false true then bit false n else 0 [PROOFSTEP] try rw [h] <;> induction' fft : f false true <;> simp [cond] [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit (f false false) (bif f false true then n else 0) = bif f false true then bit false n else 0 [PROOFSTEP] rw [h] [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit false (bif f false true then n else 0) = bif f false true then bit false n else 0 [PROOFSTEP] induction' fft : f false true [GOAL] case h.false.false f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ x✝ : Bool fft✝ : f false true = x✝ fft : f false true = false ⊢ bit false (bif false then n else 0) = bif false then bit false n else 0 [PROOFSTEP] simp [cond] [GOAL] case h.false.true f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ x✝ : Bool fft✝ : f false true = x✝ fft : f false true = true ⊢ bit false (bif true then n else 0) = bif true then bit false n else 0 [PROOFSTEP] simp [cond] [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit (f false true) (bif f false true then n else 0) = bif f false true then bit true n else 0 [PROOFSTEP] try rw [h] <;> induction' fft : f false true <;> simp [cond] [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit (f false true) (bif f false true then n else 0) = bif f false true then bit true n else 0 [PROOFSTEP] rw [h] [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit (f false true) (bif f false true then n else 0) = bif f false true then bit true n else 0 [PROOFSTEP] cases f false true [GOAL] case h.true.false f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit false (bif false then n else 0) = bif false then bit true n else 0 case h.true.true f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit true (bif true then n else 0) = bif true then bit true n else 0 [PROOFSTEP] case h.true.false => simp [GOAL] f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit false (bif false then n else 0) = bif false then bit true n else 0 [PROOFSTEP] case h.true.false => simp [GOAL] f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit false (bif false then n else 0) = bif false then bit true n else 0 [PROOFSTEP] simp [GOAL] case h.true.true f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit true (bif true then n else 0) = bif true then bit true n else 0 [PROOFSTEP] case h.true.true => simp [GOAL] f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit true (bif true then n else 0) = bif true then bit true n else 0 [PROOFSTEP] case h.true.true => simp [GOAL] f : Bool → Bool → Bool h : f false false = false n✝ n : ℕ ⊢ bit true (bif true then n else 0) = bif true then bit true n else 0 [PROOFSTEP] simp [GOAL] case h.h f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ bit (f false false) (bif f false true then 0 else 0) = bif f true false then bit false 0 else 0 [PROOFSTEP] rw [h, show cond (f false true) 0 0 = 0 by cases f false true <;> rfl, show cond (f true false) (bit false 0) 0 = 0 by cases f true false <;> rfl] [GOAL] f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ (bif f false true then 0 else 0) = 0 [PROOFSTEP] cases f false true [GOAL] case false f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ (bif false then 0 else 0) = 0 [PROOFSTEP] rfl [GOAL] case true f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ (bif true then 0 else 0) = 0 [PROOFSTEP] rfl [GOAL] f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ (bif f true false then bit false 0 else 0) = 0 [PROOFSTEP] cases f true false [GOAL] case false f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ (bif false then bit false 0 else 0) = 0 [PROOFSTEP] rfl [GOAL] case true f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ (bif true then bit false 0 else 0) = 0 [PROOFSTEP] rfl [GOAL] case h.h f : Bool → Bool → Bool h : f false false = false n✝ : ℕ b : Bool n : ℕ ⊢ bit false 0 = 0 [PROOFSTEP] rfl [GOAL] f : Bool → Bool → Bool n : ℕ ⊢ bitwise' f 0 n = bif f false true then n else 0 [PROOFSTEP] unfold bitwise' [GOAL] f : Bool → Bool → Bool n : ℕ ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) 0 n = bif f false true then n else 0 [PROOFSTEP] rw [binaryRec_zero] [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ ⊢ bitwise' f m 0 = bif f true false then m else 0 [PROOFSTEP] unfold bitwise' [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = bif f true false then m else 0 [PROOFSTEP] apply bitCasesOn m [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ ⊢ ∀ (b : Bool) (n : ℕ), binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit b n) 0 = bif f true false then bit b n else 0 [PROOFSTEP] intros [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ b✝ : Bool n✝ : ℕ ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit b✝ n✝) 0 = bif f true false then bit b✝ n✝ else 0 [PROOFSTEP] rw [binaryRec_eq, binaryRec_zero] [GOAL] case h f : Bool → Bool → Bool h : f false false = false m : ℕ b✝ : Bool n✝ : ℕ ⊢ (binaryRec (bif f true false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) = fun n => bif f false true then n else 0 [PROOFSTEP] exact bitwise'_bit_aux h [GOAL] f : Bool → Bool → Bool ⊢ bitwise' f 0 0 = 0 [PROOFSTEP] rw [bitwise'_zero_left] [GOAL] f : Bool → Bool → Bool ⊢ (bif f false true then 0 else 0) = 0 [PROOFSTEP] cases f false true [GOAL] case false f : Bool → Bool → Bool ⊢ (bif false then 0 else 0) = 0 [PROOFSTEP] rfl [GOAL] case true f : Bool → Bool → Bool ⊢ (bif true then 0 else 0) = 0 [PROOFSTEP] rfl [GOAL] f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ ⊢ bitwise' f (bit a m) (bit b n) = bit (f a b) (bitwise' f m n) [PROOFSTEP] unfold bitwise' [GOAL] f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit a m) (bit b n) = bit (f a b) (binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m n) [PROOFSTEP] rw [binaryRec_eq, binaryRec_eq] [GOAL] case h f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ ⊢ bit (f a false) (binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif f true false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) = bif f true false then bit a m else 0 [PROOFSTEP] induction' ftf : f true false [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ bit (f a false) (binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) = bif false then bit a m else 0 case h.true f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ bit (f a false) (binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) = bif true then bit a m else 0 [PROOFSTEP] rw [show f a false = false by cases a <;> assumption] [GOAL] f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ f a false = false [PROOFSTEP] cases a [GOAL] case false f : Bool → Bool → Bool h : f false false = false m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ f false false = false [PROOFSTEP] assumption [GOAL] case true f : Bool → Bool → Bool h : f false false = false m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ f true false = false [PROOFSTEP] assumption [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ bit false (binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) = bif false then bit a m else 0 case h.true f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ bit (f a false) (binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) = bif true then bit a m else 0 [PROOFSTEP] apply @congr_arg _ _ _ 0 (bit false) [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = 0 case h.true f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ bit (f a false) (binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) = bif true then bit a m else 0 [PROOFSTEP] swap [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ bit (f a false) (binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) = bif true then bit a m else 0 case h.false f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = 0 [PROOFSTEP] rw [show f a false = a by cases a <;> assumption] [GOAL] f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ f a false = a [PROOFSTEP] cases a [GOAL] case false f : Bool → Bool → Bool h : f false false = false m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ f false false = false [PROOFSTEP] assumption [GOAL] case true f : Bool → Bool → Bool h : f false false = false m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ f true false = true [PROOFSTEP] assumption [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ bit a (binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0) = bif true then bit a m else 0 case h.false f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = 0 [PROOFSTEP] apply congr_arg (bit a) [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = m case h.false f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = 0 [PROOFSTEP] all_goals { apply bitCasesOn m intro a m rw [binaryRec_eq, binaryRec_zero] · rfl · rw [← bitwise'_bit_aux h, ftf] } [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = m [PROOFSTEP] { apply bitCasesOn m intro a m rw [binaryRec_eq, binaryRec_zero] · rfl · rw [← bitwise'_bit_aux h, ftf] } [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = m [PROOFSTEP] apply bitCasesOn m [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true ⊢ ∀ (b : Bool) (n : ℕ), binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit b n) 0 = bit b n [PROOFSTEP] intro a m [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false a✝ : Bool m✝ : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true a : Bool m : ℕ ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif true then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit a m) 0 = bit a m [PROOFSTEP] rw [binaryRec_eq, binaryRec_zero] [GOAL] case h.true f : Bool → Bool → Bool h : f false false = false a✝ : Bool m✝ : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true a : Bool m : ℕ ⊢ (bif true then bit a m else 0) = bit a m [PROOFSTEP] rfl [GOAL] case h.true.h f : Bool → Bool → Bool h : f false false = false a✝ : Bool m✝ : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = true a : Bool m : ℕ ⊢ (binaryRec (bif true then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) = fun n => bif f false true then n else 0 [PROOFSTEP] rw [← bitwise'_bit_aux h, ftf] [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = 0 [PROOFSTEP] { apply bitCasesOn m intro a m rw [binaryRec_eq, binaryRec_zero] · rfl · rw [← bitwise'_bit_aux h, ftf] } [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) m 0 = 0 [PROOFSTEP] apply bitCasesOn m [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false ⊢ ∀ (b : Bool) (n : ℕ), binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit b n) 0 = 0 [PROOFSTEP] intro a m [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false a✝ : Bool m✝ : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false a : Bool m : ℕ ⊢ binaryRec (fun n => bif f false true then n else 0) (fun a m Ia => binaryRec (bif false then bit a m else 0) fun b n x => bit (f a b) (Ia n)) (bit a m) 0 = 0 [PROOFSTEP] rw [binaryRec_eq, binaryRec_zero] [GOAL] case h.false f : Bool → Bool → Bool h : f false false = false a✝ : Bool m✝ : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false a : Bool m : ℕ ⊢ (bif false then bit a m else 0) = 0 [PROOFSTEP] rfl [GOAL] case h.false.h f : Bool → Bool → Bool h : f false false = false a✝ : Bool m✝ : ℕ b : Bool n : ℕ x✝ : Bool ftf✝ : f true false = x✝ ftf : f true false = false a : Bool m : ℕ ⊢ (binaryRec (bif false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) = fun n => bif f false true then n else 0 [PROOFSTEP] rw [← bitwise'_bit_aux h, ftf] [GOAL] case h f : Bool → Bool → Bool h : f false false = false a : Bool m : ℕ b : Bool n : ℕ ⊢ (binaryRec (bif f true false then bit false 0 else 0) fun b n x => bit (f false b) (bif f false true then n else 0)) = fun n => bif f false true then n else 0 [PROOFSTEP] exact bitwise'_bit_aux h [GOAL] f : Bool → Bool → Bool h : f false false = false ⊢ bitwise' (Function.swap f) = Function.swap (bitwise' f) [PROOFSTEP] funext m n [GOAL] case h.h f : Bool → Bool → Bool h : f false false = false m n : ℕ ⊢ bitwise' (Function.swap f) m n = Function.swap (bitwise' f) m n [PROOFSTEP] revert n [GOAL] case h.h f : Bool → Bool → Bool h : f false false = false m : ℕ ⊢ ∀ (n : ℕ), bitwise' (Function.swap f) m n = Function.swap (bitwise' f) m n [PROOFSTEP] dsimp [Function.swap] [GOAL] case h.h f : Bool → Bool → Bool h : f false false = false m : ℕ ⊢ ∀ (n : ℕ), bitwise' (fun y x => f x y) m n = bitwise' f n m [PROOFSTEP] apply binaryRec _ _ m [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ ⊢ ∀ (n : ℕ), bitwise' (fun y x => f x y) 0 n = bitwise' f n 0 [PROOFSTEP] intro n [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ ⊢ ∀ (b : Bool) (n : ℕ), (∀ (n_1 : ℕ), bitwise' (fun y x => f x y) n n_1 = bitwise' f n_1 n) → ∀ (n_1 : ℕ), bitwise' (fun y x => f x y) (bit b n) n_1 = bitwise' f n_1 (bit b n) [PROOFSTEP] intro n [GOAL] f : Bool → Bool → Bool h : f false false = false m n : ℕ ⊢ bitwise' (fun y x => f x y) 0 n = bitwise' f n 0 [PROOFSTEP] rw [bitwise'_zero_left, bitwise'_zero_right] [GOAL] case h f : Bool → Bool → Bool h : f false false = false m n : ℕ ⊢ f false false = false [PROOFSTEP] exact h [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ n : Bool ⊢ ∀ (n_1 : ℕ), (∀ (n : ℕ), bitwise' (fun y x => f x y) n_1 n = bitwise' f n n_1) → ∀ (n_2 : ℕ), bitwise' (fun y x => f x y) (bit n n_1) n_2 = bitwise' f n_2 (bit n n_1) [PROOFSTEP] intros a ih m' [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ n : Bool a : ℕ ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a m' : ℕ ⊢ bitwise' (fun y x => f x y) (bit n a) m' = bitwise' f m' (bit n a) [PROOFSTEP] apply bitCasesOn m' [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ n : Bool a : ℕ ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a m' : ℕ ⊢ ∀ (b : Bool) (n_1 : ℕ), bitwise' (fun y x => f x y) (bit n a) (bit b n_1) = bitwise' f (bit b n_1) (bit n a) [PROOFSTEP] intro b n' [GOAL] f : Bool → Bool → Bool h : f false false = false m : ℕ n : Bool a : ℕ ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a m' : ℕ b : Bool n' : ℕ ⊢ bitwise' (fun y x => f x y) (bit n a) (bit b n') = bitwise' f (bit b n') (bit n a) [PROOFSTEP] rw [bitwise'_bit, bitwise'_bit, ih] [GOAL] case h f : Bool → Bool → Bool h : f false false = false m : ℕ n : Bool a : ℕ ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a m' : ℕ b : Bool n' : ℕ ⊢ f false false = false [PROOFSTEP] exact h [GOAL] case h f : Bool → Bool → Bool h : f false false = false m : ℕ n : Bool a : ℕ ih : ∀ (n : ℕ), bitwise' (fun y x => f x y) a n = bitwise' f n a m' : ℕ b : Bool n' : ℕ ⊢ f false false = false [PROOFSTEP] exact h [GOAL] f : Bool → Bool → Bool h : f false false = false m n k : ℕ ⊢ testBit (bitwise' f m n) k = f (testBit m k) (testBit n k) [PROOFSTEP] revert m n [GOAL] f : Bool → Bool → Bool h : f false false = false k : ℕ ⊢ ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k) [PROOFSTEP] induction' k with k IH [GOAL] case zero f : Bool → Bool → Bool h : f false false = false ⊢ ∀ (m n : ℕ), testBit (bitwise' f m n) zero = f (testBit m zero) (testBit n zero) [PROOFSTEP] intros m n [GOAL] case succ f : Bool → Bool → Bool h : f false false = false k : ℕ IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k) ⊢ ∀ (m n : ℕ), testBit (bitwise' f m n) (succ k) = f (testBit m (succ k)) (testBit n (succ k)) [PROOFSTEP] intros m n [GOAL] case zero f : Bool → Bool → Bool h : f false false = false m n : ℕ ⊢ testBit (bitwise' f m n) zero = f (testBit m zero) (testBit n zero) [PROOFSTEP] apply bitCasesOn m [GOAL] case succ f : Bool → Bool → Bool h : f false false = false k : ℕ IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k) m n : ℕ ⊢ testBit (bitwise' f m n) (succ k) = f (testBit m (succ k)) (testBit n (succ k)) [PROOFSTEP] apply bitCasesOn m [GOAL] case zero f : Bool → Bool → Bool h : f false false = false m n : ℕ ⊢ ∀ (b : Bool) (n_1 : ℕ), testBit (bitwise' f (bit b n_1) n) zero = f (testBit (bit b n_1) zero) (testBit n zero) [PROOFSTEP] intros a m' [GOAL] case succ f : Bool → Bool → Bool h : f false false = false k : ℕ IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k) m n : ℕ ⊢ ∀ (b : Bool) (n_1 : ℕ), testBit (bitwise' f (bit b n_1) n) (succ k) = f (testBit (bit b n_1) (succ k)) (testBit n (succ k)) [PROOFSTEP] intros a m' [GOAL] case zero f : Bool → Bool → Bool h : f false false = false m n : ℕ a : Bool m' : ℕ ⊢ testBit (bitwise' f (bit a m') n) zero = f (testBit (bit a m') zero) (testBit n zero) [PROOFSTEP] apply bitCasesOn n [GOAL] case succ f : Bool → Bool → Bool h : f false false = false k : ℕ IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k) m n : ℕ a : Bool m' : ℕ ⊢ testBit (bitwise' f (bit a m') n) (succ k) = f (testBit (bit a m') (succ k)) (testBit n (succ k)) [PROOFSTEP] apply bitCasesOn n [GOAL] case zero f : Bool → Bool → Bool h : f false false = false m n : ℕ a : Bool m' : ℕ ⊢ ∀ (b : Bool) (n : ℕ), testBit (bitwise' f (bit a m') (bit b n)) zero = f (testBit (bit a m') zero) (testBit (bit b n) zero) [PROOFSTEP] intros b n' [GOAL] case succ f : Bool → Bool → Bool h : f false false = false k : ℕ IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k) m n : ℕ a : Bool m' : ℕ ⊢ ∀ (b : Bool) (n : ℕ), testBit (bitwise' f (bit a m') (bit b n)) (succ k) = f (testBit (bit a m') (succ k)) (testBit (bit b n) (succ k)) [PROOFSTEP] intros b n' [GOAL] case zero f : Bool → Bool → Bool h : f false false = false m n : ℕ a : Bool m' : ℕ b : Bool n' : ℕ ⊢ testBit (bitwise' f (bit a m') (bit b n')) zero = f (testBit (bit a m') zero) (testBit (bit b n') zero) [PROOFSTEP] rw [bitwise'_bit h] [GOAL] case succ f : Bool → Bool → Bool h : f false false = false k : ℕ IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k) m n : ℕ a : Bool m' : ℕ b : Bool n' : ℕ ⊢ testBit (bitwise' f (bit a m') (bit b n')) (succ k) = f (testBit (bit a m') (succ k)) (testBit (bit b n') (succ k)) [PROOFSTEP] rw [bitwise'_bit h] [GOAL] case zero f : Bool → Bool → Bool h : f false false = false m n : ℕ a : Bool m' : ℕ b : Bool n' : ℕ ⊢ testBit (bit (f a b) (bitwise' f m' n')) zero = f (testBit (bit a m') zero) (testBit (bit b n') zero) [PROOFSTEP] simp [testBit_zero] [GOAL] case succ f : Bool → Bool → Bool h : f false false = false k : ℕ IH : ∀ (m n : ℕ), testBit (bitwise' f m n) k = f (testBit m k) (testBit n k) m n : ℕ a : Bool m' : ℕ b : Bool n' : ℕ ⊢ testBit (bit (f a b) (bitwise' f m' n')) (succ k) = f (testBit (bit a m') (succ k)) (testBit (bit b n') (succ k)) [PROOFSTEP] simp [testBit_succ, IH]
{"mathlib_filename": "Mathlib.Init.Data.Nat.Bitwise", "llama_tokens": 24222}
{"mathlib_filename": "Mathlib.Init.Data.Int.Basic", "llama_tokens": 0}
[GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ IsNoetherian K V ↔ Module.rank K V < ℵ₀ [PROOFSTEP] let b := Basis.ofVectorSpace K V [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V ⊢ IsNoetherian K V ↔ Module.rank K V < ℵ₀ [PROOFSTEP] rw [← b.mk_eq_rank'', lt_aleph0_iff_set_finite] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V ⊢ IsNoetherian K V ↔ Set.Finite (Basis.ofVectorSpaceIndex K V) [PROOFSTEP] constructor [GOAL] case mp K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V ⊢ IsNoetherian K V → Set.Finite (Basis.ofVectorSpaceIndex K V) [PROOFSTEP] intro [GOAL] case mp K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V a✝ : IsNoetherian K V ⊢ Set.Finite (Basis.ofVectorSpaceIndex K V) [PROOFSTEP] exact finite_of_linearIndependent (Basis.ofVectorSpaceIndex.linearIndependent K V) [GOAL] case mpr K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V ⊢ Set.Finite (Basis.ofVectorSpaceIndex K V) → IsNoetherian K V [PROOFSTEP] intro hbfinite [GOAL] case mpr K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V hbfinite : Set.Finite (Basis.ofVectorSpaceIndex K V) ⊢ IsNoetherian K V [PROOFSTEP] refine' @isNoetherian_of_linearEquiv K (⊤ : Submodule K V) V _ _ _ _ _ (LinearEquiv.ofTop _ rfl) (id _) [GOAL] case mpr K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V hbfinite : Set.Finite (Basis.ofVectorSpaceIndex K V) ⊢ IsNoetherian K { x // x ∈ ⊤ } [PROOFSTEP] refine' isNoetherian_of_fg_of_noetherian _ ⟨Set.Finite.toFinset hbfinite, _⟩ [GOAL] case mpr K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V b : Basis (↑(Basis.ofVectorSpaceIndex K V)) K V := Basis.ofVectorSpace K V hbfinite : Set.Finite (Basis.ofVectorSpaceIndex K V) ⊢ span K ↑(Set.Finite.toFinset hbfinite) = ⊤ [PROOFSTEP] rw [Set.Finite.coe_toFinset, ← b.span_eq, Basis.coe_ofVectorSpace, Subtype.range_coe] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : IsNoetherian K V ⊢ ↑(Basis.ofVectorSpaceIndex K V) ≃ { x // x ∈ finsetBasisIndex K V } [PROOFSTEP] rw [coeSort_finsetBasisIndex] [GOAL] K : Type u V : Type v inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : IsNoetherian K V ⊢ Set.range ↑(finsetBasis K V) = Basis.ofVectorSpaceIndex K V [PROOFSTEP] rw [finsetBasis, Basis.range_reindex, Basis.range_ofVectorSpace] [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ IsNoetherian K V ↔ Module.Finite K V [PROOFSTEP] constructor [GOAL] case mp K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ IsNoetherian K V → Module.Finite K V [PROOFSTEP] intro h [GOAL] case mp K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : IsNoetherian K V ⊢ Module.Finite K V [PROOFSTEP] exact ⟨⟨finsetBasisIndex K V, by convert (finsetBasis K V).span_eq simp⟩⟩ [GOAL] K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : IsNoetherian K V ⊢ span K ↑(finsetBasisIndex K V) = ⊤ [PROOFSTEP] convert (finsetBasis K V).span_eq [GOAL] case h.e'_2.h.e'_6 K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V h : IsNoetherian K V ⊢ ↑(finsetBasisIndex K V) = Set.range ↑(finsetBasis K V) [PROOFSTEP] simp [GOAL] case mpr K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V ⊢ Module.Finite K V → IsNoetherian K V [PROOFSTEP] rintro ⟨s, hs⟩ [GOAL] case mpr.mk.intro K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V s : Finset V hs : span K ↑s = ⊤ ⊢ IsNoetherian K V [PROOFSTEP] rw [IsNoetherian.iff_rank_lt_aleph0, ← rank_top, ← hs] [GOAL] case mpr.mk.intro K : Type u V : Type v inst✝² : DivisionRing K inst✝¹ : AddCommGroup V inst✝ : Module K V s : Finset V hs : span K ↑s = ⊤ ⊢ Module.rank K { x // x ∈ span K ↑s } < ℵ₀ [PROOFSTEP] exact lt_of_le_of_lt (rank_span_le _) s.finite_toSet.lt_aleph0
{"mathlib_filename": "Mathlib.FieldTheory.Finiteness", "llama_tokens": 2188}
[GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝ : Mul β ⊢ let mul := Equiv.mul e; α ≃* β [PROOFSTEP] intros [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝ : Mul β mul✝ : Mul α := Equiv.mul e ⊢ α ≃* β [PROOFSTEP] exact { e with map_mul' := fun x y => by apply e.symm.injective simp [mul_def] } [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝ : Mul β mul✝ : Mul α := Equiv.mul e x y : α ⊢ toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } (x * y) = toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } x * toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } y [PROOFSTEP] apply e.symm.injective [GOAL] case a α : Type u β : Type v e✝ e : α ≃ β inst✝ : Mul β mul✝ : Mul α := Equiv.mul e x y : α ⊢ ↑e.symm (toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } (x * y)) = ↑e.symm (toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } x * toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } y) [PROOFSTEP] simp [mul_def] [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝ : Mul β b : β ⊢ ↑(MulEquiv.symm (mulEquiv e)) b = ↑e.symm b [PROOFSTEP] intros [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝ : Mul β b : β ⊢ ↑(MulEquiv.symm (mulEquiv e)) b = ↑e.symm b [PROOFSTEP] rfl [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β ⊢ Sort ?u.112825 [PROOFSTEP] let add := Equiv.add e [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β add : Add α := Equiv.add e ⊢ Sort ?u.112825 [PROOFSTEP] let mul := Equiv.mul e [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β add : Add α := Equiv.add e mul : Mul α := Equiv.mul e ⊢ Sort ?u.112825 [PROOFSTEP] exact α ≃+* β [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β ⊢ let add := Equiv.add e; let mul := Equiv.mul e; α ≃+* β [PROOFSTEP] intros [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β add✝ : Add α := Equiv.add e mul✝ : Mul α := Equiv.mul e ⊢ α ≃+* β [PROOFSTEP] exact { e with map_add' := fun x y => by apply e.symm.injective simp [add_def] map_mul' := fun x y => by apply e.symm.injective simp [mul_def] } [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β add✝ : Add α := Equiv.add e mul✝ : Mul α := Equiv.mul e x y : α ⊢ toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } (x * y) = toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } x * toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } y [PROOFSTEP] apply e.symm.injective [GOAL] case a α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β add✝ : Add α := Equiv.add e mul✝ : Mul α := Equiv.mul e x y : α ⊢ ↑e.symm (toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } (x * y)) = ↑e.symm (toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } x * toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } y) [PROOFSTEP] simp [mul_def] [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β add✝ : Add α := Equiv.add e mul✝ : Mul α := Equiv.mul e x y : α ⊢ toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } (x + y) = toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } x + toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } y [PROOFSTEP] apply e.symm.injective [GOAL] case a α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β add✝ : Add α := Equiv.add e mul✝ : Mul α := Equiv.mul e x y : α ⊢ ↑e.symm (toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } (x + y)) = ↑e.symm (toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } x + toFun { toFun := e.toFun, invFun := e.invFun, left_inv := (_ : Function.LeftInverse e.invFun e.toFun), right_inv := (_ : Function.RightInverse e.invFun e.toFun) } y) [PROOFSTEP] simp [add_def] [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β b : β ⊢ Sort ?u.184035 [PROOFSTEP] letI := Equiv.add e [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β b : β this : Add α := Equiv.add e ⊢ Sort ?u.184035 [PROOFSTEP] letI := Equiv.mul e [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β b : β this✝ : Add α := Equiv.add e this : Mul α := Equiv.mul e ⊢ Sort ?u.184035 [PROOFSTEP] exact (ringEquiv e).symm b = e.symm b [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β b : β ⊢ ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b [PROOFSTEP] intros [GOAL] α : Type u β : Type v e✝ e : α ≃ β inst✝¹ : Add β inst✝ : Mul β b : β ⊢ ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b [PROOFSTEP] rfl [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Semigroup β ⊢ Semigroup α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Semigroup β mul : Mul α := Equiv.mul e ⊢ Semigroup α [PROOFSTEP] apply e.injective.semigroup _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Semigroup β mul : Mul α := Equiv.mul e ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Semigroup β mul : Mul α := Equiv.mul e x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : SemigroupWithZero β ⊢ SemigroupWithZero α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : SemigroupWithZero β mul : Mul α := Equiv.mul e ⊢ SemigroupWithZero α [PROOFSTEP] let zero := e.zero [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : SemigroupWithZero β mul : Mul α := Equiv.mul e zero : Zero α := Equiv.zero e ⊢ SemigroupWithZero α [PROOFSTEP] apply e.injective.semigroupWithZero _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : SemigroupWithZero β mul : Mul α := Equiv.mul e zero : Zero α := Equiv.zero e ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : SemigroupWithZero β mul : Mul α := Equiv.mul e zero : Zero α := Equiv.zero e ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : SemigroupWithZero β mul : Mul α := Equiv.mul e zero : Zero α := Equiv.zero e ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : SemigroupWithZero β mul : Mul α := Equiv.mul e zero : Zero α := Equiv.zero e x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommSemigroup β ⊢ CommSemigroup α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommSemigroup β mul : Mul α := Equiv.mul e ⊢ CommSemigroup α [PROOFSTEP] apply e.injective.commSemigroup _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommSemigroup β mul : Mul α := Equiv.mul e ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommSemigroup β mul : Mul α := Equiv.mul e x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulZeroClass β ⊢ MulZeroClass α [PROOFSTEP] let zero := e.zero [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulZeroClass β zero : Zero α := Equiv.zero e ⊢ MulZeroClass α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulZeroClass β zero : Zero α := Equiv.zero e mul : Mul α := Equiv.mul e ⊢ MulZeroClass α [PROOFSTEP] apply e.injective.mulZeroClass _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : MulZeroClass β zero : Zero α := Equiv.zero e mul : Mul α := Equiv.mul e ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : MulZeroClass β zero : Zero α := Equiv.zero e mul : Mul α := Equiv.mul e ⊢ ∀ (a b : α), ↑e (a * b) = ↑e a * ↑e b [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : MulZeroClass β zero : Zero α := Equiv.zero e mul : Mul α := Equiv.mul e ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : MulZeroClass β zero : Zero α := Equiv.zero e mul : Mul α := Equiv.mul e a✝ b✝ : α ⊢ ↑e (a✝ * b✝) = ↑e a✝ * ↑e b✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulOneClass β ⊢ MulOneClass α [PROOFSTEP] let one := e.one [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulOneClass β one : One α := Equiv.one e ⊢ MulOneClass α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulOneClass β one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ MulOneClass α [PROOFSTEP] apply e.injective.mulOneClass _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : MulOneClass β one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : MulOneClass β one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : MulOneClass β one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : MulOneClass β one : One α := Equiv.one e mul : Mul α := Equiv.mul e x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β ⊢ MulZeroOneClass α [PROOFSTEP] let zero := e.zero [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β zero : Zero α := Equiv.zero e ⊢ MulZeroOneClass α [PROOFSTEP] let one := e.one [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β zero : Zero α := Equiv.zero e one : One α := Equiv.one e ⊢ MulZeroOneClass α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β zero : Zero α := Equiv.zero e one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ MulZeroOneClass α [PROOFSTEP] apply e.injective.mulZeroOneClass _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β zero : Zero α := Equiv.zero e one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β zero : Zero α := Equiv.zero e one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β zero : Zero α := Equiv.zero e one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ ∀ (a b : α), ↑e (a * b) = ↑e a * ↑e b [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β zero : Zero α := Equiv.zero e one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β zero : Zero α := Equiv.zero e one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : MulZeroOneClass β zero : Zero α := Equiv.zero e one : One α := Equiv.one e mul : Mul α := Equiv.mul e a✝ b✝ : α ⊢ ↑e (a✝ * b✝) = ↑e a✝ * ↑e b✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Monoid β ⊢ Monoid α [PROOFSTEP] let one := e.one [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Monoid β one : One α := Equiv.one e ⊢ Monoid α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Monoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ Monoid α [PROOFSTEP] let pow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Monoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ Monoid α [PROOFSTEP] apply e.injective.monoid _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Monoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Monoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Monoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Monoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Monoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Monoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β ⊢ CommMonoid α [PROOFSTEP] let one := e.one [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β one : One α := Equiv.one e ⊢ CommMonoid α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ CommMonoid α [PROOFSTEP] let pow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ CommMonoid α [PROOFSTEP] apply e.injective.commMonoid _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : CommMonoid β one : One α := Equiv.one e mul : Mul α := Equiv.mul e pow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Group β ⊢ Group α [PROOFSTEP] let one := e.one [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e ⊢ Group α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ Group α [PROOFSTEP] let inv := e.Inv [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e ⊢ Group α [PROOFSTEP] let div := e.div [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e ⊢ Group α [PROOFSTEP] let npow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ Group α [PROOFSTEP] let zpow := e.pow ℤ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ Group α [PROOFSTEP] apply e.injective.group _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case inv α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x : α), ↑e x⁻¹ = (↑e x)⁻¹ [PROOFSTEP] intros [GOAL] case div α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x y : α), ↑e (x / y) = ↑e x / ↑e y [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case zpow α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x : α) (n : ℤ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case inv α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ : α ⊢ ↑e x✝⁻¹ = (↑e x✝)⁻¹ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case div α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ y✝ : α ⊢ ↑e (x✝ / y✝) = ↑e x✝ / ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zpow α : Type u β : Type v e : α ≃ β inst✝ : Group β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ : α n✝ : ℤ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β ⊢ CommGroup α [PROOFSTEP] let one := e.one [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e ⊢ CommGroup α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e ⊢ CommGroup α [PROOFSTEP] let inv := e.Inv [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e ⊢ CommGroup α [PROOFSTEP] let div := e.div [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e ⊢ CommGroup α [PROOFSTEP] let npow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ CommGroup α [PROOFSTEP] let zpow := e.pow ℤ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ CommGroup α [PROOFSTEP] apply e.injective.commGroup _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case inv α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x : α), ↑e x⁻¹ = (↑e x)⁻¹ [PROOFSTEP] intros [GOAL] case div α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x y : α), ↑e (x / y) = ↑e x / ↑e y [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case zpow α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ∀ (x : α) (n : ℤ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case inv α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ : α ⊢ ↑e x✝⁻¹ = (↑e x✝)⁻¹ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case div α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ y✝ : α ⊢ ↑e (x✝ / y✝) = ↑e x✝ / ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zpow α : Type u β : Type v e : α ≃ β inst✝ : CommGroup β one : One α := Equiv.one e mul : Mul α := Equiv.mul e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ x✝ : α n✝ : ℤ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β ⊢ NonUnitalNonAssocSemiring α [PROOFSTEP] let zero := e.zero [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e ⊢ NonUnitalNonAssocSemiring α [PROOFSTEP] let add := e.add [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e ⊢ NonUnitalNonAssocSemiring α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e ⊢ NonUnitalNonAssocSemiring α [PROOFSTEP] let nsmul := e.smul ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ NonUnitalNonAssocSemiring α [PROOFSTEP] apply e.injective.nonUnitalNonAssocSemiring _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β ⊢ NonUnitalSemiring α [PROOFSTEP] let zero := e.zero [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e ⊢ NonUnitalSemiring α [PROOFSTEP] let add := e.add [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e ⊢ NonUnitalSemiring α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e ⊢ NonUnitalSemiring α [PROOFSTEP] let nsmul := e.smul ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ NonUnitalSemiring α [PROOFSTEP] apply e.injective.nonUnitalSemiring _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : AddMonoidWithOne β src✝¹ : AddMonoid α := Equiv.addMonoid e src✝ : One α := Equiv.one e ⊢ ↑e (NatCast.natCast 0) = ↑e 0 [PROOFSTEP] simp [zero_def] [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : AddMonoidWithOne β src✝¹ : AddMonoid α := Equiv.addMonoid e src✝ : One α := Equiv.one e n : ℕ ⊢ ↑e (NatCast.natCast (n + 1)) = ↑e (NatCast.natCast n + 1) [PROOFSTEP] simp [add_def, one_def] [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : AddGroupWithOne β src✝¹ : AddMonoidWithOne α := Equiv.addMonoidWithOne e src✝ : AddGroup α := Equiv.addGroup e n : ℕ ⊢ IntCast.intCast ↑n = ↑n [PROOFSTEP] simp only [Int.cast_ofNat] [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : AddGroupWithOne β src✝¹ : AddMonoidWithOne α := Equiv.addMonoidWithOne e src✝ : AddGroup α := Equiv.addGroup e n : ℕ ⊢ ↑e.symm ↑n = ↑n [PROOFSTEP] rfl [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β ⊢ NonAssocSemiring α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e ⊢ NonAssocSemiring α [PROOFSTEP] let add_monoid_with_one := e.addMonoidWithOne [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ NonAssocSemiring α [PROOFSTEP] apply e.injective.nonAssocSemiring _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ ∀ (n : ℕ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : NonAssocSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e n✝ : ℕ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Semiring β ⊢ Semiring α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e ⊢ Semiring α [PROOFSTEP] let add_monoid_with_one := e.addMonoidWithOne [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ Semiring α [PROOFSTEP] let npow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ Semiring α [PROOFSTEP] apply e.injective.semiring _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (n : ℕ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : Semiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ n✝ : ℕ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β ⊢ NonUnitalCommSemiring α [PROOFSTEP] let zero := e.zero [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e ⊢ NonUnitalCommSemiring α [PROOFSTEP] let add := e.add [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e ⊢ NonUnitalCommSemiring α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e ⊢ NonUnitalCommSemiring α [PROOFSTEP] let nsmul := e.smul ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ NonUnitalCommSemiring α [PROOFSTEP] apply e.injective.nonUnitalCommSemiring _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommSemiring β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e nsmul : SMul ℕ α := Equiv.smul e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β ⊢ CommSemiring α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e ⊢ CommSemiring α [PROOFSTEP] let add_monoid_with_one := e.addMonoidWithOne [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e ⊢ CommSemiring α [PROOFSTEP] let npow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ CommSemiring α [PROOFSTEP] apply e.injective.commSemiring _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (n : ℕ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : CommSemiring β mul : Mul α := Equiv.mul e add_monoid_with_one : AddMonoidWithOne α := Equiv.addMonoidWithOne e npow : Pow α ℕ := Equiv.pow e ℕ n✝ : ℕ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β ⊢ NonUnitalNonAssocRing α [PROOFSTEP] let zero := e.zero [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e ⊢ NonUnitalNonAssocRing α [PROOFSTEP] let add := e.add [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e ⊢ NonUnitalNonAssocRing α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e ⊢ NonUnitalNonAssocRing α [PROOFSTEP] let neg := e.Neg [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e ⊢ NonUnitalNonAssocRing α [PROOFSTEP] let sub := e.sub [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e ⊢ NonUnitalNonAssocRing α [PROOFSTEP] let nsmul := e.smul ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ NonUnitalNonAssocRing α [PROOFSTEP] let zsmul := e.smul ℤ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ NonUnitalNonAssocRing α [PROOFSTEP] apply e.injective.nonUnitalNonAssocRing _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x : α), ↑e (-x) = -↑e x [PROOFSTEP] intros [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ : α ⊢ ↑e (-x✝) = -↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ y✝ : α ⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalNonAssocRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ : α n✝ : ℤ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β ⊢ NonUnitalRing α [PROOFSTEP] let zero := e.zero [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e ⊢ NonUnitalRing α [PROOFSTEP] let add := e.add [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e ⊢ NonUnitalRing α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e ⊢ NonUnitalRing α [PROOFSTEP] let neg := e.Neg [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e ⊢ NonUnitalRing α [PROOFSTEP] let sub := e.sub [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e ⊢ NonUnitalRing α [PROOFSTEP] let nsmul := e.smul ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ NonUnitalRing α [PROOFSTEP] let zsmul := e.smul ℤ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ NonUnitalRing α [PROOFSTEP] apply e.injective.nonUnitalRing _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x : α), ↑e (-x) = -↑e x [PROOFSTEP] intros [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case gsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ : α ⊢ ↑e (-x✝) = -↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ y✝ : α ⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case gsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ : α n✝ : ℤ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β ⊢ NonAssocRing α [PROOFSTEP] let add_group_with_one := e.addGroupWithOne [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e ⊢ NonAssocRing α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ NonAssocRing α [PROOFSTEP] apply e.injective.nonAssocRing _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ∀ (x : α), ↑e (-x) = -↑e x [PROOFSTEP] intros [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case gsmul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ∀ (n : ℕ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ∀ (n : ℤ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e x✝ : α ⊢ ↑e (-x✝) = -↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e x✝ y✝ : α ⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case gsmul α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e x✝ : α n✝ : ℤ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e n✝ : ℕ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : NonAssocRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e mul : Mul α := Equiv.mul e n✝ : ℤ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Ring β ⊢ Ring α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e ⊢ Ring α [PROOFSTEP] let add_group_with_one := e.addGroupWithOne [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e ⊢ Ring α [PROOFSTEP] let npow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ Ring α [PROOFSTEP] apply e.injective.ring _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α), ↑e (-x) = -↑e x [PROOFSTEP] intros [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (n : ℕ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (n : ℤ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α ⊢ ↑e (-x✝) = -↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℤ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ n✝ : ℕ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : Ring β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ n✝ : ℤ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β ⊢ NonUnitalCommRing α [PROOFSTEP] let zero := e.zero [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e ⊢ NonUnitalCommRing α [PROOFSTEP] let add := e.add [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e ⊢ NonUnitalCommRing α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e ⊢ NonUnitalCommRing α [PROOFSTEP] let neg := e.Neg [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e ⊢ NonUnitalCommRing α [PROOFSTEP] let sub := e.sub [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e ⊢ NonUnitalCommRing α [PROOFSTEP] let nsmul := e.smul ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ ⊢ NonUnitalCommRing α [PROOFSTEP] let zsmul := e.smul ℤ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ NonUnitalCommRing α [PROOFSTEP] apply e.injective.nonUnitalCommRing _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x : α), ↑e (-x) = -↑e x [PROOFSTEP] intros [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ : α ⊢ ↑e (-x✝) = -↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ y✝ : α ⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : NonUnitalCommRing β zero : Zero α := Equiv.zero e add : Add α := Equiv.add e mul : Mul α := Equiv.mul e neg : Neg α := Equiv.Neg e sub : Sub α := Equiv.sub e nsmul : SMul ℕ α := Equiv.smul e ℕ zsmul : SMul ℤ α := Equiv.smul e ℤ x✝ : α n✝ : ℤ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommRing β ⊢ CommRing α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e ⊢ CommRing α [PROOFSTEP] let add_group_with_one := e.addGroupWithOne [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e ⊢ CommRing α [PROOFSTEP] let npow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ CommRing α [PROOFSTEP] apply e.injective.commRing _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α), ↑e (-x) = -↑e x [PROOFSTEP] intros [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (n : ℕ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ∀ (n : ℤ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α ⊢ ↑e (-x✝) = -↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ y✝ : α ⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℤ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ n✝ : ℕ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : CommRing β mul : Mul α := Equiv.mul e add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e npow : Pow α ℕ := Equiv.pow e ℕ n✝ : ℤ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β ⊢ DivisionRing α [PROOFSTEP] let add_group_with_one := e.addGroupWithOne [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e ⊢ DivisionRing α [PROOFSTEP] let inv := e.Inv [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e ⊢ DivisionRing α [PROOFSTEP] let div := e.div [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e ⊢ DivisionRing α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e ⊢ DivisionRing α [PROOFSTEP] let npow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ DivisionRing α [PROOFSTEP] let zpow := e.pow ℤ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ DivisionRing α [PROOFSTEP] let rat_cast := e.RatCast [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e ⊢ DivisionRing α [PROOFSTEP] let qsmul := e.smul ℚ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ DivisionRing α [PROOFSTEP] apply e.injective.divisionRing _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α), ↑e (-x) = -↑e x [PROOFSTEP] intros [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y [PROOFSTEP] intros [GOAL] case inv α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α), ↑e x⁻¹ = (↑e x)⁻¹ [PROOFSTEP] intros [GOAL] case div α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x y : α), ↑e (x / y) = ↑e x / ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case qsmul α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℚ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case zpow α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℤ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (n : ℕ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (n : ℤ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case rat_cast α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (n : ℚ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α ⊢ ↑e (-x✝) = -↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ y✝ : α ⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case inv α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α ⊢ ↑e x✝⁻¹ = (↑e x✝)⁻¹ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case div α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ y✝ : α ⊢ ↑e (x✝ / y✝) = ↑e x✝ / ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℤ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case qsmul α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℚ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zpow α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℤ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ n✝ : ℕ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ n✝ : ℤ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case rat_cast α : Type u β : Type v e : α ≃ β inst✝ : DivisionRing β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ n✝ : ℚ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β ⊢ Field α [PROOFSTEP] let add_group_with_one := e.addGroupWithOne [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e ⊢ Field α [PROOFSTEP] let neg := e.Neg [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e ⊢ Field α [PROOFSTEP] let inv := e.Inv [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e ⊢ Field α [PROOFSTEP] let div := e.div [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e ⊢ Field α [PROOFSTEP] let mul := e.mul [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e ⊢ Field α [PROOFSTEP] let npow := e.pow ℕ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ ⊢ Field α [PROOFSTEP] let zpow := e.pow ℤ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ ⊢ Field α [PROOFSTEP] let rat_cast := e.RatCast [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e ⊢ Field α [PROOFSTEP] let qsmul := e.smul ℚ [GOAL] α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ Field α [PROOFSTEP] apply e.injective.field _ [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ↑e 0 = 0 [PROOFSTEP] intros [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ↑e 1 = 1 [PROOFSTEP] intros [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x y : α), ↑e (x + y) = ↑e x + ↑e y [PROOFSTEP] intros [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x y : α), ↑e (x * y) = ↑e x * ↑e y [PROOFSTEP] intros [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α), ↑e (-x) = -↑e x [PROOFSTEP] intros [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x y : α), ↑e (x - y) = ↑e x - ↑e y [PROOFSTEP] intros [GOAL] case inv α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α), ↑e x⁻¹ = (↑e x)⁻¹ [PROOFSTEP] intros [GOAL] case div α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x y : α), ↑e (x / y) = ↑e x / ↑e y [PROOFSTEP] intros [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℕ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℤ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case qsmul α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℚ), ↑e (n • x) = n • ↑e x [PROOFSTEP] intros [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℕ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case zpow α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (x : α) (n : ℤ), ↑e (x ^ n) = ↑e x ^ n [PROOFSTEP] intros [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (n : ℕ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (n : ℤ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case rat_cast α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ∀ (n : ℚ), ↑e ↑n = ↑n [PROOFSTEP] intros [GOAL] case zero α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ↑e 0 = 0 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case one α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ ⊢ ↑e 1 = 1 [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case add α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ y✝ : α ⊢ ↑e (x✝ + y✝) = ↑e x✝ + ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case mul α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ y✝ : α ⊢ ↑e (x✝ * y✝) = ↑e x✝ * ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case neg α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α ⊢ ↑e (-x✝) = -↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case sub α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ y✝ : α ⊢ ↑e (x✝ - y✝) = ↑e x✝ - ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case inv α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α ⊢ ↑e x✝⁻¹ = (↑e x✝)⁻¹ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case div α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ y✝ : α ⊢ ↑e (x✝ / y✝) = ↑e x✝ / ↑e y✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nsmul α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℕ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zsmul α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℤ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case qsmul α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℚ ⊢ ↑e (n✝ • x✝) = n✝ • ↑e x✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case npow α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℕ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case zpow α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ x✝ : α n✝ : ℤ ⊢ ↑e (x✝ ^ n✝) = ↑e x✝ ^ n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case nat_cast α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ n✝ : ℕ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case int_cast α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ n✝ : ℤ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] case rat_cast α : Type u β : Type v e : α ≃ β inst✝ : Field β add_group_with_one : AddGroupWithOne α := Equiv.addGroupWithOne e neg : Neg α := Equiv.Neg e inv : Inv α := Equiv.Inv e div : Div α := Equiv.div e mul : Mul α := Equiv.mul e npow : Pow α ℕ := Equiv.pow e ℕ zpow : Pow α ℤ := Equiv.pow e ℤ rat_cast : RatCast α := Equiv.RatCast e qsmul : SMul ℚ α := Equiv.smul e ℚ n✝ : ℚ ⊢ ↑e ↑n✝ = ↑n✝ [PROOFSTEP] exact e.apply_symm_apply _ [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝¹ : Monoid R e : α ≃ β inst✝ : MulAction R β src✝ : SMul R α := Equiv.smul e R ⊢ ∀ (b : α), 1 • b = b [PROOFSTEP] simp [smul_def] [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝¹ : Monoid R e : α ≃ β inst✝ : MulAction R β src✝ : SMul R α := Equiv.smul e R ⊢ ∀ (x y : R) (b : α), (x * y) • b = x • y • b [PROOFSTEP] simp [smul_def, mul_smul] [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝¹ : Monoid R e : α ≃ β inst✝ : AddCommMonoid β ⊢ [inst : DistribMulAction R β] → DistribMulAction R α [PROOFSTEP] intros [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Monoid R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : DistribMulAction R β ⊢ DistribMulAction R α [PROOFSTEP] letI := Equiv.addCommMonoid e [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Monoid R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : DistribMulAction R β this : AddCommMonoid α := Equiv.addCommMonoid e ⊢ DistribMulAction R α [PROOFSTEP] exact ({ Equiv.mulAction R e with smul_zero := by simp [zero_def, smul_def] smul_add := by simp [add_def, smul_def, smul_add] } : DistribMulAction R α) [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Monoid R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : DistribMulAction R β this : AddCommMonoid α := Equiv.addCommMonoid e src✝ : MulAction R α := Equiv.mulAction R e ⊢ ∀ (a : R), a • 0 = 0 [PROOFSTEP] simp [zero_def, smul_def] [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Monoid R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : DistribMulAction R β this : AddCommMonoid α := Equiv.addCommMonoid e src✝ : MulAction R α := Equiv.mulAction R e ⊢ ∀ (a : R) (x y : α), a • (x + y) = a • x + a • y [PROOFSTEP] simp [add_def, smul_def, smul_add] [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝¹ : Semiring R e : α ≃ β inst✝ : AddCommMonoid β ⊢ let addCommMonoid := Equiv.addCommMonoid e; [inst : Module R β] → Module R α [PROOFSTEP] intros [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e inst✝ : Module R β ⊢ Module R α [PROOFSTEP] exact ({ Equiv.distribMulAction R e with zero_smul := by simp [smul_def, zero_smul, zero_def] add_smul := by simp [add_def, smul_def, add_smul] } : Module R α) [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e inst✝ : Module R β src✝ : DistribMulAction R α := Equiv.distribMulAction R e ⊢ ∀ (r s : R) (x : α), (r + s) • x = r • x + s • x [PROOFSTEP] simp [add_def, smul_def, add_smul] [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e inst✝ : Module R β src✝ : DistribMulAction R α := Equiv.distribMulAction R e ⊢ ∀ (x : α), 0 • x = 0 [PROOFSTEP] simp [smul_def, zero_smul, zero_def] [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : Module R β ⊢ Sort ?u.508797 [PROOFSTEP] let addCommMonoid := Equiv.addCommMonoid e [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : Module R β addCommMonoid : AddCommMonoid α := Equiv.addCommMonoid e ⊢ Sort ?u.508797 [PROOFSTEP] let module := Equiv.module R e [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : Module R β addCommMonoid : AddCommMonoid α := Equiv.addCommMonoid e module : Module R α := Equiv.module R e ⊢ Sort ?u.508797 [PROOFSTEP] exact α ≃ₗ[R] β [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : Module R β ⊢ let addCommMonoid := Equiv.addCommMonoid e; let module := Equiv.module R e; α ≃ₗ[R] β [PROOFSTEP] intros [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : Module R β addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e module✝ : Module R α := Equiv.module R e ⊢ α ≃ₗ[R] β [PROOFSTEP] exact { Equiv.addEquiv e with map_smul' := fun r x => by apply e.symm.injective simp exact Iff.mpr (apply_eq_iff_eq_symm_apply _) rfl } [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : Module R β addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e module✝ : Module R α := Equiv.module R e src✝ : let mul := Equiv.add e; α ≃+ β := addEquiv e r : R x : α ⊢ AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α), toFun src✝.toEquiv (x + y) = toFun src✝.toEquiv x + toFun src✝.toEquiv y) } (r • x) = ↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α), toFun src✝.toEquiv (x + y) = toFun src✝.toEquiv x + toFun src✝.toEquiv y) } x [PROOFSTEP] apply e.symm.injective [GOAL] case a α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : Module R β addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e module✝ : Module R α := Equiv.module R e src✝ : let mul := Equiv.add e; α ≃+ β := addEquiv e r : R x : α ⊢ ↑e.symm (AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α), toFun src✝.toEquiv (x + y) = toFun src✝.toEquiv x + toFun src✝.toEquiv y) } (r • x)) = ↑e.symm (↑(RingHom.id R) r • AddHom.toFun { toFun := src✝.toFun, map_add' := (_ : ∀ (x y : α), toFun src✝.toEquiv (x + y) = toFun src✝.toEquiv x + toFun src✝.toEquiv y) } x) [PROOFSTEP] simp [GOAL] case a α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : Semiring R e : α ≃ β inst✝¹ : AddCommMonoid β inst✝ : Module R β addCommMonoid✝ : AddCommMonoid α := Equiv.addCommMonoid e module✝ : Module R α := Equiv.module R e src✝ : let mul := Equiv.add e; α ≃+ β := addEquiv e r : R x : α ⊢ ↑(addEquiv e).toEquiv (r • x) = r • ↑(addEquiv e).toEquiv x [PROOFSTEP] exact Iff.mpr (apply_eq_iff_eq_symm_apply _) rfl [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝¹ : CommSemiring R e : α ≃ β inst✝ : Semiring β ⊢ let semiring := Equiv.semiring e; [inst : Algebra R β] → Algebra R α [PROOFSTEP] intros [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β ⊢ Algebra R α [PROOFSTEP] fapply RingHom.toAlgebra' [GOAL] case i α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β ⊢ R →+* α [PROOFSTEP] exact ((ringEquiv e).symm : β →+* α).comp (algebraMap R β) [GOAL] case h α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β ⊢ ∀ (c : R) (x : (fun x => α) c), ↑(RingHom.comp (↑(RingEquiv.symm (ringEquiv e))) (algebraMap R β)) c * x = x * ↑(RingHom.comp (↑(RingEquiv.symm (ringEquiv e))) (algebraMap R β)) c [PROOFSTEP] intro r x [GOAL] case h α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β r : R x : α ⊢ ↑(RingHom.comp (↑(RingEquiv.symm (ringEquiv e))) (algebraMap R β)) r * x = x * ↑(RingHom.comp (↑(RingEquiv.symm (ringEquiv e))) (algebraMap R β)) r [PROOFSTEP] simp only [Function.comp_apply, RingHom.coe_comp] [GOAL] case h α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β r : R x : α ⊢ ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r) * x = x * ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r) [PROOFSTEP] have p := ringEquiv_symm_apply e [GOAL] case h α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β r : R x : α p : ∀ (b : β), ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b ⊢ ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r) * x = x * ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r) [PROOFSTEP] dsimp at p [GOAL] case h α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β r : R x : α p : ∀ (b : β), ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b ⊢ ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r) * x = x * ↑↑(RingEquiv.symm (ringEquiv e)) (↑(algebraMap R β) r) [PROOFSTEP] erw [p] [GOAL] case h α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β r : R x : α p : ∀ (b : β), ↑(RingEquiv.symm (ringEquiv e)) b = ↑e.symm b ⊢ ↑e.symm (↑(algebraMap R β) r) * x = x * ↑e.symm (↑(algebraMap R β) r) [PROOFSTEP] clear p [GOAL] case h α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β r : R x : α ⊢ ↑e.symm (↑(algebraMap R β) r) * x = x * ↑e.symm (↑(algebraMap R β) r) [PROOFSTEP] apply (ringEquiv e).injective [GOAL] case h.a α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β r : R x : α ⊢ ↑(ringEquiv e) (↑e.symm (↑(algebraMap R β) r) * x) = ↑(ringEquiv e) (x * ↑e.symm (↑(algebraMap R β) r)) [PROOFSTEP] simp only [(ringEquiv e).map_mul] [GOAL] case h.a α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β semiring✝ : Semiring α := Equiv.semiring e inst✝ : Algebra R β r : R x : α ⊢ ↑(ringEquiv e) (↑e.symm (↑(algebraMap R β) r)) * ↑(ringEquiv e) x = ↑(ringEquiv e) x * ↑(ringEquiv e) (↑e.symm (↑(algebraMap R β) r)) [PROOFSTEP] simp [Algebra.commutes] [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β inst✝ : Algebra R β ⊢ Sort ?u.532380 [PROOFSTEP] let semiring := Equiv.semiring e [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β inst✝ : Algebra R β semiring : Semiring α := Equiv.semiring e ⊢ Sort ?u.532380 [PROOFSTEP] let algebra := Equiv.algebra R e [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β inst✝ : Algebra R β semiring : Semiring α := Equiv.semiring e algebra : Algebra R α := Equiv.algebra R e ⊢ Sort ?u.532380 [PROOFSTEP] exact α ≃ₐ[R] β [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β inst✝ : Algebra R β ⊢ let semiring := Equiv.semiring e; let algebra := Equiv.algebra R e; α ≃ₐ[R] β [PROOFSTEP] intros [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β inst✝ : Algebra R β semiring✝ : Semiring α := Equiv.semiring e algebra✝ : Algebra R α := Equiv.algebra R e ⊢ α ≃ₐ[R] β [PROOFSTEP] exact { Equiv.ringEquiv e with commutes' := fun r => by apply e.symm.injective simp rfl } [GOAL] α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β inst✝ : Algebra R β semiring✝ : Semiring α := Equiv.semiring e algebra✝ : Algebra R α := Equiv.algebra R e src✝ : let add := Equiv.add e; let mul := Equiv.mul e; α ≃+* β := ringEquiv e r : R ⊢ toFun src✝.toEquiv (↑(algebraMap R α) r) = ↑(algebraMap R β) r [PROOFSTEP] apply e.symm.injective [GOAL] case a α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β inst✝ : Algebra R β semiring✝ : Semiring α := Equiv.semiring e algebra✝ : Algebra R α := Equiv.algebra R e src✝ : let add := Equiv.add e; let mul := Equiv.mul e; α ≃+* β := ringEquiv e r : R ⊢ ↑e.symm (toFun src✝.toEquiv (↑(algebraMap R α) r)) = ↑e.symm (↑(algebraMap R β) r) [PROOFSTEP] simp [GOAL] case a α : Type u β : Type v e✝ : α ≃ β R : Type u_1 inst✝² : CommSemiring R e : α ≃ β inst✝¹ : Semiring β inst✝ : Algebra R β semiring✝ : Semiring α := Equiv.semiring e algebra✝ : Algebra R α := Equiv.algebra R e src✝ : let add := Equiv.add e; let mul := Equiv.mul e; α ≃+* β := ringEquiv e r : R ⊢ ↑(algebraMap R α) r = ↑e.symm (↑(algebraMap R β) r) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Logic.Equiv.TransferInstance", "llama_tokens": 65693}
[GOAL] F : Type u_1 inst✝ : CommSemiring F q : ℕ f : F[X] hf✝ : HasSeparableContraction q f g : F[X] hf : IsSeparableContraction q f g ⊢ ∃ m, natDegree g * q ^ m = natDegree f [PROOFSTEP] obtain ⟨m, rfl⟩ := hf.2 [GOAL] case intro F : Type u_1 inst✝ : CommSemiring F q : ℕ g : F[X] m : ℕ hf✝ : HasSeparableContraction q (↑(expand F (q ^ m)) g) hf : IsSeparableContraction q (↑(expand F (q ^ m)) g) g ⊢ ∃ m_1, natDegree g * q ^ m_1 = natDegree (↑(expand F (q ^ m)) g) [PROOFSTEP] use m [GOAL] case h F : Type u_1 inst✝ : CommSemiring F q : ℕ g : F[X] m : ℕ hf✝ : HasSeparableContraction q (↑(expand F (q ^ m)) g) hf : IsSeparableContraction q (↑(expand F (q ^ m)) g) g ⊢ natDegree g * q ^ m = natDegree (↑(expand F (q ^ m)) g) [PROOFSTEP] rw [natDegree_expand] [GOAL] F : Type u_1 inst✝ : CommSemiring F q : ℕ f✝ : F[X] hf✝ : HasSeparableContraction q f✝ f : F[X] hf : HasSeparableContraction 1 f ⊢ degree hf = natDegree f [PROOFSTEP] let ⟨a, ha⟩ := hf.dvd_degree' [GOAL] F : Type u_1 inst✝ : CommSemiring F q : ℕ f✝ : F[X] hf✝ : HasSeparableContraction q f✝ f : F[X] hf : HasSeparableContraction 1 f a : ℕ ha : degree hf * 1 ^ a = natDegree f ⊢ degree hf = natDegree f [PROOFSTEP] rw [← ha, one_pow a, mul_one] [GOAL] F : Type u_1 inst✝ : Field F q✝ : ℕ f✝ : F[X] hf : HasSeparableContraction q✝ f✝ q : ℕ hF : ExpChar F q f : F[X] irred : Irreducible f ⊢ HasSeparableContraction q f [PROOFSTEP] cases hF [GOAL] case zero F : Type u_1 inst✝¹ : Field F q : ℕ f✝ : F[X] hf : HasSeparableContraction q f✝ f : F[X] irred : Irreducible f inst✝ : CharZero F ⊢ HasSeparableContraction 1 f [PROOFSTEP] exact ⟨f, irred.separable, ⟨0, by rw [pow_zero, expand_one]⟩⟩ [GOAL] F : Type u_1 inst✝¹ : Field F q : ℕ f✝ : F[X] hf : HasSeparableContraction q f✝ f : F[X] irred : Irreducible f inst✝ : CharZero F ⊢ ↑(expand F (1 ^ 0)) f = f [PROOFSTEP] rw [pow_zero, expand_one] [GOAL] case prime F : Type u_1 inst✝ : Field F q✝ : ℕ f✝ : F[X] hf : HasSeparableContraction q✝ f✝ q : ℕ f : F[X] irred : Irreducible f hprime✝ : Nat.Prime q hchar✝ : CharP F q ⊢ HasSeparableContraction q f [PROOFSTEP] rcases exists_separable_of_irreducible q irred ‹q.Prime›.ne_zero with ⟨n, g, hgs, hge⟩ [GOAL] case prime.intro.intro.intro F : Type u_1 inst✝ : Field F q✝ : ℕ f✝ : F[X] hf : HasSeparableContraction q✝ f✝ q : ℕ f : F[X] irred : Irreducible f hprime✝ : Nat.Prime q hchar✝ : CharP F q n : ℕ g : F[X] hgs : Separable g hge : ↑(expand F (q ^ n)) g = f ⊢ HasSeparableContraction q f [PROOFSTEP] exact ⟨g, hgs, n, hge⟩ [GOAL] F : Type u_1 inst✝¹ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f hq : NeZero q inst✝ : CharP F q g g' : F[X] m m' : ℕ h_expand : ↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g' hg : Separable g hg' : Separable g' ⊢ natDegree g = natDegree g' [PROOFSTEP] wlog hm : m ≤ m' [GOAL] case inr F : Type u_1 inst✝¹ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f hq : NeZero q inst✝ : CharP F q g g' : F[X] m m' : ℕ h_expand : ↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g' hg : Separable g hg' : Separable g' this : ∀ {F : Type u_1} [inst : Field F] (q : ℕ) {f : F[X]}, HasSeparableContraction q f → ∀ [hq : NeZero q] [inst_1 : CharP F q] (g g' : F[X]) (m m' : ℕ), ↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g' → Separable g → Separable g' → m ≤ m' → natDegree g = natDegree g' hm : ¬m ≤ m' ⊢ natDegree g = natDegree g' [PROOFSTEP] exact (this q hf g' g m' m h_expand.symm hg' hg (le_of_not_le hm)).symm [GOAL] F✝ : Type u_1 inst✝² : Field F✝ q✝ : ℕ F : Type u_1 inst✝¹ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f hq : NeZero q inst✝ : CharP F q g g' : F[X] m m' : ℕ h_expand : ↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g' hg : Separable g hg' : Separable g' hm : m ≤ m' ⊢ natDegree g = natDegree g' [PROOFSTEP] obtain ⟨s, rfl⟩ := exists_add_of_le hm [GOAL] case intro F✝ : Type u_1 inst✝² : Field F✝ q✝ : ℕ F : Type u_1 inst✝¹ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f hq : NeZero q inst✝ : CharP F q g g' : F[X] m : ℕ hg : Separable g hg' : Separable g' s : ℕ h_expand : ↑(expand F (q ^ m)) g = ↑(expand F (q ^ (m + s))) g' hm : m ≤ m + s ⊢ natDegree g = natDegree g' [PROOFSTEP] rw [pow_add, expand_mul, expand_inj (pow_pos (NeZero.pos q) m)] at h_expand [GOAL] case intro F✝ : Type u_1 inst✝² : Field F✝ q✝ : ℕ F : Type u_1 inst✝¹ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f hq : NeZero q inst✝ : CharP F q g g' : F[X] m : ℕ hg : Separable g hg' : Separable g' s : ℕ h_expand : g = ↑(expand F (q ^ s)) g' hm : m ≤ m + s ⊢ natDegree g = natDegree g' [PROOFSTEP] subst h_expand [GOAL] case intro F✝ : Type u_1 inst✝² : Field F✝ q✝ : ℕ F : Type u_1 inst✝¹ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f hq : NeZero q inst✝ : CharP F q g' : F[X] m : ℕ hg' : Separable g' s : ℕ hm : m ≤ m + s hg : Separable (↑(expand F (q ^ s)) g') ⊢ natDegree (↑(expand F (q ^ s)) g') = natDegree g' [PROOFSTEP] rcases isUnit_or_eq_zero_of_separable_expand q s (NeZero.pos q) hg with (h | rfl) [GOAL] case intro.inl F✝ : Type u_1 inst✝² : Field F✝ q✝ : ℕ F : Type u_1 inst✝¹ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f hq : NeZero q inst✝ : CharP F q g' : F[X] m : ℕ hg' : Separable g' s : ℕ hm : m ≤ m + s hg : Separable (↑(expand F (q ^ s)) g') h : IsUnit g' ⊢ natDegree (↑(expand F (q ^ s)) g') = natDegree g' [PROOFSTEP] rw [natDegree_expand, natDegree_eq_zero_of_isUnit h, zero_mul] [GOAL] case intro.inr F✝ : Type u_1 inst✝² : Field F✝ q✝ : ℕ F : Type u_1 inst✝¹ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f hq : NeZero q inst✝ : CharP F q g' : F[X] m : ℕ hg' : Separable g' hm : m ≤ m + 0 hg : Separable (↑(expand F (q ^ 0)) g') ⊢ natDegree (↑(expand F (q ^ 0)) g') = natDegree g' [PROOFSTEP] rw [natDegree_expand, pow_zero, mul_one] [GOAL] F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f hF : ExpChar F q g : F[X] hg : IsSeparableContraction q f g ⊢ natDegree g = HasSeparableContraction.degree hf [PROOFSTEP] cases hF [GOAL] case zero F : Type u_1 inst✝¹ : Field F f g : F[X] inst✝ : CharZero F hf : HasSeparableContraction 1 f hg : IsSeparableContraction 1 f g ⊢ natDegree g = HasSeparableContraction.degree hf [PROOFSTEP] rcases hg with ⟨_, m, hm⟩ [GOAL] case zero.intro.intro F : Type u_1 inst✝¹ : Field F f g : F[X] inst✝ : CharZero F hf : HasSeparableContraction 1 f left✝ : Separable g m : ℕ hm : ↑(expand F (1 ^ m)) g = f ⊢ natDegree g = HasSeparableContraction.degree hf [PROOFSTEP] rw [one_pow, expand_one] at hm [GOAL] case zero.intro.intro F : Type u_1 inst✝¹ : Field F f g : F[X] inst✝ : CharZero F hf : HasSeparableContraction 1 f left✝ : Separable g m : ℕ hm : g = f ⊢ natDegree g = HasSeparableContraction.degree hf [PROOFSTEP] rw [hf.eq_degree, hm] [GOAL] case prime F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hg : IsSeparableContraction q f g hprime✝ : Nat.Prime q hchar✝ : CharP F q ⊢ natDegree g = HasSeparableContraction.degree hf [PROOFSTEP] rcases hg with ⟨hg, m, hm⟩ [GOAL] case prime.intro.intro F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f ⊢ natDegree g = HasSeparableContraction.degree hf [PROOFSTEP] let g' := Classical.choose hf [GOAL] case prime.intro.intro F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf ⊢ natDegree g = HasSeparableContraction.degree hf [PROOFSTEP] cases' (Classical.choose_spec hf).2 with m' hm' [GOAL] case prime.intro.intro.intro F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf m' : ℕ hm' : ↑(expand F (q ^ m')) (choose hf) = f ⊢ natDegree g = HasSeparableContraction.degree hf [PROOFSTEP] haveI : Fact q.Prime := ⟨by assumption⟩ [GOAL] F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf m' : ℕ hm' : ↑(expand F (q ^ m')) (choose hf) = f ⊢ Nat.Prime q [PROOFSTEP] assumption [GOAL] case prime.intro.intro.intro F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf m' : ℕ hm' : ↑(expand F (q ^ m')) (choose hf) = f this : Fact (Nat.Prime q) ⊢ natDegree g = HasSeparableContraction.degree hf [PROOFSTEP] apply contraction_degree_eq_or_insep q g g' m m' [GOAL] case prime.intro.intro.intro.h_expand F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf m' : ℕ hm' : ↑(expand F (q ^ m')) (choose hf) = f this : Fact (Nat.Prime q) ⊢ ↑(expand F (q ^ m)) g = ↑(expand F (q ^ m')) g' case prime.intro.intro.intro.hg F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf m' : ℕ hm' : ↑(expand F (q ^ m')) (choose hf) = f this : Fact (Nat.Prime q) ⊢ Separable g case prime.intro.intro.intro.hg' F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf m' : ℕ hm' : ↑(expand F (q ^ m')) (choose hf) = f this : Fact (Nat.Prime q) ⊢ Separable g' [PROOFSTEP] rw [hm, hm'] [GOAL] case prime.intro.intro.intro.hg F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf m' : ℕ hm' : ↑(expand F (q ^ m')) (choose hf) = f this : Fact (Nat.Prime q) ⊢ Separable g case prime.intro.intro.intro.hg' F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf m' : ℕ hm' : ↑(expand F (q ^ m')) (choose hf) = f this : Fact (Nat.Prime q) ⊢ Separable g' [PROOFSTEP] exact hg [GOAL] case prime.intro.intro.intro.hg' F : Type u_1 inst✝ : Field F q : ℕ f : F[X] hf : HasSeparableContraction q f g : F[X] hprime✝ : Nat.Prime q hchar✝ : CharP F q hg : Separable g m : ℕ hm : ↑(expand F (q ^ m)) g = f g' : F[X] := choose hf m' : ℕ hm' : ↑(expand F (q ^ m')) (choose hf) = f this : Fact (Nat.Prime q) ⊢ Separable g' [PROOFSTEP] exact (Classical.choose_spec hf).1
{"mathlib_filename": "Mathlib.FieldTheory.SeparableDegree", "llama_tokens": 5613}
{"mathlib_filename": "Mathlib.Init.Classes.Order", "llama_tokens": 0}
[GOAL] σ : Type u K : Type v inst✝ : Field K I : Ideal (MvPolynomial σ K) hI : I ≠ ⊤ ⊢ Function.Injective ↑(RingHom.comp (Ideal.Quotient.mk I) C) [PROOFSTEP] refine' (injective_iff_map_eq_zero _).2 fun x hx => _ [GOAL] σ : Type u K : Type v inst✝ : Field K I : Ideal (MvPolynomial σ K) hI : I ≠ ⊤ x : K hx : ↑(RingHom.comp (Ideal.Quotient.mk I) C) x = 0 ⊢ x = 0 [PROOFSTEP] rw [RingHom.comp_apply, Ideal.Quotient.eq_zero_iff_mem] at hx [GOAL] σ : Type u K : Type v inst✝ : Field K I : Ideal (MvPolynomial σ K) hI : I ≠ ⊤ x : K hx : ↑C x ∈ I ⊢ x = 0 [PROOFSTEP] refine' _root_.by_contradiction fun hx0 => absurd (I.eq_top_iff_one.2 _) hI [GOAL] σ : Type u K : Type v inst✝ : Field K I : Ideal (MvPolynomial σ K) hI : I ≠ ⊤ x : K hx : ↑C x ∈ I hx0 : ¬x = 0 ⊢ 1 ∈ I [PROOFSTEP] have := I.mul_mem_left (MvPolynomial.C x⁻¹) hx [GOAL] σ : Type u K : Type v inst✝ : Field K I : Ideal (MvPolynomial σ K) hI : I ≠ ⊤ x : K hx : ↑C x ∈ I hx0 : ¬x = 0 this : ↑C x⁻¹ * ↑C x ∈ I ⊢ 1 ∈ I [PROOFSTEP] rwa [← MvPolynomial.C.map_mul, inv_mul_cancel hx0, MvPolynomial.C_1] at this [GOAL] σ K : Type u inst✝ : Field K ⊢ Module.rank K (MvPolynomial σ K) = Cardinal.mk (σ →₀ ℕ) [PROOFSTEP] rw [← Cardinal.lift_inj, ← (basisMonomials σ K).mk_eq_rank]
{"mathlib_filename": "Mathlib.FieldTheory.MvPolynomial", "llama_tokens": 670}
[GOAL] ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) ⊢ Surjective fun v i => ↑(MvPolynomial.eval v) (ps i) [PROOFSTEP] have is_int : ∀ x : R, IsIntegral K x := fun x => isAlgebraic_iff_isIntegral.1 (alg x) [GOAL] ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x ⊢ Surjective fun v i => ↑(MvPolynomial.eval v) (ps i) [PROOFSTEP] classical intro v cases nonempty_fintype ι let s : Finset R := (Finset.biUnion (univ : Finset ι) fun i => (ps i).support.image fun x => coeff x (ps i)) ∪ (univ : Finset ι).image v have hv : ∀ i, v i ∈ Algebra.adjoin K (s : Set R) := fun j => Algebra.subset_adjoin (mem_union_right _ (mem_image.2 ⟨j, mem_univ _, rfl⟩)) have hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ (ps i).support → coeff k (ps i) ∈ Algebra.adjoin K (s : Set R) := fun i k hk => Algebra.subset_adjoin (mem_union_left _ (mem_biUnion.2 ⟨i, mem_univ _, mem_image_of_mem _ hk⟩)) letI := isNoetherian_adjoin_finset s fun x _ => is_int x letI := Module.IsNoetherian.finite K (Algebra.adjoin K (s : Set R)) letI : Finite (Algebra.adjoin K (s : Set R)) := FiniteDimensional.finite_of_finite K (Algebra.adjoin K (s : Set R)) -- The restriction of the polynomial map, `ps`, to the subalgebra generated by `s` let res : (ι → Algebra.adjoin K (s : Set R)) → ι → Algebra.adjoin K (s : Set R) := fun x i => ⟨eval (fun j : ι => (x j : R)) (ps i), eval_mem (hs₁ _) fun i => (x i).2⟩ have hres_inj : Injective res := by intro x y hxy ext i simp only [Subtype.ext_iff, funext_iff] at hxy exact congr_fun (hinj (funext hxy)) i have hres_surj : Surjective res := Finite.injective_iff_surjective.1 hres_inj cases' hres_surj fun i => ⟨v i, hv i⟩ with w hw use fun i => w i simpa only [Subtype.ext_iff, funext_iff] using hw [GOAL] ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x ⊢ Surjective fun v i => ↑(MvPolynomial.eval v) (ps i) [PROOFSTEP] intro v [GOAL] ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] let s : Finset R := (Finset.biUnion (univ : Finset ι) fun i => (ps i).support.image fun x => coeff x (ps i)) ∪ (univ : Finset ι).image v [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] have hv : ∀ i, v i ∈ Algebra.adjoin K (s : Set R) := fun j => Algebra.subset_adjoin (mem_union_right _ (mem_image.2 ⟨j, mem_univ _, rfl⟩)) [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] have hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ (ps i).support → coeff k (ps i) ∈ Algebra.adjoin K (s : Set R) := fun i k hk => Algebra.subset_adjoin (mem_union_left _ (mem_biUnion.2 ⟨i, mem_univ _, mem_image_of_mem _ hk⟩)) [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] letI := isNoetherian_adjoin_finset s fun x _ => is_int x [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] letI := Module.IsNoetherian.finite K (Algebra.adjoin K (s : Set R)) [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] letI : Finite (Algebra.adjoin K (s : Set R)) := FiniteDimensional.finite_of_finite K (Algebra.adjoin K (s : Set R)) -- The restriction of the polynomial map, `ps`, to the subalgebra generated by `s` [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] let res : (ι → Algebra.adjoin K (s : Set R)) → ι → Algebra.adjoin K (s : Set R) := fun x i => ⟨eval (fun j : ι => (x j : R)) (ps i), eval_mem (hs₁ _) fun i => (x i).2⟩ [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } := fun x i => { val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i), property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) } ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] have hres_inj : Injective res := by intro x y hxy ext i simp only [Subtype.ext_iff, funext_iff] at hxy exact congr_fun (hinj (funext hxy)) i [GOAL] ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } := fun x i => { val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i), property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) } ⊢ Injective res [PROOFSTEP] intro x y hxy [GOAL] ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } := fun x i => { val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i), property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) } x y : ι → { x // x ∈ Algebra.adjoin K ↑s } hxy : res x = res y ⊢ x = y [PROOFSTEP] ext i [GOAL] case h.a ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } := fun x i => { val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i), property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) } x y : ι → { x // x ∈ Algebra.adjoin K ↑s } hxy : res x = res y i : ι ⊢ ↑(x i) = ↑(y i) [PROOFSTEP] simp only [Subtype.ext_iff, funext_iff] at hxy [GOAL] case h.a ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } := fun x i => { val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i), property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) } x y : ι → { x // x ∈ Algebra.adjoin K ↑s } i : ι hxy : ∀ (a : ι), ↑(MvPolynomial.eval fun j => ↑(x j)) (ps a) = ↑(MvPolynomial.eval fun j => ↑(y j)) (ps a) ⊢ ↑(x i) = ↑(y i) [PROOFSTEP] exact congr_fun (hinj (funext hxy)) i [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } := fun x i => { val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i), property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) } hres_inj : Injective res ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] have hres_surj : Surjective res := Finite.injective_iff_surjective.1 hres_inj [GOAL] case intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } := fun x i => { val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i), property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) } hres_inj : Injective res hres_surj : Surjective res ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] cases' hres_surj fun i => ⟨v i, hv i⟩ with w hw [GOAL] case intro.intro ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } := fun x i => { val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i), property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) } hres_inj : Injective res hres_surj : Surjective res w : ι → { x // x ∈ Algebra.adjoin K ↑s } hw : res w = fun i => { val := v i, property := (_ : v i ∈ Algebra.adjoin K ↑s) } ⊢ ∃ a, (fun v i => ↑(MvPolynomial.eval v) (ps i)) a = v [PROOFSTEP] use fun i => w i [GOAL] case h ι : Type u_1 K : Type u_2 R : Type u_3 inst✝⁴ : Field K inst✝³ : Finite K inst✝² : CommRing R inst✝¹ : Finite ι inst✝ : Algebra K R alg : Algebra.IsAlgebraic K R ps : ι → MvPolynomial ι R hinj : Injective fun v i => ↑(MvPolynomial.eval v) (ps i) is_int : ∀ (x : R), IsIntegral K x v : (i : ι) → (fun x => R) (ps i) val✝ : Fintype ι s : Finset R := (Finset.biUnion univ fun i => image (fun x => coeff x (ps i)) (MvPolynomial.support (ps i))) ∪ image v univ hv : ∀ (i : ι), v i ∈ Algebra.adjoin K ↑s hs₁ : ∀ (i : ι) (k : ι →₀ ℕ), k ∈ MvPolynomial.support (ps i) → coeff k (ps i) ∈ Algebra.adjoin K ↑s this✝¹ : IsNoetherian K { x // x ∈ Algebra.adjoin K ↑s } := isNoetherian_adjoin_finset s fun x x_1 => is_int x this✝ : Module.Finite K { x // x ∈ Algebra.adjoin K ↑s } := Module.IsNoetherian.finite K { x // x ∈ Algebra.adjoin K ↑s } this : Finite { x // x ∈ Algebra.adjoin K ↑s } := FiniteDimensional.finite_of_finite K { x // x ∈ Algebra.adjoin K ↑s } res : (ι → { x // x ∈ Algebra.adjoin K ↑s }) → ι → { x // x ∈ Algebra.adjoin K ↑s } := fun x i => { val := ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i), property := (_ : ↑(MvPolynomial.eval fun j => ↑(x j)) (ps i) ∈ Algebra.adjoin K ↑s) } hres_inj : Injective res hres_surj : Surjective res w : ι → { x // x ∈ Algebra.adjoin K ↑s } hw : res w = fun i => { val := v i, property := (_ : v i ∈ Algebra.adjoin K ↑s) } ⊢ ((fun v i => ↑(MvPolynomial.eval v) (ps i)) fun i => ↑(w i)) = v [PROOFSTEP] simpa only [Subtype.ext_iff, funext_iff] using hw
{"mathlib_filename": "Mathlib.FieldTheory.AxGrothendieck", "llama_tokens": 10160}
[GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L ⊢ restrictScalars F (normalClosure F K L) = ⨆ (x : K), adjoin F (rootSet (minpoly F x) L) [PROOFSTEP] classical have hi : ∀ x : K, IsIntegral F x := fun x ↦ (isIntegral_algebraMap_iff (algebraMap K L).injective).mp (h.isIntegral _) refine' le_antisymm (iSup_le _) (iSup_le fun x => adjoin_le_iff.mpr fun y hy => _) · rintro f _ ⟨x, rfl⟩ refine' le_iSup (fun x => adjoin F ((minpoly F x).rootSet L)) x (subset_adjoin F ((minpoly F x).rootSet L) _) rw [mem_rootSet_of_ne (minpoly.ne_zero (hi x)), AlgHom.toRingHom_eq_coe, AlgHom.coe_toRingHom, Polynomial.aeval_algHom_apply, minpoly.aeval, map_zero] · rw [Polynomial.rootSet, Finset.mem_coe, Multiset.mem_toFinset] at hy let g := (algHomAdjoinIntegralEquiv F (hi x)).symm ⟨y, hy⟩ refine' le_iSup (fun f : K →ₐ[F] L => f.fieldRange) ((g.liftNormal L).comp (toAlgHom F K L)) ⟨x, (g.liftNormal_commutes L (AdjoinSimple.gen F x)).trans _⟩ rw [Algebra.id.map_eq_id, RingHom.id_apply] -- Porting note: in mathlib3 this next `apply` closed the goal. -- Now it can't find a proof by unification, so we have to do it ourselves. apply PowerBasis.lift_gen change aeval y (minpoly F (AdjoinSimple.gen F x)) = 0 exact minpoly_gen (hi x) ▸ aeval_eq_zero_of_mem_rootSet (Multiset.mem_toFinset.mpr hy) [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L ⊢ restrictScalars F (normalClosure F K L) = ⨆ (x : K), adjoin F (rootSet (minpoly F x) L) [PROOFSTEP] have hi : ∀ x : K, IsIntegral F x := fun x ↦ (isIntegral_algebraMap_iff (algebraMap K L).injective).mp (h.isIntegral _) [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x ⊢ restrictScalars F (normalClosure F K L) = ⨆ (x : K), adjoin F (rootSet (minpoly F x) L) [PROOFSTEP] refine' le_antisymm (iSup_le _) (iSup_le fun x => adjoin_le_iff.mpr fun y hy => _) [GOAL] case refine'_1 F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x ⊢ ∀ (i : K →ₐ[F] L), AlgHom.fieldRange i ≤ ⨆ (x : K), adjoin F (rootSet (minpoly F x) L) [PROOFSTEP] rintro f _ ⟨x, rfl⟩ [GOAL] case refine'_1.intro F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x f : K →ₐ[F] L x : K ⊢ ↑↑f x ∈ ⨆ (x : K), adjoin F (rootSet (minpoly F x) L) [PROOFSTEP] refine' le_iSup (fun x => adjoin F ((minpoly F x).rootSet L)) x (subset_adjoin F ((minpoly F x).rootSet L) _) [GOAL] case refine'_1.intro F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x f : K →ₐ[F] L x : K ⊢ ↑↑f x ∈ rootSet (minpoly F x) L [PROOFSTEP] rw [mem_rootSet_of_ne (minpoly.ne_zero (hi x)), AlgHom.toRingHom_eq_coe, AlgHom.coe_toRingHom, Polynomial.aeval_algHom_apply, minpoly.aeval, map_zero] [GOAL] case refine'_2 F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x x : K y : L hy : y ∈ rootSet (minpoly F x) L ⊢ y ∈ ↑(restrictScalars F (normalClosure F K L)) [PROOFSTEP] rw [Polynomial.rootSet, Finset.mem_coe, Multiset.mem_toFinset] at hy [GOAL] case refine'_2 F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x x : K y : L hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x)) ⊢ y ∈ ↑(restrictScalars F (normalClosure F K L)) [PROOFSTEP] let g := (algHomAdjoinIntegralEquiv F (hi x)).symm ⟨y, hy⟩ [GOAL] case refine'_2 F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x x : K y : L hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x)) g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } := ↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy } ⊢ y ∈ ↑(restrictScalars F (normalClosure F K L)) [PROOFSTEP] refine' le_iSup (fun f : K →ₐ[F] L => f.fieldRange) ((g.liftNormal L).comp (toAlgHom F K L)) ⟨x, (g.liftNormal_commutes L (AdjoinSimple.gen F x)).trans _⟩ [GOAL] case refine'_2 F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x x : K y : L hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x)) g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } := ↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy } ⊢ ↑(algebraMap L L) (↑g (AdjoinSimple.gen F x)) = y [PROOFSTEP] rw [Algebra.id.map_eq_id, RingHom.id_apply] -- Porting note: in mathlib3 this next `apply` closed the goal. -- Now it can't find a proof by unification, so we have to do it ourselves. [GOAL] case refine'_2 F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x x : K y : L hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x)) g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } := ↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy } ⊢ ↑g (AdjoinSimple.gen F x) = y [PROOFSTEP] apply PowerBasis.lift_gen [GOAL] case refine'_2.hy F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x x : K y : L hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x)) g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } := ↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy } ⊢ ↑(aeval ↑(↑(Equiv.subtypeEquiv (Equiv.refl L) (_ : ∀ (x_1 : L), ↑(aeval x_1) (minpoly F (adjoin.powerBasis (_ : IsIntegral F x)).gen) = 0 ↔ ↑(Equiv.refl L) x_1 ∈ roots (Polynomial.map (algebraMap F L) (minpoly F (adjoin.powerBasis (_ : IsIntegral F x)).gen)))).symm (↑(Equiv.subtypeEquiv (Equiv.refl L) (_ : ∀ (x_1 : L), x_1 ∈ roots (Polynomial.map (algebraMap F L) (minpoly F (adjoin.powerBasis (_ : IsIntegral F x)).gen)) ↔ ↑(Equiv.refl L) x_1 ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x)))).symm { val := y, property := hy }))) (minpoly F (adjoin.powerBasis (_ : IsIntegral F x)).gen) = 0 [PROOFSTEP] change aeval y (minpoly F (AdjoinSimple.gen F x)) = 0 [GOAL] case refine'_2.hy F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L hi : ∀ (x : K), IsIntegral F x x : K y : L hy : y ∈ roots (Polynomial.map (algebraMap F L) (minpoly F x)) g : (fun x_1 => { x_2 // x_2 ∈ F⟮x⟯ } →ₐ[F] L) { val := y, property := hy } := ↑(algHomAdjoinIntegralEquiv F (_ : IsIntegral F x)).symm { val := y, property := hy } ⊢ ↑(aeval y) (minpoly F (AdjoinSimple.gen F x)) = 0 [PROOFSTEP] exact minpoly_gen (hi x) ▸ aeval_eq_zero_of_mem_rootSet (Multiset.mem_toFinset.mpr hy) [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L ⊢ Normal F { x // x ∈ normalClosure F K L } [PROOFSTEP] let ϕ := algebraMap K L [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L ϕ : K →+* L := algebraMap K L ⊢ Normal F { x // x ∈ normalClosure F K L } [PROOFSTEP] rw [← IntermediateField.restrictScalars_normal, restrictScalars_eq_iSup_adjoin] -- Porting note: use the `(_)` trick to obtain an instance by unification. [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L ϕ : K →+* L := algebraMap K L ⊢ Normal F { x // x ∈ ⨆ (x : K), adjoin F (rootSet (minpoly F x) L) } [PROOFSTEP] apply IntermediateField.normal_iSup (h := _) [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L ϕ : K →+* L := algebraMap K L ⊢ ∀ (i : K), Normal F { x // x ∈ adjoin F (rootSet (minpoly F i) L) } [PROOFSTEP] intro x [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L ϕ : K →+* L := algebraMap K L x : K ⊢ Normal F { x_1 // x_1 ∈ adjoin F (rootSet (minpoly F x) L) } [PROOFSTEP] apply Normal.of_isSplittingField (p := minpoly F x) (hFEp := _) [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : Algebra K L inst✝ : IsScalarTower F K L h : Normal F L ϕ : K →+* L := algebraMap K L x : K ⊢ IsSplittingField F { x_1 // x_1 ∈ adjoin F (rootSet (minpoly F x) L) } (minpoly F x) [PROOFSTEP] exact adjoin_rootSet_isSplittingField ((minpoly.eq_of_algebraMap_eq ϕ.injective ((isIntegral_algebraMap_iff ϕ.injective).mp (h.isIntegral (ϕ x))) rfl).symm ▸ h.splits _) [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁷ : Field F inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : Algebra F K inst✝³ : Algebra F L inst✝² : Algebra K L inst✝¹ : IsScalarTower F K L inst✝ : FiniteDimensional F K ⊢ FiniteDimensional F { x // x ∈ normalClosure F K L } [PROOFSTEP] haveI : ∀ f : K →ₐ[F] L, FiniteDimensional F f.fieldRange := fun f => f.toLinearMap.finiteDimensional_range [GOAL] F : Type u_1 K : Type u_2 L : Type u_3 inst✝⁷ : Field F inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : Algebra F K inst✝³ : Algebra F L inst✝² : Algebra K L inst✝¹ : IsScalarTower F K L inst✝ : FiniteDimensional F K this : ∀ (f : K →ₐ[F] L), FiniteDimensional F { x // x ∈ AlgHom.fieldRange f } ⊢ FiniteDimensional F { x // x ∈ normalClosure F K L } [PROOFSTEP] apply IntermediateField.finiteDimensional_iSup_of_finite
{"mathlib_filename": "Mathlib.FieldTheory.NormalClosure", "llama_tokens": 5448}
[GOAL] R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x : A ⊗[R] L ⊢ ⁅x, x⁆ = 0 [PROOFSTEP] simp only [bracket_def] [GOAL] R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x : A ⊗[R] L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) x = 0 [PROOFSTEP] refine' x.induction_on _ _ _ [GOAL] case refine'_1 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x : A ⊗[R] L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) 0 = 0 [PROOFSTEP] simp only [LinearMap.map_zero, eq_self_iff_true, LinearMap.zero_apply] [GOAL] case refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x : A ⊗[R] L ⊢ ∀ (x : A) (y : L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y)) (x ⊗ₜ[R] y) = 0 [PROOFSTEP] intro a l [GOAL] case refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x : A ⊗[R] L a : A l : L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a ⊗ₜ[R] l)) (a ⊗ₜ[R] l) = 0 [PROOFSTEP] simp only [bracket'_tmul, TensorProduct.tmul_zero, eq_self_iff_true, lie_self] [GOAL] case refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x : A ⊗[R] L ⊢ ∀ (x y : A ⊗[R] L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) x = 0 → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) y = 0 → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y)) (x + y) = 0 [PROOFSTEP] intro z₁ z₂ h₁ h₂ [GOAL] case refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (z₁ + z₂)) (z₁ + z₂) = 0 [PROOFSTEP] suffices bracket' R A L z₁ z₂ + bracket' R A L z₂ z₁ = 0 by rw [LinearMap.map_add, LinearMap.map_add, LinearMap.add_apply, LinearMap.add_apply, h₁, h₂, zero_add, add_zero, add_comm, this] [GOAL] R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 this : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₁ = 0 ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (z₁ + z₂)) (z₁ + z₂) = 0 [PROOFSTEP] rw [LinearMap.map_add, LinearMap.map_add, LinearMap.add_apply, LinearMap.add_apply, h₁, h₂, zero_add, add_zero, add_comm, this] [GOAL] case refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₁ = 0 [PROOFSTEP] refine' z₁.induction_on _ _ _ [GOAL] case refine'_3.refine'_1 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) 0 = 0 [PROOFSTEP] simp only [LinearMap.map_zero, add_zero, LinearMap.zero_apply] [GOAL] case refine'_3.refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 ⊢ ∀ (x : A) (y : L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y)) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) (x ⊗ₜ[R] y) = 0 [PROOFSTEP] intro a₁ l₁ [GOAL] case refine'_3.refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 a₁ : A l₁ : L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) (a₁ ⊗ₜ[R] l₁) = 0 [PROOFSTEP] refine' z₂.induction_on _ _ _ [GOAL] case refine'_3.refine'_2.refine'_1 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 a₁ : A l₁ : L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) 0 + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) (a₁ ⊗ₜ[R] l₁) = 0 [PROOFSTEP] simp only [LinearMap.map_zero, add_zero, LinearMap.zero_apply] [GOAL] case refine'_3.refine'_2.refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 a₁ : A l₁ : L ⊢ ∀ (x : A) (y : L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x ⊗ₜ[R] y) + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y)) (a₁ ⊗ₜ[R] l₁) = 0 [PROOFSTEP] intro a₂ l₂ [GOAL] case refine'_3.refine'_2.refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 a₁ : A l₁ : L a₂ : A l₂ : L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂) + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (a₁ ⊗ₜ[R] l₁) = 0 [PROOFSTEP] simp only [← lie_skew l₂ l₁, mul_comm a₁ a₂, TensorProduct.tmul_neg, bracket'_tmul, add_right_neg] [GOAL] case refine'_3.refine'_2.refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 a₁ : A l₁ : L ⊢ ∀ (x y : A ⊗[R] L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) x + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) (a₁ ⊗ₜ[R] l₁) = 0 → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (a₁ ⊗ₜ[R] l₁) = 0 → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x + y) + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y)) (a₁ ⊗ₜ[R] l₁) = 0 [PROOFSTEP] intro y₁ y₂ hy₁ hy₂ [GOAL] case refine'_3.refine'_2.refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 a₁ : A l₁ : L y₁ y₂ : A ⊗[R] L hy₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y₁ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y₁) (a₁ ⊗ₜ[R] l₁) = 0 hy₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y₂) (a₁ ⊗ₜ[R] l₁) = 0 ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (y₁ + y₂) + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (y₁ + y₂)) (a₁ ⊗ₜ[R] l₁) = 0 [PROOFSTEP] simp only [hy₁, hy₂, add_add_add_comm, add_zero, LinearMap.add_apply, LinearMap.map_add] [GOAL] case refine'_3.refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 ⊢ ∀ (x y : A ⊗[R] L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) x = 0 → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) y = 0 → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y)) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) (x + y) = 0 [PROOFSTEP] intro y₁ y₂ hy₁ hy₂ [GOAL] case refine'_3.refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x z₁ z₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₁) z₁ = 0 h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) z₂ = 0 y₁ y₂ : A ⊗[R] L hy₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y₁) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) y₁ = 0 hy₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y₂) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) y₂ = 0 ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (y₁ + y₂)) z₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) z₂) (y₁ + y₂) = 0 [PROOFSTEP] simp only [add_add_add_comm, hy₁, hy₂, add_zero, LinearMap.add_apply, LinearMap.map_add] [GOAL] R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L ⊢ ⁅x, ⁅y, z⁆⁆ = ⁅⁅x, y⁆, z⁆ + ⁅y, ⁅x, z⁆⁆ [PROOFSTEP] simp only [bracket_def] [GOAL] R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) z) [PROOFSTEP] refine' x.induction_on _ _ _ [GOAL] case refine'_1 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) z) [PROOFSTEP] simp only [LinearMap.map_zero, add_zero, LinearMap.zero_apply] [GOAL] case refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L ⊢ ∀ (x : A) (y_1 : L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y_1)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y_1)) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y_1)) z) [PROOFSTEP] intro a₁ l₁ [GOAL] case refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) [PROOFSTEP] refine' y.induction_on _ _ _ [GOAL] case refine'_2.refine'_1 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) 0)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) 0) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) [PROOFSTEP] simp only [LinearMap.map_zero, add_zero, LinearMap.zero_apply] [GOAL] case refine'_2.refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L ⊢ ∀ (x : A) (y : L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y)) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x ⊗ₜ[R] y))) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x ⊗ₜ[R] y)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) [PROOFSTEP] intro a₂ l₂ [GOAL] case refine'_2.refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L a₂ : A l₂ : L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) [PROOFSTEP] refine' z.induction_on _ _ _ [GOAL] case refine'_2.refine'_2.refine'_1 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L a₂ : A l₂ : L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) 0) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) 0 + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) 0) [PROOFSTEP] rw [LinearMap.map_zero, LinearMap.map_zero, LinearMap.map_zero, LinearMap.map_zero, add_zero] [GOAL] case refine'_2.refine'_2.refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L a₂ : A l₂ : L ⊢ ∀ (x : A) (y : L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (x ⊗ₜ[R] y)) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) (x ⊗ₜ[R] y) + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x ⊗ₜ[R] y)) [PROOFSTEP] intro a₃ l₃ [GOAL] case refine'_2.refine'_2.refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L a₂ : A l₂ : L a₃ : A l₃ : L ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (a₃ ⊗ₜ[R] l₃)) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) (a₃ ⊗ₜ[R] l₃) + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₃ ⊗ₜ[R] l₃)) [PROOFSTEP] simp only [bracket'_tmul] [GOAL] case refine'_2.refine'_2.refine'_2 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L a₂ : A l₂ : L a₃ : A l₃ : L ⊢ (a₁ * (a₂ * a₃)) ⊗ₜ[R] ⁅l₁, ⁅l₂, l₃⁆⁆ = (a₁ * a₂ * a₃) ⊗ₜ[R] ⁅⁅l₁, l₂⁆, l₃⁆ + (a₂ * (a₁ * a₃)) ⊗ₜ[R] ⁅l₂, ⁅l₁, l₃⁆⁆ [PROOFSTEP] rw [mul_left_comm a₂ a₁ a₃, mul_assoc, leibniz_lie, TensorProduct.tmul_add] [GOAL] case refine'_2.refine'_2.refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L a₂ : A l₂ : L ⊢ ∀ (x y : A ⊗[R] L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) x) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) x + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) x) → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) y) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) y + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y) → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (x + y)) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) (x + y) + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x + y)) [PROOFSTEP] intro u₁ u₂ h₁ h₂ [GOAL] case refine'_2.refine'_2.refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L a₂ : A l₂ : L u₁ u₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) u₁) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) u₁ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) u₁) h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) u₂) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) u₂ + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) u₂) ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (u₁ + u₂)) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (a₂ ⊗ₜ[R] l₂))) (u₁ + u₂) + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₂ ⊗ₜ[R] l₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (u₁ + u₂)) [PROOFSTEP] rw [map_add, map_add, map_add, map_add, map_add, h₁, h₂, add_add_add_comm] [GOAL] case refine'_2.refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L ⊢ ∀ (x y : A ⊗[R] L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) x)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y)) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (x + y))) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) [PROOFSTEP] intro u₁ u₂ h₁ h₂ [GOAL] case refine'_2.refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L a₁ : A l₁ : L u₁ u₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) u₁)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) u₂)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂)) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) (u₁ + u₂))) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (a₁ ⊗ₜ[R] l₁)) z) [PROOFSTEP] rw [map_add, LinearMap.add_apply, LinearMap.add_apply, map_add, map_add, map_add, LinearMap.add_apply, h₁, h₂, add_add_add_comm] [GOAL] case refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L ⊢ ∀ (x y_1 : A ⊗[R] L), ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) x) z) → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y_1) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y_1) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y_1) z) → ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y_1)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y_1)) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (x + y_1)) z) [PROOFSTEP] intro u₁ u₂ h₁ h₂ [GOAL] case refine'_3 R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z u₁ u₂ : A ⊗[R] L h₁ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₁) z) h₂ : ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) u₂) z) ⊢ ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂)) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) z) = ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂)) y)) z + ↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) y) (↑(↑(LieAlgebra.ExtendScalars.bracket' R A L) (u₁ + u₂)) z) [PROOFSTEP] rw [map_add, LinearMap.add_apply, LinearMap.add_apply, LinearMap.add_apply, map_add, map_add, LinearMap.add_apply, h₁, h₂, add_add_add_comm] [GOAL] R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L ⊢ ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆ [PROOFSTEP] simp only [bracket_def, LinearMap.add_apply, LinearMap.map_add] [GOAL] R : Type u A : Type w L : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : Algebra R A inst✝¹ : LieRing L inst✝ : LieAlgebra R L x y z : A ⊗[R] L ⊢ ⁅x, y + z⁆ = ⁅x, y⁆ + ⁅x, z⁆ [PROOFSTEP] simp only [bracket_def, LinearMap.map_add]
{"mathlib_filename": "Mathlib.Algebra.Lie.BaseChange", "llama_tokens": 14217}
[GOAL] F : Type u K : Type v A : Type w inst✝¹⁰ : CommRing F inst✝⁹ : Ring K inst✝⁸ : AddCommGroup A inst✝⁷ : Algebra F K inst✝⁶ : Module K A inst✝⁵ : Module F A inst✝⁴ : IsScalarTower F K A inst✝³ : StrongRankCondition F inst✝² : StrongRankCondition K inst✝¹ : Module.Free F K inst✝ : Module.Free K A ⊢ lift (Module.rank F K) * lift (Module.rank K A) = lift (Module.rank F A) [PROOFSTEP] obtain ⟨_, b⟩ := Module.Free.exists_basis (R := F) (M := K) [GOAL] case intro.mk F : Type u K : Type v A : Type w inst✝¹⁰ : CommRing F inst✝⁹ : Ring K inst✝⁸ : AddCommGroup A inst✝⁷ : Algebra F K inst✝⁶ : Module K A inst✝⁵ : Module F A inst✝⁴ : IsScalarTower F K A inst✝³ : StrongRankCondition F inst✝² : StrongRankCondition K inst✝¹ : Module.Free F K inst✝ : Module.Free K A fst✝ : Type v b : Basis fst✝ F K ⊢ lift (Module.rank F K) * lift (Module.rank K A) = lift (Module.rank F A) [PROOFSTEP] obtain ⟨_, c⟩ := Module.Free.exists_basis (R := K) (M := A) [GOAL] case intro.mk.intro.mk F : Type u K : Type v A : Type w inst✝¹⁰ : CommRing F inst✝⁹ : Ring K inst✝⁸ : AddCommGroup A inst✝⁷ : Algebra F K inst✝⁶ : Module K A inst✝⁵ : Module F A inst✝⁴ : IsScalarTower F K A inst✝³ : StrongRankCondition F inst✝² : StrongRankCondition K inst✝¹ : Module.Free F K inst✝ : Module.Free K A fst✝¹ : Type v b : Basis fst✝¹ F K fst✝ : Type w c : Basis fst✝ K A ⊢ lift (Module.rank F K) * lift (Module.rank K A) = lift (Module.rank F A) [PROOFSTEP] rw [← (Module.rank F K).lift_id, ← b.mk_eq_rank, ← (Module.rank K A).lift_id, ← c.mk_eq_rank, ← lift_umax.{w, v}, ← (b.smul c).mk_eq_rank, mk_prod, lift_mul, lift_lift, lift_lift, lift_lift, lift_lift, lift_umax.{v, w}] [GOAL] F✝ : Type u K✝ : Type v A✝ : Type w inst✝²¹ : CommRing F✝ inst✝²⁰ : Ring K✝ inst✝¹⁹ : AddCommGroup A✝ inst✝¹⁸ : Algebra F✝ K✝ inst✝¹⁷ : Module K✝ A✝ inst✝¹⁶ : Module F✝ A✝ inst✝¹⁵ : IsScalarTower F✝ K✝ A✝ inst✝¹⁴ : StrongRankCondition F✝ inst✝¹³ : StrongRankCondition K✝ inst✝¹² : Module.Free F✝ K✝ inst✝¹¹ : Module.Free K✝ A✝ F : Type u K A : Type v inst✝¹⁰ : CommRing F inst✝⁹ : Ring K inst✝⁸ : AddCommGroup A inst✝⁷ : Algebra F K inst✝⁶ : Module K A inst✝⁵ : Module F A inst✝⁴ : IsScalarTower F K A inst✝³ : StrongRankCondition F inst✝² : StrongRankCondition K inst✝¹ : Module.Free F K inst✝ : Module.Free K A ⊢ Module.rank F K * Module.rank K A = Module.rank F A [PROOFSTEP] convert lift_rank_mul_lift_rank F K A [GOAL] case h.e'_2.h.e'_5 F✝ : Type u K✝ : Type v A✝ : Type w inst✝²¹ : CommRing F✝ inst✝²⁰ : Ring K✝ inst✝¹⁹ : AddCommGroup A✝ inst✝¹⁸ : Algebra F✝ K✝ inst✝¹⁷ : Module K✝ A✝ inst✝¹⁶ : Module F✝ A✝ inst✝¹⁵ : IsScalarTower F✝ K✝ A✝ inst✝¹⁴ : StrongRankCondition F✝ inst✝¹³ : StrongRankCondition K✝ inst✝¹² : Module.Free F✝ K✝ inst✝¹¹ : Module.Free K✝ A✝ F : Type u K A : Type v inst✝¹⁰ : CommRing F inst✝⁹ : Ring K inst✝⁸ : AddCommGroup A inst✝⁷ : Algebra F K inst✝⁶ : Module K A inst✝⁵ : Module F A inst✝⁴ : IsScalarTower F K A inst✝³ : StrongRankCondition F inst✝² : StrongRankCondition K inst✝¹ : Module.Free F K inst✝ : Module.Free K A ⊢ Module.rank F K = lift (Module.rank F K) [PROOFSTEP] rw [lift_id] [GOAL] case h.e'_2.h.e'_6 F✝ : Type u K✝ : Type v A✝ : Type w inst✝²¹ : CommRing F✝ inst✝²⁰ : Ring K✝ inst✝¹⁹ : AddCommGroup A✝ inst✝¹⁸ : Algebra F✝ K✝ inst✝¹⁷ : Module K✝ A✝ inst✝¹⁶ : Module F✝ A✝ inst✝¹⁵ : IsScalarTower F✝ K✝ A✝ inst✝¹⁴ : StrongRankCondition F✝ inst✝¹³ : StrongRankCondition K✝ inst✝¹² : Module.Free F✝ K✝ inst✝¹¹ : Module.Free K✝ A✝ F : Type u K A : Type v inst✝¹⁰ : CommRing F inst✝⁹ : Ring K inst✝⁸ : AddCommGroup A inst✝⁷ : Algebra F K inst✝⁶ : Module K A inst✝⁵ : Module F A inst✝⁴ : IsScalarTower F K A inst✝³ : StrongRankCondition F inst✝² : StrongRankCondition K inst✝¹ : Module.Free F K inst✝ : Module.Free K A ⊢ Module.rank K A = lift (Module.rank K A) [PROOFSTEP] rw [lift_id] [GOAL] case h.e'_3 F✝ : Type u K✝ : Type v A✝ : Type w inst✝²¹ : CommRing F✝ inst✝²⁰ : Ring K✝ inst✝¹⁹ : AddCommGroup A✝ inst✝¹⁸ : Algebra F✝ K✝ inst✝¹⁷ : Module K✝ A✝ inst✝¹⁶ : Module F✝ A✝ inst✝¹⁵ : IsScalarTower F✝ K✝ A✝ inst✝¹⁴ : StrongRankCondition F✝ inst✝¹³ : StrongRankCondition K✝ inst✝¹² : Module.Free F✝ K✝ inst✝¹¹ : Module.Free K✝ A✝ F : Type u K A : Type v inst✝¹⁰ : CommRing F inst✝⁹ : Ring K inst✝⁸ : AddCommGroup A inst✝⁷ : Algebra F K inst✝⁶ : Module K A inst✝⁵ : Module F A inst✝⁴ : IsScalarTower F K A inst✝³ : StrongRankCondition F inst✝² : StrongRankCondition K inst✝¹ : Module.Free F K inst✝ : Module.Free K A ⊢ Module.rank F A = lift (Module.rank F A) [PROOFSTEP] rw [lift_id] [GOAL] F : Type u K : Type v A : Type w inst✝¹² : CommRing F inst✝¹¹ : Ring K inst✝¹⁰ : AddCommGroup A inst✝⁹ : Algebra F K inst✝⁸ : Module K A inst✝⁷ : Module F A inst✝⁶ : IsScalarTower F K A inst✝⁵ : StrongRankCondition F inst✝⁴ : StrongRankCondition K inst✝³ : Module.Free F K inst✝² : Module.Free K A inst✝¹ : Module.Finite F K inst✝ : Module.Finite K A ⊢ finrank F K * finrank K A = finrank F A [PROOFSTEP] letI := nontrivial_of_invariantBasisNumber F [GOAL] F : Type u K : Type v A : Type w inst✝¹² : CommRing F inst✝¹¹ : Ring K inst✝¹⁰ : AddCommGroup A inst✝⁹ : Algebra F K inst✝⁸ : Module K A inst✝⁷ : Module F A inst✝⁶ : IsScalarTower F K A inst✝⁵ : StrongRankCondition F inst✝⁴ : StrongRankCondition K inst✝³ : Module.Free F K inst✝² : Module.Free K A inst✝¹ : Module.Finite F K inst✝ : Module.Finite K A this : Nontrivial F := nontrivial_of_invariantBasisNumber F ⊢ finrank F K * finrank K A = finrank F A [PROOFSTEP] let b := Module.Free.chooseBasis F K [GOAL] F : Type u K : Type v A : Type w inst✝¹² : CommRing F inst✝¹¹ : Ring K inst✝¹⁰ : AddCommGroup A inst✝⁹ : Algebra F K inst✝⁸ : Module K A inst✝⁷ : Module F A inst✝⁶ : IsScalarTower F K A inst✝⁵ : StrongRankCondition F inst✝⁴ : StrongRankCondition K inst✝³ : Module.Free F K inst✝² : Module.Free K A inst✝¹ : Module.Finite F K inst✝ : Module.Finite K A this : Nontrivial F := nontrivial_of_invariantBasisNumber F b : Basis (Module.Free.ChooseBasisIndex F K) F K := Module.Free.chooseBasis F K ⊢ finrank F K * finrank K A = finrank F A [PROOFSTEP] let c := Module.Free.chooseBasis K A [GOAL] F : Type u K : Type v A : Type w inst✝¹² : CommRing F inst✝¹¹ : Ring K inst✝¹⁰ : AddCommGroup A inst✝⁹ : Algebra F K inst✝⁸ : Module K A inst✝⁷ : Module F A inst✝⁶ : IsScalarTower F K A inst✝⁵ : StrongRankCondition F inst✝⁴ : StrongRankCondition K inst✝³ : Module.Free F K inst✝² : Module.Free K A inst✝¹ : Module.Finite F K inst✝ : Module.Finite K A this : Nontrivial F := nontrivial_of_invariantBasisNumber F b : Basis (Module.Free.ChooseBasisIndex F K) F K := Module.Free.chooseBasis F K c : Basis (Module.Free.ChooseBasisIndex K A) K A := Module.Free.chooseBasis K A ⊢ finrank F K * finrank K A = finrank F A [PROOFSTEP] rw [finrank_eq_card_basis b, finrank_eq_card_basis c, finrank_eq_card_basis (b.smul c), Fintype.card_prod] [GOAL] F : Type u K : Type v A : Type w inst✝⁶ : Field F inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup A inst✝³ : Algebra F K inst✝² : Module K A inst✝¹ : Module F A inst✝ : IsScalarTower F K A hf : FiniteDimensional F A b : Finset A hb : span F ↑b = ⊤ ⊢ restrictScalars F (span K ↑b) = restrictScalars F ⊤ [PROOFSTEP] rw [Submodule.restrictScalars_top, eq_top_iff, ← hb, Submodule.span_le] [GOAL] F : Type u K : Type v A : Type w inst✝⁶ : Field F inst✝⁵ : DivisionRing K inst✝⁴ : AddCommGroup A inst✝³ : Algebra F K inst✝² : Module K A inst✝¹ : Module F A inst✝ : IsScalarTower F K A hf : FiniteDimensional F A b : Finset A hb : span F ↑b = ⊤ ⊢ ↑b ⊆ ↑(restrictScalars F (span K ↑b)) [PROOFSTEP] exact Submodule.subset_span [GOAL] F : Type u K : Type v A : Type w inst✝⁷ : Field F inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup A inst✝⁴ : Algebra F K inst✝³ : Module K A inst✝² : Module F A inst✝¹ : IsScalarTower F K A inst✝ : FiniteDimensional F K ⊢ finrank F K * finrank K A = finrank F A [PROOFSTEP] by_cases hA : FiniteDimensional K A [GOAL] case pos F : Type u K : Type v A : Type w inst✝⁷ : Field F inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup A inst✝⁴ : Algebra F K inst✝³ : Module K A inst✝² : Module F A inst✝¹ : IsScalarTower F K A inst✝ : FiniteDimensional F K hA : FiniteDimensional K A ⊢ finrank F K * finrank K A = finrank F A [PROOFSTEP] replace hA : FiniteDimensional K A := hA [GOAL] case pos F : Type u K : Type v A : Type w inst✝⁷ : Field F inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup A inst✝⁴ : Algebra F K inst✝³ : Module K A inst✝² : Module F A inst✝¹ : IsScalarTower F K A inst✝ : FiniteDimensional F K hA : FiniteDimensional K A ⊢ finrank F K * finrank K A = finrank F A [PROOFSTEP] rw [finrank_mul_finrank'] [GOAL] case neg F : Type u K : Type v A : Type w inst✝⁷ : Field F inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup A inst✝⁴ : Algebra F K inst✝³ : Module K A inst✝² : Module F A inst✝¹ : IsScalarTower F K A inst✝ : FiniteDimensional F K hA : ¬FiniteDimensional K A ⊢ finrank F K * finrank K A = finrank F A [PROOFSTEP] rw [finrank_of_infinite_dimensional hA, mul_zero, finrank_of_infinite_dimensional] [GOAL] case neg F : Type u K : Type v A : Type w inst✝⁷ : Field F inst✝⁶ : DivisionRing K inst✝⁵ : AddCommGroup A inst✝⁴ : Algebra F K inst✝³ : Module K A inst✝² : Module F A inst✝¹ : IsScalarTower F K A inst✝ : FiniteDimensional F K hA : ¬FiniteDimensional K A ⊢ ¬FiniteDimensional F A [PROOFSTEP] exact mt (@right F K A _ _ _ _ _ _ _) hA [GOAL] F : Type u K✝ : Type v A✝ : Type w inst✝⁹ : Field F inst✝⁸ : DivisionRing K✝ inst✝⁷ : AddCommGroup A✝ inst✝⁶ : Algebra F K✝ inst✝⁵ : Module K✝ A✝ inst✝⁴ : Module F A✝ inst✝³ : IsScalarTower F K✝ A✝ A : Type u_1 inst✝² : Ring A inst✝¹ : IsDomain A inst✝ : Algebra F A hp : Nat.Prime (finrank F A) K : Subalgebra F A ⊢ K = ⊥ ∨ K = ⊤ [PROOFSTEP] haveI : FiniteDimensional _ _ := finiteDimensional_of_finrank hp.pos [GOAL] F : Type u K✝ : Type v A✝ : Type w inst✝⁹ : Field F inst✝⁸ : DivisionRing K✝ inst✝⁷ : AddCommGroup A✝ inst✝⁶ : Algebra F K✝ inst✝⁵ : Module K✝ A✝ inst✝⁴ : Module F A✝ inst✝³ : IsScalarTower F K✝ A✝ A : Type u_1 inst✝² : Ring A inst✝¹ : IsDomain A inst✝ : Algebra F A hp : Nat.Prime (finrank F A) K : Subalgebra F A this : FiniteDimensional F A ⊢ K = ⊥ ∨ K = ⊤ [PROOFSTEP] letI := divisionRingOfFiniteDimensional F K [GOAL] F : Type u K✝ : Type v A✝ : Type w inst✝⁹ : Field F inst✝⁸ : DivisionRing K✝ inst✝⁷ : AddCommGroup A✝ inst✝⁶ : Algebra F K✝ inst✝⁵ : Module K✝ A✝ inst✝⁴ : Module F A✝ inst✝³ : IsScalarTower F K✝ A✝ A : Type u_1 inst✝² : Ring A inst✝¹ : IsDomain A inst✝ : Algebra F A hp : Nat.Prime (finrank F A) K : Subalgebra F A this✝ : FiniteDimensional F A this : DivisionRing { x // x ∈ K } := divisionRingOfFiniteDimensional F { x // x ∈ K } ⊢ K = ⊥ ∨ K = ⊤ [PROOFSTEP] refine' (hp.eq_one_or_self_of_dvd _ ⟨_, (finrank_mul_finrank F K A).symm⟩).imp _ fun h => _ [GOAL] case refine'_1 F : Type u K✝ : Type v A✝ : Type w inst✝⁹ : Field F inst✝⁸ : DivisionRing K✝ inst✝⁷ : AddCommGroup A✝ inst✝⁶ : Algebra F K✝ inst✝⁵ : Module K✝ A✝ inst✝⁴ : Module F A✝ inst✝³ : IsScalarTower F K✝ A✝ A : Type u_1 inst✝² : Ring A inst✝¹ : IsDomain A inst✝ : Algebra F A hp : Nat.Prime (finrank F A) K : Subalgebra F A this✝ : FiniteDimensional F A this : DivisionRing { x // x ∈ K } := divisionRingOfFiniteDimensional F { x // x ∈ K } ⊢ finrank F { x // x ∈ K } = 1 → K = ⊥ [PROOFSTEP] exact Subalgebra.eq_bot_of_finrank_one [GOAL] case refine'_2 F : Type u K✝ : Type v A✝ : Type w inst✝⁹ : Field F inst✝⁸ : DivisionRing K✝ inst✝⁷ : AddCommGroup A✝ inst✝⁶ : Algebra F K✝ inst✝⁵ : Module K✝ A✝ inst✝⁴ : Module F A✝ inst✝³ : IsScalarTower F K✝ A✝ A : Type u_1 inst✝² : Ring A inst✝¹ : IsDomain A inst✝ : Algebra F A hp : Nat.Prime (finrank F A) K : Subalgebra F A this✝ : FiniteDimensional F A this : DivisionRing { x // x ∈ K } := divisionRingOfFiniteDimensional F { x // x ∈ K } h : finrank F { x // x ∈ K } = finrank F A ⊢ K = ⊤ [PROOFSTEP] exact Algebra.toSubmodule_eq_top.1 (eq_top_of_finrank_eq <| K.finrank_toSubmodule.trans h)
{"mathlib_filename": "Mathlib.FieldTheory.Tower", "llama_tokens": 5895}
[GOAL] R : Type u_1 p : ℕ inst✝³ : CommSemiring R inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP R p inst✝ : PerfectRing R p ⊢ RingHom.comp (frobenius R p) ↑(RingEquiv.symm (frobeniusEquiv R p)) = RingHom.id R [PROOFSTEP] ext [GOAL] case a R : Type u_1 p : ℕ inst✝³ : CommSemiring R inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP R p inst✝ : PerfectRing R p x✝ : R ⊢ ↑(RingHom.comp (frobenius R p) ↑(RingEquiv.symm (frobeniusEquiv R p))) x✝ = ↑(RingHom.id R) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 p : ℕ inst✝³ : CommSemiring R inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP R p inst✝ : PerfectRing R p ⊢ RingHom.comp (↑(RingEquiv.symm (frobeniusEquiv R p))) (frobenius R p) = RingHom.id R [PROOFSTEP] ext [GOAL] case a R : Type u_1 p : ℕ inst✝³ : CommSemiring R inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP R p inst✝ : PerfectRing R p x✝ : R ⊢ ↑(RingHom.comp (↑(RingEquiv.symm (frobeniusEquiv R p))) (frobenius R p)) x✝ = ↑(RingHom.id R) x✝ [PROOFSTEP] simp [GOAL] R : Type u_1 p : ℕ inst✝³ : CommSemiring R inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP R p inst✝ : PerfectRing R p f : R[X] ⊢ ↑(expand R p) f = map (↑(RingEquiv.symm (frobeniusEquiv R p))) f ^ p [PROOFSTEP] rw [← (f.map (S := R) (frobeniusEquiv R p).symm).expand_char p, map_expand, map_map, frobenius_comp_frobeniusEquiv_symm, map_id] [GOAL] R : Type u_1 p : ℕ inst✝³ : CommSemiring R inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP R p inst✝ : PerfectRing R p f : R[X] ⊢ ¬Irreducible (↑(expand R p) f) [PROOFSTEP] have hp : Fact p.Prime := inferInstance [GOAL] R : Type u_1 p : ℕ inst✝³ : CommSemiring R inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP R p inst✝ : PerfectRing R p f : R[X] hp : Fact (Nat.Prime p) ⊢ ¬Irreducible (↑(expand R p) f) [PROOFSTEP] rw [polynomial_expand_eq] [GOAL] R : Type u_1 p : ℕ inst✝³ : CommSemiring R inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP R p inst✝ : PerfectRing R p f : R[X] hp : Fact (Nat.Prime p) ⊢ ¬Irreducible (map (↑(RingEquiv.symm (frobeniusEquiv R p))) f ^ p) [PROOFSTEP] exact fun hf ↦ hf.not_unit $ (of_irreducible_pow hp.out.ne_one hf).pow p [GOAL] R : Type ?u.337703 p : ℕ inst✝⁶ : CommSemiring R inst✝⁵ : Fact (Nat.Prime p) inst✝⁴ : CharP R p inst✝³ : PerfectRing R p S : Type ?u.337974 inst✝² : CommSemiring S inst✝¹ : CharP S p inst✝ : PerfectRing S p ⊢ PerfectRing (R × S) p [PROOFSTEP] constructor [GOAL] case bijective_frobenius R : Type ?u.337703 p : ℕ inst✝⁶ : CommSemiring R inst✝⁵ : Fact (Nat.Prime p) inst✝⁴ : CharP R p inst✝³ : PerfectRing R p S : Type ?u.337974 inst✝² : CommSemiring S inst✝¹ : CharP S p inst✝ : PerfectRing S p ⊢ Bijective ↑(frobenius (R × S) p) [PROOFSTEP] have : frobenius (R × S) p = Prod.map (frobenius R p) (frobenius S p) := by ext <;> simp [frobenius_def] [GOAL] R : Type ?u.337703 p : ℕ inst✝⁶ : CommSemiring R inst✝⁵ : Fact (Nat.Prime p) inst✝⁴ : CharP R p inst✝³ : PerfectRing R p S : Type ?u.337974 inst✝² : CommSemiring S inst✝¹ : CharP S p inst✝ : PerfectRing S p ⊢ ↑(frobenius (R × S) p) = Prod.map ↑(frobenius R p) ↑(frobenius S p) [PROOFSTEP] ext [GOAL] case h.h₁ R : Type ?u.337703 p : ℕ inst✝⁶ : CommSemiring R inst✝⁵ : Fact (Nat.Prime p) inst✝⁴ : CharP R p inst✝³ : PerfectRing R p S : Type ?u.337974 inst✝² : CommSemiring S inst✝¹ : CharP S p inst✝ : PerfectRing S p x✝ : R × S ⊢ (↑(frobenius (R × S) p) x✝).fst = (Prod.map (↑(frobenius R p)) (↑(frobenius S p)) x✝).fst [PROOFSTEP] simp [frobenius_def] [GOAL] case h.h₂ R : Type ?u.337703 p : ℕ inst✝⁶ : CommSemiring R inst✝⁵ : Fact (Nat.Prime p) inst✝⁴ : CharP R p inst✝³ : PerfectRing R p S : Type ?u.337974 inst✝² : CommSemiring S inst✝¹ : CharP S p inst✝ : PerfectRing S p x✝ : R × S ⊢ (↑(frobenius (R × S) p) x✝).snd = (Prod.map (↑(frobenius R p)) (↑(frobenius S p)) x✝).snd [PROOFSTEP] simp [frobenius_def] [GOAL] case bijective_frobenius R : Type ?u.337703 p : ℕ inst✝⁶ : CommSemiring R inst✝⁵ : Fact (Nat.Prime p) inst✝⁴ : CharP R p inst✝³ : PerfectRing R p S : Type ?u.337974 inst✝² : CommSemiring S inst✝¹ : CharP S p inst✝ : PerfectRing S p this : ↑(frobenius (R × S) p) = Prod.map ↑(frobenius R p) ↑(frobenius S p) ⊢ Bijective ↑(frobenius (R × S) p) [PROOFSTEP] rw [this] [GOAL] case bijective_frobenius R : Type ?u.337703 p : ℕ inst✝⁶ : CommSemiring R inst✝⁵ : Fact (Nat.Prime p) inst✝⁴ : CharP R p inst✝³ : PerfectRing R p S : Type ?u.337974 inst✝² : CommSemiring S inst✝¹ : CharP S p inst✝ : PerfectRing S p this : ↑(frobenius (R × S) p) = Prod.map ↑(frobenius R p) ↑(frobenius S p) ⊢ Bijective (Prod.map ↑(frobenius R p) ↑(frobenius S p)) [PROOFSTEP] exact Bijective.Prod_map (bijective_frobenius R p) (bijective_frobenius S p) [GOAL] K : Type u_1 p : ℕ inst✝² : Field K hp : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : PerfectRing K p ⊢ PerfectField K [PROOFSTEP] refine' PerfectField.mk $ fun hf ↦ _ [GOAL] K : Type u_1 p : ℕ inst✝² : Field K hp : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : PerfectRing K p f✝ : K[X] hf : Irreducible f✝ ⊢ Separable f✝ [PROOFSTEP] rcases separable_or p hf with h | ⟨-, g, -, rfl⟩ [GOAL] case inl K : Type u_1 p : ℕ inst✝² : Field K hp : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : PerfectRing K p f✝ : K[X] hf : Irreducible f✝ h : Separable f✝ ⊢ Separable f✝ [PROOFSTEP] assumption [GOAL] case inr.intro.intro.intro K : Type u_1 p : ℕ inst✝² : Field K hp : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : PerfectRing K p g : K[X] hf : Irreducible (↑(expand K p) g) ⊢ Separable (↑(expand K p) g) [PROOFSTEP] exfalso [GOAL] case inr.intro.intro.intro.h K : Type u_1 p : ℕ inst✝² : Field K hp : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : PerfectRing K p g : K[X] hf : Irreducible (↑(expand K p) g) ⊢ False [PROOFSTEP] revert hf [GOAL] case inr.intro.intro.intro.h K : Type u_1 p : ℕ inst✝² : Field K hp : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : PerfectRing K p g : K[X] ⊢ Irreducible (↑(expand K p) g) → False [PROOFSTEP] simp [GOAL] K : Type ?u.469717 inst✝¹ : Field K inst✝ : Finite K ⊢ PerfectField K [PROOFSTEP] obtain ⟨p, _instP⟩ := CharP.exists K [GOAL] case intro K : Type ?u.469717 inst✝¹ : Field K inst✝ : Finite K p : ℕ _instP : CharP K p ⊢ PerfectField K [PROOFSTEP] have : Fact p.Prime := ⟨CharP.char_is_prime K p⟩ [GOAL] case intro K : Type ?u.469717 inst✝¹ : Field K inst✝ : Finite K p : ℕ _instP : CharP K p this : Fact (Nat.Prime p) ⊢ PerfectField K [PROOFSTEP] exact PerfectRing.toPerfectField K p [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p ⊢ PerfectRing K p [PROOFSTEP] refine' PerfectRing.ofSurjective _ _ $ fun y ↦ _ [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] let f : K[X] := X ^ p - C y [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] let L := f.SplittingField [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] let ι := algebraMap K L [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] have hf_deg : f.degree ≠ 0 := by rw [degree_X_pow_sub_C hp.out.pos y, p.cast_ne_zero]; exact hp.out.ne_zero [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L ⊢ degree f ≠ 0 [PROOFSTEP] rw [degree_X_pow_sub_C hp.out.pos y, p.cast_ne_zero] [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L ⊢ p ≠ 0 [PROOFSTEP] exact hp.out.ne_zero [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] let a : L := f.rootOfSplits ι (SplittingField.splits f) hf_deg [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] have hfa : aeval a f = 0 := by rw [aeval_def, map_rootOfSplits _ (SplittingField.splits f) hf_deg] [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg ⊢ ↑(aeval a) f = 0 [PROOFSTEP] rw [aeval_def, map_rootOfSplits _ (SplittingField.splits f) hf_deg] [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] have ha_pow : a ^ p = ι y := by rwa [AlgHom.map_sub, aeval_X_pow, aeval_C, sub_eq_zero] at hfa [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ⊢ a ^ p = ↑ι y [PROOFSTEP] rwa [AlgHom.map_sub, aeval_X_pow, aeval_C, sub_eq_zero] at hfa [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] let g : K[X] := minpoly K a [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] suffices : (g.map ι).natDegree = 1 [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a this : natDegree (map ι g) = 1 ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] rw [g.natDegree_map, ← degree_eq_iff_natDegree_eq_of_pos Nat.one_pos] at this [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a this : degree g = ↑1 ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] obtain ⟨a' : K, ha' : ι a' = a⟩ := minpoly.mem_range_of_degree_eq_one K a this [GOAL] case intro K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a this : degree g = ↑1 a' : K ha' : ↑ι a' = a ⊢ ∃ a, ↑(frobenius K p) a = y [PROOFSTEP] refine' ⟨a', NoZeroSMulDivisors.algebraMap_injective K L _⟩ [GOAL] case intro K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a this : degree g = ↑1 a' : K ha' : ↑ι a' = a ⊢ ↑(algebraMap K L) (↑(frobenius K p) a') = ↑(algebraMap K L) y [PROOFSTEP] rw [RingHom.map_frobenius, ha', frobenius_def, ha_pow] [GOAL] case this K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a ⊢ natDegree (map ι g) = 1 [PROOFSTEP] have hg_dvd : g.map ι ∣ (X - C a) ^ p := by convert Polynomial.map_dvd ι (minpoly.dvd K a hfa) rw [sub_pow_char, Polynomial.map_sub, Polynomial.map_pow, map_X, map_C, ← ha_pow, map_pow] [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a ⊢ map ι g ∣ (X - ↑C a) ^ p [PROOFSTEP] convert Polynomial.map_dvd ι (minpoly.dvd K a hfa) [GOAL] case h.e'_4 K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a ⊢ (X - ↑C a) ^ p = map ι f [PROOFSTEP] rw [sub_pow_char, Polynomial.map_sub, Polynomial.map_pow, map_X, map_C, ← ha_pow, map_pow] [GOAL] case this K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a hg_dvd : map ι g ∣ (X - ↑C a) ^ p ⊢ natDegree (map ι g) = 1 [PROOFSTEP] have ha : IsIntegral K a := isIntegral_of_finite K a [GOAL] case this K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a hg_dvd : map ι g ∣ (X - ↑C a) ^ p ha : IsIntegral K a ⊢ natDegree (map ι g) = 1 [PROOFSTEP] have hg_pow : g.map ι = (X - C a) ^ (g.map ι).natDegree := by obtain ⟨q, -, hq⟩ := (dvd_prime_pow (prime_X_sub_C a) p).mp hg_dvd rw [eq_of_monic_of_associated ((minpoly.monic ha).map ι) ((monic_X_sub_C a).pow q) hq, natDegree_pow, natDegree_X_sub_C, mul_one] [GOAL] K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a hg_dvd : map ι g ∣ (X - ↑C a) ^ p ha : IsIntegral K a ⊢ map ι g = (X - ↑C a) ^ natDegree (map ι g) [PROOFSTEP] obtain ⟨q, -, hq⟩ := (dvd_prime_pow (prime_X_sub_C a) p).mp hg_dvd [GOAL] case intro.intro K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a hg_dvd : map ι g ∣ (X - ↑C a) ^ p ha : IsIntegral K a q : ℕ hq : Associated (map ι g) ((X - ↑C a) ^ q) ⊢ map ι g = (X - ↑C a) ^ natDegree (map ι g) [PROOFSTEP] rw [eq_of_monic_of_associated ((minpoly.monic ha).map ι) ((monic_X_sub_C a).pow q) hq, natDegree_pow, natDegree_X_sub_C, mul_one] [GOAL] case this K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a hg_dvd : map ι g ∣ (X - ↑C a) ^ p ha : IsIntegral K a hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g) ⊢ natDegree (map ι g) = 1 [PROOFSTEP] have hg_sep : (g.map ι).Separable := (separable_of_irreducible $ minpoly.irreducible ha).map [GOAL] case this K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a hg_dvd : map ι g ∣ (X - ↑C a) ^ p ha : IsIntegral K a hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g) hg_sep : Separable (map ι g) ⊢ natDegree (map ι g) = 1 [PROOFSTEP] rw [hg_pow] at hg_sep [GOAL] case this K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a hg_dvd : map ι g ∣ (X - ↑C a) ^ p ha : IsIntegral K a hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g) hg_sep : Separable ((X - ↑C a) ^ natDegree (map ι g)) ⊢ natDegree (map ι g) = 1 [PROOFSTEP] refine' (Separable.of_pow (not_isUnit_X_sub_C a) _ hg_sep).2 [GOAL] case this K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a hg_dvd : map ι g ∣ (X - ↑C a) ^ p ha : IsIntegral K a hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g) hg_sep : Separable ((X - ↑C a) ^ natDegree (map ι g)) ⊢ natDegree (map ι g) ≠ 0 [PROOFSTEP] rw [g.natDegree_map ι, ← Nat.pos_iff_ne_zero, natDegree_pos_iff_degree_pos] [GOAL] case this K : Type ?u.470721 inst✝² : Field K inst✝¹ : PerfectField K p : ℕ hp : Fact (Nat.Prime p) inst✝ : CharP K p y : K f : K[X] := X ^ p - ↑C y L : Type ?u.470721 := SplittingField f ι : K →+* L := algebraMap K L hf_deg : degree f ≠ 0 a : L := rootOfSplits ι (_ : Splits (algebraMap K (SplittingField f)) f) hf_deg hfa : ↑(aeval a) f = 0 ha_pow : a ^ p = ↑ι y g : K[X] := minpoly K a hg_dvd : map ι g ∣ (X - ↑C a) ^ p ha : IsIntegral K a hg_pow : map ι g = (X - ↑C a) ^ natDegree (map ι g) hg_sep : Separable ((X - ↑C a) ^ natDegree (map ι g)) ⊢ 0 < degree g [PROOFSTEP] exact minpoly.degree_pos ha
{"mathlib_filename": "Mathlib.FieldTheory.Perfect", "llama_tokens": 10926}
[GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Finite F inst✝ : Algebra (ZMod (ringChar F)) F a : F ha : a ≠ 0 ⊢ ∃ b, ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0 [PROOFSTEP] haveI : Fact (ringChar F).Prime := ⟨CharP.char_is_prime F _⟩ [GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Finite F inst✝ : Algebra (ZMod (ringChar F)) F a : F ha : a ≠ 0 this : Fact (Nat.Prime (ringChar F)) ⊢ ∃ b, ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0 [PROOFSTEP] have htr := traceForm_nondegenerate (ZMod (ringChar F)) F a [GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Finite F inst✝ : Algebra (ZMod (ringChar F)) F a : F ha : a ≠ 0 this : Fact (Nat.Prime (ringChar F)) htr : (∀ (n : F), BilinForm.bilin (Algebra.traceForm (ZMod (ringChar F)) F) a n = 0) → a = 0 ⊢ ∃ b, ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0 [PROOFSTEP] simp_rw [Algebra.traceForm_apply] at htr [GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Finite F inst✝ : Algebra (ZMod (ringChar F)) F a : F ha : a ≠ 0 this : Fact (Nat.Prime (ringChar F)) htr : (∀ (n : F), ↑(Algebra.trace (ZMod (ringChar F)) F) (a * n) = 0) → a = 0 ⊢ ∃ b, ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) ≠ 0 [PROOFSTEP] by_contra' hf [GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Finite F inst✝ : Algebra (ZMod (ringChar F)) F a : F ha : a ≠ 0 this : Fact (Nat.Prime (ringChar F)) htr : (∀ (n : F), ↑(Algebra.trace (ZMod (ringChar F)) F) (a * n) = 0) → a = 0 hf : ∀ (b : F), ↑(Algebra.trace (ZMod (ringChar F)) F) (a * b) = 0 ⊢ False [PROOFSTEP] exact ha (htr hf)
{"mathlib_filename": "Mathlib.FieldTheory.Finite.Trace", "llama_tokens": 771}
[GOAL] R : Type u A : Type v inst✝³ : CommRing R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : IsDomain R p : R[X] a : A h : ¬IsUnit (↑(aeval a) (Multiset.prod (Multiset.map (fun x => X - ↑C x) (roots p)))) ⊢ ∃ k, k ∈ σ a ∧ eval k p = 0 [PROOFSTEP] rw [← Multiset.prod_toList, AlgHom.map_list_prod] at h [GOAL] R : Type u A : Type v inst✝³ : CommRing R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : IsDomain R p : R[X] a : A h : ¬IsUnit (List.prod (List.map (↑(aeval a)) (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p))))) ⊢ ∃ k, k ∈ σ a ∧ eval k p = 0 [PROOFSTEP] replace h := mt List.prod_isUnit h [GOAL] R : Type u A : Type v inst✝³ : CommRing R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : IsDomain R p : R[X] a : A h : ¬∀ (m : (fun x => A) (List.prod (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p))))), m ∈ List.map (↑(aeval a)) (Multiset.toList (Multiset.map (fun x => X - ↑C x) (roots p))) → IsUnit m ⊢ ∃ k, k ∈ σ a ∧ eval k p = 0 [PROOFSTEP] simp only [not_forall, exists_prop, aeval_C, Multiset.mem_toList, List.mem_map, aeval_X, exists_exists_and_eq_and, Multiset.mem_map, AlgHom.map_sub] at h [GOAL] R : Type u A : Type v inst✝³ : CommRing R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : IsDomain R p : R[X] a : A h : ∃ a_1, a_1 ∈ roots p ∧ ¬IsUnit (a - ↑↑ₐ a_1) ⊢ ∃ k, k ∈ σ a ∧ eval k p = 0 [PROOFSTEP] rcases h with ⟨r, r_mem, r_nu⟩ [GOAL] case intro.intro R : Type u A : Type v inst✝³ : CommRing R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : IsDomain R p : R[X] a : A r : R r_mem : r ∈ roots p r_nu : ¬IsUnit (a - ↑↑ₐ r) ⊢ ∃ k, k ∈ σ a ∧ eval k p = 0 [PROOFSTEP] exact ⟨r, by rwa [mem_iff, ← IsUnit.sub_iff], (mem_roots'.1 r_mem).2⟩ [GOAL] R : Type u A : Type v inst✝³ : CommRing R inst✝² : Ring A inst✝¹ : Algebra R A inst✝ : IsDomain R p : R[X] a : A r : R r_mem : r ∈ roots p r_nu : ¬IsUnit (a - ↑↑ₐ r) ⊢ r ∈ σ a [PROOFSTEP] rwa [mem_iff, ← IsUnit.sub_iff] [GOAL] 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] ⊢ (fun x => eval x p) '' σ a ⊆ σ (↑(aeval a) p) [PROOFSTEP] rintro _ ⟨k, hk, rfl⟩ [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a ⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p) [PROOFSTEP] let q := C (eval k p) - p [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p ⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p) [PROOFSTEP] have hroot : IsRoot q k := by simp only [eval_C, eval_sub, sub_self, IsRoot.def] [GOAL] 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p ⊢ IsRoot q k [PROOFSTEP] simp only [eval_C, eval_sub, sub_self, IsRoot.def] [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p hroot : IsRoot q k ⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p) [PROOFSTEP] rw [← mul_div_eq_iff_isRoot, ← neg_mul_neg, neg_sub] at hroot [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q hroot : (↑C k - X) * -(q / (X - ↑C k)) = q ⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p) [PROOFSTEP] have aeval_q_eq : ↑ₐ (eval k p) - aeval a p = aeval a q := by simp only [aeval_C, AlgHom.map_sub, sub_left_inj] [GOAL] 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q hroot : (↑C k - X) * -(q / (X - ↑C k)) = q ⊢ ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q [PROOFSTEP] simp only [aeval_C, AlgHom.map_sub, sub_left_inj] [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q hroot : (↑C k - X) * -(q / (X - ↑C k)) = q aeval_q_eq : ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q ⊢ (fun x => eval x p) k ∈ σ (↑(aeval a) p) [PROOFSTEP] rw [mem_iff, aeval_q_eq, ← hroot, aeval_mul] [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q hroot : (↑C k - X) * -(q / (X - ↑C k)) = q aeval_q_eq : ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q ⊢ ¬IsUnit (↑(aeval a) (↑C k - X) * ↑(aeval a) (-(q / (X - ↑C k)))) [PROOFSTEP] have hcomm := (Commute.all (C k - X) (-(q / (X - C k)))).map (aeval a : 𝕜[X] →ₐ[𝕜] A) [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q hroot : (↑C k - X) * -(q / (X - ↑C k)) = q aeval_q_eq : ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q hcomm : Commute (↑(aeval a) (↑C k - X)) (↑(aeval a) (-(q / (X - ↑C k)))) ⊢ ¬IsUnit (↑(aeval a) (↑C k - X) * ↑(aeval a) (-(q / (X - ↑C k)))) [PROOFSTEP] apply mt fun h => (hcomm.isUnit_mul_iff.mp h).1 [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A p : 𝕜[X] k : 𝕜 hk : k ∈ σ a q : (fun x => 𝕜[X]) (eval k p) := ↑C (eval k p) - p hroot✝ : (X - ↑C k) * (q / (X - ↑C k)) = q hroot : (↑C k - X) * -(q / (X - ↑C k)) = q aeval_q_eq : ↑↑ₐ (eval k p) - ↑(aeval a) p = ↑(aeval a) q hcomm : Commute (↑(aeval a) (↑C k - X)) (↑(aeval a) (-(q / (X - ↑C k)))) ⊢ ¬IsUnit (↑(aeval a) (↑C k - X)) [PROOFSTEP] simpa only [aeval_X, aeval_C, AlgHom.map_sub] using hk [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p ⊢ σ (↑(aeval a) p) = (fun x => eval x p) '' σ a [PROOFSTEP] refine' Set.eq_of_subset_of_subset (fun k hk => _) (subset_polynomial_aeval a p) -- write `C k - p` product of linear factors and a constant; show `C k - p ≠ 0`. [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hk : k ∈ σ (↑(aeval a) p) ⊢ k ∈ (fun x => eval x p) '' σ a [PROOFSTEP] have hprod := eq_prod_roots_of_splits_id (IsAlgClosed.splits (C k - p)) [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hk : k ∈ σ (↑(aeval a) p) hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) ⊢ k ∈ (fun x => eval x p) '' σ a [PROOFSTEP] have h_ne : C k - p ≠ 0 := ne_zero_of_degree_gt <| by rwa [degree_sub_eq_right_of_degree_lt (lt_of_le_of_lt degree_C_le hdeg)] [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hk : k ∈ σ (↑(aeval a) p) hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) ⊢ ?m.286583 < degree (↑C k - p) [PROOFSTEP] rwa [degree_sub_eq_right_of_degree_lt (lt_of_le_of_lt degree_C_le hdeg)] [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hk : k ∈ σ (↑(aeval a) p) hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) h_ne : ↑C k - p ≠ 0 ⊢ k ∈ (fun x => eval x p) '' σ a [PROOFSTEP] have lead_ne := leadingCoeff_ne_zero.mpr h_ne [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hk : k ∈ σ (↑(aeval a) p) hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) h_ne : ↑C k - p ≠ 0 lead_ne : leadingCoeff (↑C k - p) ≠ 0 ⊢ k ∈ (fun x => eval x p) '' σ a [PROOFSTEP] have lead_unit := (Units.map ↑ₐ.toMonoidHom (Units.mk0 _ lead_ne)).isUnit [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hk : k ∈ σ (↑(aeval a) p) hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) h_ne : ↑C k - p ≠ 0 lead_ne : leadingCoeff (↑C k - p) ≠ 0 lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne)) ⊢ k ∈ (fun x => eval x p) '' σ a [PROOFSTEP] have p_a_eq : aeval a (C k - p) = ↑ₐ k - aeval a p := by simp only [aeval_C, AlgHom.map_sub, sub_left_inj] [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hk : k ∈ σ (↑(aeval a) p) hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) h_ne : ↑C k - p ≠ 0 lead_ne : leadingCoeff (↑C k - p) ≠ 0 lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne)) ⊢ ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p [PROOFSTEP] simp only [aeval_C, AlgHom.map_sub, sub_left_inj] [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hk : k ∈ σ (↑(aeval a) p) hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) h_ne : ↑C k - p ≠ 0 lead_ne : leadingCoeff (↑C k - p) ≠ 0 lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne)) p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p ⊢ k ∈ (fun x => eval x p) '' σ a [PROOFSTEP] rw [mem_iff, ← p_a_eq, hprod, aeval_mul, ((Commute.all _ _).map (aeval a : 𝕜[X] →ₐ[𝕜] A)).isUnit_mul_iff, aeval_C] at hk [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hk : ¬(IsUnit (↑↑ₐ (leadingCoeff (↑C k - p))) ∧ IsUnit (↑(aeval a) (Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p)))))) hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) h_ne : ↑C k - p ≠ 0 lead_ne : leadingCoeff (↑C k - p) ≠ 0 lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne)) p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p ⊢ k ∈ (fun x => eval x p) '' σ a [PROOFSTEP] replace hk := exists_mem_of_not_isUnit_aeval_prod (not_and.mp hk lead_unit) [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) h_ne : ↑C k - p ≠ 0 lead_ne : leadingCoeff (↑C k - p) ≠ 0 lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne)) p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p hk : ∃ k_1, k_1 ∈ σ a ∧ eval k_1 (↑C k - p) = 0 ⊢ k ∈ (fun x => eval x p) '' σ a [PROOFSTEP] rcases hk with ⟨r, r_mem, r_ev⟩ [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) h_ne : ↑C k - p ≠ 0 lead_ne : leadingCoeff (↑C k - p) ≠ 0 lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne)) p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p r : 𝕜 r_mem : r ∈ σ a r_ev : eval r (↑C k - p) = 0 ⊢ k ∈ (fun x => eval x p) '' σ a [PROOFSTEP] exact ⟨r, r_mem, symm (by simpa [eval_sub, eval_C, sub_eq_zero] using r_ev)⟩ [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hdeg : 0 < degree p k : 𝕜 hprod : ↑C k - p = ↑C (leadingCoeff (↑C k - p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots (↑C k - p))) h_ne : ↑C k - p ≠ 0 lead_ne : leadingCoeff (↑C k - p) ≠ 0 lead_unit : IsUnit ↑(↑(Units.map ↑↑ₐ) (Units.mk0 (leadingCoeff (↑C k - p)) lead_ne)) p_a_eq : ↑(aeval a) (↑C k - p) = ↑↑ₐ k - ↑(aeval a) p r : 𝕜 r_mem : r ∈ σ a r_ev : eval r (↑C k - p) = 0 ⊢ k = (fun x => eval x p) r [PROOFSTEP] simpa [eval_sub, eval_C, sub_eq_zero] using r_ev [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hnon : Set.Nonempty (σ a) ⊢ σ (↑(aeval a) p) = (fun k => eval k p) '' σ a [PROOFSTEP] nontriviality A [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hnon : Set.Nonempty (σ a) ✝ : Nontrivial A ⊢ σ (↑(aeval a) p) = (fun k => eval k p) '' σ a [PROOFSTEP] refine' Or.elim (le_or_gt (degree p) 0) (fun h => _) (map_polynomial_aeval_of_degree_pos a p) [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hnon : Set.Nonempty (σ a) ✝ : Nontrivial A h : degree p ≤ 0 ⊢ σ (↑(aeval a) p) = (fun k => eval k p) '' σ a [PROOFSTEP] rw [eq_C_of_degree_le_zero h] [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A p : 𝕜[X] hnon : Set.Nonempty (σ a) ✝ : Nontrivial A h : degree p ≤ 0 ⊢ σ (↑(aeval a) (↑C (coeff p 0))) = (fun k => eval k (↑C (coeff p 0))) '' σ a [PROOFSTEP] simp only [Set.image_congr, eval_C, aeval_C, scalar_eq, Set.Nonempty.image_const hnon] [GOAL] 𝕜 : Type u A : Type v inst✝² : Field 𝕜 inst✝¹ : Ring A inst✝ : Algebra 𝕜 A a : A n : ℕ ⊢ (fun x => x ^ n) '' σ a ⊆ σ (a ^ n) [PROOFSTEP] simpa only [eval_pow, eval_X, aeval_X_pow] using subset_polynomial_aeval a (X ^ n : 𝕜[X]) [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A n : ℕ hn : 0 < n ⊢ σ (a ^ n) = (fun x => x ^ n) '' σ a [PROOFSTEP] simpa only [aeval_X_pow, eval_pow, eval_X] using map_polynomial_aeval_of_degree_pos a (X ^ n : 𝕜[X]) (by rwa [degree_X_pow, Nat.cast_pos]) [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A n : ℕ hn : 0 < n ⊢ 0 < degree (X ^ n) [PROOFSTEP] rwa [degree_X_pow, Nat.cast_pos] [GOAL] 𝕜 : Type u A : Type v inst✝³ : Field 𝕜 inst✝² : Ring A inst✝¹ : Algebra 𝕜 A inst✝ : IsAlgClosed 𝕜 a : A ha : Set.Nonempty (σ a) n : ℕ ⊢ σ (a ^ n) = (fun x => x ^ n) '' σ a [PROOFSTEP] simpa only [aeval_X_pow, eval_pow, eval_X] using map_polynomial_aeval_of_nonempty a (X ^ n) ha [GOAL] 𝕜 : Type u A : Type v inst✝⁴ : Field 𝕜 inst✝³ : Ring A inst✝² : Algebra 𝕜 A inst✝¹ : IsAlgClosed 𝕜 inst✝ : Nontrivial A I : FiniteDimensional 𝕜 A a : A ⊢ Set.Nonempty (σ a) [PROOFSTEP] obtain ⟨p, ⟨h_mon, h_eval_p⟩⟩ := isIntegral_of_noetherian (IsNoetherian.iff_fg.2 I) a [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝⁴ : Field 𝕜 inst✝³ : Ring A inst✝² : Algebra 𝕜 A inst✝¹ : IsAlgClosed 𝕜 inst✝ : Nontrivial A I : FiniteDimensional 𝕜 A a : A p : 𝕜[X] h_mon : Monic p h_eval_p : eval₂ ↑ₐ a p = 0 ⊢ Set.Nonempty (σ a) [PROOFSTEP] have nu : ¬IsUnit (aeval a p) := by rw [← aeval_def] at h_eval_p ; rw [h_eval_p]; simp [GOAL] 𝕜 : Type u A : Type v inst✝⁴ : Field 𝕜 inst✝³ : Ring A inst✝² : Algebra 𝕜 A inst✝¹ : IsAlgClosed 𝕜 inst✝ : Nontrivial A I : FiniteDimensional 𝕜 A a : A p : 𝕜[X] h_mon : Monic p h_eval_p : eval₂ ↑ₐ a p = 0 ⊢ ¬IsUnit (↑(aeval a) p) [PROOFSTEP] rw [← aeval_def] at h_eval_p [GOAL] 𝕜 : Type u A : Type v inst✝⁴ : Field 𝕜 inst✝³ : Ring A inst✝² : Algebra 𝕜 A inst✝¹ : IsAlgClosed 𝕜 inst✝ : Nontrivial A I : FiniteDimensional 𝕜 A a : A p : 𝕜[X] h_mon : Monic p h_eval_p : ↑(aeval a) p = 0 ⊢ ¬IsUnit (↑(aeval a) p) [PROOFSTEP] rw [h_eval_p] [GOAL] 𝕜 : Type u A : Type v inst✝⁴ : Field 𝕜 inst✝³ : Ring A inst✝² : Algebra 𝕜 A inst✝¹ : IsAlgClosed 𝕜 inst✝ : Nontrivial A I : FiniteDimensional 𝕜 A a : A p : 𝕜[X] h_mon : Monic p h_eval_p : ↑(aeval a) p = 0 ⊢ ¬IsUnit 0 [PROOFSTEP] simp [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝⁴ : Field 𝕜 inst✝³ : Ring A inst✝² : Algebra 𝕜 A inst✝¹ : IsAlgClosed 𝕜 inst✝ : Nontrivial A I : FiniteDimensional 𝕜 A a : A p : 𝕜[X] h_mon : Monic p h_eval_p : eval₂ ↑ₐ a p = 0 nu : ¬IsUnit (↑(aeval a) p) ⊢ Set.Nonempty (σ a) [PROOFSTEP] rw [eq_prod_roots_of_monic_of_splits_id h_mon (IsAlgClosed.splits p)] at nu [GOAL] case intro.intro 𝕜 : Type u A : Type v inst✝⁴ : Field 𝕜 inst✝³ : Ring A inst✝² : Algebra 𝕜 A inst✝¹ : IsAlgClosed 𝕜 inst✝ : Nontrivial A I : FiniteDimensional 𝕜 A a : A p : 𝕜[X] h_mon : Monic p h_eval_p : eval₂ ↑ₐ a p = 0 nu : ¬IsUnit (↑(aeval a) (Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots p)))) ⊢ Set.Nonempty (σ a) [PROOFSTEP] obtain ⟨k, hk, _⟩ := exists_mem_of_not_isUnit_aeval_prod nu [GOAL] case intro.intro.intro.intro 𝕜 : Type u A : Type v inst✝⁴ : Field 𝕜 inst✝³ : Ring A inst✝² : Algebra 𝕜 A inst✝¹ : IsAlgClosed 𝕜 inst✝ : Nontrivial A I : FiniteDimensional 𝕜 A a : A p : 𝕜[X] h_mon : Monic p h_eval_p : eval₂ ↑ₐ a p = 0 nu : ¬IsUnit (↑(aeval a) (Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots p)))) k : 𝕜 hk : k ∈ σ a right✝ : eval k p = 0 ⊢ Set.Nonempty (σ a) [PROOFSTEP] exact ⟨k, hk⟩
{"mathlib_filename": "Mathlib.FieldTheory.IsAlgClosed.Spectrum", "llama_tokens": 9596}
[GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ ⊢ ∑ x : σ → K, ↑(eval x) f = 0 [PROOFSTEP] haveI : DecidableEq K := Classical.decEq K [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K ⊢ ∑ x : σ → K, ↑(eval x) f = 0 [PROOFSTEP] calc ∑ x, eval x f = ∑ x : σ → K, ∑ d in f.support, f.coeff d * ∏ i, x i ^ d i := by simp only [eval_eq'] _ = ∑ d in f.support, ∑ x : σ → K, f.coeff d * ∏ i, x i ^ d i := sum_comm _ = 0 := sum_eq_zero ?_ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K ⊢ ∑ x : σ → K, ↑(eval x) f = ∑ x : σ → K, ∑ d in support f, coeff d f * ∏ i : σ, x i ^ ↑d i [PROOFSTEP] simp only [eval_eq'] [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K ⊢ ∀ (x : σ →₀ ℕ), x ∈ support f → ∑ x_1 : σ → K, coeff x f * ∏ i : σ, x_1 i ^ ↑x i = 0 [PROOFSTEP] intro d hd [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f ⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0 [PROOFSTEP] obtain ⟨i, hi⟩ : ∃ i, d i < q - 1 [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f ⊢ ∃ i, ↑d i < q - 1 case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 ⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0 [PROOFSTEP] exact f.exists_degree_lt (q - 1) h hd [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 ⊢ ∑ x : σ → K, coeff d f * ∏ i : σ, x i ^ ↑d i = 0 [PROOFSTEP] calc (∑ x : σ → K, f.coeff d * ∏ i, x i ^ d i) = f.coeff d * ∑ x : σ → K, ∏ i, x i ^ d i := mul_sum.symm _ = 0 := (mul_eq_zero.mpr ∘ Or.inr) ?_ [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 ⊢ ∑ x : σ → K, ∏ i : σ, x i ^ ↑d i = 0 [PROOFSTEP] calc (∑ x : σ → K, ∏ i, x i ^ d i) = ∑ x₀ : { j // j ≠ i } → K, ∑ x : { x : σ → K // x ∘ (↑) = x₀ }, ∏ j, (x : σ → K) j ^ d j := (Fintype.sum_fiberwise _ _).symm _ = 0 := Fintype.sum_eq_zero _ ?_ [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 ⊢ ∀ (a : { j // j ≠ i } → K), ∑ x : { x // x ∘ Subtype.val = a }, ∏ j : σ, ↑x j ^ ↑d j = 0 [PROOFSTEP] intro x₀ [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K ⊢ ∑ x : { x // x ∘ Subtype.val = x₀ }, ∏ j : σ, ↑x j ^ ↑d j = 0 [PROOFSTEP] let e : K ≃ { x // x ∘ ((↑) : _ → σ) = x₀ } := (Equiv.subtypeEquivCodomain _).symm [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm ⊢ ∑ x : { x // x ∘ Subtype.val = x₀ }, ∏ j : σ, ↑x j ^ ↑d j = 0 [PROOFSTEP] calc (∑ x : { x : σ → K // x ∘ (↑) = x₀ }, ∏ j, (x : σ → K) j ^ d j) = ∑ a : K, ∏ j : σ, (e a : σ → K) j ^ d j := (e.sum_comp _).symm _ = ∑ a : K, (∏ j, x₀ j ^ d j) * a ^ d i := (Fintype.sum_congr _ _ ?_) _ = (∏ j, x₀ j ^ d j) * ∑ a : K, a ^ d i := by rw [mul_sum] _ = 0 := by rw [sum_pow_lt_card_sub_one K _ hi, mul_zero] [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm ⊢ ∑ a : K, (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * ∑ a : K, a ^ ↑d i [PROOFSTEP] rw [mul_sum] [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm ⊢ (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * ∑ a : K, a ^ ↑d i = 0 [PROOFSTEP] rw [sum_pow_lt_card_sub_one K _ hi, mul_zero] [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm ⊢ ∀ (a : K), ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i [PROOFSTEP] intro a [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm a : K ⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i [PROOFSTEP] let e' : Sum { j // j = i } { j // j ≠ i } ≃ σ := Equiv.sumCompl _ [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm a : K e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i ⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i [PROOFSTEP] letI : Unique { j // j = i } := { default := ⟨i, rfl⟩ uniq := fun ⟨j, h⟩ => Subtype.val_injective h } [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this✝ : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm a : K e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i this : Unique { j // j = i } := { toInhabited := { default := { val := i, property := (_ : i = i) } }, uniq := (_ : ∀ (x : { j // j = i }), x = default) } ⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = (∏ j : { j // j ≠ i }, x₀ j ^ ↑d ↑j) * a ^ ↑d i [PROOFSTEP] calc (∏ j : σ, (e a : σ → K) j ^ d j) = (e a : σ → K) i ^ d i * ∏ j : { j // j ≠ i }, (e a : σ → K) j ^ d j := by rw [← e'.prod_comp, Fintype.prod_sum_type, univ_unique, prod_singleton]; rfl _ = a ^ d i * ∏ j : { j // j ≠ i }, (e a : σ → K) j ^ d j := by rw [Equiv.subtypeEquivCodomain_symm_apply_eq] _ = a ^ d i * ∏ j, x₀ j ^ d j := (congr_arg _ (Fintype.prod_congr _ _ ?_)) -- see below _ = (∏ j, x₀ j ^ d j) * a ^ d i := mul_comm _ _ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this✝ : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm a : K e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i this : Unique { j // j = i } := { toInhabited := { default := { val := i, property := (_ : i = i) } }, uniq := (_ : ∀ (x : { j // j = i }), x = default) } ⊢ ∏ j : σ, ↑(↑e a) j ^ ↑d j = ↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j [PROOFSTEP] rw [← e'.prod_comp, Fintype.prod_sum_type, univ_unique, prod_singleton] [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this✝ : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm a : K e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i this : Unique { j // j = i } := { toInhabited := { default := { val := i, property := (_ : i = i) } }, uniq := (_ : ∀ (x : { j // j = i }), x = default) } ⊢ ↑(↑e a) (↑e' (Sum.inl default)) ^ ↑d (↑e' (Sum.inl default)) * ∏ a₂ : { j // j ≠ i }, ↑(↑e a) (↑e' (Sum.inr a₂)) ^ ↑d (↑e' (Sum.inr a₂)) = ↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j [PROOFSTEP] rfl [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this✝ : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm a : K e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i this : Unique { j // j = i } := { toInhabited := { default := { val := i, property := (_ : i = i) } }, uniq := (_ : ∀ (x : { j // j = i }), x = default) } ⊢ ↑(↑e a) i ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j = a ^ ↑d i * ∏ j : { j // j ≠ i }, ↑(↑e a) ↑j ^ ↑d ↑j [PROOFSTEP] rw [Equiv.subtypeEquivCodomain_symm_apply_eq] [GOAL] case intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this✝ : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm a : K e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i this : Unique { j // j = i } := { toInhabited := { default := { val := i, property := (_ : i = i) } }, uniq := (_ : ∀ (x : { j // j = i }), x = default) } ⊢ ∀ (a_1 : { j // j ≠ i }), ↑(↑e a) ↑a_1 ^ ↑d ↑a_1 = x₀ a_1 ^ ↑d ↑a_1 [PROOFSTEP] rintro ⟨j, hj⟩ [GOAL] case intro.mk K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this✝ : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm a : K e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i this : Unique { j // j = i } := { toInhabited := { default := { val := i, property := (_ : i = i) } }, uniq := (_ : ∀ (x : { j // j = i }), x = default) } j : σ hj : j ≠ i ⊢ ↑(↑e a) ↑{ val := j, property := hj } ^ ↑d ↑{ val := j, property := hj } = x₀ { val := j, property := hj } ^ ↑d ↑{ val := j, property := hj } [PROOFSTEP] show (e a : σ → K) j ^ d j = x₀ ⟨j, hj⟩ ^ d j [GOAL] case intro.mk K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝³ : Fintype K inst✝² : Field K inst✝¹ : Fintype σ inst✝ : DecidableEq σ f : MvPolynomial σ K h : totalDegree f < (q - 1) * Fintype.card σ this✝ : DecidableEq K d : σ →₀ ℕ hd : d ∈ support f i : σ hi : ↑d i < q - 1 x₀ : { j // j ≠ i } → K e : K ≃ { x // x ∘ Subtype.val = x₀ } := (Equiv.subtypeEquivCodomain x₀).symm a : K e' : { j // j = i } ⊕ { j // j ≠ i } ≃ σ := Equiv.sumCompl fun j => j = i this : Unique { j // j = i } := { toInhabited := { default := { val := i, property := (_ : i = i) } }, uniq := (_ : ∀ (x : { j // j = i }), x = default) } j : σ hj : j ≠ i ⊢ ↑(↑e a) j ^ ↑d j = x₀ { val := j, property := hj } ^ ↑d j [PROOFSTEP] rw [Equiv.subtypeEquivCodomain_symm_apply_ne] [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ ⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 } [PROOFSTEP] have hq : 0 < q - 1 := by rw [← Fintype.card_units, Fintype.card_pos_iff]; exact ⟨1⟩ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ ⊢ 0 < q - 1 [PROOFSTEP] rw [← Fintype.card_units, Fintype.card_pos_iff] [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ ⊢ Nonempty Kˣ [PROOFSTEP] exact ⟨1⟩ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 ⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 } [PROOFSTEP] let S : Finset (σ → K) := {x ∈ univ | ∀ i ∈ s, eval x (f i) = 0}.toFinset [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} ⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 } [PROOFSTEP] have hS : ∀ x : σ → K, x ∈ S ↔ ∀ i : ι, i ∈ s → eval x (f i) = 0 := by intro x simp only [Set.toFinset_setOf, mem_univ, true_and, mem_filter] /- The polynomial `F = ∏ i in s, (1 - (f i)^(q - 1))` has the nice property that it takes the value `1` on elements of `{x : σ → K // ∀ i ∈ s, (f i).eval x = 0}` while it is `0` outside that locus. Hence the sum of its values is equal to the cardinality of `{x : σ → K // ∀ i ∈ s, (f i).eval x = 0}` modulo `p`. -/ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} ⊢ ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 [PROOFSTEP] intro x [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} x : σ → K ⊢ x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 [PROOFSTEP] simp only [Set.toFinset_setOf, mem_univ, true_and, mem_filter] /- The polynomial `F = ∏ i in s, (1 - (f i)^(q - 1))` has the nice property that it takes the value `1` on elements of `{x : σ → K // ∀ i ∈ s, (f i).eval x = 0}` while it is `0` outside that locus. Hence the sum of its values is equal to the cardinality of `{x : σ → K // ∀ i ∈ s, (f i).eval x = 0}` modulo `p`. -/ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 ⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 } [PROOFSTEP] let F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) ⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 } [PROOFSTEP] have hF : ∀ x, eval x F = if x ∈ S then 1 else 0 := by intro x calc eval x F = ∏ i in s, eval x (1 - f i ^ (q - 1)) := eval_prod s _ x _ = if x ∈ S then 1 else 0 := ?_ simp only [(eval x).map_sub, (eval x).map_pow, (eval x).map_one] split_ifs with hx · apply Finset.prod_eq_one intro i hi rw [hS] at hx rw [hx i hi, zero_pow hq, sub_zero] · obtain ⟨i, hi, hx⟩ : ∃ i : ι, i ∈ s ∧ eval x (f i) ≠ 0 := by simpa only [hS, not_forall, not_imp] using hx apply Finset.prod_eq_zero hi rw [pow_card_sub_one_eq_one (eval x (f i)) hx, sub_self] -- In particular, we can now show: [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) ⊢ ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 [PROOFSTEP] intro x [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K ⊢ ↑(eval x) F = if x ∈ S then 1 else 0 [PROOFSTEP] calc eval x F = ∏ i in s, eval x (1 - f i ^ (q - 1)) := eval_prod s _ x _ = if x ∈ S then 1 else 0 := ?_ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K ⊢ ∏ i in s, ↑(eval x) (1 - f i ^ (q - 1)) = if x ∈ S then 1 else 0 [PROOFSTEP] simp only [(eval x).map_sub, (eval x).map_pow, (eval x).map_one] [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K ⊢ ∏ x_1 in s, (1 - ↑(eval x) (f x_1) ^ (q - 1)) = if x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} then 1 else 0 [PROOFSTEP] split_ifs with hx [GOAL] case pos K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K hx : x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} ⊢ ∏ x_1 in s, (1 - ↑(eval x) (f x_1) ^ (q - 1)) = 1 [PROOFSTEP] apply Finset.prod_eq_one [GOAL] case pos.h K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K hx : x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} ⊢ ∀ (x_1 : ι), x_1 ∈ s → 1 - ↑(eval x) (f x_1) ^ (q - 1) = 1 [PROOFSTEP] intro i hi [GOAL] case pos.h K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K hx : x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} i : ι hi : i ∈ s ⊢ 1 - ↑(eval x) (f i) ^ (q - 1) = 1 [PROOFSTEP] rw [hS] at hx [GOAL] case pos.h K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K hx : ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 i : ι hi : i ∈ s ⊢ 1 - ↑(eval x) (f i) ^ (q - 1) = 1 [PROOFSTEP] rw [hx i hi, zero_pow hq, sub_zero] [GOAL] case neg K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K hx : ¬x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} ⊢ ∏ x_1 in s, (1 - ↑(eval x) (f x_1) ^ (q - 1)) = 0 [PROOFSTEP] obtain ⟨i, hi, hx⟩ : ∃ i : ι, i ∈ s ∧ eval x (f i) ≠ 0 := by simpa only [hS, not_forall, not_imp] using hx [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K hx : ¬x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} ⊢ ∃ i, i ∈ s ∧ ↑(eval x) (f i) ≠ 0 [PROOFSTEP] simpa only [hS, not_forall, not_imp] using hx [GOAL] case neg.intro.intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K hx✝ : ¬x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} i : ι hi : i ∈ s hx : ↑(eval x) (f i) ≠ 0 ⊢ ∏ x_1 in s, (1 - ↑(eval x) (f x_1) ^ (q - 1)) = 0 [PROOFSTEP] apply Finset.prod_eq_zero hi [GOAL] case neg.intro.intro K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) x : σ → K hx✝ : ¬x ∈ Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} i : ι hi : i ∈ s hx : ↑(eval x) (f i) ≠ 0 ⊢ 1 - ↑(eval x) (f i) ^ (q - 1) = 0 [PROOFSTEP] rw [pow_card_sub_one_eq_one (eval x (f i)) hx, sub_self] -- In particular, we can now show: [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 ⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 } [PROOFSTEP] have key : ∑ x, eval x F = Fintype.card { x : σ → K // ∀ i ∈ s, eval x (f i) = 0 } [GOAL] case key K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 ⊢ ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) ⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 } [PROOFSTEP] rw [Fintype.card_of_subtype S hS, card_eq_sum_ones, Nat.cast_sum, Nat.cast_one, ← Fintype.sum_extend_by_zero S, sum_congr rfl fun x _ => hF x] -- With these preparations under our belt, we will approach the main goal. [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) ⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 } [PROOFSTEP] show p ∣ Fintype.card { x // ∀ i : ι, i ∈ s → eval x (f i) = 0 } [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) ⊢ p ∣ Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 } [PROOFSTEP] rw [← CharP.cast_eq_zero_iff K, ← key] [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) ⊢ ∑ x : σ → K, ↑(eval x) F = 0 [PROOFSTEP] show (∑ x, eval x F) = 0 -- We are now ready to apply the main machine, proven before. [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) ⊢ ∑ x : σ → K, ↑(eval x) F = 0 [PROOFSTEP] apply F.sum_eval_eq_zero [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) ⊢ totalDegree F < (q - 1) * Fintype.card σ [PROOFSTEP] show F.totalDegree < (q - 1) * Fintype.card σ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) ⊢ totalDegree F < (q - 1) * Fintype.card σ [PROOFSTEP] calc F.totalDegree ≤ ∑ i in s, (1 - f i ^ (q - 1)).totalDegree := totalDegree_finset_prod s _ _ ≤ ∑ i in s, (q - 1) * (f i).totalDegree := (sum_le_sum fun i _ => ?_) -- see ↓ _ = (q - 1) * ∑ i in s, (f i).totalDegree := mul_sum.symm _ < (q - 1) * Fintype.card σ := by rwa [mul_lt_mul_left hq] -- Now we prove the remaining step from the preceding calculation [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) ⊢ (q - 1) * ∑ i in s, totalDegree (f i) < (q - 1) * Fintype.card σ [PROOFSTEP] rwa [mul_lt_mul_left hq] -- Now we prove the remaining step from the preceding calculation [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) i : ι x✝ : i ∈ s ⊢ totalDegree (1 - f i ^ (q - 1)) ≤ (q - 1) * totalDegree (f i) [PROOFSTEP] show (1 - f i ^ (q - 1)).totalDegree ≤ (q - 1) * (f i).totalDegree [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) i : ι x✝ : i ∈ s ⊢ totalDegree (1 - f i ^ (q - 1)) ≤ (q - 1) * totalDegree (f i) [PROOFSTEP] calc (1 - f i ^ (q - 1)).totalDegree ≤ max (1 : MvPolynomial σ K).totalDegree (f i ^ (q - 1)).totalDegree := totalDegree_sub _ _ _ ≤ (f i ^ (q - 1)).totalDegree := by simp _ ≤ (q - 1) * (f i).totalDegree := totalDegree_pow _ _ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p s : Finset ι f : ι → MvPolynomial σ K h : ∑ i in s, totalDegree (f i) < Fintype.card σ hq : 0 < q - 1 S : Finset (σ → K) := Set.toFinset {x | x ∈ univ ∧ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0} hS : ∀ (x : σ → K), x ∈ S ↔ ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 F : MvPolynomial σ K := ∏ i in s, (1 - f i ^ (q - 1)) hF : ∀ (x : σ → K), ↑(eval x) F = if x ∈ S then 1 else 0 key : ∑ x : σ → K, ↑(eval x) F = ↑(Fintype.card { x // ∀ (i : ι), i ∈ s → ↑(eval x) (f i) = 0 }) i : ι x✝ : i ∈ s ⊢ max (totalDegree 1) (totalDegree (f i ^ (q - 1))) ≤ totalDegree (f i ^ (q - 1)) [PROOFSTEP] simp [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁶ : Fintype K inst✝⁵ : Field K inst✝⁴ : Fintype σ inst✝³ : DecidableEq σ inst✝² : DecidableEq K p : ℕ inst✝¹ : CharP K p inst✝ : Fintype ι f : ι → MvPolynomial σ K h : ∑ i : ι, totalDegree (f i) < Fintype.card σ ⊢ p ∣ Fintype.card { x // ∀ (i : ι), ↑(eval x) (f i) = 0 } [PROOFSTEP] simpa using char_dvd_card_solutions_of_sum_lt p h [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p f : MvPolynomial σ K h : totalDegree f < Fintype.card σ ⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 } [PROOFSTEP] let F : Unit → MvPolynomial σ K := fun _ => f [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p f : MvPolynomial σ K h : totalDegree f < Fintype.card σ F : Unit → MvPolynomial σ K := fun x => f ⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 } [PROOFSTEP] have : (∑ i : Unit, (F i).totalDegree) < Fintype.card σ := h [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p f : MvPolynomial σ K h : totalDegree f < Fintype.card σ F : Unit → MvPolynomial σ K := fun x => f this : ∑ i : Unit, totalDegree (F i) < Fintype.card σ ⊢ p ∣ Fintype.card { x // ↑(eval x) f = 0 } [PROOFSTEP] convert char_dvd_card_solutions_of_sum_lt p this [GOAL] case h.e'_4.h.h.e'_2.h.a K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p f : MvPolynomial σ K h : totalDegree f < Fintype.card σ F : Unit → MvPolynomial σ K := fun x => f this : ∑ i : Unit, totalDegree (F i) < Fintype.card σ x✝ : σ → K ⊢ ↑(eval x✝) f = 0 ↔ ∀ (i : Unit), i ∈ univ → ↑(eval x✝) (F i) = 0 [PROOFSTEP] aesop [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p f₁ f₂ : MvPolynomial σ K h : totalDegree f₁ + totalDegree f₂ < Fintype.card σ ⊢ p ∣ Fintype.card { x // ↑(eval x) f₁ = 0 ∧ ↑(eval x) f₂ = 0 } [PROOFSTEP] let F : Bool → MvPolynomial σ K := fun b => cond b f₂ f₁ [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p f₁ f₂ : MvPolynomial σ K h : totalDegree f₁ + totalDegree f₂ < Fintype.card σ F : Bool → MvPolynomial σ K := fun b => bif b then f₂ else f₁ ⊢ p ∣ Fintype.card { x // ↑(eval x) f₁ = 0 ∧ ↑(eval x) f₂ = 0 } [PROOFSTEP] have : (∑ b : Bool, (F b).totalDegree) < Fintype.card σ := (add_comm _ _).trans_lt h [GOAL] K : Type u_1 σ : Type u_2 ι : Type u_3 inst✝⁵ : Fintype K inst✝⁴ : Field K inst✝³ : Fintype σ inst✝² : DecidableEq σ inst✝¹ : DecidableEq K p : ℕ inst✝ : CharP K p f₁ f₂ : MvPolynomial σ K h : totalDegree f₁ + totalDegree f₂ < Fintype.card σ F : Bool → MvPolynomial σ K := fun b => bif b then f₂ else f₁ this : ∑ b : Bool, totalDegree (F b) < Fintype.card σ ⊢ p ∣ Fintype.card { x // ↑(eval x) f₁ = 0 ∧ ↑(eval x) f₂ = 0 } [PROOFSTEP] simpa only [Bool.forall_bool] using char_dvd_card_solutions_of_fintype_sum_lt p this
{"mathlib_filename": "Mathlib.FieldTheory.ChevalleyWarning", "llama_tokens": 22756}
[GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L x : L p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } := Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x) ⊢ x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)} [PROOFSTEP] dsimp [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L x : L p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } := Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x) ⊢ x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑(Classical.indefiniteDescription (fun x_1 => ¬x_1 = 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x))) [PROOFSTEP] have h : p.1.map (algebraMap R L) ≠ 0 := by rw [Ne.def, ← Polynomial.degree_eq_bot, Polynomial.degree_map_eq_of_injective (NoZeroSMulDivisors.algebraMap_injective R L), Polynomial.degree_eq_bot] exact p.2.1 [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L x : L p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } := Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x) ⊢ Polynomial.map (algebraMap R L) ↑p ≠ 0 [PROOFSTEP] rw [Ne.def, ← Polynomial.degree_eq_bot, Polynomial.degree_map_eq_of_injective (NoZeroSMulDivisors.algebraMap_injective R L), Polynomial.degree_eq_bot] [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L x : L p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } := Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x) ⊢ ¬↑p = 0 [PROOFSTEP] exact p.2.1 [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L x : L p : { x_1 // x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0 } := Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x) h : Polynomial.map (algebraMap R L) ↑p ≠ 0 ⊢ x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑(Classical.indefiniteDescription (fun x_1 => ¬x_1 = 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x))) [PROOFSTEP] erw [Polynomial.mem_roots h, Polynomial.IsRoot, Polynomial.eval_map, ← Polynomial.aeval_def, p.2.2] [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L x y : L ⊢ (fun x => let p := Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x); { fst := ↑p, snd := { val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)}) } }) x = (fun x => let p := Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x); { fst := ↑p, snd := { val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)}) } }) y → x = y [PROOFSTEP] intro h [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L x y : L h : (fun x => let p := Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x); { fst := ↑p, snd := { val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)}) } }) x = (fun x => let p := Classical.indefiniteDescription (fun x_1 => x_1 ≠ 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x); { fst := ↑p, snd := { val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑p)}) } }) y ⊢ x = y [PROOFSTEP] simp at h [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L x y : L h : ↑(Classical.indefiniteDescription (fun x_1 => ¬x_1 = 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x)) = ↑(Classical.indefiniteDescription (fun x => ¬x = 0 ∧ ↑(Polynomial.aeval y) x = 0) (_ : _root_.IsAlgebraic R y)) ∧ HEq { val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑(Classical.indefiniteDescription (fun x_2 => x_2 ≠ 0 ∧ ↑(Polynomial.aeval x) x_2 = 0) (_ : _root_.IsAlgebraic R x)))}) } { val := y, property := (_ : y ∈ {x | x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑(Classical.indefiniteDescription (fun x => x ≠ 0 ∧ ↑(Polynomial.aeval y) x = 0) (_ : _root_.IsAlgebraic R y)))}) } ⊢ x = y [PROOFSTEP] refine' (Subtype.heq_iff_coe_eq _).1 h.2 [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L x y : L h : ↑(Classical.indefiniteDescription (fun x_1 => ¬x_1 = 0 ∧ ↑(Polynomial.aeval x) x_1 = 0) (_ : _root_.IsAlgebraic R x)) = ↑(Classical.indefiniteDescription (fun x => ¬x = 0 ∧ ↑(Polynomial.aeval y) x = 0) (_ : _root_.IsAlgebraic R y)) ∧ HEq { val := x, property := (_ : x ∈ {x_1 | x_1 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑(Classical.indefiniteDescription (fun x_2 => x_2 ≠ 0 ∧ ↑(Polynomial.aeval x) x_2 = 0) (_ : _root_.IsAlgebraic R x)))}) } { val := y, property := (_ : y ∈ {x | x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑(Classical.indefiniteDescription (fun x => x ≠ 0 ∧ ↑(Polynomial.aeval y) x = 0) (_ : _root_.IsAlgebraic R y)))}) } ⊢ ∀ (x_1 : L), x_1 ∈ {x_2 | x_2 ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑(Classical.indefiniteDescription (fun x_3 => x_3 ≠ 0 ∧ ↑(Polynomial.aeval x) x_3 = 0) (_ : _root_.IsAlgebraic R x)))} ↔ x_1 ∈ {x | x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) ↑(Classical.indefiniteDescription (fun x => x ≠ 0 ∧ ↑(Polynomial.aeval y) x = 0) (_ : _root_.IsAlgebraic R y)))} [PROOFSTEP] simp only [h.1, iff_self_iff, forall_true_iff] [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L ⊢ #((p : R[X]) × { x // x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) p) }) = sum fun p => #↑{x | x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) p)} [PROOFSTEP] rw [← mk_sigma] [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L ⊢ #((p : R[X]) × { x // x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) p) }) = #((i : R[X]) × ↑{x | x ∈ Polynomial.roots (Polynomial.map (algebraMap R L) i)}) [PROOFSTEP] rfl [GOAL] R L : Type u inst✝⁴ : CommRing R inst✝³ : CommRing L inst✝² : IsDomain L inst✝¹ : Algebra R L inst✝ : NoZeroSMulDivisors R L halg : IsAlgebraic R L ⊢ max (max (max #R ℵ₀) ℵ₀) ℵ₀ = max #R ℵ₀ [PROOFSTEP] simp only [max_assoc, max_comm ℵ₀, max_left_comm ℵ₀, max_self] [GOAL] R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁵ : CommRing R inst✝⁴ : Field K inst✝³ : Algebra R K inst✝² : Field L inst✝¹ : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v inst✝ : IsAlgClosed K hv : IsTranscendenceBasis R v this : Nontrivial R := RingHom.domain_nontrivial (algebraMap R K) ⊢ IsAlgClosed K [PROOFSTEP] infer_instance [GOAL] R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w ⊢ K ≃+* L [PROOFSTEP] letI := isAlgClosure_of_transcendence_basis v hv [GOAL] R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv ⊢ K ≃+* L [PROOFSTEP] letI := isAlgClosure_of_transcendence_basis w hw [GOAL] R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw ⊢ K ≃+* L [PROOFSTEP] have e : Algebra.adjoin R (Set.range v) ≃+* Algebra.adjoin R (Set.range w) [GOAL] case e R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw ⊢ { x // x ∈ Algebra.adjoin R (Set.range v) } ≃+* { x // x ∈ Algebra.adjoin R (Set.range w) } [PROOFSTEP] refine' hv.1.aevalEquiv.symm.toRingEquiv.trans _ [GOAL] case e R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw ⊢ MvPolynomial ι R ≃+* { x // x ∈ Algebra.adjoin R (Set.range w) } [PROOFSTEP] refine' (AlgEquiv.ofAlgHom (MvPolynomial.rename e) (MvPolynomial.rename e.symm) _ _).toRingEquiv.trans _ [GOAL] case e.refine'_1 R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw ⊢ AlgHom.comp (MvPolynomial.rename ↑e) (MvPolynomial.rename ↑e.symm) = AlgHom.id R (MvPolynomial κ R) [PROOFSTEP] ext [GOAL] case e.refine'_1.hf.a R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw i✝ : κ m✝ : κ →₀ ℕ ⊢ MvPolynomial.coeff m✝ (↑(AlgHom.comp (MvPolynomial.rename ↑e) (MvPolynomial.rename ↑e.symm)) (MvPolynomial.X i✝)) = MvPolynomial.coeff m✝ (↑(AlgHom.id R (MvPolynomial κ R)) (MvPolynomial.X i✝)) [PROOFSTEP] simp [GOAL] case e.refine'_2 R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw ⊢ AlgHom.comp (MvPolynomial.rename ↑e.symm) (MvPolynomial.rename ↑e) = AlgHom.id R (MvPolynomial ι R) [PROOFSTEP] ext [GOAL] case e.refine'_2.hf.a R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw i✝ : ι m✝ : ι →₀ ℕ ⊢ MvPolynomial.coeff m✝ (↑(AlgHom.comp (MvPolynomial.rename ↑e.symm) (MvPolynomial.rename ↑e)) (MvPolynomial.X i✝)) = MvPolynomial.coeff m✝ (↑(AlgHom.id R (MvPolynomial ι R)) (MvPolynomial.X i✝)) [PROOFSTEP] simp [GOAL] case e.refine'_3 R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw ⊢ MvPolynomial κ R ≃+* { x // x ∈ Algebra.adjoin R (Set.range w) } [PROOFSTEP] exact hw.1.aevalEquiv.toRingEquiv [GOAL] R : Type u_1 L : Type u_2 K : Type u_3 inst✝⁶ : CommRing R inst✝⁵ : Field K inst✝⁴ : Algebra R K inst✝³ : Field L inst✝² : Algebra R L ι : Type u_4 v : ι → K κ : Type u_5 w : κ → L hv✝ : AlgebraicIndependent R v hw✝ : AlgebraicIndependent R w inst✝¹ : IsAlgClosed K inst✝ : IsAlgClosed L e✝ : ι ≃ κ hv : IsTranscendenceBasis R v hw : IsTranscendenceBasis R w this✝ : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range v) } K := isAlgClosure_of_transcendence_basis v hv this : IsAlgClosure { x // x ∈ Algebra.adjoin R (Set.range w) } L := isAlgClosure_of_transcendence_basis w hw e : { x // x ∈ Algebra.adjoin R (Set.range v) } ≃+* { x // x ∈ Algebra.adjoin R (Set.range w) } ⊢ K ≃+* L [PROOFSTEP] exact IsAlgClosure.equivOfEquiv K L e [GOAL] R L K : Type u inst✝³ : CommRing R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsAlgClosed K ι : Type u v : ι → K hv✝ hv : IsTranscendenceBasis R v ⊢ max #{ x // x ∈ Algebra.adjoin R (Set.range v) } ℵ₀ = max #(MvPolynomial ι R) ℵ₀ [PROOFSTEP] rw [Cardinal.eq.2 ⟨hv.1.aevalEquiv.toEquiv⟩] [GOAL] R L K : Type u inst✝³ : CommRing R inst✝² : Field K inst✝¹ : Algebra R K inst✝ : IsAlgClosed K ι : Type u v : ι → K hv✝ hv : IsTranscendenceBasis R v ⊢ max (max (max #R #ι) ℵ₀) ℵ₀ = max (max #R #ι) ℵ₀ [PROOFSTEP] simp [max_assoc] [GOAL] R L K : Type u inst✝⁴ : CommRing R inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsAlgClosed K ι : Type u v : ι → K hv✝ : IsTranscendenceBasis R v inst✝ : Nontrivial R hv : IsTranscendenceBasis R v hR : #R ≤ ℵ₀ hK : ℵ₀ < #K this : ℵ₀ ≤ #ι ⊢ max (max #R #ι) ℵ₀ = #ι [PROOFSTEP] rw [max_eq_left, max_eq_right] [GOAL] R L K : Type u inst✝⁴ : CommRing R inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsAlgClosed K ι : Type u v : ι → K hv✝ : IsTranscendenceBasis R v inst✝ : Nontrivial R hv : IsTranscendenceBasis R v hR : #R ≤ ℵ₀ hK : ℵ₀ < #K this : ℵ₀ ≤ #ι ⊢ #R ≤ #ι [PROOFSTEP] exact le_trans hR this [GOAL] R L K : Type u inst✝⁴ : CommRing R inst✝³ : Field K inst✝² : Algebra R K inst✝¹ : IsAlgClosed K ι : Type u v : ι → K hv✝ : IsTranscendenceBasis R v inst✝ : Nontrivial R hv : IsTranscendenceBasis R v hR : #R ≤ ℵ₀ hK : ℵ₀ < #K this : ℵ₀ ≤ #ι ⊢ ℵ₀ ≤ max #R #ι [PROOFSTEP] exact le_max_of_le_right this [GOAL] K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L inst✝¹ : CharZero K inst✝ : CharZero L hK : ℵ₀ < #K hKL : #K = #L ⊢ Nonempty (K ≃+* L) [PROOFSTEP] cases' exists_isTranscendenceBasis ℤ (show Function.Injective (algebraMap ℤ K) from Int.cast_injective) with s hs [GOAL] case intro K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L inst✝¹ : CharZero K inst✝ : CharZero L hK : ℵ₀ < #K hKL : #K = #L s : Set K hs : IsTranscendenceBasis ℤ Subtype.val ⊢ Nonempty (K ≃+* L) [PROOFSTEP] cases' exists_isTranscendenceBasis ℤ (show Function.Injective (algebraMap ℤ L) from Int.cast_injective) with t ht [GOAL] case intro.intro K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L inst✝¹ : CharZero K inst✝ : CharZero L hK : ℵ₀ < #K hKL : #K = #L s : Set K hs : IsTranscendenceBasis ℤ Subtype.val t : Set L ht : IsTranscendenceBasis ℤ Subtype.val ⊢ Nonempty (K ≃+* L) [PROOFSTEP] have : #s = #t := by rw [← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ hs (le_of_eq mk_int) hK, ← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ ht (le_of_eq mk_int), hKL] rwa [← hKL] [GOAL] K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L inst✝¹ : CharZero K inst✝ : CharZero L hK : ℵ₀ < #K hKL : #K = #L s : Set K hs : IsTranscendenceBasis ℤ Subtype.val t : Set L ht : IsTranscendenceBasis ℤ Subtype.val ⊢ #↑s = #↑t [PROOFSTEP] rw [← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ hs (le_of_eq mk_int) hK, ← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ ht (le_of_eq mk_int), hKL] [GOAL] K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L inst✝¹ : CharZero K inst✝ : CharZero L hK : ℵ₀ < #K hKL : #K = #L s : Set K hs : IsTranscendenceBasis ℤ Subtype.val t : Set L ht : IsTranscendenceBasis ℤ Subtype.val ⊢ ℵ₀ < #L [PROOFSTEP] rwa [← hKL] [GOAL] case intro.intro K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L inst✝¹ : CharZero K inst✝ : CharZero L hK : ℵ₀ < #K hKL : #K = #L s : Set K hs : IsTranscendenceBasis ℤ Subtype.val t : Set L ht : IsTranscendenceBasis ℤ Subtype.val this : #↑s = #↑t ⊢ Nonempty (K ≃+* L) [PROOFSTEP] cases' Cardinal.eq.1 this with e [GOAL] case intro.intro.intro K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L inst✝¹ : CharZero K inst✝ : CharZero L hK : ℵ₀ < #K hKL : #K = #L s : Set K hs : IsTranscendenceBasis ℤ Subtype.val t : Set L ht : IsTranscendenceBasis ℤ Subtype.val this : #↑s = #↑t e : ↑s ≃ ↑t ⊢ Nonempty (K ≃+* L) [PROOFSTEP] exact ⟨equivOfTranscendenceBasis _ _ e hs ht⟩ [GOAL] K L : Type inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : IsAlgClosed K inst✝³ : IsAlgClosed L p : ℕ inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L ⊢ Nonempty (K ≃+* L) [PROOFSTEP] letI : Algebra (ZMod p) K := ZMod.algebra _ _ [GOAL] K L : Type inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : IsAlgClosed K inst✝³ : IsAlgClosed L p : ℕ inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L this : Algebra (ZMod p) K := ZMod.algebra K p ⊢ Nonempty (K ≃+* L) [PROOFSTEP] letI : Algebra (ZMod p) L := ZMod.algebra _ _ [GOAL] K L : Type inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : IsAlgClosed K inst✝³ : IsAlgClosed L p : ℕ inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L this✝ : Algebra (ZMod p) K := ZMod.algebra K p this : Algebra (ZMod p) L := ZMod.algebra L p ⊢ Nonempty (K ≃+* L) [PROOFSTEP] cases' exists_isTranscendenceBasis (ZMod p) (show Function.Injective (algebraMap (ZMod p) K) from RingHom.injective _) with s hs [GOAL] case intro K L : Type inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : IsAlgClosed K inst✝³ : IsAlgClosed L p : ℕ inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L this✝ : Algebra (ZMod p) K := ZMod.algebra K p this : Algebra (ZMod p) L := ZMod.algebra L p s : Set K hs : IsTranscendenceBasis (ZMod p) Subtype.val ⊢ Nonempty (K ≃+* L) [PROOFSTEP] cases' exists_isTranscendenceBasis (ZMod p) (show Function.Injective (algebraMap (ZMod p) L) from RingHom.injective _) with t ht [GOAL] case intro.intro K L : Type inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : IsAlgClosed K inst✝³ : IsAlgClosed L p : ℕ inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L this✝ : Algebra (ZMod p) K := ZMod.algebra K p this : Algebra (ZMod p) L := ZMod.algebra L p s : Set K hs : IsTranscendenceBasis (ZMod p) Subtype.val t : Set L ht : IsTranscendenceBasis (ZMod p) Subtype.val ⊢ Nonempty (K ≃+* L) [PROOFSTEP] have : #s = #t := by rw [← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ hs (lt_aleph0_of_finite (ZMod p)).le hK, ← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ ht (lt_aleph0_of_finite (ZMod p)).le, hKL] rwa [← hKL] [GOAL] K L : Type inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : IsAlgClosed K inst✝³ : IsAlgClosed L p : ℕ inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L this✝ : Algebra (ZMod p) K := ZMod.algebra K p this : Algebra (ZMod p) L := ZMod.algebra L p s : Set K hs : IsTranscendenceBasis (ZMod p) Subtype.val t : Set L ht : IsTranscendenceBasis (ZMod p) Subtype.val ⊢ #↑s = #↑t [PROOFSTEP] rw [← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ hs (lt_aleph0_of_finite (ZMod p)).le hK, ← cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt _ ht (lt_aleph0_of_finite (ZMod p)).le, hKL] [GOAL] K L : Type inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : IsAlgClosed K inst✝³ : IsAlgClosed L p : ℕ inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L this✝ : Algebra (ZMod p) K := ZMod.algebra K p this : Algebra (ZMod p) L := ZMod.algebra L p s : Set K hs : IsTranscendenceBasis (ZMod p) Subtype.val t : Set L ht : IsTranscendenceBasis (ZMod p) Subtype.val ⊢ ℵ₀ < #L [PROOFSTEP] rwa [← hKL] [GOAL] case intro.intro K L : Type inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : IsAlgClosed K inst✝³ : IsAlgClosed L p : ℕ inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L this✝¹ : Algebra (ZMod p) K := ZMod.algebra K p this✝ : Algebra (ZMod p) L := ZMod.algebra L p s : Set K hs : IsTranscendenceBasis (ZMod p) Subtype.val t : Set L ht : IsTranscendenceBasis (ZMod p) Subtype.val this : #↑s = #↑t ⊢ Nonempty (K ≃+* L) [PROOFSTEP] cases' Cardinal.eq.1 this with e [GOAL] case intro.intro.intro K L : Type inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : IsAlgClosed K inst✝³ : IsAlgClosed L p : ℕ inst✝² : Fact (Nat.Prime p) inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L this✝¹ : Algebra (ZMod p) K := ZMod.algebra K p this✝ : Algebra (ZMod p) L := ZMod.algebra L p s : Set K hs : IsTranscendenceBasis (ZMod p) Subtype.val t : Set L ht : IsTranscendenceBasis (ZMod p) Subtype.val this : #↑s = #↑t e : ↑s ≃ ↑t ⊢ Nonempty (K ≃+* L) [PROOFSTEP] exact ⟨equivOfTranscendenceBasis _ _ e hs ht⟩ [GOAL] K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L p : ℕ inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L ⊢ Nonempty (K ≃+* L) [PROOFSTEP] rcases CharP.char_is_prime_or_zero K p with (hp | hp) [GOAL] case inl K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L p : ℕ inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L hp : Nat.Prime p ⊢ Nonempty (K ≃+* L) [PROOFSTEP] haveI : Fact p.Prime := ⟨hp⟩ [GOAL] case inl K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L p : ℕ inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L hp : Nat.Prime p this : Fact (Nat.Prime p) ⊢ Nonempty (K ≃+* L) [PROOFSTEP] exact ringEquivOfCardinalEqOfCharP p hK hKL [GOAL] case inr K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L p : ℕ inst✝¹ : CharP K p inst✝ : CharP L p hK : ℵ₀ < #K hKL : #K = #L hp : p = 0 ⊢ Nonempty (K ≃+* L) [PROOFSTEP] simp only [hp] at * [GOAL] case inr K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L p : ℕ hK : ℵ₀ < #K hKL : #K = #L inst✝¹ : CharP K 0 inst✝ : CharP L 0 hp : True ⊢ Nonempty (K ≃+* L) [PROOFSTEP] letI : CharZero K := CharP.charP_to_charZero K [GOAL] case inr K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L p : ℕ hK : ℵ₀ < #K hKL : #K = #L inst✝¹ : CharP K 0 inst✝ : CharP L 0 hp : True this : CharZero K := CharP.charP_to_charZero K ⊢ Nonempty (K ≃+* L) [PROOFSTEP] letI : CharZero L := CharP.charP_to_charZero L [GOAL] case inr K L : Type inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : IsAlgClosed K inst✝² : IsAlgClosed L p : ℕ hK : ℵ₀ < #K hKL : #K = #L inst✝¹ : CharP K 0 inst✝ : CharP L 0 hp : True this✝ : CharZero K := CharP.charP_to_charZero K this : CharZero L := CharP.charP_to_charZero L ⊢ Nonempty (K ≃+* L) [PROOFSTEP] exact ringEquivOfCardinalEqOfCharZero hK hKL
{"mathlib_filename": "Mathlib.FieldTheory.IsAlgClosed.Classification", "llama_tokens": 13233}
[GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R hp : p ∈ R[X]⁰ ⊢ ↑(taylor r) p ∈ R[X]⁰ [PROOFSTEP] rw [mem_nonZeroDivisors_iff] [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R hp : p ∈ R[X]⁰ ⊢ ∀ (x : (fun x => R[X]) p), x * ↑(taylor r) p = 0 → x = 0 [PROOFSTEP] intro x hx [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R hp : p ∈ R[X]⁰ x : R[X] hx : x * ↑(taylor r) p = 0 ⊢ x = 0 [PROOFSTEP] have : x = taylor (r - r) x := by simp [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R hp : p ∈ R[X]⁰ x : R[X] hx : x * ↑(taylor r) p = 0 ⊢ x = ↑(taylor (r - r)) x [PROOFSTEP] simp [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R hp : p ∈ R[X]⁰ x : R[X] hx : x * ↑(taylor r) p = 0 this : x = ↑(taylor (r - r)) x ⊢ x = 0 [PROOFSTEP] rwa [this, sub_eq_add_neg, ← taylor_taylor, ← taylor_mul, LinearMap.map_eq_zero_iff _ (taylor_injective _), mul_right_mem_nonZeroDivisors_eq_zero_iff hp, LinearMap.map_eq_zero_iff _ (taylor_injective _)] at hx [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R ⊢ R[X]⁰ ≤ Submonoid.comap { toMonoidHom := { toOneHom := { toFun := ↑(taylor r), map_one' := (_ : ↑(taylor r) 1 = ↑Polynomial.C 1) }, map_mul' := (_ : ∀ (p q : R[X]), ↑(taylor r) (p * q) = ↑(taylor r) p * ↑(taylor r) q) }, map_zero' := (_ : ↑(taylor r) 0 = 0), map_add' := (_ : ∀ (x y : R[X]), ↑(taylor r) (x + y) = ↑(taylor r) x + ↑(taylor r) y) } R[X]⁰ [PROOFSTEP] exact taylor_mem_nonZeroDivisors r [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R ⊢ ↑(laurentAux r) (↑(algebraMap R[X] (RatFunc R)) p) = ↑(algebraMap ((fun x => R[X]) p) (RatFunc R)) (↑(taylor r) p) [PROOFSTEP] rw [← mk_one, ← mk_one, mk_eq_div, laurentAux_div, mk_eq_div, taylor_one, map_one, map_one, map_one] [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R ⊢ ↑(laurent r) X = X + ↑C r [PROOFSTEP] rw [← algebraMap_X, laurent_algebraMap, taylor_X, _root_.map_add, algebraMap_C] [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R x : R ⊢ ↑(laurent r) (↑C x) = ↑C x [PROOFSTEP] rw [← algebraMap_C, laurent_algebraMap, taylor_C] [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R ⊢ ↑(laurent 0) f = f [PROOFSTEP] induction f using RatFunc.induction_on [GOAL] case f R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R p✝ q✝ : R[X] hq✝ : q✝ ≠ 0 ⊢ ↑(laurent 0) (↑(algebraMap R[X] (RatFunc R)) p✝ / ↑(algebraMap R[X] (RatFunc R)) q✝) = ↑(algebraMap R[X] (RatFunc R)) p✝ / ↑(algebraMap R[X] (RatFunc R)) q✝ [PROOFSTEP] simp [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R ⊢ ↑(laurent r) (↑(laurent s) f) = ↑(laurent (r + s)) f [PROOFSTEP] induction f using RatFunc.induction_on [GOAL] case f R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f : RatFunc R p✝ q✝ : R[X] hq✝ : q✝ ≠ 0 ⊢ ↑(laurent r) (↑(laurent s) (↑(algebraMap R[X] (RatFunc R)) p✝ / ↑(algebraMap R[X] (RatFunc R)) q✝)) = ↑(laurent (r + s)) (↑(algebraMap R[X] (RatFunc R)) p✝ / ↑(algebraMap R[X] (RatFunc R)) q✝) [PROOFSTEP] simp_rw [laurent_div, taylor_taylor] [GOAL] R : Type u inst✝ : CommRing R hdomain : IsDomain R r s : R p q : R[X] f x✝¹ x✝ : RatFunc R h : ↑(laurent r) x✝¹ = ↑(laurent r) x✝ ⊢ x✝¹ = x✝ [PROOFSTEP] simpa [laurent_laurent] using congr_arg (laurent (-r)) h
{"mathlib_filename": "Mathlib.FieldTheory.Laurent", "llama_tokens": 1931}
[GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L ⊢ fixingSubgroup ⊥ = ⊤ [PROOFSTEP] ext f [GOAL] case h K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L f : L ≃ₐ[K] L ⊢ f ∈ fixingSubgroup ⊥ ↔ f ∈ ⊤ [PROOFSTEP] refine' ⟨fun _ => Subgroup.mem_top _, fun _ => _⟩ [GOAL] case h K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L f : L ≃ₐ[K] L x✝ : f ∈ ⊤ ⊢ f ∈ fixingSubgroup ⊥ [PROOFSTEP] rintro ⟨x, hx : x ∈ (⊥ : IntermediateField K L)⟩ [GOAL] case h.mk K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L f : L ≃ₐ[K] L x✝ : f ∈ ⊤ x : L hx : x ∈ ⊥ ⊢ f • ↑{ val := x, property := hx } = ↑{ val := x, property := hx } [PROOFSTEP] rw [IntermediateField.mem_bot] at hx [GOAL] case h.mk K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L f : L ≃ₐ[K] L x✝ : f ∈ ⊤ x : L hx✝ : x ∈ ⊥ hx : x ∈ Set.range ↑(algebraMap K L) ⊢ f • ↑{ val := x, property := hx✝ } = ↑{ val := x, property := hx✝ } [PROOFSTEP] rcases hx with ⟨y, rfl⟩ [GOAL] case h.mk.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L f : L ≃ₐ[K] L x✝ : f ∈ ⊤ y : K hx : ↑(algebraMap K L) y ∈ ⊥ ⊢ f • ↑{ val := ↑(algebraMap K L) y, property := hx } = ↑{ val := ↑(algebraMap K L) y, property := hx } [PROOFSTEP] exact f.commutes y [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L E1 E2 : IntermediateField K L h12 : E1 ≤ E2 ⊢ fixingSubgroup E2 ≤ fixingSubgroup E1 [PROOFSTEP] rintro σ hσ ⟨x, hx⟩ [GOAL] case mk K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L E1 E2 : IntermediateField K L h12 : E1 ≤ E2 σ : L ≃ₐ[K] L hσ : σ ∈ fixingSubgroup E2 x : L hx : x ∈ ↑E1 ⊢ σ • ↑{ val := x, property := hx } = ↑{ val := x, property := hx } [PROOFSTEP] exact hσ ⟨x, h12 hx⟩ [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L ⊢ ∀ {x y : Set (L ≃ₐ[K] L)}, x ∈ (fun g => g.carrier) '' fixedByFinite K L → y ∈ (fun g => g.carrier) '' fixedByFinite K L → ∃ z, z ∈ (fun g => g.carrier) '' fixedByFinite K L ∧ z ⊆ x ∩ y [PROOFSTEP] rintro X Y ⟨H1, ⟨E1, h_E1, rfl⟩, rfl⟩ ⟨H2, ⟨E2, h_E2, rfl⟩, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L E1 : IntermediateField K L h_E1 : E1 ∈ finiteExts K L E2 : IntermediateField K L h_E2 : E2 ∈ finiteExts K L ⊢ ∃ z, z ∈ (fun g => g.carrier) '' fixedByFinite K L ∧ z ⊆ (fun g => g.carrier) (IntermediateField.fixingSubgroup E1) ∩ (fun g => g.carrier) (IntermediateField.fixingSubgroup E2) [PROOFSTEP] use(IntermediateField.fixingSubgroup (E1 ⊔ E2)).carrier [GOAL] case h K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L E1 : IntermediateField K L h_E1 : E1 ∈ finiteExts K L E2 : IntermediateField K L h_E2 : E2 ∈ finiteExts K L ⊢ (IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ∈ (fun g => g.carrier) '' fixedByFinite K L ∧ (IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ⊆ (fun g => g.carrier) (IntermediateField.fixingSubgroup E1) ∩ (fun g => g.carrier) (IntermediateField.fixingSubgroup E2) [PROOFSTEP] refine' ⟨⟨_, ⟨_, finiteDimensional_sup E1 E2 h_E1 h_E2, rfl⟩, rfl⟩, _⟩ [GOAL] case h K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L E1 : IntermediateField K L h_E1 : E1 ∈ finiteExts K L E2 : IntermediateField K L h_E2 : E2 ∈ finiteExts K L ⊢ (IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ⊆ (fun g => g.carrier) (IntermediateField.fixingSubgroup E1) ∩ (fun g => g.carrier) (IntermediateField.fixingSubgroup E2) [PROOFSTEP] rw [Set.subset_inter_iff] [GOAL] case h K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L E1 : IntermediateField K L h_E1 : E1 ∈ finiteExts K L E2 : IntermediateField K L h_E2 : E2 ∈ finiteExts K L ⊢ (IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ⊆ (fun g => g.carrier) (IntermediateField.fixingSubgroup E1) ∧ (IntermediateField.fixingSubgroup (E1 ⊔ E2)).toSubmonoid.toSubsemigroup.carrier ⊆ (fun g => g.carrier) (IntermediateField.fixingSubgroup E2) [PROOFSTEP] exact ⟨IntermediateField.fixingSubgroup.antimono le_sup_left, IntermediateField.fixingSubgroup.antimono le_sup_right⟩ [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L U : Set (L ≃ₐ[K] L) hU : U ∈ (galBasis K L).sets ⊢ U * U ⊆ U [PROOFSTEP] rcases hU with ⟨H, _, rfl⟩ [GOAL] case intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L H : Subgroup (L ≃ₐ[K] L) left✝ : H ∈ fixedByFinite K L ⊢ (fun g => g.carrier) H * (fun g => g.carrier) H ⊆ (fun g => g.carrier) H [PROOFSTEP] rintro x ⟨a, b, haH, hbH, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L H : Subgroup (L ≃ₐ[K] L) left✝ : H ∈ fixedByFinite K L a b : L ≃ₐ[K] L haH : a ∈ (fun g => g.carrier) H hbH : b ∈ (fun g => g.carrier) H ⊢ (fun x x_1 => x * x_1) a b ∈ (fun g => g.carrier) H [PROOFSTEP] exact H.mul_mem haH hbH [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L U : Set (L ≃ₐ[K] L) hU : U ∈ (galBasis K L).sets ⊢ U ⊆ (fun x => x⁻¹) ⁻¹' U [PROOFSTEP] rcases hU with ⟨H, _, rfl⟩ [GOAL] case intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L H : Subgroup (L ≃ₐ[K] L) left✝ : H ∈ fixedByFinite K L ⊢ (fun g => g.carrier) H ⊆ (fun x => x⁻¹) ⁻¹' (fun g => g.carrier) H [PROOFSTEP] exact fun _ => H.inv_mem' [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L ⊢ ∀ (x₀ : L ≃ₐ[K] L) {U : Set (L ≃ₐ[K] L)}, U ∈ (galBasis K L).sets → ∃ V, V ∈ (galBasis K L).sets ∧ V ⊆ (fun x => x₀ * x * x₀⁻¹) ⁻¹' U [PROOFSTEP] rintro σ U ⟨H, ⟨E, hE, rfl⟩, rfl⟩ [GOAL] case intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L ⊢ ∃ V, V ∈ (galBasis K L).sets ∧ V ⊆ (fun x => σ * x * σ⁻¹) ⁻¹' (fun g => g.carrier) (IntermediateField.fixingSubgroup E) [PROOFSTEP] let F : IntermediateField K L := E.map σ.symm.toAlgHom [GOAL] case intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E ⊢ ∃ V, V ∈ (galBasis K L).sets ∧ V ⊆ (fun x => σ * x * σ⁻¹) ⁻¹' (fun g => g.carrier) (IntermediateField.fixingSubgroup E) [PROOFSTEP] refine' ⟨F.fixingSubgroup.carrier, ⟨⟨F.fixingSubgroup, ⟨F, _, rfl⟩, rfl⟩, fun g hg => _⟩⟩ [GOAL] case intro.intro.intro.intro.refine'_1 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E ⊢ F ∈ finiteExts K L [PROOFSTEP] have : FiniteDimensional K E := hE [GOAL] case intro.intro.intro.intro.refine'_1 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E this : FiniteDimensional K { x // x ∈ E } ⊢ F ∈ finiteExts K L [PROOFSTEP] apply im_finiteDimensional σ.symm [GOAL] case intro.intro.intro.intro.refine'_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier ⊢ g ∈ (fun x => σ * x * σ⁻¹) ⁻¹' (fun g => g.carrier) (IntermediateField.fixingSubgroup E) [PROOFSTEP] change σ * g * σ⁻¹ ∈ E.fixingSubgroup [GOAL] case intro.intro.intro.intro.refine'_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier ⊢ σ * g * σ⁻¹ ∈ IntermediateField.fixingSubgroup E [PROOFSTEP] rw [IntermediateField.mem_fixingSubgroup_iff] [GOAL] case intro.intro.intro.intro.refine'_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier ⊢ ∀ (x : L), x ∈ E → ↑(σ * g * σ⁻¹) x = x [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.intro.refine'_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E ⊢ ↑(σ * g * σ⁻¹) x = x [PROOFSTEP] change σ (g (σ⁻¹ x)) = x [GOAL] case intro.intro.intro.intro.refine'_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E ⊢ ↑σ (↑g (↑σ⁻¹ x)) = x [PROOFSTEP] have h_in_F : σ⁻¹ x ∈ F := ⟨x, hx, by dsimp; rw [← AlgEquiv.invFun_eq_symm]; rfl⟩ [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E ⊢ ↑↑↑(AlgEquiv.symm σ) x = ↑σ⁻¹ x [PROOFSTEP] dsimp [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E ⊢ ↑(AlgEquiv.symm σ) x = ↑σ⁻¹ x [PROOFSTEP] rw [← AlgEquiv.invFun_eq_symm] [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E ⊢ Equiv.invFun σ.toEquiv x = ↑σ⁻¹ x [PROOFSTEP] rfl [GOAL] case intro.intro.intro.intro.refine'_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E h_in_F : ↑σ⁻¹ x ∈ F ⊢ ↑σ (↑g (↑σ⁻¹ x)) = x [PROOFSTEP] have h_g_fix : g (σ⁻¹ x) = σ⁻¹ x := by rw [Subgroup.mem_carrier, IntermediateField.mem_fixingSubgroup_iff F g] at hg exact hg (σ⁻¹ x) h_in_F [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E h_in_F : ↑σ⁻¹ x ∈ F ⊢ ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x [PROOFSTEP] rw [Subgroup.mem_carrier, IntermediateField.mem_fixingSubgroup_iff F g] at hg [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : ∀ (x : L), x ∈ F → ↑g x = x x : L hx : x ∈ E h_in_F : ↑σ⁻¹ x ∈ F ⊢ ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x [PROOFSTEP] exact hg (σ⁻¹ x) h_in_F [GOAL] case intro.intro.intro.intro.refine'_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E h_in_F : ↑σ⁻¹ x ∈ F h_g_fix : ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x ⊢ ↑σ (↑g (↑σ⁻¹ x)) = x [PROOFSTEP] rw [h_g_fix] [GOAL] case intro.intro.intro.intro.refine'_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E h_in_F : ↑σ⁻¹ x ∈ F h_g_fix : ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x ⊢ ↑σ (↑σ⁻¹ x) = x [PROOFSTEP] change σ (σ⁻¹ x) = x [GOAL] case intro.intro.intro.intro.refine'_2 K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L σ : L ≃ₐ[K] L E : IntermediateField K L hE : E ∈ finiteExts K L F : IntermediateField K L := IntermediateField.map (↑(AlgEquiv.symm σ)) E g : L ≃ₐ[K] L hg : g ∈ (IntermediateField.fixingSubgroup F).toSubmonoid.toSubsemigroup.carrier x : L hx : x ∈ E h_in_F : ↑σ⁻¹ x ∈ F h_g_fix : ↑g (↑σ⁻¹ x) = ↑σ⁻¹ x ⊢ ↑σ (↑σ⁻¹ x) = x [PROOFSTEP] exact AlgEquiv.apply_symm_apply σ x [GOAL] K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra K L E : IntermediateField K L inst✝ : FiniteDimensional K { x // x ∈ E } ⊢ IsOpen ↑(fixingSubgroup E) [PROOFSTEP] have h_basis : E.fixingSubgroup.carrier ∈ galGroupBasis K L := ⟨E.fixingSubgroup, ⟨E, ‹_›, rfl⟩, rfl⟩ [GOAL] K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra K L E : IntermediateField K L inst✝ : FiniteDimensional K { x // x ∈ E } h_basis : (fixingSubgroup E).toSubmonoid.toSubsemigroup.carrier ∈ galGroupBasis K L ⊢ IsOpen ↑(fixingSubgroup E) [PROOFSTEP] have h_nhd := GroupFilterBasis.mem_nhds_one (galGroupBasis K L) h_basis [GOAL] K : Type u_1 L : Type u_2 inst✝³ : Field K inst✝² : Field L inst✝¹ : Algebra K L E : IntermediateField K L inst✝ : FiniteDimensional K { x // x ∈ E } h_basis : (fixingSubgroup E).toSubmonoid.toSubsemigroup.carrier ∈ galGroupBasis K L h_nhd : (fixingSubgroup E).toSubmonoid.toSubsemigroup.carrier ∈ 𝓝 1 ⊢ IsOpen ↑(fixingSubgroup E) [PROOFSTEP] exact Subgroup.isOpen_of_mem_nhds _ h_nhd [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] let φ := f⁻¹ * g [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] cases' FunLike.exists_ne hfg with x hx [GOAL] case intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] have hφx : φ x ≠ x := by apply ne_of_apply_ne f change f (f.symm (g x)) ≠ f x rw [AlgEquiv.apply_symm_apply f (g x), ne_comm] exact hx [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x ⊢ ↑φ x ≠ x [PROOFSTEP] apply ne_of_apply_ne f [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x ⊢ ↑f (↑φ x) ≠ ↑f x [PROOFSTEP] change f (f.symm (g x)) ≠ f x [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x ⊢ ↑f (↑(AlgEquiv.symm f) (↑g x)) ≠ ↑f x [PROOFSTEP] rw [AlgEquiv.apply_symm_apply f (g x), ne_comm] [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x ⊢ ↑f x ≠ ↑g x [PROOFSTEP] exact hx [GOAL] case intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] let E : IntermediateField K L := IntermediateField.adjoin K { x } [GOAL] case intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] let h_findim : FiniteDimensional K E := IntermediateField.adjoin.finiteDimensional (h_int x) [GOAL] case intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] let H := E.fixingSubgroup [GOAL] case intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] have h_basis : (H : Set (L ≃ₐ[K] L)) ∈ galGroupBasis K L := ⟨H, ⟨E, ⟨h_findim, rfl⟩⟩, rfl⟩ [GOAL] case intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] have h_nhd := GroupFilterBasis.mem_nhds_one (galGroupBasis K L) h_basis [GOAL] case intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L h_nhd : ↑H ∈ 𝓝 1 ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] rw [mem_nhds_iff] at h_nhd [GOAL] case intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L h_nhd : ∃ t, t ⊆ ↑H ∧ IsOpen t ∧ 1 ∈ t ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] rcases h_nhd with ⟨W, hWH, hW_open, hW_1⟩ [GOAL] case intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] refine' ⟨leftCoset f W, leftCoset g W, ⟨hW_open.leftCoset f, hW_open.leftCoset g, ⟨1, hW_1, mul_one _⟩, ⟨1, hW_1, mul_one _⟩, _⟩⟩ [GOAL] case intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W ⊢ Disjoint (leftCoset f W) (leftCoset g W) [PROOFSTEP] rw [Set.disjoint_left] [GOAL] case intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W ⊢ ∀ ⦃a : L ≃ₐ[K] L⦄, a ∈ leftCoset f W → ¬a ∈ leftCoset g W [PROOFSTEP] rintro σ ⟨w1, hw1, h⟩ ⟨w2, hw2, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : (fun x => f * x) w1 = (fun x => g * x) w2 ⊢ False [PROOFSTEP] rw [eq_inv_mul_iff_mul_eq.symm, ← mul_assoc, mul_inv_eq_iff_eq_mul.symm] at h [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : w1 * w2⁻¹ = f⁻¹ * g ⊢ False [PROOFSTEP] have h_in_H : w1 * w2⁻¹ ∈ H := H.mul_mem (hWH hw1) (H.inv_mem (hWH hw2)) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : w1 * w2⁻¹ = f⁻¹ * g h_in_H : w1 * w2⁻¹ ∈ H ⊢ False [PROOFSTEP] rw [h] at h_in_H [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : w1 * w2⁻¹ = f⁻¹ * g h_in_H : f⁻¹ * g ∈ H ⊢ False [PROOFSTEP] change φ ∈ E.fixingSubgroup at h_in_H [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : w1 * w2⁻¹ = f⁻¹ * g h_in_H : φ ∈ IntermediateField.fixingSubgroup E ⊢ False [PROOFSTEP] rw [IntermediateField.mem_fixingSubgroup_iff] at h_in_H [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : w1 * w2⁻¹ = f⁻¹ * g h_in_H : ∀ (x : L), x ∈ E → ↑φ x = x ⊢ False [PROOFSTEP] specialize h_in_H x [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : w1 * w2⁻¹ = f⁻¹ * g h_in_H : x ∈ E → ↑φ x = x ⊢ False [PROOFSTEP] have hxE : x ∈ E := by apply IntermediateField.subset_adjoin apply Set.mem_singleton [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : w1 * w2⁻¹ = f⁻¹ * g h_in_H : x ∈ E → ↑φ x = x ⊢ x ∈ E [PROOFSTEP] apply IntermediateField.subset_adjoin [GOAL] case a K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : w1 * w2⁻¹ = f⁻¹ * g h_in_H : x ∈ E → ↑φ x = x ⊢ x ∈ {x} [PROOFSTEP] apply Set.mem_singleton [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L f g : L ≃ₐ[K] L hfg : f ≠ g φ : L ≃ₐ[K] L := f⁻¹ * g x : L hx : ↑f x ≠ ↑g x hφx : ↑φ x ≠ x E : IntermediateField K L := K⟮x⟯ h_findim : FiniteDimensional K { x // x ∈ E } := IntermediateField.adjoin.finiteDimensional (h_int x) H : Subgroup (L ≃ₐ[K] L) := IntermediateField.fixingSubgroup E h_basis : ↑H ∈ galGroupBasis K L W : Set (L ≃ₐ[K] L) hWH : W ⊆ ↑H hW_open : IsOpen W hW_1 : 1 ∈ W w1 : L ≃ₐ[K] L hw1 : w1 ∈ W w2 : L ≃ₐ[K] L hw2 : w2 ∈ W h : w1 * w2⁻¹ = f⁻¹ * g h_in_H : x ∈ E → ↑φ x = x hxE : x ∈ E ⊢ False [PROOFSTEP] exact hφx (h_in_H hxE) [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L ⊢ IsTotallyDisconnected Set.univ [PROOFSTEP] apply isTotallyDisconnected_of_clopen_set [GOAL] case hX K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L ⊢ Pairwise fun x y => ∃ U, IsClopen U ∧ x ∈ U ∧ ¬y ∈ U [PROOFSTEP] intro σ τ h_diff [GOAL] case hX K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L σ τ : L ≃ₐ[K] L h_diff : σ ≠ τ ⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U [PROOFSTEP] have hστ : σ⁻¹ * τ ≠ 1 := by rwa [Ne.def, inv_mul_eq_one] [GOAL] K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L σ τ : L ≃ₐ[K] L h_diff : σ ≠ τ ⊢ σ⁻¹ * τ ≠ 1 [PROOFSTEP] rwa [Ne.def, inv_mul_eq_one] [GOAL] case hX K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L σ τ : L ≃ₐ[K] L h_diff : σ ≠ τ hστ : σ⁻¹ * τ ≠ 1 ⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U [PROOFSTEP] rcases FunLike.exists_ne hστ with ⟨x, hx : (σ⁻¹ * τ) x ≠ x⟩ [GOAL] case hX.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L σ τ : L ≃ₐ[K] L h_diff : σ ≠ τ hστ : σ⁻¹ * τ ≠ 1 x : L hx : ↑(σ⁻¹ * τ) x ≠ x ⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U [PROOFSTEP] let E := IntermediateField.adjoin K ({ x } : Set L) [GOAL] case hX.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L σ τ : L ≃ₐ[K] L h_diff : σ ≠ τ hστ : σ⁻¹ * τ ≠ 1 x : L hx : ↑(σ⁻¹ * τ) x ≠ x E : IntermediateField K L := K⟮x⟯ ⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U [PROOFSTEP] haveI := IntermediateField.adjoin.finiteDimensional (h_int x) [GOAL] case hX.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L σ τ : L ≃ₐ[K] L h_diff : σ ≠ τ hστ : σ⁻¹ * τ ≠ 1 x : L hx : ↑(σ⁻¹ * τ) x ≠ x E : IntermediateField K L := K⟮x⟯ this : FiniteDimensional K { x_1 // x_1 ∈ K⟮x⟯ } ⊢ ∃ U, IsClopen U ∧ σ ∈ U ∧ ¬τ ∈ U [PROOFSTEP] refine' ⟨leftCoset σ E.fixingSubgroup, ⟨E.fixingSubgroup_isOpen.leftCoset σ, E.fixingSubgroup_isClosed.leftCoset σ⟩, ⟨1, E.fixingSubgroup.one_mem', mul_one σ⟩, _⟩ [GOAL] case hX.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L σ τ : L ≃ₐ[K] L h_diff : σ ≠ τ hστ : σ⁻¹ * τ ≠ 1 x : L hx : ↑(σ⁻¹ * τ) x ≠ x E : IntermediateField K L := K⟮x⟯ this : FiniteDimensional K { x_1 // x_1 ∈ K⟮x⟯ } ⊢ ¬τ ∈ leftCoset σ ↑(IntermediateField.fixingSubgroup E) [PROOFSTEP] simp only [mem_leftCoset_iff, SetLike.mem_coe, IntermediateField.mem_fixingSubgroup_iff, not_forall] [GOAL] case hX.intro K : Type u_1 L : Type u_2 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L h_int : Algebra.IsIntegral K L σ τ : L ≃ₐ[K] L h_diff : σ ≠ τ hστ : σ⁻¹ * τ ≠ 1 x : L hx : ↑(σ⁻¹ * τ) x ≠ x E : IntermediateField K L := K⟮x⟯ this : FiniteDimensional K { x_1 // x_1 ∈ K⟮x⟯ } ⊢ ∃ x_1 x, ¬↑(σ⁻¹ * τ) x_1 = x_1 [PROOFSTEP] exact ⟨x, IntermediateField.mem_adjoin_simple_self K x, hx⟩
{"mathlib_filename": "Mathlib.FieldTheory.KrullTopology", "llama_tokens": 17411}
[GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E ⊢ ∃ α, F⟮α⟯ = ⊤ [PROOFSTEP] obtain ⟨α, hα⟩ := @IsCyclic.exists_generator (Units E) _ _ [GOAL] case intro F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α ⊢ ∃ α, F⟮α⟯ = ⊤ [PROOFSTEP] use α [GOAL] case h F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α ⊢ F⟮↑α⟯ = ⊤ [PROOFSTEP] apply eq_top_iff.mpr [GOAL] case h F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α ⊢ ⊤ ≤ F⟮↑α⟯ [PROOFSTEP] rintro x - [GOAL] case h F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α x : E ⊢ x ∈ F⟮↑α⟯ [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α x : E hx : x = 0 ⊢ x ∈ F⟮↑α⟯ [PROOFSTEP] rw [hx] [GOAL] case pos F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α x : E hx : x = 0 ⊢ 0 ∈ F⟮↑α⟯ [PROOFSTEP] exact F⟮α.val⟯.zero_mem [GOAL] case neg F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α x : E hx : ¬x = 0 ⊢ x ∈ F⟮↑α⟯ [PROOFSTEP] obtain ⟨n, hn⟩ := Set.mem_range.mp (hα (Units.mk0 x hx)) [GOAL] case neg.intro F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α x : E hx : ¬x = 0 n : ℤ hn : (fun x x_1 => x ^ x_1) α n = Units.mk0 x hx ⊢ x ∈ F⟮↑α⟯ [PROOFSTEP] simp only at hn [GOAL] case neg.intro F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α x : E hx : ¬x = 0 n : ℤ hn : α ^ n = Units.mk0 x hx ⊢ x ∈ F⟮↑α⟯ [PROOFSTEP] rw [show x = α ^ n by norm_cast; rw [hn, Units.val_mk0], Units.val_zpow_eq_zpow_val] [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α x : E hx : ¬x = 0 n : ℤ hn : α ^ n = Units.mk0 x hx ⊢ x = ↑(α ^ n) [PROOFSTEP] norm_cast [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α x : E hx : ¬x = 0 n : ℤ hn : α ^ n = Units.mk0 x hx ⊢ x = ↑(α ^ n) [PROOFSTEP] rw [hn, Units.val_mk0] [GOAL] case neg.intro F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : Finite E α : Eˣ hα : ∀ (x : Eˣ), x ∈ Subgroup.zpowers α x : E hx : ¬x = 0 n : ℤ hn : α ^ n = Units.mk0 x hx ⊢ ↑α ^ n ∈ F⟮↑α⟯ [PROOFSTEP] exact zpow_mem (mem_adjoin_simple_self F (E := E) ↑α) n [GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Infinite F E : Type u_2 inst✝ : Field E ϕ : F →+* E α β : E f g : F[X] ⊢ ∃ c, ∀ (α' : E), α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c [PROOFSTEP] let sf := (f.map ϕ).roots [GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Infinite F E : Type u_2 inst✝ : Field E ϕ : F →+* E α β : E f g : F[X] sf : Multiset E := roots (Polynomial.map ϕ f) ⊢ ∃ c, ∀ (α' : E), α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c [PROOFSTEP] let sg := (g.map ϕ).roots [GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Infinite F E : Type u_2 inst✝ : Field E ϕ : F →+* E α β : E f g : F[X] sf : Multiset E := roots (Polynomial.map ϕ f) sg : Multiset E := roots (Polynomial.map ϕ g) ⊢ ∃ c, ∀ (α' : E), α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c [PROOFSTEP] let s := (sf.bind fun α' => sg.map fun β' => -(α' - α) / (β' - β)).toFinset [GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Infinite F E : Type u_2 inst✝ : Field E ϕ : F →+* E α β : E f g : F[X] sf : Multiset E := roots (Polynomial.map ϕ f) sg : Multiset E := roots (Polynomial.map ϕ g) s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg) ⊢ ∃ c, ∀ (α' : E), α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c [PROOFSTEP] let s' := s.preimage ϕ fun x _ y _ h => ϕ.injective h [GOAL] F : Type u_1 inst✝² : Field F inst✝¹ : Infinite F E : Type u_2 inst✝ : Field E ϕ : F →+* E α β : E f g : F[X] sf : Multiset E := roots (Polynomial.map ϕ f) sg : Multiset E := roots (Polynomial.map ϕ g) s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg) s' : Finset F := Finset.preimage s ↑ϕ (_ : ∀ (x : F), x ∈ ↑ϕ ⁻¹' ↑s → ∀ (y : F), y ∈ ↑ϕ ⁻¹' ↑s → ↑ϕ x = ↑ϕ y → x = y) ⊢ ∃ c, ∀ (α' : E), α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c [PROOFSTEP] obtain ⟨c, hc⟩ := Infinite.exists_not_mem_finset s' [GOAL] case intro F : Type u_1 inst✝² : Field F inst✝¹ : Infinite F E : Type u_2 inst✝ : Field E ϕ : F →+* E α β : E f g : F[X] sf : Multiset E := roots (Polynomial.map ϕ f) sg : Multiset E := roots (Polynomial.map ϕ g) s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg) s' : Finset F := Finset.preimage s ↑ϕ (_ : ∀ (x : F), x ∈ ↑ϕ ⁻¹' ↑s → ∀ (y : F), y ∈ ↑ϕ ⁻¹' ↑s → ↑ϕ x = ↑ϕ y → x = y) c : F hc : ¬c ∈ s' ⊢ ∃ c, ∀ (α' : E), α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c [PROOFSTEP] simp_rw [Finset.mem_preimage, Multiset.mem_toFinset, Multiset.mem_bind, Multiset.mem_map] at hc [GOAL] case intro F : Type u_1 inst✝² : Field F inst✝¹ : Infinite F E : Type u_2 inst✝ : Field E ϕ : F →+* E α β : E f g : F[X] sf : Multiset E := roots (Polynomial.map ϕ f) sg : Multiset E := roots (Polynomial.map ϕ g) s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg) s' : Finset F := Finset.preimage s ↑ϕ (_ : ∀ (x : F), x ∈ ↑ϕ ⁻¹' ↑s → ∀ (y : F), y ∈ ↑ϕ ⁻¹' ↑s → ↑ϕ x = ↑ϕ y → x = y) c : F hc : ¬∃ a, a ∈ roots (Polynomial.map ϕ f) ∧ ∃ a_1, a_1 ∈ roots (Polynomial.map ϕ g) ∧ -(a - α) / (a_1 - β) = ↑ϕ c ⊢ ∃ c, ∀ (α' : E), α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c [PROOFSTEP] push_neg at hc [GOAL] case intro F : Type u_1 inst✝² : Field F inst✝¹ : Infinite F E : Type u_2 inst✝ : Field E ϕ : F →+* E α β : E f g : F[X] sf : Multiset E := roots (Polynomial.map ϕ f) sg : Multiset E := roots (Polynomial.map ϕ g) s : Finset E := Multiset.toFinset (Multiset.bind sf fun α' => Multiset.map (fun β' => -(α' - α) / (β' - β)) sg) s' : Finset F := Finset.preimage s ↑ϕ (_ : ∀ (x : F), x ∈ ↑ϕ ⁻¹' ↑s → ∀ (y : F), y ∈ ↑ϕ ⁻¹' ↑s → ↑ϕ x = ↑ϕ y → x = y) c : F hc : ∀ (a : E), a ∈ roots (Polynomial.map ϕ f) → ∀ (a_1 : E), a_1 ∈ roots (Polynomial.map ϕ g) → -(a - α) / (a_1 - β) ≠ ↑ϕ c ⊢ ∃ c, ∀ (α' : E), α' ∈ roots (Polynomial.map ϕ f) → ∀ (β' : E), β' ∈ roots (Polynomial.map ϕ g) → -(α' - α) / (β' - β) ≠ ↑ϕ c [PROOFSTEP] exact ⟨c, hc⟩ [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] have hα := IsSeparable.isIntegral F α [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] have hβ := IsSeparable.isIntegral F β [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] let f := minpoly F α [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] let g := minpoly F β [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] let ιFE := algebraMap F E [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] let ιEE' := algebraMap E (SplittingField (g.map ιFE)) [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] obtain ⟨c, hc⟩ := primitive_element_inf_aux_exists_c (ιEE'.comp ιFE) (ιEE' α) (ιEE' β) f g [GOAL] case intro F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] let γ := α + c • β [GOAL] case intro F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] suffices β_in_Fγ : β ∈ F⟮γ⟯ [GOAL] case intro F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ ∃ γ, F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] use γ [GOAL] case h F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ F⟮α, β⟯ = F⟮γ⟯ [PROOFSTEP] apply le_antisymm [GOAL] case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ F⟮α, β⟯ ≤ F⟮γ⟯ [PROOFSTEP] rw [adjoin_le_iff] [GOAL] case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ {α, β} ≤ ↑F⟮γ⟯ [PROOFSTEP] have α_in_Fγ : α ∈ F⟮γ⟯ := by rw [← add_sub_cancel α (c • β)] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ α ∈ F⟮γ⟯ [PROOFSTEP] rw [← add_sub_cancel α (c • β)] [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ α + c • β - c • β ∈ F⟮γ⟯ [PROOFSTEP] exact F⟮γ⟯.sub_mem (mem_adjoin_simple_self F γ) (F⟮γ⟯.toSubalgebra.smul_mem β_in_Fγ c) [GOAL] case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ α_in_Fγ : α ∈ F⟮γ⟯ ⊢ {α, β} ≤ ↑F⟮γ⟯ [PROOFSTEP] exact fun x hx => by -- Porting note: was `by cases hx <;> cases hx <;> cases hx <;> assumption` cases' hx with hx hx · rwa [← hx] at α_in_Fγ · cases hx; norm_cast [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ α_in_Fγ : α ∈ F⟮γ⟯ x : E hx : x ∈ {α, β} ⊢ x ∈ ↑F⟮γ⟯ [PROOFSTEP] cases' hx with hx hx [GOAL] case inl F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ α_in_Fγ : α ∈ F⟮γ⟯ x : E hx : x = α ⊢ x ∈ ↑F⟮γ⟯ [PROOFSTEP] rwa [← hx] at α_in_Fγ [GOAL] case inr F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ α_in_Fγ : α ∈ F⟮γ⟯ x : E hx : x ∈ {β} ⊢ x ∈ ↑F⟮γ⟯ [PROOFSTEP] cases hx [GOAL] case inr.refl F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ α_in_Fγ : α ∈ F⟮γ⟯ ⊢ β ∈ ↑F⟮γ⟯ [PROOFSTEP] norm_cast [GOAL] case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ F⟮γ⟯ ≤ F⟮α, β⟯ [PROOFSTEP] rw [adjoin_simple_le_iff] [GOAL] case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ ⊢ γ ∈ F⟮α, β⟯ [PROOFSTEP] have α_in_Fαβ : α ∈ F⟮α, β⟯ := subset_adjoin F { α, β } (Set.mem_insert α { β }) [GOAL] case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ α_in_Fαβ : α ∈ F⟮α, β⟯ ⊢ γ ∈ F⟮α, β⟯ [PROOFSTEP] have β_in_Fαβ : β ∈ F⟮α, β⟯ := subset_adjoin F { α, β } (Set.mem_insert_of_mem α rfl) [GOAL] case h.a F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β β_in_Fγ : β ∈ F⟮γ⟯ α_in_Fαβ : α ∈ F⟮α, β⟯ β_in_Fαβ : β ∈ F⟮α, β⟯ ⊢ γ ∈ F⟮α, β⟯ [PROOFSTEP] exact F⟮α, β⟯.add_mem α_in_Fαβ (F⟮α, β⟯.smul_mem β_in_Fαβ) [GOAL] case β_in_Fγ F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β ⊢ β ∈ F⟮γ⟯ [PROOFSTEP] let p := EuclideanDomain.gcd ((f.map (algebraMap F F⟮γ⟯)).comp (C (AdjoinSimple.gen F γ) - (C ↑c : F⟮γ⟯[X]) * X)) (g.map (algebraMap F F⟮γ⟯)) [GOAL] case β_in_Fγ F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) ⊢ β ∈ F⟮γ⟯ [PROOFSTEP] let h := EuclideanDomain.gcd ((f.map ιFE).comp (C γ - C (ιFE c) * X)) (g.map ιFE) [GOAL] case β_in_Fγ F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) ⊢ β ∈ F⟮γ⟯ [PROOFSTEP] have map_g_ne_zero : g.map ιFE ≠ 0 := map_ne_zero (minpoly.ne_zero hβ) [GOAL] case β_in_Fγ F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 ⊢ β ∈ F⟮γ⟯ [PROOFSTEP] have h_ne_zero : h ≠ 0 := mt EuclideanDomain.gcd_eq_zero_iff.mp (not_and.mpr fun _ => map_g_ne_zero) [GOAL] case β_in_Fγ F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 ⊢ β ∈ F⟮γ⟯ [PROOFSTEP] suffices p_linear : p.map (algebraMap F⟮γ⟯ E) = C h.leadingCoeff * (X - C β) [GOAL] case β_in_Fγ F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) ⊢ β ∈ F⟮γ⟯ [PROOFSTEP] have finale : β = algebraMap F⟮γ⟯ E (-p.coeff 0 / p.coeff 1) := by rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) ⊢ β = ↑(algebraMap { x // x ∈ F⟮γ⟯ } E) (-coeff p 0 / coeff p 1) [PROOFSTEP] rw [map_div₀, RingHom.map_neg, ← coeff_map, ← coeff_map, p_linear] -- Porting note: had to add `-map_add` to avoid going in the wrong direction. [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) ⊢ β = -coeff (↑C (leadingCoeff h) * (X - ↑C β)) 0 / coeff (↑C (leadingCoeff h) * (X - ↑C β)) 1 [PROOFSTEP] simp [mul_sub, coeff_C, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero), -map_add] -- Porting note: an alternative solution is: -- simp_rw [Polynomial.coeff_C_mul, Polynomial.coeff_sub, mul_sub, -- Polynomial.coeff_X_zero, Polynomial.coeff_X_one, mul_zero, mul_one, zero_sub, neg_neg, -- Polynomial.coeff_C, eq_self_iff_true, Nat.one_ne_zero, if_true, if_false, mul_zero, -- sub_zero, mul_div_cancel_left β (mt leadingCoeff_eq_zero.mp h_ne_zero)] [GOAL] case β_in_Fγ F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) finale : β = ↑(algebraMap { x // x ∈ F⟮γ⟯ } E) (-coeff p 0 / coeff p 1) ⊢ β ∈ F⟮γ⟯ [PROOFSTEP] rw [finale] [GOAL] case β_in_Fγ F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 p_linear : Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) finale : β = ↑(algebraMap { x // x ∈ F⟮γ⟯ } E) (-coeff p 0 / coeff p 1) ⊢ ↑(algebraMap { x // x ∈ F⟮γ⟯ } E) (-coeff p 0 / coeff p 1) ∈ F⟮γ⟯ [PROOFSTEP] exact Subtype.mem (-p.coeff 0 / p.coeff 1) [GOAL] case p_linear F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 ⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) [PROOFSTEP] have h_sep : h.Separable := separable_gcd_right _ (IsSeparable.separable F β).map [GOAL] case p_linear F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h ⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) [PROOFSTEP] have h_root : h.eval β = 0 := by apply eval_gcd_eq_zero · rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] · rw [eval_map, ← aeval_def, minpoly.aeval] [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h ⊢ eval β h = 0 [PROOFSTEP] apply eval_gcd_eq_zero [GOAL] case hf F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h ⊢ eval β (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) = 0 [PROOFSTEP] rw [eval_comp, eval_sub, eval_mul, eval_C, eval_C, eval_X, eval_map, ← aeval_def, ← Algebra.smul_def, add_sub_cancel, minpoly.aeval] [GOAL] case hg F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h ⊢ eval β (Polynomial.map ιFE g) = 0 [PROOFSTEP] rw [eval_map, ← aeval_def, minpoly.aeval] [GOAL] case p_linear F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 ⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) [PROOFSTEP] have h_splits : Splits ιEE' h := splits_of_splits_gcd_right ιEE' map_g_ne_zero (SplittingField.splits _) [GOAL] case p_linear F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h ⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) [PROOFSTEP] have h_roots : ∀ x ∈ (h.map ιEE').roots, x = ιEE' β := by intro x hx rw [mem_roots_map h_ne_zero] at hx specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) by_contra a apply hc apply (div_eq_iff (sub_ne_zero.mpr a)).mpr simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] ring [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h ⊢ ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β [PROOFSTEP] intro x hx [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : x ∈ roots (Polynomial.map ιEE' h) ⊢ x = ↑ιEE' β [PROOFSTEP] rw [mem_roots_map h_ne_zero] at hx [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 ⊢ x = ↑ιEE' β [PROOFSTEP] specialize hc (ιEE' γ - ιEE' (ιFE c) * x) (by have f_root := root_left_of_root_gcd hx rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root) [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 ⊢ ↑ιEE' γ - ↑ιEE' (↑ιFE c) * x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) [PROOFSTEP] have f_root := root_left_of_root_gcd hx [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 f_root : eval₂ ιEE' x (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) = 0 ⊢ ↑ιEE' γ - ↑ιEE' (↑ιFE c) * x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) [PROOFSTEP] rw [eval₂_comp, eval₂_sub, eval₂_mul, eval₂_C, eval₂_C, eval₂_X, eval₂_map] at f_root [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 f_root : eval₂ (RingHom.comp ιEE' ιFE) (↑ιEE' γ - ↑ιEE' (↑ιFE c) * x) f = 0 ⊢ ↑ιEE' γ - ↑ιEE' (↑ιFE c) * x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) [PROOFSTEP] exact (mem_roots_map (minpoly.ne_zero hα)).mpr f_root [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c ⊢ x = ↑ιEE' β [PROOFSTEP] specialize hc x (by rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] exact root_right_of_root_gcd hx) [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c ⊢ x ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) [PROOFSTEP] rw [mem_roots_map (minpoly.ne_zero hβ), ← eval₂_map] [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c ⊢ eval₂ ιEE' x (Polynomial.map ιFE (minpoly F β)) = 0 [PROOFSTEP] exact root_right_of_root_gcd hx [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c ⊢ x = ↑ιEE' β [PROOFSTEP] by_contra a [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c a : ¬x = ↑ιEE' β ⊢ False [PROOFSTEP] apply hc [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c a : ¬x = ↑ιEE' β ⊢ -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) = ↑(RingHom.comp ιEE' ιFE) c [PROOFSTEP] apply (div_eq_iff (sub_ne_zero.mpr a)).mpr [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c a : ¬x = ↑ιEE' β ⊢ -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) = ↑(RingHom.comp ιEE' ιFE) c * (x - ↑ιEE' β) [PROOFSTEP] simp only [Algebra.smul_def, RingHom.map_add, RingHom.map_mul, RingHom.comp_apply] [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h x : SplittingField (Polynomial.map ιFE g) hx : eval₂ ιEE' x h = 0 hc : -(↑ιEE' γ - ↑ιEE' (↑ιFE c) * x - ↑ιEE' α) / (x - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c a : ¬x = ↑ιEE' β ⊢ -(↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) α + ↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) (↑(algebraMap F E) c) * ↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) β - ↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) (↑(algebraMap F E) c) * x - ↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) α) = ↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) (↑(algebraMap F E) c) * (x - ↑(algebraMap E (SplittingField (Polynomial.map (algebraMap F E) (minpoly F β)))) β) [PROOFSTEP] ring [GOAL] case p_linear F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β ⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = ↑C (leadingCoeff h) * (X - ↑C β) [PROOFSTEP] rw [← eq_X_sub_C_of_separable_of_root_eq h_sep h_root h_splits h_roots] [GOAL] case p_linear F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β ⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = h [PROOFSTEP] trans EuclideanDomain.gcd (?_ : E[X]) (?_ : E[X]) [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β ⊢ Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) p = EuclideanDomain.gcd ?p_linear.p_linear_1 ?p_linear.p_linear_2 [PROOFSTEP] dsimp only [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β ⊢ Polynomial.map (algebraMap { x // x ∈ F⟮α + c • β⟯ } E) (EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮α + c • β⟯ }) (minpoly F α)) (↑C (AdjoinSimple.gen F (α + c • β)) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮α + c • β⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮α + c • β⟯ }) (minpoly F β))) = EuclideanDomain.gcd ?p_linear.p_linear_1 ?p_linear.p_linear_2 [PROOFSTEP] convert (gcd_map (algebraMap F⟮γ⟯ E)).symm [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β ⊢ EuclideanDomain.gcd (Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮α + c • β⟯ }) (minpoly F α)) (↑C (AdjoinSimple.gen F (α + c • β)) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮α + c • β⟯) } * X))) (Polynomial.map (algebraMap { x // x ∈ F⟮γ⟯ } E) (Polynomial.map (algebraMap F { x // x ∈ F⟮α + c • β⟯ }) (minpoly F β))) = h [PROOFSTEP] simp [map_comp, Polynomial.map_map, ← IsScalarTower.algebraMap_eq] [GOAL] F : Type u_1 inst✝⁴ : Field F inst✝³ : Infinite F E : Type u_2 inst✝² : Field E ϕ : F →+* E α β : E inst✝¹ : Algebra F E inst✝ : IsSeparable F E hα : IsIntegral F α hβ : IsIntegral F β f : F[X] := minpoly F α g : F[X] := minpoly F β ιFE : F →+* E := algebraMap F E ιEE' : E →+* SplittingField (Polynomial.map ιFE g) := algebraMap E (SplittingField (Polynomial.map ιFE g)) c : F hc : ∀ (α' : SplittingField (Polynomial.map ιFE g)), α' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) f) → ∀ (β' : SplittingField (Polynomial.map ιFE g)), β' ∈ roots (Polynomial.map (RingHom.comp ιEE' ιFE) g) → -(α' - ↑ιEE' α) / (β' - ↑ιEE' β) ≠ ↑(RingHom.comp ιEE' ιFE) c γ : E := α + c • β p : { x // x ∈ F⟮γ⟯ }[X] := EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) f) (↑C (AdjoinSimple.gen F γ) - ↑C { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮γ⟯) } * X)) (Polynomial.map (algebraMap F { x // x ∈ F⟮γ⟯ }) g) h : E[X] := EuclideanDomain.gcd (comp (Polynomial.map ιFE f) (↑C γ - ↑C (↑ιFE c) * X)) (Polynomial.map ιFE g) map_g_ne_zero : Polynomial.map ιFE g ≠ 0 h_ne_zero : h ≠ 0 h_sep : Separable h h_root : eval β h = 0 h_splits : Splits ιEE' h h_roots : ∀ (x : SplittingField (Polynomial.map ιFE g)), x ∈ roots (Polynomial.map ιEE' h) → x = ↑ιEE' β ⊢ EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F E) (minpoly F α)) (↑C α + ↑C (c • β) - ↑C (↑(algebraMap { x // x ∈ F⟮α + c • β⟯ } E) { val := ↑(algebraMap F E) c, property := (_ : ↑(algebraMap F E) c ∈ F⟮α + c • β⟯) }) * X)) (Polynomial.map (algebraMap F E) (minpoly F β)) = EuclideanDomain.gcd (comp (Polynomial.map (algebraMap F E) (minpoly F α)) (↑C α + ↑C (c • β) - ↑C (↑(algebraMap F E) c) * X)) (Polynomial.map (algebraMap F E) (minpoly F β)) [PROOFSTEP] congr [GOAL] F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E ⊢ ∃ α, F⟮α⟯ = ⊤ [PROOFSTEP] rcases isEmpty_or_nonempty (Fintype F) with (F_inf | ⟨⟨F_finite⟩⟩) [GOAL] case inl F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) ⊢ ∃ α, F⟮α⟯ = ⊤ [PROOFSTEP] let P : IntermediateField F E → Prop := fun K => ∃ α : E, F⟮α⟯ = K [GOAL] case inl F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K ⊢ ∃ α, F⟮α⟯ = ⊤ [PROOFSTEP] have base : P ⊥ := ⟨0, adjoin_zero⟩ [GOAL] case inl F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ ⊢ ∃ α, F⟮α⟯ = ⊤ [PROOFSTEP] have ih : ∀ (K : IntermediateField F E) (x : E), P K → P (K⟮x⟯.restrictScalars F) := by intro K β hK cases' hK with α hK rw [← hK, adjoin_simple_adjoin_simple] haveI : Infinite F := isEmpty_fintype.mp F_inf cases' primitive_element_inf_aux F α β with γ hγ exact ⟨γ, hγ.symm⟩ [GOAL] F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ ⊢ ∀ (K : IntermediateField F E) (x : E), P K → P (restrictScalars F { x // x ∈ K }⟮x⟯) [PROOFSTEP] intro K β hK [GOAL] F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β : E hK : P K ⊢ P (restrictScalars F { x // x ∈ K }⟮β⟯) [PROOFSTEP] cases' hK with α hK [GOAL] case intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β α : E hK : F⟮α⟯ = K ⊢ P (restrictScalars F { x // x ∈ K }⟮β⟯) [PROOFSTEP] rw [← hK, adjoin_simple_adjoin_simple] [GOAL] case intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β α : E hK : F⟮α⟯ = K ⊢ P F⟮α, β⟯ [PROOFSTEP] haveI : Infinite F := isEmpty_fintype.mp F_inf [GOAL] case intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β α : E hK : F⟮α⟯ = K this : Infinite F ⊢ P F⟮α, β⟯ [PROOFSTEP] cases' primitive_element_inf_aux F α β with γ hγ [GOAL] case intro.intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ K : IntermediateField F E β α : E hK : F⟮α⟯ = K this : Infinite F γ : E hγ : F⟮α, β⟯ = F⟮γ⟯ ⊢ P F⟮α, β⟯ [PROOFSTEP] exact ⟨γ, hγ.symm⟩ [GOAL] case inl F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_inf : IsEmpty (Fintype F) P : IntermediateField F E → Prop := fun K => ∃ α, F⟮α⟯ = K base : P ⊥ ih : ∀ (K : IntermediateField F E) (x : E), P K → P (restrictScalars F { x // x ∈ K }⟮x⟯) ⊢ ∃ α, F⟮α⟯ = ⊤ [PROOFSTEP] exact induction_on_adjoin P base ih ⊤ [GOAL] case inr.intro F : Type u_1 E : Type u_2 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsSeparable F E F_finite : Fintype F ⊢ ∃ α, F⟮α⟯ = ⊤ [PROOFSTEP] exact exists_primitive_element_of_finite_bot F E [GOAL] F : Type u_1 E : Type u_2 K : Type u_3 inst✝⁷ : Field F inst✝⁶ : Field E inst✝⁵ : Field K inst✝⁴ : IsAlgClosed K inst✝³ : Algebra F E inst✝² : FiniteDimensional F E inst✝¹ : IsSeparable F E inst✝ : Algebra F K ⊢ Fintype.card (E →ₐ[F] K) = finrank F E [PROOFSTEP] convert (AlgHom.card_of_powerBasis (L := K) (Field.powerBasisOfFiniteOfSeparable F E) (IsSeparable.separable _ _) (IsAlgClosed.splits_codomain _)).trans (PowerBasis.finrank _).symm
{"mathlib_filename": "Mathlib.FieldTheory.PrimitiveElement", "llama_tokens": 42191}
[GOAL] K : Type u_1 F : Type u_2 inst✝³ : Field K inst✝² : Fintype K inst✝¹ : Field F inst✝ : Algebra F K ⊢ Splits (algebraMap F K) (X ^ Fintype.card K - X) [PROOFSTEP] have h : (X ^ Fintype.card K - X : K[X]).natDegree = Fintype.card K := FiniteField.X_pow_card_sub_X_natDegree_eq K Fintype.one_lt_card [GOAL] K : Type u_1 F : Type u_2 inst✝³ : Field K inst✝² : Fintype K inst✝¹ : Field F inst✝ : Algebra F K h : natDegree (X ^ Fintype.card K - X) = Fintype.card K ⊢ Splits (algebraMap F K) (X ^ Fintype.card K - X) [PROOFSTEP] rw [← splits_id_iff_splits, splits_iff_card_roots, Polynomial.map_sub, Polynomial.map_pow, map_X, h, FiniteField.roots_X_pow_card_sub_X K, ← Finset.card_def, Finset.card_univ] [GOAL] K : Type u_1 F : Type u_2 inst✝³ : Field K inst✝² : Fintype K inst✝¹ : Field F inst✝ : Algebra F K ⊢ Algebra.adjoin F (rootSet (X ^ Fintype.card K - X) K) = ⊤ [PROOFSTEP] classical trans Algebra.adjoin F ((roots (X ^ Fintype.card K - X : K[X])).toFinset : Set K) · simp only [rootSet, Polynomial.map_pow, map_X, Polynomial.map_sub] · rw [FiniteField.roots_X_pow_card_sub_X, val_toFinset, coe_univ, Algebra.adjoin_univ] [GOAL] K : Type u_1 F : Type u_2 inst✝³ : Field K inst✝² : Fintype K inst✝¹ : Field F inst✝ : Algebra F K ⊢ Algebra.adjoin F (rootSet (X ^ Fintype.card K - X) K) = ⊤ [PROOFSTEP] trans Algebra.adjoin F ((roots (X ^ Fintype.card K - X : K[X])).toFinset : Set K) [GOAL] K : Type u_1 F : Type u_2 inst✝³ : Field K inst✝² : Fintype K inst✝¹ : Field F inst✝ : Algebra F K ⊢ Algebra.adjoin F (rootSet (X ^ Fintype.card K - X) K) = Algebra.adjoin F ↑(Multiset.toFinset (roots (X ^ Fintype.card K - X))) [PROOFSTEP] simp only [rootSet, Polynomial.map_pow, map_X, Polynomial.map_sub] [GOAL] K : Type u_1 F : Type u_2 inst✝³ : Field K inst✝² : Fintype K inst✝¹ : Field F inst✝ : Algebra F K ⊢ Algebra.adjoin F ↑(Multiset.toFinset (roots (X ^ Fintype.card K - X))) = ⊤ [PROOFSTEP] rw [FiniteField.roots_X_pow_card_sub_X, val_toFinset, coe_univ, Algebra.adjoin_univ] [GOAL] K : Type u_1 inst✝¹ : Field K p q : ℕ inst✝ : CharP K p h : p ∣ q ⊢ Separable (X ^ q - X) [PROOFSTEP] use 1, X ^ q - X - 1 [GOAL] case h K : Type u_1 inst✝¹ : Field K p q : ℕ inst✝ : CharP K p h : p ∣ q ⊢ 1 * (X ^ q - X) + (X ^ q - X - 1) * ↑derivative (X ^ q - X) = 1 [PROOFSTEP] rw [← CharP.cast_eq_zero_iff K[X] p] at h [GOAL] case h K : Type u_1 inst✝¹ : Field K p q : ℕ inst✝ : CharP K p h : ↑q = 0 ⊢ 1 * (X ^ q - X) + (X ^ q - X - 1) * ↑derivative (X ^ q - X) = 1 [PROOFSTEP] rw [derivative_sub, derivative_X_pow, derivative_X, C_eq_nat_cast, h] [GOAL] case h K : Type u_1 inst✝¹ : Field K p q : ℕ inst✝ : CharP K p h : ↑q = 0 ⊢ 1 * (X ^ q - X) + (X ^ q - X - 1) * (0 * X ^ (q - 1) - 1) = 1 [PROOFSTEP] ring [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ ⊢ CharP (ZMod p) p [PROOFSTEP] infer_instance [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ ⊢ FiniteDimensional (ZMod p) (GaloisField p n) [PROOFSTEP] dsimp only [GaloisField] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ ⊢ FiniteDimensional (ZMod p) (SplittingField (X ^ p ^ n - X)) [PROOFSTEP] infer_instance [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ ⊢ Fintype (GaloisField p n) [PROOFSTEP] dsimp only [GaloisField] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ ⊢ Fintype (SplittingField (X ^ p ^ n - X)) [PROOFSTEP] exact FiniteDimensional.fintypeOfFintype (ZMod p) (GaloisField p n) [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] set g_poly := (X ^ p ^ n - X : (ZMod p)[X]) [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] have hp : 1 < p := h_prime.out.one_lt [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] have aux : g_poly ≠ 0 := FiniteField.X_pow_card_pow_sub_X_ne_zero _ h hp [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] have key : Fintype.card (g_poly.rootSet (GaloisField p n)) = g_poly.natDegree := card_rootSet_eq_natDegree (galois_poly_separable p _ (dvd_pow (dvd_refl p) h)) (SplittingField.splits (X ^ p ^ n - X : (ZMod p)[X])) [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = natDegree g_poly ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] have nat_degree_eq : g_poly.natDegree = p ^ n := FiniteField.X_pow_card_pow_sub_X_natDegree_eq _ h hp [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = natDegree g_poly nat_degree_eq : natDegree g_poly = p ^ n ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] rw [nat_degree_eq] at key [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n nat_degree_eq : natDegree g_poly = p ^ n ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] suffices g_poly.rootSet (GaloisField p n) = Set.univ by simp_rw [this, ← Fintype.ofEquiv_card (Equiv.Set.univ _)] at key rw [@card_eq_pow_finrank (ZMod p) _ _ _ _ _ (_), ZMod.card] at key exact Nat.pow_right_injective (Nat.Prime.one_lt' p).out key [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n nat_degree_eq : natDegree g_poly = p ^ n this : rootSet g_poly (GaloisField p n) = Set.univ ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] simp_rw [this, ← Fintype.ofEquiv_card (Equiv.Set.univ _)] at key [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 nat_degree_eq : natDegree g_poly = p ^ n this : rootSet g_poly (GaloisField p n) = Set.univ key : Fintype.card (GaloisField p n) = p ^ n ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] rw [@card_eq_pow_finrank (ZMod p) _ _ _ _ _ (_), ZMod.card] at key [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 nat_degree_eq : natDegree g_poly = p ^ n this : rootSet g_poly (GaloisField p n) = Set.univ key✝ : Fintype.card (GaloisField p n) = p ^ n key : p ^ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = p ^ n ⊢ FiniteDimensional.finrank (ZMod p) (GaloisField p n) = n [PROOFSTEP] exact Nat.pow_right_injective (Nat.Prime.one_lt' p).out key [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n nat_degree_eq : natDegree g_poly = p ^ n ⊢ rootSet g_poly (GaloisField p n) = Set.univ [PROOFSTEP] rw [Set.eq_univ_iff_forall] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n nat_degree_eq : natDegree g_poly = p ^ n ⊢ ∀ (x : GaloisField p n), x ∈ rootSet g_poly (GaloisField p n) [PROOFSTEP] suffices ∀ (x) (hx : x ∈ (⊤ : Subalgebra (ZMod p) (GaloisField p n))), x ∈ (X ^ p ^ n - X : (ZMod p)[X]).rootSet (GaloisField p n) by simpa [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n nat_degree_eq : natDegree g_poly = p ^ n this : ∀ (x : GaloisField p n), x ∈ ⊤ → x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n) ⊢ ∀ (x : GaloisField p n), x ∈ rootSet g_poly (GaloisField p n) [PROOFSTEP] simpa [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n nat_degree_eq : natDegree g_poly = p ^ n ⊢ ∀ (x : GaloisField p n), x ∈ ⊤ → x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n) [PROOFSTEP] rw [← SplittingField.adjoin_rootSet] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n nat_degree_eq : natDegree g_poly = p ^ n ⊢ ∀ (x : GaloisField p n), x ∈ Algebra.adjoin (ZMod p) (rootSet (X ^ p ^ n - X) (SplittingField (X ^ p ^ n - X))) → x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n) [PROOFSTEP] simp_rw [Algebra.mem_adjoin_iff] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n nat_degree_eq : natDegree g_poly = p ^ n ⊢ ∀ (x : GaloisField p n), x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod p) (GaloisField p n)) ∪ rootSet (X ^ p ^ n - X) (SplittingField (X ^ p ^ n - X))) → x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n) [PROOFSTEP] intro x hx [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝¹ p : ℕ h_prime : Fact (Nat.Prime p) n✝ n : ℕ h : n ≠ 0 g_poly : (ZMod p)[X] := X ^ p ^ n - X hp : 1 < p aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField p n)) = p ^ n nat_degree_eq : natDegree g_poly = p ^ n x : GaloisField p n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod p) (GaloisField p n)) ∪ rootSet (X ^ p ^ n - X) (SplittingField (X ^ p ^ n - X))) ⊢ x ∈ rootSet (X ^ p ^ n - X) (GaloisField p n) [PROOFSTEP] cases p [GOAL] case zero p : ℕ inst✝ : Fact (Nat.Prime p) n✝¹ n✝ n : ℕ h : n ≠ 0 h_prime : Fact (Nat.Prime Nat.zero) g_poly : (ZMod Nat.zero)[X] := X ^ Nat.zero ^ n - X hp : 1 < Nat.zero aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField Nat.zero n)) = Nat.zero ^ n nat_degree_eq : natDegree g_poly = Nat.zero ^ n x : GaloisField Nat.zero n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod Nat.zero) (GaloisField Nat.zero n)) ∪ rootSet (X ^ Nat.zero ^ n - X) (SplittingField (X ^ Nat.zero ^ n - X))) ⊢ x ∈ rootSet (X ^ Nat.zero ^ n - X) (GaloisField Nat.zero n) case succ p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) [PROOFSTEP] cases hp [GOAL] case succ p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) [PROOFSTEP] refine Subring.closure_induction hx ?_ ?_ ?_ ?_ ?_ ?_ [GOAL] case succ.refine_1 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x : GaloisField (Nat.succ n✝) n), x ∈ Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)) → x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) [PROOFSTEP] simp_rw [mem_rootSet_of_ne aux] [GOAL] case succ.refine_2 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ 0 ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) [PROOFSTEP] simp_rw [mem_rootSet_of_ne aux] [GOAL] case succ.refine_3 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ 1 ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) [PROOFSTEP] simp_rw [mem_rootSet_of_ne aux] [GOAL] case succ.refine_4 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x y : GaloisField (Nat.succ n✝) n), x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) → y ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) → x + y ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) [PROOFSTEP] simp_rw [mem_rootSet_of_ne aux] [GOAL] case succ.refine_5 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x : GaloisField (Nat.succ n✝) n), x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) → -x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) [PROOFSTEP] simp_rw [mem_rootSet_of_ne aux] [GOAL] case succ.refine_6 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x y : GaloisField (Nat.succ n✝) n), x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) → y ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) → x * y ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n) [PROOFSTEP] simp_rw [mem_rootSet_of_ne aux] [GOAL] case succ.refine_1 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x : GaloisField (Nat.succ n✝) n), x ∈ Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)) → ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] rintro x (⟨r, rfl⟩ | hx) [GOAL] case succ.refine_1.inl.intro p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) r : ZMod (Nat.succ n✝) ⊢ ↑(aeval (↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) r)) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] simp only [map_sub, map_pow, aeval_X] [GOAL] case succ.refine_1.inl.intro p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) r : ZMod (Nat.succ n✝) ⊢ ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) r ^ Nat.succ n✝ ^ n - ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) r = 0 [PROOFSTEP] rw [← map_pow, ZMod.pow_card_pow, sub_self] [GOAL] case succ.refine_1.inr p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x✝ : GaloisField (Nat.succ n✝) n hx✝ : x✝ ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) x : GaloisField (Nat.succ n✝) n hx : x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)) ⊢ ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] dsimp only [GaloisField] at hx [GOAL] case succ.refine_1.inr p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x✝ : GaloisField (Nat.succ n✝) n hx✝ : x✝ ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) x : GaloisField (Nat.succ n✝) n hx : x ∈ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X)) ⊢ ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] rwa [mem_rootSet_of_ne aux] at hx [GOAL] case succ.refine_2 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ↑(aeval 0) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] rw [← coeff_zero_eq_aeval_zero'] [GOAL] case succ.refine_2 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) (coeff (X ^ Nat.succ n✝ ^ n - X) 0) = 0 [PROOFSTEP] simp only [coeff_X_pow, coeff_X_zero, sub_zero, _root_.map_eq_zero, ite_eq_right_iff, one_ne_zero, coeff_sub] [GOAL] case succ.refine_2 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ 0 = Nat.succ n✝ ^ n → False [PROOFSTEP] intro hn [GOAL] case succ.refine_2 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) hn : 0 = Nat.succ n✝ ^ n ⊢ False [PROOFSTEP] exact Nat.not_lt_zero 1 (pow_eq_zero hn.symm ▸ hp) [GOAL] case succ.refine_3 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ↑(aeval 1) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] simp [GOAL] case succ.refine_4 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x y : GaloisField (Nat.succ n✝) n), ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 → ↑(aeval y) (X ^ Nat.succ n✝ ^ n - X) = 0 → ↑(aeval (x + y)) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] simp only [aeval_X_pow, aeval_X, AlgHom.map_sub, add_pow_char_pow, sub_eq_zero] [GOAL] case succ.refine_4 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x y : GaloisField (Nat.succ n✝) n), x ^ Nat.succ n✝ ^ n = x → y ^ Nat.succ n✝ ^ n = y → x ^ Nat.succ n✝ ^ n + y ^ Nat.succ n✝ ^ n = x + y [PROOFSTEP] intro x y hx hy [GOAL] case succ.refine_4 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x✝ : GaloisField (Nat.succ n✝) n hx✝ : x✝ ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) x y : GaloisField (Nat.succ n✝) n hx : x ^ Nat.succ n✝ ^ n = x hy : y ^ Nat.succ n✝ ^ n = y ⊢ x ^ Nat.succ n✝ ^ n + y ^ Nat.succ n✝ ^ n = x + y [PROOFSTEP] rw [hx, hy] [GOAL] case succ.refine_5 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x : GaloisField (Nat.succ n✝) n), ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 → ↑(aeval (-x)) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] intro x hx [GOAL] case succ.refine_5 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x✝ : GaloisField (Nat.succ n✝) n hx✝ : x✝ ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) x : GaloisField (Nat.succ n✝) n hx : ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 ⊢ ↑(aeval (-x)) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] simp only [sub_eq_zero, aeval_X_pow, aeval_X, AlgHom.map_sub, sub_neg_eq_add] at * [GOAL] case succ.refine_5 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : X ^ Nat.succ n✝ ^ n - X ≠ 0 key : Fintype.card ↑(rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree (X ^ Nat.succ n✝ ^ n - X) = Nat.succ n✝ ^ n x✝ : GaloisField (Nat.succ n✝) n hx✝ : x✝ ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) x : GaloisField (Nat.succ n✝) n hx : x ^ Nat.succ n✝ ^ n = x ⊢ (-x) ^ Nat.succ n✝ ^ n + x = 0 [PROOFSTEP] rw [neg_pow, hx, CharP.neg_one_pow_char_pow] [GOAL] case succ.refine_5 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : X ^ Nat.succ n✝ ^ n - X ≠ 0 key : Fintype.card ↑(rootSet (X ^ Nat.succ n✝ ^ n - X) (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree (X ^ Nat.succ n✝ ^ n - X) = Nat.succ n✝ ^ n x✝ : GaloisField (Nat.succ n✝) n hx✝ : x✝ ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) x : GaloisField (Nat.succ n✝) n hx : x ^ Nat.succ n✝ ^ n = x ⊢ -1 * x + x = 0 [PROOFSTEP] simp [GOAL] case succ.refine_6 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x y : GaloisField (Nat.succ n✝) n), ↑(aeval x) (X ^ Nat.succ n✝ ^ n - X) = 0 → ↑(aeval y) (X ^ Nat.succ n✝ ^ n - X) = 0 → ↑(aeval (x * y)) (X ^ Nat.succ n✝ ^ n - X) = 0 [PROOFSTEP] simp only [aeval_X_pow, aeval_X, AlgHom.map_sub, mul_pow, sub_eq_zero] [GOAL] case succ.refine_6 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x : GaloisField (Nat.succ n✝) n hx : x ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) ⊢ ∀ (x y : GaloisField (Nat.succ n✝) n), x ^ Nat.succ n✝ ^ n = x → y ^ Nat.succ n✝ ^ n = y → x ^ Nat.succ n✝ ^ n * y ^ Nat.succ n✝ ^ n = x * y [PROOFSTEP] intro x y hx hy [GOAL] case succ.refine_6 p : ℕ inst✝ : Fact (Nat.Prime p) n✝² n✝¹ n : ℕ h : n ≠ 0 n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) g_poly : (ZMod (Nat.succ n✝))[X] := X ^ Nat.succ n✝ ^ n - X hp : 1 < Nat.succ n✝ aux : g_poly ≠ 0 key : Fintype.card ↑(rootSet g_poly (GaloisField (Nat.succ n✝) n)) = Nat.succ n✝ ^ n nat_degree_eq : natDegree g_poly = Nat.succ n✝ ^ n x✝ : GaloisField (Nat.succ n✝) n hx✝ : x✝ ∈ Subring.closure (Set.range ↑(algebraMap (ZMod (Nat.succ n✝)) (GaloisField (Nat.succ n✝) n)) ∪ rootSet (X ^ Nat.succ n✝ ^ n - X) (SplittingField (X ^ Nat.succ n✝ ^ n - X))) x y : GaloisField (Nat.succ n✝) n hx : x ^ Nat.succ n✝ ^ n = x hy : y ^ Nat.succ n✝ ^ n = y ⊢ x ^ Nat.succ n✝ ^ n * y ^ Nat.succ n✝ ^ n = x * y [PROOFSTEP] rw [hx, hy] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ h : n ≠ 0 ⊢ Fintype.card (GaloisField p n) = p ^ n [PROOFSTEP] let b := IsNoetherian.finsetBasis (ZMod p) (GaloisField p n) [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ h : n ≠ 0 b : Basis { x // x ∈ IsNoetherian.finsetBasisIndex (ZMod p) (GaloisField p n) } (ZMod p) (GaloisField p n) := IsNoetherian.finsetBasis (ZMod p) (GaloisField p n) ⊢ Fintype.card (GaloisField p n) = p ^ n [PROOFSTEP] rw [Module.card_fintype b, ← FiniteDimensional.finrank_eq_card_basis b, ZMod.card, finrank p h] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ ⊢ Splits (RingHom.id (ZMod p)) (X ^ p - X) [PROOFSTEP] have hp : 1 < p := h_prime.out.one_lt [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ hp : 1 < p ⊢ Splits (RingHom.id (ZMod p)) (X ^ p - X) [PROOFSTEP] have h1 : roots (X ^ p - X : (ZMod p)[X]) = Finset.univ.val := by convert FiniteField.roots_X_pow_card_sub_X (ZMod p) exact (ZMod.card p).symm [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ hp : 1 < p ⊢ roots (X ^ p - X) = univ.val [PROOFSTEP] convert FiniteField.roots_X_pow_card_sub_X (ZMod p) [GOAL] case h.e'_2.h.e'_4.h.h.e'_5.h.e'_6 p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ hp : 1 < p e_2✝ : ZMod.commRing p = EuclideanDomain.toCommRing ⊢ p = Fintype.card (ZMod p) [PROOFSTEP] exact (ZMod.card p).symm [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ hp : 1 < p h1 : roots (X ^ p - X) = univ.val ⊢ Splits (RingHom.id (ZMod p)) (X ^ p - X) [PROOFSTEP] have h2 := FiniteField.X_pow_card_sub_X_natDegree_eq (ZMod p) hp [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ hp : 1 < p h1 : roots (X ^ p - X) = univ.val h2 : natDegree (X ^ p - X) = p ⊢ Splits (RingHom.id (ZMod p)) (X ^ p - X) [PROOFSTEP] cases p [GOAL] case zero p : ℕ inst✝ : Fact (Nat.Prime p) n✝ n : ℕ h_prime : Fact (Nat.Prime Nat.zero) hp : 1 < Nat.zero h1 : roots (X ^ Nat.zero - X) = univ.val h2 : natDegree (X ^ Nat.zero - X) = Nat.zero ⊢ Splits (RingHom.id (ZMod Nat.zero)) (X ^ Nat.zero - X) case succ p : ℕ inst✝ : Fact (Nat.Prime p) n✝¹ n n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) hp : 1 < Nat.succ n✝ h1 : roots (X ^ Nat.succ n✝ - X) = univ.val h2 : natDegree (X ^ Nat.succ n✝ - X) = Nat.succ n✝ ⊢ Splits (RingHom.id (ZMod (Nat.succ n✝))) (X ^ Nat.succ n✝ - X) [PROOFSTEP] cases hp [GOAL] case succ p : ℕ inst✝ : Fact (Nat.Prime p) n✝¹ n n✝ : ℕ h_prime : Fact (Nat.Prime (Nat.succ n✝)) hp : 1 < Nat.succ n✝ h1 : roots (X ^ Nat.succ n✝ - X) = univ.val h2 : natDegree (X ^ Nat.succ n✝ - X) = Nat.succ n✝ ⊢ Splits (RingHom.id (ZMod (Nat.succ n✝))) (X ^ Nat.succ n✝ - X) [PROOFSTEP] rw [splits_iff_card_roots, h1, ← Finset.card_def, Finset.card_univ, h2, ZMod.card] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ ⊢ X ^ p ^ 1 = X ^ Fintype.card (ZMod p) [PROOFSTEP] rw [pow_one, ZMod.card p] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ h : X ^ p ^ 1 = X ^ Fintype.card (ZMod p) := Eq.mpr (id (pow_one p ▸ Eq.refl (X ^ p ^ 1 = X ^ Fintype.card (ZMod p)))) (Eq.mpr (id (ZMod.card p ▸ Eq.refl (X ^ p = X ^ Fintype.card (ZMod p)))) (Eq.refl (X ^ p))) ⊢ IsSplittingField (ZMod p) (ZMod p) (X ^ p ^ 1 - X) [PROOFSTEP] rw [h] [GOAL] p✝ : ℕ inst✝ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ h : X ^ p ^ 1 = X ^ Fintype.card (ZMod p) := Eq.mpr (id (pow_one p ▸ Eq.refl (X ^ p ^ 1 = X ^ Fintype.card (ZMod p)))) (Eq.mpr (id (ZMod.card p ▸ Eq.refl (X ^ p = X ^ Fintype.card (ZMod p)))) (Eq.refl (X ^ p))) ⊢ IsSplittingField (ZMod p) (ZMod p) (X ^ Fintype.card (ZMod p) - X) [PROOFSTEP] infer_instance [GOAL] p✝ : ℕ inst✝⁷ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ K✝ : Type u_1 inst✝⁶ : Field K✝ inst✝⁵ : Fintype K✝ inst✝⁴ : Algebra (ZMod p) K✝ K : Type u_2 K' : Type u_3 inst✝³ : Field K inst✝² : Field K' inst✝¹ : Finite K' inst✝ : Algebra K K' ⊢ IsGalois K K' [PROOFSTEP] cases nonempty_fintype K' [GOAL] case intro p✝ : ℕ inst✝⁷ : Fact (Nat.Prime p✝) n✝ p : ℕ h_prime : Fact (Nat.Prime p) n : ℕ K✝ : Type u_1 inst✝⁶ : Field K✝ inst✝⁵ : Fintype K✝ inst✝⁴ : Algebra (ZMod p) K✝ K : Type u_2 K' : Type u_3 inst✝³ : Field K inst✝² : Field K' inst✝¹ : Finite K' inst✝ : Algebra K K' val✝ : Fintype K' ⊢ IsGalois K K' [PROOFSTEP] obtain ⟨p, hp⟩ := CharP.exists K [GOAL] case intro.intro p✝¹ : ℕ inst✝⁷ : Fact (Nat.Prime p✝¹) n✝ p✝ : ℕ h_prime : Fact (Nat.Prime p✝) n : ℕ K✝ : Type u_1 inst✝⁶ : Field K✝ inst✝⁵ : Fintype K✝ inst✝⁴ : Algebra (ZMod p✝) K✝ K : Type u_2 K' : Type u_3 inst✝³ : Field K inst✝² : Field K' inst✝¹ : Finite K' inst✝ : Algebra K K' val✝ : Fintype K' p : ℕ hp : CharP K p ⊢ IsGalois K K' [PROOFSTEP] haveI : CharP K p := hp [GOAL] case intro.intro p✝¹ : ℕ inst✝⁷ : Fact (Nat.Prime p✝¹) n✝ p✝ : ℕ h_prime : Fact (Nat.Prime p✝) n : ℕ K✝ : Type u_1 inst✝⁶ : Field K✝ inst✝⁵ : Fintype K✝ inst✝⁴ : Algebra (ZMod p✝) K✝ K : Type u_2 K' : Type u_3 inst✝³ : Field K inst✝² : Field K' inst✝¹ : Finite K' inst✝ : Algebra K K' val✝ : Fintype K' p : ℕ hp : CharP K p this : CharP K p ⊢ IsGalois K K' [PROOFSTEP] haveI : CharP K' p := charP_of_injective_algebraMap' K K' p [GOAL] case intro.intro p✝¹ : ℕ inst✝⁷ : Fact (Nat.Prime p✝¹) n✝ p✝ : ℕ h_prime : Fact (Nat.Prime p✝) n : ℕ K✝ : Type u_1 inst✝⁶ : Field K✝ inst✝⁵ : Fintype K✝ inst✝⁴ : Algebra (ZMod p✝) K✝ K : Type u_2 K' : Type u_3 inst✝³ : Field K inst✝² : Field K' inst✝¹ : Finite K' inst✝ : Algebra K K' val✝ : Fintype K' p : ℕ hp : CharP K p this✝ : CharP K p this : CharP K' p ⊢ IsGalois K K' [PROOFSTEP] exact IsGalois.of_separable_splitting_field (galois_poly_separable p (Fintype.card K') (let ⟨n, _, hn⟩ := FiniteField.card K' p hn.symm ▸ dvd_pow_self p n.ne_zero)) [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' hKK' : Fintype.card K = Fintype.card K' ⊢ K ≃ₐ[ZMod p] K' [PROOFSTEP] have : CharP K p := by rw [← Algebra.charP_iff (ZMod p) K p]; exact ZMod.charP p [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' hKK' : Fintype.card K = Fintype.card K' ⊢ CharP K p [PROOFSTEP] rw [← Algebra.charP_iff (ZMod p) K p] [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' hKK' : Fintype.card K = Fintype.card K' ⊢ CharP (ZMod p) p [PROOFSTEP] exact ZMod.charP p [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' hKK' : Fintype.card K = Fintype.card K' this : CharP K p ⊢ K ≃ₐ[ZMod p] K' [PROOFSTEP] have : CharP K' p := by rw [← Algebra.charP_iff (ZMod p) K' p]; exact ZMod.charP p [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' hKK' : Fintype.card K = Fintype.card K' this : CharP K p ⊢ CharP K' p [PROOFSTEP] rw [← Algebra.charP_iff (ZMod p) K' p] [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' hKK' : Fintype.card K = Fintype.card K' this : CharP K p ⊢ CharP (ZMod p) p [PROOFSTEP] exact ZMod.charP p [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' hKK' : Fintype.card K = Fintype.card K' this✝ : CharP K p this : CharP K' p ⊢ K ≃ₐ[ZMod p] K' [PROOFSTEP] choose n a hK using FiniteField.card K p [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' hKK' : Fintype.card K = Fintype.card K' this✝ : CharP K p this : CharP K' p n : ℕ+ a : Nat.Prime p hK : Fintype.card K = p ^ ↑n ⊢ K ≃ₐ[ZMod p] K' [PROOFSTEP] choose n' a' hK' using FiniteField.card K' p [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' hKK' : Fintype.card K = Fintype.card K' this✝ : CharP K p this : CharP K' p n : ℕ+ a : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ a' : Nat.Prime p hK' : Fintype.card K' = p ^ ↑n' ⊢ K ≃ₐ[ZMod p] K' [PROOFSTEP] rw [hK, hK'] at hKK' [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' this✝ : CharP K p this : CharP K' p n : ℕ+ a : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hKK' : p ^ ↑n = p ^ ↑n' a' : Nat.Prime p hK' : Fintype.card K' = p ^ ↑n' ⊢ K ≃ₐ[ZMod p] K' [PROOFSTEP] have hGalK := GaloisField.algEquivGaloisField p n hK [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' this✝ : CharP K p this : CharP K' p n : ℕ+ a : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hKK' : p ^ ↑n = p ^ ↑n' a' : Nat.Prime p hK' : Fintype.card K' = p ^ ↑n' hGalK : K ≃ₐ[ZMod p] GaloisField p ↑n ⊢ K ≃ₐ[ZMod p] K' [PROOFSTEP] have hK'Gal := (GaloisField.algEquivGaloisField p n' hK').symm [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' this✝ : CharP K p this : CharP K' p n : ℕ+ a : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hKK' : p ^ ↑n = p ^ ↑n' a' : Nat.Prime p hK' : Fintype.card K' = p ^ ↑n' hGalK : K ≃ₐ[ZMod p] GaloisField p ↑n hK'Gal : GaloisField p ↑n' ≃ₐ[ZMod p] K' ⊢ K ≃ₐ[ZMod p] K' [PROOFSTEP] rw [Nat.pow_right_injective h_prime.out.one_lt hKK'] at * [GOAL] p✝ : ℕ inst✝⁶ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝⁵ : Field K inst✝⁴ : Fintype K K' : Type u_2 inst✝³ : Field K' inst✝² : Fintype K' p : ℕ h_prime : Fact (Nat.Prime p) inst✝¹ : Algebra (ZMod p) K inst✝ : Algebra (ZMod p) K' this✝ : CharP K p this : CharP K' p n : ℕ+ a : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hKK' : p ^ ↑n' = p ^ ↑n' a' : Nat.Prime p hK' : Fintype.card K' = p ^ ↑n' hGalK : K ≃ₐ[ZMod p] GaloisField p ↑n' hK'Gal : GaloisField p ↑n' ≃ₐ[ZMod p] K' ⊢ K ≃ₐ[ZMod p] K' [PROOFSTEP] exact AlgEquiv.trans hGalK hK'Gal [GOAL] p : ℕ inst✝⁴ : Fact (Nat.Prime p) n : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' ⊢ K ≃+* K' [PROOFSTEP] choose p _char_p_K using CharP.exists K [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p ⊢ K ≃+* K' [PROOFSTEP] choose p' _char_p'_K' using CharP.exists K' [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p' ⊢ K ≃+* K' [PROOFSTEP] choose n hp hK using FiniteField.card K p [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p' n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n ⊢ K ≃+* K' [PROOFSTEP] choose n' hp' hK' using FiniteField.card K' p' [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p' n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' ⊢ K ≃+* K' [PROOFSTEP] have hpp' : p = p' := by by_contra hne have h2 := Nat.coprime_pow_primes n n' hp hp' hne rw [(Eq.congr hK hK').mp hKK', Nat.coprime_self, pow_eq_one_iff (PNat.ne_zero n')] at h2 exact Nat.Prime.ne_one hp' h2 [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p' n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' ⊢ p = p' [PROOFSTEP] by_contra hne [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p' n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' hne : ¬p = p' ⊢ False [PROOFSTEP] have h2 := Nat.coprime_pow_primes n n' hp hp' hne [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p' n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' hne : ¬p = p' h2 : Nat.coprime (p ^ ↑n) (p' ^ ↑n') ⊢ False [PROOFSTEP] rw [(Eq.congr hK hK').mp hKK', Nat.coprime_self, pow_eq_one_iff (PNat.ne_zero n')] at h2 [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p' n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' hne : ¬p = p' h2 : p' = 1 ⊢ False [PROOFSTEP] exact Nat.Prime.ne_one hp' h2 [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p' n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' hpp' : p = p' ⊢ K ≃+* K' [PROOFSTEP] rw [← hpp'] at _char_p'_K' [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' hpp' : p = p' ⊢ K ≃+* K' [PROOFSTEP] haveI := fact_iff.2 hp [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' hpp' : p = p' this : Fact (Nat.Prime p) ⊢ K ≃+* K' [PROOFSTEP] letI : Algebra (ZMod p) K := ZMod.algebra _ _ [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' hpp' : p = p' this✝ : Fact (Nat.Prime p) this : Algebra (ZMod p) K := ZMod.algebra K p ⊢ K ≃+* K' [PROOFSTEP] letI : Algebra (ZMod p) K' := ZMod.algebra _ _ [GOAL] p✝ : ℕ inst✝⁴ : Fact (Nat.Prime p✝) n✝ : ℕ K : Type u_1 inst✝³ : Field K inst✝² : Fintype K K' : Type u_2 inst✝¹ : Field K' inst✝ : Fintype K' hKK' : Fintype.card K = Fintype.card K' p : ℕ _char_p_K : CharP K p p' : ℕ _char_p'_K' : CharP K' p n : ℕ+ hp : Nat.Prime p hK : Fintype.card K = p ^ ↑n n' : ℕ+ hp' : Nat.Prime p' hK' : Fintype.card K' = p' ^ ↑n' hpp' : p = p' this✝¹ : Fact (Nat.Prime p) this✝ : Algebra (ZMod p) K := ZMod.algebra K p this : Algebra (ZMod p) K' := ZMod.algebra K' p ⊢ K ≃+* K' [PROOFSTEP] exact ↑(algEquivOfCardEq p hKK')
{"mathlib_filename": "Mathlib.FieldTheory.Finite.GaloisField", "llama_tokens": 28707}
[GOAL] σ : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) f : MvPolynomial σ (ZMod p) ⊢ ↑(frobenius (MvPolynomial σ (ZMod p)) p) f = ↑(expand p) f [PROOFSTEP] apply induction_on f [GOAL] case h_C σ : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) f : MvPolynomial σ (ZMod p) ⊢ ∀ (a : ZMod p), ↑(frobenius (MvPolynomial σ (ZMod p)) p) (↑C a) = ↑(expand p) (↑C a) [PROOFSTEP] intro a [GOAL] case h_C σ : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) f : MvPolynomial σ (ZMod p) a : ZMod p ⊢ ↑(frobenius (MvPolynomial σ (ZMod p)) p) (↑C a) = ↑(expand p) (↑C a) [PROOFSTEP] rw [expand_C, frobenius_def, ← C_pow, ZMod.pow_card] [GOAL] case h_add σ : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) f : MvPolynomial σ (ZMod p) ⊢ ∀ (p_1 q : MvPolynomial σ (ZMod p)), ↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 = ↑(expand p) p_1 → ↑(frobenius (MvPolynomial σ (ZMod p)) p) q = ↑(expand p) q → ↑(frobenius (MvPolynomial σ (ZMod p)) p) (p_1 + q) = ↑(expand p) (p_1 + q) [PROOFSTEP] simp only [AlgHom.map_add, RingHom.map_add] [GOAL] case h_add σ : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) f : MvPolynomial σ (ZMod p) ⊢ ∀ (p_1 q : MvPolynomial σ (ZMod p)), ↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 = ↑(expand p) p_1 → ↑(frobenius (MvPolynomial σ (ZMod p)) p) q = ↑(expand p) q → ↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 + ↑(frobenius (MvPolynomial σ (ZMod p)) p) q = ↑(expand p) p_1 + ↑(expand p) q [PROOFSTEP] intro _ _ hf hg [GOAL] case h_add σ : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) f p✝ q✝ : MvPolynomial σ (ZMod p) hf : ↑(frobenius (MvPolynomial σ (ZMod p)) p) p✝ = ↑(expand p) p✝ hg : ↑(frobenius (MvPolynomial σ (ZMod p)) p) q✝ = ↑(expand p) q✝ ⊢ ↑(frobenius (MvPolynomial σ (ZMod p)) p) p✝ + ↑(frobenius (MvPolynomial σ (ZMod p)) p) q✝ = ↑(expand p) p✝ + ↑(expand p) q✝ [PROOFSTEP] rw [hf, hg] [GOAL] case h_X σ : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) f : MvPolynomial σ (ZMod p) ⊢ ∀ (p_1 : MvPolynomial σ (ZMod p)) (n : σ), ↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 = ↑(expand p) p_1 → ↑(frobenius (MvPolynomial σ (ZMod p)) p) (p_1 * X n) = ↑(expand p) (p_1 * X n) [PROOFSTEP] simp only [expand_X, RingHom.map_mul, AlgHom.map_mul] [GOAL] case h_X σ : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) f : MvPolynomial σ (ZMod p) ⊢ ∀ (p_1 : MvPolynomial σ (ZMod p)) (n : σ), ↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 = ↑(expand p) p_1 → ↑(frobenius (MvPolynomial σ (ZMod p)) p) p_1 * ↑(frobenius (MvPolynomial σ (ZMod p)) p) (X n) = ↑(expand p) p_1 * X n ^ p [PROOFSTEP] intro _ _ hf [GOAL] case h_X σ : Type u_1 p : ℕ inst✝ : Fact (Nat.Prime p) f p✝ : MvPolynomial σ (ZMod p) n✝ : σ hf : ↑(frobenius (MvPolynomial σ (ZMod p)) p) p✝ = ↑(expand p) p✝ ⊢ ↑(frobenius (MvPolynomial σ (ZMod p)) p) p✝ * ↑(frobenius (MvPolynomial σ (ZMod p)) p) (X n✝) = ↑(expand p) p✝ * X n✝ ^ p [PROOFSTEP] rw [hf, frobenius_def] [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K a : σ → K ⊢ ↑(eval a) (indicator a) = 1 [PROOFSTEP] nontriviality [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K a : σ → K ✝ : Nontrivial ((fun x => K) (indicator a)) ⊢ ↑(eval a) (indicator a) = 1 [PROOFSTEP] have : 0 < Fintype.card K - 1 := tsub_pos_of_lt Fintype.one_lt_card [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K a : σ → K ✝ : Nontrivial ((fun x => K) (indicator a)) this : 0 < Fintype.card K - 1 ⊢ ↑(eval a) (indicator a) = 1 [PROOFSTEP] simp only [indicator, map_prod, map_sub, map_one, map_pow, eval_X, eval_C, sub_self, zero_pow this, sub_zero, Finset.prod_const_one] [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K ⊢ degrees (indicator c) ≤ ∑ s : σ, (Fintype.card K - 1) • {s} [PROOFSTEP] rw [indicator] [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K ⊢ degrees (∏ n : σ, (1 - (X n - ↑C (c n)) ^ (Fintype.card K - 1))) ≤ ∑ s : σ, (Fintype.card K - 1) • {s} [PROOFSTEP] refine' le_trans (degrees_prod _ _) (Finset.sum_le_sum fun s _ => _) [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K s : σ x✝ : s ∈ Finset.univ ⊢ degrees (1 - (X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s} [PROOFSTEP] refine' le_trans (degrees_sub _ _) _ [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K s : σ x✝ : s ∈ Finset.univ ⊢ degrees 1 ⊔ degrees ((X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s} [PROOFSTEP] rw [degrees_one, ← bot_eq_zero, bot_sup_eq] [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K s : σ x✝ : s ∈ Finset.univ ⊢ degrees ((X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s} [PROOFSTEP] refine' le_trans (degrees_pow _ _) (nsmul_le_nsmul_of_le_right _ _) [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K s : σ x✝ : s ∈ Finset.univ ⊢ degrees (X s - ↑C (c s)) ≤ {s} [PROOFSTEP] refine' le_trans (degrees_sub _ _) _ [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K s : σ x✝ : s ∈ Finset.univ ⊢ degrees (X s) ⊔ degrees (↑C (c s)) ≤ {s} [PROOFSTEP] rw [degrees_C, ← bot_eq_zero, sup_bot_eq] [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K s : σ x✝ : s ∈ Finset.univ ⊢ degrees (X s) ≤ {s} [PROOFSTEP] exact degrees_X' _ [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K ⊢ indicator c ∈ restrictDegree σ K (Fintype.card K - 1) [PROOFSTEP] rw [mem_restrictDegree_iff_sup, indicator] [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K ⊢ ∀ (i : σ), Multiset.count i (degrees (∏ n : σ, (1 - (X n - ↑C (c n)) ^ (Fintype.card K - 1)))) ≤ Fintype.card K - 1 [PROOFSTEP] intro n [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ Multiset.count n (degrees (∏ n : σ, (1 - (X n - ↑C (c n)) ^ (Fintype.card K - 1)))) ≤ Fintype.card K - 1 [PROOFSTEP] refine' le_trans (Multiset.count_le_of_le _ <| degrees_indicator _) (le_of_eq _) [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ Multiset.count n (∑ s : σ, (Fintype.card K - 1) • {s}) = Fintype.card K - 1 [PROOFSTEP] simp_rw [← Multiset.coe_countAddMonoidHom, (Multiset.countAddMonoidHom n).map_sum, AddMonoidHom.map_nsmul, Multiset.coe_countAddMonoidHom, nsmul_eq_mul, Nat.cast_id] [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ ∑ x : σ, (Fintype.card K - 1) * Multiset.count n {x} = Fintype.card K - 1 [PROOFSTEP] trans [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ ∑ x : σ, (Fintype.card K - 1) * Multiset.count n {x} = ?m.190023 K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ ?m.190023 = Fintype.card K - 1 K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ ℕ [PROOFSTEP] refine' Finset.sum_eq_single n _ _ [GOAL] case refine'_1 K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ ∀ (b : σ), b ∈ Finset.univ → b ≠ n → (Fintype.card K - 1) * Multiset.count n {b} = 0 [PROOFSTEP] intro b _ ne [GOAL] case refine'_1 K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n b : σ a✝ : b ∈ Finset.univ ne : b ≠ n ⊢ (Fintype.card K - 1) * Multiset.count n {b} = 0 [PROOFSTEP] simp [Multiset.count_singleton, ne, if_neg (Ne.symm _)] [GOAL] case refine'_2 K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ ¬n ∈ Finset.univ → (Fintype.card K - 1) * Multiset.count n {n} = 0 [PROOFSTEP] intro h [GOAL] case refine'_2 K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ h : ¬n ∈ Finset.univ ⊢ (Fintype.card K - 1) * Multiset.count n {n} = 0 [PROOFSTEP] exact (h <| Finset.mem_univ _).elim [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : CommRing K c : σ → K n : σ ⊢ (Fintype.card K - 1) * Multiset.count n {n} = Fintype.card K - 1 [PROOFSTEP] rw [Multiset.count_singleton_self, mul_one] [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : Field K a b : σ → K h : a ≠ b ⊢ ↑(eval a) (indicator b) = 0 [PROOFSTEP] obtain ⟨i, hi⟩ : ∃ i, a i ≠ b i := by rwa [Ne, Function.funext_iff, not_forall] at h [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : Field K a b : σ → K h : a ≠ b ⊢ ∃ i, a i ≠ b i [PROOFSTEP] rwa [Ne, Function.funext_iff, not_forall] at h [GOAL] case intro K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : Field K a b : σ → K h : a ≠ b i : σ hi : a i ≠ b i ⊢ ↑(eval a) (indicator b) = 0 [PROOFSTEP] simp only [indicator, map_prod, map_sub, map_one, map_pow, eval_X, eval_C, sub_self, Finset.prod_eq_zero_iff] [GOAL] case intro K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : Field K a b : σ → K h : a ≠ b i : σ hi : a i ≠ b i ⊢ ∃ a_1, a_1 ∈ Finset.univ ∧ 1 - (a a_1 - b a_1) ^ (Fintype.card K - 1) = 0 [PROOFSTEP] refine' ⟨i, Finset.mem_univ _, _⟩ [GOAL] case intro K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : Field K a b : σ → K h : a ≠ b i : σ hi : a i ≠ b i ⊢ 1 - (a i - b i) ^ (Fintype.card K - 1) = 0 [PROOFSTEP] rw [FiniteField.pow_card_sub_one_eq_one, sub_self] [GOAL] case intro.ha K : Type u_1 σ : Type u_2 inst✝² : Fintype K inst✝¹ : Fintype σ inst✝ : Field K a b : σ → K h : a ≠ b i : σ hi : a i ≠ b i ⊢ a i - b i ≠ 0 [PROOFSTEP] rwa [Ne, sub_eq_zero] [GOAL] K : Type u_1 σ : Type u_2 inst✝ : CommSemiring K p q : MvPolynomial σ K ⊢ (fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q [PROOFSTEP] ext x [GOAL] case h K : Type u_1 σ : Type u_2 inst✝ : CommSemiring K p q : MvPolynomial σ K x : σ → K ⊢ (fun p e => ↑(eval e) p) (p + q) x = ((fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) x [PROOFSTEP] simp [GOAL] K : Type u_1 σ : Type u_2 inst✝ : CommSemiring K a : K p : MvPolynomial σ K ⊢ AddHom.toFun { toFun := fun p e => ↑(eval e) p, map_add' := (_ : ∀ (p q : MvPolynomial σ K), (fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) } (a • p) = ↑(RingHom.id K) a • AddHom.toFun { toFun := fun p e => ↑(eval e) p, map_add' := (_ : ∀ (p q : MvPolynomial σ K), (fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) } p [PROOFSTEP] ext e [GOAL] case h K : Type u_1 σ : Type u_2 inst✝ : CommSemiring K a : K p : MvPolynomial σ K e : σ → K ⊢ AddHom.toFun { toFun := fun p e => ↑(eval e) p, map_add' := (_ : ∀ (p q : MvPolynomial σ K), (fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) } (a • p) e = (↑(RingHom.id K) a • AddHom.toFun { toFun := fun p e => ↑(eval e) p, map_add' := (_ : ∀ (p q : MvPolynomial σ K), (fun p e => ↑(eval e) p) (p + q) = (fun p e => ↑(eval e) p) p + (fun p e => ↑(eval e) p) q) } p) e [PROOFSTEP] simp [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ ⊢ Submodule.map (evalₗ K σ) (restrictDegree σ K (Fintype.card K - 1)) = ⊤ [PROOFSTEP] cases nonempty_fintype σ [GOAL] case intro K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ ⊢ Submodule.map (evalₗ K σ) (restrictDegree σ K (Fintype.card K - 1)) = ⊤ [PROOFSTEP] refine' top_unique (SetLike.le_def.2 fun e _ => mem_map.2 _) [GOAL] case intro K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ ⊢ ∃ y, y ∈ restrictDegree σ K (Fintype.card K - 1) ∧ ↑(evalₗ K σ) y = e [PROOFSTEP] refine' ⟨∑ n : σ → K, e n • indicator n, _, _⟩ [GOAL] case intro.refine'_1 K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ ⊢ ∑ n : σ → K, e n • indicator n ∈ restrictDegree σ K (Fintype.card K - 1) [PROOFSTEP] exact sum_mem fun c _ => smul_mem _ _ (indicator_mem_restrictDegree _) [GOAL] case intro.refine'_2 K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ ⊢ ↑(evalₗ K σ) (∑ n : σ → K, e n • indicator n) = e [PROOFSTEP] ext n [GOAL] case intro.refine'_2.h K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ n : σ → K ⊢ ↑(evalₗ K σ) (∑ n : σ → K, e n • indicator n) n = e n [PROOFSTEP] simp only [LinearMap.map_sum, @Finset.sum_apply (σ → K) (fun _ => K) _ _ _ _ _, Pi.smul_apply, LinearMap.map_smul] [GOAL] case intro.refine'_2.h K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ n : σ → K ⊢ ∑ x : σ → K, e x • ↑(evalₗ K σ) (indicator x) n = e n [PROOFSTEP] simp only [evalₗ_apply] [GOAL] case intro.refine'_2.h K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ n : σ → K ⊢ ∑ x : σ → K, e x • ↑(eval n) (indicator x) = e n [PROOFSTEP] trans [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ n : σ → K ⊢ ∑ x : σ → K, e x • ↑(eval n) (indicator x) = ?m.293169 K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ n : σ → K ⊢ ?m.293169 = e n K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ n : σ → K ⊢ K [PROOFSTEP] refine' Finset.sum_eq_single n (fun b _ h => _) _ [GOAL] case refine'_1 K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝¹ : e ∈ ⊤ n b : σ → K x✝ : b ∈ Finset.univ h : b ≠ n ⊢ e b • ↑(eval n) (indicator b) = 0 [PROOFSTEP] rw [eval_indicator_apply_eq_zero _ _ h.symm, smul_zero] [GOAL] case refine'_2 K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ n : σ → K ⊢ ¬n ∈ Finset.univ → e n • ↑(eval n) (indicator n) = 0 [PROOFSTEP] exact fun h => (h <| Finset.mem_univ n).elim [GOAL] K : Type u_1 σ : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : Finite σ val✝ : Fintype σ e : (σ → K) → K x✝ : e ∈ ⊤ n : σ → K ⊢ e n • ↑(eval n) (indicator n) = e n [PROOFSTEP] rw [eval_indicator_apply_eq_one, smul_eq_mul, mul_one] [GOAL] σ K : Type u inst✝¹ : Fintype K inst✝ : CommRing K m : ℕ ⊢ DecidablePred fun x => x ∈ {n | ∀ (i : σ), ↑n i ≤ m} [PROOFSTEP] simp only [Set.mem_setOf_eq] [GOAL] σ K : Type u inst✝¹ : Fintype K inst✝ : CommRing K m : ℕ ⊢ DecidablePred fun n => ∀ (i : σ), ↑n i ≤ m [PROOFSTEP] infer_instance [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Fintype σ ⊢ Module.rank K (↑{s | ∀ (n : σ), ↑s n ≤ Fintype.card K - 1} →₀ K) = #↑{s | ∀ (n : σ), ↑s n ≤ Fintype.card K - 1} [PROOFSTEP] rw [rank_finsupp_self'] [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Fintype σ ⊢ #↑{s | ∀ (n : σ), ↑s n ≤ Fintype.card K - 1} = #↑{s | ∀ (n : σ), s n < Fintype.card K} [PROOFSTEP] refine' Quotient.sound ⟨Equiv.subtypeEquiv Finsupp.equivFunOnFinite fun f => _⟩ [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Fintype σ f : σ →₀ ℕ ⊢ f ∈ {s | ∀ (n : σ), ↑s n ≤ Fintype.card K - 1} ↔ ↑Finsupp.equivFunOnFinite f ∈ {s | ∀ (n : σ), s n < Fintype.card K} [PROOFSTEP] refine' forall_congr' fun n => le_tsub_iff_right _ [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Fintype σ f : σ →₀ ℕ n : σ ⊢ 1 ≤ Fintype.card K [PROOFSTEP] exact Fintype.card_pos_iff.2 ⟨0⟩ [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Finite σ ⊢ FiniteDimensional K (R σ K) [PROOFSTEP] cases nonempty_fintype σ [GOAL] case intro σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Finite σ val✝ : Fintype σ ⊢ FiniteDimensional K (R σ K) [PROOFSTEP] exact IsNoetherian.iff_fg.1 (IsNoetherian.iff_rank_lt_aleph0.mpr <| by simpa only [rank_R] using Cardinal.nat_lt_aleph0 (Fintype.card (σ → K))) [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Finite σ val✝ : Fintype σ ⊢ Module.rank K (R σ K) < ℵ₀ [PROOFSTEP] simpa only [rank_R] using Cardinal.nat_lt_aleph0 (Fintype.card (σ → K)) [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Finite σ ⊢ range (evalᵢ σ K) = ⊤ [PROOFSTEP] rw [evalᵢ, LinearMap.range_comp, range_subtype] [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Finite σ ⊢ Submodule.map (evalₗ K σ) (restrictDegree σ K (Fintype.card K - 1)) = ⊤ [PROOFSTEP] exact map_restrict_dom_evalₗ K σ [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Finite σ ⊢ ker (evalᵢ σ K) = ⊥ [PROOFSTEP] cases nonempty_fintype σ [GOAL] case intro σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Finite σ val✝ : Fintype σ ⊢ ker (evalᵢ σ K) = ⊥ [PROOFSTEP] refine' (ker_eq_bot_iff_range_eq_top_of_finrank_eq_finrank _).mpr (range_evalᵢ σ K) [GOAL] case intro σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Finite σ val✝ : Fintype σ ⊢ FiniteDimensional.finrank K (R σ K) = FiniteDimensional.finrank K ((σ → K) → K) [PROOFSTEP] rw [FiniteDimensional.finrank_fintype_fun_eq_card, finrank_R] [GOAL] σ K : Type u inst✝² : Fintype K inst✝¹ : Field K inst✝ : Finite σ p : MvPolynomial σ K h : ∀ (v : σ → K), ↑(eval v) p = 0 hp : p ∈ restrictDegree σ K (Fintype.card K - 1) p' : R σ K := { val := p, property := hp } this : p' ∈ ker (evalᵢ σ K) ⊢ p' = 0 [PROOFSTEP] rwa [ker_evalₗ, mem_bot] at this
{"mathlib_filename": "Mathlib.FieldTheory.Finite.Polynomial", "llama_tokens": 9837}
{"mathlib_filename": "Mathlib.Condensed.Abelian", "llama_tokens": 0}
[GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M ⊢ fixedPoints M F = ↑(⨅ (m : M), FixedBy.subfield F m) [PROOFSTEP] ext z [GOAL] case h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M z : F ⊢ z ∈ fixedPoints M F ↔ z ∈ ↑(⨅ (m : M), FixedBy.subfield F m) [PROOFSTEP] simp [fixedPoints, FixedBy.subfield, iInf, Subfield.mem_sInf] [GOAL] case h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M z : F ⊢ (∀ (m : M), m • z = z) ↔ ∀ (i : M), z ∈ { toSubmonoid := { toSubsemigroup := { carrier := fixedBy M F i, mul_mem' := (_ : ∀ {a b : F}, a ∈ fixedBy M F i → b ∈ fixedBy M F i → i • (a * b) = a * b) }, one_mem' := (_ : i • 1 = 1) }, add_mem' := (_ : ∀ {a b : F}, a ∈ { toSubsemigroup := { carrier := fixedBy M F i, mul_mem' := (_ : ∀ {a b : F}, a ∈ fixedBy M F i → b ∈ fixedBy M F i → i • (a * b) = a * b) }, one_mem' := (_ : i • 1 = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := fixedBy M F i, mul_mem' := (_ : ∀ {a b : F}, a ∈ fixedBy M F i → b ∈ fixedBy M F i → i • (a * b) = a * b) }, one_mem' := (_ : i • 1 = 1) }.toSubsemigroup.carrier → i • (a + b) = a + b), zero_mem' := (_ : i • 0 = 0) } [PROOFSTEP] rfl [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m g : M x : F hx : x ∈ subfield M F g' : M ⊢ g' • g • x = g • x [PROOFSTEP] rw [hx, hx] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m✝ m : M f : { x // x ∈ subfield M F } f' : F ⊢ m • (↑f * f') = ↑f * m • f' [PROOFSTEP] rw [smul_mul', f.prop m] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m✝ m : M p : Polynomial { x // x ∈ subfield M F } x : { x // x ∈ subfield M F } ⊢ m • ↑Polynomial.C x = ↑Polynomial.C x [PROOFSTEP] rw [Polynomial.smul_C, smul] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m✝ m : M p✝ p q : Polynomial { x // x ∈ subfield M F } ihp : m • p = p ihq : m • q = q ⊢ m • (p + q) = p + q [PROOFSTEP] rw [smul_add, ihp, ihq] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m✝ m : M p : Polynomial { x // x ∈ subfield M F } n : ℕ x : { x // x ∈ subfield M F } x✝ : m • (↑Polynomial.C x * Polynomial.X ^ n) = ↑Polynomial.C x * Polynomial.X ^ n ⊢ m • (↑Polynomial.C x * Polynomial.X ^ (n + 1)) = ↑Polynomial.C x * Polynomial.X ^ (n + 1) [PROOFSTEP] rw [smul_mul', Polynomial.smul_C, smul, smul_pow', Polynomial.smul_X] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M ⊢ Algebra { x // x ∈ subfield M F } F [PROOFSTEP] infer_instance [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s : Finset F ⊢ (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i [PROOFSTEP] haveI : IsEmpty ((∅ : Finset F) : Set F) := by simp [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s : Finset F ⊢ IsEmpty ↑↑∅ [PROOFSTEP] simp [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s : Finset F this : IsEmpty ↑↑∅ ⊢ (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i [PROOFSTEP] refine' Finset.induction_on s (fun _ => linearIndependent_empty_type) fun a s has ih hs => _ [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : LinearIndependent { x // x ∈ subfield G F } fun i => ↑i ⊢ LinearIndependent F fun i => ↑(toFun G F) ↑i [PROOFSTEP] rw [coe_insert] at hs ⊢ [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : LinearIndependent { x // x ∈ subfield G F } fun i => ↑i ⊢ LinearIndependent F fun i => ↑(toFun G F) ↑i [PROOFSTEP] rw [linearIndependent_insert (mt mem_coe.1 has)] at hs [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s ⊢ LinearIndependent F fun i => ↑(toFun G F) ↑i [PROOFSTEP] rw [linearIndependent_insert' (mt mem_coe.1 has)] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s ⊢ (LinearIndependent F fun x => ↑(toFun G F) ↑x) ∧ ¬↑(toFun G F) a ∈ Submodule.span F (↑(toFun G F) '' ↑s) [PROOFSTEP] refine' ⟨ih hs.1, fun ha => _⟩ [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s ha : ↑(toFun G F) a ∈ Submodule.span F (↑(toFun G F) '' ↑s) ⊢ False [PROOFSTEP] rw [Finsupp.mem_span_image_iff_total] at ha [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s ha : ∃ l, l ∈ Finsupp.supported F F ↑s ∧ ↑(Finsupp.total F (G → F) F ↑(toFun G F)) l = ↑(toFun G F) a ⊢ False [PROOFSTEP] rcases ha with ⟨l, hl, hla⟩ [GOAL] case intro.intro M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ↑(Finsupp.total F (G → F) F ↑(toFun G F)) l = ↑(toFun G F) a ⊢ False [PROOFSTEP] rw [Finsupp.total_apply_of_mem_supported F hl] at hla [GOAL] case intro.intro M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a ⊢ False [PROOFSTEP] suffices ∀ i ∈ s, l i ∈ FixedPoints.subfield G F by replace hla := (sum_apply _ _ fun i => l i • toFun G F i).symm.trans (congr_fun hla 1) simp_rw [Pi.smul_apply, toFun_apply, one_smul] at hla refine' hs.2 (hla ▸ Submodule.sum_mem _ fun c hcs => _) change (⟨l c, this c hcs⟩ : FixedPoints.subfield G F) • c ∈ _ exact Submodule.smul_mem _ _ (Submodule.subset_span <| mem_coe.2 hcs) [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this✝ : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F ⊢ False [PROOFSTEP] replace hla := (sum_apply _ _ fun i => l i • toFun G F i).symm.trans (congr_fun hla 1) [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this✝ : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F hla : ∑ c in s, (↑l c • ↑(toFun G F) c) 1 = ↑(toFun G F) a 1 ⊢ False [PROOFSTEP] simp_rw [Pi.smul_apply, toFun_apply, one_smul] at hla [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this✝ : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F hla : ∑ x in s, ↑l x • x = a ⊢ False [PROOFSTEP] refine' hs.2 (hla ▸ Submodule.sum_mem _ fun c hcs => _) [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this✝ : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F hla : ∑ x in s, ↑l x • x = a c : F hcs : c ∈ s ⊢ ↑l c • c ∈ Submodule.span { x // x ∈ subfield G F } ↑s [PROOFSTEP] change (⟨l c, this c hcs⟩ : FixedPoints.subfield G F) • c ∈ _ [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this✝ : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s this : ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F hla : ∑ x in s, ↑l x • x = a c : F hcs : c ∈ s ⊢ { val := ↑l c, property := (_ : ↑l c ∈ subfield G F) } • c ∈ Submodule.span { x // x ∈ subfield G F } ↑s [PROOFSTEP] exact Submodule.smul_mem _ _ (Submodule.subset_span <| mem_coe.2 hcs) [GOAL] case intro.intro M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a ⊢ ∀ (i : F), i ∈ s → ↑l i ∈ subfield G F [PROOFSTEP] intro i his g [GOAL] case intro.intro M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g : G ⊢ g • ↑l i = ↑l i [PROOFSTEP] refine' eq_of_sub_eq_zero (linearIndependent_iff'.1 (ih hs.1) s.attach (fun i => g • l i - l i) _ ⟨i, his⟩ (mem_attach _ _) : _) [GOAL] case intro.intro M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g : G ⊢ ∑ i in attach s, (fun i => g • ↑l ↑i - ↑l ↑i) i • ↑(toFun G F) ↑i = 0 [PROOFSTEP] refine' (@sum_attach _ _ s _ fun i => (g • l i - l i) • MulAction.toFun G F i).trans _ [GOAL] case intro.intro M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g : G ⊢ ∑ x in s, (g • ↑l x - ↑l x) • ↑(toFun G F) x = 0 [PROOFSTEP] ext g' [GOAL] case intro.intro.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G ⊢ Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g' = OfNat.ofNat 0 g' [PROOFSTEP] dsimp only [GOAL] case intro.intro.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G ⊢ Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g' = OfNat.ofNat 0 g' [PROOFSTEP] conv_lhs => rw [sum_apply] congr ·skip · ext rw [Pi.smul_apply, sub_smul, smul_eq_mul] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g' [PROOFSTEP] rw [sum_apply] congr ·skip · ext rw [Pi.smul_apply, sub_smul, smul_eq_mul] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g' [PROOFSTEP] rw [sum_apply] congr ·skip · ext rw [Pi.smul_apply, sub_smul, smul_eq_mul] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | Finset.sum s (fun x => (g • ↑l x - ↑l x) • ↑(toFun G F) x) g' [PROOFSTEP] rw [sum_apply] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | ∑ c in s, ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g' [PROOFSTEP] congr [GOAL] case s M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | s case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g' [PROOFSTEP] ·skip [GOAL] case s M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | s [PROOFSTEP] skip [GOAL] case s M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | s [PROOFSTEP] skip [GOAL] case s M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | s [PROOFSTEP] skip [GOAL] case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g' [PROOFSTEP] · ext rw [Pi.smul_apply, sub_smul, smul_eq_mul] [GOAL] case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g' [PROOFSTEP] ext rw [Pi.smul_apply, sub_smul, smul_eq_mul] [GOAL] case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g' [PROOFSTEP] ext rw [Pi.smul_apply, sub_smul, smul_eq_mul] [GOAL] case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun c => ((g • ↑l c - ↑l c) • ↑(toFun G F) c) g' [PROOFSTEP] ext [GOAL] case f.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G x✝ : F | ((g • ↑l x✝ - ↑l x✝) • ↑(toFun G F) x✝) g' [PROOFSTEP] rw [Pi.smul_apply, sub_smul, smul_eq_mul] [GOAL] case intro.intro.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G ⊢ ∑ x in s, (g • ↑l x * ↑(toFun G F) x g' - ↑l x • ↑(toFun G F) x g') = OfNat.ofNat 0 g' [PROOFSTEP] rw [sum_sub_distrib, Pi.zero_apply, sub_eq_zero] [GOAL] case intro.intro.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G ⊢ ∑ x in s, g • ↑l x * ↑(toFun G F) x g' = ∑ x in s, ↑l x • ↑(toFun G F) x g' [PROOFSTEP] conv_lhs => congr ·skip · ext x rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | ∑ x in s, g • ↑l x * ↑(toFun G F) x g' [PROOFSTEP] congr ·skip · ext x rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | ∑ x in s, g • ↑l x * ↑(toFun G F) x g' [PROOFSTEP] congr ·skip · ext x rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x] [GOAL] M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | ∑ x in s, g • ↑l x * ↑(toFun G F) x g' [PROOFSTEP] congr [GOAL] case s M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | s case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun x => g • ↑l x * ↑(toFun G F) x g' [PROOFSTEP] ·skip [GOAL] case s M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | s [PROOFSTEP] skip [GOAL] case s M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | s [PROOFSTEP] skip [GOAL] case s M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | s [PROOFSTEP] skip [GOAL] case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun x => g • ↑l x * ↑(toFun G F) x g' [PROOFSTEP] · ext x rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x] [GOAL] case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun x => g • ↑l x * ↑(toFun G F) x g' [PROOFSTEP] ext x rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x] [GOAL] case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun x => g • ↑l x * ↑(toFun G F) x g' [PROOFSTEP] ext x rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x] [GOAL] case f M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G | fun x => g • ↑l x * ↑(toFun G F) x g' [PROOFSTEP] ext x [GOAL] case f.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G x : F | g • ↑l x * ↑(toFun G F) x g' [PROOFSTEP] rw [toFun_apply, ← mul_inv_cancel_left g g', mul_smul, ← smul_mul', ← toFun_apply _ x] [GOAL] case intro.intro.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G ⊢ ∑ x in s, g • (↑l x * ↑(toFun G F) x (g⁻¹ * g')) = ∑ x in s, ↑l x • ↑(toFun G F) x g' [PROOFSTEP] show (∑ x in s, g • (fun y => l y • MulAction.toFun G F y) x (g⁻¹ * g')) = ∑ x in s, (fun y => l y • MulAction.toFun G F y) x g' [GOAL] case intro.intro.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G ⊢ ∑ x in s, g • (fun y => ↑l y • ↑(toFun G F) y) x (g⁻¹ * g') = ∑ x in s, (fun y => ↑l y • ↑(toFun G F) y) x g' [PROOFSTEP] rw [← smul_sum, ← sum_apply _ _ fun y => l y • toFun G F y, ← sum_apply _ _ fun y => l y • toFun G F y] [GOAL] case intro.intro.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G ⊢ g • Finset.sum s (fun c => ↑l c • ↑(toFun G F) c) (g⁻¹ * g') = Finset.sum s (fun c => ↑l c • ↑(toFun G F) c) g' [PROOFSTEP] dsimp only [GOAL] case intro.intro.h M : Type u inst✝⁴ : Monoid M G : Type u inst✝³ : Group G F : Type v inst✝² : Field F inst✝¹ : MulSemiringAction M F inst✝ : MulSemiringAction G F m : M s✝ : Finset F this : IsEmpty ↑↑∅ a : F s : Finset F has : ¬a ∈ s ih : (LinearIndependent { x // x ∈ subfield G F } fun i => ↑i) → LinearIndependent F fun i => ↑(toFun G F) ↑i hs : (LinearIndependent { x // x ∈ subfield G F } fun b => ↑b) ∧ ¬a ∈ Submodule.span { x // x ∈ subfield G F } ↑s l : F →₀ F hl : l ∈ Finsupp.supported F F ↑s hla : ∑ i in s, ↑l i • ↑(toFun G F) i = ↑(toFun G F) a i : F his : i ∈ s g g' : G ⊢ g • Finset.sum s (fun c => ↑l c • ↑(toFun G F) c) (g⁻¹ * g') = Finset.sum s (fun c => ↑l c • ↑(toFun G F) c) g' [PROOFSTEP] rw [hla, toFun_apply, toFun_apply, smul_smul, mul_inv_cancel_left] [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F ⊢ Polynomial.Monic (minpoly G F x) [PROOFSTEP] simp only [minpoly, Polynomial.monic_toSubring] [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F ⊢ Polynomial.Monic (prodXSubSmul G F x) [PROOFSTEP] exact prodXSubSmul.monic G F x [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F ⊢ Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x (minpoly G F x) = 0 [PROOFSTEP] rw [← prodXSubSmul.eval G F x, Polynomial.eval₂_eq_eval_map] [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F ⊢ Polynomial.eval x (Polynomial.map (Subring.subtype (subfield G F).toSubring) (minpoly G F x)) = Polynomial.eval x (prodXSubSmul G F x) [PROOFSTEP] simp only [minpoly, Polynomial.map_toSubring] [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F H : minpoly G F x = 1 this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x (minpoly G F x) = 0 ⊢ 1 = 0 [PROOFSTEP] rwa [H, Polynomial.eval₂_one] at this [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f : Polynomial { x // x ∈ subfield G F } hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0 ⊢ minpoly G F x ∣ f [PROOFSTEP] have : (subfield G F).subtype = (subfield G F).toSubring.subtype := rfl [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f : Polynomial { x // x ∈ subfield G F } hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0 this : Subfield.subtype (subfield G F) = Subring.subtype (subfield G F).toSubring ⊢ minpoly G F x ∣ f [PROOFSTEP] have h : Polynomial.map (MulSemiringActionHom.toRingHom (IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f = Polynomial.map ((IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f := rfl [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f : Polynomial { x // x ∈ subfield G F } hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0 this : Subfield.subtype (subfield G F) = Subring.subtype (subfield G F).toSubring h : Polynomial.map (MulSemiringActionHom.toRingHom (IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f = Polynomial.map (↑(IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f ⊢ minpoly G F x ∣ f [PROOFSTEP] erw [← Polynomial.map_dvd_map' (Subfield.subtype <| FixedPoints.subfield G F), minpoly, this, Polynomial.map_toSubring _ _, prodXSubSmul] [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f : Polynomial { x // x ∈ subfield G F } hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0 this : Subfield.subtype (subfield G F) = Subring.subtype (subfield G F).toSubring h : Polynomial.map (MulSemiringActionHom.toRingHom (IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f = Polynomial.map (↑(IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f ⊢ ∏ g : G ⧸ stabilizer G x, (Polynomial.X - ↑Polynomial.C (ofQuotientStabilizer G x g)) ∣ Polynomial.map (Subring.subtype (subfield G F).toSubring) f [PROOFSTEP] refine' Fintype.prod_dvd_of_coprime (Polynomial.pairwise_coprime_X_sub_C <| MulAction.injective_ofQuotientStabilizer G x) fun y => QuotientGroup.induction_on y fun g => _ [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f : Polynomial { x // x ∈ subfield G F } hf : Polynomial.eval₂ (Subfield.subtype (subfield G F)) x f = 0 this : Subfield.subtype (subfield G F) = Subring.subtype (subfield G F).toSubring h : Polynomial.map (MulSemiringActionHom.toRingHom (IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f = Polynomial.map (↑(IsInvariantSubring.subtypeHom G (subfield G F).toSubring)) f y : G ⧸ stabilizer G x g : G ⊢ Polynomial.X - ↑Polynomial.C (ofQuotientStabilizer G x ↑g) ∣ Polynomial.map (Subring.subtype (subfield G F).toSubring) f [PROOFSTEP] rw [Polynomial.dvd_iff_isRoot, Polynomial.IsRoot.def, MulAction.ofQuotientStabilizer_mk, Polynomial.eval_smul', ← this, ← Subfield.toSubring_subtype_eq_subtype, ← IsInvariantSubring.coe_subtypeHom' G (FixedPoints.subfield G F).toSubring, h, ← MulSemiringActionHom.coe_polynomial, ← MulSemiringActionHom.map_smul, smul_polynomial, MulSemiringActionHom.coe_polynomial, ← h, IsInvariantSubring.coe_subtypeHom', Polynomial.eval_map, Subfield.toSubring_subtype_eq_subtype, hf, smul_zero] [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x ⊢ f = 1 ∨ g = 1 [PROOFSTEP] have hf2 : f ∣ minpoly G F x := by rw [← hfg]; exact dvd_mul_right _ _ [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x ⊢ f ∣ minpoly G F x [PROOFSTEP] rw [← hfg] [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x ⊢ f ∣ f * g [PROOFSTEP] exact dvd_mul_right _ _ [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x ⊢ f = 1 ∨ g = 1 [PROOFSTEP] have hg2 : g ∣ minpoly G F x := by rw [← hfg]; exact dvd_mul_left _ _ [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x ⊢ g ∣ minpoly G F x [PROOFSTEP] rw [← hfg] [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x ⊢ g ∣ f * g [PROOFSTEP] exact dvd_mul_left _ _ [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x hg2 : g ∣ minpoly G F x ⊢ f = 1 ∨ g = 1 [PROOFSTEP] have := eval₂ G F x [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x hg2 : g ∣ minpoly G F x this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x (minpoly G F x) = 0 ⊢ f = 1 ∨ g = 1 [PROOFSTEP] rw [← hfg, Polynomial.eval₂_mul, mul_eq_zero] at this [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x hg2 : g ∣ minpoly G F x this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0 ∨ Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0 ⊢ f = 1 ∨ g = 1 [PROOFSTEP] cases' this with this this [GOAL] case inl M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x hg2 : g ∣ minpoly G F x this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0 ⊢ f = 1 ∨ g = 1 [PROOFSTEP] right [GOAL] case inl.h M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x hg2 : g ∣ minpoly G F x this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0 ⊢ g = 1 [PROOFSTEP] have hf3 : f = minpoly G F x := Polynomial.eq_of_monic_of_associated hf (monic G F x) (associated_of_dvd_dvd hf2 <| @of_eval₂ G _ F _ _ _ x f this) [GOAL] case inl.h M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x hg2 : g ∣ minpoly G F x this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0 hf3 : f = minpoly G F x ⊢ g = 1 [PROOFSTEP] rwa [← mul_one (minpoly G F x), hf3, mul_right_inj' (monic G F x).ne_zero] at hfg [GOAL] case inr M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x hg2 : g ∣ minpoly G F x this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0 ⊢ f = 1 ∨ g = 1 [PROOFSTEP] left [GOAL] case inr.h M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x hg2 : g ∣ minpoly G F x this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0 ⊢ f = 1 [PROOFSTEP] have hg3 : g = minpoly G F x := Polynomial.eq_of_monic_of_associated hg (monic G F x) (associated_of_dvd_dvd hg2 <| @of_eval₂ G _ F _ _ _ x g this) [GOAL] case inr.h M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F f g : Polynomial { x // x ∈ subfield G F } hf : Polynomial.Monic f hg : Polynomial.Monic g hfg : f * g = minpoly G F x hf2 : f ∣ minpoly G F x hg2 : g ∣ minpoly G F x this : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0 hg3 : g = minpoly G F x ⊢ f = 1 [PROOFSTEP] rwa [← one_mul (minpoly G F x), hg3, mul_left_inj' (monic G F x).ne_zero] at hfg [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G x : F ⊢ IsIntegral { x // x ∈ subfield G F } x [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G x : F val✝ : Fintype G ⊢ IsIntegral { x // x ∈ subfield G F } x [PROOFSTEP] exact ⟨minpoly G F x, minpoly.monic G F x, minpoly.eval₂ G F x⟩ [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G x : F s : Finset F hs : LinearIndependent { x // x ∈ subfield G F } fun i => ↑i ⊢ card s ≤ Fintype.card G [PROOFSTEP] simpa only [rank_fun', Cardinal.mk_coe_finset, Finset.coe_sort_coe, Cardinal.lift_natCast, Cardinal.natCast_le] using cardinal_lift_le_rank_of_linearIndependent' (linearIndependent_smul_of_linearIndependent G F hs) [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G x : F ⊢ Polynomial.Splits (RingHom.id F) (Polynomial.map (algebraMap { x // x ∈ subfield G F } F) (_root_.minpoly { x // x ∈ subfield G F } x)) [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G x : F val✝ : Fintype G ⊢ Polynomial.Splits (RingHom.id F) (Polynomial.map (algebraMap { x // x ∈ subfield G F } F) (_root_.minpoly { x // x ∈ subfield G F } x)) [PROOFSTEP] rw [← minpoly_eq_minpoly, minpoly, coe_algebraMap, ← Subfield.toSubring_subtype_eq_subtype, Polynomial.map_toSubring _ (subfield G F).toSubring, prodXSubSmul] [GOAL] case intro M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G x : F val✝ : Fintype G ⊢ Polynomial.Splits (RingHom.id F) (∏ g : G ⧸ stabilizer G x, (Polynomial.X - ↑Polynomial.C (ofQuotientStabilizer G x g))) [PROOFSTEP] exact Polynomial.splits_prod _ fun _ _ => Polynomial.splits_X_sub_C _ [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G x : F ⊢ Polynomial.Separable (_root_.minpoly { x // x ∈ subfield G F } x) [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G x : F val✝ : Fintype G ⊢ Polynomial.Separable (_root_.minpoly { x // x ∈ subfield G F } x) [PROOFSTEP] erw [← minpoly_eq_minpoly, ← Polynomial.separable_map (FixedPoints.subfield G F).subtype, minpoly, Polynomial.map_toSubring _ (subfield G F).toSubring] [GOAL] case intro M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G x : F val✝ : Fintype G ⊢ Polynomial.Separable (prodXSubSmul G F x) [PROOFSTEP] exact Polynomial.separable_prod_X_sub_C_iff.2 (injective_ofQuotientStabilizer G x) [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G ⊢ FiniteDimensional { x // x ∈ subfield G F } F [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Finite G val✝ : Fintype G ⊢ FiniteDimensional { x // x ∈ subfield G F } F [PROOFSTEP] exact IsNoetherian.iff_fg.1 (IsNoetherian.iff_rank_lt_aleph0.2 <| (rank_le_card G F).trans_lt <| Cardinal.nat_lt_aleph0 _) [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G ⊢ finrank { x // x ∈ subfield G F } F ≤ Fintype.card G [PROOFSTEP] rw [← Cardinal.natCast_le, finrank_eq_rank] [GOAL] M : Type u inst✝⁵ : Monoid M G : Type u inst✝⁴ : Group G F : Type v inst✝³ : Field F inst✝² : MulSemiringAction M F inst✝¹ : MulSemiringAction G F m : M inst✝ : Fintype G ⊢ Module.rank { x // x ∈ subfield G F } F ≤ ↑(Fintype.card G) [PROOFSTEP] apply rank_le_card [GOAL] M : Type u inst✝⁹ : Monoid M G✝ : Type u inst✝⁸ : Group G✝ F✝ : Type v inst✝⁷ : Field F✝ inst✝⁶ : MulSemiringAction M F✝ inst✝⁵ : MulSemiringAction G✝ F✝ m : M G : Type u F : Type v inst✝⁴ : Group G inst✝³ : Field F inst✝² : Finite G inst✝¹ : MulSemiringAction G F inst✝ : FaithfulSMul G F ⊢ Function.Bijective (MulSemiringAction.toAlgHom { x // x ∈ subfield G F } F) [PROOFSTEP] cases nonempty_fintype G [GOAL] case intro M : Type u inst✝⁹ : Monoid M G✝ : Type u inst✝⁸ : Group G✝ F✝ : Type v inst✝⁷ : Field F✝ inst✝⁶ : MulSemiringAction M F✝ inst✝⁵ : MulSemiringAction G✝ F✝ m : M G : Type u F : Type v inst✝⁴ : Group G inst✝³ : Field F inst✝² : Finite G inst✝¹ : MulSemiringAction G F inst✝ : FaithfulSMul G F val✝ : Fintype G ⊢ Function.Bijective (MulSemiringAction.toAlgHom { x // x ∈ subfield G F } F) [PROOFSTEP] rw [Fintype.bijective_iff_injective_and_card] [GOAL] case intro M : Type u inst✝⁹ : Monoid M G✝ : Type u inst✝⁸ : Group G✝ F✝ : Type v inst✝⁷ : Field F✝ inst✝⁶ : MulSemiringAction M F✝ inst✝⁵ : MulSemiringAction G✝ F✝ m : M G : Type u F : Type v inst✝⁴ : Group G inst✝³ : Field F inst✝² : Finite G inst✝¹ : MulSemiringAction G F inst✝ : FaithfulSMul G F val✝ : Fintype G ⊢ Function.Injective (MulSemiringAction.toAlgHom { x // x ∈ subfield G F } F) ∧ Fintype.card G = Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F) [PROOFSTEP] constructor [GOAL] case intro.left M : Type u inst✝⁹ : Monoid M G✝ : Type u inst✝⁸ : Group G✝ F✝ : Type v inst✝⁷ : Field F✝ inst✝⁶ : MulSemiringAction M F✝ inst✝⁵ : MulSemiringAction G✝ F✝ m : M G : Type u F : Type v inst✝⁴ : Group G inst✝³ : Field F inst✝² : Finite G inst✝¹ : MulSemiringAction G F inst✝ : FaithfulSMul G F val✝ : Fintype G ⊢ Function.Injective (MulSemiringAction.toAlgHom { x // x ∈ subfield G F } F) [PROOFSTEP] exact MulSemiringAction.toAlgHom_injective _ F [GOAL] case intro.right M : Type u inst✝⁹ : Monoid M G✝ : Type u inst✝⁸ : Group G✝ F✝ : Type v inst✝⁷ : Field F✝ inst✝⁶ : MulSemiringAction M F✝ inst✝⁵ : MulSemiringAction G✝ F✝ m : M G : Type u F : Type v inst✝⁴ : Group G inst✝³ : Field F inst✝² : Finite G inst✝¹ : MulSemiringAction G F inst✝ : FaithfulSMul G F val✝ : Fintype G ⊢ Fintype.card G = Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F) [PROOFSTEP] apply le_antisymm [GOAL] case intro.right.a M : Type u inst✝⁹ : Monoid M G✝ : Type u inst✝⁸ : Group G✝ F✝ : Type v inst✝⁷ : Field F✝ inst✝⁶ : MulSemiringAction M F✝ inst✝⁵ : MulSemiringAction G✝ F✝ m : M G : Type u F : Type v inst✝⁴ : Group G inst✝³ : Field F inst✝² : Finite G inst✝¹ : MulSemiringAction G F inst✝ : FaithfulSMul G F val✝ : Fintype G ⊢ Fintype.card G ≤ Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F) [PROOFSTEP] exact Fintype.card_le_of_injective _ (MulSemiringAction.toAlgHom_injective _ F) [GOAL] case intro.right.a M : Type u inst✝⁹ : Monoid M G✝ : Type u inst✝⁸ : Group G✝ F✝ : Type v inst✝⁷ : Field F✝ inst✝⁶ : MulSemiringAction M F✝ inst✝⁵ : MulSemiringAction G✝ F✝ m : M G : Type u F : Type v inst✝⁴ : Group G inst✝³ : Field F inst✝² : Finite G inst✝¹ : MulSemiringAction G F inst✝ : FaithfulSMul G F val✝ : Fintype G ⊢ Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F) ≤ Fintype.card G [PROOFSTEP] rw [← finrank_eq_card G F] [GOAL] case intro.right.a M : Type u inst✝⁹ : Monoid M G✝ : Type u inst✝⁸ : Group G✝ F✝ : Type v inst✝⁷ : Field F✝ inst✝⁶ : MulSemiringAction M F✝ inst✝⁵ : MulSemiringAction G✝ F✝ m : M G : Type u F : Type v inst✝⁴ : Group G inst✝³ : Field F inst✝² : Finite G inst✝¹ : MulSemiringAction G F inst✝ : FaithfulSMul G F val✝ : Fintype G ⊢ Fintype.card (F →ₐ[{ x // x ∈ subfield G F }] F) ≤ finrank { x // x ∈ subfield G F } F [PROOFSTEP] exact LE.le.trans_eq (finrank_algHom _ F) (finrank_linear_map' _ _ _)
{"mathlib_filename": "Mathlib.FieldTheory.Fixed", "llama_tokens": 29522}
{"mathlib_filename": "Mathlib.Condensed.Basic", "llama_tokens": 0}
[GOAL] α : Type u β : Type v φ : Type w n : ℕ h : List.length [] = succ n ⊢ α [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v φ : Type w n : ℕ h : List.length [] = succ n ⊢ cons (head { val := [], property := h }) (tail { val := [], property := h }) = { val := [], property := h } [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v φ : Type w n : ℕ l : List α h : List.length l = n i : Fin n ⊢ ↑i < List.length l [PROOFSTEP] rw [h] [GOAL] α : Type u β : Type v φ : Type w n : ℕ l : List α h : List.length l = n i : Fin n ⊢ ↑i < n [PROOFSTEP] exact i.2 [GOAL] α : Type u β : Type v φ : Type w n✝ n m : ℕ l₁ : List α h₁ : List.length l₁ = n l₂ : List α h₂ : List.length l₂ = m ⊢ List.length (l₁ ++ l₂) = n + m [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v φ : Type w n : ℕ f : α → β l : List α h : List.length l = n ⊢ List.length (List.map f l) = n [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v φ : Type w n : ℕ f : α → β → φ x : List α property✝¹ : List.length x = n y : List β property✝ : List.length y = n ⊢ List.length (List.zipWith f x y) = n [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v φ : Type w n i : ℕ l : List α p : List.length l = n ⊢ List.length (List.drop i l) = n - i [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v φ : Type w n i : ℕ l : List α p : List.length l = n ⊢ List.length (List.take i l) = min i n [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v φ : Type w n : ℕ i : Fin n l : List α p : List.length l = n ⊢ List.length (List.removeNth l ↑i) = n - 1 [PROOFSTEP] rw [l.length_removeNth] [GOAL] α : Type u β : Type v φ : Type w n : ℕ i : Fin n l : List α p : List.length l = n ⊢ List.length l - 1 = n - 1 [PROOFSTEP] rw [p] [GOAL] α : Type u β : Type v φ : Type w n : ℕ i : Fin n l : List α p : List.length l = n ⊢ ↑i < List.length l [PROOFSTEP] rw [p] [GOAL] α : Type u β : Type v φ : Type w n : ℕ i : Fin n l : List α p : List.length l = n ⊢ ↑i < n [PROOFSTEP] exact i.2 [GOAL] α : Type u β : Type v φ : Type w n : ℕ σ : Type f : α → σ → σ × β x : List α px : List.length x = n c : σ res : σ × List β := List.mapAccumr f x c ⊢ List.length res.snd = n [PROOFSTEP] simp [*] [GOAL] α✝ : Type u β✝ : Type v φ✝ : Type w n : ℕ σ✝ α β σ φ : Type f : α → β → σ → σ × φ x : List α px : List.length x = n y : List β py : List.length y = n c : σ res : σ × List φ := List.mapAccumr₂ f x y c ⊢ List.length res.snd = n [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v φ : Type w n : ℕ v : Vector α n i : ℕ fill : α ⊢ n - i + min n i = n [PROOFSTEP] simp [GOAL] α : Type u β : Type v φ : Type w n : ℕ v : Vector α n i : ℕ fill : α ⊢ min n i + min (n - i) n = n [PROOFSTEP] by_cases h : i ≤ n [GOAL] case pos α : Type u β : Type v φ : Type w n : ℕ v : Vector α n i : ℕ fill : α h : i ≤ n ⊢ min n i + min (n - i) n = n [PROOFSTEP] have h₁ := Nat.sub_le n i [GOAL] case pos α : Type u β : Type v φ : Type w n : ℕ v : Vector α n i : ℕ fill : α h : i ≤ n h₁ : n - i ≤ n ⊢ min n i + min (n - i) n = n [PROOFSTEP] rw [min_eq_right h] [GOAL] case pos α : Type u β : Type v φ : Type w n : ℕ v : Vector α n i : ℕ fill : α h : i ≤ n h₁ : n - i ≤ n ⊢ i + min (n - i) n = n [PROOFSTEP] rw [min_eq_left h₁, ← add_tsub_assoc_of_le h, Nat.add_comm, add_tsub_cancel_right] [GOAL] case neg α : Type u β : Type v φ : Type w n : ℕ v : Vector α n i : ℕ fill : α h : ¬i ≤ n ⊢ min n i + min (n - i) n = n [PROOFSTEP] have h₁ := le_of_not_ge h [GOAL] case neg α : Type u β : Type v φ : Type w n : ℕ v : Vector α n i : ℕ fill : α h : ¬i ≤ n h₁ : n ≤ i ⊢ min n i + min (n - i) n = n [PROOFSTEP] rw [min_eq_left h₁, tsub_eq_zero_iff_le.mpr h₁, zero_min, Nat.add_zero] [GOAL] α : Type u β : Type v φ : Type w n : ℕ a : α v : Vector α n ⊢ toList (cons a v) = a :: toList v [PROOFSTEP] cases v [GOAL] case mk α : Type u β : Type v φ : Type w n : ℕ a : α val✝ : List α property✝ : List.length val✝ = n ⊢ toList (cons a { val := val✝, property := property✝ }) = a :: toList { val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : Type v φ : Type w n✝ n m : ℕ v : Vector α n w : Vector α m ⊢ toList (append v w) = toList v ++ toList w [PROOFSTEP] cases v [GOAL] case mk α : Type u β : Type v φ : Type w n✝ n m : ℕ w : Vector α m val✝ : List α property✝ : List.length val✝ = n ⊢ toList (append { val := val✝, property := property✝ } w) = toList { val := val✝, property := property✝ } ++ toList w [PROOFSTEP] cases w [GOAL] case mk.mk α : Type u β : Type v φ : Type w n✝ n m : ℕ val✝¹ : List α property✝¹ : List.length val✝¹ = n val✝ : List α property✝ : List.length val✝ = m ⊢ toList (append { val := val✝¹, property := property✝¹ } { val := val✝, property := property✝ }) = toList { val := val✝¹, property := property✝¹ } ++ toList { val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : Type v φ : Type w n✝ n m : ℕ v : Vector α m ⊢ toList (drop n v) = List.drop n (toList v) [PROOFSTEP] cases v [GOAL] case mk α : Type u β : Type v φ : Type w n✝ n m : ℕ val✝ : List α property✝ : List.length val✝ = m ⊢ toList (drop n { val := val✝, property := property✝ }) = List.drop n (toList { val := val✝, property := property✝ }) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v φ : Type w n✝ n m : ℕ v : Vector α m ⊢ toList (take n v) = List.take n (toList v) [PROOFSTEP] cases v [GOAL] case mk α : Type u β : Type v φ : Type w n✝ n m : ℕ val✝ : List α property✝ : List.length val✝ = m ⊢ toList (take n { val := val✝, property := property✝ }) = List.take n (toList { val := val✝, property := property✝ }) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Data.Vector", "llama_tokens": 2695}
[GOAL] R : Type u inst✝² : CommSemiring R S : Type v inst✝¹ : CommSemiring S inst✝ : Nontrivial R ⊢ ¬Separable 0 [PROOFSTEP] rintro ⟨x, y, h⟩ [GOAL] case intro.intro R : Type u inst✝² : CommSemiring R S : Type v inst✝¹ : CommSemiring S inst✝ : Nontrivial R x y : R[X] h : x * 0 + y * ↑derivative 0 = 1 ⊢ False [PROOFSTEP] simp only [derivative_zero, mul_zero, add_zero, zero_ne_one] at h [GOAL] R : Type u inst✝² : CommSemiring R S : Type v inst✝¹ : CommSemiring S inst✝ : Subsingleton R f : R[X] ⊢ Separable f [PROOFSTEP] simp [Separable, IsCoprime] [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S a : R ⊢ Separable (X + ↑C a) [PROOFSTEP] rw [separable_def, derivative_add, derivative_X, derivative_C, add_zero] [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S a : R ⊢ IsCoprime (X + ↑C a) 1 [PROOFSTEP] exact isCoprime_one_right [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S ⊢ Separable X [PROOFSTEP] rw [separable_def, derivative_X] [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S ⊢ IsCoprime X 1 [PROOFSTEP] exact isCoprime_one_right [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S r : R ⊢ Separable (↑C r) ↔ IsUnit r [PROOFSTEP] rw [separable_def, derivative_C, isCoprime_zero_right, isUnit_C] [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f g : R[X] h : Separable (f * g) ⊢ Separable f [PROOFSTEP] have := h.of_mul_left_left [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f g : R[X] h : Separable (f * g) this : IsCoprime f (↑derivative (f * g)) ⊢ Separable f [PROOFSTEP] rw [derivative_mul] at this [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f g : R[X] h : Separable (f * g) this : IsCoprime f (↑derivative f * g + f * ↑derivative g) ⊢ Separable f [PROOFSTEP] exact IsCoprime.of_mul_right_left (IsCoprime.of_add_mul_left_right this) [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f g : R[X] h : Separable (f * g) ⊢ Separable g [PROOFSTEP] rw [mul_comm] at h [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f g : R[X] h : Separable (g * f) ⊢ Separable g [PROOFSTEP] exact h.of_mul_left [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f g : R[X] hf : Separable f hfg : g ∣ f ⊢ Separable g [PROOFSTEP] rcases hfg with ⟨f', rfl⟩ [GOAL] case intro R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S g f' : R[X] hf : Separable (g * f') ⊢ Separable g [PROOFSTEP] exact Separable.of_mul_left hf [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f g : R[X] h : Separable (f * g) ⊢ IsCoprime f g [PROOFSTEP] have := h.of_mul_left_left [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f g : R[X] h : Separable (f * g) this : IsCoprime f (↑derivative (f * g)) ⊢ IsCoprime f g [PROOFSTEP] rw [derivative_mul] at this [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f g : R[X] h : Separable (f * g) this : IsCoprime f (↑derivative f * g + f * ↑derivative g) ⊢ IsCoprime f g [PROOFSTEP] exact IsCoprime.of_mul_right_right (IsCoprime.of_add_mul_left_right this) [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f : R[X] n : ℕ h : Separable (f ^ (n + 2)) ⊢ IsUnit f ∨ Separable f ∧ n + 2 = 1 ∨ n + 2 = 0 [PROOFSTEP] rw [pow_succ, pow_succ] at h [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S f : R[X] n : ℕ h : Separable (f * (f * f ^ n)) ⊢ IsUnit f ∨ Separable f ∧ n + 2 = 1 ∨ n + 2 = 0 [PROOFSTEP] exact Or.inl (isCoprime_self.1 h.isCoprime.of_mul_right_left) [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p : R[X] h : Separable p f : R →+* S a b : R[X] H : a * p + b * ↑derivative p = 1 ⊢ Polynomial.map f a * Polynomial.map f p + Polynomial.map f b * ↑derivative (Polynomial.map f p) = 1 [PROOFSTEP] rw [derivative_map, ← Polynomial.map_mul, ← Polynomial.map_mul, ← Polynomial.map_add, H, Polynomial.map_one] [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ p q : R[X] hp : Separable p hq : q * q ∣ p ⊢ IsUnit q [PROOFSTEP] obtain ⟨p, rfl⟩ := hq [GOAL] case intro R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ q p : R[X] hp : Separable (q * q * p) ⊢ IsUnit q [PROOFSTEP] apply isCoprime_self.mp [GOAL] case intro R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ q p : R[X] hp : Separable (q * q * p) ⊢ IsCoprime q q [PROOFSTEP] have : IsCoprime (q * (q * p)) (q * (derivative q * p + derivative q * p + q * derivative p)) := by simp only [← mul_assoc, mul_add] dsimp only [Separable] at hp convert hp using 1 rw [derivative_mul, derivative_mul] ring [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ q p : R[X] hp : Separable (q * q * p) ⊢ IsCoprime (q * (q * p)) (q * (↑derivative q * p + ↑derivative q * p + q * ↑derivative p)) [PROOFSTEP] simp only [← mul_assoc, mul_add] [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ q p : R[X] hp : Separable (q * q * p) ⊢ IsCoprime (q * q * p) (q * ↑derivative q * p + q * ↑derivative q * p + q * q * ↑derivative p) [PROOFSTEP] dsimp only [Separable] at hp [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ q p : R[X] hp : IsCoprime (q * q * p) (↑derivative (q * q * p)) ⊢ IsCoprime (q * q * p) (q * ↑derivative q * p + q * ↑derivative q * p + q * q * ↑derivative p) [PROOFSTEP] convert hp using 1 [GOAL] case h.e'_4 R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ q p : R[X] hp : IsCoprime (q * q * p) (↑derivative (q * q * p)) ⊢ q * ↑derivative q * p + q * ↑derivative q * p + q * q * ↑derivative p = ↑derivative (q * q * p) [PROOFSTEP] rw [derivative_mul, derivative_mul] [GOAL] case h.e'_4 R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ q p : R[X] hp : IsCoprime (q * q * p) (↑derivative (q * q * p)) ⊢ q * ↑derivative q * p + q * ↑derivative q * p + q * q * ↑derivative p = (↑derivative q * q + q * ↑derivative q) * p + q * q * ↑derivative p [PROOFSTEP] ring [GOAL] case intro R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ q p : R[X] hp : Separable (q * q * p) this : IsCoprime (q * (q * p)) (q * (↑derivative q * p + ↑derivative q * p + q * ↑derivative p)) ⊢ IsCoprime q q [PROOFSTEP] exact IsCoprime.of_mul_right_left (IsCoprime.of_mul_left_left this) [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ p q : R[X] hq : ¬IsUnit q hsep : Separable p ⊢ multiplicity q p ≤ 1 [PROOFSTEP] contrapose! hq [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ p q : R[X] hsep : Separable p hq : 1 < multiplicity q p ⊢ IsUnit q [PROOFSTEP] apply isUnit_of_self_mul_dvd_separable hsep [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ p q : R[X] hsep : Separable p hq : 1 < multiplicity q p ⊢ q * q ∣ p [PROOFSTEP] rw [← sq] [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ p q : R[X] hsep : Separable p hq : 1 < multiplicity q p ⊢ q ^ 2 ∣ p [PROOFSTEP] apply multiplicity.pow_dvd_of_le_multiplicity [GOAL] case a R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ p q : R[X] hsep : Separable p hq : 1 < multiplicity q p ⊢ ↑2 ≤ multiplicity q p [PROOFSTEP] have h : ⟨Part.Dom 1 ∧ Part.Dom 1, fun _ ↦ 2⟩ ≤ multiplicity q p := PartENat.add_one_le_of_lt hq [GOAL] case a R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ p q : R[X] hsep : Separable p hq : 1 < multiplicity q p h : { Dom := 1.Dom ∧ 1.Dom, get := fun x => 2 } ≤ multiplicity q p ⊢ ↑2 ≤ multiplicity q p [PROOFSTEP] rw [and_self] at h [GOAL] case a R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q✝ : ℕ p q : R[X] hsep : Separable p hq : 1 < multiplicity q p h : { Dom := 1.Dom, get := fun x => 2 } ≤ multiplicity q p ⊢ ↑2 ≤ multiplicity q p [PROOFSTEP] exact h [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q : ℕ p : R[X] hsep : Separable p ⊢ Squarefree p [PROOFSTEP] rw [multiplicity.squarefree_iff_multiplicity_le_one p] [GOAL] R : Type u inst✝¹ : CommSemiring R S : Type v inst✝ : CommSemiring S p✝ q : ℕ p : R[X] hsep : Separable p ⊢ ∀ (x : R[X]), multiplicity x p ≤ 1 ∨ IsUnit x [PROOFSTEP] exact fun f => or_iff_not_imp_right.mpr fun hunit => multiplicity_le_one_of_separable hunit hsep [GOAL] R : Type u inst✝ : CommRing R x : R ⊢ Separable (X - ↑C x) [PROOFSTEP] simpa only [sub_eq_add_neg, C_neg] using separable_X_add_C (-x) [GOAL] R : Type u inst✝ : CommRing R f g : R[X] hf : Separable f hg : Separable g h : IsCoprime f g ⊢ Separable (f * g) [PROOFSTEP] rw [separable_def, derivative_mul] [GOAL] R : Type u inst✝ : CommRing R f g : R[X] hf : Separable f hg : Separable g h : IsCoprime f g ⊢ IsCoprime (f * g) (↑derivative f * g + f * ↑derivative g) [PROOFSTEP] exact ((hf.mul_right h).add_mul_left_right _).mul_left ((h.symm.mul_right hg).mul_add_right_right _) [GOAL] R : Type u inst✝ : CommRing R ι : Type u_1 f : ι → R[X] s✝ : Finset ι a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → x ≠ y → IsCoprime (f x) (f y)) → (∀ (x : ι), x ∈ s → Separable (f x)) → Separable (∏ x in s, f x) h1 : ∀ (x : ι), x ∈ insert a s → ∀ (y : ι), y ∈ insert a s → x ≠ y → IsCoprime (f x) (f y) h2 : ∀ (x : ι), x ∈ insert a s → Separable (f x) ⊢ Separable (∏ x in insert a s, f x) [PROOFSTEP] simp_rw [Finset.forall_mem_insert, forall_and] at h1 h2 [GOAL] R : Type u inst✝ : CommRing R ι : Type u_1 f : ι → R[X] s✝ : Finset ι a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → x ≠ y → IsCoprime (f x) (f y)) → (∀ (x : ι), x ∈ s → Separable (f x)) → Separable (∏ x in s, f x) h2 : Separable (f a) ∧ ∀ (x : ι), x ∈ s → Separable (f x) h1 : ((a ≠ a → IsCoprime (f a) (f a)) ∧ ∀ (x : ι), x ∈ s → a ≠ x → IsCoprime (f a) (f x)) ∧ (∀ (x : ι), x ∈ s → x ≠ a → IsCoprime (f x) (f a)) ∧ ∀ (x : ι), x ∈ s → ∀ (x_2 : ι), x_2 ∈ s → x ≠ x_2 → IsCoprime (f x) (f x_2) ⊢ Separable (∏ x in insert a s, f x) [PROOFSTEP] rw [prod_insert has] [GOAL] R : Type u inst✝ : CommRing R ι : Type u_1 f : ι → R[X] s✝ : Finset ι a : ι s : Finset ι has : ¬a ∈ s ih : (∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → x ≠ y → IsCoprime (f x) (f y)) → (∀ (x : ι), x ∈ s → Separable (f x)) → Separable (∏ x in s, f x) h2 : Separable (f a) ∧ ∀ (x : ι), x ∈ s → Separable (f x) h1 : ((a ≠ a → IsCoprime (f a) (f a)) ∧ ∀ (x : ι), x ∈ s → a ≠ x → IsCoprime (f a) (f x)) ∧ (∀ (x : ι), x ∈ s → x ≠ a → IsCoprime (f x) (f a)) ∧ ∀ (x : ι), x ∈ s → ∀ (x_2 : ι), x_2 ∈ s → x ≠ x_2 → IsCoprime (f x) (f x_2) ⊢ Separable (f a * ∏ x in s, f x) [PROOFSTEP] exact h2.1.mul (ih h1.2.2 h2.2) (IsCoprime.prod_right fun i his => h1.1.2 i his <| Ne.symm <| ne_of_mem_of_not_mem his has) [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R ι : Type u_1 f : ι → R s : Finset ι hfs : Separable (∏ i in s, (X - ↑C (f i))) x y : ι hx : x ∈ s hy : y ∈ s hfxy : f x = f y ⊢ x = y [PROOFSTEP] by_contra hxy [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R ι : Type u_1 f : ι → R s : Finset ι hfs : Separable (∏ i in s, (X - ↑C (f i))) x y : ι hx : x ∈ s hy : y ∈ s hfxy : f x = f y hxy : ¬x = y ⊢ False [PROOFSTEP] rw [← insert_erase hx, prod_insert (not_mem_erase _ _), ← insert_erase (mem_erase_of_ne_of_mem (Ne.symm hxy) hy), prod_insert (not_mem_erase _ _), ← mul_assoc, hfxy, ← sq] at hfs [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R ι : Type u_1 f : ι → R s : Finset ι x y : ι hfs : Separable ((X - ↑C (f y)) ^ 2 * ∏ x in Finset.erase (Finset.erase s x) y, (X - ↑C (f x))) hx : x ∈ s hy : y ∈ s hfxy : f x = f y hxy : ¬x = y ⊢ False [PROOFSTEP] cases (hfs.of_mul_left.of_pow (not_isUnit_X_sub_C _) two_ne_zero).2 [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R s : Multiset R hs : Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) s)) ⊢ Multiset.Nodup s [PROOFSTEP] rw [Multiset.nodup_iff_ne_cons_cons] [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R s : Multiset R hs : Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) s)) ⊢ ∀ (a : R) (t : Multiset R), s ≠ a ::ₘ a ::ₘ t [PROOFSTEP] rintro a t rfl [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R a : R t : Multiset R hs : Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) (a ::ₘ a ::ₘ t))) ⊢ False [PROOFSTEP] refine' not_isUnit_X_sub_C a (isUnit_of_self_mul_dvd_separable hs _) [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R a : R t : Multiset R hs : Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) (a ::ₘ a ::ₘ t))) ⊢ (X - ↑C a) * (X - ↑C a) ∣ Multiset.prod (Multiset.map (fun a => X - ↑C a) (a ::ₘ a ::ₘ t)) [PROOFSTEP] simpa only [Multiset.map_cons, Multiset.prod_cons] using mul_dvd_mul_left _ (dvd_mul_right _ _) [GOAL] R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ⊢ Separable (X ^ n - ↑C ↑u) [PROOFSTEP] nontriviality R [GOAL] R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ✝ : Nontrivial R ⊢ Separable (X ^ n - ↑C ↑u) [PROOFSTEP] rcases n.eq_zero_or_pos with (rfl | hpos) [GOAL] case inl R : Type u inst✝ : CommRing R u : Rˣ ✝ : Nontrivial R hn : IsUnit ↑0 ⊢ Separable (X ^ 0 - ↑C ↑u) [PROOFSTEP] simp at hn [GOAL] case inr R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ✝ : Nontrivial R hpos : n > 0 ⊢ Separable (X ^ n - ↑C ↑u) [PROOFSTEP] apply (separable_def' (X ^ n - C (u : R))).2 [GOAL] case inr R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ✝ : Nontrivial R hpos : n > 0 ⊢ ∃ a b, a * (X ^ n - ↑C ↑u) + b * ↑derivative (X ^ n - ↑C ↑u) = 1 [PROOFSTEP] obtain ⟨n', hn'⟩ := hn.exists_left_inv [GOAL] case inr.intro R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ✝ : Nontrivial R hpos : n > 0 n' : R hn' : n' * ↑n = 1 ⊢ ∃ a b, a * (X ^ n - ↑C ↑u) + b * ↑derivative (X ^ n - ↑C ↑u) = 1 [PROOFSTEP] refine' ⟨-C ↑u⁻¹, C (↑u⁻¹ : R) * C n' * X, _⟩ [GOAL] case inr.intro R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ✝ : Nontrivial R hpos : n > 0 n' : R hn' : n' * ↑n = 1 ⊢ -↑C ↑u⁻¹ * (X ^ n - ↑C ↑u) + ↑C ↑u⁻¹ * ↑C n' * X * ↑derivative (X ^ n - ↑C ↑u) = 1 [PROOFSTEP] rw [derivative_sub, derivative_C, sub_zero, derivative_pow X n, derivative_X, mul_one] [GOAL] case inr.intro R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ✝ : Nontrivial R hpos : n > 0 n' : R hn' : n' * ↑n = 1 ⊢ -↑C ↑u⁻¹ * (X ^ n - ↑C ↑u) + ↑C ↑u⁻¹ * ↑C n' * X * (↑C ↑n * X ^ (n - 1)) = 1 [PROOFSTEP] calc -C ↑u⁻¹ * (X ^ n - C ↑u) + C ↑u⁻¹ * C n' * X * (↑n * X ^ (n - 1)) = C (↑u⁻¹ * ↑u) - C ↑u⁻¹ * X ^ n + C ↑u⁻¹ * C (n' * ↑n) * (X * X ^ (n - 1)) := by simp only [C.map_mul, C_eq_nat_cast] ring _ = 1 := by simp only [Units.inv_mul, hn', C.map_one, mul_one, ← pow_succ, Nat.sub_add_cancel (show 1 ≤ n from hpos), sub_add_cancel] [GOAL] R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ✝ : Nontrivial R hpos : n > 0 n' : R hn' : n' * ↑n = 1 ⊢ -↑C ↑u⁻¹ * (X ^ n - ↑C ↑u) + ↑C ↑u⁻¹ * ↑C n' * X * (↑n * X ^ (n - 1)) = ↑C (↑u⁻¹ * ↑u) - ↑C ↑u⁻¹ * X ^ n + ↑C ↑u⁻¹ * ↑C (n' * ↑n) * (X * X ^ (n - 1)) [PROOFSTEP] simp only [C.map_mul, C_eq_nat_cast] [GOAL] R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ✝ : Nontrivial R hpos : n > 0 n' : R hn' : n' * ↑n = 1 ⊢ -↑C ↑u⁻¹ * (X ^ n - ↑C ↑u) + ↑C ↑u⁻¹ * ↑C n' * X * (↑n * X ^ (n - 1)) = ↑C ↑u⁻¹ * ↑C ↑u - ↑C ↑u⁻¹ * X ^ n + ↑C ↑u⁻¹ * (↑C n' * ↑n) * (X * X ^ (n - 1)) [PROOFSTEP] ring [GOAL] R : Type u inst✝ : CommRing R n : ℕ u : Rˣ hn : IsUnit ↑n ✝ : Nontrivial R hpos : n > 0 n' : R hn' : n' * ↑n = 1 ⊢ ↑C (↑u⁻¹ * ↑u) - ↑C ↑u⁻¹ * X ^ n + ↑C ↑u⁻¹ * ↑C (n' * ↑n) * (X * X ^ (n - 1)) = 1 [PROOFSTEP] simp only [Units.inv_mul, hn', C.map_one, mul_one, ← pow_succ, Nat.sub_add_cancel (show 1 ≤ n from hpos), sub_add_cancel] [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R p : R[X] hsep : Separable p x : R ⊢ rootMultiplicity x p ≤ 1 [PROOFSTEP] by_cases hp : p = 0 [GOAL] case pos R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R p : R[X] hsep : Separable p x : R hp : p = 0 ⊢ rootMultiplicity x p ≤ 1 [PROOFSTEP] simp [hp] [GOAL] case neg R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R p : R[X] hsep : Separable p x : R hp : ¬p = 0 ⊢ rootMultiplicity x p ≤ 1 [PROOFSTEP] rw [rootMultiplicity_eq_multiplicity, dif_neg hp, ← PartENat.coe_le_coe, PartENat.natCast_get, Nat.cast_one] [GOAL] case neg R : Type u inst✝¹ : CommRing R inst✝ : Nontrivial R p : R[X] hsep : Separable p x : R hp : ¬p = 0 ⊢ multiplicity (X - ↑C x) p ≤ 1 [PROOFSTEP] exact multiplicity_le_one_of_separable (not_isUnit_X_sub_C _) hsep [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R[X] hsep : Separable p x : R ⊢ Multiset.count x (roots p) ≤ 1 [PROOFSTEP] rw [count_roots p] [GOAL] R : Type u inst✝¹ : CommRing R inst✝ : IsDomain R p : R[X] hsep : Separable p x : R ⊢ rootMultiplicity x p ≤ 1 [PROOFSTEP] exact rootMultiplicity_le_one_of_separable hsep x [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F[X] hf : Irreducible f h : ↑derivative f ≠ 0 g : F[X] hg1 : g ∈ nonunits F[X] _hg2 : g ≠ 0 x✝ : g ∣ f hg4 : g ∣ ↑derivative f p : F[X] hg3 : f = g * p u : F[X]ˣ hu : ↑u = p ⊢ f ∣ ↑derivative f [PROOFSTEP] conv_lhs => rw [hg3, ← hu] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F[X] hf : Irreducible f h : ↑derivative f ≠ 0 g : F[X] hg1 : g ∈ nonunits F[X] _hg2 : g ≠ 0 x✝ : g ∣ f hg4 : g ∣ ↑derivative f p : F[X] hg3 : f = g * p u : F[X]ˣ hu : ↑u = p | f [PROOFSTEP] rw [hg3, ← hu] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F[X] hf : Irreducible f h : ↑derivative f ≠ 0 g : F[X] hg1 : g ∈ nonunits F[X] _hg2 : g ≠ 0 x✝ : g ∣ f hg4 : g ∣ ↑derivative f p : F[X] hg3 : f = g * p u : F[X]ˣ hu : ↑u = p | f [PROOFSTEP] rw [hg3, ← hu] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F[X] hf : Irreducible f h : ↑derivative f ≠ 0 g : F[X] hg1 : g ∈ nonunits F[X] _hg2 : g ≠ 0 x✝ : g ∣ f hg4 : g ∣ ↑derivative f p : F[X] hg3 : f = g * p u : F[X]ˣ hu : ↑u = p | f [PROOFSTEP] rw [hg3, ← hu] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F[X] hf : Irreducible f h : ↑derivative f ≠ 0 g : F[X] hg1 : g ∈ nonunits F[X] _hg2 : g ≠ 0 x✝ : g ∣ f hg4 : g ∣ ↑derivative f p : F[X] hg3 : f = g * p u : F[X]ˣ hu : ↑u = p ⊢ g * ↑u ∣ ↑derivative f [PROOFSTEP] rwa [Units.mul_right_dvd] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F →+* K p : F[X] ⊢ Separable (map f p) ↔ Separable p [PROOFSTEP] simp_rw [separable_def, derivative_map, isCoprime_map] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K ι : Type u_1 f : ι → F s : Finset ι H : ∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → f x = f y → x = y ⊢ Separable (∏ i in s, (X - ↑C (f i))) [PROOFSTEP] rw [← prod_attach] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K ι : Type u_1 f : ι → F s : Finset ι H : ∀ (x : ι), x ∈ s → ∀ (y : ι), y ∈ s → f x = f y → x = y ⊢ Separable (∏ x in attach s, (X - ↑C (f ↑x))) [PROOFSTEP] exact separable_prod' (fun x _hx y _hy hxy => @pairwise_coprime_X_sub_C _ _ { x // x ∈ s } (fun x => f x) (fun x y hxy => Subtype.eq <| H x.1 x.2 y.1 y.2 hxy) _ _ hxy) fun _ _ => separable_X_sub_C [GOAL] F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K ι : Type u_1 inst✝ : Fintype ι f : ι → F ⊢ (∀ (x : ι), x ∈ univ → ∀ (y : ι), y ∈ univ → f x = f y → x = y) ↔ Function.Injective f [PROOFSTEP] simp_rw [mem_univ, true_imp_iff, Function.Injective] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] hf : Irreducible f H : ↑derivative f = 0 ⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F p) g = f [PROOFSTEP] rcases p.eq_zero_or_pos with (rfl | hp) [GOAL] case inl F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F[X] hf : Irreducible f H : ↑derivative f = 0 HF : CharP F 0 ⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F 0) g = f [PROOFSTEP] haveI := CharP.charP_to_charZero F [GOAL] case inl F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F[X] hf : Irreducible f H : ↑derivative f = 0 HF : CharP F 0 this : CharZero F ⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F 0) g = f [PROOFSTEP] have := natDegree_eq_zero_of_derivative_eq_zero H [GOAL] case inl F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F[X] hf : Irreducible f H : ↑derivative f = 0 HF : CharP F 0 this✝ : CharZero F this : natDegree f = 0 ⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F 0) g = f [PROOFSTEP] have := (natDegree_pos_iff_degree_pos.mpr <| degree_pos_of_irreducible hf).ne' [GOAL] case inl F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K f : F[X] hf : Irreducible f H : ↑derivative f = 0 HF : CharP F 0 this✝¹ : CharZero F this✝ : natDegree f = 0 this : natDegree f ≠ 0 ⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F 0) g = f [PROOFSTEP] contradiction [GOAL] case inr F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] hf : Irreducible f H : ↑derivative f = 0 hp : p > 0 ⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F p) g = f [PROOFSTEP] haveI := isLocalRingHom_expand F hp [GOAL] case inr F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] hf : Irreducible f H : ↑derivative f = 0 hp : p > 0 this : IsLocalRingHom ↑(expand F p) ⊢ Separable f ∨ ¬Separable f ∧ ∃ g, Irreducible g ∧ ↑(expand F p) g = f [PROOFSTEP] exact Or.inr ⟨by rw [separable_iff_derivative_ne_zero hf, Classical.not_not, H], contract p f, of_irreducible_map (expand F p : F[X] →+* F[X]) (by rwa [← expand_contract p H hp.ne'] at hf ), expand_contract p H hp.ne'⟩ [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] hf : Irreducible f H : ↑derivative f = 0 hp : p > 0 this : IsLocalRingHom ↑(expand F p) ⊢ ¬Separable f [PROOFSTEP] rw [separable_iff_derivative_ne_zero hf, Classical.not_not, H] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] hf : Irreducible f H : ↑derivative f = 0 hp : p > 0 this : IsLocalRingHom ↑(expand F p) ⊢ Irreducible (↑↑(expand F p) (contract p f)) [PROOFSTEP] rwa [← expand_contract p H hp.ne'] at hf [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : p ≠ 0 ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] replace hp : p.Prime := (CharP.char_is_prime_or_zero F p).resolve_right hp [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : Nat.Prime p ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] induction' hn : f.natDegree using Nat.strong_induction_on with N ih generalizing f [GOAL] case h F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ N : ℕ ih : ∀ (m : ℕ), m < N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f f : F[X] hf : Irreducible f hn : natDegree f = N ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] rcases separable_or p hf with (h | ⟨h1, g, hg, hgf⟩) [GOAL] case h.inl F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ N : ℕ ih : ∀ (m : ℕ), m < N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f f : F[X] hf : Irreducible f hn : natDegree f = N h : Separable f ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] refine' ⟨0, f, h, _⟩ [GOAL] case h.inl F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ N : ℕ ih : ∀ (m : ℕ), m < N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f f : F[X] hf : Irreducible f hn : natDegree f = N h : Separable f ⊢ ↑(expand F (p ^ 0)) f = f [PROOFSTEP] rw [pow_zero, expand_one] [GOAL] case h.inr.intro.intro.intro F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ N : ℕ ih : ∀ (m : ℕ), m < N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f f : F[X] hf : Irreducible f hn : natDegree f = N h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] cases' N with N [GOAL] case h.inr.intro.intro.intro.zero F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f ih : ∀ (m : ℕ), m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.zero ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] rw [natDegree_eq_zero_iff_degree_le_zero, degree_le_zero_iff] at hn [GOAL] case h.inr.intro.intro.intro.zero F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f ih : ∀ (m : ℕ), m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : f = ↑C (coeff f 0) ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] rw [hn, separable_C, isUnit_iff_ne_zero, Classical.not_not] at h1 [GOAL] case h.inr.intro.intro.intro.zero F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : coeff f 0 = 0 g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f ih : ∀ (m : ℕ), m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : f = ↑C (coeff f 0) ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] have hf0 : f ≠ 0 := hf.ne_zero [GOAL] case h.inr.intro.intro.intro.zero F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : coeff f 0 = 0 g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f ih : ∀ (m : ℕ), m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : f = ↑C (coeff f 0) hf0 : f ≠ 0 ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] rw [h1, C_0] at hn [GOAL] case h.inr.intro.intro.intro.zero F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : coeff f 0 = 0 g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f ih : ∀ (m : ℕ), m < Nat.zero → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : f = 0 hf0 : f ≠ 0 ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] exact absurd hn hf0 [GOAL] case h.inr.intro.intro.intro.succ F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] have hg1 : g.natDegree * p = N.succ := by rwa [← natDegree_expand, hgf] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N ⊢ natDegree g * p = Nat.succ N [PROOFSTEP] rwa [← natDegree_expand, hgf] [GOAL] case h.inr.intro.intro.intro.succ F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N hg1 : natDegree g * p = Nat.succ N ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] have hg2 : g.natDegree ≠ 0 := by intro this rw [this, zero_mul] at hg1 cases hg1 [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N hg1 : natDegree g * p = Nat.succ N ⊢ natDegree g ≠ 0 [PROOFSTEP] intro this [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N hg1 : natDegree g * p = Nat.succ N this : natDegree g = 0 ⊢ False [PROOFSTEP] rw [this, zero_mul] at hg1 [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N hg1 : 0 = Nat.succ N this : natDegree g = 0 ⊢ False [PROOFSTEP] cases hg1 [GOAL] case h.inr.intro.intro.intro.succ F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N hg1 : natDegree g * p = Nat.succ N hg2 : natDegree g ≠ 0 ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] have hg3 : g.natDegree < N.succ := by rw [← mul_one g.natDegree, ← hg1] exact Nat.mul_lt_mul_of_pos_left hp.one_lt hg2.bot_lt [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N hg1 : natDegree g * p = Nat.succ N hg2 : natDegree g ≠ 0 ⊢ natDegree g < Nat.succ N [PROOFSTEP] rw [← mul_one g.natDegree, ← hg1] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N hg1 : natDegree g * p = Nat.succ N hg2 : natDegree g ≠ 0 ⊢ natDegree g * 1 < natDegree g * p [PROOFSTEP] exact Nat.mul_lt_mul_of_pos_left hp.one_lt hg2.bot_lt [GOAL] case h.inr.intro.intro.intro.succ F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f g : F[X] hg : Irreducible g hgf : ↑(expand F p) g = f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N hg1 : natDegree g * p = Nat.succ N hg2 : natDegree g ≠ 0 hg3 : natDegree g < Nat.succ N ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] rcases ih _ hg3 hg rfl with ⟨n, g, hg4, rfl⟩ [GOAL] case h.inr.intro.intro.intro.succ.intro.intro.intro F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N n : ℕ g : F[X] hg4 : Separable g hg : Irreducible (↑(expand F (p ^ n)) g) hgf : ↑(expand F p) (↑(expand F (p ^ n)) g) = f hg1 : natDegree (↑(expand F (p ^ n)) g) * p = Nat.succ N hg2 : natDegree (↑(expand F (p ^ n)) g) ≠ 0 hg3 : natDegree (↑(expand F (p ^ n)) g) < Nat.succ N ⊢ ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f [PROOFSTEP] refine' ⟨n + 1, g, hg4, _⟩ [GOAL] case h.inr.intro.intro.intro.succ.intro.intro.intro F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f✝ : F[X] hf✝ : Irreducible f✝ hp : Nat.Prime p x✝ : ℕ hn✝ : natDegree f✝ = x✝ f : F[X] hf : Irreducible f h1 : ¬Separable f N : ℕ ih : ∀ (m : ℕ), m < Nat.succ N → ∀ {f : F[X]}, Irreducible f → natDegree f = m → ∃ n g, Separable g ∧ ↑(expand F (p ^ n)) g = f hn : natDegree f = Nat.succ N n : ℕ g : F[X] hg4 : Separable g hg : Irreducible (↑(expand F (p ^ n)) g) hgf : ↑(expand F p) (↑(expand F (p ^ n)) g) = f hg1 : natDegree (↑(expand F (p ^ n)) g) * p = Nat.succ N hg2 : natDegree (↑(expand F (p ^ n)) g) ≠ 0 hg3 : natDegree (↑(expand F (p ^ n)) g) < Nat.succ N ⊢ ↑(expand F (p ^ (n + 1))) g = f [PROOFSTEP] rw [← hgf, expand_expand, pow_succ] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] n : ℕ hp : 0 < p hf : Separable (↑(expand F (p ^ n)) f) ⊢ IsUnit f ∨ n = 0 [PROOFSTEP] rw [or_iff_not_imp_right] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] n : ℕ hp : 0 < p hf : Separable (↑(expand F (p ^ n)) f) ⊢ ¬n = 0 → IsUnit f [PROOFSTEP] rintro hn : n ≠ 0 [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] n : ℕ hp : 0 < p hf : Separable (↑(expand F (p ^ n)) f) hn : n ≠ 0 ⊢ IsUnit f [PROOFSTEP] have hf2 : derivative (expand F (p ^ n) f) = 0 := by rw [derivative_expand, Nat.cast_pow, CharP.cast_eq_zero, zero_pow hn.bot_lt, zero_mul, mul_zero] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] n : ℕ hp : 0 < p hf : Separable (↑(expand F (p ^ n)) f) hn : n ≠ 0 ⊢ ↑derivative (↑(expand F (p ^ n)) f) = 0 [PROOFSTEP] rw [derivative_expand, Nat.cast_pow, CharP.cast_eq_zero, zero_pow hn.bot_lt, zero_mul, mul_zero] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] n : ℕ hp : 0 < p hf : Separable (↑(expand F (p ^ n)) f) hn : n ≠ 0 hf2 : ↑derivative (↑(expand F (p ^ n)) f) = 0 ⊢ IsUnit f [PROOFSTEP] rw [separable_def, hf2, isCoprime_zero_right, isUnit_iff] at hf [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] n : ℕ hp : 0 < p hf : ∃ r, IsUnit r ∧ ↑C r = ↑(expand F (p ^ n)) f hn : n ≠ 0 hf2 : ↑derivative (↑(expand F (p ^ n)) f) = 0 ⊢ IsUnit f [PROOFSTEP] rcases hf with ⟨r, hr, hrf⟩ [GOAL] case intro.intro F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] n : ℕ hp : 0 < p hn : n ≠ 0 hf2 : ↑derivative (↑(expand F (p ^ n)) f) = 0 r : F hr : IsUnit r hrf : ↑C r = ↑(expand F (p ^ n)) f ⊢ IsUnit f [PROOFSTEP] rw [eq_comm, expand_eq_C (pow_pos hp _)] at hrf [GOAL] case intro.intro F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] n : ℕ hp : 0 < p hn : n ≠ 0 hf2 : ↑derivative (↑(expand F (p ^ n)) f) = 0 r : F hr : IsUnit r hrf : f = ↑C r ⊢ IsUnit f [PROOFSTEP] rwa [hrf, isUnit_C] [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ : ℕ g₁ : F[X] hg₁ : Separable g₁ hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f n₂ : ℕ g₂ : F[X] hg₂ : Separable g₂ hgf₂ : ↑(expand F (p ^ n₂)) g₂ = f ⊢ n₁ = n₂ ∧ g₁ = g₂ [PROOFSTEP] revert g₁ g₂ [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ n₂ : ℕ ⊢ ∀ (g₁ : F[X]), Separable g₁ → ↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂ [PROOFSTEP] clear! K [GOAL] F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ n₂ : ℕ ⊢ ∀ (g₁ : F[X]), Separable g₁ → ↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂ [PROOFSTEP] wlog hn : n₁ ≤ n₂ [GOAL] case inr F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ n₂ : ℕ this : ∀ {F : Type u} [inst : Field F] (p : ℕ) [HF : CharP F p] {f : F[X]}, Irreducible f → 0 < p → ∀ (n₁ n₂ : ℕ), n₁ ≤ n₂ → ∀ (g₁ : F[X]), Separable g₁ → ↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂ hn : ¬n₁ ≤ n₂ ⊢ ∀ (g₁ : F[X]), Separable g₁ → ↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂ [PROOFSTEP] intro g₁ hg₁ Hg₁ g₂ hg₂ Hg₂ [GOAL] case inr F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ n₂ : ℕ this : ∀ {F : Type u} [inst : Field F] (p : ℕ) [HF : CharP F p] {f : F[X]}, Irreducible f → 0 < p → ∀ (n₁ n₂ : ℕ), n₁ ≤ n₂ → ∀ (g₁ : F[X]), Separable g₁ → ↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂ hn : ¬n₁ ≤ n₂ g₁ : F[X] hg₁ : Separable g₁ Hg₁ : ↑(expand F (p ^ n₁)) g₁ = f g₂ : F[X] hg₂ : Separable g₂ Hg₂ : ↑(expand F (p ^ n₂)) g₂ = f ⊢ n₁ = n₂ ∧ g₁ = g₂ [PROOFSTEP] simpa only [eq_comm] using this p hf hp n₂ n₁ (le_of_not_le hn) g₂ hg₂ Hg₂ g₁ hg₁ Hg₁ [GOAL] F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ n₂ : ℕ hn : n₁ ≤ n₂ ⊢ ∀ (g₁ : F[X]), Separable g₁ → ↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂ [PROOFSTEP] have hf0 : f ≠ 0 := hf.ne_zero [GOAL] F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ n₂ : ℕ hn : n₁ ≤ n₂ hf0 : f ≠ 0 ⊢ ∀ (g₁ : F[X]), Separable g₁ → ↑(expand F (p ^ n₁)) g₁ = f → ∀ (g₂ : F[X]), Separable g₂ → ↑(expand F (p ^ n₂)) g₂ = f → n₁ = n₂ ∧ g₁ = g₂ [PROOFSTEP] intros g₁ hg₁ hgf₁ g₂ hg₂ hgf₂ [GOAL] F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ n₂ : ℕ hn : n₁ ≤ n₂ hf0 : f ≠ 0 g₁ : F[X] hg₁ : Separable g₁ hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f g₂ : F[X] hg₂ : Separable g₂ hgf₂ : ↑(expand F (p ^ n₂)) g₂ = f ⊢ n₁ = n₂ ∧ g₁ = g₂ [PROOFSTEP] rw [le_iff_exists_add] at hn [GOAL] F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ n₂ : ℕ hn : ∃ c, n₂ = n₁ + c hf0 : f ≠ 0 g₁ : F[X] hg₁ : Separable g₁ hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f g₂ : F[X] hg₂ : Separable g₂ hgf₂ : ↑(expand F (p ^ n₂)) g₂ = f ⊢ n₁ = n₂ ∧ g₁ = g₂ [PROOFSTEP] rcases hn with ⟨k, rfl⟩ [GOAL] case intro F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ : ℕ hf0 : f ≠ 0 g₁ : F[X] hg₁ : Separable g₁ hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f g₂ : F[X] hg₂ : Separable g₂ k : ℕ hgf₂ : ↑(expand F (p ^ (n₁ + k))) g₂ = f ⊢ n₁ = n₁ + k ∧ g₁ = g₂ [PROOFSTEP] rw [← hgf₁, pow_add, expand_mul, expand_inj (pow_pos hp n₁)] at hgf₂ [GOAL] case intro F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ : ℕ hf0 : f ≠ 0 g₁ : F[X] hg₁ : Separable g₁ hgf₁ : ↑(expand F (p ^ n₁)) g₁ = f g₂ : F[X] hg₂ : Separable g₂ k : ℕ hgf₂ : ↑(expand F (p ^ k)) g₂ = g₁ ⊢ n₁ = n₁ + k ∧ g₁ = g₂ [PROOFSTEP] subst hgf₂ [GOAL] case intro F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p f : F[X] hf : Irreducible f hp : 0 < p n₁ : ℕ hf0 : f ≠ 0 g₂ : F[X] hg₂ : Separable g₂ k : ℕ hg₁ : Separable (↑(expand F (p ^ k)) g₂) hgf₁ : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂) = f ⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) g₂ = g₂ [PROOFSTEP] subst hgf₁ [GOAL] case intro F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p hp : 0 < p n₁ : ℕ g₂ : F[X] hg₂ : Separable g₂ k : ℕ hg₁ : Separable (↑(expand F (p ^ k)) g₂) hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂)) hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂) ≠ 0 ⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) g₂ = g₂ [PROOFSTEP] rcases isUnit_or_eq_zero_of_separable_expand p k hp hg₁ with (h | rfl) [GOAL] case intro.inl F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p hp : 0 < p n₁ : ℕ g₂ : F[X] hg₂ : Separable g₂ k : ℕ hg₁ : Separable (↑(expand F (p ^ k)) g₂) hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂)) hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂) ≠ 0 h : IsUnit g₂ ⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) g₂ = g₂ [PROOFSTEP] rw [isUnit_iff] at h [GOAL] case intro.inl F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p hp : 0 < p n₁ : ℕ g₂ : F[X] hg₂ : Separable g₂ k : ℕ hg₁ : Separable (↑(expand F (p ^ k)) g₂) hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂)) hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) g₂) ≠ 0 h : ∃ r, IsUnit r ∧ ↑C r = g₂ ⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) g₂ = g₂ [PROOFSTEP] rcases h with ⟨r, hr, rfl⟩ [GOAL] case intro.inl.intro.intro F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p hp : 0 < p n₁ k : ℕ r : F hr : IsUnit r hg₂ : Separable (↑C r) hg₁ : Separable (↑(expand F (p ^ k)) (↑C r)) hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) (↑C r))) hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) (↑C r)) ≠ 0 ⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) (↑C r) = ↑C r [PROOFSTEP] simp_rw [expand_C] at hf [GOAL] case intro.inl.intro.intro F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p hp : 0 < p n₁ k : ℕ r : F hr : IsUnit r hg₂ : Separable (↑C r) hg₁ : Separable (↑(expand F (p ^ k)) (↑C r)) hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ k)) (↑C r)) ≠ 0 hf : Irreducible (↑C r) ⊢ n₁ = n₁ + k ∧ ↑(expand F (p ^ k)) (↑C r) = ↑C r [PROOFSTEP] exact absurd (isUnit_C.2 hr) hf.1 [GOAL] case intro.inr F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p hp : 0 < p n₁ : ℕ g₂ : F[X] hg₂ : Separable g₂ hg₁ : Separable (↑(expand F (p ^ 0)) g₂) hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂)) hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂) ≠ 0 ⊢ n₁ = n₁ + 0 ∧ ↑(expand F (p ^ 0)) g₂ = g₂ [PROOFSTEP] rw [add_zero, pow_zero, expand_one] [GOAL] case intro.inr F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p hp : 0 < p n₁ : ℕ g₂ : F[X] hg₂ : Separable g₂ hg₁ : Separable (↑(expand F (p ^ 0)) g₂) hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂)) hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂) ≠ 0 ⊢ n₁ = n₁ ∧ g₂ = g₂ [PROOFSTEP] constructor [GOAL] case intro.inr.left F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p hp : 0 < p n₁ : ℕ g₂ : F[X] hg₂ : Separable g₂ hg₁ : Separable (↑(expand F (p ^ 0)) g₂) hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂)) hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂) ≠ 0 ⊢ n₁ = n₁ [PROOFSTEP] rfl [GOAL] case intro.inr.right F✝ : Type u inst✝¹ : Field F✝ p✝ : ℕ F : Type u inst✝ : Field F p : ℕ HF : CharP F p hp : 0 < p n₁ : ℕ g₂ : F[X] hg₂ : Separable g₂ hg₁ : Separable (↑(expand F (p ^ 0)) g₂) hf : Irreducible (↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂)) hf0 : ↑(expand F (p ^ n₁)) (↑(expand F (p ^ 0)) g₂) ≠ 0 ⊢ g₂ = g₂ [PROOFSTEP] rfl [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K n : ℕ ⊢ Separable (X ^ n - 1) ↔ ↑n ≠ 0 [PROOFSTEP] refine' ⟨_, fun h => separable_X_pow_sub_C_unit 1 (IsUnit.mk0 (↑n) h)⟩ [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K n : ℕ ⊢ Separable (X ^ n - 1) → ↑n ≠ 0 [PROOFSTEP] rw [separable_def', derivative_sub, derivative_X_pow, derivative_one, sub_zero] -- Suppose `(n : F) = 0`, then the derivative is `0`, so `X ^ n - 1` is a unit, contradiction. [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K n : ℕ ⊢ (∃ a b, a * (X ^ n - 1) + b * (↑C ↑n * X ^ (n - 1)) = 1) → ↑n ≠ 0 [PROOFSTEP] rintro (h : IsCoprime _ _) hn' [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K n : ℕ h : IsCoprime (X ^ n - 1) (↑C ↑n * X ^ (n - 1)) hn' : ↑n = 0 ⊢ False [PROOFSTEP] rw [hn', C_0, zero_mul, isCoprime_zero_right] at h [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K n : ℕ h : IsUnit (X ^ n - 1) hn' : ↑n = 0 ⊢ False [PROOFSTEP] exact not_isUnit_X_pow_sub_one F n h [GOAL] F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : Algebra F K p : F[X] hsep : Separable p hsplit : Splits (algebraMap F K) p ⊢ Fintype.card ↑(rootSet p K) = natDegree p [PROOFSTEP] simp_rw [rootSet_def, Finset.coe_sort_coe, Fintype.card_coe] [GOAL] F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : Algebra F K p : F[X] hsep : Separable p hsplit : Splits (algebraMap F K) p ⊢ card (Multiset.toFinset (roots (map (algebraMap F K) p))) = natDegree p [PROOFSTEP] rw [Multiset.toFinset_card_of_nodup, ← natDegree_eq_card_roots hsplit] [GOAL] F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : Algebra F K p : F[X] hsep : Separable p hsplit : Splits (algebraMap F K) p ⊢ Multiset.Nodup (roots (map (algebraMap F K) p)) [PROOFSTEP] exact nodup_roots hsep.map [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x ⊢ h = ↑C (leadingCoeff h) * (X - ↑C x) [PROOFSTEP] have h_ne_zero : h ≠ 0 := by rintro rfl exact not_separable_zero h_sep [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x ⊢ h ≠ 0 [PROOFSTEP] rintro rfl [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h_sep : Separable 0 h_root : eval x 0 = 0 h_splits : Splits i 0 h_roots : ∀ (y : K), y ∈ roots (map i 0) → y = ↑i x ⊢ False [PROOFSTEP] exact not_separable_zero h_sep [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ h = ↑C (leadingCoeff h) * (X - ↑C x) [PROOFSTEP] apply Polynomial.eq_X_sub_C_of_splits_of_single_root i h_splits [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ roots (map i h) = {↑i x} [PROOFSTEP] apply Finset.mk.inj [GOAL] case x F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ { val := roots (map i h), nodup := ?nodup } = { val := {↑i x}, nodup := ?nodup } [PROOFSTEP] change _ = {i x} [GOAL] case x F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ { val := roots (map i h), nodup := ?nodup } = {↑i x} [PROOFSTEP] rw [Finset.eq_singleton_iff_unique_mem] [GOAL] case x F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ ↑i x ∈ { val := roots (map i h), nodup := ?nodup } ∧ ∀ (x_1 : K), x_1 ∈ { val := roots (map i h), nodup := ?nodup } → x_1 = ↑i x case nodup F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ Multiset.Nodup (roots (map i h)) [PROOFSTEP] constructor [GOAL] case x.left F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ ↑i x ∈ { val := roots (map i h), nodup := ?nodup } [PROOFSTEP] apply Finset.mem_mk.mpr [GOAL] case x.left F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ ↑i x ∈ roots (map i h) [PROOFSTEP] rw [mem_roots (show h.map i ≠ 0 from map_ne_zero h_ne_zero)] [GOAL] case x.left F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ IsRoot (map i h) (↑i x) [PROOFSTEP] rw [IsRoot.def, ← eval₂_eq_eval_map, eval₂_hom, h_root] [GOAL] case x.left F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ ↑i 0 = 0 [PROOFSTEP] exact RingHom.map_zero i [GOAL] case nodup F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ Multiset.Nodup (roots (map i h)) [PROOFSTEP] exact nodup_roots (Separable.map h_sep) [GOAL] case x.right F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i : F →+* K x : F h : F[X] h_sep : Separable h h_root : eval x h = 0 h_splits : Splits i h h_roots : ∀ (y : K), y ∈ roots (map i h) → y = ↑i x h_ne_zero : h ≠ 0 ⊢ ∀ (x_1 : K), x_1 ∈ { val := roots (map i h), nodup := (_ : Multiset.Nodup (roots (map i h))) } → x_1 = ↑i x [PROOFSTEP] exact h_roots [GOAL] F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i✝ i : F →+* K f : F[X] sep : Separable f sp : Splits i f ⊢ ∃ s, map i f = ↑C (↑i (leadingCoeff f)) * ∏ a in s, (X - ↑C a) [PROOFSTEP] obtain ⟨s, h⟩ := (splits_iff_exists_multiset _).1 sp [GOAL] case intro F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i✝ i : F →+* K f : F[X] sep : Separable f sp : Splits i f s : Multiset K h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s) ⊢ ∃ s, map i f = ↑C (↑i (leadingCoeff f)) * ∏ a in s, (X - ↑C a) [PROOFSTEP] use s.toFinset [GOAL] case h F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i✝ i : F →+* K f : F[X] sep : Separable f sp : Splits i f s : Multiset K h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s) ⊢ map i f = ↑C (↑i (leadingCoeff f)) * ∏ a in Multiset.toFinset s, (X - ↑C a) [PROOFSTEP] rw [h, Finset.prod_eq_multiset_prod, ← Multiset.toFinset_eq] [GOAL] case h F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i✝ i : F →+* K f : F[X] sep : Separable f sp : Splits i f s : Multiset K h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s) ⊢ Multiset.Nodup s [PROOFSTEP] apply nodup_of_separable_prod [GOAL] case h.hs F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i✝ i : F →+* K f : F[X] sep : Separable f sp : Splits i f s : Multiset K h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s) ⊢ Separable (Multiset.prod (Multiset.map (fun a => X - ↑C a) s)) [PROOFSTEP] apply Separable.of_mul_right [GOAL] case h.hs.h F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i✝ i : F →+* K f : F[X] sep : Separable f sp : Splits i f s : Multiset K h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s) ⊢ Separable (?h.hs.f * Multiset.prod (Multiset.map (fun a => X - ↑C a) s)) case h.hs.f F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i✝ i : F →+* K f : F[X] sep : Separable f sp : Splits i f s : Multiset K h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s) ⊢ K[X] [PROOFSTEP] rw [← h] [GOAL] case h.hs.h F : Type u inst✝¹ : Field F K : Type v inst✝ : Field K i✝ i : F →+* K f : F[X] sep : Separable f sp : Splits i f s : Multiset K h : map i f = ↑C (↑i (leadingCoeff f)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s) ⊢ Separable (map i f) [PROOFSTEP] exact sep.map [GOAL] F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : CharZero F f : F[X] hf : Irreducible f ⊢ Separable f [PROOFSTEP] rw [separable_iff_derivative_ne_zero hf, Ne, ← degree_eq_bot, degree_derivative_eq] [GOAL] F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : CharZero F f : F[X] hf : Irreducible f ⊢ ¬↑(natDegree f - 1) = ⊥ [PROOFSTEP] rintro ⟨⟩ [GOAL] case hp F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : CharZero F f : F[X] hf : Irreducible f ⊢ 0 < natDegree f [PROOFSTEP] rw [pos_iff_ne_zero, Ne, natDegree_eq_zero_iff_degree_le_zero, degree_le_zero_iff] [GOAL] case hp F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : CharZero F f : F[X] hf : Irreducible f ⊢ ¬f = ↑C (coeff f 0) [PROOFSTEP] refine' fun hf1 => hf.not_unit _ [GOAL] case hp F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : CharZero F f : F[X] hf : Irreducible f hf1 : f = ↑C (coeff f 0) ⊢ IsUnit f [PROOFSTEP] rw [hf1, isUnit_C, isUnit_iff_ne_zero] [GOAL] case hp F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : CharZero F f : F[X] hf : Irreducible f hf1 : f = ↑C (coeff f 0) ⊢ coeff f 0 ≠ 0 [PROOFSTEP] intro hf2 [GOAL] case hp F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : CharZero F f : F[X] hf : Irreducible f hf1 : f = ↑C (coeff f 0) hf2 : coeff f 0 = 0 ⊢ False [PROOFSTEP] rw [hf2, C_0] at hf1 [GOAL] case hp F : Type u inst✝² : Field F K : Type v inst✝¹ : Field K inst✝ : CharZero F f : F[X] hf : Irreducible f hf1 : f = 0 hf2 : coeff f 0 = 0 ⊢ False [PROOFSTEP] exact absurd hf1 hf.ne_zero [GOAL] F : Type u_1 inst✝ : Field F x : F ⊢ Separable (minpoly F x) [PROOFSTEP] rw [minpoly.eq_X_sub_C'] [GOAL] F : Type u_1 inst✝ : Field F x : F ⊢ Separable (X - ↑C x) [PROOFSTEP] exact separable_X_sub_C [GOAL] F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field E inst✝³ : Algebra F K inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : IsSeparable F E x : K ⊢ IsIntegral F x ∧ Separable (minpoly F x) [PROOFSTEP] refine' (isSeparable_iff.1 h (algebraMap K E x)).imp isIntegral_tower_bot_of_isIntegral_field fun hs => _ [GOAL] F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field E inst✝³ : Algebra F K inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : IsSeparable F E x : K hs : Separable (minpoly F (↑(algebraMap K E) x)) ⊢ Separable (minpoly F x) [PROOFSTEP] obtain ⟨q, hq⟩ := minpoly.dvd F x ((aeval_algebraMap_eq_zero_iff _ _ _).mp (minpoly.aeval F ((algebraMap K E) x))) [GOAL] case intro F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field E inst✝³ : Algebra F K inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : IsSeparable F E x : K hs : Separable (minpoly F (↑(algebraMap K E) x)) q : F[X] hq : minpoly F (↑(algebraMap K E) x) = minpoly F x * q ⊢ Separable (minpoly F x) [PROOFSTEP] rw [hq] at hs [GOAL] case intro F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Field E inst✝³ : Algebra F K inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : IsSeparable F E x : K q : F[X] hs : Separable (minpoly F x * q) hq : minpoly F (↑(algebraMap K E) x) = minpoly F x * q ⊢ Separable (minpoly F x) [PROOFSTEP] exact hs.of_mul_left [GOAL] F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁹ : Field F inst✝⁸ : Field K inst✝⁷ : Field E inst✝⁶ : Algebra F K inst✝⁵ : Algebra F E inst✝⁴ : Algebra K E inst✝³ : IsScalarTower F K E E' : Type u_4 inst✝² : Field E' inst✝¹ : Algebra F E' f : E →ₐ[F] E' inst✝ : IsSeparable F E' ⊢ IsSeparable F E [PROOFSTEP] letI : Algebra E E' := RingHom.toAlgebra f.toRingHom [GOAL] F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁹ : Field F inst✝⁸ : Field K inst✝⁷ : Field E inst✝⁶ : Algebra F K inst✝⁵ : Algebra F E inst✝⁴ : Algebra K E inst✝³ : IsScalarTower F K E E' : Type u_4 inst✝² : Field E' inst✝¹ : Algebra F E' f : E →ₐ[F] E' inst✝ : IsSeparable F E' this : Algebra E E' := RingHom.toAlgebra ↑f ⊢ IsSeparable F E [PROOFSTEP] haveI : IsScalarTower F E E' := IsScalarTower.of_algebraMap_eq fun x => (f.commutes x).symm [GOAL] F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁹ : Field F inst✝⁸ : Field K inst✝⁷ : Field E inst✝⁶ : Algebra F K inst✝⁵ : Algebra F E inst✝⁴ : Algebra K E inst✝³ : IsScalarTower F K E E' : Type u_4 inst✝² : Field E' inst✝¹ : Algebra F E' f : E →ₐ[F] E' inst✝ : IsSeparable F E' this✝ : Algebra E E' := RingHom.toAlgebra ↑f this : IsScalarTower F E E' ⊢ IsSeparable F E [PROOFSTEP] exact isSeparable_tower_bot_of_isSeparable F E E' [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁵ : CommRing S K : Type u_4 L : Type u_5 F : Type u_6 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field F inst✝¹ : Algebra K S inst✝ : Algebra K L pb : PowerBasis K S h_sep : Separable (minpoly K pb.gen) h_splits : Splits (algebraMap K L) (minpoly K pb.gen) ⊢ Fintype.card (S →ₐ[K] L) = pb.dim [PROOFSTEP] let s := ((minpoly K pb.gen).map (algebraMap K L)).roots.toFinset [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁵ : CommRing S K : Type u_4 L : Type u_5 F : Type u_6 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field F inst✝¹ : Algebra K S inst✝ : Algebra K L pb : PowerBasis K S h_sep : Separable (minpoly K pb.gen) h_splits : Splits (algebraMap K L) (minpoly K pb.gen) s : Finset L := Multiset.toFinset (roots (Polynomial.map (algebraMap K L) (minpoly K pb.gen))) ⊢ Fintype.card (S →ₐ[K] L) = pb.dim [PROOFSTEP] let _ := (PowerBasis.AlgHom.fintype pb : Fintype (S →ₐ[K] L)) [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁵ : CommRing S K : Type u_4 L : Type u_5 F : Type u_6 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field F inst✝¹ : Algebra K S inst✝ : Algebra K L pb : PowerBasis K S h_sep : Separable (minpoly K pb.gen) h_splits : Splits (algebraMap K L) (minpoly K pb.gen) s : Finset L := Multiset.toFinset (roots (Polynomial.map (algebraMap K L) (minpoly K pb.gen))) x✝ : Fintype (S →ₐ[K] L) := PowerBasis.AlgHom.fintype pb ⊢ Fintype.card (S →ₐ[K] L) = pb.dim [PROOFSTEP] rw [Fintype.card_congr pb.liftEquiv', Fintype.card_of_subtype s (fun x => Multiset.mem_toFinset), ← pb.natDegree_minpoly, natDegree_eq_card_roots h_splits, Multiset.toFinset_card_of_nodup] [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 inst✝⁵ : CommRing S K : Type u_4 L : Type u_5 F : Type u_6 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field F inst✝¹ : Algebra K S inst✝ : Algebra K L pb : PowerBasis K S h_sep : Separable (minpoly K pb.gen) h_splits : Splits (algebraMap K L) (minpoly K pb.gen) s : Finset L := Multiset.toFinset (roots (Polynomial.map (algebraMap K L) (minpoly K pb.gen))) x✝ : Fintype (S →ₐ[K] L) := PowerBasis.AlgHom.fintype pb ⊢ Multiset.Nodup (roots (Polynomial.map (algebraMap K L) (minpoly K pb.gen))) [PROOFSTEP] exact nodup_roots ((separable_map (algebraMap K L)).mpr h_sep)
{"mathlib_filename": "Mathlib.FieldTheory.Separable", "llama_tokens": 33055}
[GOAL] α✝ : Sort u_1 β : Sort u_2 α : Sort u_3 r : α → α → Prop iseqv✝¹ : Equivalence r p : α → α → Prop iseqv✝ : Equivalence p Eq : ∀ (a b : α), Setoid.r a b ↔ Setoid.r a b ⊢ { r := r, iseqv := iseqv✝¹ } = { r := p, iseqv := iseqv✝ } [PROOFSTEP] have : r = p := funext fun a ↦ funext fun b ↦ propext <| Eq a b [GOAL] α✝ : Sort u_1 β : Sort u_2 α : Sort u_3 r : α → α → Prop iseqv✝¹ : Equivalence r p : α → α → Prop iseqv✝ : Equivalence p Eq : ∀ (a b : α), Setoid.r a b ↔ Setoid.r a b this : r = p ⊢ { r := r, iseqv := iseqv✝¹ } = { r := p, iseqv := iseqv✝ } [PROOFSTEP] subst this [GOAL] α✝ : Sort u_1 β : Sort u_2 α : Sort u_3 r : α → α → Prop iseqv✝¹ iseqv✝ : Equivalence r Eq : ∀ (a b : α), Setoid.r a b ↔ Setoid.r a b ⊢ { r := r, iseqv := iseqv✝¹ } = { r := r, iseqv := iseqv✝ } [PROOFSTEP] rfl [GOAL] α : Sort u_1 β : Sort u_2 ra : α → α → Prop rb : β → β → Prop φ : Quot ra → Quot rb → Sort u_3 qa : Quot ra qb : Quot rb f : (a : α) → (b : β) → φ (mk ra a) (mk rb b) ca : ∀ {b : β} {a₁ a₂ : α}, ra a₁ a₂ → HEq (f a₁ b) (f a₂ b) cb : ∀ {a : α} {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a b₁) (f a b₂) a₁ a₂ : α pa : ra a₁ a₂ b : β ⊢ HEq (Quot.hrecOn (mk rb b) (f a₁) (_ : ∀ {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a₁ b₁) (f a₁ b₂))) (f a₁ b) [PROOFSTEP] simp [heq_self_iff_true] [GOAL] α : Sort u_1 β : Sort u_2 ra : α → α → Prop rb : β → β → Prop φ : Quot ra → Quot rb → Sort u_3 qa : Quot ra qb : Quot rb f : (a : α) → (b : β) → φ (mk ra a) (mk rb b) ca : ∀ {b : β} {a₁ a₂ : α}, ra a₁ a₂ → HEq (f a₁ b) (f a₂ b) cb : ∀ {a : α} {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a b₁) (f a b₂) a₁ a₂ : α pa : ra a₁ a₂ b : β h₁ : HEq (Quot.hrecOn (mk rb b) (f a₁) (_ : ∀ {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a₁ b₁) (f a₁ b₂))) (f a₁ b) ⊢ HEq (f a₂ b) (Quot.hrecOn (mk rb b) (f a₂) (_ : ∀ {b₁ b₂ : β}, rb b₁ b₂ → HEq (f a₂ b₁) (f a₂ b₂))) [PROOFSTEP] simp [heq_self_iff_true] [GOAL] α : Sort u_1 β : Sort u_2 s : Setoid α x : α y : Quotient s ⊢ Quotient.mk s x = y ↔ x ≈ out y [PROOFSTEP] refine' Iff.trans _ Quotient.eq [GOAL] α : Sort u_1 β : Sort u_2 s : Setoid α x : α y : Quotient s ⊢ Quotient.mk s x = y ↔ Quotient.mk s x = Quotient.mk s (out y) [PROOFSTEP] rw [Quotient.out_eq y] [GOAL] α : Sort u_1 β : Sort u_2 s : Setoid α x : Quotient s y : α ⊢ x = Quotient.mk s y ↔ out x ≈ y [PROOFSTEP] refine' Iff.trans _ Quotient.eq [GOAL] α : Sort u_1 β : Sort u_2 s : Setoid α x : Quotient s y : α ⊢ x = Quotient.mk s y ↔ Quotient.mk s (out x) = Quotient.mk s y [PROOFSTEP] rw [Quotient.out_eq x] [GOAL] α : Sort u_1 β : Sort u_2 s : Setoid α x y : Quotient s ⊢ out x ≈ out y ↔ x = y [PROOFSTEP] rw [← Quotient.eq_mk_iff_out, Quotient.out_eq] [GOAL] α✝ : Sort u_1 β : Sort u_2 ι : Type u_3 α : ι → Type u_4 S : (i : ι) → Setoid (α i) f : (i : ι) → Quotient (S i) ⊢ Setoid ((i : ι) → α i) [PROOFSTEP] infer_instance [GOAL] α✝ : Sort u_1 β : Sort u_2 ι : Type u_3 α : ι → Sort u_4 s : (i : ι) → Setoid (α i) p : ((i : ι) → Quotient (s i)) → Prop f : (i : ι) → Quotient (s i) h : ∀ (a : (i : ι) → α i), p fun i => Quotient.mk (s i) (a i) ⊢ p f [PROOFSTEP] rw [← (funext fun i ↦ Quotient.out_eq (f i) : (fun i ↦ ⟦(f i).out⟧) = f)] [GOAL] α✝ : Sort u_1 β : Sort u_2 ι : Type u_3 α : ι → Sort u_4 s : (i : ι) → Setoid (α i) p : ((i : ι) → Quotient (s i)) → Prop f : (i : ι) → Quotient (s i) h : ∀ (a : (i : ι) → α i), p fun i => Quotient.mk (s i) (a i) ⊢ p fun i => Quotient.mk (s i) (out (f i)) [PROOFSTEP] apply h
{"mathlib_filename": "Mathlib.Data.Quot", "llama_tokens": 1904}
[GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : IsIntegral A x ⊢ Monic (minpoly A x) [PROOFSTEP] delta minpoly [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : IsIntegral A x ⊢ Monic (if hx : IsIntegral A x then WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx else 0) [PROOFSTEP] rw [dif_pos hx] [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : IsIntegral A x ⊢ Monic (WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx) [PROOFSTEP] exact (degree_lt_wf.min_mem _ hx).1 [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x✝ : B f : B →ₐ[A] B' hf : Injective ↑f x : B ⊢ minpoly A (↑f x) = minpoly A x [PROOFSTEP] refine' dif_ctx_congr (isIntegral_algHom_iff _ hf) (fun _ => _) fun _ => rfl [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x✝¹ : B f : B →ₐ[A] B' hf : Injective ↑f x : B x✝ : IsIntegral A x ⊢ WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A ((fun x => B') x)) (↑f x) x_1 = 0) (_ : IsIntegral A (↑f x)) = WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) x✝ [PROOFSTEP] simp_rw [← Polynomial.aeval_def, aeval_algHom, AlgHom.comp_apply, _root_.map_eq_zero_iff f hf] [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B ⊢ ↑(Polynomial.aeval x) (minpoly A x) = 0 [PROOFSTEP] delta minpoly [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B ⊢ ↑(Polynomial.aeval x) (if hx : IsIntegral A x then WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx else 0) = 0 [PROOFSTEP] split_ifs with hx [GOAL] case pos A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : IsIntegral A x ⊢ ↑(Polynomial.aeval x) (if hx : IsIntegral A x then WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx else 0) = 0 [PROOFSTEP] rw [dif_pos hx] [GOAL] case pos A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : IsIntegral A x ⊢ ↑(Polynomial.aeval x) (WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx) = 0 [PROOFSTEP] exact (degree_lt_wf.min_mem _ hx).2 [GOAL] case neg A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : ¬IsIntegral A x ⊢ ↑(Polynomial.aeval x) (if hx : IsIntegral A x then WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx else 0) = 0 [PROOFSTEP] rw [dif_neg hx] [GOAL] case neg A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : ¬IsIntegral A x ⊢ ↑(Polynomial.aeval x) 0 = 0 [PROOFSTEP] exact aeval_zero _ [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Nontrivial B ⊢ minpoly A x ≠ 1 [PROOFSTEP] intro h [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Nontrivial B h : minpoly A x = 1 ⊢ False [PROOFSTEP] refine' (one_ne_zero : (1 : B) ≠ 0) _ [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Nontrivial B h : minpoly A x = 1 ⊢ 1 = 0 [PROOFSTEP] simpa using congr_arg (Polynomial.aeval x) h [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁷ : CommRing A inst✝⁶ : Ring B inst✝⁵ : Ring B' inst✝⁴ : Algebra A B inst✝³ : Algebra A B' x : B inst✝² : Nontrivial B R : Type u_4 inst✝¹ : Semiring R inst✝ : Nontrivial R f : A →+* R ⊢ map f (minpoly A x) ≠ 1 [PROOFSTEP] by_cases hx : IsIntegral A x [GOAL] case pos A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁷ : CommRing A inst✝⁶ : Ring B inst✝⁵ : Ring B' inst✝⁴ : Algebra A B inst✝³ : Algebra A B' x : B inst✝² : Nontrivial B R : Type u_4 inst✝¹ : Semiring R inst✝ : Nontrivial R f : A →+* R hx : IsIntegral A x ⊢ map f (minpoly A x) ≠ 1 [PROOFSTEP] exact mt ((monic hx).eq_one_of_map_eq_one f) (ne_one A x) [GOAL] case neg A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁷ : CommRing A inst✝⁶ : Ring B inst✝⁵ : Ring B' inst✝⁴ : Algebra A B inst✝³ : Algebra A B' x : B inst✝² : Nontrivial B R : Type u_4 inst✝¹ : Semiring R inst✝ : Nontrivial R f : A →+* R hx : ¬IsIntegral A x ⊢ map f (minpoly A x) ≠ 1 [PROOFSTEP] rw [eq_zero hx, Polynomial.map_zero] [GOAL] case neg A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁷ : CommRing A inst✝⁶ : Ring B inst✝⁵ : Ring B' inst✝⁴ : Algebra A B inst✝³ : Algebra A B' x : B inst✝² : Nontrivial B R : Type u_4 inst✝¹ : Semiring R inst✝ : Nontrivial R f : A →+* R hx : ¬IsIntegral A x ⊢ 0 ≠ 1 [PROOFSTEP] exact zero_ne_one [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Nontrivial B ⊢ ¬IsUnit (minpoly A x) [PROOFSTEP] haveI : Nontrivial A := (algebraMap A B).domain_nontrivial [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Nontrivial B this : Nontrivial A ⊢ ¬IsUnit (minpoly A x) [PROOFSTEP] by_cases hx : IsIntegral A x [GOAL] case pos A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Nontrivial B this : Nontrivial A hx : IsIntegral A x ⊢ ¬IsUnit (minpoly A x) [PROOFSTEP] exact mt (monic hx).eq_one_of_isUnit (ne_one A x) [GOAL] case neg A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Nontrivial B this : Nontrivial A hx : ¬IsIntegral A x ⊢ ¬IsUnit (minpoly A x) [PROOFSTEP] rw [eq_zero hx] [GOAL] case neg A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Nontrivial B this : Nontrivial A hx : ¬IsIntegral A x ⊢ ¬IsUnit 0 [PROOFSTEP] exact not_isUnit_zero [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : degree (minpoly A x) = 1 ⊢ x ∈ RingHom.range (algebraMap A B) [PROOFSTEP] have h : IsIntegral A x := by by_contra h rw [eq_zero h, degree_zero, ← WithBot.coe_one] at hx exact ne_of_lt (show ⊥ < ↑1 from WithBot.bot_lt_coe 1) hx [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : degree (minpoly A x) = 1 ⊢ IsIntegral A x [PROOFSTEP] by_contra h [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : degree (minpoly A x) = 1 h : ¬IsIntegral A x ⊢ False [PROOFSTEP] rw [eq_zero h, degree_zero, ← WithBot.coe_one] at hx [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : ⊥ = ↑1 h : ¬IsIntegral A x ⊢ False [PROOFSTEP] exact ne_of_lt (show ⊥ < ↑1 from WithBot.bot_lt_coe 1) hx [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : degree (minpoly A x) = 1 h : IsIntegral A x ⊢ x ∈ RingHom.range (algebraMap A B) [PROOFSTEP] have key := minpoly.aeval A x [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : degree (minpoly A x) = 1 h : IsIntegral A x key : ↑(Polynomial.aeval x) (minpoly A x) = 0 ⊢ x ∈ RingHom.range (algebraMap A B) [PROOFSTEP] rw [eq_X_add_C_of_degree_eq_one hx, (minpoly.monic h).leadingCoeff, C_1, one_mul, aeval_add, aeval_C, aeval_X, ← eq_neg_iff_add_eq_zero, ← RingHom.map_neg] at key [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B hx : degree (minpoly A x) = 1 h : IsIntegral A x key : x = ↑(algebraMap A B) (-coeff (minpoly A x) 0) ⊢ x ∈ RingHom.range (algebraMap A B) [PROOFSTEP] exact ⟨-(minpoly A x).coeff 0, key.symm⟩ [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 ⊢ degree (minpoly A x) ≤ degree p [PROOFSTEP] delta minpoly [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 ⊢ degree (if hx : IsIntegral A x then WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx else 0) ≤ degree p [PROOFSTEP] split_ifs with hx [GOAL] case pos A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 hx : IsIntegral A x ⊢ degree (WellFounded.min (_ : WellFounded fun p q => degree p < degree q) (fun x_1 => Monic x_1 ∧ eval₂ (algebraMap A B) x x_1 = 0) hx) ≤ degree p [PROOFSTEP] exact le_of_not_lt (degree_lt_wf.not_lt_min _ hx ⟨pmonic, hp⟩) [GOAL] case neg A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 hx : ¬IsIntegral A x ⊢ degree 0 ≤ degree p [PROOFSTEP] simp only [degree_zero, bot_le] [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ⊢ p = minpoly A x [PROOFSTEP] nontriviality A [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A ⊢ p = minpoly A x [PROOFSTEP] have hx : IsIntegral A x := ⟨p, hm, hp⟩ [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x ⊢ p = minpoly A x [PROOFSTEP] obtain h | h := hl _ ((minpoly A x).degree_modByMonic_lt hm) [GOAL] case inl A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 ⊢ p = minpoly A x case inr A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : ↑(Polynomial.aeval x) (minpoly A x %ₘ p) ≠ 0 ⊢ p = minpoly A x [PROOFSTEP] swap [GOAL] case inr A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : ↑(Polynomial.aeval x) (minpoly A x %ₘ p) ≠ 0 ⊢ p = minpoly A x [PROOFSTEP] exact (h <| (aeval_modByMonic_eq_self_of_root hm hp).trans <| aeval A x).elim [GOAL] case inl A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 ⊢ p = minpoly A x [PROOFSTEP] obtain ⟨r, hr⟩ := (dvd_iff_modByMonic_eq_zero hm).1 h [GOAL] case inl.intro A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hr : minpoly A x = p * r ⊢ p = minpoly A x [PROOFSTEP] rw [hr] [GOAL] case inl.intro A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hr : minpoly A x = p * r ⊢ p = p * r [PROOFSTEP] have hlead := congr_arg leadingCoeff hr [GOAL] case inl.intro A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hr : minpoly A x = p * r hlead : leadingCoeff (minpoly A x) = leadingCoeff (p * r) ⊢ p = p * r [PROOFSTEP] rw [mul_comm, leadingCoeff_mul_monic hm, (monic hx).leadingCoeff] at hlead [GOAL] case inl.intro A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hr : minpoly A x = p * r hlead : 1 = leadingCoeff r ⊢ p = p * r [PROOFSTEP] have : natDegree r ≤ 0 := by have hr0 : r ≠ 0 := by rintro rfl exact ne_zero hx (mul_zero p ▸ hr) apply_fun natDegree at hr rw [hm.natDegree_mul' hr0] at hr apply Nat.le_of_add_le_add_left rw [add_zero] exact hr.symm.trans_le (natDegree_le_natDegree <| min A x hm hp) [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hr : minpoly A x = p * r hlead : 1 = leadingCoeff r ⊢ natDegree r ≤ 0 [PROOFSTEP] have hr0 : r ≠ 0 := by rintro rfl exact ne_zero hx (mul_zero p ▸ hr) [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hr : minpoly A x = p * r hlead : 1 = leadingCoeff r ⊢ r ≠ 0 [PROOFSTEP] rintro rfl [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 hr : minpoly A x = p * 0 hlead : 1 = leadingCoeff 0 ⊢ False [PROOFSTEP] exact ne_zero hx (mul_zero p ▸ hr) [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hr : minpoly A x = p * r hlead : 1 = leadingCoeff r hr0 : r ≠ 0 ⊢ natDegree r ≤ 0 [PROOFSTEP] apply_fun natDegree at hr [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hlead : 1 = leadingCoeff r hr0 : r ≠ 0 hr : natDegree (minpoly A x) = natDegree (p * r) ⊢ natDegree r ≤ 0 [PROOFSTEP] rw [hm.natDegree_mul' hr0] at hr [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hlead : 1 = leadingCoeff r hr0 : r ≠ 0 hr : natDegree (minpoly A x) = natDegree p + natDegree r ⊢ natDegree r ≤ 0 [PROOFSTEP] apply Nat.le_of_add_le_add_left [GOAL] case h A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hlead : 1 = leadingCoeff r hr0 : r ≠ 0 hr : natDegree (minpoly A x) = natDegree p + natDegree r ⊢ ?a + natDegree r ≤ ?a + 0 case a A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hlead : 1 = leadingCoeff r hr0 : r ≠ 0 hr : natDegree (minpoly A x) = natDegree p + natDegree r ⊢ ℕ [PROOFSTEP] rw [add_zero] [GOAL] case h A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hlead : 1 = leadingCoeff r hr0 : r ≠ 0 hr : natDegree (minpoly A x) = natDegree p + natDegree r ⊢ ?h + natDegree r ≤ ?h case h A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hlead : 1 = leadingCoeff r hr0 : r ≠ 0 hr : natDegree (minpoly A x) = natDegree p + natDegree r ⊢ ℕ [PROOFSTEP] exact hr.symm.trans_le (natDegree_le_natDegree <| min A x hm hp) [GOAL] case inl.intro A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Ring B' inst✝¹ : Algebra A B inst✝ : Algebra A B' x : B p : A[X] hm : Monic p hp : ↑(Polynomial.aeval x) p = 0 hl : ∀ (q : A[X]), degree q < degree p → q = 0 ∨ ↑(Polynomial.aeval x) q ≠ 0 ✝ : Nontrivial A hx : IsIntegral A x h : minpoly A x %ₘ p = 0 r : A[X] hr : minpoly A x = p * r hlead : 1 = leadingCoeff r this : natDegree r ≤ 0 ⊢ p = p * r [PROOFSTEP] rw [eq_C_of_natDegree_le_zero this, ← Nat.eq_zero_of_le_zero this, ← leadingCoeff, ← hlead, C_1, mul_one] [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Subsingleton B ⊢ minpoly A x = 1 [PROOFSTEP] nontriviality A [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Subsingleton B ✝ : Nontrivial A ⊢ minpoly A x = 1 [PROOFSTEP] have := minpoly.min A x monic_one (Subsingleton.elim _ _) [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Subsingleton B ✝ : Nontrivial A this : degree (minpoly A x) ≤ degree 1 ⊢ minpoly A x = 1 [PROOFSTEP] rw [degree_one] at this [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Subsingleton B ✝ : Nontrivial A this : degree (minpoly A x) ≤ 0 ⊢ minpoly A x = 1 [PROOFSTEP] cases' le_or_lt (minpoly A x).degree 0 with h h [GOAL] case inl A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Subsingleton B ✝ : Nontrivial A this : degree (minpoly A x) ≤ 0 h : degree (minpoly A x) ≤ 0 ⊢ minpoly A x = 1 [PROOFSTEP] rwa [(monic ⟨1, monic_one, by simp⟩ : (minpoly A x).Monic).degree_le_zero_iff_eq_one] at h [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Subsingleton B ✝ : Nontrivial A this : degree (minpoly A x) ≤ 0 h : degree (minpoly A x) ≤ 0 ⊢ eval₂ (algebraMap A B) x 1 = 0 [PROOFSTEP] simp [GOAL] case inr A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁵ : CommRing A inst✝⁴ : Ring B inst✝³ : Ring B' inst✝² : Algebra A B inst✝¹ : Algebra A B' x : B inst✝ : Subsingleton B ✝ : Nontrivial A this : degree (minpoly A x) ≤ 0 h : 0 < degree (minpoly A x) ⊢ minpoly A x = 1 [PROOFSTEP] exact (this.not_lt h).elim [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝³ : CommRing A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B hx : IsIntegral A x ⊢ 0 < natDegree (minpoly A x) [PROOFSTEP] rw [pos_iff_ne_zero] [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝³ : CommRing A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B hx : IsIntegral A x ⊢ natDegree (minpoly A x) ≠ 0 [PROOFSTEP] intro ndeg_eq_zero [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝³ : CommRing A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B hx : IsIntegral A x ndeg_eq_zero : natDegree (minpoly A x) = 0 ⊢ False [PROOFSTEP] have eq_one : minpoly A x = 1 := by rw [eq_C_of_natDegree_eq_zero ndeg_eq_zero] convert C_1 (R := A) simpa only [ndeg_eq_zero.symm] using (monic hx).leadingCoeff [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝³ : CommRing A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B hx : IsIntegral A x ndeg_eq_zero : natDegree (minpoly A x) = 0 ⊢ minpoly A x = 1 [PROOFSTEP] rw [eq_C_of_natDegree_eq_zero ndeg_eq_zero] [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝³ : CommRing A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B hx : IsIntegral A x ndeg_eq_zero : natDegree (minpoly A x) = 0 ⊢ ↑C (coeff (minpoly A x) 0) = 1 [PROOFSTEP] convert C_1 (R := A) [GOAL] case h.e'_2.h.e'_6 A : Type u_1 B : Type u_2 B' : Type u_3 inst✝³ : CommRing A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B hx : IsIntegral A x ndeg_eq_zero : natDegree (minpoly A x) = 0 ⊢ coeff (minpoly A x) 0 = 1 [PROOFSTEP] simpa only [ndeg_eq_zero.symm] using (monic hx).leadingCoeff [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝³ : CommRing A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B hx : IsIntegral A x ndeg_eq_zero : natDegree (minpoly A x) = 0 eq_one : minpoly A x = 1 ⊢ False [PROOFSTEP] simpa only [eq_one, AlgHom.map_one, one_ne_zero] using aeval A x [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A hf : Injective ↑(algebraMap A B) ⊢ minpoly A (↑(algebraMap A B) a) = X - ↑C a [PROOFSTEP] nontriviality A [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A hf : Injective ↑(algebraMap A B) ✝ : Nontrivial A ⊢ minpoly A (↑(algebraMap A B) a) = X - ↑C a [PROOFSTEP] refine' (unique' A _ (monic_X_sub_C a) _ _).symm [GOAL] case refine'_1 A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A hf : Injective ↑(algebraMap A B) ✝ : Nontrivial A ⊢ ↑(Polynomial.aeval (↑(algebraMap A B) a)) (X - ↑C a) = 0 [PROOFSTEP] rw [map_sub, aeval_C, aeval_X, sub_self] [GOAL] case refine'_2 A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A hf : Injective ↑(algebraMap A B) ✝ : Nontrivial A ⊢ ∀ (q : A[X]), degree q < degree (X - ↑C a) → q = 0 ∨ ↑(Polynomial.aeval (↑(algebraMap A B) a)) q ≠ 0 [PROOFSTEP] simp_rw [or_iff_not_imp_left] [GOAL] case refine'_2 A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A hf : Injective ↑(algebraMap A B) ✝ : Nontrivial A ⊢ ∀ (q : A[X]), degree q < degree (X - ↑C a) → ¬q = 0 → ↑(Polynomial.aeval (↑(algebraMap A B) a)) q ≠ 0 [PROOFSTEP] intro q hl h0 [GOAL] case refine'_2 A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A hf : Injective ↑(algebraMap A B) ✝ : Nontrivial A q : A[X] hl : degree q < degree (X - ↑C a) h0 : ¬q = 0 ⊢ ↑(Polynomial.aeval (↑(algebraMap A B) a)) q ≠ 0 [PROOFSTEP] rw [← natDegree_lt_natDegree_iff h0, natDegree_X_sub_C, Nat.lt_one_iff] at hl [GOAL] case refine'_2 A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A hf : Injective ↑(algebraMap A B) ✝ : Nontrivial A q : A[X] hl : natDegree q = 0 h0 : ¬q = 0 ⊢ ↑(Polynomial.aeval (↑(algebraMap A B) a)) q ≠ 0 [PROOFSTEP] rw [eq_C_of_natDegree_eq_zero hl] at h0 ⊢ [GOAL] case refine'_2 A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A hf : Injective ↑(algebraMap A B) ✝ : Nontrivial A q : A[X] hl : natDegree q = 0 h0 : ¬↑C (coeff q 0) = 0 ⊢ ↑(Polynomial.aeval (↑(algebraMap A B) a)) (↑C (coeff q 0)) ≠ 0 [PROOFSTEP] rwa [aeval_C, map_ne_zero_iff _ hf, ← C_ne_zero] [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A[X] hx : IsIntegral A x hamonic : Monic a hdvd : DvdNotUnit a (minpoly A x) ⊢ ↑(Polynomial.aeval x) a ≠ 0 [PROOFSTEP] refine' fun ha => (min A x hamonic ha).not_lt (degree_lt_degree _) [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A[X] hx : IsIntegral A x hamonic : Monic a hdvd : DvdNotUnit a (minpoly A x) ha : ↑(Polynomial.aeval x) a = 0 ⊢ natDegree a < natDegree (minpoly A x) [PROOFSTEP] obtain ⟨_, c, hu, he⟩ := hdvd [GOAL] case intro.intro.intro A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A[X] hx : IsIntegral A x hamonic : Monic a ha : ↑(Polynomial.aeval x) a = 0 left✝ : a ≠ 0 c : A[X] hu : ¬IsUnit c he : minpoly A x = a * c ⊢ natDegree a < natDegree (minpoly A x) [PROOFSTEP] have hcm := hamonic.of_mul_monic_left (he.subst <| monic hx) [GOAL] case intro.intro.intro A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A[X] hx : IsIntegral A x hamonic : Monic a ha : ↑(Polynomial.aeval x) a = 0 left✝ : a ≠ 0 c : A[X] hu : ¬IsUnit c he : minpoly A x = a * c hcm : Monic c ⊢ natDegree a < natDegree (minpoly A x) [PROOFSTEP] rw [he, hamonic.natDegree_mul hcm] -- TODO: port Nat.lt_add_of_zero_lt_left from lean3 core [GOAL] case intro.intro.intro A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A[X] hx : IsIntegral A x hamonic : Monic a ha : ↑(Polynomial.aeval x) a = 0 left✝ : a ≠ 0 c : A[X] hu : ¬IsUnit c he : minpoly A x = a * c hcm : Monic c ⊢ natDegree a < natDegree a + natDegree c [PROOFSTEP] apply lt_add_of_pos_right [GOAL] case intro.intro.intro.h A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A[X] hx : IsIntegral A x hamonic : Monic a ha : ↑(Polynomial.aeval x) a = 0 left✝ : a ≠ 0 c : A[X] hu : ¬IsUnit c he : minpoly A x = a * c hcm : Monic c ⊢ 0 < natDegree c [PROOFSTEP] refine (lt_of_not_le fun h => hu ?_) [GOAL] case intro.intro.intro.h A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A[X] hx : IsIntegral A x hamonic : Monic a ha : ↑(Polynomial.aeval x) a = 0 left✝ : a ≠ 0 c : A[X] hu : ¬IsUnit c he : minpoly A x = a * c hcm : Monic c h : natDegree c ≤ 0 ⊢ IsUnit c [PROOFSTEP] rw [eq_C_of_natDegree_le_zero h, ← Nat.eq_zero_of_le_zero h, ← leadingCoeff, hcm.leadingCoeff, C_1] [GOAL] case intro.intro.intro.h A : Type u_1 B : Type u_2 B' : Type u_3 inst✝² : CommRing A inst✝¹ : Ring B inst✝ : Algebra A B x : B a : A[X] hx : IsIntegral A x hamonic : Monic a ha : ↑(Polynomial.aeval x) a = 0 left✝ : a ≠ 0 c : A[X] hu : ¬IsUnit c he : minpoly A x = a * c hcm : Monic c h : natDegree c ≤ 0 ⊢ IsUnit 1 [PROOFSTEP] exact isUnit_one [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Algebra A B x : B inst✝¹ : IsDomain A inst✝ : IsDomain B hx : IsIntegral A x ⊢ Irreducible (minpoly A x) [PROOFSTEP] refine' (irreducible_of_monic (monic hx) <| ne_one A x).2 fun f g hf hg he => _ [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Algebra A B x : B inst✝¹ : IsDomain A inst✝ : IsDomain B hx : IsIntegral A x f g : A[X] hf : Monic f hg : Monic g he : f * g = minpoly A x ⊢ f = 1 ∨ g = 1 [PROOFSTEP] rw [← hf.isUnit_iff, ← hg.isUnit_iff] [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Algebra A B x : B inst✝¹ : IsDomain A inst✝ : IsDomain B hx : IsIntegral A x f g : A[X] hf : Monic f hg : Monic g he : f * g = minpoly A x ⊢ IsUnit f ∨ IsUnit g [PROOFSTEP] by_contra' h [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Algebra A B x : B inst✝¹ : IsDomain A inst✝ : IsDomain B hx : IsIntegral A x f g : A[X] hf : Monic f hg : Monic g he : f * g = minpoly A x h : ¬IsUnit f ∧ ¬IsUnit g ⊢ False [PROOFSTEP] have heval := congr_arg (Polynomial.aeval x) he [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Algebra A B x : B inst✝¹ : IsDomain A inst✝ : IsDomain B hx : IsIntegral A x f g : A[X] hf : Monic f hg : Monic g he : f * g = minpoly A x h : ¬IsUnit f ∧ ¬IsUnit g heval : ↑(Polynomial.aeval x) (f * g) = ↑(Polynomial.aeval x) (minpoly A x) ⊢ False [PROOFSTEP] rw [aeval A x, aeval_mul, mul_eq_zero] at heval [GOAL] A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Algebra A B x : B inst✝¹ : IsDomain A inst✝ : IsDomain B hx : IsIntegral A x f g : A[X] hf : Monic f hg : Monic g he : f * g = minpoly A x h : ¬IsUnit f ∧ ¬IsUnit g heval : ↑(Polynomial.aeval x) f = 0 ∨ ↑(Polynomial.aeval x) g = 0 ⊢ False [PROOFSTEP] cases' heval with heval heval [GOAL] case inl A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Algebra A B x : B inst✝¹ : IsDomain A inst✝ : IsDomain B hx : IsIntegral A x f g : A[X] hf : Monic f hg : Monic g he : f * g = minpoly A x h : ¬IsUnit f ∧ ¬IsUnit g heval : ↑(Polynomial.aeval x) f = 0 ⊢ False [PROOFSTEP] exact aeval_ne_zero_of_dvdNotUnit_minpoly hx hf ⟨hf.ne_zero, g, h.2, he.symm⟩ heval [GOAL] case inr A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Algebra A B x : B inst✝¹ : IsDomain A inst✝ : IsDomain B hx : IsIntegral A x f g : A[X] hf : Monic f hg : Monic g he : f * g = minpoly A x h : ¬IsUnit f ∧ ¬IsUnit g heval : ↑(Polynomial.aeval x) g = 0 ⊢ False [PROOFSTEP] refine' aeval_ne_zero_of_dvdNotUnit_minpoly hx hg ⟨hg.ne_zero, f, h.1, _⟩ heval [GOAL] case inr A : Type u_1 B : Type u_2 B' : Type u_3 inst✝⁴ : CommRing A inst✝³ : Ring B inst✝² : Algebra A B x : B inst✝¹ : IsDomain A inst✝ : IsDomain B hx : IsIntegral A x f g : A[X] hf : Monic f hg : Monic g he : f * g = minpoly A x h : ¬IsUnit f ∧ ¬IsUnit g heval : ↑(Polynomial.aeval x) g = 0 ⊢ minpoly A x = g * f [PROOFSTEP] rw [mul_comm, he]
{"mathlib_filename": "Mathlib.FieldTheory.Minpoly.Basic", "llama_tokens": 17725}
{"mathlib_filename": "Mathlib.Data.Bracket", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Data.SProd", "llama_tokens": 0}
[GOAL] B : Type u_1 F : Type u_2 E : B → Type u_3 x x' : B h : x = x' b : E x ⊢ mk' F x' (cast (_ : E x = E x') b) = { proj := x, snd := b } [PROOFSTEP] subst h [GOAL] B : Type u_1 F : Type u_2 E : B → Type u_3 x : B b : E x ⊢ mk' F x (cast (_ : E x = E x) b) = { proj := x, snd := b } [PROOFSTEP] rfl [GOAL] B : Type u_1 F : Type u_2 E : B → Type u_3 b : B y y' : E b ⊢ mk' F b y = mk' F b y' ↔ y = y' [PROOFSTEP] simp [TotalSpace.ext_iff] [GOAL] B : Type u_1 F : Type u_2 E : B → Type u_3 b : B ⊢ range (mk b) = proj ⁻¹' {b} [PROOFSTEP] apply Subset.antisymm [GOAL] case h₁ B : Type u_1 F : Type u_2 E : B → Type u_3 b : B ⊢ range (mk b) ⊆ proj ⁻¹' {b} [PROOFSTEP] rintro _ ⟨x, rfl⟩ [GOAL] case h₁.intro B : Type u_1 F : Type u_2 E : B → Type u_3 b : B x : E b ⊢ { proj := b, snd := x } ∈ proj ⁻¹' {b} [PROOFSTEP] rfl [GOAL] case h₂ B : Type u_1 F : Type u_2 E : B → Type u_3 b : B ⊢ proj ⁻¹' {b} ⊆ range (mk b) [PROOFSTEP] rintro ⟨_, x⟩ rfl [GOAL] case h₂.mk B : Type u_1 F : Type u_2 E : B → Type u_3 proj✝ : B x : E proj✝ ⊢ { proj := proj✝, snd := x } ∈ range (mk { proj := proj✝, snd := x }.proj) [PROOFSTEP] exact ⟨x, rfl⟩
{"mathlib_filename": "Mathlib.Data.Bundle", "llama_tokens": 632}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β x : α ⊢ x ∈ Dom f ↔ ∃ y, y ∈ f x [PROOFSTEP] simp [Dom, Part.dom_iff_mem] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 x✝ : (p : α → Prop) × (Subtype p → β) p : α → Prop f : Subtype p → β ⊢ (fun f => { fst := fun a => (f a).Dom, snd := asSubtype f }) ((fun f x => { Dom := Sigma.fst f x, get := fun h => Sigma.snd f { val := x, property := h } }) { fst := p, snd := f }) = { fst := p, snd := f } [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 x✝ : (p : α → Prop) × (Subtype p → β) p : α → Prop f : Subtype p → β ⊢ { fst := fun a => p a, snd := asSubtype fun x => { Dom := p x, get := fun h => f { val := x, property := h } } } = { fst := p, snd := f } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β s : Set α h : s ⊆ Dom f a : α b : β ⊢ b ∈ restrict f h a ↔ a ∈ s ∧ b ∈ f a [PROOFSTEP] simp [restrict] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α → β s : Set α a : α b : β ⊢ b ∈ res f s a ↔ a ∈ s ∧ f a = b [PROOFSTEP] simp [res, @eq_comm _ b] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α → β a : α b : β ⊢ (∃ x, f a = b) ↔ f a = b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 α✝ : Type ?u.16924 f : α →. α✝ ⊢ id <$> f = f [PROOFSTEP] funext a [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 α✝ : Type ?u.16924 f : α →. α✝ a : α ⊢ (id <$> f) a = f a [PROOFSTEP] dsimp [Functor.map, PFun.map] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 α✝ : Type ?u.16924 f : α →. α✝ a : α ⊢ Part.map id (f a) = f a [PROOFSTEP] cases f a [GOAL] case h.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 α✝ : Type ?u.16924 f : α →. α✝ a : α Dom✝ : Prop get✝ : Dom✝ → α✝ ⊢ Part.map id { Dom := Dom✝, get := get✝ } = { Dom := Dom✝, get := get✝ } [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a ⊢ (f a).Dom [PROOFSTEP] let ⟨h₁, h₂⟩ := Part.mem_assert_iff.1 h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ ⊢ (f a).Dom [PROOFSTEP] rw [WellFounded.fixFEq] at h₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : b ∈ Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a' (_ : ∃ h, Part.get (f a) h = Sum.inr a') ⊢ (f a).Dom [PROOFSTEP] exact h₂.fst.fst [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] let ⟨h₁, h₂⟩ := Part.mem_assert_iff.1 h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] rw [WellFounded.fixFEq] at h₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : b ∈ Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a' (_ : ∃ h, Part.get (f a) h = Sum.inr a') ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] simp at h₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : ∃ h, b ∈ match e : Part.get (f a) h with | Sum.inl b => Part.some b | Sum.inr a' => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun y x => Sum.inr y ∈ f x) a') ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] cases' h₂ with h₂ h₃ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : (f a).Dom h₃ : b ∈ match e : Part.get (f a) h₂ with | Sum.inl b => Part.some b | Sum.inr a' => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun y x => Sum.inr y ∈ f x) a') ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] split at h₃ [GOAL] case intro.h_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : (f a).Dom b✝ : β heq✝ : Part.get (f a) h₂ = Sum.inl b✝ h₃ : b ∈ Part.some b✝ ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' case intro.h_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : (f a).Dom a'✝ : α heq✝ : Part.get (f a) h₂ = Sum.inr a'✝ h₃ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a'✝ (_ : Acc (fun y x => Sum.inr y ∈ f x) a'✝) ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] next e => simp at h₃ ; subst b; refine' Or.inl ⟨h₂, e⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : (f a).Dom b✝ : β e : Part.get (f a) h₂ = Sum.inl b✝ h₃ : b ∈ Part.some b✝ ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] simp at h₃ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : (f a).Dom b✝ : β e : Part.get (f a) h₂ = Sum.inl b✝ h₃ : b = b✝ ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] subst b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : (f a).Dom b✝ : β e : Part.get (f a) h₂ = Sum.inl b✝ h : b✝ ∈ fix f a ⊢ Sum.inl b✝ ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b✝ ∈ fix f a' [PROOFSTEP] refine' Or.inl ⟨h₂, e⟩ [GOAL] case intro.h_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : (f a).Dom a'✝ : α heq✝ : Part.get (f a) h₂ = Sum.inr a'✝ h₃ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a'✝ (_ : Acc (fun y x => Sum.inr y ∈ f x) a'✝) ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] next e => exact Or.inr ⟨_, ⟨_, e⟩, Part.mem_assert _ h₃⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : b ∈ fix f a h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : (f a).Dom a'✝ : α e : Part.get (f a) h₂ = Sum.inr a'✝ h₃ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a'✝ (_ : Acc (fun y x => Sum.inr y ∈ f x) a'✝) ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] exact Or.inr ⟨_, ⟨_, e⟩, Part.mem_assert _ h₃⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' ⊢ b ∈ fix f a [PROOFSTEP] simp [fix] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h : Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' ⊢ ∃ h, b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h [PROOFSTEP] rcases h with (⟨h₁, h₂⟩ | ⟨a', h, h₃⟩) [GOAL] case inl.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b ⊢ ∃ h, b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h [PROOFSTEP] refine' ⟨⟨_, fun y h' => _⟩, _⟩ [GOAL] case inl.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b y : α h' : Sum.inr y ∈ f a ⊢ Acc (fun x y => Sum.inr x ∈ f y) y [PROOFSTEP] injection Part.mem_unique ⟨h₁, h₂⟩ h' [GOAL] case inl.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b ⊢ b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a (_ : Acc (fun x y => Sum.inr x ∈ f y) a) [PROOFSTEP] rw [WellFounded.fixFEq] -- Porting note: used to be simp [h₁, h₂] [GOAL] case inl.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b ⊢ b ∈ Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a' (_ : ∃ h, Part.get (f a) h = Sum.inr a') [PROOFSTEP] apply Part.mem_assert h₁ [GOAL] case inl.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b ⊢ b ∈ match e : Part.get (f a) h₁ with | Sum.inl b => Part.some b | Sum.inr a' => (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a' (_ : ∃ h, Part.get (f a) h = Sum.inr a') [PROOFSTEP] split [GOAL] case inl.intro.refine'_2.h_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b b✝ : β heq✝ : Part.get (f a) h₁ = Sum.inl b✝ ⊢ b ∈ Part.some b✝ case inl.intro.refine'_2.h_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b a'✝ : α heq✝ : Part.get (f a) h₁ = Sum.inr a'✝ ⊢ b ∈ (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝) [PROOFSTEP] next e => injection h₂.symm.trans e with h; simp [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b b✝ : β e : Part.get (f a) h₁ = Sum.inl b✝ ⊢ b ∈ Part.some b✝ [PROOFSTEP] injection h₂.symm.trans e with h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b b✝ : β e : Part.get (f a) h₁ = Sum.inl b✝ h : b = b✝ ⊢ b ∈ Part.some b✝ [PROOFSTEP] simp [h] [GOAL] case inl.intro.refine'_2.h_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b a'✝ : α heq✝ : Part.get (f a) h₁ = Sum.inr a'✝ ⊢ b ∈ (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝) [PROOFSTEP] next e => injection h₂.symm.trans e [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inl b a'✝ : α e : Part.get (f a) h₁ = Sum.inr a'✝ ⊢ b ∈ (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝) [PROOFSTEP] injection h₂.symm.trans e [GOAL] case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h : Sum.inr a' ∈ f a h₃ : b ∈ fix f a' ⊢ ∃ h, b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h [PROOFSTEP] simp [fix] at h₃ [GOAL] case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h : Sum.inr a' ∈ f a h₃ : ∃ h, b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h ⊢ ∃ h, b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h [PROOFSTEP] cases' h₃ with h₃ h₄ [GOAL] case inr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h : Sum.inr a' ∈ f a h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ ⊢ ∃ h, b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h [PROOFSTEP] refine' ⟨⟨_, fun y h' => _⟩, _⟩ [GOAL] case inr.intro.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h : Sum.inr a' ∈ f a h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ y : α h' : Sum.inr y ∈ f a ⊢ Acc (fun x y => Sum.inr x ∈ f y) y [PROOFSTEP] injection Part.mem_unique h h' with e [GOAL] case inr.intro.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h : Sum.inr a' ∈ f a h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ y : α h' : Sum.inr y ∈ f a e : a' = y ⊢ Acc (fun x y => Sum.inr x ∈ f y) y [PROOFSTEP] exact e ▸ h₃ [GOAL] case inr.intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h : Sum.inr a' ∈ f a h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ ⊢ b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a (_ : Acc (fun x y => Sum.inr x ∈ f y) a) [PROOFSTEP] cases' h with h₁ h₂ [GOAL] case inr.intro.intro.intro.refine'_2.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inr a' ⊢ b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a (_ : Acc (fun x y => Sum.inr x ∈ f y) a) [PROOFSTEP] rw [WellFounded.fixFEq] -- Porting note: used to be simp [h₁, h₂, h₄] [GOAL] case inr.intro.intro.intro.refine'_2.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inr a' ⊢ b ∈ Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a'_1 => (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'_1 (_ : ∃ h, Part.get (f a) h = Sum.inr a'_1) [PROOFSTEP] apply Part.mem_assert h₁ [GOAL] case inr.intro.intro.intro.refine'_2.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inr a' ⊢ b ∈ match e : Part.get (f a) h₁ with | Sum.inl b => Part.some b | Sum.inr a'_1 => (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'_1 (_ : ∃ h, Part.get (f a) h = Sum.inr a'_1) [PROOFSTEP] split [GOAL] case inr.intro.intro.intro.refine'_2.intro.h_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inr a' b✝ : β heq✝ : Part.get (f a) h₁ = Sum.inl b✝ ⊢ b ∈ Part.some b✝ case inr.intro.intro.intro.refine'_2.intro.h_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inr a' a'✝ : α heq✝ : Part.get (f a) h₁ = Sum.inr a'✝ ⊢ b ∈ (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝) [PROOFSTEP] next e => injection h₂.symm.trans e [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inr a' b✝ : β e : Part.get (f a) h₁ = Sum.inl b✝ ⊢ b ∈ Part.some b✝ [PROOFSTEP] injection h₂.symm.trans e [GOAL] case inr.intro.intro.intro.refine'_2.intro.h_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inr a' a'✝ : α heq✝ : Part.get (f a) h₁ = Sum.inr a'✝ ⊢ b ∈ (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝) [PROOFSTEP] next e => injection h₂.symm.trans e; subst a'; exact h₄ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inr a' a'✝ : α e : Part.get (f a) h₁ = Sum.inr a'✝ ⊢ b ∈ (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝) [PROOFSTEP] injection h₂.symm.trans e [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β a' : α h₃ : Acc (fun x y => Sum.inr x ∈ f y) a' h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' h₃ h₁ : (f a).Dom h₂ : Part.get (f a) h₁ = Sum.inr a' a'✝ : α e : Part.get (f a) h₁ = Sum.inr a'✝ val_eq✝ : a' = a'✝ ⊢ b ∈ (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝) [PROOFSTEP] subst a' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a : α b : β h₁ : (f a).Dom a'✝ : α e : Part.get (f a) h₁ = Sum.inr a'✝ h₃ : Acc (fun x y => Sum.inr x ∈ f y) a'✝ h₄ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a'✝ h₃ h₂ : Part.get (f a) h₁ = Sum.inr a'✝ ⊢ b ∈ (fun y p => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun y x => Sum.inr y ∈ f x) y)) a'✝ (_ : ∃ h, Part.get (f a) h = Sum.inr a'✝) [PROOFSTEP] exact h₄ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α b : β a : α hb : Sum.inl b ∈ f a ⊢ b ∈ fix f a [PROOFSTEP] rw [PFun.mem_fix_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α b : β a : α hb : Sum.inl b ∈ f a ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] exact Or.inl hb [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a a' : α ha' : Sum.inr a' ∈ f a ⊢ fix f a = fix f a' [PROOFSTEP] ext b [GOAL] case H α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a a' : α ha' : Sum.inr a' ∈ f a b : β ⊢ b ∈ fix f a ↔ b ∈ fix f a' [PROOFSTEP] constructor [GOAL] case H.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a a' : α ha' : Sum.inr a' ∈ f a b : β ⊢ b ∈ fix f a → b ∈ fix f a' [PROOFSTEP] intro h [GOAL] case H.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a a' : α ha' : Sum.inr a' ∈ f a b : β h : b ∈ fix f a ⊢ b ∈ fix f a' [PROOFSTEP] obtain h' | ⟨a, h', e'⟩ := mem_fix_iff.1 h [GOAL] case H.mp.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a a' : α ha' : Sum.inr a' ∈ f a b : β h : b ∈ fix f a h' : Sum.inl b ∈ f a ⊢ b ∈ fix f a' [PROOFSTEP] cases Part.mem_unique ha' h' [GOAL] case H.mp.inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a✝ a' : α ha' : Sum.inr a' ∈ f a✝ b : β h : b ∈ fix f a✝ a : α h' : Sum.inr a ∈ f a✝ e' : b ∈ fix f a ⊢ b ∈ fix f a' [PROOFSTEP] cases Part.mem_unique ha' h' [GOAL] case H.mp.inr.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a a' : α ha' : Sum.inr a' ∈ f a b : β h : b ∈ fix f a h' : Sum.inr a' ∈ f a e' : b ∈ fix f a' ⊢ b ∈ fix f a' [PROOFSTEP] exact e' [GOAL] case H.mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a a' : α ha' : Sum.inr a' ∈ f a b : β ⊢ b ∈ fix f a' → b ∈ fix f a [PROOFSTEP] intro h [GOAL] case H.mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a a' : α ha' : Sum.inr a' ∈ f a b : β h : b ∈ fix f a' ⊢ b ∈ fix f a [PROOFSTEP] rw [PFun.mem_fix_iff] [GOAL] case H.mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α a a' : α ha' : Sum.inr a' ∈ f a b : β h : b ∈ fix f a' ⊢ Sum.inl b ∈ f a ∨ ∃ a', Sum.inr a' ∈ f a ∧ b ∈ fix f a' [PROOFSTEP] exact Or.inr ⟨a', ha', h⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊕ α b : β a a' : α hb : b ∈ fix f a ha' : Sum.inr a' ∈ f a ⊢ b ∈ fix f a' [PROOFSTEP] rwa [← fix_fwd_eq ha'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' ⊢ C a [PROOFSTEP] have h₂ := (Part.mem_assert_iff.1 h).snd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' h₂ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a (_ : Acc (fun x y => Sum.inr x ∈ f y) a) ⊢ C a [PROOFSTEP] revert h₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' ⊢ b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a (_ : Acc (fun x y => Sum.inr x ∈ f y) a) → C a [PROOFSTEP] generalize_proofs h₁ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' h₁ : Acc (fun x y => Sum.inr x ∈ f y) a ⊢ b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ → C a [PROOFSTEP] intro h₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ ⊢ C a [PROOFSTEP] clear h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' h₁ : Acc (fun x y => Sum.inr x ∈ f y) a h₂ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ ⊢ C a [PROOFSTEP] induction' h₁ with a ha IH [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a✝ : α H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' h₁ : Acc (fun x y => Sum.inr x ∈ f y) a✝ h₂✝ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a✝ h₁ a : α ha : ∀ (y : α), Sum.inr y ∈ f a → Acc (fun x y => Sum.inr x ∈ f y) y IH : (y : α) → (a : Sum.inr y ∈ f a) → b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc ?m.29240 y) → C y h₂ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a (_ : Acc (fun x y => Sum.inr x ∈ f y) a) ⊢ C a [PROOFSTEP] have h : b ∈ f.fix a := Part.mem_assert_iff.2 ⟨⟨a, ha⟩, h₂⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a✝ : α H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' h₁ : Acc (fun x y => Sum.inr x ∈ f y) a✝ h₂✝ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a✝ h₁ a : α ha : ∀ (y : α), Sum.inr y ∈ f a → Acc (fun x y => Sum.inr x ∈ f y) y IH : (y : α) → (a : Sum.inr y ∈ f a) → b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc ?m.29240 y) → C y h₂ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a (_ : Acc (fun x y => Sum.inr x ∈ f y) a) h : b ∈ fix f a ⊢ C a [PROOFSTEP] exact H a h fun a' fa' => IH a' fa' (Part.mem_assert_iff.1 (fix_fwd h fa')).snd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' ⊢ fixInduction h H = H a h fun a' h' => fixInduction (_ : b ∈ fix f a') H [PROOFSTEP] unfold fixInduction [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' ⊢ (let_fun h₂ := (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a (_ : Acc (fun x y => Sum.inr x ∈ f y) a)); Acc.rec (motive := fun {a} h₁ => b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ → C a) (fun a ha IH h₂ => let_fun h := (_ : b ∈ Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h); H a h fun a' fa' => IH a' fa' (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'))) (_ : Acc (fun x y => Sum.inr x ∈ f y) a) h₂) = H a h fun a' h' => let_fun h₂ := (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')); Acc.rec (motive := fun {a} h₁ => b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ → (fun x => C x) a) (fun a ha IH h₂ => let_fun h := (_ : b ∈ Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h); H a h fun a' fa' => IH a' fa' (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'))) (_ : Acc (fun x y => Sum.inr x ∈ f y) a') h₂ [PROOFSTEP] generalize (Part.mem_assert_iff.1 h).fst = ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' ha : Acc (fun x y => Sum.inr x ∈ f y) a ⊢ (let_fun h₂ := (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a (_ : Acc (fun x y => Sum.inr x ∈ f y) a)); Acc.rec (motive := fun {a} h₁ => b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ → C a) (fun a ha IH h₂ => let_fun h := (_ : b ∈ Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h); H a h fun a' fa' => IH a' fa' (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'))) ha h₂) = H a h fun a' h' => let_fun h₂ := (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')); Acc.rec (motive := fun {a} h₁ => b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ → (fun x => C x) a) (fun a ha IH h₂ => let_fun h := (_ : b ∈ Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h); H a h fun a' fa' => IH a' fa' (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'))) (_ : Acc (fun x y => Sum.inr x ∈ f y) a') h₂ [PROOFSTEP] induction ha [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α H : (a' : α) → b ∈ fix f a' → ((a'' : α) → Sum.inr a'' ∈ f a' → C a'') → C a' x✝ : α h✝ : ∀ (y : α), Sum.inr y ∈ f x✝ → Acc (fun x y => Sum.inr x ∈ f y) y h_ih✝ : ∀ (y : α) (a : Sum.inr y ∈ f x✝) (h : b ∈ fix f y), (let_fun h₂ := (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) y (_ : Acc (fun x y => Sum.inr x ∈ f y) y)); Acc.rec (motive := fun {a} h₁ => b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ → C a) (fun a ha IH h₂ => let_fun h := (_ : b ∈ Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h); H a h fun a' fa' => IH a' fa' (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'))) (_ : Acc ?m.30282 y) h₂) = H y h fun a' h' => let_fun h₂ := (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')); Acc.rec (motive := fun {a} h₁ => b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ → (fun x => C x) a) (fun a ha IH h₂ => let_fun h := (_ : b ∈ Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h); H a h fun a' fa' => IH a' fa' (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'))) (_ : Acc (fun x y => Sum.inr x ∈ f y) a') h₂ h : b ∈ fix f x✝ ⊢ (let_fun h₂ := (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) x✝ (_ : Acc (fun x y => Sum.inr x ∈ f y) x✝)); Acc.rec (motive := fun {a} h₁ => b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ → C a) (fun a ha IH h₂ => let_fun h := (_ : b ∈ Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h); H a h fun a' fa' => IH a' fa' (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'))) (_ : Acc (fun x y => Sum.inr x ∈ f y) x✝) h₂) = H x✝ h fun a' h' => let_fun h₂ := (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a')); Acc.rec (motive := fun {a} h₁ => b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h₁ → (fun x => C x) a) (fun a ha IH h₂ => let_fun h := (_ : b ∈ Part.assert (Acc (fun x y => Sum.inr x ∈ f y) a) fun h => WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a h); H a h fun a' fa' => IH a' fa' (_ : b ∈ WellFounded.fixF (fun a IH => Part.assert (f a).Dom fun hf => match e : Part.get (f a) hf with | Sum.inl b => Part.some b | Sum.inr a' => IH a' (_ : ∃ h, Part.get (f a) h = Sum.inr a')) a' (_ : Acc (fun x y => Sum.inr x ∈ f y) a'))) (_ : Acc (fun x y => Sum.inr x ∈ f y) a') h₂ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ ⊢ C a [PROOFSTEP] refine' fixInduction h fun a' h ih => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h✝ : b ∈ fix f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ a' : α h : b ∈ fix f a' ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a'' ⊢ C a' [PROOFSTEP] rcases e : (f a').get (dom_of_mem_fix h) with b' | a'' [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h✝ : b ∈ fix f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ a' : α h : b ∈ fix f a' ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a'' b' : β e : Part.get (f a') (_ : (f a').Dom) = Sum.inl b' ⊢ C a' [PROOFSTEP] replace e : _ ∈ f a' := ⟨_, e⟩ [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h✝ : b ∈ fix f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ a' : α h : b ∈ fix f a' ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a'' a'' : α e : Part.get (f a') (_ : (f a').Dom) = Sum.inr a'' ⊢ C a' [PROOFSTEP] replace e : _ ∈ f a' := ⟨_, e⟩ [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h✝ : b ∈ fix f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ a' : α h : b ∈ fix f a' ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a'' b' : β e : Sum.inl b' ∈ f a' ⊢ C a' [PROOFSTEP] apply hbase [GOAL] case inl.a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h✝ : b ∈ fix f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ a' : α h : b ∈ fix f a' ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a'' b' : β e : Sum.inl b' ∈ f a' ⊢ Sum.inl b ∈ f a' [PROOFSTEP] convert e [GOAL] case h.e'_4.h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h✝ : b ∈ fix f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ a' : α h : b ∈ fix f a' ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a'' b' : β e : Sum.inl b' ∈ f a' ⊢ b = b' [PROOFSTEP] exact Part.mem_unique h (fix_stop e) [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h✝ : b ∈ fix f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ a' : α h : b ∈ fix f a' ih : (a'' : α) → Sum.inr a'' ∈ f a' → C a'' a'' : α e : Sum.inr a'' ∈ f a' ⊢ C a' [PROOFSTEP] exact hind _ _ (fix_fwd h e) e (ih _ e) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a fa : Sum.inl b ∈ f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ ⊢ fixInduction' h hbase hind = hbase a fa [PROOFSTEP] unfold fixInduction' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a fa : Sum.inl b ∈ f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ ⊢ (fixInduction h fun a' h ih => Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a') (Part.get (f a') (_ : (f a').Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b'); hbase a' (_ : Sum.inl b ∈ f a')) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a''); hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e)) (_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) = hbase a fa [PROOFSTEP] rw [fixInduction_spec] -- Porting note: the explicit motive required because `simp` behaves differently [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a fa : Sum.inl b ∈ f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ ⊢ Sum.casesOn (motive := fun x => Part.get (f a) (_ : (f a).Dom) = x → C a) (Part.get (f a) (_ : (f a).Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inl b'); hbase a (_ : Sum.inl b ∈ f a)) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inr a''); hind a a'' (_ : b ∈ fix f a'') e ((fun a' h' => fixInduction (_ : b ∈ fix f a') fun a' h ih => Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a') (Part.get (f a') (_ : (f a').Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b'); hbase a' (_ : Sum.inl b ∈ f a')) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a''); hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e)) (_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) a'' e)) (_ : Part.get (f a) (_ : (f a).Dom) = Part.get (f a) (_ : (f a).Dom)) = hbase a fa [PROOFSTEP] refine' Eq.rec (motive := fun x e => Sum.casesOn (motive := fun y => (f a).get (dom_of_mem_fix h) = y → C a) x _ _ (Eq.trans (Part.get_eq_of_mem fa (dom_of_mem_fix h)) e) = hbase a fa) _ (Part.get_eq_of_mem fa (dom_of_mem_fix h)).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a : α h : b ∈ fix f a fa : Sum.inl b ∈ f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ ⊢ (fun x e => Sum.casesOn (motive := fun y => Part.get (f a) (_ : (f a).Dom) = y → C a) x (fun val => (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inl b'); hbase a (_ : Sum.inl b ∈ f a)) val) (fun val => (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inr a''); hind a a'' (_ : b ∈ fix f a'') e ((fun a' h' => fixInduction (_ : b ∈ fix f a') fun a' h ih => Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a') (Part.get (f a') (_ : (f a').Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b'); hbase a' (_ : Sum.inl b ∈ f a')) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a''); hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e)) (_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) a'' e)) val) (_ : Part.get (f a) (_ : (f a).Dom) = x) = hbase a fa) (Sum.inl b) (_ : Sum.inl b = Sum.inl b) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a a' : α h : b ∈ fix f a h' : b ∈ fix f a' fa : Sum.inr a' ∈ f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ ⊢ fixInduction' h hbase hind = hind a a' h' fa (fixInduction' h' hbase hind) [PROOFSTEP] unfold fixInduction' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a a' : α h : b ∈ fix f a h' : b ∈ fix f a' fa : Sum.inr a' ∈ f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ ⊢ (fixInduction h fun a' h ih => Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a') (Part.get (f a') (_ : (f a').Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b'); hbase a' (_ : Sum.inl b ∈ f a')) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a''); hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e)) (_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) = hind a a' h' fa (fixInduction h' fun a' h ih => Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → (fun x => C x) a') (Part.get (f a') (_ : (f a').Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b'); hbase a' (_ : Sum.inl b ∈ f a')) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a''); hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e)) (_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) [PROOFSTEP] rw [fixInduction_spec] -- Porting note: the explicit motive required because `simp` behaves differently [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a a' : α h : b ∈ fix f a h' : b ∈ fix f a' fa : Sum.inr a' ∈ f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ ⊢ Sum.casesOn (motive := fun x => Part.get (f a) (_ : (f a).Dom) = x → C a) (Part.get (f a) (_ : (f a).Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inl b'); hbase a (_ : Sum.inl b ∈ f a)) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inr a''); hind a a'' (_ : b ∈ fix f a'') e ((fun a' h' => fixInduction (_ : b ∈ fix f a') fun a' h ih => Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a') (Part.get (f a') (_ : (f a').Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b'); hbase a' (_ : Sum.inl b ∈ f a')) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a''); hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e)) (_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) a'' e)) (_ : Part.get (f a) (_ : (f a).Dom) = Part.get (f a) (_ : (f a).Dom)) = hind a a' h' fa (fixInduction h' fun a' h ih => Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → (fun x => C x) a') (Part.get (f a') (_ : (f a').Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b'); hbase a' (_ : Sum.inl b ∈ f a')) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a''); hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e)) (_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) [PROOFSTEP] refine' Eq.rec (motive := fun x e => Sum.casesOn (motive := fun y => (f a).get (dom_of_mem_fix h) = y → C a) x _ _ (Eq.trans (Part.get_eq_of_mem fa (dom_of_mem_fix h)) e) = _) _ (Part.get_eq_of_mem fa (dom_of_mem_fix h)).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 C : α → Sort u_7 f : α →. β ⊕ α b : β a a' : α h : b ∈ fix f a h' : b ∈ fix f a' fa : Sum.inr a' ∈ f a hbase : (a_final : α) → Sum.inl b ∈ f a_final → C a_final hind : (a₀ a₁ : α) → b ∈ fix f a₁ → Sum.inr a₁ ∈ f a₀ → C a₁ → C a₀ ⊢ (fun x e => Sum.casesOn (motive := fun y => Part.get (f a) (_ : (f a).Dom) = y → C a) x (fun val => (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inl b'); hbase a (_ : Sum.inl b ∈ f a)) val) (fun val => (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a) h = Sum.inr a''); hind a a'' (_ : b ∈ fix f a'') e ((fun a' h' => fixInduction (_ : b ∈ fix f a') fun a' h ih => Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → C a') (Part.get (f a') (_ : (f a').Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b'); hbase a' (_ : Sum.inl b ∈ f a')) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a''); hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e)) (_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom))) a'' e)) val) (_ : Part.get (f a) (_ : (f a).Dom) = x) = hind a a' h' fa (fixInduction h' fun a' h ih => Sum.casesOn (motive := fun x => Part.get (f a') (_ : (f a').Dom) = x → (fun x => C x) a') (Part.get (f a') (_ : (f a').Dom)) (fun b' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inl b'); hbase a' (_ : Sum.inl b ∈ f a')) (fun a'' e => let_fun e := (_ : ∃ h, Part.get (f a') h = Sum.inr a''); hind a' a'' (_ : b ∈ fix f a'') e (ih a'' e)) (_ : Part.get (f a') (_ : (f a').Dom) = Part.get (f a') (_ : (f a').Dom)))) (Sum.inr a') (_ : Sum.inr a' = Sum.inr a') [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β ⊢ preimage f Set.univ = Dom f [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β x✝ : α ⊢ x✝ ∈ preimage f Set.univ ↔ x✝ ∈ Dom f [PROOFSTEP] simp [mem_preimage, mem_dom] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set β ⊢ preimage (↑f) s = f ⁻¹' s [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set β x✝ : α ⊢ x✝ ∈ preimage (↑f) s ↔ x✝ ∈ f ⁻¹' s [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set α t : Set β x : α ⊢ x ∈ core (res f s) t ↔ x ∈ s → f x ∈ t [PROOFSTEP] simp [mem_core, mem_res] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set α t : Set β ⊢ core (res f s) t = sᶜ ∪ f ⁻¹' t [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set α t : Set β x : α ⊢ x ∈ core (res f s) t ↔ x ∈ sᶜ ∪ f ⁻¹' t [PROOFSTEP] rw [mem_core_res] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set α t : Set β x : α ⊢ x ∈ s → f x ∈ t ↔ x ∈ sᶜ ∪ f ⁻¹' t [PROOFSTEP] by_cases h : x ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set α t : Set β x : α h : x ∈ s ⊢ x ∈ s → f x ∈ t ↔ x ∈ sᶜ ∪ f ⁻¹' t [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set α t : Set β x : α h : ¬x ∈ s ⊢ x ∈ s → f x ∈ t ↔ x ∈ sᶜ ∪ f ⁻¹' t [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set β ⊢ core (↑f) s = f ⁻¹' s [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α → β s : Set β x : α ⊢ x ∈ core (↑f) s ↔ x ∈ f ⁻¹' s [PROOFSTEP] simp [core_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β s : Set β ⊢ core f s = preimage f s ∪ (Dom f)ᶜ [PROOFSTEP] rw [preimage_eq, Set.union_distrib_right, Set.union_comm (Dom f), Set.compl_union_self, Set.inter_univ, Set.union_eq_self_of_subset_right (f.compl_dom_subset_core s)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β s : Set β ⊢ asSubtype f ⁻¹' s = Subtype.val ⁻¹' preimage f s [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β s : Set β x : ↑(Dom f) ⊢ x ∈ asSubtype f ⁻¹' s ↔ x ∈ Subtype.val ⁻¹' preimage f s [PROOFSTEP] simp only [Set.mem_preimage, Set.mem_setOf_eq, PFun.asSubtype, PFun.mem_preimage] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β s : Set β x : ↑(Dom f) ⊢ fn f ↑x (_ : ↑x ∈ Dom f) ∈ s ↔ ∃ y, y ∈ s ∧ y ∈ f ↑x [PROOFSTEP] show f.fn x.val _ ∈ s ↔ ∃ y ∈ s, y ∈ f x.val [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β s : Set β x : ↑(Dom f) ⊢ fn f ↑x (_ : ↑x ∈ Dom f) ∈ s ↔ ∃ y, y ∈ s ∧ y ∈ f ↑x [PROOFSTEP] exact Iff.intro (fun h => ⟨_, h, Part.get_mem _⟩) fun ⟨y, ys, fxy⟩ => have : f.fn x.val x.property ∈ f x.val := Part.get_mem _ Part.mem_unique fxy this ▸ ys [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β p : β → Prop f : α → β a : α b : Subtype p ⊢ b ∈ toSubtype p f a ↔ ↑b = f a [PROOFSTEP] rw [toSubtype_apply, Part.mem_mk_iff, exists_subtype_mk_eq_iff, eq_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β x✝¹ : α x✝ : β ⊢ x✝ ∈ comp (PFun.id β) f x✝¹ ↔ x✝ ∈ f x✝¹ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β x✝¹ : α x✝ : β ⊢ x✝ ∈ comp f (PFun.id α) x✝¹ ↔ x✝ ∈ f x✝¹ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β ⊢ Dom (comp f g) = preimage g (Dom f) [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β x✝ : α ⊢ x✝ ∈ Dom (comp f g) ↔ x✝ ∈ preimage g (Dom f) [PROOFSTEP] simp_rw [mem_preimage, mem_dom, comp_apply, Part.mem_bind_iff, ← exists_and_right] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β x✝ : α ⊢ (∃ y a, a ∈ g x✝ ∧ y ∈ f a) ↔ ∃ y x, x ∈ f y ∧ y ∈ g x✝ [PROOFSTEP] rw [exists_comm] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β x✝ : α ⊢ (∃ b a, b ∈ g x✝ ∧ a ∈ f b) ↔ ∃ y x, x ∈ f y ∧ y ∈ g x✝ [PROOFSTEP] simp_rw [and_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β s : Set γ ⊢ preimage (comp f g) s = preimage g (preimage f s) [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β s : Set γ x✝ : α ⊢ x✝ ∈ preimage (comp f g) s ↔ x✝ ∈ preimage g (preimage f s) [PROOFSTEP] simp_rw [mem_preimage, comp_apply, Part.mem_bind_iff, ← exists_and_right, ← exists_and_left] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β s : Set γ x✝ : α ⊢ (∃ y x, y ∈ s ∧ x ∈ g x✝ ∧ y ∈ f x) ↔ ∃ y x, (x ∈ s ∧ x ∈ f y) ∧ y ∈ g x✝ [PROOFSTEP] rw [exists_comm] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β s : Set γ x✝ : α ⊢ (∃ b a, a ∈ s ∧ b ∈ g x✝ ∧ a ∈ f b) ↔ ∃ y x, (x ∈ s ∧ x ∈ f y) ∧ y ∈ g x✝ [PROOFSTEP] simp_rw [and_assoc, and_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β a : Part α ⊢ Part.bind a (comp f g) = Part.bind (Part.bind a g) f [PROOFSTEP] ext c [GOAL] case H α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β a : Part α c : γ ⊢ c ∈ Part.bind a (comp f g) ↔ c ∈ Part.bind (Part.bind a g) f [PROOFSTEP] simp_rw [Part.mem_bind_iff, comp_apply, Part.mem_bind_iff, ← exists_and_right, ← exists_and_left] [GOAL] case H α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β a : Part α c : γ ⊢ (∃ a_1 x, a_1 ∈ a ∧ x ∈ g a_1 ∧ c ∈ f x) ↔ ∃ a_1 x, (x ∈ a ∧ a_1 ∈ g x) ∧ c ∈ f a_1 [PROOFSTEP] rw [exists_comm] [GOAL] case H α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : β →. γ g : α →. β a : Part α c : γ ⊢ (∃ b a_1, a_1 ∈ a ∧ b ∈ g a_1 ∧ c ∈ f b) ↔ ∃ a_1 x, (x ∈ a ∧ a_1 ∈ g x) ∧ c ∈ f a_1 [PROOFSTEP] simp_rw [and_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : γ →. δ g : β →. γ h : α →. β x✝¹ : α x✝ : δ ⊢ x✝ ∈ comp (comp f g) h x✝¹ ↔ x✝ ∈ comp f (comp g h) x✝¹ [PROOFSTEP] simp only [comp_apply, Part.bind_comp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β g : β → γ f : α → β x✝¹ : α x✝ : γ ⊢ x✝ ∈ ↑(g ∘ f) x✝¹ ↔ x✝ ∈ comp (↑g) (↑f) x✝¹ [PROOFSTEP] simp only [coe_val, comp_apply, Function.comp, Part.bind_some] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β g : α →. γ x : α y : β × γ ⊢ y ∈ prodLift f g x ↔ y.fst ∈ f x ∧ y.snd ∈ g x [PROOFSTEP] trans ∃ hp hq, (f x).get hp = y.1 ∧ (g x).get hq = y.2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β g : α →. γ x : α y : β × γ ⊢ y ∈ prodLift f g x ↔ ∃ hp hq, Part.get (f x) hp = y.fst ∧ Part.get (g x) hq = y.snd [PROOFSTEP] simp only [prodLift, Part.mem_mk_iff, And.exists, Prod.ext_iff] -- Porting note: was just `[exists_and_left, exists_and_right]` [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ f : α →. β g : α →. γ x : α y : β × γ ⊢ (∃ hp hq, Part.get (f x) hp = y.fst ∧ Part.get (g x) hq = y.snd) ↔ y.fst ∈ f x ∧ y.snd ∈ g x [PROOFSTEP] simp only [exists_and_left, exists_and_right, (· ∈ ·), Part.Mem] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α →. γ g : β →. δ x : α × β y : γ × δ ⊢ y ∈ prodMap f g x ↔ y.fst ∈ f x.fst ∧ y.snd ∈ g x.snd [PROOFSTEP] trans ∃ hp hq, (f x.1).get hp = y.1 ∧ (g x.2).get hq = y.2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α →. γ g : β →. δ x : α × β y : γ × δ ⊢ y ∈ prodMap f g x ↔ ∃ hp hq, Part.get (f x.fst) hp = y.fst ∧ Part.get (g x.snd) hq = y.snd [PROOFSTEP] simp only [prodMap, Part.mem_mk_iff, And.exists, Prod.ext_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α →. γ g : β →. δ x : α × β y : γ × δ ⊢ (∃ hp hq, Part.get (f x.fst) hp = y.fst ∧ Part.get (g x.snd) hq = y.snd) ↔ y.fst ∈ f x.fst ∧ y.snd ∈ g x.snd [PROOFSTEP] simp only [exists_and_left, exists_and_right, (· ∈ ·), Part.Mem] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f✝ : α →. β f : α →. γ g : β →. δ a : α × β ⊢ ∀ (b : γ × δ), b ∈ prodLift (comp f ↑Prod.fst) (comp g ↑Prod.snd) a ↔ b ∈ prodMap f g a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ε : Type u_5 ι : Type u_6 f : α →. β x✝¹ x✝ : α × β ⊢ x✝ ∈ prodMap (PFun.id α) (PFun.id β) x✝¹ ↔ x✝ ∈ PFun.id (α × β) x✝¹ [PROOFSTEP] simp [eq_comm]
{"mathlib_filename": "Mathlib.Data.PFun", "llama_tokens": 36850}
[GOAL] α : Type u_1 β : Type u_2 q₁ q₂ : Semiquot α ⊢ q₁ = q₂ ↔ q₁.s = q₂.s [PROOFSTEP] refine' ⟨congr_arg _, fun h => _⟩ [GOAL] α : Type u_1 β : Type u_2 q₁ q₂ : Semiquot α h : q₁.s = q₂.s ⊢ q₁ = q₂ [PROOFSTEP] cases' q₁ with _ v₁ [GOAL] case mk' α : Type u_1 β : Type u_2 q₂ : Semiquot α s✝ : Set α v₁ : Trunc ↑s✝ h : { s := s✝, val := v₁ }.s = q₂.s ⊢ { s := s✝, val := v₁ } = q₂ [PROOFSTEP] cases' q₂ with _ v₂ [GOAL] case mk'.mk' α : Type u_1 β : Type u_2 s✝¹ : Set α v₁ : Trunc ↑s✝¹ s✝ : Set α v₂ : Trunc ↑s✝ h : { s := s✝¹, val := v₁ }.s = { s := s✝, val := v₂ }.s ⊢ { s := s✝¹, val := v₁ } = { s := s✝, val := v₂ } [PROOFSTEP] congr [GOAL] case mk'.mk'.h.e_3 α : Type u_1 β : Type u_2 s✝¹ : Set α v₁ : Trunc ↑s✝¹ s✝ : Set α v₂ : Trunc ↑s✝ h : { s := s✝¹, val := v₁ }.s = { s := s✝, val := v₂ }.s ⊢ HEq v₁ v₂ [PROOFSTEP] exact Subsingleton.helim (congrArg Trunc (congrArg Set.Elem h)) v₁ v₂ [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α s : Set α h : q.s ⊆ s ⊢ blur s q = blur' q h [PROOFSTEP] unfold blur [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α s : Set α h : q.s ⊆ s ⊢ blur' q (_ : q.s ⊆ s ∪ q.s) = blur' q h [PROOFSTEP] congr [GOAL] case e_s α : Type u_1 β : Type u_2 q : Semiquot α s : Set α h : q.s ⊆ s ⊢ s ∪ q.s = s [PROOFSTEP] exact Set.union_eq_self_of_subset_right h [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α f : α → β h : ∀ (a : α), a ∈ q → ∀ (b : α), b ∈ q → f a = f b a : α aq : a ∈ q ⊢ liftOn q f h = f a [PROOFSTEP] revert h [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α f : α → β a : α aq : a ∈ q ⊢ ∀ (h : ∀ (a : α), a ∈ q → ∀ (b : α), b ∈ q → f a = f b), liftOn q f h = f a [PROOFSTEP] rw [eq_mk_of_mem aq] [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α f : α → β a : α aq : a ∈ q ⊢ ∀ (h : ∀ (a_1 : α), a_1 ∈ mk aq → ∀ (b : α), b ∈ mk aq → f a_1 = f b), liftOn (mk aq) f h = f a [PROOFSTEP] intro [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α f : α → β a : α aq : a ∈ q h✝ : ∀ (a_1 : α), a_1 ∈ mk aq → ∀ (b : α), b ∈ mk aq → f a_1 = f b ⊢ liftOn (mk aq) f h✝ = f a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α f : α → Semiquot β b : β ⊢ b ∈ bind q f ↔ ∃ a, a ∈ q ∧ b ∈ f a [PROOFSTEP] simp_rw [← exists_prop] [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α f : α → Semiquot β b : β ⊢ b ∈ bind q f ↔ ∃ a _h, b ∈ f a [PROOFSTEP] exact Set.mem_iUnion₂ [GOAL] α✝ : Type u_1 β : Type u_2 α : Type ?u.6544 q : Semiquot α ⊢ ∀ (a : α), a ∈ id <$> q ↔ a ∈ q [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β✝ : Type u_2 α β : Type ?u.6544 x : α f : α → Semiquot β ⊢ ∀ (a : β), a ∈ pure x >>= f ↔ a ∈ f x [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β✝ : Type u_2 α β γ : Type ?u.6544 s : Semiquot α f : α → Semiquot β g : β → Semiquot γ ⊢ ∀ (a : γ), a ∈ s >>= f >>= g ↔ a ∈ s >>= fun x => f x >>= g [PROOFSTEP] simp only [bind_def, mem_bind] [GOAL] α✝ : Type u_1 β✝ : Type u_2 α β γ : Type ?u.6544 s : Semiquot α f : α → Semiquot β g : β → Semiquot γ ⊢ ∀ (a : γ), (∃ a_1, (∃ a, a ∈ s ∧ a_1 ∈ f a) ∧ a ∈ g a_1) ↔ ∃ a_1, a_1 ∈ s ∧ ∃ a_2, a_2 ∈ f a_1 ∧ a ∈ g a_2 [PROOFSTEP] exact fun c => ⟨fun ⟨b, ⟨a, as, bf⟩, cg⟩ => ⟨a, as, b, bf, cg⟩, fun ⟨a, as, b, bf, cg⟩ => ⟨b, ⟨a, as, bf⟩, cg⟩⟩ [GOAL] α✝ : Type u_1 β✝ : Type u_2 α β : Type ?u.6544 f : α → β s : Semiquot α ⊢ ∀ (a : β), (a ∈ do let y ← s pure (f y)) ↔ a ∈ f <$> s [PROOFSTEP] simp [eq_comm] [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α p : IsPure q ⊢ get q p ∈ q [PROOFSTEP] let ⟨a, h⟩ := exists_mem q [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α p : IsPure q a : α h : a ∈ q ⊢ get q p ∈ q [PROOFSTEP] unfold get [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α p : IsPure q a : α h : a ∈ q ⊢ liftOn q id p ∈ q [PROOFSTEP] rw [liftOn_ofMem q _ _ a h] [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α p : IsPure q a : α h : a ∈ q ⊢ id a ∈ q [PROOFSTEP] exact h [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α p : IsPure q a : α ⊢ a ∈ q ↔ a ∈ pure (get q p) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 q : Semiquot α p : IsPure q a : α ⊢ a ∈ q ↔ a = get q p [PROOFSTEP] exact ⟨fun h => p _ h _ (get_mem _), fun e => e.symm ▸ get_mem _⟩ [GOAL] α : Type u_1 β : Type u_2 a b : α ab : b ∈ pure a c : α ac : c ∈ pure a ⊢ b = c [PROOFSTEP] rw [mem_pure] at ab ac [GOAL] α : Type u_1 β : Type u_2 a b : α ab : b = a c : α ac : c = a ⊢ b = c [PROOFSTEP] rwa [← ac] at ab [GOAL] α : Type u_1 β : Type u_2 s t : Semiquot α h : IsPure t st : s ≤ t ⊢ t ≤ s [PROOFSTEP] rw [eq_pure h, eq_pure (h.mono st)] [GOAL] α : Type u_1 β : Type u_2 s t : Semiquot α h : IsPure t st : s ≤ t ⊢ pure (get t h) ≤ pure (get s (_ : IsPure s)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 s t : Semiquot α h : IsPure t st : s ≤ t ⊢ get t h = get s (_ : IsPure s) [PROOFSTEP] exact h _ (get_mem _) _ (st <| get_mem _)
{"mathlib_filename": "Mathlib.Data.Semiquot", "llama_tokens": 2750}
[GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : F[X] inst✝ : IsSplittingField F L f ⊢ Splits (algebraMap K L) (Polynomial.map (algebraMap F K) f) [PROOFSTEP] rw [splits_map_iff, ← IsScalarTower.algebraMap_eq] [GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : F[X] inst✝ : IsSplittingField F L f ⊢ Splits (algebraMap F L) f [PROOFSTEP] exact splits L f [GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : F[X] inst✝ : IsSplittingField F L f ⊢ Subalgebra.restrictScalars F (Algebra.adjoin K (rootSet (Polynomial.map (algebraMap F K) f) L)) = Subalgebra.restrictScalars F ⊤ [PROOFSTEP] rw [rootSet, map_map, ← IsScalarTower.algebraMap_eq, Subalgebra.restrictScalars_top, eq_top_iff, ← adjoin_rootSet L f, Algebra.adjoin_le_iff] [GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : F[X] inst✝ : IsSplittingField F L f ⊢ rootSet f L ⊆ ↑(Subalgebra.restrictScalars F (Algebra.adjoin K ↑(Multiset.toFinset (roots (Polynomial.map (algebraMap F L) f))))) [PROOFSTEP] exact fun x hx => @Algebra.subset_adjoin K _ _ _ _ _ _ hx [GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : K[X] inst✝ : IsSplittingField K L f h : Splits (RingHom.id K) f ⊢ ⊤ = ⊥ [PROOFSTEP] rw [eq_bot_iff, ← adjoin_rootSet L f, rootSet, roots_map (algebraMap K L) h, Algebra.adjoin_le_iff] [GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : K[X] inst✝ : IsSplittingField K L f h : Splits (RingHom.id K) f ⊢ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f))) ⊆ ↑⊥ [PROOFSTEP] intro y hy [GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : K[X] inst✝ : IsSplittingField K L f h : Splits (RingHom.id K) f y : L hy : y ∈ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f))) ⊢ y ∈ ↑⊥ [PROOFSTEP] rw [Multiset.toFinset_map, Finset.mem_coe, Finset.mem_image] at hy [GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : K[X] inst✝ : IsSplittingField K L f h : Splits (RingHom.id K) f y : L hy✝ : y ∈ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f))) hy : ∃ a, a ∈ Multiset.toFinset (roots f) ∧ ↑(algebraMap K L) a = y ⊢ y ∈ ↑⊥ [PROOFSTEP] obtain ⟨x : K, -, hxy : algebraMap K L x = y⟩ := hy [GOAL] case intro.intro F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : K[X] inst✝ : IsSplittingField K L f h : Splits (RingHom.id K) f y : L hy : y ∈ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f))) x : K hxy : ↑(algebraMap K L) x = y ⊢ y ∈ ↑⊥ [PROOFSTEP] rw [← hxy] [GOAL] case intro.intro F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : K[X] inst✝ : IsSplittingField K L f h : Splits (RingHom.id K) f y : L hy : y ∈ ↑(Multiset.toFinset (Multiset.map (↑(algebraMap K L)) (roots f))) x : K hxy : ↑(algebraMap K L) x = y ⊢ ↑(algebraMap K L) x ∈ ↑⊥ [PROOFSTEP] exact SetLike.mem_coe.2 <| Subalgebra.algebraMap_mem _ _ [GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : K[X] inst✝ : IsSplittingField K L f h : ⊤ = ⊥ ⊢ Splits (RingEquiv.toRingHom (RingEquiv.trans (RingEquiv.ofBijective (algebraMap K L) (_ : Function.Bijective ↑(algebraMap K L))) (RingEquiv.symm (RingEquiv.ofBijective (algebraMap K L) (_ : Function.Bijective ↑(algebraMap K L)))))) f [PROOFSTEP] rw [RingEquiv.toRingHom_trans] [GOAL] F : Type u K : Type v L : Type w inst✝⁷ : Field K inst✝⁶ : Field L inst✝⁵ : Field F inst✝⁴ : Algebra K L inst✝³ : Algebra F K inst✝² : Algebra F L inst✝¹ : IsScalarTower F K L f : K[X] inst✝ : IsSplittingField K L f h : ⊤ = ⊥ ⊢ Splits (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.ofBijective (algebraMap K L) (_ : Function.Bijective ↑(algebraMap K L))))) (RingEquiv.toRingHom (RingEquiv.ofBijective (algebraMap K L) (_ : Function.Bijective ↑(algebraMap K L))))) f [PROOFSTEP] exact splits_comp_of_splits _ _ (splits L f) [GOAL] F : Type u K : Type v L : Type w inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field F inst✝⁵ : Algebra K L inst✝⁴ : Algebra F K inst✝³ : Algebra F L inst✝² : IsScalarTower F K L f g : F[X] hf : f ≠ 0 hg : g ≠ 0 inst✝¹ : IsSplittingField F K f inst✝ : IsSplittingField K L (Polynomial.map (algebraMap F K) g) ⊢ Algebra.adjoin F (rootSet (f * g) L) = ⊤ [PROOFSTEP] rw [rootSet, Polynomial.map_mul, roots_mul (mul_ne_zero (map_ne_zero hf : f.map (algebraMap F L) ≠ 0) (map_ne_zero hg)), Multiset.toFinset_add, Finset.coe_union, Algebra.adjoin_union_eq_adjoin_adjoin, IsScalarTower.algebraMap_eq F K L, ← map_map, roots_map (algebraMap K L) ((splits_id_iff_splits <| algebraMap F K).2 <| splits K f), Multiset.toFinset_map, Finset.coe_image, Algebra.adjoin_algebraMap, ← rootSet, adjoin_rootSet, Algebra.map_top, IsScalarTower.adjoin_range_toAlgHom, ← map_map, ← rootSet, adjoin_rootSet, Subalgebra.restrictScalars_top] [GOAL] F : Type u K : Type v L : Type w inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field F inst✝² : Algebra K L inst✝¹ : Algebra K F f : K[X] inst✝ : IsSplittingField K L f hf : Splits (algebraMap K F) f hf0 : f = 0 ⊢ L →ₐ[K] { x // x ∈ ⊥ } [PROOFSTEP] rw [← (splits_iff L f).1 (show f.Splits (RingHom.id K) from hf0.symm ▸ splits_zero _)] [GOAL] F : Type u K : Type v L : Type w inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field F inst✝² : Algebra K L inst✝¹ : Algebra K F f : K[X] inst✝ : IsSplittingField K L f hf : Splits (algebraMap K F) f hf0 : f = 0 ⊢ L →ₐ[K] { x // x ∈ ⊤ } [PROOFSTEP] exact Algebra.toTop [GOAL] F : Type u K : Type v L : Type w inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field F inst✝² : Algebra K L inst✝¹ : Algebra K F f : K[X] inst✝ : IsSplittingField K L f hf : Splits (algebraMap K F) f hf0 : ¬f = 0 ⊢ { x // x ∈ ⊤ } →ₐ[K] F [PROOFSTEP] rw [← adjoin_rootSet L f] [GOAL] F : Type u K : Type v L : Type w inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field F inst✝² : Algebra K L inst✝¹ : Algebra K F f : K[X] inst✝ : IsSplittingField K L f hf : Splits (algebraMap K F) f hf0 : ¬f = 0 ⊢ { x // x ∈ Algebra.adjoin K (rootSet f L) } →ₐ[K] F [PROOFSTEP] exact Classical.choice (lift_of_splits _ fun y hy => have : aeval y f = 0 := (eval₂_eq_eval_map _).trans <| (mem_roots <| map_ne_zero hf0).1 (Multiset.mem_toFinset.mp hy) ⟨isAlgebraic_iff_isIntegral.1 ⟨f, hf0, this⟩, splits_of_splits_of_dvd _ hf0 hf <| minpoly.dvd _ _ this⟩) [GOAL] F : Type u K : Type v L : Type w inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field F inst✝¹ : Algebra K L f : K[X] inst✝ : IsSplittingField K L f y : L hy : y ∈ rootSet f L hf : f = 0 ⊢ IsIntegral K y [PROOFSTEP] rw [hf, rootSet_zero] at hy [GOAL] F : Type u K : Type v L : Type w inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field F inst✝¹ : Algebra K L f : K[X] inst✝ : IsSplittingField K L f y : L hy : y ∈ ∅ hf : f = 0 ⊢ IsIntegral K y [PROOFSTEP] cases hy [GOAL] F : Type u K : Type v L : Type w inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field F inst✝² : Algebra K L inst✝¹ : Algebra K F p : K[X] f : F ≃ₐ[K] L inst✝ : IsSplittingField K F p ⊢ IsSplittingField K L p [PROOFSTEP] constructor [GOAL] case splits' F : Type u K : Type v L : Type w inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field F inst✝² : Algebra K L inst✝¹ : Algebra K F p : K[X] f : F ≃ₐ[K] L inst✝ : IsSplittingField K F p ⊢ Splits (algebraMap K L) p [PROOFSTEP] rw [← f.toAlgHom.comp_algebraMap] [GOAL] case splits' F : Type u K : Type v L : Type w inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field F inst✝² : Algebra K L inst✝¹ : Algebra K F p : K[X] f : F ≃ₐ[K] L inst✝ : IsSplittingField K F p ⊢ Splits (RingHom.comp (↑↑f) (algebraMap K F)) p [PROOFSTEP] exact splits_comp_of_splits _ _ (splits F p) [GOAL] case adjoin_rootSet' F : Type u K : Type v L : Type w inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field F inst✝² : Algebra K L inst✝¹ : Algebra K F p : K[X] f : F ≃ₐ[K] L inst✝ : IsSplittingField K F p ⊢ Algebra.adjoin K (rootSet p L) = ⊤ [PROOFSTEP] rw [← (Algebra.range_top_iff_surjective f.toAlgHom).mpr f.surjective, adjoin_rootSet_eq_range (splits F p), adjoin_rootSet F p] [GOAL] F✝ : Type u K : Type v L : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p : K[X] F : IntermediateField K L h : Splits (algebraMap K L) p hF : ∀ (x : L), x ∈ rootSet p L → x ∈ F ⊢ Splits (algebraMap K { x // x ∈ F }) p [PROOFSTEP] simp_rw [rootSet_def, Finset.mem_coe, Multiset.mem_toFinset] at hF [GOAL] F✝ : Type u K : Type v L : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p : K[X] F : IntermediateField K L h : Splits (algebraMap K L) p hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F ⊢ Splits (algebraMap K { x // x ∈ F }) p [PROOFSTEP] rw [splits_iff_exists_multiset] [GOAL] F✝ : Type u K : Type v L : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p : K[X] F : IntermediateField K L h : Splits (algebraMap K L) p hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F ⊢ ∃ s, Polynomial.map (algebraMap K { x // x ∈ F }) p = ↑C (↑(algebraMap K { x // x ∈ F }) (leadingCoeff p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) s) [PROOFSTEP] refine' ⟨Multiset.pmap Subtype.mk _ hF, map_injective _ (algebraMap F L).injective _⟩ [GOAL] F✝ : Type u K : Type v L : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p : K[X] F : IntermediateField K L h : Splits (algebraMap K L) p hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F ⊢ Polynomial.map (algebraMap { x // x ∈ F } L) (Polynomial.map (algebraMap K { x // x ∈ F }) p) = Polynomial.map (algebraMap { x // x ∈ F } L) (↑C (↑(algebraMap K { x // x ∈ F }) (leadingCoeff p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (Multiset.pmap Subtype.mk (roots (Polynomial.map (algebraMap K L) p)) hF))) [PROOFSTEP] conv_lhs => rw [Polynomial.map_map, ← IsScalarTower.algebraMap_eq, eq_prod_roots_of_splits h, ← Multiset.pmap_eq_map _ _ _ hF] [GOAL] F✝ : Type u K : Type v L : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p : K[X] F : IntermediateField K L h : Splits (algebraMap K L) p hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F | Polynomial.map (algebraMap { x // x ∈ F } L) (Polynomial.map (algebraMap K { x // x ∈ F }) p) [PROOFSTEP] rw [Polynomial.map_map, ← IsScalarTower.algebraMap_eq, eq_prod_roots_of_splits h, ← Multiset.pmap_eq_map _ _ _ hF] [GOAL] F✝ : Type u K : Type v L : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p : K[X] F : IntermediateField K L h : Splits (algebraMap K L) p hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F | Polynomial.map (algebraMap { x // x ∈ F } L) (Polynomial.map (algebraMap K { x // x ∈ F }) p) [PROOFSTEP] rw [Polynomial.map_map, ← IsScalarTower.algebraMap_eq, eq_prod_roots_of_splits h, ← Multiset.pmap_eq_map _ _ _ hF] [GOAL] F✝ : Type u K : Type v L : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p : K[X] F : IntermediateField K L h : Splits (algebraMap K L) p hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F | Polynomial.map (algebraMap { x // x ∈ F } L) (Polynomial.map (algebraMap K { x // x ∈ F }) p) [PROOFSTEP] rw [Polynomial.map_map, ← IsScalarTower.algebraMap_eq, eq_prod_roots_of_splits h, ← Multiset.pmap_eq_map _ _ _ hF] [GOAL] F✝ : Type u K : Type v L : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p : K[X] F : IntermediateField K L h : Splits (algebraMap K L) p hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F ⊢ ↑C (↑(algebraMap K L) (leadingCoeff p)) * Multiset.prod (Multiset.pmap (fun a x => X - ↑C a) (roots (Polynomial.map (algebraMap K L) p)) hF) = Polynomial.map (algebraMap { x // x ∈ F } L) (↑C (↑(algebraMap K { x // x ∈ F }) (leadingCoeff p)) * Multiset.prod (Multiset.map (fun a => X - ↑C a) (Multiset.pmap Subtype.mk (roots (Polynomial.map (algebraMap K L) p)) hF))) [PROOFSTEP] simp_rw [Polynomial.map_mul, Polynomial.map_multiset_prod, Multiset.map_pmap, Polynomial.map_sub, map_C, map_X] [GOAL] F✝ : Type u K : Type v L : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p : K[X] F : IntermediateField K L h : Splits (algebraMap K L) p hF : ∀ (x : L), x ∈ roots (Polynomial.map (algebraMap K L) p) → x ∈ F ⊢ ↑C (↑(algebraMap K L) (leadingCoeff p)) * Multiset.prod (Multiset.pmap (fun a x => X - ↑C a) (roots (Polynomial.map (algebraMap K L) p)) hF) = ↑C (↑(algebraMap { x // x ∈ F } L) (↑(algebraMap K { x // x ∈ F }) (leadingCoeff p))) * Multiset.prod (Multiset.pmap (fun a h => X - ↑C (↑(algebraMap { x // x ∈ F } L) { val := a, property := h })) (roots (Polynomial.map (algebraMap K L) p)) hF) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.FieldTheory.SplittingField.IsSplittingField", "llama_tokens": 6723}
{"mathlib_filename": "Mathlib.Data.ByteArray", "llama_tokens": 0}
[GOAL] R : Type u_1 S : Type u_2 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing S inst✝¹² : IsDomain R inst✝¹¹ : Algebra R S K : Type u_3 L : Type u_4 inst✝¹⁰ : Field K inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Field L inst✝⁶ : Algebra R L inst✝⁵ : Algebra S L inst✝⁴ : Algebra K L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegrallyClosed R inst✝ : IsDomain S s : S hs : IsIntegral R s ⊢ minpoly K (↑(algebraMap S L) s) = map (algebraMap R K) (minpoly R s) [PROOFSTEP] refine' (eq_of_irreducible_of_monic _ _ _).symm [GOAL] case refine'_1 R : Type u_1 S : Type u_2 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing S inst✝¹² : IsDomain R inst✝¹¹ : Algebra R S K : Type u_3 L : Type u_4 inst✝¹⁰ : Field K inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Field L inst✝⁶ : Algebra R L inst✝⁵ : Algebra S L inst✝⁴ : Algebra K L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegrallyClosed R inst✝ : IsDomain S s : S hs : IsIntegral R s ⊢ Irreducible (map (algebraMap R K) (minpoly R s)) [PROOFSTEP] exact (Polynomial.Monic.irreducible_iff_irreducible_map_fraction_map (monic hs)).1 (irreducible hs) [GOAL] case refine'_2 R : Type u_1 S : Type u_2 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing S inst✝¹² : IsDomain R inst✝¹¹ : Algebra R S K : Type u_3 L : Type u_4 inst✝¹⁰ : Field K inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Field L inst✝⁶ : Algebra R L inst✝⁵ : Algebra S L inst✝⁴ : Algebra K L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegrallyClosed R inst✝ : IsDomain S s : S hs : IsIntegral R s ⊢ ↑(Polynomial.aeval (↑(algebraMap S L) s)) (map (algebraMap R K) (minpoly R s)) = 0 [PROOFSTEP] rw [aeval_map_algebraMap, aeval_algebraMap_apply, aeval, map_zero] [GOAL] case refine'_3 R : Type u_1 S : Type u_2 inst✝¹⁴ : CommRing R inst✝¹³ : CommRing S inst✝¹² : IsDomain R inst✝¹¹ : Algebra R S K : Type u_3 L : Type u_4 inst✝¹⁰ : Field K inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Field L inst✝⁶ : Algebra R L inst✝⁵ : Algebra S L inst✝⁴ : Algebra K L inst✝³ : IsScalarTower R K L inst✝² : IsScalarTower R S L inst✝¹ : IsIntegrallyClosed R inst✝ : IsDomain S s : S hs : IsIntegral R s ⊢ Monic (map (algebraMap R K) (minpoly R s)) [PROOFSTEP] exact (monic hs).map _ [GOAL] R : Type u_1 S : Type u_2 inst✝¹⁶ : CommRing R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain R inst✝¹³ : Algebra R S K : Type u_3 L : Type u_4 inst✝¹² : Field K inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Field L inst✝⁸ : Algebra R L inst✝⁷ : Algebra S L inst✝⁶ : Algebra K L inst✝⁵ : IsScalarTower R K L inst✝⁴ : IsScalarTower R S L inst✝³ : IsIntegrallyClosed R inst✝² : IsDomain S inst✝¹ : Algebra K S inst✝ : IsScalarTower R K S s : S hs : IsIntegral R s ⊢ minpoly K s = map (algebraMap R K) (minpoly R s) [PROOFSTEP] let L := FractionRing S [GOAL] R : Type u_1 S : Type u_2 inst✝¹⁶ : CommRing R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain R inst✝¹³ : Algebra R S K : Type u_3 L✝ : Type u_4 inst✝¹² : Field K inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Field L✝ inst✝⁸ : Algebra R L✝ inst✝⁷ : Algebra S L✝ inst✝⁶ : Algebra K L✝ inst✝⁵ : IsScalarTower R K L✝ inst✝⁴ : IsScalarTower R S L✝ inst✝³ : IsIntegrallyClosed R inst✝² : IsDomain S inst✝¹ : Algebra K S inst✝ : IsScalarTower R K S s : S hs : IsIntegral R s L : Type u_2 := FractionRing S ⊢ minpoly K s = map (algebraMap R K) (minpoly R s) [PROOFSTEP] rw [← isIntegrallyClosed_eq_field_fractions K L hs] [GOAL] R : Type u_1 S : Type u_2 inst✝¹⁶ : CommRing R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain R inst✝¹³ : Algebra R S K : Type u_3 L✝ : Type u_4 inst✝¹² : Field K inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Field L✝ inst✝⁸ : Algebra R L✝ inst✝⁷ : Algebra S L✝ inst✝⁶ : Algebra K L✝ inst✝⁵ : IsScalarTower R K L✝ inst✝⁴ : IsScalarTower R S L✝ inst✝³ : IsIntegrallyClosed R inst✝² : IsDomain S inst✝¹ : Algebra K S inst✝ : IsScalarTower R K S s : S hs : IsIntegral R s L : Type u_2 := FractionRing S ⊢ minpoly K s = minpoly K (↑(algebraMap S L) s) [PROOFSTEP] refine' minpoly.eq_of_algebraMap_eq (IsFractionRing.injective S L) (isIntegral_of_isScalarTower hs) rfl [GOAL] R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 ⊢ minpoly R s ∣ p [PROOFSTEP] let K := FractionRing R [GOAL] R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R ⊢ minpoly R s ∣ p [PROOFSTEP] let L := FractionRing S [GOAL] R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ minpoly R s ∣ p [PROOFSTEP] have : minpoly K (algebraMap S L s) ∣ map (algebraMap R K) (p %ₘ minpoly R s) := by rw [map_modByMonic _ (minpoly.monic hs), modByMonic_eq_sub_mul_div] refine' dvd_sub (minpoly.dvd K (algebraMap S L s) _) _ rw [← map_aeval_eq_aeval_map, hp, map_zero] rw [← IsScalarTower.algebraMap_eq, ← IsScalarTower.algebraMap_eq] apply dvd_mul_of_dvd_left rw [isIntegrallyClosed_eq_field_fractions K L hs] exact Monic.map _ (minpoly.monic hs) [GOAL] R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (p %ₘ minpoly R s) [PROOFSTEP] rw [map_modByMonic _ (minpoly.monic hs), modByMonic_eq_sub_mul_div] [GOAL] R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) p - map (algebraMap R K) (minpoly R s) * (map (algebraMap R K) p /ₘ map (algebraMap R K) (minpoly R s)) case _hq R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ Monic (map (algebraMap R K) (minpoly R s)) [PROOFSTEP] refine' dvd_sub (minpoly.dvd K (algebraMap S L s) _) _ [GOAL] case refine'_1 R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ ↑(Polynomial.aeval (↑(algebraMap S L) s)) (map (algebraMap R K) p) = 0 case refine'_2 R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (minpoly R s) * (map (algebraMap R K) p /ₘ map (algebraMap R K) (minpoly R s)) case _hq R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ Monic (map (algebraMap R K) (minpoly R s)) [PROOFSTEP] rw [← map_aeval_eq_aeval_map, hp, map_zero] [GOAL] case refine'_1.h R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ RingHom.comp (algebraMap K ((fun x => L) s)) (algebraMap R K) = RingHom.comp (algebraMap S L) (algebraMap R S) case refine'_2 R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (minpoly R s) * (map (algebraMap R K) p /ₘ map (algebraMap R K) (minpoly R s)) case _hq R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ Monic (map (algebraMap R K) (minpoly R s)) [PROOFSTEP] rw [← IsScalarTower.algebraMap_eq, ← IsScalarTower.algebraMap_eq] [GOAL] case refine'_2 R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (minpoly R s) * (map (algebraMap R K) p /ₘ map (algebraMap R K) (minpoly R s)) case _hq R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ Monic (map (algebraMap R K) (minpoly R s)) [PROOFSTEP] apply dvd_mul_of_dvd_left [GOAL] case refine'_2.h R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (minpoly R s) case _hq R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ Monic (map (algebraMap R K) (minpoly R s)) [PROOFSTEP] rw [isIntegrallyClosed_eq_field_fractions K L hs] [GOAL] case _hq R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S ⊢ Monic (map (algebraMap R K) (minpoly R s)) [PROOFSTEP] exact Monic.map _ (minpoly.monic hs) [GOAL] R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S this : minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (p %ₘ minpoly R s) ⊢ minpoly R s ∣ p [PROOFSTEP] rw [isIntegrallyClosed_eq_field_fractions _ _ hs, map_dvd_map (algebraMap R K) (IsFractionRing.injective R K) (minpoly.monic hs)] at this [GOAL] R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S this✝ : minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (p %ₘ minpoly R s) this : minpoly R s ∣ p %ₘ minpoly R s ⊢ minpoly R s ∣ p [PROOFSTEP] rw [← dvd_iff_modByMonic_eq_zero (minpoly.monic hs)] [GOAL] R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : ↑(Polynomial.aeval s) p = 0 K : Type u_1 := FractionRing R L : Type u_2 := FractionRing S this✝ : minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (p %ₘ minpoly R s) this : minpoly R s ∣ p %ₘ minpoly R s ⊢ p %ₘ minpoly R s = 0 [PROOFSTEP] refine' Polynomial.eq_zero_of_dvd_of_degree_lt this (degree_modByMonic_lt p <| minpoly.monic hs) [GOAL] R : Type u_1 S : Type u_2 inst✝⁷ : CommRing R inst✝⁶ : CommRing S inst✝⁵ : IsDomain R inst✝⁴ : Algebra R S inst✝³ : IsDomain S inst✝² : NoZeroSMulDivisors R S inst✝¹ : IsIntegrallyClosed R inst✝ : Nontrivial R s : S hs : IsIntegral R s p : R[X] hp : minpoly R s ∣ p ⊢ ↑(Polynomial.aeval s) p = 0 [PROOFSTEP] simpa only [RingHom.mem_ker, RingHom.coe_comp, coe_evalRingHom, coe_mapRingHom, Function.comp_apply, eval_map, ← aeval_def] using aeval_eq_zero_of_dvd_aeval_eq_zero hp (minpoly.aeval R s) [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S hs : IsIntegral R s ⊢ RingHom.ker ↑(Polynomial.aeval s) = Ideal.span {minpoly R s} [PROOFSTEP] ext p [GOAL] case h R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S hs : IsIntegral R s p : R[X] ⊢ p ∈ RingHom.ker ↑(Polynomial.aeval s) ↔ p ∈ Ideal.span {minpoly R s} [PROOFSTEP] simp_rw [RingHom.mem_ker, AlgHom.toRingHom_eq_coe, AlgHom.coe_toRingHom, isIntegrallyClosed_dvd_iff hs, ← Ideal.mem_span_singleton] [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S hs : IsIntegral R s p : R[X] hp0 : p ≠ 0 hp : ↑(Polynomial.aeval s) p = 0 ⊢ degree (minpoly R s) ≤ degree p [PROOFSTEP] rw [degree_eq_natDegree (minpoly.ne_zero hs), degree_eq_natDegree hp0] [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S hs : IsIntegral R s p : R[X] hp0 : p ≠ 0 hp : ↑(Polynomial.aeval s) p = 0 ⊢ ↑(natDegree (minpoly R s)) ≤ ↑(natDegree p) [PROOFSTEP] norm_cast [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S hs : IsIntegral R s p : R[X] hp0 : p ≠ 0 hp : ↑(Polynomial.aeval s) p = 0 ⊢ natDegree (minpoly R s) ≤ natDegree p [PROOFSTEP] exact natDegree_le_of_dvd ((isIntegrallyClosed_dvd_iff hs _).mp hp) hp0 [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q ⊢ P = minpoly R s [PROOFSTEP] have hs : IsIntegral R s := ⟨P, hmo, hP⟩ [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q hs : IsIntegral R s ⊢ P = minpoly R s [PROOFSTEP] symm [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q hs : IsIntegral R s ⊢ minpoly R s = P [PROOFSTEP] apply eq_of_sub_eq_zero [GOAL] case h R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q hs : IsIntegral R s ⊢ minpoly R s - P = 0 [PROOFSTEP] by_contra hnz [GOAL] case h R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q hs : IsIntegral R s hnz : ¬minpoly R s - P = 0 ⊢ False [PROOFSTEP] have := IsIntegrallyClosed.degree_le_of_ne_zero hs hnz (by simp [hP]) [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q hs : IsIntegral R s hnz : ¬minpoly R s - P = 0 ⊢ ↑(Polynomial.aeval s) (minpoly R s - P) = 0 [PROOFSTEP] simp [hP] [GOAL] case h R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q hs : IsIntegral R s hnz : ¬minpoly R s - P = 0 this : degree (minpoly R s) ≤ degree (minpoly R s - P) ⊢ False [PROOFSTEP] contrapose! this [GOAL] case h R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q hs : IsIntegral R s hnz : ¬minpoly R s - P = 0 this : ¬False ⊢ degree (minpoly R s - P) < degree (minpoly R s) [PROOFSTEP] refine' degree_sub_lt _ (ne_zero hs) _ [GOAL] case h.refine'_1 R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q hs : IsIntegral R s hnz : ¬minpoly R s - P = 0 this : ¬False ⊢ degree (minpoly R s) = degree P [PROOFSTEP] exact le_antisymm (min R s hmo hP) (Pmin (minpoly R s) (monic hs) (aeval R s)) [GOAL] case h.refine'_2 R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R s : S P : R[X] hmo : Monic P hP : ↑(Polynomial.aeval s) P = 0 Pmin : ∀ (Q : R[X]), Monic Q → ↑(Polynomial.aeval s) Q = 0 → degree P ≤ degree Q hs : IsIntegral R s hnz : ¬minpoly R s - P = 0 this : ¬False ⊢ leadingCoeff (minpoly R s) = leadingCoeff P [PROOFSTEP] rw [(monic hs).leadingCoeff, hmo.leadingCoeff] [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x ⊢ Prime (minpoly R x) [PROOFSTEP] refine' ⟨(minpoly.monic hx).ne_zero, ⟨fun h_contra => (ne_of_lt (minpoly.degree_pos hx)) (degree_eq_zero_of_isUnit h_contra).symm, fun a b h => or_iff_not_imp_left.mpr fun h' => _⟩⟩ [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x a b : R[X] h : minpoly R x ∣ a * b h' : ¬minpoly R x ∣ a ⊢ minpoly R x ∣ b [PROOFSTEP] rw [← minpoly.isIntegrallyClosed_dvd_iff hx] at h' h ⊢ [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x a b : R[X] h : ↑(Polynomial.aeval x) (a * b) = 0 h' : ¬↑(Polynomial.aeval x) a = 0 ⊢ ↑(Polynomial.aeval x) b = 0 [PROOFSTEP] rw [aeval_mul] at h [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x a b : R[X] h : ↑(Polynomial.aeval x) a * ↑(Polynomial.aeval x) b = 0 h' : ¬↑(Polynomial.aeval x) a = 0 ⊢ ↑(Polynomial.aeval x) b = 0 [PROOFSTEP] exact eq_zero_of_ne_zero_of_mul_left_eq_zero h' h [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x ⊢ Injective ↑(Minpoly.toAdjoin R x) [PROOFSTEP] refine' (injective_iff_map_eq_zero _).2 fun P₁ hP₁ => _ [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x P₁ : AdjoinRoot (minpoly R x) hP₁ : ↑(Minpoly.toAdjoin R x) P₁ = 0 ⊢ P₁ = 0 [PROOFSTEP] obtain ⟨P, hP⟩ := mk_surjective (minpoly.monic hx) P₁ [GOAL] case intro R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x P₁ : AdjoinRoot (minpoly R x) hP₁ : ↑(Minpoly.toAdjoin R x) P₁ = 0 P : R[X] hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁ ⊢ P₁ = 0 [PROOFSTEP] by_cases hPzero : P = 0 [GOAL] case pos R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x P₁ : AdjoinRoot (minpoly R x) hP₁ : ↑(Minpoly.toAdjoin R x) P₁ = 0 P : R[X] hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁ hPzero : P = 0 ⊢ P₁ = 0 [PROOFSTEP] simpa [hPzero] using hP.symm [GOAL] case neg R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x P₁ : AdjoinRoot (minpoly R x) hP₁ : ↑(Minpoly.toAdjoin R x) P₁ = 0 P : R[X] hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁ hPzero : ¬P = 0 ⊢ P₁ = 0 [PROOFSTEP] rw [← hP, Minpoly.toAdjoin_apply', liftHom_mk, ← Subalgebra.coe_eq_zero, aeval_subalgebra_coe, isIntegrallyClosed_dvd_iff hx] at hP₁ [GOAL] case neg R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x P₁ : AdjoinRoot (minpoly R x) P : R[X] hP₁ : minpoly R x ∣ P hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁ hPzero : ¬P = 0 ⊢ P₁ = 0 [PROOFSTEP] obtain ⟨Q, hQ⟩ := hP₁ [GOAL] case neg.intro R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x P₁ : AdjoinRoot (minpoly R x) P : R[X] hP : ↑(AdjoinRoot.mk (minpoly R x)) P = P₁ hPzero : ¬P = 0 Q : R[X] hQ : P = minpoly R x * Q ⊢ P₁ = 0 [PROOFSTEP] rw [← hP, hQ, RingHom.map_mul, mk_self, zero_mul] [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S hx : IsIntegral R x ⊢ (adjoin.powerBasis' hx).gen = { val := x, property := (_ : x ∈ adjoin R {x}) } [PROOFSTEP] rw [Algebra.adjoin.powerBasis', PowerBasis.map_gen, AdjoinRoot.powerBasis'_gen, equivAdjoin, AlgEquiv.ofBijective_apply, Minpoly.toAdjoin, liftHom_root] [GOAL] R : Type u_1 S : Type u_2 inst✝⁶ : CommRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain R inst✝³ : Algebra R S inst✝² : IsDomain S inst✝¹ : NoZeroSMulDivisors R S inst✝ : IsIntegrallyClosed R x : S B : PowerBasis R S hint : IsIntegral R x hx : B.gen ∈ adjoin R {x} ⊢ (PowerBasis.ofGenMemAdjoin' B hint hx).gen = x [PROOFSTEP] simp [PowerBasis.ofGenMemAdjoin']
{"mathlib_filename": "Mathlib.FieldTheory.Minpoly.IsIntegrallyClosed", "llama_tokens": 13071}
[GOAL] α✝ : Sort u_1 β✝ : Sort u_2 γ : Sort u_3 p✝ q✝ : α✝ → Prop α β : Sort u_4 p : α → Prop q : β → Prop a : { x // p x } b : { y // q y } h : α = β h' : HEq p q ⊢ HEq a b ↔ HEq ↑a ↑b [PROOFSTEP] subst h [GOAL] α✝ : Sort u_1 β : Sort u_2 γ : Sort u_3 p✝ q✝ : α✝ → Prop α : Sort u_4 p : α → Prop a : { x // p x } q : α → Prop b : { y // q y } h' : HEq p q ⊢ HEq a b ↔ HEq ↑a ↑b [PROOFSTEP] subst h' [GOAL] α✝ : Sort u_1 β : Sort u_2 γ : Sort u_3 p✝ q : α✝ → Prop α : Sort u_4 p : α → Prop a b : { y // p y } ⊢ HEq a b ↔ HEq ↑a ↑b [PROOFSTEP] rw [heq_iff_eq, heq_iff_eq, ext_iff] [GOAL] α : Sort u_1 β : Sort u_2 γ : Sort u_3 p q : α → Prop a : Subtype p b : α ⊢ (∃ h, { val := b, property := h } = a) ↔ b = ↑a [PROOFSTEP] simp only [@eq_comm _ b, exists_eq_subtype_mk_iff, @eq_comm _ _ a] [GOAL] α✝ : Sort u_1 β✝ : Sort u_2 γ : Sort u_3 p✝ q : α✝ → Prop α : Sort u_5 β : α → Type u_4 f : (x : α) → β x p : α → Prop x : Subtype p ⊢ restrict p f x = f ↑x [PROOFSTEP] rfl [GOAL] α✝ : Sort u_1 β✝ : Sort u_2 γ : Sort u_3 p✝ q : α✝ → Prop α : Sort u_5 β : α → Type u_4 ne : ∀ (a : α), Nonempty (β a) p : α → Prop ⊢ Surjective fun f => restrict p f [PROOFSTEP] letI := Classical.decPred p [GOAL] α✝ : Sort u_1 β✝ : Sort u_2 γ : Sort u_3 p✝ q : α✝ → Prop α : Sort u_5 β : α → Type u_4 ne : ∀ (a : α), Nonempty (β a) p : α → Prop this : DecidablePred p := Classical.decPred p ⊢ Surjective fun f => restrict p f [PROOFSTEP] refine' fun f ↦ ⟨fun x ↦ if h : p x then f ⟨x, h⟩ else Nonempty.some (ne x), funext <| _⟩ [GOAL] α✝ : Sort u_1 β✝ : Sort u_2 γ : Sort u_3 p✝ q : α✝ → Prop α : Sort u_5 β : α → Type u_4 ne : ∀ (a : α), Nonempty (β a) p : α → Prop this : DecidablePred p := Classical.decPred p f : (x : Subtype p) → β ↑x ⊢ ∀ (x : Subtype p), (fun f => restrict p f) (fun x => if h : p x then f { val := x, property := h } else Nonempty.some (_ : Nonempty (β x))) x = f x [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case mk α✝ : Sort u_1 β✝ : Sort u_2 γ : Sort u_3 p✝ q : α✝ → Prop α : Sort u_5 β : α → Type u_4 ne : ∀ (a : α), Nonempty (β a) p : α → Prop this : DecidablePred p := Classical.decPred p f : (x : Subtype p) → β ↑x x : α hx : p x ⊢ (fun f => restrict p f) (fun x => if h : p x then f { val := x, property := h } else Nonempty.some (_ : Nonempty (β x))) { val := x, property := hx } = f { val := x, property := hx } [PROOFSTEP] exact dif_pos hx [GOAL] α✝ : Sort u_1 β✝ : Sort u_2 γ : Sort u_3 p✝ q : α✝ → Prop α : Sort u_4 β : Sort u_5 f : α → β p : β → Prop h : ∀ (a : α), p (f a) hf : Injective f x y : α hxy : coind f h x = coind f h y ⊢ f x = f y [PROOFSTEP] apply congr_arg Subtype.val hxy
{"mathlib_filename": "Mathlib.Data.Subtype", "llama_tokens": 1384}
[GOAL] α : Type ?u.337 lt : α → α → Bool a : Array α i : Fin (Array.size a) left : ℕ := 2 * ↑i + 1 right : ℕ := left + 1 ⊢ ↑i ≤ 2 * ↑i [PROOFSTEP] rw [Nat.succ_mul, Nat.one_mul] [GOAL] α : Type ?u.337 lt : α → α → Bool a : Array α i : Fin (Array.size a) left : ℕ := 2 * ↑i + 1 right : ℕ := left + 1 ⊢ ↑i ≤ ↑i + ↑i [PROOFSTEP] exact Nat.le_add_left i i [GOAL] α : Type ?u.337 lt : α → α → Bool a : Array α i : Fin (Array.size a) left : ℕ := 2 * ↑i + 1 right : ℕ := left + 1 left_le : ↑i ≤ left right_le : ↑i ≤ right i_le : i ≤ i j✝ j : { j // i ≤ j } h : ¬↑i = ↑↑j a' : Array α := Array.swap a i ↑j ⊢ ↑↑j < Array.size a' [PROOFSTEP] rw [a.size_swap i j] [GOAL] α : Type ?u.337 lt : α → α → Bool a : Array α i : Fin (Array.size a) left : ℕ := 2 * ↑i + 1 right : ℕ := left + 1 left_le : ↑i ≤ left right_le : ↑i ≤ right i_le : i ≤ i j✝ j : { j // i ≤ j } h : ¬↑i = ↑↑j a' : Array α := Array.swap a i ↑j ⊢ ↑↑j < Array.size a [PROOFSTEP] exact j.1.2 [GOAL] α : Type ?u.337 lt : α → α → Bool a : Array α i : Fin (Array.size a) left : ℕ := 2 * ↑i + 1 right : ℕ := left + 1 left_le : ↑i ≤ left right_le : ↑i ≤ right i_le : i ≤ i j✝ j : { j // i ≤ j } h : ¬↑i = ↑↑j a' : Array α := Array.swap a i ↑j j' : Fin (Array.size a') := { val := ↑↑j, isLt := ?m.5009 } ⊢ Array.size a' - ↑↑j < Array.size a - ↑i [PROOFSTEP] rw [a.size_swap i j] [GOAL] α : Type ?u.337 lt : α → α → Bool a : Array α i : Fin (Array.size a) left : ℕ := 2 * ↑i + 1 right : ℕ := left + 1 left_le : ↑i ≤ left right_le : ↑i ≤ right i_le : i ≤ i j✝ j : { j // i ≤ j } h : ¬↑i = ↑↑j a' : Array α := Array.swap a i ↑j j' : Fin (Array.size a') := { val := ↑↑j, isLt := ?m.5009 } ⊢ Array.size a - ↑↑j < Array.size a - ↑i [PROOFSTEP] exact Nat.sub_lt_sub_left i.2 <| Nat.lt_of_le_of_ne j.2 h [GOAL] α : Type u_1 a : Array α i : Fin (Array.size a) left : ℕ := 2 * ↑i + 1 right : ℕ := left + 1 left_le : ↑i ≤ left right_le : ↑i ≤ right i_le : i ≤ i j : { j // i ≤ j } h : ¬↑i = ↑↑j a' : Array α := Array.swap a i ↑j j' : Fin (Array.size a') := { val := ↑↑j, isLt := (_ : ↑↑j < Array.size a') } this : Array.size a' - ↑↑j < Array.size a - ↑i ⊢ (invImage (fun a => PSigma.casesOn a fun a snd => Array.size a - ↑snd) instWellFoundedRelation).1 { fst := a', snd := j' } { fst := a, snd := i } [PROOFSTEP] assumption [GOAL] α : Type ?u.8277 lt : α → α → Bool a : Array α i : Fin (Array.size a) i0 : ¬↑i = 0 this : (↑i - 1) / 2 < ↑i j : Fin (Array.size a) := { val := (↑i - 1) / 2, isLt := (_ : (↑i - 1) / 2 < Array.size a) } a' : Array α := Array.swap a i j ⊢ ↑j < Array.size a' [PROOFSTEP] rw [a.size_swap i j] [GOAL] α : Type ?u.8277 lt : α → α → Bool a : Array α i : Fin (Array.size a) i0 : ¬↑i = 0 this : (↑i - 1) / 2 < ↑i j : Fin (Array.size a) := { val := (↑i - 1) / 2, isLt := (_ : (↑i - 1) / 2 < Array.size a) } a' : Array α := Array.swap a i j ⊢ ↑j < Array.size a [PROOFSTEP] exact j.2 [GOAL] α : Type u_1 lt : α → α → Bool a : Array α i : Fin (Array.size a) i0 : ¬↑i = 0 this : (↑i - 1) / 2 < ↑i j : Fin (Array.size a) := { val := (↑i - 1) / 2, isLt := (_ : (↑i - 1) / 2 < Array.size a) } h✝ : lt (Array.get a j) (Array.get a i) = true a' : Array α := Array.swap a i j ⊢ (invImage (fun a => PSigma.casesOn a fun a snd => ↑snd) instWellFoundedRelation).1 { fst := a', snd := { val := ↑j, isLt := (_ : ↑j < Array.size a') } } { fst := a, snd := i } [PROOFSTEP] assumption [GOAL] α : Type ?u.10435 lt : α → α → Bool self : BinaryHeap α lt x : α n : ℕ := size self ⊢ n < Array.size (Array.push self.arr x) [PROOFSTEP] rw [Array.size_push] [GOAL] α : Type ?u.10435 lt : α → α → Bool self : BinaryHeap α lt x : α n : ℕ := size self ⊢ n < Array.size self.arr + 1 [PROOFSTEP] apply Nat.lt_succ_self [GOAL] α : Type u_1 lt : α → α → Bool self : BinaryHeap α lt x : α ⊢ size (insert self x) = size self + 1 [PROOFSTEP] simp [insert, size, size_heapifyUp] [GOAL] α : Type ?u.11234 lt : α → α → Bool self : BinaryHeap α lt e : Array.size self.arr = 0 ⊢ size self = size self - 1 [PROOFSTEP] simp [size, e] [GOAL] α : Type ?u.11234 lt : α → α → Bool self : BinaryHeap α lt n : ℕ e : Array.size self.arr = Nat.succ n ⊢ 0 < Array.size self.arr [PROOFSTEP] rw [e] [GOAL] α : Type ?u.11234 lt : α → α → Bool self : BinaryHeap α lt n : ℕ e : Array.size self.arr = Nat.succ n ⊢ 0 < Nat.succ n [PROOFSTEP] apply Nat.succ_pos [GOAL] α : Type ?u.11234 lt : α → α → Bool self : BinaryHeap α lt n : ℕ e : Array.size self.arr = Nat.succ n h0 : 0 < Array.size self.arr ⊢ n < Array.size self.arr [PROOFSTEP] rw [e] [GOAL] α : Type ?u.11234 lt : α → α → Bool self : BinaryHeap α lt n : ℕ e : Array.size self.arr = Nat.succ n h0 : 0 < Array.size self.arr ⊢ n < Nat.succ n [PROOFSTEP] apply Nat.lt_succ_self [GOAL] α : Type ?u.11234 lt : α → α → Bool self : BinaryHeap α lt n : ℕ e : Array.size self.arr = Nat.succ n h0 : 0 < Array.size self.arr hn : n < Array.size self.arr hn0 : 0 < n a : Array α := Array.pop (Array.swap self.arr { val := 0, isLt := h0 } { val := n, isLt := hn }) ⊢ 0 < Array.size a [PROOFSTEP] rwa [Array.size_pop, Array.size_swap, e] [GOAL] α : Type ?u.11234 lt : α → α → Bool self : BinaryHeap α lt n : ℕ e : Array.size self.arr = Nat.succ n h0 : 0 < Array.size self.arr hn : n < Array.size self.arr hn0 : 0 < n a : Array α := Array.pop (Array.swap self.arr { val := 0, isLt := h0 } { val := n, isLt := hn }) ⊢ size { arr := ↑(heapifyDown lt a { val := 0, isLt := (_ : 0 < Array.size a) }) } = size self - 1 [PROOFSTEP] simp [size] [GOAL] α : Type ?u.11234 lt : α → α → Bool self : BinaryHeap α lt n : ℕ e : Array.size self.arr = Nat.succ n h0 : 0 < Array.size self.arr hn : n < Array.size self.arr hn0 : ¬0 < n ⊢ size { arr := Array.pop self.arr } = size self - 1 [PROOFSTEP] simp [size] [GOAL] α : Type u_1 x : α lt : α → α → Bool self : BinaryHeap α lt e : max self = some x h : ¬0 < Array.size self.arr ⊢ False [PROOFSTEP] simp [BinaryHeap.max, Array.get?, h] at e [GOAL] α : Type ?u.16836 lt : α → α → Bool self : BinaryHeap α lt x m : α e : max self = some m a : Array α := Array.set self.arr { val := 0, isLt := (_ : 0 < size self) } x ⊢ 0 < Array.size a [PROOFSTEP] simp [GOAL] α : Type ?u.16836 lt : α → α → Bool self : BinaryHeap α lt x m : α e : max self = some m a : Array α := Array.set self.arr { val := 0, isLt := (_ : 0 < size self) } x ⊢ 0 < Array.size self.arr [PROOFSTEP] exact size_pos_of_max e [GOAL] α : Type ?u.18030 lt : α → α → Bool self : BinaryHeap α lt x m : α e : max self = some m a : Array α := Array.set self.arr { val := 0, isLt := (_ : 0 < size self) } x ⊢ 0 < Array.size a [PROOFSTEP] simp [GOAL] α : Type ?u.18030 lt : α → α → Bool self : BinaryHeap α lt x m : α e : max self = some m a : Array α := Array.set self.arr { val := 0, isLt := (_ : 0 < size self) } x ⊢ 0 < Array.size self.arr [PROOFSTEP] exact size_pos_of_max e [GOAL] α : Type ?u.19048 lt : α → α → Bool self : BinaryHeap α lt i : Fin (size self) x : α ⊢ ↑i < Array.size (Array.set self.arr i x) [PROOFSTEP] rw [self.1.size_set] [GOAL] α : Type ?u.19048 lt : α → α → Bool self : BinaryHeap α lt i : Fin (size self) x : α ⊢ ↑i < Array.size self.arr [PROOFSTEP] exact i.2 [GOAL] α : Type ?u.19626 lt : α → α → Bool self : BinaryHeap α lt i : Fin (size self) x : α ⊢ ↑i < Array.size (Array.set self.arr i x) [PROOFSTEP] rw [self.1.size_set] [GOAL] α : Type ?u.19626 lt : α → α → Bool self : BinaryHeap α lt i : Fin (size self) x : α ⊢ ↑i < Array.size self.arr [PROOFSTEP] exact i.2 [GOAL] α : Type ?u.20451 a✝ : Array α lt : α → α → Bool gt : α → α → Bool := fun y x => lt x y a : BinaryHeap α gt out : Array α x : α e : BinaryHeap.max a = some x ⊢ BinaryHeap.size (BinaryHeap.popMax a) < BinaryHeap.size a [PROOFSTEP] simp [GOAL] α : Type ?u.20451 a✝ : Array α lt : α → α → Bool gt : α → α → Bool := fun y x => lt x y a : BinaryHeap α gt out : Array α x : α e : BinaryHeap.max a = some x ⊢ BinaryHeap.size a - 1 < BinaryHeap.size a [PROOFSTEP] exact Nat.sub_lt (BinaryHeap.size_pos_of_max e) Nat.zero_lt_one [GOAL] α : Type u_1 lt : α → α → Bool a : BinaryHeap α fun y x => lt x y out : Array α gt : α → α → Bool := fun y x => lt x y x : α e : BinaryHeap.max a = some x this : BinaryHeap.size (BinaryHeap.popMax a) < BinaryHeap.size a ⊢ (invImage (fun a => PSigma.casesOn a fun a snd => BinaryHeap.size a) instWellFoundedRelation).1 { fst := BinaryHeap.popMax a, snd := push out x } { fst := a, snd := out } [PROOFSTEP] assumption
{"mathlib_filename": "Mathlib.Data.BinaryHeap", "llama_tokens": 4068}
{"mathlib_filename": "Mathlib.Data.TwoPointing", "llama_tokens": 0}
[GOAL] α : Type u_1 m n : ℕ a : α v : Vector3 α n i : Fin2 (succ n) ⊢ α [PROOFSTEP] refine' i.cases' _ _ [GOAL] case refine'_1 α : Type u_1 m n : ℕ a : α v : Vector3 α n i : Fin2 (succ n) ⊢ α case refine'_2 α : Type u_1 m n : ℕ a : α v : Vector3 α n i : Fin2 (succ n) ⊢ Fin2 n → α [PROOFSTEP] exact a [GOAL] case refine'_2 α : Type u_1 m n : ℕ a : α v : Vector3 α n i : Fin2 (succ n) ⊢ Fin2 n → α [PROOFSTEP] exact v [GOAL] α : Type u_1 m n : ℕ C : Vector3 α 0 → Sort u H : C [] v : Vector3 α 0 ⊢ C v [PROOFSTEP] rw [eq_nil v] [GOAL] α : Type u_1 m n : ℕ C : Vector3 α 0 → Sort u H : C [] v : Vector3 α 0 ⊢ C [] [PROOFSTEP] apply H [GOAL] α : Type u_1 m n : ℕ C : Vector3 α (succ n) → Sort u H : (a : α) → (t : Vector3 α n) → C (a :: t) v : Vector3 α (succ n) ⊢ C v [PROOFSTEP] rw [← cons_head_tail v] [GOAL] α : Type u_1 m n : ℕ C : Vector3 α (succ n) → Sort u H : (a : α) → (t : Vector3 α n) → C (a :: t) v : Vector3 α (succ n) ⊢ C (head v :: tail v) [PROOFSTEP] apply H [GOAL] α : Type u_1 m✝ n✝ m : ℕ v : Vector3 α (succ m) n : ℕ w : Vector3 α n a : α _t : Vector3 α m ⊢ ((a :: _t) +-+ w) (left n fz) = (a :: _t) fz [PROOFSTEP] simp [*, left] [GOAL] α : Type u_1 m✝ n✝ m : ℕ i : Fin2 m v : Vector3 α (succ m) n : ℕ w : Vector3 α n _a : α t : Vector3 α m ⊢ ((_a :: t) +-+ w) (left n (fs i)) = (_a :: t) (fs i) [PROOFSTEP] simp [append_left, left] [GOAL] α : Type u_1 m✝ n✝ m : ℕ v : Vector3 α (succ m) n : ℕ w : Vector3 α n i : Fin2 n _a : α t : Vector3 α m ⊢ ((_a :: t) +-+ w) (add i (succ m)) = w i [PROOFSTEP] simp [append_add, add] [GOAL] α : Type u_1 m n : ℕ a : α v : Vector3 α n ⊢ insert a v fz = a :: v [PROOFSTEP] refine' funext fun j => j.cases' _ _ [GOAL] case refine'_1 α : Type u_1 m n : ℕ a : α v : Vector3 α n j : Fin2 (succ n) ⊢ insert a v fz fz = (a :: v) fz [PROOFSTEP] intros [GOAL] case refine'_2 α : Type u_1 m n : ℕ a : α v : Vector3 α n j : Fin2 (succ n) ⊢ ∀ (n_1 : Fin2 n), insert a v fz (fs n_1) = (a :: v) (fs n_1) [PROOFSTEP] intros [GOAL] case refine'_1 α : Type u_1 m n : ℕ a : α v : Vector3 α n j : Fin2 (succ n) ⊢ insert a v fz fz = (a :: v) fz [PROOFSTEP] rfl [GOAL] case refine'_2 α : Type u_1 m n : ℕ a : α v : Vector3 α n j : Fin2 (succ n) n✝ : Fin2 n ⊢ insert a v fz (fs n✝) = (a :: v) (fs n✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 m n : ℕ a b : α v : Vector3 α n i : Fin2 (succ n) j : Fin2 (succ (succ n)) ⊢ insert a (b :: v) (fs i) j = (b :: insert a v i) j [PROOFSTEP] refine' j.cases' _ fun j => _ [GOAL] case refine'_1 α : Type u_1 m n : ℕ a b : α v : Vector3 α n i : Fin2 (succ n) j : Fin2 (succ (succ n)) ⊢ insert a (b :: v) (fs i) fz = (b :: insert a v i) fz [PROOFSTEP] simp [insert, insertPerm] [GOAL] case refine'_2 α : Type u_1 m n : ℕ a b : α v : Vector3 α n i : Fin2 (succ n) j✝ : Fin2 (succ (succ n)) j : Fin2 (n + 1) ⊢ insert a (b :: v) (fs i) (fs j) = (b :: insert a v i) (fs j) [PROOFSTEP] simp [insert, insertPerm] [GOAL] case refine'_2 α : Type u_1 m n : ℕ a b : α v : Vector3 α n i : Fin2 (succ n) j✝ : Fin2 (succ (succ n)) j : Fin2 (n + 1) ⊢ (a :: b :: v) (match insertPerm i j with | fz => fz | fs k => fs (fs k)) = (a :: v) (insertPerm i j) [PROOFSTEP] refine' Fin2.cases' _ _ (insertPerm i j) [GOAL] case refine'_2.refine'_1 α : Type u_1 m n : ℕ a b : α v : Vector3 α n i : Fin2 (succ n) j✝ : Fin2 (succ (succ n)) j : Fin2 (n + 1) ⊢ (a :: b :: v) (match fz with | fz => fz | fs k => fs (fs k)) = (a :: v) fz [PROOFSTEP] simp [insertPerm] [GOAL] case refine'_2.refine'_2 α : Type u_1 m n : ℕ a b : α v : Vector3 α n i : Fin2 (succ n) j✝ : Fin2 (succ (succ n)) j : Fin2 (n + 1) ⊢ ∀ (n_1 : Fin2 n), (a :: b :: v) (match fs n_1 with | fz => fz | fs k => fs (fs k)) = (a :: v) (fs n_1) [PROOFSTEP] simp [insertPerm] [GOAL] α : Type u_1 m n : ℕ a : α t : Vector3 α m v : Vector3 α n i : Fin2 (succ n) e : succ n + m = succ (n + m) ⊢ insert a (t +-+ v) (Eq.recOn e (add i m)) = Eq.recOn e (t +-+ insert a v i) [PROOFSTEP] refine' Vector3.recOn t (fun e => _) (@fun k b t IH _ => _) e [GOAL] case refine'_1 α : Type u_1 m n : ℕ a : α t : Vector3 α m v : Vector3 α n i : Fin2 (succ n) e✝ : succ n + m = succ (n + m) e : succ n + 0 = succ (n + 0) ⊢ insert a ([] +-+ v) (Eq.recOn e (add i 0)) = Eq.recOn e ([] +-+ insert a v i) case refine'_2 α : Type u_1 m n : ℕ a : α t✝ : Vector3 α m v : Vector3 α n i : Fin2 (succ n) e : succ n + m = succ (n + m) k : ℕ b : α t : Vector3 α k IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i) x✝ : succ n + succ k = succ (n + succ k) ⊢ insert a ((b :: t) +-+ v) (Eq.recOn x✝ (add i (succ k))) = Eq.recOn x✝ ((b :: t) +-+ insert a v i) [PROOFSTEP] rfl [GOAL] case refine'_2 α : Type u_1 m n : ℕ a : α t✝ : Vector3 α m v : Vector3 α n i : Fin2 (succ n) e : succ n + m = succ (n + m) k : ℕ b : α t : Vector3 α k IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i) x✝ : succ n + succ k = succ (n + succ k) ⊢ insert a ((b :: t) +-+ v) (Eq.recOn x✝ (add i (succ k))) = Eq.recOn x✝ ((b :: t) +-+ insert a v i) [PROOFSTEP] have e' := succ_add n k [GOAL] case refine'_2 α : Type u_1 m n : ℕ a : α t✝ : Vector3 α m v : Vector3 α n i : Fin2 (succ n) e : succ n + m = succ (n + m) k : ℕ b : α t : Vector3 α k IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i) x✝ : succ n + succ k = succ (n + succ k) e' : succ n + k = succ (n + k) ⊢ insert a ((b :: t) +-+ v) (Eq.recOn x✝ (add i (succ k))) = Eq.recOn x✝ ((b :: t) +-+ insert a v i) [PROOFSTEP] change insert a (b :: t +-+ v) (Eq.recOn (congr_arg succ e') (fs (add i k))) = Eq.recOn (congr_arg succ e') (b :: t +-+ insert a v i) [GOAL] case refine'_2 α : Type u_1 m n : ℕ a : α t✝ : Vector3 α m v : Vector3 α n i : Fin2 (succ n) e : succ n + m = succ (n + m) k : ℕ b : α t : Vector3 α k IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i) x✝ : succ n + succ k = succ (n + succ k) e' : succ n + k = succ (n + k) ⊢ insert a (b :: t +-+ v) (Eq.recOn (_ : succ (succ n + k) = succ (succ (n + k))) (fs (add i k))) = Eq.recOn (_ : succ (succ n + k) = succ (succ (n + k))) (b :: t +-+ insert a v i) [PROOFSTEP] rw [← (Eq.recOn e' rfl : fs (Eq.recOn e' (i.add k) : Fin2 (succ (n + k))) = Eq.recOn (congr_arg succ e') (fs (i.add k)))] [GOAL] case refine'_2 α : Type u_1 m n : ℕ a : α t✝ : Vector3 α m v : Vector3 α n i : Fin2 (succ n) e : succ n + m = succ (n + m) k : ℕ b : α t : Vector3 α k IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i) x✝ : succ n + succ k = succ (n + succ k) e' : succ n + k = succ (n + k) ⊢ insert a (b :: t +-+ v) (fs (Eq.recOn e' (add i k))) = Eq.recOn (_ : succ (succ n + k) = succ (succ (n + k))) (b :: t +-+ insert a v i) [PROOFSTEP] simp [GOAL] case refine'_2 α : Type u_1 m n : ℕ a : α t✝ : Vector3 α m v : Vector3 α n i : Fin2 (succ n) e : succ n + m = succ (n + m) k : ℕ b : α t : Vector3 α k IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i) x✝ : succ n + succ k = succ (n + succ k) e' : succ n + k = succ (n + k) ⊢ (b :: insert a (t +-+ v) (e' ▸ add i k)) = (_ : succ (succ n + k) = succ (succ (n + k))) ▸ b :: t +-+ insert a v i [PROOFSTEP] rw [IH] [GOAL] case refine'_2 α : Type u_1 m n : ℕ a : α t✝ : Vector3 α m v : Vector3 α n i : Fin2 (succ n) e : succ n + m = succ (n + m) k : ℕ b : α t : Vector3 α k IH : ∀ (x : succ n + k = succ (n + k)), insert a (t +-+ v) (Eq.recOn x (add i k)) = Eq.recOn x (t +-+ insert a v i) x✝ : succ n + succ k = succ (n + succ k) e' : succ n + k = succ (n + k) ⊢ (b :: Eq.recOn e' (t +-+ insert a v i)) = (_ : succ (succ n + k) = succ (succ (n + k))) ▸ b :: t +-+ insert a v i [PROOFSTEP] exact Eq.recOn e' rfl [GOAL] α : Type u_1 m n : ℕ f : Vector3 α 0 → Prop x✝ : Exists f v : Vector3 α 0 fv : f v ⊢ f [] [PROOFSTEP] rw [← eq_nil v] [GOAL] α : Type u_1 m n : ℕ f : Vector3 α 0 → Prop x✝ : Exists f v : Vector3 α 0 fv : f v ⊢ f v [PROOFSTEP] exact fv [GOAL] α : Type u_1 m n : ℕ f : Vector3 α (succ n) → Prop x✝ : Exists f v : Vector3 α (succ n) fv : f v ⊢ f (?m.40396 f x✝ v fv :: ?m.40397 f x✝ v fv) [PROOFSTEP] rw [cons_head_tail v] [GOAL] α : Type u_1 m n : ℕ f : Vector3 α (succ n) → Prop x✝ : Exists f v : Vector3 α (succ n) fv : f v ⊢ f v [PROOFSTEP] exact fv [GOAL] α : Type u_1 m n : ℕ p : α → Prop v : Vector3 α n ⊢ VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i) [PROOFSTEP] refine' v.recOn _ _ [GOAL] case refine'_1 α : Type u_1 m n : ℕ p : α → Prop v : Vector3 α n ⊢ VectorAllP p [] ↔ ∀ (i : Fin2 0), p [] [PROOFSTEP] exact ⟨fun _ => Fin2.elim0, fun _ => trivial⟩ [GOAL] case refine'_2 α : Type u_1 m n : ℕ p : α → Prop v : Vector3 α n ⊢ ∀ {n : ℕ} (a : α) (w : Vector3 α n), (VectorAllP p w ↔ ∀ (i : Fin2 n), p (w i)) → (VectorAllP p (a :: w) ↔ ∀ (i : Fin2 (succ n)), p ((a :: w) i)) [PROOFSTEP] simp only [vectorAllP_cons] [GOAL] case refine'_2 α : Type u_1 m n : ℕ p : α → Prop v : Vector3 α n ⊢ ∀ {n : ℕ} (a : α) (w : Vector3 α n), (VectorAllP p w ↔ ∀ (i : Fin2 n), p (w i)) → (p a ∧ VectorAllP p w ↔ ∀ (i : Fin2 (succ n)), p ((a :: w) i)) [PROOFSTEP] refine' fun {n} a v IH => (and_congr_right fun _ => IH).trans ⟨fun ⟨pa, h⟩ i => by refine' i.cases' _ _ exacts [pa, h], fun h => ⟨_, fun i => _⟩⟩ [GOAL] α : Type u_1 m n✝ : ℕ p : α → Prop v✝ : Vector3 α n✝ n : ℕ a : α v : Vector3 α n IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i) x✝ : p a ∧ ∀ (i : Fin2 n), p (v i) i : Fin2 (succ n) pa : p a h : ∀ (i : Fin2 n), p (v i) ⊢ p ((a :: v) i) [PROOFSTEP] refine' i.cases' _ _ [GOAL] case refine'_1 α : Type u_1 m n✝ : ℕ p : α → Prop v✝ : Vector3 α n✝ n : ℕ a : α v : Vector3 α n IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i) x✝ : p a ∧ ∀ (i : Fin2 n), p (v i) i : Fin2 (succ n) pa : p a h : ∀ (i : Fin2 n), p (v i) ⊢ p ((a :: v) fz) case refine'_2 α : Type u_1 m n✝ : ℕ p : α → Prop v✝ : Vector3 α n✝ n : ℕ a : α v : Vector3 α n IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i) x✝ : p a ∧ ∀ (i : Fin2 n), p (v i) i : Fin2 (succ n) pa : p a h : ∀ (i : Fin2 n), p (v i) ⊢ ∀ (n_1 : Fin2 n), p ((a :: v) (fs n_1)) [PROOFSTEP] exacts [pa, h] [GOAL] case refine'_2.refine'_1 α : Type u_1 m n✝ : ℕ p : α → Prop v✝ : Vector3 α n✝ n : ℕ a : α v : Vector3 α n IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i) h : ∀ (i : Fin2 (succ n)), p ((a :: v) i) ⊢ p a [PROOFSTEP] simpa using h fz [GOAL] case refine'_2.refine'_2 α : Type u_1 m n✝ : ℕ p : α → Prop v✝ : Vector3 α n✝ n : ℕ a : α v : Vector3 α n IH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i) h : ∀ (i : Fin2 (succ n)), p ((a :: v) i) i : Fin2 n ⊢ p (v i) [PROOFSTEP] simpa using h (fs i)
{"mathlib_filename": "Mathlib.Data.Vector3", "llama_tokens": 5594}
[GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x1 x2 y : ℕ × K H : R K p x1 x2 n : ℕ x : K ⊢ R K p ((n, x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n, x).snd * (↑(frobenius K p))^[(n, x).fst] y.snd) ((n + 1, ↑(frobenius K p) x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n + 1, ↑(frobenius K p) x).snd * (↑(frobenius K p))^[(n + 1, ↑(frobenius K p) x).fst] y.snd) [PROOFSTEP] rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_mul, Nat.succ_add] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x1 x2 y : ℕ × K H : R K p x1 x2 n : ℕ x : K ⊢ R K p ((n, x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n, x).snd * (↑(frobenius K p))^[(n, x).fst] y.snd) (Nat.succ (n + y.fst), ↑(frobenius K p) ((↑(frobenius K p))^[y.fst] x * (↑(frobenius K p))^[n] y.snd)) [PROOFSTEP] apply R.intro [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y1 y2 : ℕ × K H : R K p y1 y2 n : ℕ y : K ⊢ R K p (x.fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] x.snd * (↑(frobenius K p))^[x.fst] (n, y).snd) (x.fst + (n + 1, ↑(frobenius K p) y).fst, (↑(frobenius K p))^[(n + 1, ↑(frobenius K p) y).fst] x.snd * (↑(frobenius K p))^[x.fst] (n + 1, ↑(frobenius K p) y).snd) [PROOFSTEP] rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_mul] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y1 y2 : ℕ × K H : R K p y1 y2 n : ℕ y : K ⊢ R K p (x.fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] x.snd * (↑(frobenius K p))^[x.fst] (n, y).snd) (x.fst + (n + 1, ↑(frobenius K p) y).fst, ↑(frobenius K p) ((↑(frobenius K p))^[n] x.snd * (↑(frobenius K p))^[x.fst] y)) [PROOFSTEP] apply R.intro [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Mul (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ Quot.mk (R K p) (m, x) * Quot.mk (R K p) (n, y) * Quot.mk (R K p) (s, z) = Quot.mk (R K p) (m, x) * (Quot.mk (R K p) (n, y) * Quot.mk (R K p) (s, z)) [PROOFSTEP] simp only [quot_mk_eq_mk, mk_mul_mk] -- Porting note: added this line [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Mul (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ mk K p (m + n + s, (↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) = mk K p (m + (n + s), (↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z)) [PROOFSTEP] apply congr_arg (Quot.mk _) [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Mul (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ (m + n + s, (↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) = (m + (n + s), (↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z)) [PROOFSTEP] simp only [add_assoc, mul_assoc, iterate_map_mul, ← iterate_add_apply, add_comm, add_left_comm] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Mul (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K n : ℕ x : K ⊢ ((0, 1).fst + (n, x).fst, (↑(frobenius K p))^[(n, x).fst] (0, 1).snd * (↑(frobenius K p))^[(0, 1).fst] (n, x).snd) = (n, x) [PROOFSTEP] simp only [RingHom.iterate_map_one, iterate_zero_apply, one_mul, zero_add] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Mul (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K n : ℕ x : K ⊢ ((n, x).fst + (0, 1).fst, (↑(frobenius K p))^[(0, 1).fst] (n, x).snd * (↑(frobenius K p))^[(n, x).fst] (0, 1).snd) = (n, x) [PROOFSTEP] simp only [RingHom.iterate_map_one, iterate_zero_apply, mul_one, add_zero] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Mul (PerfectClosure K p) := inferInstance e f : PerfectClosure K p x✝¹ : ℕ × K m : ℕ x : K x✝ : ℕ × K n : ℕ y : K ⊢ ((m, x).fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] (m, x).snd * (↑(frobenius K p))^[(m, x).fst] (n, y).snd) = ((n, y).fst + (m, x).fst, (↑(frobenius K p))^[(m, x).fst] (n, y).snd * (↑(frobenius K p))^[(n, y).fst] (m, x).snd) [PROOFSTEP] simp only [add_comm, mul_comm] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x1 x2 y : ℕ × K H : R K p x1 x2 n : ℕ x : K ⊢ R K p ((n, x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n, x).snd + (↑(frobenius K p))^[(n, x).fst] y.snd) ((n + 1, ↑(frobenius K p) x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n + 1, ↑(frobenius K p) x).snd + (↑(frobenius K p))^[(n + 1, ↑(frobenius K p) x).fst] y.snd) [PROOFSTEP] rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_add, Nat.succ_add] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x1 x2 y : ℕ × K H : R K p x1 x2 n : ℕ x : K ⊢ R K p ((n, x).fst + y.fst, (↑(frobenius K p))^[y.fst] (n, x).snd + (↑(frobenius K p))^[(n, x).fst] y.snd) (Nat.succ (n + y.fst), ↑(frobenius K p) ((↑(frobenius K p))^[y.fst] x + (↑(frobenius K p))^[n] y.snd)) [PROOFSTEP] apply R.intro [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y1 y2 : ℕ × K H : R K p y1 y2 n : ℕ y : K ⊢ R K p (x.fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] x.snd + (↑(frobenius K p))^[x.fst] (n, y).snd) (x.fst + (n + 1, ↑(frobenius K p) y).fst, (↑(frobenius K p))^[(n + 1, ↑(frobenius K p) y).fst] x.snd + (↑(frobenius K p))^[x.fst] (n + 1, ↑(frobenius K p) y).snd) [PROOFSTEP] rw [← iterate_succ_apply, iterate_succ_apply', iterate_succ_apply', ← frobenius_add] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y1 y2 : ℕ × K H : R K p y1 y2 n : ℕ y : K ⊢ R K p (x.fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] x.snd + (↑(frobenius K p))^[x.fst] (n, y).snd) (x.fst + (n + 1, ↑(frobenius K p) y).fst, ↑(frobenius K p) ((↑(frobenius K p))^[n] x.snd + (↑(frobenius K p))^[x.fst] y)) [PROOFSTEP] apply R.intro [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y : ℕ × K H : R K p x✝ y n : ℕ x : K ⊢ R K p ((n, x).fst, -(n, x).snd) ((n + 1, ↑(frobenius K p) x).fst, -(n + 1, ↑(frobenius K p) x).snd) [PROOFSTEP] rw [← frobenius_neg] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y : ℕ × K H : R K p x✝ y n : ℕ x : K ⊢ R K p ((n, x).fst, -(n, x).snd) ((n + 1, ↑(frobenius K p) x).fst, ↑(frobenius K p) (-x)) [PROOFSTEP] apply R.intro [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ ⊢ mk K p (n, 0) = 0 [PROOFSTEP] induction' n with n ih [GOAL] case zero K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p ⊢ mk K p (Nat.zero, 0) = 0 [PROOFSTEP] rfl [GOAL] case succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ ih : mk K p (n, 0) = 0 ⊢ mk K p (Nat.succ n, 0) = 0 [PROOFSTEP] rw [← ih] [GOAL] case succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ ih : mk K p (n, 0) = 0 ⊢ mk K p (Nat.succ n, 0) = mk K p (n, 0) [PROOFSTEP] symm [GOAL] case succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ ih : mk K p (n, 0) = 0 ⊢ mk K p (n, 0) = mk K p (Nat.succ n, 0) [PROOFSTEP] apply Quot.sound [GOAL] case succ.a K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ ih : mk K p (n, 0) = 0 ⊢ R K p (n, 0) (Nat.succ n, 0) [PROOFSTEP] have := R.intro (p := p) n (0 : K) [GOAL] case succ.a K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ ih : mk K p (n, 0) = 0 this : R K p (n, 0) (n + 1, ↑(frobenius K p) 0) ⊢ R K p (n, 0) (Nat.succ n, 0) [PROOFSTEP] rwa [frobenius_zero K p] at this [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p m n : ℕ x y : K H : (↑(frobenius K p))^[m] x = y ⊢ mk K p (n, x) = mk K p (m + n, y) [PROOFSTEP] subst H [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p m n : ℕ x : K ⊢ mk K p (n, x) = mk K p (m + n, (↑(frobenius K p))^[m] x) [PROOFSTEP] induction' m with m ih [GOAL] case zero K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ mk K p (n, x) = mk K p (Nat.zero + n, (↑(frobenius K p))^[Nat.zero] x) [PROOFSTEP] simp only [Nat.zero_eq, zero_add, iterate_zero_apply] [GOAL] case succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K m : ℕ ih : mk K p (n, x) = mk K p (m + n, (↑(frobenius K p))^[m] x) ⊢ mk K p (n, x) = mk K p (Nat.succ m + n, (↑(frobenius K p))^[Nat.succ m] x) [PROOFSTEP] rw [ih, Nat.succ_add, iterate_succ'] [GOAL] case succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K m : ℕ ih : mk K p (n, x) = mk K p (m + n, (↑(frobenius K p))^[m] x) ⊢ mk K p (m + n, (↑(frobenius K p))^[m] x) = mk K p (Nat.succ (m + n), (↑(frobenius K p) ∘ (↑(frobenius K p))^[m]) x) [PROOFSTEP] apply Quot.sound [GOAL] case succ.a K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K m : ℕ ih : mk K p (n, x) = mk K p (m + n, (↑(frobenius K p))^[m] x) ⊢ R K p (m + n, (↑(frobenius K p))^[m] x) (Nat.succ (m + n), (↑(frobenius K p) ∘ (↑(frobenius K p))^[m]) x) [PROOFSTEP] apply R.intro [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝¹ : Add (PerfectClosure K p) := inferInstance src✝ : Neg (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ Quot.mk (R K p) (m, x) + Quot.mk (R K p) (n, y) + Quot.mk (R K p) (s, z) = Quot.mk (R K p) (m, x) + (Quot.mk (R K p) (n, y) + Quot.mk (R K p) (s, z)) [PROOFSTEP] simp only [quot_mk_eq_mk, mk_add_mk] -- Porting note: added this line [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝¹ : Add (PerfectClosure K p) := inferInstance src✝ : Neg (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ mk K p (m + n + s, (↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) + (↑(frobenius K p))^[m + n] z) = mk K p (m + (n + s), (↑(frobenius K p))^[n + s] x + (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y + (↑(frobenius K p))^[n] z)) [PROOFSTEP] apply congr_arg (Quot.mk _) [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝¹ : Add (PerfectClosure K p) := inferInstance src✝ : Neg (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ (m + n + s, (↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) + (↑(frobenius K p))^[m + n] z) = (m + (n + s), (↑(frobenius K p))^[n + s] x + (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y + (↑(frobenius K p))^[n] z)) [PROOFSTEP] simp only [iterate_map_add, ← iterate_add_apply, add_assoc, add_comm s _] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝¹ : Add (PerfectClosure K p) := inferInstance src✝ : Neg (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K n : ℕ x : K ⊢ ((0, 0).fst + (n, x).fst, (↑(frobenius K p))^[(n, x).fst] (0, 0).snd + (↑(frobenius K p))^[(0, 0).fst] (n, x).snd) = (n, x) [PROOFSTEP] simp only [RingHom.iterate_map_zero, iterate_zero_apply, zero_add] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝¹ : Add (PerfectClosure K p) := inferInstance src✝ : Neg (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K n : ℕ x : K ⊢ ((n, x).fst + (0, 0).fst, (↑(frobenius K p))^[(0, 0).fst] (n, x).snd + (↑(frobenius K p))^[(n, x).fst] (0, 0).snd) = (n, x) [PROOFSTEP] simp only [RingHom.iterate_map_zero, iterate_zero_apply, add_zero] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝¹ : Add (PerfectClosure K p) := inferInstance src✝ : Neg (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K n : ℕ x : K ⊢ -Quot.mk (R K p) (n, x) + Quot.mk (R K p) (n, x) = 0 [PROOFSTEP] simp only [quot_mk_eq_mk, neg_mk, mk_add_mk, RingHom.iterate_map_neg, add_left_neg, mk_zero] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝¹ : Add (PerfectClosure K p) := inferInstance src✝ : Neg (PerfectClosure K p) := inferInstance e f : PerfectClosure K p x✝¹ : ℕ × K m : ℕ x : K x✝ : ℕ × K n : ℕ y : K ⊢ ((m, x).fst + (n, y).fst, (↑(frobenius K p))^[(n, y).fst] (m, x).snd + (↑(frobenius K p))^[(m, x).fst] (n, y).snd) = ((n, y).fst + (m, x).fst, (↑(frobenius K p))^[(m, x).fst] (n, y).snd + (↑(frobenius K p))^[(n, y).fst] (m, x).snd) [PROOFSTEP] simp only [add_comm] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ Quot.mk (R K p) (m, x) * (Quot.mk (R K p) (n, y) + Quot.mk (R K p) (s, z)) = Quot.mk (R K p) (m, x) * Quot.mk (R K p) (n, y) + Quot.mk (R K p) (m, x) * Quot.mk (R K p) (s, z) [PROOFSTEP] simp only [quot_mk_eq_mk, mk_add_mk, mk_mul_mk] -- Porting note: added this line [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ mk K p (m + (n + s), (↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[s] y + (↑(frobenius K p))^[n] z)) = mk K p (m + n + (m + s), (↑(frobenius K p))^[m + s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y) + (↑(frobenius K p))^[m + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z)) [PROOFSTEP] simp only [add_assoc, add_comm, add_left_comm] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ mk K p (m + (n + s), (↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[n] z + (↑(frobenius K p))^[s] y)) = mk K p (m + (m + (n + s)), (↑(frobenius K p))^[m + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) + (↑(frobenius K p))^[m + s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y)) [PROOFSTEP] apply R.sound [GOAL] case H K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ (↑(frobenius K p))^[m] ((↑(frobenius K p))^[n + s] x * (↑(frobenius K p))^[m] ((↑(frobenius K p))^[n] z + (↑(frobenius K p))^[s] y)) = (↑(frobenius K p))^[m + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) + (↑(frobenius K p))^[m + s] ((↑(frobenius K p))^[n] x * (↑(frobenius K p))^[m] y) [PROOFSTEP] simp only [iterate_map_mul, iterate_map_add, ← iterate_add_apply, mul_add, add_comm, add_left_comm] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ (Quot.mk (R K p) (m, x) + Quot.mk (R K p) (n, y)) * Quot.mk (R K p) (s, z) = Quot.mk (R K p) (m, x) * Quot.mk (R K p) (s, z) + Quot.mk (R K p) (n, y) * Quot.mk (R K p) (s, z) [PROOFSTEP] simp only [quot_mk_eq_mk, mk_add_mk, mk_mul_mk] -- Porting note: added this line [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ mk K p (m + n + s, (↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) = mk K p (m + s + (n + s), (↑(frobenius K p))^[n + s] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) + (↑(frobenius K p))^[m + s] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z)) [PROOFSTEP] simp only [add_assoc, add_comm _ s, add_left_comm _ s] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ mk K p (s + (m + n), (↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) = mk K p (s + (s + (m + n)), (↑(frobenius K p))^[s + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) + (↑(frobenius K p))^[s + m] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z)) [PROOFSTEP] apply R.sound [GOAL] case H K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance e f g : PerfectClosure K p x✝² : ℕ × K m : ℕ x : K x✝¹ : ℕ × K n : ℕ y : K x✝ : ℕ × K s : ℕ z : K ⊢ (↑(frobenius K p))^[s] ((↑(frobenius K p))^[s] ((↑(frobenius K p))^[n] x + (↑(frobenius K p))^[m] y) * (↑(frobenius K p))^[m + n] z) = (↑(frobenius K p))^[s + n] ((↑(frobenius K p))^[s] x * (↑(frobenius K p))^[m] z) + (↑(frobenius K p))^[s + m] ((↑(frobenius K p))^[s] y * (↑(frobenius K p))^[n] z) [PROOFSTEP] simp only [iterate_map_mul, iterate_map_add, ← iterate_add_apply, add_mul, add_comm, add_left_comm] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance a : PerfectClosure K p ⊢ 0 * a = 0 [PROOFSTEP] refine Quot.inductionOn a fun ⟨m, x⟩ => ?_ [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance a : PerfectClosure K p x✝ : ℕ × K m : ℕ x : K ⊢ 0 * Quot.mk (R K p) (m, x) = 0 [PROOFSTEP] rw [zero_def, quot_mk_eq_mk, mk_mul_mk] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance a : PerfectClosure K p x✝ : ℕ × K m : ℕ x : K ⊢ mk K p ((0, 0).fst + (m, x).fst, (↑(frobenius K p))^[(m, x).fst] (0, 0).snd * (↑(frobenius K p))^[(0, 0).fst] (m, x).snd) = mk K p (0, 0) [PROOFSTEP] simp only [zero_add, iterate_zero, id_eq, RingHom.iterate_map_zero, zero_mul, mk_zero] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance a : PerfectClosure K p ⊢ a * 0 = 0 [PROOFSTEP] refine Quot.inductionOn a fun ⟨m, x⟩ => ?_ [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance a : PerfectClosure K p x✝ : ℕ × K m : ℕ x : K ⊢ Quot.mk (R K p) (m, x) * 0 = 0 [PROOFSTEP] rw [zero_def, quot_mk_eq_mk, mk_mul_mk] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝² : AddCommGroup (PerfectClosure K p) := addCommGroup K p src✝¹ : AddMonoidWithOne (PerfectClosure K p) := AddMonoidWithOne.unary src✝ : CommMonoid (PerfectClosure K p) := inferInstance a : PerfectClosure K p x✝ : ℕ × K m : ℕ x : K ⊢ mk K p ((m, x).fst + (0, 0).fst, (↑(frobenius K p))^[(0, 0).fst] (m, x).snd * (↑(frobenius K p))^[(m, x).fst] (0, 0).snd) = mk K p (0, 0) [PROOFSTEP] simp only [zero_add, iterate_zero, id_eq, RingHom.iterate_map_zero, mul_zero, mk_zero] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ × K ⊢ mk K p x = mk K p y ↔ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd [PROOFSTEP] constructor [GOAL] case mp K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ × K ⊢ mk K p x = mk K p y → ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd [PROOFSTEP] intro H [GOAL] case mp K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ × K H : mk K p x = mk K p y ⊢ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd [PROOFSTEP] replace H := Quot.exact _ H [GOAL] case mp K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ × K H : EqvGen (R K p) x y ⊢ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd [PROOFSTEP] induction H [GOAL] case mp.rel K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ y✝ : ℕ × K a✝ : R K p x✝ y✝ ⊢ ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd case mp.refl K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ : ℕ × K ⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] x✝.snd case mp.symm K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ y✝ : ℕ × K a✝ : EqvGen (R K p) x✝ y✝ a_ih✝ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd ⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] x✝.snd case mp.trans K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ y✝ z✝ : ℕ × K a✝¹ : EqvGen (R K p) x✝ y✝ a✝ : EqvGen (R K p) y✝ z✝ a_ih✝¹ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd a_ih✝ : ∃ z, (↑(frobenius K p))^[z✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] z✝.snd ⊢ ∃ z, (↑(frobenius K p))^[z✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] z✝.snd [PROOFSTEP] case rel x y H => cases' H with n x; exact ⟨0, rfl⟩ [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y : ℕ × K H : R K p x y ⊢ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd [PROOFSTEP] case rel x y H => cases' H with n x; exact ⟨0, rfl⟩ [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y : ℕ × K H : R K p x y ⊢ ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd [PROOFSTEP] cases' H with n x [GOAL] case intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y : ℕ × K n : ℕ x : K ⊢ ∃ z, (↑(frobenius K p))^[(n + 1, ↑(frobenius K p) x).fst + z] (n, x).snd = (↑(frobenius K p))^[(n, x).fst + z] (n + 1, ↑(frobenius K p) x).snd [PROOFSTEP] exact ⟨0, rfl⟩ [GOAL] case mp.refl K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ : ℕ × K ⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] x✝.snd case mp.symm K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ y✝ : ℕ × K a✝ : EqvGen (R K p) x✝ y✝ a_ih✝ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd ⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] x✝.snd case mp.trans K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ y✝ z✝ : ℕ × K a✝¹ : EqvGen (R K p) x✝ y✝ a✝ : EqvGen (R K p) y✝ z✝ a_ih✝¹ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd a_ih✝ : ∃ z, (↑(frobenius K p))^[z✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] z✝.snd ⊢ ∃ z, (↑(frobenius K p))^[z✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] z✝.snd [PROOFSTEP] case refl H => exact ⟨0, rfl⟩ [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y H : ℕ × K ⊢ ∃ z, (↑(frobenius K p))^[H.fst + z] H.snd = (↑(frobenius K p))^[H.fst + z] H.snd [PROOFSTEP] case refl H => exact ⟨0, rfl⟩ [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y H : ℕ × K ⊢ ∃ z, (↑(frobenius K p))^[H.fst + z] H.snd = (↑(frobenius K p))^[H.fst + z] H.snd [PROOFSTEP] exact ⟨0, rfl⟩ [GOAL] case mp.symm K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ y✝ : ℕ × K a✝ : EqvGen (R K p) x✝ y✝ a_ih✝ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd ⊢ ∃ z, (↑(frobenius K p))^[x✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] x✝.snd case mp.trans K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ y✝ z✝ : ℕ × K a✝¹ : EqvGen (R K p) x✝ y✝ a✝ : EqvGen (R K p) y✝ z✝ a_ih✝¹ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd a_ih✝ : ∃ z, (↑(frobenius K p))^[z✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] z✝.snd ⊢ ∃ z, (↑(frobenius K p))^[z✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] z✝.snd [PROOFSTEP] case symm x y H ih => cases' ih with w ih; exact ⟨w, ih.symm⟩ [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y : ℕ × K H : EqvGen (R K p) x y ih : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd ⊢ ∃ z, (↑(frobenius K p))^[x.fst + z] y.snd = (↑(frobenius K p))^[y.fst + z] x.snd [PROOFSTEP] case symm x y H ih => cases' ih with w ih; exact ⟨w, ih.symm⟩ [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y : ℕ × K H : EqvGen (R K p) x y ih : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd ⊢ ∃ z, (↑(frobenius K p))^[x.fst + z] y.snd = (↑(frobenius K p))^[y.fst + z] x.snd [PROOFSTEP] cases' ih with w ih [GOAL] case intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y : ℕ × K H : EqvGen (R K p) x y w : ℕ ih : (↑(frobenius K p))^[y.fst + w] x.snd = (↑(frobenius K p))^[x.fst + w] y.snd ⊢ ∃ z, (↑(frobenius K p))^[x.fst + z] y.snd = (↑(frobenius K p))^[y.fst + z] x.snd [PROOFSTEP] exact ⟨w, ih.symm⟩ [GOAL] case mp.trans K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y x✝ y✝ z✝ : ℕ × K a✝¹ : EqvGen (R K p) x✝ y✝ a✝ : EqvGen (R K p) y✝ z✝ a_ih✝¹ : ∃ z, (↑(frobenius K p))^[y✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] y✝.snd a_ih✝ : ∃ z, (↑(frobenius K p))^[z✝.fst + z] y✝.snd = (↑(frobenius K p))^[y✝.fst + z] z✝.snd ⊢ ∃ z, (↑(frobenius K p))^[z✝.fst + z] x✝.snd = (↑(frobenius K p))^[x✝.fst + z] z✝.snd [PROOFSTEP] case trans x y z H1 H2 ih1 ih2 => cases' ih1 with z1 ih1 cases' ih2 with z2 ih2 exists z2 + (y.1 + z1) rw [← add_assoc, iterate_add_apply, ih1] rw [← iterate_add_apply, add_comm, iterate_add_apply, ih2] rw [← iterate_add_apply] simp only [add_comm, add_left_comm] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : EqvGen (R K p) x y H2 : EqvGen (R K p) y z ih1 : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd ih2 : ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] y.snd = (↑(frobenius K p))^[y.fst + z_1] z.snd ⊢ ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] x.snd = (↑(frobenius K p))^[x.fst + z_1] z.snd [PROOFSTEP] case trans x y z H1 H2 ih1 ih2 => cases' ih1 with z1 ih1 cases' ih2 with z2 ih2 exists z2 + (y.1 + z1) rw [← add_assoc, iterate_add_apply, ih1] rw [← iterate_add_apply, add_comm, iterate_add_apply, ih2] rw [← iterate_add_apply] simp only [add_comm, add_left_comm] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : EqvGen (R K p) x y H2 : EqvGen (R K p) y z ih1 : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd ih2 : ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] y.snd = (↑(frobenius K p))^[y.fst + z_1] z.snd ⊢ ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] x.snd = (↑(frobenius K p))^[x.fst + z_1] z.snd [PROOFSTEP] cases' ih1 with z1 ih1 [GOAL] case intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : EqvGen (R K p) x y H2 : EqvGen (R K p) y z ih2 : ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] y.snd = (↑(frobenius K p))^[y.fst + z_1] z.snd z1 : ℕ ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd ⊢ ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] x.snd = (↑(frobenius K p))^[x.fst + z_1] z.snd [PROOFSTEP] cases' ih2 with z2 ih2 [GOAL] case intro.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : EqvGen (R K p) x y H2 : EqvGen (R K p) y z z1 : ℕ ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd z2 : ℕ ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd ⊢ ∃ z_1, (↑(frobenius K p))^[z.fst + z_1] x.snd = (↑(frobenius K p))^[x.fst + z_1] z.snd [PROOFSTEP] exists z2 + (y.1 + z1) [GOAL] case intro.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : EqvGen (R K p) x y H2 : EqvGen (R K p) y z z1 : ℕ ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd z2 : ℕ ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd ⊢ (↑(frobenius K p))^[z.fst + (z2 + (y.fst + z1))] x.snd = (↑(frobenius K p))^[x.fst + (z2 + (y.fst + z1))] z.snd [PROOFSTEP] rw [← add_assoc, iterate_add_apply, ih1] [GOAL] case intro.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : EqvGen (R K p) x y H2 : EqvGen (R K p) y z z1 : ℕ ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd z2 : ℕ ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd ⊢ (↑(frobenius K p))^[z.fst + z2] ((↑(frobenius K p))^[x.fst + z1] y.snd) = (↑(frobenius K p))^[x.fst + (z2 + (y.fst + z1))] z.snd [PROOFSTEP] rw [← iterate_add_apply, add_comm, iterate_add_apply, ih2] [GOAL] case intro.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : EqvGen (R K p) x y H2 : EqvGen (R K p) y z z1 : ℕ ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd z2 : ℕ ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd ⊢ (↑(frobenius K p))^[x.fst + z1] ((↑(frobenius K p))^[y.fst + z2] z.snd) = (↑(frobenius K p))^[x.fst + (z2 + (y.fst + z1))] z.snd [PROOFSTEP] rw [← iterate_add_apply] [GOAL] case intro.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y✝ x y z : ℕ × K H1 : EqvGen (R K p) x y H2 : EqvGen (R K p) y z z1 : ℕ ih1 : (↑(frobenius K p))^[y.fst + z1] x.snd = (↑(frobenius K p))^[x.fst + z1] y.snd z2 : ℕ ih2 : (↑(frobenius K p))^[z.fst + z2] y.snd = (↑(frobenius K p))^[y.fst + z2] z.snd ⊢ (↑(frobenius K p))^[x.fst + z1 + (y.fst + z2)] z.snd = (↑(frobenius K p))^[x.fst + (z2 + (y.fst + z1))] z.snd [PROOFSTEP] simp only [add_comm, add_left_comm] [GOAL] case mpr K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ × K ⊢ (∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd) → mk K p x = mk K p y [PROOFSTEP] intro H [GOAL] case mpr K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ × K H : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd ⊢ mk K p x = mk K p y [PROOFSTEP] cases' x with m x [GOAL] case mpr.mk K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p y : ℕ × K m : ℕ x : K H : ∃ z, (↑(frobenius K p))^[y.fst + z] (m, x).snd = (↑(frobenius K p))^[(m, x).fst + z] y.snd ⊢ mk K p (m, x) = mk K p y [PROOFSTEP] cases' y with n y [GOAL] case mpr.mk.mk K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p m : ℕ x : K n : ℕ y : K H : ∃ z, (↑(frobenius K p))^[(n, y).fst + z] (m, x).snd = (↑(frobenius K p))^[(m, x).fst + z] (n, y).snd ⊢ mk K p (m, x) = mk K p (n, y) [PROOFSTEP] cases' H with z H [GOAL] case mpr.mk.mk.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p m : ℕ x : K n : ℕ y : K z : ℕ H : (↑(frobenius K p))^[(n, y).fst + z] (m, x).snd = (↑(frobenius K p))^[(m, x).fst + z] (n, y).snd ⊢ mk K p (m, x) = mk K p (n, y) [PROOFSTEP] dsimp only at H [GOAL] case mpr.mk.mk.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p m : ℕ x : K n : ℕ y : K z : ℕ H : (↑(frobenius K p))^[n + z] x = (↑(frobenius K p))^[m + z] y ⊢ mk K p (m, x) = mk K p (n, y) [PROOFSTEP] rw [R.sound K p (n + z) m x _ rfl, R.sound K p (m + z) n y _ rfl, H] [GOAL] case mpr.mk.mk.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p m : ℕ x : K n : ℕ y : K z : ℕ H : (↑(frobenius K p))^[n + z] x = (↑(frobenius K p))^[m + z] y ⊢ mk K p (n + z + m, (↑(frobenius K p))^[m + z] y) = mk K p (m + z + n, (↑(frobenius K p))^[m + z] y) [PROOFSTEP] rw [add_assoc, add_comm, add_comm z] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n x : ℕ ⊢ ↑x = mk K p (n, ↑x) [PROOFSTEP] induction' n with n ih [GOAL] case zero K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℕ ⊢ ↑x = mk K p (Nat.zero, ↑x) [PROOFSTEP] induction' x with x ih [GOAL] case zero.zero K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p ⊢ ↑Nat.zero = mk K p (Nat.zero, ↑Nat.zero) [PROOFSTEP] simp [GOAL] case zero.succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℕ ih : ↑x = mk K p (Nat.zero, ↑x) ⊢ ↑(Nat.succ x) = mk K p (Nat.zero, ↑(Nat.succ x)) [PROOFSTEP] rw [Nat.cast_succ, Nat.cast_succ, ih] [GOAL] case zero.succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℕ ih : ↑x = mk K p (Nat.zero, ↑x) ⊢ mk K p (Nat.zero, ↑x) + 1 = mk K p (Nat.zero, ↑x + 1) [PROOFSTEP] rfl [GOAL] case succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x n : ℕ ih : ↑x = mk K p (n, ↑x) ⊢ ↑x = mk K p (Nat.succ n, ↑x) [PROOFSTEP] rw [ih] [GOAL] case succ K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x n : ℕ ih : ↑x = mk K p (n, ↑x) ⊢ mk K p (n, ↑x) = mk K p (Nat.succ n, ↑x) [PROOFSTEP] apply Quot.sound [GOAL] case succ.a K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x n : ℕ ih : ↑x = mk K p (n, ↑x) ⊢ R K p (n, ↑x) (Nat.succ n, ↑x) [PROOFSTEP] suffices R K p (n, (x : K)) (Nat.succ n, frobenius K p (x : K)) by rwa [frobenius_nat_cast K p x] at this [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x n : ℕ ih : ↑x = mk K p (n, ↑x) this : R K p (n, ↑x) (Nat.succ n, ↑(frobenius K p) ↑x) ⊢ R K p (n, ↑x) (Nat.succ n, ↑x) [PROOFSTEP] rwa [frobenius_nat_cast K p x] at this [GOAL] case succ.a K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x n : ℕ ih : ↑x = mk K p (n, ↑x) ⊢ R K p (n, ↑x) (Nat.succ n, ↑(frobenius K p) ↑x) [PROOFSTEP] apply R.intro [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℤ ⊢ ↑x = mk K p (0, ↑x) [PROOFSTEP] induction x [GOAL] case ofNat K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p a✝ : ℕ ⊢ ↑(Int.ofNat a✝) = mk K p (0, ↑(Int.ofNat a✝)) [PROOFSTEP] simp only [Int.ofNat_eq_coe, Int.cast_ofNat, Int.cast_negSucc, nat_cast K p 0] [GOAL] case negSucc K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p a✝ : ℕ ⊢ ↑(Int.negSucc a✝) = mk K p (0, ↑(Int.negSucc a✝)) [PROOFSTEP] simp only [Int.ofNat_eq_coe, Int.cast_ofNat, Int.cast_negSucc, nat_cast K p 0] [GOAL] case negSucc K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p a✝ : ℕ ⊢ -mk K p (0, ↑(a✝ + 1)) = mk K p (0, -↑(a✝ + 1)) [PROOFSTEP] rfl [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ ⊢ ↑x = ↑y ↔ ↑x = ↑y [PROOFSTEP] constructor [GOAL] case mp K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ ⊢ ↑x = ↑y → ↑x = ↑y [PROOFSTEP] intro H [GOAL] case mpr K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ ⊢ ↑x = ↑y → ↑x = ↑y [PROOFSTEP] intro H [GOAL] case mp K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ H : ↑x = ↑y ⊢ ↑x = ↑y [PROOFSTEP] rw [nat_cast K p 0, nat_cast K p 0, eq_iff'] at H [GOAL] case mp K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ H : ∃ z, (↑(frobenius K p))^[(0, ↑y).fst + z] (0, ↑x).snd = (↑(frobenius K p))^[(0, ↑x).fst + z] (0, ↑y).snd ⊢ ↑x = ↑y [PROOFSTEP] cases' H with z H [GOAL] case mp.intro K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y z : ℕ H : (↑(frobenius K p))^[(0, ↑y).fst + z] (0, ↑x).snd = (↑(frobenius K p))^[(0, ↑x).fst + z] (0, ↑y).snd ⊢ ↑x = ↑y [PROOFSTEP] simpa only [zero_add, iterate_fixed (frobenius_nat_cast K p _)] using H [GOAL] case mpr K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ H : ↑x = ↑y ⊢ ↑x = ↑y [PROOFSTEP] rw [nat_cast K p 0, nat_cast K p 0, H] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p ⊢ CharP (PerfectClosure K p) p [PROOFSTEP] constructor [GOAL] case cast_eq_zero_iff' K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p ⊢ ∀ (x : ℕ), ↑x = 0 ↔ p ∣ x [PROOFSTEP] intro x [GOAL] case cast_eq_zero_iff' K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℕ ⊢ ↑x = 0 ↔ p ∣ x [PROOFSTEP] rw [← CharP.cast_eq_zero_iff K] [GOAL] case cast_eq_zero_iff' K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℕ ⊢ ↑x = 0 ↔ ↑x = 0 [PROOFSTEP] rw [← Nat.cast_zero, nat_cast_eq_iff, Nat.cast_zero] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℕ × K ⊢ ↑(frobenius (PerfectClosure K p) p) (mk K p x) = mk K p (x.fst, x.snd ^ p) [PROOFSTEP] simp only [frobenius_def] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : ℕ × K ⊢ mk K p x ^ p = mk K p (x.fst, x.snd ^ p) [PROOFSTEP] cases' x with n x [GOAL] case mk K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ mk K p (n, x) ^ p = mk K p ((n, x).fst, (n, x).snd ^ p) [PROOFSTEP] dsimp only [GOAL] case mk K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ mk K p (n, x) ^ p = mk K p (n, x ^ p) [PROOFSTEP] suffices ∀ p' : ℕ, mk K p (n, x) ^ p' = mk K p (n, x ^ p') by apply this [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K this : ∀ (p' : ℕ), mk K p (n, x) ^ p' = mk K p (n, x ^ p') ⊢ mk K p (n, x) ^ p = mk K p (n, x ^ p) [PROOFSTEP] apply this [GOAL] case mk K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ ∀ (p' : ℕ), mk K p (n, x) ^ p' = mk K p (n, x ^ p') [PROOFSTEP] intro p [GOAL] case mk K : Type u inst✝² : CommRing K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : CharP K p✝ n : ℕ x : K p : ℕ ⊢ mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p) [PROOFSTEP] induction' p with p ih [GOAL] case mk.zero K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ mk K p (n, x) ^ Nat.zero = mk K p (n, x ^ Nat.zero) case mk.succ K : Type u inst✝² : CommRing K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : CharP K p✝ n : ℕ x : K p : ℕ ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p) ⊢ mk K p✝ (n, x) ^ Nat.succ p = mk K p✝ (n, x ^ Nat.succ p) [PROOFSTEP] case zero => apply R.sound; rw [(frobenius _ _).iterate_map_one, pow_zero] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ mk K p (n, x) ^ Nat.zero = mk K p (n, x ^ Nat.zero) [PROOFSTEP] case zero => apply R.sound; rw [(frobenius _ _).iterate_map_one, pow_zero] [GOAL] K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ mk K p (n, x) ^ Nat.zero = mk K p (n, x ^ Nat.zero) [PROOFSTEP] apply R.sound [GOAL] case H K : Type u inst✝² : CommRing K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ (↑(frobenius K p))^[n] 1 = x ^ Nat.zero [PROOFSTEP] rw [(frobenius _ _).iterate_map_one, pow_zero] [GOAL] case mk.succ K : Type u inst✝² : CommRing K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : CharP K p✝ n : ℕ x : K p : ℕ ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p) ⊢ mk K p✝ (n, x) ^ Nat.succ p = mk K p✝ (n, x ^ Nat.succ p) [PROOFSTEP] case succ => rw [pow_succ, ih] symm apply R.sound simp only [pow_succ, iterate_map_mul] [GOAL] K : Type u inst✝² : CommRing K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : CharP K p✝ n : ℕ x : K p : ℕ ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p) ⊢ mk K p✝ (n, x) ^ Nat.succ p = mk K p✝ (n, x ^ Nat.succ p) [PROOFSTEP] case succ => rw [pow_succ, ih] symm apply R.sound simp only [pow_succ, iterate_map_mul] [GOAL] K : Type u inst✝² : CommRing K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : CharP K p✝ n : ℕ x : K p : ℕ ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p) ⊢ mk K p✝ (n, x) ^ Nat.succ p = mk K p✝ (n, x ^ Nat.succ p) [PROOFSTEP] rw [pow_succ, ih] [GOAL] K : Type u inst✝² : CommRing K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : CharP K p✝ n : ℕ x : K p : ℕ ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p) ⊢ mk K p✝ (n, x) * mk K p✝ (n, x ^ p) = mk K p✝ (n, x ^ Nat.succ p) [PROOFSTEP] symm [GOAL] K : Type u inst✝² : CommRing K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : CharP K p✝ n : ℕ x : K p : ℕ ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p) ⊢ mk K p✝ (n, x ^ Nat.succ p) = mk K p✝ (n, x) * mk K p✝ (n, x ^ p) [PROOFSTEP] apply R.sound [GOAL] case H K : Type u inst✝² : CommRing K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : CharP K p✝ n : ℕ x : K p : ℕ ih : mk K p✝ (n, x) ^ p = mk K p✝ (n, x ^ p) ⊢ (↑(frobenius K p✝))^[(n, x).fst] (x ^ Nat.succ p) = (↑(frobenius K p✝))^[(n, x ^ p).fst] (n, x).snd * (↑(frobenius K p✝))^[(n, x).fst] (n, x ^ p).snd [PROOFSTEP] simp only [pow_succ, iterate_map_mul] [GOAL] K : Type u inst✝³ : CommRing K inst✝² : IsReduced K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x y : ℕ × K x✝ : ∃ z, (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd z : ℕ H : (↑(frobenius K p))^[y.fst + z] x.snd = (↑(frobenius K p))^[x.fst + z] y.snd ⊢ (↑(frobenius K p))^[z] ((↑(frobenius K p))^[y.fst] x.snd) = (↑(frobenius K p))^[z] ((↑(frobenius K p))^[x.fst] y.snd) [PROOFSTEP] simpa only [add_comm, iterate_add] using H [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y : ℕ × K H : R K p x✝ y n : ℕ x : K ⊢ R K p ((n, x).fst, (n, x).snd⁻¹) ((n + 1, ↑(frobenius K p) x).fst, (n + 1, ↑(frobenius K p) x).snd⁻¹) [PROOFSTEP] simp only [frobenius_def] [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y : ℕ × K H : R K p x✝ y n : ℕ x : K ⊢ R K p (n, x⁻¹) (n + 1, (x ^ p)⁻¹) [PROOFSTEP] rw [← inv_pow] [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x✝ y : ℕ × K H : R K p x✝ y n : ℕ x : K ⊢ R K p (n, x⁻¹) (n + 1, x⁻¹ ^ p) [PROOFSTEP] apply R.intro [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Inv (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K m : ℕ x : K H : mk K p (m, x) ≠ 0 ⊢ mk K p (m, x) * (mk K p (m, x))⁻¹ = 1 [PROOFSTEP] have := mt (eq_iff _ _ _ _).2 H [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Inv (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K m : ℕ x : K H : mk K p (m, x) ≠ 0 this : ¬(↑(frobenius K p))^[(0, 0).fst] (m, x).snd = (↑(frobenius K p))^[(m, x).fst] (0, 0).snd ⊢ mk K p (m, x) * (mk K p (m, x))⁻¹ = 1 [PROOFSTEP] rw [mk_inv, mk_mul_mk] [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Inv (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K m : ℕ x : K H : mk K p (m, x) ≠ 0 this : ¬(↑(frobenius K p))^[(0, 0).fst] (m, x).snd = (↑(frobenius K p))^[(m, x).fst] (0, 0).snd ⊢ mk K p ((m, x).fst + ((m, x).fst, (m, x).snd⁻¹).fst, (↑(frobenius K p))^[((m, x).fst, (m, x).snd⁻¹).fst] (m, x).snd * (↑(frobenius K p))^[(m, x).fst] ((m, x).fst, (m, x).snd⁻¹).snd) = 1 [PROOFSTEP] refine (eq_iff K p _ _).2 ?_ [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Inv (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K m : ℕ x : K H : mk K p (m, x) ≠ 0 this : ¬(↑(frobenius K p))^[(0, 0).fst] (m, x).snd = (↑(frobenius K p))^[(m, x).fst] (0, 0).snd ⊢ (↑(frobenius K p))^[(0, 1).fst] ((m, x).fst + ((m, x).fst, (m, x).snd⁻¹).fst, (↑(frobenius K p))^[((m, x).fst, (m, x).snd⁻¹).fst] (m, x).snd * (↑(frobenius K p))^[(m, x).fst] ((m, x).fst, (m, x).snd⁻¹).snd).snd = (↑(frobenius K p))^[((m, x).fst + ((m, x).fst, (m, x).snd⁻¹).fst, (↑(frobenius K p))^[((m, x).fst, (m, x).snd⁻¹).fst] (m, x).snd * (↑(frobenius K p))^[(m, x).fst] ((m, x).fst, (m, x).snd⁻¹).snd).fst] (0, 1).snd [PROOFSTEP] simp only [(frobenius _ _).iterate_map_one, (frobenius K p).iterate_map_zero, iterate_zero_apply, ← iterate_map_mul] at this ⊢ [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Inv (PerfectClosure K p) := inferInstance e : PerfectClosure K p x✝ : ℕ × K m : ℕ x : K H : mk K p (m, x) ≠ 0 this : ¬x = 0 ⊢ (↑(frobenius K p))^[m] (x * x⁻¹) = 1 [PROOFSTEP] rw [mul_inv_cancel this, (frobenius _ _).iterate_map_one] [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p src✝ : Inv (PerfectClosure K p) := inferInstance ⊢ ((0, 0).fst, (0, 0).snd⁻¹) = (0, 0) [PROOFSTEP] rw [inv_zero] [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p ⊢ Bijective ↑(frobenius (PerfectClosure K p) p) [PROOFSTEP] let f : PerfectClosure K p → PerfectClosure K p := fun e ↦ liftOn e (fun x => mk K p (x.1 + 1, x.2)) fun x y H => match x, y, H with | _, _, R.intro n x => Quot.sound (R.intro _ _) [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p f : PerfectClosure K p → PerfectClosure K p := fun e => liftOn e (fun x => mk K p (x.fst + 1, x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y) ⊢ Bijective ↑(frobenius (PerfectClosure K p) p) [PROOFSTEP] have hl : LeftInverse f (frobenius (PerfectClosure K p) p) := fun e ↦ induction_on e fun ⟨n, x⟩ => by simp only [liftOn_mk, frobenius_mk] exact (Quot.sound <| R.intro _ _).symm [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p f : PerfectClosure K p → PerfectClosure K p := fun e => liftOn e (fun x => mk K p (x.fst + 1, x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y) e : PerfectClosure K p x✝ : ℕ × K n : ℕ x : K ⊢ f (↑(frobenius (PerfectClosure K p) p) (mk K p (n, x))) = mk K p (n, x) [PROOFSTEP] simp only [liftOn_mk, frobenius_mk] [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p f : PerfectClosure K p → PerfectClosure K p := fun e => liftOn e (fun x => mk K p (x.fst + 1, x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y) e : PerfectClosure K p x✝ : ℕ × K n : ℕ x : K ⊢ mk K p (n + 1, x ^ p) = mk K p (n, x) [PROOFSTEP] exact (Quot.sound <| R.intro _ _).symm [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p f : PerfectClosure K p → PerfectClosure K p := fun e => liftOn e (fun x => mk K p (x.fst + 1, x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y) hl : LeftInverse f ↑(frobenius (PerfectClosure K p) p) ⊢ Bijective ↑(frobenius (PerfectClosure K p) p) [PROOFSTEP] have hr : RightInverse f (frobenius (PerfectClosure K p) p) := fun e ↦ induction_on e fun ⟨n, x⟩ => by simp only [liftOn_mk, frobenius_mk] exact (Quot.sound <| R.intro _ _).symm [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p f : PerfectClosure K p → PerfectClosure K p := fun e => liftOn e (fun x => mk K p (x.fst + 1, x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y) hl : LeftInverse f ↑(frobenius (PerfectClosure K p) p) e : PerfectClosure K p x✝ : ℕ × K n : ℕ x : K ⊢ ↑(frobenius (PerfectClosure K p) p) (f (mk K p (n, x))) = mk K p (n, x) [PROOFSTEP] simp only [liftOn_mk, frobenius_mk] [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p f : PerfectClosure K p → PerfectClosure K p := fun e => liftOn e (fun x => mk K p (x.fst + 1, x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y) hl : LeftInverse f ↑(frobenius (PerfectClosure K p) p) e : PerfectClosure K p x✝ : ℕ × K n : ℕ x : K ⊢ mk K p (n + 1, x ^ p) = mk K p (n, x) [PROOFSTEP] exact (Quot.sound <| R.intro _ _).symm [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p f : PerfectClosure K p → PerfectClosure K p := fun e => liftOn e (fun x => mk K p (x.fst + 1, x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => mk K p (x.fst + 1, x.snd)) x = (fun x => mk K p (x.fst + 1, x.snd)) y) hl : LeftInverse f ↑(frobenius (PerfectClosure K p) p) hr : Function.RightInverse f ↑(frobenius (PerfectClosure K p) p) ⊢ Bijective ↑(frobenius (PerfectClosure K p) p) [PROOFSTEP] exact bijective_iff_has_inverse.mpr ⟨f, hl, hr⟩ [GOAL] K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ (↑(frobenius (PerfectClosure K p) p))^[n] (mk K p (n, x)) = ↑(of K p) x [PROOFSTEP] induction' n with n ih [GOAL] case zero K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : K ⊢ (↑(frobenius (PerfectClosure K p) p))^[Nat.zero] (mk K p (Nat.zero, x)) = ↑(of K p) x case succ K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : K n : ℕ ih : (↑(frobenius (PerfectClosure K p) p))^[n] (mk K p (n, x)) = ↑(of K p) x ⊢ (↑(frobenius (PerfectClosure K p) p))^[Nat.succ n] (mk K p (Nat.succ n, x)) = ↑(of K p) x [PROOFSTEP] rfl [GOAL] case succ K : Type u inst✝² : Field K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : K n : ℕ ih : (↑(frobenius (PerfectClosure K p) p))^[n] (mk K p (n, x)) = ↑(of K p) x ⊢ (↑(frobenius (PerfectClosure K p) p))^[Nat.succ n] (mk K p (Nat.succ n, x)) = ↑(of K p) x [PROOFSTEP] rw [iterate_succ_apply, ← ih, frobenius_mk, mk_succ_pow] [GOAL] K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L ⊢ PerfectClosure K p → L [PROOFSTEP] refine' fun e => liftOn e (fun x => (frobeniusEquiv L p).symm^[x.1] (f x.2)) _ [GOAL] K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L e : PerfectClosure K p ⊢ ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y [PROOFSTEP] rintro - - ⟨n, x⟩ [GOAL] case intro K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L e : PerfectClosure K p n : ℕ x : K ⊢ (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (n, x) = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (n + 1, ↑(frobenius K p) x) [PROOFSTEP] simp [f.map_frobenius] [GOAL] K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L ⊢ ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y [PROOFSTEP] rintro ⟨n, x⟩ ⟨m, y⟩ [GOAL] case mk.mk.mk.mk K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L x✝ : PerfectClosure K p n : ℕ x : K y✝ : PerfectClosure K p m : ℕ y : K ⊢ OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (Quot.mk (R K p) (n, x) * Quot.mk (R K p) (m, y)) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (Quot.mk (R K p) (n, x)) * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (Quot.mk (R K p) (m, y)) [PROOFSTEP] simp only [quot_mk_eq_mk, liftOn_mk, f.map_iterate_frobenius, mk_mul_mk, map_mul, iterate_map_mul] [GOAL] case mk.mk.mk.mk K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L x✝ : PerfectClosure K p n : ℕ x : K y✝ : PerfectClosure K p m : ℕ y : K ⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[m] (↑f x)) * (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[n] (↑f y)) = (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f x) * (↑(RingEquiv.symm (frobeniusEquiv L p)))^[m] (↑f y) [PROOFSTEP] have := LeftInverse.iterate (frobeniusEquiv_symm_apply_frobenius L p) [GOAL] case mk.mk.mk.mk K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L x✝ : PerfectClosure K p n : ℕ x : K y✝ : PerfectClosure K p m : ℕ y : K this : ∀ (n : ℕ), LeftInverse (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (fun x => ↑(frobenius L p) x)^[n] ⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[m] (↑f x)) * (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[n] (↑f y)) = (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f x) * (↑(RingEquiv.symm (frobeniusEquiv L p)))^[m] (↑f y) [PROOFSTEP] rw [iterate_add_apply, this _ _, add_comm, iterate_add_apply, this _ _] [GOAL] K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L ⊢ ∀ (x y : PerfectClosure K p), OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) y [PROOFSTEP] rintro ⟨n, x⟩ ⟨m, y⟩ [GOAL] case mk.mk.mk.mk K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L x✝ : PerfectClosure K p n : ℕ x : K y✝ : PerfectClosure K p m : ℕ y : K ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) (Quot.mk (R K p) (n, x) + Quot.mk (R K p) (m, y)) = OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) (Quot.mk (R K p) (n, x)) + OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) (Quot.mk (R K p) (m, y)) [PROOFSTEP] simp only [quot_mk_eq_mk, liftOn_mk, f.map_iterate_frobenius, mk_add_mk, map_add, iterate_map_add] [GOAL] case mk.mk.mk.mk K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L x✝ : PerfectClosure K p n : ℕ x : K y✝ : PerfectClosure K p m : ℕ y : K ⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[m] (↑f x)) + (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[n] (↑f y)) = (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f x) + (↑(RingEquiv.symm (frobeniusEquiv L p)))^[m] (↑f y) [PROOFSTEP] have := LeftInverse.iterate (frobeniusEquiv_symm_apply_frobenius L p) [GOAL] case mk.mk.mk.mk K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L x✝ : PerfectClosure K p n : ℕ x : K y✝ : PerfectClosure K p m : ℕ y : K this : ∀ (n : ℕ), LeftInverse (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (fun x => ↑(frobenius L p) x)^[n] ⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[m] (↑f x)) + (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n + m] ((↑(frobenius L p))^[n] (↑f y)) = (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f x) + (↑(RingEquiv.symm (frobeniusEquiv L p)))^[m] (↑f y) [PROOFSTEP] rw [iterate_add_apply, this _ _, add_comm n, iterate_add_apply, this _ _] [GOAL] K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L ⊢ (fun f => RingHom.comp f (of K p)) ((fun f => { toMonoidHom := { toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }, map_zero' := (_ : ↑f 0 = 0), map_add' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) y) }) f) = f [PROOFSTEP] ext x [GOAL] case a K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : K →+* L x : K ⊢ ↑((fun f => RingHom.comp f (of K p)) ((fun f => { toMonoidHom := { toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }, map_zero' := (_ : ↑f 0 = 0), map_add' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) y) }) f)) x = ↑f x [PROOFSTEP] rfl [GOAL] K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : PerfectClosure K p →+* L ⊢ (fun f => { toMonoidHom := { toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }, map_zero' := (_ : ↑f 0 = 0), map_add' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) y) }) ((fun f => RingHom.comp f (of K p)) f) = f [PROOFSTEP] ext ⟨n, x⟩ [GOAL] case a.mk.mk K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : PerfectClosure K p →+* L x✝ : PerfectClosure K p n : ℕ x : K ⊢ ↑((fun f => { toMonoidHom := { toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }, map_zero' := (_ : ↑f 0 = 0), map_add' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) }, map_mul' := (_ : ∀ (x y : PerfectClosure K p), OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } (x * y) = OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } x * OneHom.toFun { toFun := fun e => liftOn e (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) (_ : ∀ (x y : ℕ × K), R K p x y → (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) x = (fun x => (↑(RingEquiv.symm (frobeniusEquiv L p)))^[x.fst] (↑f x.snd)) y), map_one' := (_ : ↑f 1 = 1) } y) }) y) }) ((fun f => RingHom.comp f (of K p)) f)) (Quot.mk (R K p) (n, x)) = ↑f (Quot.mk (R K p) (n, x)) [PROOFSTEP] simp only [quot_mk_eq_mk, RingHom.comp_apply, RingHom.coe_mk, MonoidHom.coe_mk, OneHom.coe_mk, liftOn_mk] [GOAL] case a.mk.mk K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : PerfectClosure K p →+* L x✝ : PerfectClosure K p n : ℕ x : K ⊢ (↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f (↑(of K p) x)) = ↑f (mk K p (n, x)) [PROOFSTEP] apply (injective_frobenius L p).iterate n [GOAL] case a.mk.mk.a K : Type u inst✝⁵ : Field K p : ℕ inst✝⁴ : Fact (Nat.Prime p) inst✝³ : CharP K p L : Type v inst✝² : CommSemiring L inst✝¹ : CharP L p inst✝ : PerfectRing L p f : PerfectClosure K p →+* L x✝ : PerfectClosure K p n : ℕ x : K ⊢ (↑(frobenius L p))^[n] ((↑(RingEquiv.symm (frobeniusEquiv L p)))^[n] (↑f (↑(of K p) x))) = (↑(frobenius L p))^[n] (↑f (mk K p (n, x))) [PROOFSTEP] rw [← f.map_iterate_frobenius, iterate_frobenius_mk, RightInverse.iterate (frobenius_apply_frobeniusEquiv_symm L p) n]
{"mathlib_filename": "Mathlib.FieldTheory.PerfectClosure", "llama_tokens": 57006}
[GOAL] A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pnz : p ≠ 0 hp : ↑(Polynomial.aeval x) p = 0 ⊢ ↑(Polynomial.aeval x) (p * ↑C (leadingCoeff p)⁻¹) = 0 [PROOFSTEP] simp [hp] [GOAL] A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q ⊢ p = minpoly A x [PROOFSTEP] have hx : IsIntegral A x := ⟨p, pmonic, hp⟩ [GOAL] A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q hx : IsIntegral A x ⊢ p = minpoly A x [PROOFSTEP] symm [GOAL] A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q hx : IsIntegral A x ⊢ minpoly A x = p [PROOFSTEP] apply eq_of_sub_eq_zero [GOAL] case h A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q hx : IsIntegral A x ⊢ minpoly A x - p = 0 [PROOFSTEP] by_contra hnz [GOAL] case h A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q hx : IsIntegral A x hnz : ¬minpoly A x - p = 0 ⊢ False [PROOFSTEP] have hd := degree_le_of_ne_zero A x hnz (by simp [hp]) [GOAL] A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q hx : IsIntegral A x hnz : ¬minpoly A x - p = 0 ⊢ ↑(Polynomial.aeval x) (minpoly A x - p) = 0 [PROOFSTEP] simp [hp] [GOAL] case h A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q hx : IsIntegral A x hnz : ¬minpoly A x - p = 0 hd : degree (minpoly A x) ≤ degree (minpoly A x - p) ⊢ False [PROOFSTEP] contrapose! hd [GOAL] case h A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q hx : IsIntegral A x hnz : ¬minpoly A x - p = 0 hd : ¬False ⊢ degree (minpoly A x - p) < degree (minpoly A x) [PROOFSTEP] apply degree_sub_lt _ (minpoly.ne_zero hx) [GOAL] case h A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q hx : IsIntegral A x hnz : ¬minpoly A x - p = 0 hd : ¬False ⊢ leadingCoeff (minpoly A x) = leadingCoeff p [PROOFSTEP] rw [(monic hx).leadingCoeff, pmonic.leadingCoeff] [GOAL] A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] pmonic : Monic p hp : ↑(Polynomial.aeval x) p = 0 pmin : ∀ (q : A[X]), Monic q → ↑(Polynomial.aeval x) q = 0 → degree p ≤ degree q hx : IsIntegral A x hnz : ¬minpoly A x - p = 0 hd : ¬False ⊢ degree (minpoly A x) = degree p [PROOFSTEP] exact le_antisymm (min A x pmonic hp) (pmin (minpoly A x) (monic hx) (aeval A x)) [GOAL] A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 ⊢ minpoly A x ∣ p [PROOFSTEP] by_cases hp0 : p = 0 [GOAL] case pos A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 hp0 : p = 0 ⊢ minpoly A x ∣ p [PROOFSTEP] simp only [hp0, dvd_zero] [GOAL] case neg A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 hp0 : ¬p = 0 ⊢ minpoly A x ∣ p [PROOFSTEP] have hx : IsIntegral A x := by rw [← isAlgebraic_iff_isIntegral] exact ⟨p, hp0, hp⟩ [GOAL] A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 hp0 : ¬p = 0 ⊢ IsIntegral A x [PROOFSTEP] rw [← isAlgebraic_iff_isIntegral] [GOAL] A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 hp0 : ¬p = 0 ⊢ IsAlgebraic A x [PROOFSTEP] exact ⟨p, hp0, hp⟩ [GOAL] case neg A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 hp0 : ¬p = 0 hx : IsIntegral A x ⊢ minpoly A x ∣ p [PROOFSTEP] rw [← dvd_iff_modByMonic_eq_zero (monic hx)] [GOAL] case neg A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 hp0 : ¬p = 0 hx : IsIntegral A x ⊢ p %ₘ minpoly A x = 0 [PROOFSTEP] by_contra hnz [GOAL] case neg A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 hp0 : ¬p = 0 hx : IsIntegral A x hnz : ¬p %ₘ minpoly A x = 0 ⊢ False [PROOFSTEP] have hd := degree_le_of_ne_zero A x hnz ((aeval_modByMonic_eq_self_of_root (monic hx) (aeval _ _)).trans hp) [GOAL] case neg A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 hp0 : ¬p = 0 hx : IsIntegral A x hnz : ¬p %ₘ minpoly A x = 0 hd : degree (minpoly A x) ≤ degree (p %ₘ minpoly A x) ⊢ False [PROOFSTEP] contrapose! hd [GOAL] case neg A : Type u_1 B : Type u_2 inst✝² : Field A inst✝¹ : Ring B inst✝ : Algebra A B x : B p : A[X] hp : ↑(Polynomial.aeval x) p = 0 hp0 : ¬p = 0 hx : IsIntegral A x hnz : ¬p %ₘ minpoly A x = 0 hd : ¬False ⊢ degree (p %ₘ minpoly A x) < degree (minpoly A x) [PROOFSTEP] exact degree_modByMonic_lt _ (monic hx) [GOAL] A✝ : Type u_1 B : Type u_2 inst✝⁹ : Field A✝ inst✝⁸ : Ring B inst✝⁷ : Algebra A✝ B x✝ : B A : Type u_3 K : Type u_4 R : Type u_5 inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : CommRing R inst✝³ : Algebra A K inst✝² : Algebra A R inst✝¹ : Algebra K R inst✝ : IsScalarTower A K R x : R ⊢ minpoly K x ∣ map (algebraMap A K) (minpoly A x) [PROOFSTEP] refine' minpoly.dvd K x _ [GOAL] A✝ : Type u_1 B : Type u_2 inst✝⁹ : Field A✝ inst✝⁸ : Ring B inst✝⁷ : Algebra A✝ B x✝ : B A : Type u_3 K : Type u_4 R : Type u_5 inst✝⁶ : CommRing A inst✝⁵ : Field K inst✝⁴ : CommRing R inst✝³ : Algebra A K inst✝² : Algebra A R inst✝¹ : Algebra K R inst✝ : IsScalarTower A K R x : R ⊢ ↑(Polynomial.aeval x) (map (algebraMap A K) (minpoly A x)) = 0 [PROOFSTEP] rw [aeval_map_algebraMap, minpoly.aeval] [GOAL] A : Type u_1 B : Type u_2 inst✝¹³ : Field A inst✝¹² : Ring B inst✝¹¹ : Algebra A B x : B R : Type u_3 S : Type u_4 K : Type u_5 L : Type u_6 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Field K inst✝⁷ : CommRing L inst✝⁶ : Algebra R S inst✝⁵ : Algebra R K inst✝⁴ : Algebra S L inst✝³ : Algebra K L inst✝² : Algebra R L inst✝¹ : IsScalarTower R K L inst✝ : IsScalarTower R S L s : S ⊢ minpoly K (↑(algebraMap S L) s) ∣ map (algebraMap R K) (minpoly R s) [PROOFSTEP] apply minpoly.dvd K (algebraMap S L s) [GOAL] A : Type u_1 B : Type u_2 inst✝¹³ : Field A inst✝¹² : Ring B inst✝¹¹ : Algebra A B x : B R : Type u_3 S : Type u_4 K : Type u_5 L : Type u_6 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Field K inst✝⁷ : CommRing L inst✝⁶ : Algebra R S inst✝⁵ : Algebra R K inst✝⁴ : Algebra S L inst✝³ : Algebra K L inst✝² : Algebra R L inst✝¹ : IsScalarTower R K L inst✝ : IsScalarTower R S L s : S ⊢ ↑(Polynomial.aeval (↑(algebraMap S L) s)) (map (algebraMap R K) (minpoly R s)) = 0 [PROOFSTEP] rw [← map_aeval_eq_aeval_map, minpoly.aeval, map_zero] [GOAL] case h A : Type u_1 B : Type u_2 inst✝¹³ : Field A inst✝¹² : Ring B inst✝¹¹ : Algebra A B x : B R : Type u_3 S : Type u_4 K : Type u_5 L : Type u_6 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Field K inst✝⁷ : CommRing L inst✝⁶ : Algebra R S inst✝⁵ : Algebra R K inst✝⁴ : Algebra S L inst✝³ : Algebra K L inst✝² : Algebra R L inst✝¹ : IsScalarTower R K L inst✝ : IsScalarTower R S L s : S ⊢ RingHom.comp (algebraMap K ((fun x => L) s)) (algebraMap R K) = RingHom.comp (algebraMap S L) (algebraMap R S) [PROOFSTEP] rw [← IsScalarTower.algebraMap_eq, ← IsScalarTower.algebraMap_eq] [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B p : A[X] hp1 : Irreducible p hp2 : ↑(Polynomial.aeval x) p = 0 ⊢ p * ↑C (leadingCoeff p)⁻¹ = minpoly A x [PROOFSTEP] have : p.leadingCoeff ≠ 0 := leadingCoeff_ne_zero.mpr hp1.ne_zero [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B p : A[X] hp1 : Irreducible p hp2 : ↑(Polynomial.aeval x) p = 0 this : leadingCoeff p ≠ 0 ⊢ p * ↑C (leadingCoeff p)⁻¹ = minpoly A x [PROOFSTEP] apply eq_of_irreducible_of_monic [GOAL] case hp1 A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B p : A[X] hp1 : Irreducible p hp2 : ↑(Polynomial.aeval x) p = 0 this : leadingCoeff p ≠ 0 ⊢ Irreducible (p * ↑C (leadingCoeff p)⁻¹) [PROOFSTEP] exact Associated.irreducible ⟨⟨C p.leadingCoeff⁻¹, C p.leadingCoeff, by rwa [← C_mul, inv_mul_cancel, C_1], by rwa [← C_mul, mul_inv_cancel, C_1]⟩, rfl⟩ hp1 [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B p : A[X] hp1 : Irreducible p hp2 : ↑(Polynomial.aeval x) p = 0 this : leadingCoeff p ≠ 0 ⊢ ↑C (leadingCoeff p)⁻¹ * ↑C (leadingCoeff p) = 1 [PROOFSTEP] rwa [← C_mul, inv_mul_cancel, C_1] [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B p : A[X] hp1 : Irreducible p hp2 : ↑(Polynomial.aeval x) p = 0 this : leadingCoeff p ≠ 0 ⊢ ↑C (leadingCoeff p) * ↑C (leadingCoeff p)⁻¹ = 1 [PROOFSTEP] rwa [← C_mul, mul_inv_cancel, C_1] [GOAL] case hp2 A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B p : A[X] hp1 : Irreducible p hp2 : ↑(Polynomial.aeval x) p = 0 this : leadingCoeff p ≠ 0 ⊢ ↑(Polynomial.aeval x) (p * ↑C (leadingCoeff p)⁻¹) = 0 [PROOFSTEP] rw [aeval_mul, hp2, zero_mul] [GOAL] case hp3 A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B p : A[X] hp1 : Irreducible p hp2 : ↑(Polynomial.aeval x) p = 0 this : leadingCoeff p ≠ 0 ⊢ Monic (p * ↑C (leadingCoeff p)⁻¹) [PROOFSTEP] rwa [Polynomial.Monic, leadingCoeff_mul, leadingCoeff_C, mul_inv_cancel] [GOAL] A : Type u_1 B : Type u_2 inst✝⁹ : Field A inst✝⁸ : Ring B inst✝⁷ : Algebra A B x✝ : B K : Type u_3 S : Type u_4 T : Type u_5 inst✝⁶ : Field K inst✝⁵ : CommRing S inst✝⁴ : CommRing T inst✝³ : Algebra K S inst✝² : Algebra K T inst✝¹ : Algebra S T inst✝ : IsScalarTower K S T hST : Injective ↑(algebraMap S T) x : S y : T hx : IsIntegral K x h : y = ↑(algebraMap S T) x ⊢ ↑(Polynomial.aeval y) (minpoly K x) = 0 [PROOFSTEP] rw [h, aeval_algebraMap_apply, minpoly.aeval, RingHom.map_zero] [GOAL] A : Type u_1 B✝ : Type u_2 inst✝⁴ : Field A inst✝³ : Ring B✝ inst✝² : Algebra A B✝ x✝ : B✝ B : Type u_3 inst✝¹ : CommRing B inst✝ : Algebra A B x : B hx : IsIntegral A x a : A ⊢ minpoly A (x + ↑(algebraMap A B) a) = Polynomial.comp (minpoly A x) (X - ↑C a) [PROOFSTEP] refine' (minpoly.unique _ _ ((minpoly.monic hx).comp_X_sub_C _) _ fun q qmo hq => _).symm [GOAL] case refine'_1 A : Type u_1 B✝ : Type u_2 inst✝⁴ : Field A inst✝³ : Ring B✝ inst✝² : Algebra A B✝ x✝ : B✝ B : Type u_3 inst✝¹ : CommRing B inst✝ : Algebra A B x : B hx : IsIntegral A x a : A ⊢ ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) (Polynomial.comp (minpoly A x) (X - ↑C a)) = 0 [PROOFSTEP] simp [aeval_comp] [GOAL] case refine'_2 A : Type u_1 B✝ : Type u_2 inst✝⁴ : Field A inst✝³ : Ring B✝ inst✝² : Algebra A B✝ x✝ : B✝ B : Type u_3 inst✝¹ : CommRing B inst✝ : Algebra A B x : B hx : IsIntegral A x a : A q : A[X] qmo : Monic q hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0 ⊢ degree (Polynomial.comp (minpoly A x) (X - ↑C a)) ≤ degree q [PROOFSTEP] have : (Polynomial.aeval x) (q.comp (X + C a)) = 0 := by simpa [aeval_comp] using hq [GOAL] A : Type u_1 B✝ : Type u_2 inst✝⁴ : Field A inst✝³ : Ring B✝ inst✝² : Algebra A B✝ x✝ : B✝ B : Type u_3 inst✝¹ : CommRing B inst✝ : Algebra A B x : B hx : IsIntegral A x a : A q : A[X] qmo : Monic q hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0 ⊢ ↑(Polynomial.aeval x) (Polynomial.comp q (X + ↑C a)) = 0 [PROOFSTEP] simpa [aeval_comp] using hq [GOAL] case refine'_2 A : Type u_1 B✝ : Type u_2 inst✝⁴ : Field A inst✝³ : Ring B✝ inst✝² : Algebra A B✝ x✝ : B✝ B : Type u_3 inst✝¹ : CommRing B inst✝ : Algebra A B x : B hx : IsIntegral A x a : A q : A[X] qmo : Monic q hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0 this : ↑(Polynomial.aeval x) (Polynomial.comp q (X + ↑C a)) = 0 ⊢ degree (Polynomial.comp (minpoly A x) (X - ↑C a)) ≤ degree q [PROOFSTEP] have H := minpoly.min A x (qmo.comp_X_add_C _) this [GOAL] case refine'_2 A : Type u_1 B✝ : Type u_2 inst✝⁴ : Field A inst✝³ : Ring B✝ inst✝² : Algebra A B✝ x✝ : B✝ B : Type u_3 inst✝¹ : CommRing B inst✝ : Algebra A B x : B hx : IsIntegral A x a : A q : A[X] qmo : Monic q hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0 this : ↑(Polynomial.aeval x) (Polynomial.comp q (X + ↑C a)) = 0 H : degree (minpoly A x) ≤ degree (Polynomial.comp q (X + ↑C a)) ⊢ degree (Polynomial.comp (minpoly A x) (X - ↑C a)) ≤ degree q [PROOFSTEP] rw [degree_eq_natDegree qmo.ne_zero, degree_eq_natDegree ((minpoly.monic hx).comp_X_sub_C _).ne_zero, natDegree_comp, natDegree_X_sub_C, mul_one] [GOAL] case refine'_2 A : Type u_1 B✝ : Type u_2 inst✝⁴ : Field A inst✝³ : Ring B✝ inst✝² : Algebra A B✝ x✝ : B✝ B : Type u_3 inst✝¹ : CommRing B inst✝ : Algebra A B x : B hx : IsIntegral A x a : A q : A[X] qmo : Monic q hq : ↑(Polynomial.aeval (x + ↑(algebraMap A B) a)) q = 0 this : ↑(Polynomial.aeval x) (Polynomial.comp q (X + ↑C a)) = 0 H : degree (minpoly A x) ≤ degree (Polynomial.comp q (X + ↑C a)) ⊢ ↑(natDegree (minpoly A x)) ≤ ↑(natDegree q) [PROOFSTEP] rwa [degree_eq_natDegree (minpoly.ne_zero hx), degree_eq_natDegree (qmo.comp_X_add_C _).ne_zero, natDegree_comp, natDegree_X_add_C, mul_one] at H [GOAL] A : Type u_1 B✝ : Type u_2 inst✝⁴ : Field A inst✝³ : Ring B✝ inst✝² : Algebra A B✝ x✝ : B✝ B : Type u_3 inst✝¹ : CommRing B inst✝ : Algebra A B x : B hx : IsIntegral A x a : A ⊢ minpoly A (x - ↑(algebraMap A B) a) = Polynomial.comp (minpoly A x) (X + ↑C a) [PROOFSTEP] simpa [sub_eq_add_neg] using add_algebraMap hx (-a) [GOAL] A : Type u_1 B : Type u_2 inst✝⁹ : Field A inst✝⁸ : Ring B inst✝⁷ : Algebra A B x✝ : B F : Type u_3 E : Type u_4 K : Type u_5 inst✝⁶ : Field F inst✝⁵ : Ring E inst✝⁴ : CommRing K inst✝³ : IsDomain K inst✝² : Algebra F E inst✝¹ : Algebra F K inst✝ : FiniteDimensional F E φ : E →ₐ[F] K x : ↑(range ↑(FiniteDimensional.finBasis F E)) ⊢ ↑φ ↑x ∈ roots (map (algebraMap F K) (minpoly F ↑x)) [PROOFSTEP] rw [mem_roots_map (minpoly.ne_zero_of_finite F x.val), ← aeval_def, aeval_algHom_apply, minpoly.aeval, map_zero] [GOAL] A : Type u_1 B : Type u_2 inst✝⁹ : Field A inst✝⁸ : Ring B inst✝⁷ : Algebra A B x : B F : Type u_3 E : Type u_4 K : Type u_5 inst✝⁶ : Field F inst✝⁵ : Ring E inst✝⁴ : CommRing K inst✝³ : IsDomain K inst✝² : Algebra F E inst✝¹ : Algebra F K inst✝ : FiniteDimensional F E ⊢ Injective (rootsOfMinPolyPiType F E K) [PROOFSTEP] intro f g h [GOAL] A : Type u_1 B : Type u_2 inst✝⁹ : Field A inst✝⁸ : Ring B inst✝⁷ : Algebra A B x : B F : Type u_3 E : Type u_4 K : Type u_5 inst✝⁶ : Field F inst✝⁵ : Ring E inst✝⁴ : CommRing K inst✝³ : IsDomain K inst✝² : Algebra F E inst✝¹ : Algebra F K inst✝ : FiniteDimensional F E f g : E →ₐ[F] K h : rootsOfMinPolyPiType F E K f = rootsOfMinPolyPiType F E K g ⊢ f = g [PROOFSTEP] suffices (f : E →ₗ[F] K) = g by rwa [FunLike.ext'_iff] at this ⊢ [GOAL] A : Type u_1 B : Type u_2 inst✝⁹ : Field A inst✝⁸ : Ring B inst✝⁷ : Algebra A B x : B F : Type u_3 E : Type u_4 K : Type u_5 inst✝⁶ : Field F inst✝⁵ : Ring E inst✝⁴ : CommRing K inst✝³ : IsDomain K inst✝² : Algebra F E inst✝¹ : Algebra F K inst✝ : FiniteDimensional F E f g : E →ₐ[F] K h : rootsOfMinPolyPiType F E K f = rootsOfMinPolyPiType F E K g this : ↑↑f = ↑↑g ⊢ f = g [PROOFSTEP] rwa [FunLike.ext'_iff] at this ⊢ [GOAL] A : Type u_1 B : Type u_2 inst✝⁹ : Field A inst✝⁸ : Ring B inst✝⁷ : Algebra A B x : B F : Type u_3 E : Type u_4 K : Type u_5 inst✝⁶ : Field F inst✝⁵ : Ring E inst✝⁴ : CommRing K inst✝³ : IsDomain K inst✝² : Algebra F E inst✝¹ : Algebra F K inst✝ : FiniteDimensional F E f g : E →ₐ[F] K h : rootsOfMinPolyPiType F E K f = rootsOfMinPolyPiType F E K g ⊢ ↑↑f = ↑↑g [PROOFSTEP] rw [funext_iff] at h [GOAL] A : Type u_1 B : Type u_2 inst✝⁹ : Field A inst✝⁸ : Ring B inst✝⁷ : Algebra A B x : B F : Type u_3 E : Type u_4 K : Type u_5 inst✝⁶ : Field F inst✝⁵ : Ring E inst✝⁴ : CommRing K inst✝³ : IsDomain K inst✝² : Algebra F E inst✝¹ : Algebra F K inst✝ : FiniteDimensional F E f g : E →ₐ[F] K h : ∀ (a : ↑(range ↑(FiniteDimensional.finBasis F E))), rootsOfMinPolyPiType F E K f a = rootsOfMinPolyPiType F E K g a ⊢ ↑↑f = ↑↑g [PROOFSTEP] exact LinearMap.ext_on (FiniteDimensional.finBasis F E).span_eq fun e he => Subtype.ext_iff.mp (h ⟨e, he⟩) [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B ⊢ minpoly A 0 = X [PROOFSTEP] simpa only [add_zero, C_0, sub_eq_add_neg, neg_zero, RingHom.map_zero] using eq_X_sub_C B (0 : A) [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : Algebra A B x : B inst✝ : Nontrivial B ⊢ minpoly A 1 = X - 1 [PROOFSTEP] simpa only [RingHom.map_one, C_1, sub_eq_add_neg] using eq_X_sub_C B (1 : A) [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x ⊢ Prime (minpoly A x) [PROOFSTEP] refine' ⟨minpoly.ne_zero hx, not_isUnit A x, _⟩ [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x ⊢ ∀ (a b : A[X]), minpoly A x ∣ a * b → minpoly A x ∣ a ∨ minpoly A x ∣ b [PROOFSTEP] rintro p q ⟨d, h⟩ [GOAL] case intro A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x p q d : A[X] h : p * q = minpoly A x * d ⊢ minpoly A x ∣ p ∨ minpoly A x ∣ q [PROOFSTEP] have : Polynomial.aeval x (p * q) = 0 := by simp [h, aeval A x] [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x p q d : A[X] h : p * q = minpoly A x * d ⊢ ↑(Polynomial.aeval x) (p * q) = 0 [PROOFSTEP] simp [h, aeval A x] [GOAL] case intro A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x p q d : A[X] h : p * q = minpoly A x * d this : ↑(Polynomial.aeval x) (p * q) = 0 ⊢ minpoly A x ∣ p ∨ minpoly A x ∣ q [PROOFSTEP] replace : Polynomial.aeval x p = 0 ∨ Polynomial.aeval x q = 0 := by simpa [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x p q d : A[X] h : p * q = minpoly A x * d this : ↑(Polynomial.aeval x) (p * q) = 0 ⊢ ↑(Polynomial.aeval x) p = 0 ∨ ↑(Polynomial.aeval x) q = 0 [PROOFSTEP] simpa [GOAL] case intro A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x p q d : A[X] h : p * q = minpoly A x * d this : ↑(Polynomial.aeval x) p = 0 ∨ ↑(Polynomial.aeval x) q = 0 ⊢ minpoly A x ∣ p ∨ minpoly A x ∣ q [PROOFSTEP] exact Or.imp (dvd A x) (dvd A x) this [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x✝ x : B hx : IsIntegral A x y : A h : IsRoot (minpoly A x) y ⊢ ↑(algebraMap A B) y = x [PROOFSTEP] have key : minpoly A x = X - C y := eq_of_monic_of_associated (monic hx) (monic_X_sub_C y) (associated_of_dvd_dvd ((irreducible_X_sub_C y).dvd_symm (irreducible hx) (dvd_iff_isRoot.2 h)) (dvd_iff_isRoot.2 h)) [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x✝ x : B hx : IsIntegral A x y : A h : IsRoot (minpoly A x) y key : minpoly A x = X - ↑C y ⊢ ↑(algebraMap A B) y = x [PROOFSTEP] have := aeval A x [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x✝ x : B hx : IsIntegral A x y : A h : IsRoot (minpoly A x) y key : minpoly A x = X - ↑C y this : ↑(Polynomial.aeval x) (minpoly A x) = 0 ⊢ ↑(algebraMap A B) y = x [PROOFSTEP] rwa [key, AlgHom.map_sub, aeval_X, aeval_C, sub_eq_zero, eq_comm] at this [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x ⊢ coeff (minpoly A x) 0 = 0 ↔ x = 0 [PROOFSTEP] constructor [GOAL] case mp A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x ⊢ coeff (minpoly A x) 0 = 0 → x = 0 [PROOFSTEP] intro h [GOAL] case mp A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x h : coeff (minpoly A x) 0 = 0 ⊢ x = 0 [PROOFSTEP] have zero_root := zero_isRoot_of_coeff_zero_eq_zero h [GOAL] case mp A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x h : coeff (minpoly A x) 0 = 0 zero_root : IsRoot (minpoly A x) 0 ⊢ x = 0 [PROOFSTEP] rw [← root hx zero_root] [GOAL] case mp A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x h : coeff (minpoly A x) 0 = 0 zero_root : IsRoot (minpoly A x) 0 ⊢ ↑(algebraMap A B) 0 = 0 [PROOFSTEP] exact RingHom.map_zero _ [GOAL] case mpr A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x ⊢ x = 0 → coeff (minpoly A x) 0 = 0 [PROOFSTEP] rintro rfl [GOAL] case mpr A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B hx : IsIntegral A 0 ⊢ coeff (minpoly A 0) 0 = 0 [PROOFSTEP] simp [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x h : x ≠ 0 ⊢ coeff (minpoly A x) 0 ≠ 0 [PROOFSTEP] contrapose! h [GOAL] A : Type u_1 B : Type u_2 inst✝³ : Field A inst✝² : Ring B inst✝¹ : IsDomain B inst✝ : Algebra A B x : B hx : IsIntegral A x h : coeff (minpoly A x) 0 = 0 ⊢ x = 0 [PROOFSTEP] simpa only [hx, coeff_zero_eq_zero] using h
{"mathlib_filename": "Mathlib.FieldTheory.Minpoly.Field", "llama_tokens": 12012}
{"mathlib_filename": "Mathlib.Data.HashMap", "llama_tokens": 0}
[GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L ⊢ Function.Injective fun S => S.carrier [PROOFSTEP] rintro ⟨⟨⟩⟩ ⟨⟨⟩⟩ [GOAL] case mk.mk.mk.mk K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L toSubsemiring✝¹ : Subsemiring L algebraMap_mem'✝¹ : ∀ (r : K), ↑(algebraMap K L) r ∈ toSubsemiring✝¹.carrier inv_mem'✝¹ : ∀ (x : L), x ∈ { toSubsemiring := toSubsemiring✝¹, algebraMap_mem' := algebraMap_mem'✝¹ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → x⁻¹ ∈ { toSubsemiring := toSubsemiring✝¹, algebraMap_mem' := algebraMap_mem'✝¹ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier toSubsemiring✝ : Subsemiring L algebraMap_mem'✝ : ∀ (r : K), ↑(algebraMap K L) r ∈ toSubsemiring✝.carrier inv_mem'✝ : ∀ (x : L), x ∈ { toSubsemiring := toSubsemiring✝, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → x⁻¹ ∈ { toSubsemiring := toSubsemiring✝, algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ⊢ (fun S => S.carrier) { toSubalgebra := { toSubsemiring := toSubsemiring✝¹, algebraMap_mem' := algebraMap_mem'✝¹ }, inv_mem' := inv_mem'✝¹ } = (fun S => S.carrier) { toSubalgebra := { toSubsemiring := toSubsemiring✝, algebraMap_mem' := algebraMap_mem'✝ }, inv_mem' := inv_mem'✝ } → { toSubalgebra := { toSubsemiring := toSubsemiring✝¹, algebraMap_mem' := algebraMap_mem'✝¹ }, inv_mem' := inv_mem'✝¹ } = { toSubalgebra := { toSubsemiring := toSubsemiring✝, algebraMap_mem' := algebraMap_mem'✝ }, inv_mem' := inv_mem'✝ } [PROOFSTEP] simp [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L x : L hx : x ∈ S ⊢ -x ∈ S [PROOFSTEP] show -x ∈ S.toSubalgebra [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L x : L hx : x ∈ S ⊢ -x ∈ S.toSubalgebra [PROOFSTEP] simpa [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L n : ℕ ⊢ ↑n ∈ S [PROOFSTEP] simpa using coe_int_mem S n [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L inv_mem : ∀ (x : L), x ∈ S → x⁻¹ ∈ S ⊢ (Subalgebra.toIntermediateField S inv_mem).toSubalgebra = S [PROOFSTEP] ext [GOAL] case h K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L inv_mem : ∀ (x : L), x ∈ S → x⁻¹ ∈ S x✝ : L ⊢ x✝ ∈ (Subalgebra.toIntermediateField S inv_mem).toSubalgebra ↔ x✝ ∈ S [PROOFSTEP] rfl [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ S : IntermediateField K L ⊢ Subalgebra.toIntermediateField S.toSubalgebra (_ : ∀ (x : L), x ∈ S → x⁻¹ ∈ S) = S [PROOFSTEP] ext [GOAL] case h K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ S : IntermediateField K L x✝ : L ⊢ x✝ ∈ Subalgebra.toIntermediateField S.toSubalgebra (_ : ∀ (x : L), x ∈ S → x⁻¹ ∈ S) ↔ x✝ ∈ S [PROOFSTEP] rfl [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L hS : IsField { x // x ∈ S } x : L hx : x ∈ S ⊢ x⁻¹ ∈ S [PROOFSTEP] by_cases hx0 : x = 0 [GOAL] case pos K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L hS : IsField { x // x ∈ S } x : L hx : x ∈ S hx0 : x = 0 ⊢ x⁻¹ ∈ S [PROOFSTEP] rw [hx0, inv_zero] [GOAL] case pos K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L hS : IsField { x // x ∈ S } x : L hx : x ∈ S hx0 : x = 0 ⊢ 0 ∈ S [PROOFSTEP] exact S.zero_mem [GOAL] case neg K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L hS : IsField { x // x ∈ S } x : L hx : x ∈ S hx0 : ¬x = 0 ⊢ x⁻¹ ∈ S [PROOFSTEP] letI hS' := hS.toField [GOAL] case neg K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L hS : IsField { x // x ∈ S } x : L hx : x ∈ S hx0 : ¬x = 0 hS' : Field { x // x ∈ S } := IsField.toField hS ⊢ x⁻¹ ∈ S [PROOFSTEP] obtain ⟨y, hy⟩ := hS.mul_inv_cancel (show (⟨x, hx⟩ : S) ≠ 0 from Subtype.ne_of_val_ne hx0) [GOAL] case neg.intro K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L hS : IsField { x // x ∈ S } x : L hx : x ∈ S hx0 : ¬x = 0 hS' : Field { x // x ∈ S } := IsField.toField hS y : { x // x ∈ S } hy : { val := x, property := hx } * y = 1 ⊢ x⁻¹ ∈ S [PROOFSTEP] rw [Subtype.ext_iff, S.coe_mul, S.coe_one, Subtype.coe_mk, mul_eq_one_iff_inv_eq₀ hx0] at hy [GOAL] case neg.intro K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L hS : IsField { x // x ∈ S } x : L hx : x ∈ S hx0 : ¬x = 0 hS' : Field { x // x ∈ S } := IsField.toField hS y : { x // x ∈ S } hy : x⁻¹ = ↑y ⊢ x⁻¹ ∈ S [PROOFSTEP] exact hy.symm ▸ y.2 [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L hS : IsField { x // x ∈ S } ⊢ (Subalgebra.toIntermediateField' S hS).toSubalgebra = S [PROOFSTEP] ext [GOAL] case h K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L S : Subalgebra K L hS : IsField { x // x ∈ S } x✝ : L ⊢ x✝ ∈ (Subalgebra.toIntermediateField' S hS).toSubalgebra ↔ x✝ ∈ S [PROOFSTEP] rfl [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ S : IntermediateField K L ⊢ Subalgebra.toIntermediateField' S.toSubalgebra (_ : IsField { x // x ∈ S }) = S [PROOFSTEP] ext [GOAL] case h K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ S : IntermediateField K L x✝ : L ⊢ x✝ ∈ Subalgebra.toIntermediateField' S.toSubalgebra (_ : IsField { x // x ∈ S }) ↔ x✝ ∈ S [PROOFSTEP] rfl [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S : IntermediateField K L ι : Type u_4 inst✝ : Fintype ι f : ι → { x // x ∈ S } ⊢ ↑(∑ i : ι, f i) = ∑ i : ι, ↑(f i) [PROOFSTEP] classical induction' (Finset.univ : Finset ι) using Finset.induction_on with i s hi H · simp · rw [Finset.sum_insert hi, AddMemClass.coe_add, H, Finset.sum_insert hi] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S : IntermediateField K L ι : Type u_4 inst✝ : Fintype ι f : ι → { x // x ∈ S } ⊢ ↑(∑ i : ι, f i) = ∑ i : ι, ↑(f i) [PROOFSTEP] induction' (Finset.univ : Finset ι) using Finset.induction_on with i s hi H [GOAL] case empty K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S : IntermediateField K L ι : Type u_4 inst✝ : Fintype ι f : ι → { x // x ∈ S } ⊢ ↑(∑ i in ∅, f i) = ∑ i in ∅, ↑(f i) [PROOFSTEP] simp [GOAL] case insert K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S : IntermediateField K L ι : Type u_4 inst✝ : Fintype ι f : ι → { x // x ∈ S } i : ι s : Finset ι hi : ¬i ∈ s H : ↑(∑ i in s, f i) = ∑ i in s, ↑(f i) ⊢ ↑(∑ i in insert i s, f i) = ∑ i in insert i s, ↑(f i) [PROOFSTEP] rw [Finset.sum_insert hi, AddMemClass.coe_add, H, Finset.sum_insert hi] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S : IntermediateField K L ι : Type u_4 inst✝ : Fintype ι f : ι → { x // x ∈ S } ⊢ ↑(∏ i : ι, f i) = ∏ i : ι, ↑(f i) [PROOFSTEP] classical induction' (Finset.univ : Finset ι) using Finset.induction_on with i s hi H · simp · rw [Finset.prod_insert hi, MulMemClass.coe_mul, H, Finset.prod_insert hi] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S : IntermediateField K L ι : Type u_4 inst✝ : Fintype ι f : ι → { x // x ∈ S } ⊢ ↑(∏ i : ι, f i) = ∏ i : ι, ↑(f i) [PROOFSTEP] induction' (Finset.univ : Finset ι) using Finset.induction_on with i s hi H [GOAL] case empty K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S : IntermediateField K L ι : Type u_4 inst✝ : Fintype ι f : ι → { x // x ∈ S } ⊢ ↑(∏ i in ∅, f i) = ∏ i in ∅, ↑(f i) [PROOFSTEP] simp [GOAL] case insert K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S : IntermediateField K L ι : Type u_4 inst✝ : Fintype ι f : ι → { x // x ∈ S } i : ι s : Finset ι hi : ¬i ∈ s H : ↑(∏ i in s, f i) = ∏ i in s, ↑(f i) ⊢ ↑(∏ i in insert i s, f i) = ∏ i in insert i s, ↑(f i) [PROOFSTEP] rw [Finset.prod_insert hi, MulMemClass.coe_mul, H, Finset.prod_insert hi] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L f : L →ₐ[K] L' S : IntermediateField K L src✝ : Subalgebra K L' := Subalgebra.map f S.toSubalgebra ⊢ ∀ (x : L'), x ∈ { toSubsemiring := src✝.toSubsemiring, algebraMap_mem' := (_ : ∀ (r : K), ↑(algebraMap K L') r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → x⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, algebraMap_mem' := (_ : ∀ (r : K), ↑(algebraMap K L') r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ : IntermediateField K L f : L →ₐ[K] L' S : IntermediateField K L src✝ : Subalgebra K L' := Subalgebra.map f S.toSubalgebra x : L hx : x ∈ ↑S.toSubsemiring ⊢ (↑↑f x)⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, algebraMap_mem' := (_ : ∀ (r : K), ↑(algebraMap K L') r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] exact ⟨x⁻¹, S.inv_mem hx, map_inv₀ f x⟩ [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] ⊢ ↑(aeval ↑x) P = ↑(↑(aeval x) P) [PROOFSTEP] refine' Polynomial.induction_on' P (fun f g hf hg => _) fun n r => _ [GOAL] case refine'_1 K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P f g : R[X] hf : ↑(aeval ↑x) f = ↑(↑(aeval x) f) hg : ↑(aeval ↑x) g = ↑(↑(aeval x) g) ⊢ ↑(aeval ↑x) (f + g) = ↑(↑(aeval x) (f + g)) [PROOFSTEP] rw [aeval_add, aeval_add, AddMemClass.coe_add, hf, hg] [GOAL] case refine'_2 K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] n : ℕ r : R ⊢ ↑(aeval ↑x) (↑(monomial n) r) = ↑(↑(aeval x) (↑(monomial n) r)) [PROOFSTEP] simp only [MulMemClass.coe_mul, aeval_monomial, SubmonoidClass.coe_pow, mul_eq_mul_right_iff] [GOAL] case refine'_2 K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] n : ℕ r : R ⊢ ↑(algebraMap R L) r = ↑(↑(algebraMap R { x // x ∈ S }) r) ∨ ↑x ^ n = 0 [PROOFSTEP] left [GOAL] case refine'_2.h K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] n : ℕ r : R ⊢ ↑(algebraMap R L) r = ↑(↑(algebraMap R { x // x ∈ S }) r) [PROOFSTEP] rfl [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } ⊢ IsIntegral R ↑x ↔ IsIntegral R x [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } h : IsIntegral R ↑x ⊢ IsIntegral R x [PROOFSTEP] obtain ⟨P, hPmo, hProot⟩ := h [GOAL] case refine'_1.intro.intro K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] hPmo : Monic P hProot : eval₂ (algebraMap R L) (↑x) P = 0 ⊢ IsIntegral R x [PROOFSTEP] refine' ⟨P, hPmo, (injective_iff_map_eq_zero _).1 (algebraMap (↥S) L).injective _ _⟩ [GOAL] case refine'_1.intro.intro K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] hPmo : Monic P hProot : eval₂ (algebraMap R L) (↑x) P = 0 ⊢ ↑(algebraMap { x // x ∈ S } L) (eval₂ (algebraMap R { x // x ∈ S }) x P) = 0 [PROOFSTEP] letI : IsScalarTower R S L := IsScalarTower.of_algebraMap_eq (congr_fun rfl) [GOAL] case refine'_1.intro.intro K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] hPmo : Monic P hProot : eval₂ (algebraMap R L) (↑x) P = 0 this : IsScalarTower R { x // x ∈ S } L := IsScalarTower.of_algebraMap_eq (congr_fun rfl) ⊢ ↑(algebraMap { x // x ∈ S } L) (eval₂ (algebraMap R { x // x ∈ S }) x P) = 0 [PROOFSTEP] rw [eval₂_eq_eval_map, ← eval₂_at_apply, eval₂_eq_eval_map, Polynomial.map_map, ← --Porting note: very strange that I have to `rw` twice with `eval₂_eq_eval_map`. -- The first `rw` does nothingIsScalarTower.algebraMap_eq, ← eval₂_eq_eval_map, ← eval₂_eq_eval_map] [GOAL] case refine'_1.intro.intro K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] hPmo : Monic P hProot : eval₂ (algebraMap R L) (↑x) P = 0 this : IsScalarTower R { x // x ∈ S } L := IsScalarTower.of_algebraMap_eq (congr_fun rfl) ⊢ eval₂ (algebraMap R L) (↑(algebraMap { x // x ∈ S } L) x) P = 0 [PROOFSTEP] exact hProot [GOAL] case refine'_2 K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } h : IsIntegral R x ⊢ IsIntegral R ↑x [PROOFSTEP] obtain ⟨P, hPmo, hProot⟩ := h [GOAL] case refine'_2.intro.intro K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] hPmo : Monic P hProot : eval₂ (algebraMap R { x // x ∈ S }) x P = 0 ⊢ IsIntegral R ↑x [PROOFSTEP] refine' ⟨P, hPmo, _⟩ [GOAL] case refine'_2.intro.intro K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁸ : Field K inst✝⁷ : Field L inst✝⁶ : Field L' inst✝⁵ : Algebra K L inst✝⁴ : Algebra K L' S : IntermediateField K L R : Type u_4 inst✝³ : CommRing R inst✝² : Algebra R K inst✝¹ : Algebra R L inst✝ : IsScalarTower R K L x : { x // x ∈ S } P : R[X] hPmo : Monic P hProot : eval₂ (algebraMap R { x // x ∈ S }) x P = 0 ⊢ eval₂ (algebraMap R L) (↑x) P = 0 [PROOFSTEP] rw [← aeval_def, aeval_coe, aeval_def, hProot, ZeroMemClass.coe_zero] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ S S' : IntermediateField K L h : S.toSubalgebra = S'.toSubalgebra ⊢ S = S' [PROOFSTEP] ext [GOAL] case h K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S✝ S S' : IntermediateField K L h : S.toSubalgebra = S'.toSubalgebra x✝ : L ⊢ x✝ ∈ S ↔ x✝ ∈ S' [PROOFSTEP] rw [← mem_toSubalgebra, ← mem_toSubalgebra, h] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L x : L hx : x ∈ RingHom.fieldRange (algebraMap K L) ⊢ x ∈ Set.range ↑(algebraMap K L) [PROOFSTEP] rwa [Set.mem_range, ← RingHom.mem_fieldRange] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁶ : Field K inst✝⁵ : Field L inst✝⁴ : Field L' inst✝³ : Algebra K L inst✝² : Algebra K L' S : IntermediateField K L inst✝¹ : Algebra L' L inst✝ : IsScalarTower K L' L U V : IntermediateField L' L H : restrictScalars K U = restrictScalars K V x : L ⊢ x ∈ U ↔ x ∈ V [PROOFSTEP] rw [← mem_restrictScalars K, H, mem_restrictScalars] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S F : IntermediateField K L E : IntermediateField { x // x ∈ F } L ⊢ Algebra K { x // x ∈ E } [PROOFSTEP] infer_instance [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S F E : IntermediateField K L ⊢ F.toSubalgebra = E.toSubalgebra ↔ F = E [PROOFSTEP] rw [SetLike.ext_iff, SetLike.ext'_iff, Set.ext_iff] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S F E : IntermediateField K L ⊢ (∀ (x : L), x ∈ F.toSubalgebra ↔ x ∈ E.toSubalgebra) ↔ ∀ (x : L), x ∈ ↑F ↔ x ∈ ↑E [PROOFSTEP] rfl [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S F E : IntermediateField K L inst✝ : FiniteDimensional K L h_le : F ≤ E h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L ⊢ F = E [PROOFSTEP] apply eq_of_le_of_finrank_le h_le [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S F E : IntermediateField K L inst✝ : FiniteDimensional K L h_le : F ≤ E h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L ⊢ finrank K { x // x ∈ E } ≤ finrank K { x // x ∈ F } [PROOFSTEP] have h1 := finrank_mul_finrank K F L [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S F E : IntermediateField K L inst✝ : FiniteDimensional K L h_le : F ≤ E h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L h1 : finrank K { x // x ∈ F } * finrank { x // x ∈ F } L = finrank K L ⊢ finrank K { x // x ∈ E } ≤ finrank K { x // x ∈ F } [PROOFSTEP] have h2 := finrank_mul_finrank K E L [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S F E : IntermediateField K L inst✝ : FiniteDimensional K L h_le : F ≤ E h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L h1 : finrank K { x // x ∈ F } * finrank { x // x ∈ F } L = finrank K L h2 : finrank K { x // x ∈ E } * finrank { x // x ∈ E } L = finrank K L ⊢ finrank K { x // x ∈ E } ≤ finrank K { x // x ∈ F } [PROOFSTEP] have h3 : 0 < finrank E L := finrank_pos [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁵ : Field K inst✝⁴ : Field L inst✝³ : Field L' inst✝² : Algebra K L inst✝¹ : Algebra K L' S F E : IntermediateField K L inst✝ : FiniteDimensional K L h_le : F ≤ E h_finrank : finrank { x // x ∈ F } L ≤ finrank { x // x ∈ E } L h1 : finrank K { x // x ∈ F } * finrank { x // x ∈ F } L = finrank K L h2 : finrank K { x // x ∈ E } * finrank { x // x ∈ E } L = finrank K L h3 : 0 < finrank { x // x ∈ E } L ⊢ finrank K { x // x ∈ E } ≤ finrank K { x // x ∈ F } [PROOFSTEP] nlinarith [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L x : { x // x ∈ S } ⊢ IsIntegral K x ↔ IsIntegral K ↑x [PROOFSTEP] rw [← isAlgebraic_iff_isIntegral, isAlgebraic_iff, isAlgebraic_iff_isIntegral] [GOAL] K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L x : { x // x ∈ S } ⊢ minpoly K x = minpoly K ↑x [PROOFSTEP] by_cases hx : IsIntegral K x [GOAL] case pos K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L x : { x // x ∈ S } hx : IsIntegral K x ⊢ minpoly K x = minpoly K ↑x [PROOFSTEP] exact minpoly.eq_of_algebraMap_eq (algebraMap S L).injective hx rfl [GOAL] case neg K : Type u_1 L : Type u_2 L' : Type u_3 inst✝⁴ : Field K inst✝³ : Field L inst✝² : Field L' inst✝¹ : Algebra K L inst✝ : Algebra K L' S : IntermediateField K L x : { x // x ∈ S } hx : ¬IsIntegral K x ⊢ minpoly K x = minpoly K ↑x [PROOFSTEP] exact (minpoly.eq_zero hx).trans (minpoly.eq_zero (mt isIntegral_iff.mpr hx)).symm
{"mathlib_filename": "Mathlib.FieldTheory.IntermediateField", "llama_tokens": 12096}
{"mathlib_filename": "Mathlib.Data.KVMap", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β ⊢ inv (inv r) = r [PROOFSTEP] ext x y [GOAL] case a.h.a α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β x : α y : β ⊢ inv (inv r) x y ↔ r x y [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β ⊢ codom (inv r) = dom r [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β x : α ⊢ x ∈ codom (inv r) ↔ x ∈ dom r [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β ⊢ dom (inv r) = codom r [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β x : β ⊢ x ∈ dom (inv r) ↔ x ∈ codom r [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : Rel α β δ : Type u_4 r : Rel α β s : Rel β γ t : Rel γ δ ⊢ (r • s) • t = r • s • t [PROOFSTEP] unfold comp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : Rel α β δ : Type u_4 r : Rel α β s : Rel β γ t : Rel γ δ ⊢ (fun x z => ∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y z) = fun x z => ∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 z [PROOFSTEP] ext (x w) [GOAL] case a.h.a α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : Rel α β δ : Type u_4 r : Rel α β s : Rel β γ t : Rel γ δ x : α w : δ ⊢ (∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y w) ↔ ∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 w [PROOFSTEP] constructor [GOAL] case a.h.a.mp α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : Rel α β δ : Type u_4 r : Rel α β s : Rel β γ t : Rel γ δ x : α w : δ ⊢ (∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y w) → ∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 w [PROOFSTEP] rintro ⟨z, ⟨y, rxy, syz⟩, tzw⟩ [GOAL] case a.h.a.mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : Rel α β δ : Type u_4 r : Rel α β s : Rel β γ t : Rel γ δ x : α w : δ z : γ tzw : t z w y : β rxy : r x y syz : s y z ⊢ ∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 w [PROOFSTEP] exact ⟨y, rxy, z, syz, tzw⟩ [GOAL] case a.h.a.mpr α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : Rel α β δ : Type u_4 r : Rel α β s : Rel β γ t : Rel γ δ x : α w : δ ⊢ (∃ y, r x y ∧ ∃ y_1, s y y_1 ∧ t y_1 w) → ∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y w [PROOFSTEP] rintro ⟨y, rxy, z, syz, tzw⟩ [GOAL] case a.h.a.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r✝ : Rel α β δ : Type u_4 r : Rel α β s : Rel β γ t : Rel γ δ x : α w : δ y : β rxy : r x y z : γ syz : s y z tzw : t z w ⊢ ∃ y, (∃ y_1, r x y_1 ∧ s y_1 y) ∧ t y w [PROOFSTEP] exact ⟨z, ⟨y, rxy, syz⟩, tzw⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r : Rel α β ⊢ r • Eq = r [PROOFSTEP] unfold comp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r : Rel α β ⊢ (fun x z => ∃ y, r x y ∧ y = z) = r [PROOFSTEP] ext y [GOAL] case a.h.a α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r : Rel α β y : α x✝ : β ⊢ (∃ y_1, r y y_1 ∧ y_1 = x✝) ↔ r y x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r : Rel α β ⊢ Eq • r = r [PROOFSTEP] unfold comp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r : Rel α β ⊢ (fun x z => ∃ y, x = y ∧ r y z) = r [PROOFSTEP] ext x [GOAL] case a.h.a α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r : Rel α β x : α x✝ : β ⊢ (∃ y, x = y ∧ r y x✝) ↔ r x x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β ⊢ inv Eq = Eq [PROOFSTEP] ext x y [GOAL] case a.h.a α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β x y : α ⊢ inv Eq x y ↔ x = y [PROOFSTEP] constructor [GOAL] case a.h.a.mp α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β x y : α ⊢ inv Eq x y → x = y [PROOFSTEP] apply Eq.symm [GOAL] case a.h.a.mpr α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β x y : α ⊢ x = y → inv Eq x y [PROOFSTEP] apply Eq.symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r : Rel α β s : Rel β γ ⊢ inv (r • s) = inv s • inv r [PROOFSTEP] ext x z [GOAL] case a.h.a α : Type u_1 β : Type u_2 γ : Type u_3 r✝ r : Rel α β s : Rel β γ x : γ z : α ⊢ inv (r • s) x z ↔ (inv s • inv r) x z [PROOFSTEP] simp [comp, inv, flip, and_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Set α ⊢ image Eq s = s [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Set α x : α ⊢ x ∈ image Eq s ↔ x ∈ s [PROOFSTEP] simp [mem_image] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set α ⊢ image (r • s) t = image s (image r t) [PROOFSTEP] ext z [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set α z : γ ⊢ z ∈ image (r • s) t ↔ z ∈ image s (image r t) [PROOFSTEP] simp only [mem_image] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set α z : γ ⊢ (∃ x, x ∈ t ∧ (r • s) x z) ↔ ∃ x, (∃ x_1, x_1 ∈ t ∧ r x_1 x) ∧ s x z [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set α z : γ ⊢ (∃ x, x ∈ t ∧ (r • s) x z) → ∃ x, (∃ x_1, x_1 ∈ t ∧ r x_1 x) ∧ s x z [PROOFSTEP] rintro ⟨x, xt, y, rxy, syz⟩ [GOAL] case h.mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set α z : γ x : α xt : x ∈ t y : β rxy : r x y syz : s y z ⊢ ∃ x, (∃ x_1, x_1 ∈ t ∧ r x_1 x) ∧ s x z [PROOFSTEP] exact ⟨y, ⟨x, xt, rxy⟩, syz⟩ [GOAL] case h.mpr α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set α z : γ ⊢ (∃ x, (∃ x_1, x_1 ∈ t ∧ r x_1 x) ∧ s x z) → ∃ x, x ∈ t ∧ (r • s) x z [PROOFSTEP] rintro ⟨y, ⟨x, xt, rxy⟩, syz⟩ [GOAL] case h.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set α z : γ y : β syz : s y z x : α xt : x ∈ t rxy : r x y ⊢ ∃ x, x ∈ t ∧ (r • s) x z [PROOFSTEP] exact ⟨x, xt, y, rxy, syz⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β ⊢ image r Set.univ = codom r [PROOFSTEP] ext y [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β y : β ⊢ y ∈ image r Set.univ ↔ y ∈ codom r [PROOFSTEP] simp [mem_image, codom] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Set α ⊢ preimage Eq s = s [PROOFSTEP] simp only [preimage, inv_id, image_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set γ ⊢ preimage (r • s) t = preimage r (preimage s t) [PROOFSTEP] simp only [preimage, inv_comp, image_comp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β ⊢ preimage r Set.univ = dom r [PROOFSTEP] rw [preimage, image_univ, codom_inv] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s t : Set β ⊢ ∀ (x : α), x ∈ core r (s ∩ t) ↔ x ∈ core r s ∩ core r t [PROOFSTEP] simp [mem_core, imp_and, forall_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β ⊢ ∀ (x : α), x ∈ core r Set.univ ↔ x ∈ Set.univ [PROOFSTEP] simp [mem_core] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Set α ⊢ core Eq s = s [PROOFSTEP] simp [core] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set γ ⊢ core (r • s) t = core r (core s t) [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set γ x : α ⊢ x ∈ core (r • s) t ↔ x ∈ core r (core s t) [PROOFSTEP] simp [core, comp] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set γ x : α ⊢ (∀ (y : γ) (x_1 : β), r x x_1 → s x_1 y → y ∈ t) ↔ ∀ (y : β), r x y → ∀ (y_1 : γ), s y y_1 → y_1 ∈ t [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set γ x : α ⊢ (∀ (y : γ) (x_1 : β), r x x_1 → s x_1 y → y ∈ t) → ∀ (y : β), r x y → ∀ (y_1 : γ), s y y_1 → y_1 ∈ t [PROOFSTEP] exact fun h y rxy z => h z y rxy [GOAL] case h.mpr α : Type u_1 β : Type u_2 γ : Type u_3 r : Rel α β s : Rel β γ t : Set γ x : α ⊢ (∀ (y : β), r x y → ∀ (y_1 : γ), s y y_1 → y_1 ∈ t) → ∀ (y : γ) (x_1 : β), r x x_1 → s x_1 y → y ∈ t [PROOFSTEP] exact fun h z y rzy => h y rzy z [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β s : Set α ⊢ f '' s = Rel.image (Function.graph f) s [PROOFSTEP] simp [Set.image, Function.graph, Rel.image] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β s : Set β ⊢ f ⁻¹' s = Rel.preimage (Function.graph f) s [PROOFSTEP] simp [Set.preimage, Function.graph, Rel.preimage, Rel.inv, flip, Rel.image] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β s : Set β ⊢ f ⁻¹' s = Rel.core (Function.graph f) s [PROOFSTEP] simp [Set.preimage, Function.graph, Rel.core]
{"mathlib_filename": "Mathlib.Data.Rel", "llama_tokens": 4722}
[GOAL] K : Type u_1 R : Type u_2 inst✝³ : CommRing R inst✝² : IsDomain R inst✝¹ : DecidableEq R inst✝ : Fintype R p : R[X] hp : 0 < degree p a : R x✝ : a ∈ image (fun x => eval x p) univ ⊢ filter (fun x => eval x p = a) univ = Multiset.toFinset (roots (p - ↑C a)) [PROOFSTEP] simp [Finset.ext_iff, ← mem_roots_sub_C hp] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ 0 < degree f [PROOFSTEP] rw [hf2] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ 0 < 2 [PROOFSTEP] exact by decide [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ 0 < 2 [PROOFSTEP] decide [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ ¬Fintype.card R % 2 = natDegree f * card (image (fun x => eval x f) univ) % 2 [PROOFSTEP] simp [natDegree_eq_of_degree_eq_some hf2, hR] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ 0 < degree (-g) [PROOFSTEP] rw [degree_neg, hg2] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ 0 < 2 [PROOFSTEP] exact by decide [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ 0 < 2 [PROOFSTEP] decide [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ natDegree f * card (image (fun x => eval x f) univ) + natDegree (-g) * card (image (fun x => eval x (-g)) univ) = 2 * card (image (fun x => eval x f) univ ∪ image (fun x => eval x (-g)) univ) [PROOFSTEP] rw [card_disjoint_union hd] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R hd : Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ natDegree f * card (image (fun x => eval x f) univ) + natDegree (-g) * card (image (fun x => eval x (-g)) univ) = 2 * (card (image (fun x => eval x f) univ) + card (image (fun x => eval x (-g)) univ)) [PROOFSTEP] simp [natDegree_eq_of_degree_eq_some hf2, natDegree_eq_of_degree_eq_some hg2, mul_add] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this✝ : DecidableEq R := Classical.decEq R this : ¬Disjoint (image (fun x => eval x f) univ) (image (fun x => eval x (-g)) univ) ⊢ ∃ a b, eval a f + eval b g = 0 [PROOFSTEP] simp only [disjoint_left, mem_image] at this [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this✝ : DecidableEq R := Classical.decEq R this : ¬∀ ⦃a : R⦄, (∃ a_1, a_1 ∈ univ ∧ eval a_1 f = a) → ¬∃ a_2, a_2 ∈ univ ∧ eval a_2 (-g) = a ⊢ ∃ a b, eval a f + eval b g = 0 [PROOFSTEP] push_neg at this [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this✝ : DecidableEq R := Classical.decEq R this : Exists fun ⦃a⦄ => (∃ a_1, a_1 ∈ univ ∧ eval a_1 f = a) ∧ ∃ a_1, a_1 ∈ univ ∧ eval a_1 (-g) = a ⊢ ∃ a b, eval a f + eval b g = 0 [PROOFSTEP] rcases this with ⟨x, ⟨a, _, ha⟩, ⟨b, _, hb⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R x a : R left✝¹ : a ∈ univ ha : eval a f = x b : R left✝ : b ∈ univ hb : eval b (-g) = x ⊢ ∃ a b, eval a f + eval b g = 0 [PROOFSTEP] exact ⟨a, b, by rw [ha, ← hb, eval_neg, neg_add_self]⟩ [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing R inst✝¹ : IsDomain R inst✝ : Fintype R f g : R[X] hf2 : degree f = 2 hg2 : degree g = 2 hR : Fintype.card R % 2 = 1 this : DecidableEq R := Classical.decEq R x a : R left✝¹ : a ∈ univ ha : eval a f = x b : R left✝ : b ∈ univ hb : eval b (-g) = x ⊢ eval a f + eval b g = 0 [PROOFSTEP] rw [ha, ← hb, eval_neg, neg_add_self] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing K inst✝¹ : IsDomain K inst✝ : Fintype Kˣ ⊢ ∏ x : Kˣ, x = -1 [PROOFSTEP] classical have : (∏ x in (@univ Kˣ _).erase (-1), x) = 1 := prod_involution (fun x _ => x⁻¹) (by simp) (fun a => by simp (config := { contextual := true }) [Units.inv_eq_self_iff]) (fun a => by simp [@inv_eq_iff_eq_inv _ _ a]) (by simp) rw [← insert_erase (mem_univ (-1 : Kˣ)), prod_insert (not_mem_erase _ _), this, mul_one] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing K inst✝¹ : IsDomain K inst✝ : Fintype Kˣ ⊢ ∏ x : Kˣ, x = -1 [PROOFSTEP] have : (∏ x in (@univ Kˣ _).erase (-1), x) = 1 := prod_involution (fun x _ => x⁻¹) (by simp) (fun a => by simp (config := { contextual := true }) [Units.inv_eq_self_iff]) (fun a => by simp [@inv_eq_iff_eq_inv _ _ a]) (by simp) [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing K inst✝¹ : IsDomain K inst✝ : Fintype Kˣ ⊢ ∀ (a : Kˣ) (ha : a ∈ erase univ (-1)), a * (fun x x_1 => x⁻¹) a ha = 1 [PROOFSTEP] simp [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing K inst✝¹ : IsDomain K inst✝ : Fintype Kˣ a : Kˣ ⊢ ∀ (ha : a ∈ erase univ (-1)), a ≠ 1 → (fun x x_1 => x⁻¹) a ha ≠ a [PROOFSTEP] simp (config := { contextual := true }) [Units.inv_eq_self_iff] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing K inst✝¹ : IsDomain K inst✝ : Fintype Kˣ a : Kˣ ⊢ ∀ (ha : a ∈ erase univ (-1)), (fun x x_1 => x⁻¹) a ha ∈ erase univ (-1) [PROOFSTEP] simp [@inv_eq_iff_eq_inv _ _ a] [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing K inst✝¹ : IsDomain K inst✝ : Fintype Kˣ ⊢ ∀ (a : Kˣ) (ha : a ∈ erase univ (-1)), (fun x x_1 => x⁻¹) ((fun x x_1 => x⁻¹) a ha) (_ : a⁻¹ ∈ erase univ (-1)) = a [PROOFSTEP] simp [GOAL] K : Type u_1 R : Type u_2 inst✝² : CommRing K inst✝¹ : IsDomain K inst✝ : Fintype Kˣ this : ∏ x in erase univ (-1), x = 1 ⊢ ∏ x : Kˣ, x = -1 [PROOFSTEP] rw [← insert_erase (mem_univ (-1 : Kˣ)), prod_insert (not_mem_erase _ _), this, mul_one] [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K ha : a ≠ 0 ⊢ a ^ (q - 1) = 1 [PROOFSTEP] calc a ^ (Fintype.card K - 1) = (Units.mk0 a ha ^ (Fintype.card K - 1) : Kˣ).1 := by rw [Units.val_pow_eq_pow_val, Units.val_mk0] _ = 1 := by classical rw [← Fintype.card_units, pow_card_eq_one] rfl [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K ha : a ≠ 0 ⊢ a ^ (q - 1) = ↑(Units.mk0 a ha ^ (q - 1)) [PROOFSTEP] rw [Units.val_pow_eq_pow_val, Units.val_mk0] [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K ha : a ≠ 0 ⊢ ↑(Units.mk0 a ha ^ (q - 1)) = 1 [PROOFSTEP] classical rw [← Fintype.card_units, pow_card_eq_one] rfl [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K ha : a ≠ 0 ⊢ ↑(Units.mk0 a ha ^ (q - 1)) = 1 [PROOFSTEP] rw [← Fintype.card_units, pow_card_eq_one] [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K ha : a ≠ 0 ⊢ ↑1 = 1 [PROOFSTEP] rfl [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K ⊢ a ^ q = a [PROOFSTEP] have hp : 0 < Fintype.card K := lt_trans zero_lt_one Fintype.one_lt_card [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K hp : 0 < q ⊢ a ^ q = a [PROOFSTEP] by_cases h : a = 0 [GOAL] case pos K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K hp : 0 < q h : a = 0 ⊢ a ^ q = a [PROOFSTEP] rw [h] [GOAL] case pos K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K hp : 0 < q h : a = 0 ⊢ 0 ^ q = 0 [PROOFSTEP] apply zero_pow hp [GOAL] case neg K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K hp : 0 < q h : ¬a = 0 ⊢ a ^ q = a [PROOFSTEP] rw [← Nat.succ_pred_eq_of_pos hp, pow_succ, Nat.pred_eq_sub_one, pow_card_sub_one_eq_one a h, mul_one] [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K n : ℕ a : K ⊢ a ^ q ^ n = a [PROOFSTEP] induction' n with n ih [GOAL] case zero K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K ⊢ a ^ q ^ Nat.zero = a [PROOFSTEP] simp [GOAL] case succ K : Type u_1 R : Type u_2 inst✝¹ : GroupWithZero K inst✝ : Fintype K a : K n : ℕ ih : a ^ q ^ n = a ⊢ a ^ q ^ Nat.succ n = a [PROOFSTEP] simp [pow_succ, pow_mul, ih, pow_card] [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p ⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n [PROOFSTEP] haveI hp : Fact p.Prime := ⟨CharP.char_is_prime K p⟩ [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) ⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n [PROOFSTEP] letI : Module (ZMod p) K := { (ZMod.castHom dvd_rfl K : ZMod p →+* _).toModule with } [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) this : Module (ZMod p) K := let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K); Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0) ⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n [PROOFSTEP] obtain ⟨n, h⟩ := VectorSpace.card_fintype (ZMod p) K [GOAL] case intro K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) this : Module (ZMod p) K := let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K); Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0) n : ℕ h : q = Fintype.card (ZMod p) ^ n ⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n [PROOFSTEP] rw [ZMod.card] at h [GOAL] case intro K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) this : Module (ZMod p) K := let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K); Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0) n : ℕ h : q = p ^ n ⊢ ∃ n, Nat.Prime p ∧ q = p ^ ↑n [PROOFSTEP] refine' ⟨⟨n, _⟩, hp.1, h⟩ [GOAL] case intro K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) this : Module (ZMod p) K := let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K); Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0) n : ℕ h : q = p ^ n ⊢ 0 < n [PROOFSTEP] apply Or.resolve_left (Nat.eq_zero_or_pos n) [GOAL] case intro K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) this : Module (ZMod p) K := let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K); Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0) n : ℕ h : q = p ^ n ⊢ ¬n = 0 [PROOFSTEP] rintro rfl [GOAL] case intro K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) this : Module (ZMod p) K := let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K); Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0) h : q = p ^ 0 ⊢ False [PROOFSTEP] rw [pow_zero] at h [GOAL] case intro K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) this : Module (ZMod p) K := let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K); Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0) h : q = 1 ⊢ False [PROOFSTEP] have : (0 : K) = 1 := by apply Fintype.card_le_one_iff.mp (le_of_eq h) [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) this : Module (ZMod p) K := let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K); Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0) h : q = 1 ⊢ 0 = 1 [PROOFSTEP] apply Fintype.card_le_one_iff.mp (le_of_eq h) [GOAL] case intro K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K p : ℕ inst✝ : CharP K p hp : Fact (Nat.Prime p) this✝ : Module (ZMod p) K := let src := RingHom.toModule (ZMod.castHom (_ : p ∣ p) K); Module.mk (_ : ∀ (r s : ZMod p) (x : K), (r + s) • x = r • x + s • x) (_ : ∀ (x : K), 0 • x = 0) h : q = 1 this : 0 = 1 ⊢ False [PROOFSTEP] exact absurd this zero_ne_one [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K ⊢ ↑q = 0 [PROOFSTEP] simp [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ ⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ q - 1 ∣ i [PROOFSTEP] classical obtain ⟨x, hx⟩ := IsCyclic.exists_generator (α := Kˣ) rw [← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hx, orderOf_dvd_iff_pow_eq_one] constructor · intro h; apply h · intro h y simp_rw [← mem_powers_iff_mem_zpowers] at hx rcases hx y with ⟨j, rfl⟩ rw [← pow_mul, mul_comm, pow_mul, h, one_pow] [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ ⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ q - 1 ∣ i [PROOFSTEP] obtain ⟨x, hx⟩ := IsCyclic.exists_generator (α := Kˣ) [GOAL] case intro K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ x : Kˣ hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x ⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ q - 1 ∣ i [PROOFSTEP] rw [← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hx, orderOf_dvd_iff_pow_eq_one] [GOAL] case intro K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ x : Kˣ hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x ⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ x ^ i = 1 [PROOFSTEP] constructor [GOAL] case intro.mp K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ x : Kˣ hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x ⊢ (∀ (x : Kˣ), x ^ i = 1) → x ^ i = 1 [PROOFSTEP] intro h [GOAL] case intro.mp K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ x : Kˣ hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x h : ∀ (x : Kˣ), x ^ i = 1 ⊢ x ^ i = 1 [PROOFSTEP] apply h [GOAL] case intro.mpr K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ x : Kˣ hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x ⊢ x ^ i = 1 → ∀ (x : Kˣ), x ^ i = 1 [PROOFSTEP] intro h y [GOAL] case intro.mpr K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ x : Kˣ hx : ∀ (x_1 : Kˣ), x_1 ∈ Subgroup.zpowers x h : x ^ i = 1 y : Kˣ ⊢ y ^ i = 1 [PROOFSTEP] simp_rw [← mem_powers_iff_mem_zpowers] at hx [GOAL] case intro.mpr K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ x : Kˣ h : x ^ i = 1 y : Kˣ hx : ∀ (x_1 : Kˣ), x_1 ∈ Submonoid.powers x ⊢ y ^ i = 1 [PROOFSTEP] rcases hx y with ⟨j, rfl⟩ [GOAL] case intro.mpr.intro K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ x : Kˣ h : x ^ i = 1 hx : ∀ (x_1 : Kˣ), x_1 ∈ Submonoid.powers x j : ℕ ⊢ (fun x x_1 => x ^ x_1) x j ^ i = 1 [PROOFSTEP] rw [← pow_mul, mul_comm, pow_mul, h, one_pow] [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ ⊢ ∑ x : Kˣ, ↑(x ^ i) = if q - 1 ∣ i then -1 else 0 [PROOFSTEP] let φ : Kˣ →* K := { toFun := fun x => x ^ i map_one' := by simp map_mul' := by intros; simp [mul_pow] } [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ ⊢ (fun x => ↑(x ^ i)) 1 = 1 [PROOFSTEP] simp [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ ⊢ ∀ (x y : Kˣ), OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } x * OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } y [PROOFSTEP] intros [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ x✝ y✝ : Kˣ ⊢ OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } (x✝ * y✝) = OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } x✝ * OneHom.toFun { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) } y✝ [PROOFSTEP] simp [mul_pow] [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } ⊢ ∑ x : Kˣ, ↑(x ^ i) = if q - 1 ∣ i then -1 else 0 [PROOFSTEP] have : Decidable (φ = 1) := by classical infer_instance [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } ⊢ Decidable (φ = 1) [PROOFSTEP] classical infer_instance [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } ⊢ Decidable (φ = 1) [PROOFSTEP] infer_instance [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this : Decidable (φ = 1) ⊢ ∑ x : Kˣ, ↑(x ^ i) = if q - 1 ∣ i then -1 else 0 [PROOFSTEP] calc (∑ x : Kˣ, φ x) = if φ = 1 then Fintype.card Kˣ else 0 := sum_hom_units φ _ = if q - 1 ∣ i then -1 else 0 := by suffices q - 1 ∣ i ↔ φ = 1 by simp only [this] split_ifs; swap · exact Nat.cast_zero · rw [Fintype.card_units, Nat.cast_sub, cast_card_eq_zero, Nat.cast_one, zero_sub] show 1 ≤ q; exact Fintype.card_pos_iff.mpr ⟨0⟩ rw [← forall_pow_eq_one_iff, FunLike.ext_iff] apply forall_congr'; intro x; simp [Units.ext_iff] [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this : Decidable (φ = 1) ⊢ ↑(if φ = 1 then Fintype.card Kˣ else 0) = if q - 1 ∣ i then -1 else 0 [PROOFSTEP] suffices q - 1 ∣ i ↔ φ = 1 by simp only [this] split_ifs; swap · exact Nat.cast_zero · rw [Fintype.card_units, Nat.cast_sub, cast_card_eq_zero, Nat.cast_one, zero_sub] show 1 ≤ q; exact Fintype.card_pos_iff.mpr ⟨0⟩ [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this✝ : Decidable (φ = 1) this : q - 1 ∣ i ↔ φ = 1 ⊢ ↑(if φ = 1 then Fintype.card Kˣ else 0) = if q - 1 ∣ i then -1 else 0 [PROOFSTEP] simp only [this] [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this✝ : Decidable (φ = 1) this : q - 1 ∣ i ↔ φ = 1 ⊢ ↑(if { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } = 1 then Fintype.card Kˣ else 0) = if { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } = 1 then -1 else 0 [PROOFSTEP] split_ifs [GOAL] case pos K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this✝ : Decidable (φ = 1) this : q - 1 ∣ i ↔ φ = 1 h✝ : { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } = 1 ⊢ ↑(Fintype.card Kˣ) = -1 case neg K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this✝ : Decidable (φ = 1) this : q - 1 ∣ i ↔ φ = 1 h✝ : ¬{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } = 1 ⊢ ↑0 = 0 [PROOFSTEP] swap [GOAL] case neg K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this✝ : Decidable (φ = 1) this : q - 1 ∣ i ↔ φ = 1 h✝ : ¬{ toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } = 1 ⊢ ↑0 = 0 [PROOFSTEP] exact Nat.cast_zero [GOAL] case pos K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this✝ : Decidable (φ = 1) this : q - 1 ∣ i ↔ φ = 1 h✝ : { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } = 1 ⊢ ↑(Fintype.card Kˣ) = -1 [PROOFSTEP] rw [Fintype.card_units, Nat.cast_sub, cast_card_eq_zero, Nat.cast_one, zero_sub] [GOAL] case pos K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this✝ : Decidable (φ = 1) this : q - 1 ∣ i ↔ φ = 1 h✝ : { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } = 1 ⊢ 1 ≤ q [PROOFSTEP] show 1 ≤ q [GOAL] case pos K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this✝ : Decidable (φ = 1) this : q - 1 ∣ i ↔ φ = 1 h✝ : { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } = 1 ⊢ 1 ≤ q [PROOFSTEP] exact Fintype.card_pos_iff.mpr ⟨0⟩ [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this : Decidable (φ = 1) ⊢ q - 1 ∣ i ↔ φ = 1 [PROOFSTEP] rw [← forall_pow_eq_one_iff, FunLike.ext_iff] [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this : Decidable (φ = 1) ⊢ (∀ (x : Kˣ), x ^ i = 1) ↔ ∀ (x : Kˣ), ↑φ x = ↑1 x [PROOFSTEP] apply forall_congr' [GOAL] case h K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this : Decidable (φ = 1) ⊢ ∀ (a : Kˣ), a ^ i = 1 ↔ ↑φ a = ↑1 a [PROOFSTEP] intro x [GOAL] case h K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K inst✝ : DecidableEq K i : ℕ φ : Kˣ →* K := { toOneHom := { toFun := fun x => ↑(x ^ i), map_one' := (_ : ↑(1 ^ i) = 1) }, map_mul' := (_ : ∀ (x y : Kˣ), ↑((x * y) ^ i) = ↑(x ^ i) * ↑(y ^ i)) } this : Decidable (φ = 1) x : Kˣ ⊢ x ^ i = 1 ↔ ↑φ x = ↑1 x [PROOFSTEP] simp [Units.ext_iff] [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 ⊢ ∑ x : K, x ^ i = 0 [PROOFSTEP] by_cases hi : i = 0 [GOAL] case pos K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : i = 0 ⊢ ∑ x : K, x ^ i = 0 [PROOFSTEP] simp only [hi, nsmul_one, sum_const, pow_zero, card_univ, cast_card_eq_zero] [GOAL] case neg K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 ⊢ ∑ x : K, x ^ i = 0 [PROOFSTEP] classical have hiq : ¬q - 1 ∣ i := by contrapose! h; exact Nat.le_of_dvd (Nat.pos_of_ne_zero hi) h let φ : Kˣ ↪ K := ⟨fun x ↦ x, Units.ext⟩ have : univ.map φ = univ \ {0} := by ext x simp only [true_and_iff, Function.Embedding.coeFn_mk, mem_sdiff, Units.exists_iff_ne_zero, mem_univ, mem_map, exists_prop_of_true, mem_singleton] calc ∑ x : K, x ^ i = ∑ x in univ \ {(0 : K)}, x ^ i := by rw [← sum_sdiff ({0} : Finset K).subset_univ, sum_singleton, zero_pow (Nat.pos_of_ne_zero hi), add_zero] _ = ∑ x : Kˣ, (x ^ i : K) := by simp [← this, univ.sum_map φ] _ = 0 := by rw [sum_pow_units K i, if_neg]; exact hiq [GOAL] case neg K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 ⊢ ∑ x : K, x ^ i = 0 [PROOFSTEP] have hiq : ¬q - 1 ∣ i := by contrapose! h; exact Nat.le_of_dvd (Nat.pos_of_ne_zero hi) h [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 ⊢ ¬q - 1 ∣ i [PROOFSTEP] contrapose! h [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ hi : ¬i = 0 h : q - 1 ∣ i ⊢ q - 1 ≤ i [PROOFSTEP] exact Nat.le_of_dvd (Nat.pos_of_ne_zero hi) h [GOAL] case neg K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 hiq : ¬q - 1 ∣ i ⊢ ∑ x : K, x ^ i = 0 [PROOFSTEP] let φ : Kˣ ↪ K := ⟨fun x ↦ x, Units.ext⟩ [GOAL] case neg K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 hiq : ¬q - 1 ∣ i φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) } ⊢ ∑ x : K, x ^ i = 0 [PROOFSTEP] have : univ.map φ = univ \ {0} := by ext x simp only [true_and_iff, Function.Embedding.coeFn_mk, mem_sdiff, Units.exists_iff_ne_zero, mem_univ, mem_map, exists_prop_of_true, mem_singleton] [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 hiq : ¬q - 1 ∣ i φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) } ⊢ map φ univ = univ \ {0} [PROOFSTEP] ext x [GOAL] case a K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 hiq : ¬q - 1 ∣ i φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) } x : K ⊢ x ∈ map φ univ ↔ x ∈ univ \ {0} [PROOFSTEP] simp only [true_and_iff, Function.Embedding.coeFn_mk, mem_sdiff, Units.exists_iff_ne_zero, mem_univ, mem_map, exists_prop_of_true, mem_singleton] [GOAL] case neg K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 hiq : ¬q - 1 ∣ i φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) } this : map φ univ = univ \ {0} ⊢ ∑ x : K, x ^ i = 0 [PROOFSTEP] calc ∑ x : K, x ^ i = ∑ x in univ \ {(0 : K)}, x ^ i := by rw [← sum_sdiff ({0} : Finset K).subset_univ, sum_singleton, zero_pow (Nat.pos_of_ne_zero hi), add_zero] _ = ∑ x : Kˣ, (x ^ i : K) := by simp [← this, univ.sum_map φ] _ = 0 := by rw [sum_pow_units K i, if_neg]; exact hiq [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 hiq : ¬q - 1 ∣ i φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) } this : map φ univ = univ \ {0} ⊢ ∑ x : K, x ^ i = ∑ x in univ \ {0}, x ^ i [PROOFSTEP] rw [← sum_sdiff ({0} : Finset K).subset_univ, sum_singleton, zero_pow (Nat.pos_of_ne_zero hi), add_zero] [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 hiq : ¬q - 1 ∣ i φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) } this : map φ univ = univ \ {0} ⊢ ∑ x in univ \ {0}, x ^ i = ∑ x : Kˣ, ↑(x ^ i) [PROOFSTEP] simp [← this, univ.sum_map φ] [GOAL] K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 hiq : ¬q - 1 ∣ i φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) } this : map φ univ = univ \ {0} ⊢ ∑ x : Kˣ, ↑(x ^ i) = 0 [PROOFSTEP] rw [sum_pow_units K i, if_neg] [GOAL] case hnc K : Type u_1 R : Type u_2 inst✝¹ : Field K inst✝ : Fintype K i : ℕ h : i < q - 1 hi : ¬i = 0 hiq : ¬q - 1 ∣ i φ : Kˣ ↪ K := { toFun := fun x => ↑x, inj' := (_ : Function.Injective Units.val) } this : map φ univ = univ \ {0} ⊢ ¬q - 1 ∣ i [PROOFSTEP] exact hiq [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K K' : Type u_3 inst✝ : Field K' p n : ℕ hp : 1 < p ⊢ natDegree (X ^ p - X) = p [PROOFSTEP] have h1 : (X : K'[X]).degree < (X ^ p : K'[X]).degree := by rw [degree_X_pow, degree_X] -- Porting note: the following line was `exact_mod_cast hp` exact WithBot.coe_lt_coe.2 hp [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K K' : Type u_3 inst✝ : Field K' p n : ℕ hp : 1 < p ⊢ degree X < degree (X ^ p) [PROOFSTEP] rw [degree_X_pow, degree_X] -- Porting note: the following line was `exact_mod_cast hp` [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K K' : Type u_3 inst✝ : Field K' p n : ℕ hp : 1 < p ⊢ 1 < ↑p [PROOFSTEP] exact WithBot.coe_lt_coe.2 hp [GOAL] K : Type u_1 R : Type u_2 inst✝² : Field K inst✝¹ : Fintype K K' : Type u_3 inst✝ : Field K' p n : ℕ hp : 1 < p h1 : degree X < degree (X ^ p) ⊢ natDegree (X ^ p - X) = p [PROOFSTEP] rw [natDegree_eq_of_degree_eq (degree_sub_eq_left_of_degree_lt h1), natDegree_X_pow] [GOAL] K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K ⊢ roots (X ^ q - X) = univ.val [PROOFSTEP] classical have aux : (X ^ q - X : K[X]) ≠ 0 := X_pow_card_sub_X_ne_zero K Fintype.one_lt_card have : (roots (X ^ q - X : K[X])).toFinset = Finset.univ := by rw [eq_univ_iff_forall] intro x rw [Multiset.mem_toFinset, mem_roots aux, IsRoot.def, eval_sub, eval_pow, eval_X, sub_eq_zero, pow_card] rw [← this, Multiset.toFinset_val, eq_comm, Multiset.dedup_eq_self] apply nodup_roots rw [separable_def] convert isCoprime_one_right.neg_right (R := K[X]) using 1 rw [derivative_sub, derivative_X, derivative_X_pow, CharP.cast_card_eq_zero K, C_0, zero_mul, zero_sub] [GOAL] K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K ⊢ roots (X ^ q - X) = univ.val [PROOFSTEP] have aux : (X ^ q - X : K[X]) ≠ 0 := X_pow_card_sub_X_ne_zero K Fintype.one_lt_card [GOAL] K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K aux : X ^ q - X ≠ 0 ⊢ roots (X ^ q - X) = univ.val [PROOFSTEP] have : (roots (X ^ q - X : K[X])).toFinset = Finset.univ := by rw [eq_univ_iff_forall] intro x rw [Multiset.mem_toFinset, mem_roots aux, IsRoot.def, eval_sub, eval_pow, eval_X, sub_eq_zero, pow_card] [GOAL] K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K aux : X ^ q - X ≠ 0 ⊢ Multiset.toFinset (roots (X ^ q - X)) = univ [PROOFSTEP] rw [eq_univ_iff_forall] [GOAL] K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K aux : X ^ q - X ≠ 0 ⊢ ∀ (x : K), x ∈ Multiset.toFinset (roots (X ^ q - X)) [PROOFSTEP] intro x [GOAL] K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K aux : X ^ q - X ≠ 0 x : K ⊢ x ∈ Multiset.toFinset (roots (X ^ q - X)) [PROOFSTEP] rw [Multiset.mem_toFinset, mem_roots aux, IsRoot.def, eval_sub, eval_pow, eval_X, sub_eq_zero, pow_card] [GOAL] K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K aux : X ^ q - X ≠ 0 this : Multiset.toFinset (roots (X ^ q - X)) = univ ⊢ roots (X ^ q - X) = univ.val [PROOFSTEP] rw [← this, Multiset.toFinset_val, eq_comm, Multiset.dedup_eq_self] [GOAL] K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K aux : X ^ q - X ≠ 0 this : Multiset.toFinset (roots (X ^ q - X)) = univ ⊢ Multiset.Nodup (roots (X ^ q - X)) [PROOFSTEP] apply nodup_roots [GOAL] case hsep K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K aux : X ^ q - X ≠ 0 this : Multiset.toFinset (roots (X ^ q - X)) = univ ⊢ Separable (X ^ q - X) [PROOFSTEP] rw [separable_def] [GOAL] case hsep K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K aux : X ^ q - X ≠ 0 this : Multiset.toFinset (roots (X ^ q - X)) = univ ⊢ IsCoprime (X ^ q - X) (↑derivative (X ^ q - X)) [PROOFSTEP] convert isCoprime_one_right.neg_right (R := K[X]) using 1 [GOAL] case h.e'_4 K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K aux : X ^ q - X ≠ 0 this : Multiset.toFinset (roots (X ^ q - X)) = univ ⊢ ↑derivative (X ^ q - X) = -1 [PROOFSTEP] rw [derivative_sub, derivative_X, derivative_X_pow, CharP.cast_card_eq_zero K, C_0, zero_mul, zero_sub] [GOAL] K : Type u_1 R : Type u_2 inst✝⁵ : Field K inst✝⁴ : Fintype K p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : Algebra (ZMod p✝) K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ hcard : q = p ^ n ⊢ frobenius K p ^ n = 1 [PROOFSTEP] ext x [GOAL] case a K : Type u_1 R : Type u_2 inst✝⁵ : Field K inst✝⁴ : Fintype K p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : Algebra (ZMod p✝) K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ hcard : q = p ^ n x : K ⊢ ↑(frobenius K p ^ n) x = ↑1 x [PROOFSTEP] conv_rhs => rw [RingHom.one_def, RingHom.id_apply, ← pow_card x, hcard] [GOAL] K : Type u_1 R : Type u_2 inst✝⁵ : Field K inst✝⁴ : Fintype K p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : Algebra (ZMod p✝) K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ hcard : q = p ^ n x : K | ↑1 x [PROOFSTEP] rw [RingHom.one_def, RingHom.id_apply, ← pow_card x, hcard] [GOAL] K : Type u_1 R : Type u_2 inst✝⁵ : Field K inst✝⁴ : Fintype K p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : Algebra (ZMod p✝) K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ hcard : q = p ^ n x : K | ↑1 x [PROOFSTEP] rw [RingHom.one_def, RingHom.id_apply, ← pow_card x, hcard] [GOAL] K : Type u_1 R : Type u_2 inst✝⁵ : Field K inst✝⁴ : Fintype K p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : Algebra (ZMod p✝) K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ hcard : q = p ^ n x : K | ↑1 x [PROOFSTEP] rw [RingHom.one_def, RingHom.id_apply, ← pow_card x, hcard] [GOAL] case a K : Type u_1 R : Type u_2 inst✝⁵ : Field K inst✝⁴ : Fintype K p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : Algebra (ZMod p✝) K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ hcard : q = p ^ n x : K ⊢ ↑(frobenius K p ^ n) x = x ^ p ^ n [PROOFSTEP] clear hcard [GOAL] case a K : Type u_1 R : Type u_2 inst✝⁵ : Field K inst✝⁴ : Fintype K p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : Algebra (ZMod p✝) K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p n : ℕ x : K ⊢ ↑(frobenius K p ^ n) x = x ^ p ^ n [PROOFSTEP] induction' n with n hn [GOAL] case a.zero K : Type u_1 R : Type u_2 inst✝⁵ : Field K inst✝⁴ : Fintype K p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : Algebra (ZMod p✝) K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : K ⊢ ↑(frobenius K p ^ Nat.zero) x = x ^ p ^ Nat.zero [PROOFSTEP] simp [GOAL] case a.succ K : Type u_1 R : Type u_2 inst✝⁵ : Field K inst✝⁴ : Fintype K p✝ : ℕ inst✝³ : Fact (Nat.Prime p✝) inst✝² : Algebra (ZMod p✝) K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : CharP K p x : K n : ℕ hn : ↑(frobenius K p ^ n) x = x ^ p ^ n ⊢ ↑(frobenius K p ^ Nat.succ n) x = x ^ p ^ Nat.succ n [PROOFSTEP] rw [pow_succ, pow_succ', pow_mul, RingHom.mul_def, RingHom.comp_apply, frobenius_def, hn] [GOAL] K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Algebra (ZMod p) K f : K[X] ⊢ ↑(expand K q) f = f ^ q [PROOFSTEP] cases' CharP.exists K with p hp [GOAL] case intro K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : Algebra (ZMod p✝) K f : K[X] p : ℕ hp : CharP K p ⊢ ↑(expand K q) f = f ^ q [PROOFSTEP] letI := hp [GOAL] case intro K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : Algebra (ZMod p✝) K f : K[X] p : ℕ hp : CharP K p this : CharP K p := hp ⊢ ↑(expand K q) f = f ^ q [PROOFSTEP] rcases FiniteField.card K p with ⟨⟨n, npos⟩, ⟨hp, hn⟩⟩ [GOAL] case intro.intro.mk.intro K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : Algebra (ZMod p✝) K f : K[X] p : ℕ hp✝ : CharP K p this : CharP K p := hp✝ n : ℕ npos : 0 < n hp : Nat.Prime p hn : q = p ^ ↑{ val := n, property := npos } ⊢ ↑(expand K q) f = f ^ q [PROOFSTEP] haveI : Fact p.Prime := ⟨hp⟩ [GOAL] case intro.intro.mk.intro K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : Algebra (ZMod p✝) K f : K[X] p : ℕ hp✝ : CharP K p this✝ : CharP K p := hp✝ n : ℕ npos : 0 < n hp : Nat.Prime p hn : q = p ^ ↑{ val := n, property := npos } this : Fact (Nat.Prime p) ⊢ ↑(expand K q) f = f ^ q [PROOFSTEP] dsimp at hn [GOAL] case intro.intro.mk.intro K : Type u_1 R : Type u_2 inst✝³ : Field K inst✝² : Fintype K p✝ : ℕ inst✝¹ : Fact (Nat.Prime p✝) inst✝ : Algebra (ZMod p✝) K f : K[X] p : ℕ hp✝ : CharP K p this✝ : CharP K p := hp✝ n : ℕ npos : 0 < n hp : Nat.Prime p hn : q = p ^ n this : Fact (Nat.Prime p) ⊢ ↑(expand K q) f = f ^ q [PROOFSTEP] rw [hn, ← map_expand_pow_char, frobenius_pow hn, RingHom.one_def, map_id] [GOAL] K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p ⊢ ∃ a b, a ^ 2 + b ^ 2 = x [PROOFSTEP] cases' hp.1.eq_two_or_odd with hp2 hp_odd [GOAL] case inl K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p hp2 : p = 2 ⊢ ∃ a b, a ^ 2 + b ^ 2 = x [PROOFSTEP] subst p [GOAL] case inl K : Type u_1 R : Type u_2 hp : Fact (Nat.Prime 2) x : ZMod 2 ⊢ ∃ a b, a ^ 2 + b ^ 2 = x [PROOFSTEP] change Fin 2 at x [GOAL] case inl K : Type u_1 R : Type u_2 hp : Fact (Nat.Prime 2) x : Fin 2 ⊢ ∃ a b, a ^ 2 + b ^ 2 = x [PROOFSTEP] fin_cases x [GOAL] case inl.head K : Type u_1 R : Type u_2 hp : Fact (Nat.Prime 2) ⊢ ∃ a b, a ^ 2 + b ^ 2 = { val := 0, isLt := (_ : 0 < 2) } [PROOFSTEP] use 0 [GOAL] case h K : Type u_1 R : Type u_2 hp : Fact (Nat.Prime 2) ⊢ ∃ b, 0 ^ 2 + b ^ 2 = { val := 0, isLt := (_ : 0 < 2) } [PROOFSTEP] simp [GOAL] case inl.tail.head K : Type u_1 R : Type u_2 hp : Fact (Nat.Prime 2) ⊢ ∃ a b, a ^ 2 + b ^ 2 = { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] use 0, 1 [GOAL] case h K : Type u_1 R : Type u_2 hp : Fact (Nat.Prime 2) ⊢ 0 ^ 2 + 1 ^ 2 = { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] simp [GOAL] case inr K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p hp_odd : p % 2 = 1 ⊢ ∃ a b, a ^ 2 + b ^ 2 = x [PROOFSTEP] let f : (ZMod p)[X] := X ^ 2 [GOAL] case inr K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p hp_odd : p % 2 = 1 f : (ZMod p)[X] := X ^ 2 ⊢ ∃ a b, a ^ 2 + b ^ 2 = x [PROOFSTEP] let g : (ZMod p)[X] := X ^ 2 - C x [GOAL] case inr K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p hp_odd : p % 2 = 1 f : (ZMod p)[X] := X ^ 2 g : (ZMod p)[X] := X ^ 2 - ↑C x ⊢ ∃ a b, a ^ 2 + b ^ 2 = x [PROOFSTEP] obtain ⟨a, b, hab⟩ : ∃ a b, f.eval a + g.eval b = 0 := @exists_root_sum_quadratic _ _ _ _ f g (degree_X_pow 2) (degree_X_pow_sub_C (by decide) _) (by rw [ZMod.card, hp_odd]) [GOAL] K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p hp_odd : p % 2 = 1 f : (ZMod p)[X] := X ^ 2 g : (ZMod p)[X] := X ^ 2 - ↑C x ⊢ 0 < 2 [PROOFSTEP] decide [GOAL] K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p hp_odd : p % 2 = 1 f : (ZMod p)[X] := X ^ 2 g : (ZMod p)[X] := X ^ 2 - ↑C x ⊢ Fintype.card (ZMod p) % 2 = 1 [PROOFSTEP] rw [ZMod.card, hp_odd] [GOAL] case inr.intro.intro K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p hp_odd : p % 2 = 1 f : (ZMod p)[X] := X ^ 2 g : (ZMod p)[X] := X ^ 2 - ↑C x a b : ZMod p hab : eval a f + eval b g = 0 ⊢ ∃ a b, a ^ 2 + b ^ 2 = x [PROOFSTEP] refine' ⟨a, b, _⟩ [GOAL] case inr.intro.intro K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p hp_odd : p % 2 = 1 f : (ZMod p)[X] := X ^ 2 g : (ZMod p)[X] := X ^ 2 - ↑C x a b : ZMod p hab : eval a f + eval b g = 0 ⊢ a ^ 2 + b ^ 2 = x [PROOFSTEP] rw [← sub_eq_zero] [GOAL] case inr.intro.intro K : Type u_1 R : Type u_2 p : ℕ hp : Fact (Nat.Prime p) x : ZMod p hp_odd : p % 2 = 1 f : (ZMod p)[X] := X ^ 2 g : (ZMod p)[X] := X ^ 2 - ↑C x a b : ZMod p hab : eval a f + eval b g = 0 ⊢ a ^ 2 + b ^ 2 - x = 0 [PROOFSTEP] simpa only [eval_C, eval_X, eval_pow, eval_sub, ← add_sub_assoc] using hab [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Prime p) x : ℤ ⊢ ∃ a b, a ≤ p / 2 ∧ b ≤ p / 2 ∧ ↑a ^ 2 + ↑b ^ 2 ≡ x [ZMOD ↑p] [PROOFSTEP] rcases ZMod.sq_add_sq p x with ⟨a, b, hx⟩ [GOAL] case intro.intro K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Prime p) x : ℤ a b : ZMod p hx : a ^ 2 + b ^ 2 = ↑x ⊢ ∃ a b, a ≤ p / 2 ∧ b ≤ p / 2 ∧ ↑a ^ 2 + ↑b ^ 2 ≡ x [ZMOD ↑p] [PROOFSTEP] refine ⟨a.valMinAbs.natAbs, b.valMinAbs.natAbs, ZMod.natAbs_valMinAbs_le _, ZMod.natAbs_valMinAbs_le _, ?_⟩ [GOAL] case intro.intro K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Prime p) x : ℤ a b : ZMod p hx : a ^ 2 + b ^ 2 = ↑x ⊢ ↑(Int.natAbs (ZMod.valMinAbs a)) ^ 2 + ↑(Int.natAbs (ZMod.valMinAbs b)) ^ 2 ≡ x [ZMOD ↑p] [PROOFSTEP] rw [← a.coe_valMinAbs, ← b.coe_valMinAbs] at hx [GOAL] case intro.intro K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Prime p) x : ℤ a b : ZMod p hx : ↑(ZMod.valMinAbs a) ^ 2 + ↑(ZMod.valMinAbs b) ^ 2 = ↑x ⊢ ↑(Int.natAbs (ZMod.valMinAbs a)) ^ 2 + ↑(Int.natAbs (ZMod.valMinAbs b)) ^ 2 ≡ x [ZMOD ↑p] [PROOFSTEP] push_cast [GOAL] case intro.intro K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Prime p) x : ℤ a b : ZMod p hx : ↑(ZMod.valMinAbs a) ^ 2 + ↑(ZMod.valMinAbs b) ^ 2 = ↑x ⊢ |ZMod.valMinAbs a| ^ 2 + |ZMod.valMinAbs b| ^ 2 ≡ x [ZMOD ↑p] [PROOFSTEP] rw [sq_abs, sq_abs, ← ZMod.int_cast_eq_int_cast_iff] [GOAL] case intro.intro K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Prime p) x : ℤ a b : ZMod p hx : ↑(ZMod.valMinAbs a) ^ 2 + ↑(ZMod.valMinAbs b) ^ 2 = ↑x ⊢ ↑(ZMod.valMinAbs a ^ 2 + ZMod.valMinAbs b ^ 2) = ↑x [PROOFSTEP] exact_mod_cast hx [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Prime p) x : ℕ ⊢ ∃ a b, a ≤ p / 2 ∧ b ≤ p / 2 ∧ a ^ 2 + b ^ 2 ≡ x [MOD p] [PROOFSTEP] simpa only [← Int.coe_nat_modEq_iff] using Nat.sq_add_sq_zmodEq p x [GOAL] K : Type u_1 R✝ : Type u_2 R : Type u_3 inst✝³ : CommRing R inst✝² : IsDomain R p : ℕ inst✝¹ : NeZero p inst✝ : CharP R p x : ℤ ⊢ ∃ a b, ↑a ^ 2 + ↑b ^ 2 = ↑x [PROOFSTEP] haveI := char_is_prime_of_pos R p [GOAL] K : Type u_1 R✝ : Type u_2 R : Type u_3 inst✝³ : CommRing R inst✝² : IsDomain R p : ℕ inst✝¹ : NeZero p inst✝ : CharP R p x : ℤ this : Fact (Nat.Prime p) ⊢ ∃ a b, ↑a ^ 2 + ↑b ^ 2 = ↑x [PROOFSTEP] obtain ⟨a, b, hab⟩ := ZMod.sq_add_sq p x [GOAL] case intro.intro K : Type u_1 R✝ : Type u_2 R : Type u_3 inst✝³ : CommRing R inst✝² : IsDomain R p : ℕ inst✝¹ : NeZero p inst✝ : CharP R p x : ℤ this : Fact (Nat.Prime p) a b : ZMod p hab : a ^ 2 + b ^ 2 = ↑x ⊢ ∃ a b, ↑a ^ 2 + ↑b ^ 2 = ↑x [PROOFSTEP] refine' ⟨a.val, b.val, _⟩ [GOAL] case intro.intro K : Type u_1 R✝ : Type u_2 R : Type u_3 inst✝³ : CommRing R inst✝² : IsDomain R p : ℕ inst✝¹ : NeZero p inst✝ : CharP R p x : ℤ this : Fact (Nat.Prime p) a b : ZMod p hab : a ^ 2 + b ^ 2 = ↑x ⊢ ↑(ZMod.val a) ^ 2 + ↑(ZMod.val b) ^ 2 = ↑x [PROOFSTEP] simpa using congr_arg (ZMod.castHom dvd_rfl R) hab [GOAL] K : Type u_1 R : Type u_2 n : ℕ x : (ZMod n)ˣ ⊢ x ^ φ n = 1 [PROOFSTEP] cases n [GOAL] case zero K : Type u_1 R : Type u_2 x : (ZMod Nat.zero)ˣ ⊢ x ^ φ Nat.zero = 1 [PROOFSTEP] rw [Nat.totient_zero, pow_zero] [GOAL] case succ K : Type u_1 R : Type u_2 n✝ : ℕ x : (ZMod (Nat.succ n✝))ˣ ⊢ x ^ φ (Nat.succ n✝) = 1 [PROOFSTEP] rw [← card_units_eq_totient, pow_card_eq_one] [GOAL] K : Type u_1 R : Type u_2 x n : ℕ h : coprime x n ⊢ x ^ φ n ≡ 1 [MOD n] [PROOFSTEP] rw [← ZMod.eq_iff_modEq_nat] [GOAL] K : Type u_1 R : Type u_2 x n : ℕ h : coprime x n ⊢ ↑(x ^ φ n) = ↑1 [PROOFSTEP] let x' : Units (ZMod n) := ZMod.unitOfCoprime _ h [GOAL] K : Type u_1 R : Type u_2 x n : ℕ h : coprime x n x' : (ZMod n)ˣ := unitOfCoprime x h ⊢ ↑(x ^ φ n) = ↑1 [PROOFSTEP] have := ZMod.pow_totient x' [GOAL] K : Type u_1 R : Type u_2 x n : ℕ h : coprime x n x' : (ZMod n)ˣ := unitOfCoprime x h this : x' ^ φ n = 1 ⊢ ↑(x ^ φ n) = ↑1 [PROOFSTEP] apply_fun ((fun (x : Units (ZMod n)) => (x : ZMod n)) : Units (ZMod n) → ZMod n) at this [GOAL] K : Type u_1 R : Type u_2 x n : ℕ h : coprime x n x' : (ZMod n)ˣ := unitOfCoprime x h this : ↑(x' ^ φ n) = ↑1 ⊢ ↑(x ^ φ n) = ↑1 [PROOFSTEP] simpa only [Nat.succ_eq_add_one, Nat.cast_pow, Units.val_one, Nat.cast_one, coe_unitOfCoprime, Units.val_pow_eq_pow_val] [GOAL] K : Type u_1 R : Type u_2 V : Type u_3 inst✝⁴ : Fintype K inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : Fintype V ⊢ Fintype.card V = q ^ FiniteDimensional.finrank K V [PROOFSTEP] let b := IsNoetherian.finsetBasis K V [GOAL] K : Type u_1 R : Type u_2 V : Type u_3 inst✝⁴ : Fintype K inst✝³ : DivisionRing K inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : Fintype V b : Basis { x // x ∈ IsNoetherian.finsetBasisIndex K V } K V := IsNoetherian.finsetBasis K V ⊢ Fintype.card V = q ^ FiniteDimensional.finrank K V [PROOFSTEP] rw [Module.card_fintype b, ← FiniteDimensional.finrank_eq_card_basis b] [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) x : ZMod p ⊢ x ^ p = x [PROOFSTEP] have h := FiniteField.pow_card x [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) x : ZMod p h : x ^ Fintype.card (ZMod p) = x ⊢ x ^ p = x [PROOFSTEP] rwa [ZMod.card p] at h [GOAL] K : Type u_1 R : Type u_2 n p : ℕ inst✝ : Fact (Nat.Prime p) x : ZMod p ⊢ x ^ p ^ n = x [PROOFSTEP] induction' n with n ih [GOAL] case zero K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) x : ZMod p ⊢ x ^ p ^ Nat.zero = x [PROOFSTEP] simp [GOAL] case succ K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) x : ZMod p n : ℕ ih : x ^ p ^ n = x ⊢ x ^ p ^ Nat.succ n = x [PROOFSTEP] simp [pow_succ, pow_mul, ih, pow_card] [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) ⊢ frobenius (ZMod p) p = RingHom.id (ZMod p) [PROOFSTEP] ext a [GOAL] case a K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) a : ZMod p ⊢ ↑(frobenius (ZMod p) p) a = ↑(RingHom.id (ZMod p)) a [PROOFSTEP] rw [frobenius_def, ZMod.pow_card, RingHom.id_apply] [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) ⊢ Fintype.card (ZMod p)ˣ = p - 1 [PROOFSTEP] rw [Fintype.card_units, card] [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) a : (ZMod p)ˣ ⊢ a ^ (p - 1) = 1 [PROOFSTEP] rw [← card_units p, pow_card_eq_one] [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) a : ZMod p ha : a ≠ 0 ⊢ a ^ (p - 1) = 1 [PROOFSTEP] have h := FiniteField.pow_card_sub_one_eq_one a ha [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) a : ZMod p ha : a ≠ 0 h : a ^ (Fintype.card (ZMod p) - 1) = 1 ⊢ a ^ (p - 1) = 1 [PROOFSTEP] rwa [ZMod.card p] at h [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) f : (ZMod p)[X] ⊢ ↑(expand (ZMod p) p) f = f ^ p [PROOFSTEP] have h := FiniteField.expand_card f [GOAL] K : Type u_1 R : Type u_2 p : ℕ inst✝ : Fact (Nat.Prime p) f : (ZMod p)[X] h : ↑(expand (ZMod p) (Fintype.card (ZMod p))) f = f ^ Fintype.card (ZMod p) ⊢ ↑(expand (ZMod p) p) f = f ^ p [PROOFSTEP] rwa [ZMod.card p] at h [GOAL] K : Type u_1 R : Type u_2 p : ℕ hp : Nat.Prime p n : ℤ hpn : IsCoprime n ↑p ⊢ n ^ (p - 1) ≡ 1 [ZMOD ↑p] [PROOFSTEP] haveI : Fact p.Prime := ⟨hp⟩ [GOAL] K : Type u_1 R : Type u_2 p : ℕ hp : Nat.Prime p n : ℤ hpn : IsCoprime n ↑p this : Fact (Nat.Prime p) ⊢ n ^ (p - 1) ≡ 1 [ZMOD ↑p] [PROOFSTEP] have : ¬(n : ZMod p) = 0 := by rw [CharP.int_cast_eq_zero_iff _ p, ← (Nat.prime_iff_prime_int.mp hp).coprime_iff_not_dvd] · exact hpn.symm [GOAL] K : Type u_1 R : Type u_2 p : ℕ hp : Nat.Prime p n : ℤ hpn : IsCoprime n ↑p this : Fact (Nat.Prime p) ⊢ ¬↑n = 0 [PROOFSTEP] rw [CharP.int_cast_eq_zero_iff _ p, ← (Nat.prime_iff_prime_int.mp hp).coprime_iff_not_dvd] [GOAL] K : Type u_1 R : Type u_2 p : ℕ hp : Nat.Prime p n : ℤ hpn : IsCoprime n ↑p this : Fact (Nat.Prime p) ⊢ IsCoprime (↑p) n [PROOFSTEP] exact hpn.symm [GOAL] K : Type u_1 R : Type u_2 p : ℕ hp : Nat.Prime p n : ℤ hpn : IsCoprime n ↑p this✝ : Fact (Nat.Prime p) this : ¬↑n = 0 ⊢ n ^ (p - 1) ≡ 1 [ZMOD ↑p] [PROOFSTEP] simpa [← ZMod.int_cast_eq_int_cast_iff] using ZMod.pow_card_sub_one_eq_one this [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 ⊢ ∃ a, ¬IsSquare a [PROOFSTEP] let sq : F → F := fun x => x ^ 2 [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 sq : F → F := fun x => x ^ 2 ⊢ ∃ a, ¬IsSquare a [PROOFSTEP] have h : ¬Function.Injective sq := by simp only [Function.Injective, not_forall, exists_prop] refine' ⟨-1, 1, _, Ring.neg_one_ne_one_of_char_ne_two hF⟩ simp only [one_pow, neg_one_sq] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 sq : F → F := fun x => x ^ 2 ⊢ ¬Function.Injective sq [PROOFSTEP] simp only [Function.Injective, not_forall, exists_prop] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 sq : F → F := fun x => x ^ 2 ⊢ ∃ x x_1, x ^ 2 = x_1 ^ 2 ∧ ¬x = x_1 [PROOFSTEP] refine' ⟨-1, 1, _, Ring.neg_one_ne_one_of_char_ne_two hF⟩ [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 sq : F → F := fun x => x ^ 2 ⊢ (-1) ^ 2 = 1 ^ 2 [PROOFSTEP] simp only [one_pow, neg_one_sq] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 sq : F → F := fun x => x ^ 2 h : ¬Function.Injective sq ⊢ ∃ a, ¬IsSquare a [PROOFSTEP] rw [Finite.injective_iff_surjective] at h [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 sq : F → F := fun x => x ^ 2 h : ¬Function.Surjective sq ⊢ ∃ a, ¬IsSquare a [PROOFSTEP] simp_rw [IsSquare, ← pow_two, @eq_comm _ _ (_ ^ 2)] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 sq : F → F := fun x => x ^ 2 h : ¬Function.Surjective sq ⊢ ∃ a, ¬∃ r, r ^ 2 = a [PROOFSTEP] unfold Function.Surjective at h [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 sq : F → F := fun x => x ^ 2 h : ¬∀ (b : F), ∃ a, sq a = b ⊢ ∃ a, ¬∃ r, r ^ 2 = a [PROOFSTEP] push_neg at h ⊢ [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Finite F hF : ringChar F ≠ 2 sq : F → F := fun x => x ^ 2 h : ∃ b, ∀ (a : F), (fun x => x ^ 2) a ≠ b ⊢ ∃ a, ∀ (r : F), r ^ 2 ≠ a [PROOFSTEP] exact h [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F ⊢ ringChar F = 2 ↔ Fintype.card F % 2 = 0 [PROOFSTEP] rcases FiniteField.card F (ringChar F) with ⟨n, hp, h⟩ [GOAL] case intro.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F n : ℕ+ hp : Nat.Prime (ringChar F) h : Fintype.card F = ringChar F ^ ↑n ⊢ ringChar F = 2 ↔ Fintype.card F % 2 = 0 [PROOFSTEP] rw [h, Nat.pow_mod] [GOAL] case intro.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F n : ℕ+ hp : Nat.Prime (ringChar F) h : Fintype.card F = ringChar F ^ ↑n ⊢ ringChar F = 2 ↔ (ringChar F % 2) ^ ↑n % 2 = 0 [PROOFSTEP] constructor [GOAL] case intro.intro.mp K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F n : ℕ+ hp : Nat.Prime (ringChar F) h : Fintype.card F = ringChar F ^ ↑n ⊢ ringChar F = 2 → (ringChar F % 2) ^ ↑n % 2 = 0 [PROOFSTEP] intro hF [GOAL] case intro.intro.mp K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F n : ℕ+ hp : Nat.Prime (ringChar F) h : Fintype.card F = ringChar F ^ ↑n hF : ringChar F = 2 ⊢ (ringChar F % 2) ^ ↑n % 2 = 0 [PROOFSTEP] simp [hF] [GOAL] case intro.intro.mpr K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F n : ℕ+ hp : Nat.Prime (ringChar F) h : Fintype.card F = ringChar F ^ ↑n ⊢ (ringChar F % 2) ^ ↑n % 2 = 0 → ringChar F = 2 [PROOFSTEP] rw [← Nat.even_iff, Nat.even_pow] [GOAL] case intro.intro.mpr K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F n : ℕ+ hp : Nat.Prime (ringChar F) h : Fintype.card F = ringChar F ^ ↑n ⊢ Even (ringChar F % 2) ∧ ↑n ≠ 0 → ringChar F = 2 [PROOFSTEP] rintro ⟨hev, hnz⟩ [GOAL] case intro.intro.mpr.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F n : ℕ+ hp : Nat.Prime (ringChar F) h : Fintype.card F = ringChar F ^ ↑n hev : Even (ringChar F % 2) hnz : ↑n ≠ 0 ⊢ ringChar F = 2 [PROOFSTEP] rw [Nat.even_iff, Nat.mod_mod] at hev [GOAL] case intro.intro.mpr.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F n : ℕ+ hp : Nat.Prime (ringChar F) h : Fintype.card F = ringChar F ^ ↑n hev : ringChar F % 2 = 0 hnz : ↑n ≠ 0 ⊢ ringChar F = 2 [PROOFSTEP] exact (Nat.Prime.eq_two_or_odd hp).resolve_right (ne_of_eq_of_ne hev zero_ne_one) [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 ⊢ a ^ (Fintype.card F / 2) = 1 ∨ a ^ (Fintype.card F / 2) = -1 [PROOFSTEP] have h₁ := FiniteField.pow_card_sub_one_eq_one a ha [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 h₁ : a ^ (Fintype.card F - 1) = 1 ⊢ a ^ (Fintype.card F / 2) = 1 ∨ a ^ (Fintype.card F / 2) = -1 [PROOFSTEP] rw [← Nat.two_mul_odd_div_two (FiniteField.odd_card_of_char_ne_two hF), mul_comm, pow_mul, pow_two] at h₁ [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 h₁ : a ^ (Fintype.card F / 2) * a ^ (Fintype.card F / 2) = 1 ⊢ a ^ (Fintype.card F / 2) = 1 ∨ a ^ (Fintype.card F / 2) = -1 [PROOFSTEP] exact mul_self_eq_one_iff.mp h₁ [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : Fˣ ⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1 [PROOFSTEP] classical obtain ⟨g, hg⟩ := IsCyclic.exists_generator (α := Fˣ) obtain ⟨n, hn⟩ : a ∈ Submonoid.powers g := by rw [mem_powers_iff_mem_zpowers]; apply hg have hodd := Nat.two_mul_odd_div_two (FiniteField.odd_card_of_char_ne_two hF) constructor · rintro ⟨y, rfl⟩ rw [← pow_two, ← pow_mul, hodd] apply_fun Units.val using Units.ext (α := F) · push_cast exact FiniteField.pow_card_sub_one_eq_one (y : F) (Units.ne_zero y) · subst a; intro h have key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2) := by rw [← pow_mul] at h rw [hodd, ← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hg] apply orderOf_dvd_of_pow_eq_one h have : 0 < Fintype.card F / 2 := Nat.div_pos Fintype.one_lt_card (by norm_num) obtain ⟨m, rfl⟩ := Nat.dvd_of_mul_dvd_mul_right this key refine' ⟨g ^ m, _⟩ dsimp rw [mul_comm, pow_mul, pow_two] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : Fˣ ⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1 [PROOFSTEP] obtain ⟨g, hg⟩ := IsCyclic.exists_generator (α := Fˣ) [GOAL] case intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g ⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1 [PROOFSTEP] obtain ⟨n, hn⟩ : a ∈ Submonoid.powers g := by rw [mem_powers_iff_mem_zpowers]; apply hg [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g ⊢ a ∈ Submonoid.powers g [PROOFSTEP] rw [mem_powers_iff_mem_zpowers] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g ⊢ a ∈ Subgroup.zpowers g [PROOFSTEP] apply hg [GOAL] case intro.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hn : (fun x x_1 => x ^ x_1) g n = a ⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1 [PROOFSTEP] have hodd := Nat.two_mul_odd_div_two (FiniteField.odd_card_of_char_ne_two hF) [GOAL] case intro.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hn : (fun x x_1 => x ^ x_1) g n = a hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 ⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1 [PROOFSTEP] constructor [GOAL] case intro.intro.mp K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hn : (fun x x_1 => x ^ x_1) g n = a hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 ⊢ IsSquare a → a ^ (Fintype.card F / 2) = 1 [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case intro.intro.mp.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 y : Fˣ hn : (fun x x_1 => x ^ x_1) g n = y * y ⊢ (y * y) ^ (Fintype.card F / 2) = 1 [PROOFSTEP] rw [← pow_two, ← pow_mul, hodd] [GOAL] case intro.intro.mp.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 y : Fˣ hn : (fun x x_1 => x ^ x_1) g n = y * y ⊢ y ^ (Fintype.card F - 1) = 1 [PROOFSTEP] apply_fun Units.val using Units.ext (α := F) [GOAL] case intro.intro.mp.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 y : Fˣ hn : (fun x x_1 => x ^ x_1) g n = y * y ⊢ ↑(y ^ (Fintype.card F - 1)) = ↑1 [PROOFSTEP] push_cast [GOAL] case intro.intro.mp.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 y : Fˣ hn : (fun x x_1 => x ^ x_1) g n = y * y ⊢ ↑y ^ (Fintype.card F - 1) = 1 [PROOFSTEP] exact FiniteField.pow_card_sub_one_eq_one (y : F) (Units.ne_zero y) [GOAL] case intro.intro.mpr K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hn : (fun x x_1 => x ^ x_1) g n = a hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 ⊢ a ^ (Fintype.card F / 2) = 1 → IsSquare a [PROOFSTEP] subst a [GOAL] case intro.intro.mpr K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 ⊢ (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1 → IsSquare ((fun x x_1 => x ^ x_1) g n) [PROOFSTEP] intro h [GOAL] case intro.intro.mpr K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1 ⊢ IsSquare ((fun x x_1 => x ^ x_1) g n) [PROOFSTEP] have key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2) := by rw [← pow_mul] at h rw [hodd, ← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hg] apply orderOf_dvd_of_pow_eq_one h [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1 ⊢ 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2) [PROOFSTEP] rw [← pow_mul] at h [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 h : g ^ (n * (Fintype.card F / 2)) = 1 ⊢ 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2) [PROOFSTEP] rw [hodd, ← Fintype.card_units, ← orderOf_eq_card_of_forall_mem_zpowers hg] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 h : g ^ (n * (Fintype.card F / 2)) = 1 ⊢ orderOf g ∣ n * (Fintype.card F / 2) [PROOFSTEP] apply orderOf_dvd_of_pow_eq_one h [GOAL] case intro.intro.mpr K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1 key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2) ⊢ IsSquare ((fun x x_1 => x ^ x_1) g n) [PROOFSTEP] have : 0 < Fintype.card F / 2 := Nat.div_pos Fintype.one_lt_card (by norm_num) [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1 key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2) ⊢ 0 < 2 [PROOFSTEP] norm_num [GOAL] case intro.intro.mpr K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g n : ℕ hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 h : (fun x x_1 => x ^ x_1) g n ^ (Fintype.card F / 2) = 1 key : 2 * (Fintype.card F / 2) ∣ n * (Fintype.card F / 2) this : 0 < Fintype.card F / 2 ⊢ IsSquare ((fun x x_1 => x ^ x_1) g n) [PROOFSTEP] obtain ⟨m, rfl⟩ := Nat.dvd_of_mul_dvd_mul_right this key [GOAL] case intro.intro.mpr.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 this : 0 < Fintype.card F / 2 m : ℕ h : (fun x x_1 => x ^ x_1) g (2 * m) ^ (Fintype.card F / 2) = 1 key : 2 * (Fintype.card F / 2) ∣ 2 * m * (Fintype.card F / 2) ⊢ IsSquare ((fun x x_1 => x ^ x_1) g (2 * m)) [PROOFSTEP] refine' ⟨g ^ m, _⟩ [GOAL] case intro.intro.mpr.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 this : 0 < Fintype.card F / 2 m : ℕ h : (fun x x_1 => x ^ x_1) g (2 * m) ^ (Fintype.card F / 2) = 1 key : 2 * (Fintype.card F / 2) ∣ 2 * m * (Fintype.card F / 2) ⊢ (fun x x_1 => x ^ x_1) g (2 * m) = g ^ m * g ^ m [PROOFSTEP] dsimp [GOAL] case intro.intro.mpr.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 g : Fˣ hg : ∀ (x : Fˣ), x ∈ Subgroup.zpowers g hodd : 2 * (Fintype.card F / 2) = Fintype.card F - 1 this : 0 < Fintype.card F / 2 m : ℕ h : (fun x x_1 => x ^ x_1) g (2 * m) ^ (Fintype.card F / 2) = 1 key : 2 * (Fintype.card F / 2) ∣ 2 * m * (Fintype.card F / 2) ⊢ g ^ (2 * m) = g ^ m * g ^ m [PROOFSTEP] rw [mul_comm, pow_mul, pow_two] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 ⊢ IsSquare a ↔ a ^ (Fintype.card F / 2) = 1 [PROOFSTEP] apply (iff_congr _ (by simp [Units.ext_iff])).mp (FiniteField.unit_isSquare_iff hF (Units.mk0 a ha)) [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 ⊢ Units.mk0 a ha ^ (Fintype.card F / 2) = 1 ↔ a ^ (Fintype.card F / 2) = 1 [PROOFSTEP] simp [Units.ext_iff] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 ⊢ IsSquare (Units.mk0 a ha) ↔ IsSquare a [PROOFSTEP] simp only [IsSquare, Units.ext_iff, Units.val_mk0, Units.val_mul] [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 ⊢ (∃ r, a = ↑r * ↑r) ↔ ∃ r, a = r * r [PROOFSTEP] constructor [GOAL] case mp K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 ⊢ (∃ r, a = ↑r * ↑r) → ∃ r, a = r * r [PROOFSTEP] rintro ⟨y, hy⟩ [GOAL] case mp.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 y : Fˣ hy : a = ↑y * ↑y ⊢ ∃ r, a = r * r [PROOFSTEP] exact ⟨y, hy⟩ [GOAL] case mpr K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 a : F ha : a ≠ 0 ⊢ (∃ r, a = r * r) → ∃ r, a = ↑r * ↑r [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case mpr.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 y : F ha : y * y ≠ 0 ⊢ ∃ r, y * y = ↑r * ↑r [PROOFSTEP] have hy : y ≠ 0 := by rintro rfl; simp at ha [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 y : F ha : y * y ≠ 0 ⊢ y ≠ 0 [PROOFSTEP] rintro rfl [GOAL] K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 ha : 0 * 0 ≠ 0 ⊢ False [PROOFSTEP] simp at ha [GOAL] case mpr.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 y : F ha : y * y ≠ 0 hy : y ≠ 0 ⊢ ∃ r, y * y = ↑r * ↑r [PROOFSTEP] refine' ⟨Units.mk0 y hy, _⟩ [GOAL] case mpr.intro K : Type u_1 R : Type u_2 F : Type u_3 inst✝¹ : Field F inst✝ : Fintype F hF : ringChar F ≠ 2 y : F ha : y * y ≠ 0 hy : y ≠ 0 ⊢ y * y = ↑(Units.mk0 y hy) * ↑(Units.mk0 y hy) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.FieldTheory.Finite.Basic", "llama_tokens": 37279}
[GOAL] α : Type u β : Type v γ : Type w δ : Type x ⊢ Injective toFun [PROOFSTEP] rintro ⟨f₁, f₂, hf⟩ ⟨g₁, g₂, hg⟩ (rfl : f₁ = g₁) [GOAL] case mk.mk α : Type u β : Type v γ : Type w δ : Type x f₁ : α → Option β f₂ : β → Option α hf : ∀ (a : α) (b : β), a ∈ f₂ b ↔ b ∈ f₁ a g₂ : β → Option α hg : ∀ (a : α) (b : β), a ∈ g₂ b ↔ b ∈ f₁ a ⊢ { toFun := f₁, invFun := f₂, inv := hf } = { toFun := f₁, invFun := g₂, inv := hg } [PROOFSTEP] congr with y x [GOAL] case mk.mk.e_invFun.h.a α : Type u β : Type v γ : Type w δ : Type x f₁ : α → Option β f₂ : β → Option α hf : ∀ (a : α) (b : β), a ∈ f₂ b ↔ b ∈ f₁ a g₂ : β → Option α hg : ∀ (a : α) (b : β), a ∈ g₂ b ↔ b ∈ f₁ a y : β x : α ⊢ x ∈ f₂ y ↔ x ∈ g₂ y [PROOFSTEP] simp only [hf, hg] [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β g : β ≃. γ a : α b : γ ⊢ a ∈ (fun a => Option.bind (↑(PEquiv.symm g) a) ↑(PEquiv.symm f)) b ↔ b ∈ (fun a => Option.bind (↑f a) ↑g) a [PROOFSTEP] simp_all [and_comm, eq_some_iff f, eq_some_iff g] [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β ⊢ PEquiv.symm (PEquiv.symm f) = f [PROOFSTEP] cases f [GOAL] case mk α : Type u β : Type v γ : Type w δ : Type x toFun✝ : α → Option β invFun✝ : β → Option α inv✝ : ∀ (a : α) (b : β), a ∈ invFun✝ b ↔ b ∈ toFun✝ a ⊢ PEquiv.symm (PEquiv.symm { toFun := toFun✝, invFun := invFun✝, inv := inv✝ }) = { toFun := toFun✝, invFun := invFun✝, inv := inv✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β g : β ≃. γ a : α ⊢ ↑(PEquiv.trans f g) a = none ↔ ∀ (b : β) (c : γ), ¬b ∈ ↑f a ∨ ¬c ∈ ↑g b [PROOFSTEP] simp only [eq_none_iff_forall_not_mem, mem_trans, imp_iff_not_or.symm] [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β g : β ≃. γ a : α ⊢ (∀ (a_1 : γ), ¬∃ b, b ∈ ↑f a ∧ a_1 ∈ ↑g b) ↔ ∀ (b : β) (c : γ), b ∈ ↑f a → ¬c ∈ ↑g b [PROOFSTEP] push_neg [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β g : β ≃. γ a : α ⊢ (∀ (a_1 : γ) (b : β), b ∈ ↑f a → ¬a_1 ∈ ↑g b) ↔ ∀ (b : β) (c : γ), b ∈ ↑f a → ¬c ∈ ↑g b [PROOFSTEP] exact forall_swap [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β ⊢ PEquiv.trans (PEquiv.refl α) f = f [PROOFSTEP] ext [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ : α a✝ : β ⊢ a✝ ∈ ↑(PEquiv.trans (PEquiv.refl α) f) x✝ ↔ a✝ ∈ ↑f x✝ [PROOFSTEP] dsimp [PEquiv.trans] [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ : α a✝ : β ⊢ a✝ ∈ ↑f x✝ ↔ a✝ ∈ ↑f x✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β ⊢ PEquiv.trans f (PEquiv.refl β) = f [PROOFSTEP] ext [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ : α a✝ : β ⊢ a✝ ∈ ↑(PEquiv.trans f (PEquiv.refl β)) x✝ ↔ a✝ ∈ ↑f x✝ [PROOFSTEP] dsimp [PEquiv.trans] [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ : α a✝ : β ⊢ a✝ ∈ Option.bind (↑f x✝) ↑(PEquiv.refl β) ↔ a✝ ∈ ↑f x✝ [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₁ a₂ : α b : β h₁ : b ∈ ↑f a₁ h₂ : b ∈ ↑f a₂ ⊢ a₁ = a₂ [PROOFSTEP] rw [← mem_iff_mem] at * [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₁ a₂ : α b : β h₁ : a₁ ∈ ↑(PEquiv.symm f) b h₂ : a₂ ∈ ↑(PEquiv.symm f) b ⊢ a₁ = a₂ [PROOFSTEP] cases h : f.symm b [GOAL] case none α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₁ a₂ : α b : β h₁ : a₁ ∈ ↑(PEquiv.symm f) b h₂ : a₂ ∈ ↑(PEquiv.symm f) b h : ↑(PEquiv.symm f) b = none ⊢ a₁ = a₂ [PROOFSTEP] simp_all [GOAL] case some α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₁ a₂ : α b : β h₁ : a₁ ∈ ↑(PEquiv.symm f) b h₂ : a₂ ∈ ↑(PEquiv.symm f) b val✝ : α h : ↑(PEquiv.symm f) b = some val✝ ⊢ a₁ = a₂ [PROOFSTEP] simp_all [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₂ : α h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true x : α ⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) (↑f x) = x [PROOFSTEP] classical cases hfx : f x · have : x = a₂ := not_imp_comm.1 (h x) (hfx.symm ▸ by simp) simp [this] · dsimp only rw [(eq_some_iff f).2 hfx] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₂ : α h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true x : α ⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) (↑f x) = x [PROOFSTEP] cases hfx : f x [GOAL] case none α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₂ : α h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true x : α hfx : ↑f x = none ⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) none = x [PROOFSTEP] have : x = a₂ := not_imp_comm.1 (h x) (hfx.symm ▸ by simp) [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₂ : α h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true x : α hfx : ↑f x = none ⊢ ¬isSome none = true [PROOFSTEP] simp [GOAL] case none α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₂ : α h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true x : α hfx : ↑f x = none this : x = a₂ ⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) none = x [PROOFSTEP] simp [this] [GOAL] case some α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₂ : α h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true x : α val✝ : β hfx : ↑f x = some val✝ ⊢ (fun b => Option.recOn b a₂ fun b' => Option.recOn (↑(PEquiv.symm f) b') a₂ id) (some val✝) = x [PROOFSTEP] dsimp only [GOAL] case some α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₂ : α h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true x : α val✝ : β hfx : ↑f x = some val✝ ⊢ Option.rec a₂ id (↑(PEquiv.symm f) val✝) = x [PROOFSTEP] rw [(eq_some_iff f).2 hfx] [GOAL] case some α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a₂ : α h : ∀ (a₁ : α), a₁ ≠ a₂ → isSome (↑f a₁) = true x : α val✝ : β hfx : ↑f x = some val✝ ⊢ Option.rec a₂ id (some x) = x [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α ⊢ a ∈ (fun a => if a ∈ s then some a else none) b ↔ b ∈ (fun a => if a ∈ s then some a else none) a [PROOFSTEP] dsimp only [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α ⊢ (a ∈ if b ∈ s then some b else none) ↔ b ∈ if a ∈ s then some a else none [PROOFSTEP] split_ifs with hb ha ha [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α hb : b ∈ s ha : a ∈ s ⊢ a ∈ some b ↔ b ∈ some a [PROOFSTEP] simp [eq_comm] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α hb : b ∈ s ha : ¬a ∈ s ⊢ a ∈ some b ↔ b ∈ none [PROOFSTEP] simp [ne_of_mem_of_not_mem hb ha] [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α hb : ¬b ∈ s ha : a ∈ s ⊢ a ∈ none ↔ b ∈ some a [PROOFSTEP] simp [ne_of_mem_of_not_mem ha hb] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α hb : ¬b ∈ s ha : ¬a ∈ s ⊢ a ∈ none ↔ b ∈ none [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a : α ⊢ a ∈ ↑(ofSet s) a ↔ a ∈ s [PROOFSTEP] dsimp [ofSet] [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a : α ⊢ (a ∈ if a ∈ s then some a else none) ↔ a ∈ s [PROOFSTEP] split_ifs [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a : α h✝ : a ∈ s ⊢ a ∈ some a ↔ a ∈ s [PROOFSTEP] simp [*] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a : α h✝ : ¬a ∈ s ⊢ a ∈ none ↔ a ∈ s [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α ⊢ a ∈ ↑(ofSet s) b ↔ a = b ∧ a ∈ s [PROOFSTEP] dsimp [ofSet] [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α ⊢ (a ∈ if b ∈ s then some b else none) ↔ a = b ∧ a ∈ s [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α h : b ∈ s ⊢ a ∈ some b ↔ a = b ∧ a ∈ s [PROOFSTEP] simp only [mem_def, eq_comm, some.injEq, iff_self_and] [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α h : b ∈ s ⊢ a = b → a ∈ s [PROOFSTEP] rintro rfl [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a : α h : a ∈ s ⊢ a ∈ s [PROOFSTEP] exact h [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α h : ¬b ∈ s ⊢ a ∈ none ↔ a = b ∧ a ∈ s [PROOFSTEP] simp only [mem_def, false_iff, not_and] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a b : α h : ¬b ∈ s ⊢ a = b → ¬a ∈ s [PROOFSTEP] rintro rfl [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s a : α h : ¬a ∈ s ⊢ ¬a ∈ s [PROOFSTEP] exact h [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s h : ofSet s = PEquiv.refl α ⊢ s = Set.univ [PROOFSTEP] rw [Set.eq_univ_iff_forall] [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s h : ofSet s = PEquiv.refl α ⊢ ∀ (x : α), x ∈ s [PROOFSTEP] intro [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s h : ofSet s = PEquiv.refl α x✝ : α ⊢ x✝ ∈ s [PROOFSTEP] rw [← mem_ofSet_self_iff, h] [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s h : ofSet s = PEquiv.refl α x✝ : α ⊢ x✝ ∈ ↑(PEquiv.refl α) x✝ [PROOFSTEP] exact rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type x s✝ : Set α inst✝¹ : DecidablePred fun x => x ∈ s✝ s : Set α inst✝ : DecidablePred fun x => x ∈ s h : s = Set.univ ⊢ ofSet s = PEquiv.refl α [PROOFSTEP] simp only [← ofSet_univ, h] [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β ⊢ PEquiv.trans f (PEquiv.symm f) = ofSet {a | isSome (↑f a) = true} [PROOFSTEP] ext [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ a✝ : α ⊢ a✝ ∈ ↑(PEquiv.trans f (PEquiv.symm f)) x✝ ↔ a✝ ∈ ↑(ofSet {a | isSome (↑f a) = true}) x✝ [PROOFSTEP] dsimp [PEquiv.trans] [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ a✝ : α ⊢ a✝ ∈ Option.bind (↑f x✝) ↑(PEquiv.symm f) ↔ a✝ ∈ ↑(ofSet {a | isSome (↑f a) = true}) x✝ [PROOFSTEP] simp only [eq_some_iff f, Option.isSome_iff_exists, Option.mem_def, bind_eq_some', ofSet_eq_some_iff] [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ a✝ : α ⊢ (∃ a, ↑f x✝ = some a ∧ ↑f a✝ = some a) ↔ a✝ = x✝ ∧ a✝ ∈ {a | ∃ a_1, ↑f a = some a_1} [PROOFSTEP] constructor [GOAL] case h.a.mp α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ a✝ : α ⊢ (∃ a, ↑f x✝ = some a ∧ ↑f a✝ = some a) → a✝ = x✝ ∧ a✝ ∈ {a | ∃ a_1, ↑f a = some a_1} [PROOFSTEP] rintro ⟨b, hb₁, hb₂⟩ [GOAL] case h.a.mp.intro.intro α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ a✝ : α b : β hb₁ : ↑f x✝ = some b hb₂ : ↑f a✝ = some b ⊢ a✝ = x✝ ∧ a✝ ∈ {a | ∃ a_1, ↑f a = some a_1} [PROOFSTEP] exact ⟨PEquiv.inj _ hb₂ hb₁, b, hb₂⟩ [GOAL] case h.a.mpr α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ a✝ : α ⊢ a✝ = x✝ ∧ a✝ ∈ {a | ∃ a_1, ↑f a = some a_1} → ∃ a, ↑f x✝ = some a ∧ ↑f a✝ = some a [PROOFSTEP] simp (config := { contextual := true }) [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β ⊢ PEquiv.symm (PEquiv.trans (PEquiv.symm f) f) = PEquiv.symm (ofSet {b | isSome (↑(PEquiv.symm f) b) = true}) [PROOFSTEP] simp [symm_trans_rev, self_trans_symm, -symm_symm] [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β ⊢ PEquiv.trans f (PEquiv.symm f) = PEquiv.refl α ↔ ∀ (a : α), isSome (↑f a) = true [PROOFSTEP] rw [self_trans_symm, ofSet_eq_refl, Set.eq_univ_iff_forall] [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β ⊢ (∀ (x : α), x ∈ {a | isSome (↑f a) = true}) ↔ ∀ (a : α), isSome (↑f a) = true [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w δ : Type x ⊢ ∀ (a : α) (b : β), a ∈ (fun x => none) b ↔ b ∈ (fun x => none) a [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β ⊢ PEquiv.trans f ⊥ = ⊥ [PROOFSTEP] ext [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ : α a✝ : γ ⊢ a✝ ∈ ↑(PEquiv.trans f ⊥) x✝ ↔ a✝ ∈ ↑⊥ x✝ [PROOFSTEP] dsimp [PEquiv.trans] [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β x✝ : α a✝ : γ ⊢ a✝ ∈ Option.bind (↑f x✝) ↑⊥ ↔ a✝ ∈ none [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : β ≃. γ ⊢ PEquiv.trans ⊥ f = ⊥ [PROOFSTEP] ext [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : β ≃. γ x✝ : α a✝ : γ ⊢ a✝ ∈ ↑(PEquiv.trans ⊥ f) x✝ ↔ a✝ ∈ ↑⊥ x✝ [PROOFSTEP] dsimp [PEquiv.trans] [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x f : β ≃. γ x✝ : α a✝ : γ ⊢ a✝ ∈ none ↔ a✝ ∈ none [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type x f : α ≃. β a : α h : isSome (↑f a) = true ⊢ ↑(PEquiv.symm f) (Option.get (↑f a) h) = some a [PROOFSTEP] rw [f.eq_some_iff, some_get] [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β x : α y : β ⊢ x ∈ (fun x => if x = b then some a else none) y ↔ y ∈ (fun x => if x = a then some b else none) x [PROOFSTEP] dsimp only [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β x : α y : β ⊢ (x ∈ if y = b then some a else none) ↔ y ∈ if x = a then some b else none [PROOFSTEP] split_ifs with h1 h2 [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β x : α y : β h1 : y = b h2 : x = a ⊢ x ∈ some a ↔ y ∈ some b [PROOFSTEP] simp [*] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β x : α y : β h1 : y = b h2 : ¬x = a ⊢ x ∈ some a ↔ y ∈ none [PROOFSTEP] simp only [mem_def, some.injEq, iff_false] at * [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β x : α y : β h1 : y = b h2 : ¬x = a ⊢ ¬a = x [PROOFSTEP] exact Ne.symm h2 [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β x : α y : β h1 : ¬y = b h✝ : x = a ⊢ x ∈ none ↔ y ∈ some b [PROOFSTEP] simp only [mem_def, some.injEq, false_iff] at * [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β x : α y : β h1 : ¬y = b h✝ : x = a ⊢ ¬b = y [PROOFSTEP] exact Ne.symm h1 [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β x : α y : β h1 : ¬y = b h✝ : ¬x = a ⊢ x ∈ none ↔ y ∈ none [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a₁ a₂ : α b₁ b₂ : β ⊢ b₁ ∈ ↑(single a₂ b₂) a₁ ↔ a₁ = a₂ ∧ b₁ = b₂ [PROOFSTEP] dsimp [single] [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a₁ a₂ : α b₁ b₂ : β ⊢ (b₁ ∈ if a₁ = a₂ then some b₂ else none) ↔ a₁ = a₂ ∧ b₁ = b₂ [PROOFSTEP] split_ifs [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a₁ a₂ : α b₁ b₂ : β h✝ : a₁ = a₂ ⊢ b₁ ∈ some b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ [PROOFSTEP] simp [*, eq_comm] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a₁ a₂ : α b₁ b₂ : β h✝ : ¬a₁ = a₂ ⊢ b₁ ∈ none ↔ a₁ = a₂ ∧ b₁ = b₂ [PROOFSTEP] simp [*, eq_comm] [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β c : γ f : β ≃. γ h : c ∈ ↑f b ⊢ PEquiv.trans (single a b) f = single a c [PROOFSTEP] ext [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β c : γ f : β ≃. γ h : c ∈ ↑f b x✝ : α a✝ : γ ⊢ a✝ ∈ ↑(PEquiv.trans (single a b) f) x✝ ↔ a✝ ∈ ↑(single a c) x✝ [PROOFSTEP] dsimp [single, PEquiv.trans] [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β c : γ f : β ≃. γ h : c ∈ ↑f b x✝ : α a✝ : γ ⊢ a✝ ∈ Option.bind (if x✝ = a then some b else none) ↑f ↔ a✝ ∈ if x✝ = a then some c else none [PROOFSTEP] split_ifs [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β c : γ f : β ≃. γ h : c ∈ ↑f b x✝ : α a✝ : γ h✝ : x✝ = a ⊢ a✝ ∈ Option.bind (some b) ↑f ↔ a✝ ∈ some c [PROOFSTEP] simp_all [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ a : α b : β c : γ f : β ≃. γ h : c ∈ ↑f b x✝ : α a✝ : γ h✝ : ¬x✝ = a ⊢ a✝ ∈ Option.bind none ↑f ↔ a✝ ∈ none [PROOFSTEP] simp_all [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝³ : DecidableEq α inst✝² : DecidableEq β inst✝¹ : DecidableEq γ inst✝ : Subsingleton α a b : α ⊢ single a b = PEquiv.refl α [PROOFSTEP] ext i j [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x inst✝³ : DecidableEq α inst✝² : DecidableEq β inst✝¹ : DecidableEq γ inst✝ : Subsingleton α a b i j : α ⊢ j ∈ ↑(single a b) i ↔ j ∈ ↑(PEquiv.refl α) i [PROOFSTEP] dsimp [single] [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x inst✝³ : DecidableEq α inst✝² : DecidableEq β inst✝¹ : DecidableEq γ inst✝ : Subsingleton α a b i j : α ⊢ (j ∈ if i = a then some b else none) ↔ j ∈ some i [PROOFSTEP] rw [if_pos (Subsingleton.elim i a), Subsingleton.elim i j, Subsingleton.elim b j] [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ b : β c : γ f : δ ≃. β h : ↑(PEquiv.symm f) b = none ⊢ PEquiv.trans f (single b c) = ⊥ [PROOFSTEP] ext [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ b : β c : γ f : δ ≃. β h : ↑(PEquiv.symm f) b = none x✝ : δ a✝ : γ ⊢ a✝ ∈ ↑(PEquiv.trans f (single b c)) x✝ ↔ a✝ ∈ ↑⊥ x✝ [PROOFSTEP] simp only [eq_none_iff_forall_not_mem, Option.mem_def, f.eq_some_iff] at h [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ b : β c : γ f : δ ≃. β x✝ : δ a✝ : γ h : ∀ (a : δ), ¬↑f a = some b ⊢ a✝ ∈ ↑(PEquiv.trans f (single b c)) x✝ ↔ a✝ ∈ ↑⊥ x✝ [PROOFSTEP] dsimp [PEquiv.trans, single] [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ b : β c : γ f : δ ≃. β x✝ : δ a✝ : γ h : ∀ (a : δ), ¬↑f a = some b ⊢ (a✝ ∈ Option.bind (↑f x✝) fun x => if x = b then some c else none) ↔ a✝ ∈ none [PROOFSTEP] simp [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ b : β c : γ f : δ ≃. β x✝ : δ a✝ : γ h : ∀ (a : δ), ¬↑f a = some b ⊢ ∀ (x : β), ↑f x✝ = some x → ¬(if x = b then some c else none) = some a✝ [PROOFSTEP] intros [GOAL] case h.a α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ b : β c : γ f : δ ≃. β x✝¹ : δ a✝¹ : γ h : ∀ (a : δ), ¬↑f a = some b x✝ : β a✝ : ↑f x✝¹ = some x✝ ⊢ ¬(if x✝ = b then some c else none) = some a✝¹ [PROOFSTEP] split_ifs [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ b : β c : γ f : δ ≃. β x✝¹ : δ a✝¹ : γ h : ∀ (a : δ), ¬↑f a = some b x✝ : β a✝ : ↑f x✝¹ = some x✝ h✝ : x✝ = b ⊢ ¬some c = some a✝¹ [PROOFSTEP] simp_all [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝² : DecidableEq α inst✝¹ : DecidableEq β inst✝ : DecidableEq γ b : β c : γ f : δ ≃. β x✝¹ : δ a✝¹ : γ h : ∀ (a : δ), ¬↑f a = some b x✝ : β a✝ : ↑f x✝¹ = some x✝ h✝ : ¬x✝ = b ⊢ ¬False [PROOFSTEP] simp_all [GOAL] α : Type u β : Type v γ : Type w δ : Type x f g : α ≃. β fg : f ≤ g gf : g ≤ f ⊢ ∀ (x : α), ↑f x = ↑g x [PROOFSTEP] intro a [GOAL] α : Type u β : Type v γ : Type w δ : Type x f g : α ≃. β fg : f ≤ g gf : g ≤ f a : α ⊢ ↑f a = ↑g a [PROOFSTEP] cases' h : g a with b [GOAL] case none α : Type u β : Type v γ : Type w δ : Type x f g : α ≃. β fg : f ≤ g gf : g ≤ f a : α h : ↑g a = none ⊢ ↑f a = none [PROOFSTEP] exact eq_none_iff_forall_not_mem.2 fun b hb => Option.not_mem_none b <| h ▸ fg a b hb [GOAL] case some α : Type u β : Type v γ : Type w δ : Type x f g : α ≃. β fg : f ≤ g gf : g ≤ f a : α b : β h : ↑g a = some b ⊢ ↑f a = some b [PROOFSTEP] exact gf _ _ h [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β ⊢ a ∈ (fun b => if ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b then ↑(PEquiv.symm f) b else none) b ↔ b ∈ (fun a => if ↑f a = ↑g a then ↑f a else none) a [PROOFSTEP] have hf := @mem_iff_mem _ _ f a b [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : a ∈ ↑(PEquiv.symm f) b ↔ b ∈ ↑f a ⊢ a ∈ (fun b => if ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b then ↑(PEquiv.symm f) b else none) b ↔ b ∈ (fun a => if ↑f a = ↑g a then ↑f a else none) a [PROOFSTEP] have hg := @mem_iff_mem _ _ g a b [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : a ∈ ↑(PEquiv.symm f) b ↔ b ∈ ↑f a hg : a ∈ ↑(PEquiv.symm g) b ↔ b ∈ ↑g a ⊢ a ∈ (fun b => if ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b then ↑(PEquiv.symm f) b else none) b ↔ b ∈ (fun a => if ↑f a = ↑g a then ↑f a else none) a [PROOFSTEP] simp only [Option.mem_def] at * [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b ⊢ (if ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b then ↑(PEquiv.symm f) b else none) = some a ↔ (if ↑f a = ↑g a then ↑f a else none) = some b [PROOFSTEP] split_ifs with h1 h2 h2 [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ↑f a = ↑g a ⊢ ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b [PROOFSTEP] try simp [hf] [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ↑f a = ↑g a ⊢ ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b [PROOFSTEP] simp [hf] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ¬↑f a = ↑g a ⊢ ↑(PEquiv.symm f) b = some a ↔ False [PROOFSTEP] try simp [hf] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ¬↑f a = ↑g a ⊢ ↑(PEquiv.symm f) b = some a ↔ False [PROOFSTEP] simp [hf] [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ↑f a = ↑g a ⊢ False ↔ ↑f a = some b [PROOFSTEP] try simp [hf] [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ↑f a = ↑g a ⊢ False ↔ ↑f a = some b [PROOFSTEP] simp [hf] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ¬↑f a = ↑g a ⊢ False ↔ False [PROOFSTEP] try simp [hf] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ¬↑f a = ↑g a ⊢ False ↔ False [PROOFSTEP] simp [hf] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ¬↑f a = ↑g a ⊢ ¬↑f a = some b [PROOFSTEP] contrapose! h2 [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ↑f a = some b ⊢ ↑f a = ↑g a [PROOFSTEP] rw [h2] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ↑f a = some b ⊢ some b = ↑g a [PROOFSTEP] rw [← h1, hf, h2] at hg [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : some b = some b ↔ ↑g a = some b h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ↑f a = some b ⊢ some b = ↑g a [PROOFSTEP] simp only [mem_def, true_iff_iff, eq_self_iff_true] at hg [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b h1 : ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ↑f a = some b hg : ↑g a = some b ⊢ some b = ↑g a [PROOFSTEP] rw [hg] [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h1 : ¬↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b h2 : ↑f a = ↑g a ⊢ ¬↑f a = some b [PROOFSTEP] contrapose! h1 [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ ↑f a = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h2 : ↑f a = ↑g a h1 : ↑f a = some b ⊢ ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b [PROOFSTEP] rw [h1] at hf h2 [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ some b = some b hg : ↑(PEquiv.symm g) b = some a ↔ ↑g a = some b h2 : some b = ↑g a h1 : ↑f a = some b ⊢ ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b [PROOFSTEP] rw [← h2] at hg [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β hf : ↑(PEquiv.symm f) b = some a ↔ some b = some b hg : ↑(PEquiv.symm g) b = some a ↔ some b = some b h2 : some b = ↑g a h1 : ↑f a = some b ⊢ ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b [PROOFSTEP] simp only [iff_true] at hf hg [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g : α ≃. β a : α b : β h2 : some b = ↑g a h1 : ↑f a = some b hf : ↑(PEquiv.symm f) b = some a hg : ↑(PEquiv.symm g) b = some a ⊢ ↑(PEquiv.symm f) b = ↑(PEquiv.symm g) b [PROOFSTEP] rw [hf, hg] [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv x✝³ x✝² : α ≃. β x✝¹ : α x✝ : β ⊢ x✝ ∈ ↑(x✝³ ⊓ x✝²) x✝¹ → x✝ ∈ ↑x✝³ x✝¹ [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv x✝³ x✝² : α ≃. β x✝¹ : α x✝ : β ⊢ (if ↑x✝³ x✝¹ = ↑x✝² x✝¹ then ↑x✝³ x✝¹ else none) = some x✝ → ↑x✝³ x✝¹ = some x✝ [PROOFSTEP] split_ifs [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv x✝³ x✝² : α ≃. β x✝¹ : α x✝ : β h✝ : ↑x✝³ x✝¹ = ↑x✝² x✝¹ ⊢ ↑x✝³ x✝¹ = some x✝ → ↑x✝³ x✝¹ = some x✝ [PROOFSTEP] simp [*] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv x✝³ x✝² : α ≃. β x✝¹ : α x✝ : β h✝ : ¬↑x✝³ x✝¹ = ↑x✝² x✝¹ ⊢ False → ↑x✝³ x✝¹ = some x✝ [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv x✝³ x✝² : α ≃. β x✝¹ : α x✝ : β ⊢ x✝ ∈ ↑(x✝³ ⊓ x✝²) x✝¹ → x✝ ∈ ↑x✝² x✝¹ [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv x✝³ x✝² : α ≃. β x✝¹ : α x✝ : β ⊢ (if ↑x✝³ x✝¹ = ↑x✝² x✝¹ then ↑x✝³ x✝¹ else none) = some x✝ → ↑x✝² x✝¹ = some x✝ [PROOFSTEP] split_ifs [GOAL] case pos α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv x✝³ x✝² : α ≃. β x✝¹ : α x✝ : β h✝ : ↑x✝³ x✝¹ = ↑x✝² x✝¹ ⊢ ↑x✝³ x✝¹ = some x✝ → ↑x✝² x✝¹ = some x✝ [PROOFSTEP] simp [*] [GOAL] case neg α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv x✝³ x✝² : α ≃. β x✝¹ : α x✝ : β h✝ : ¬↑x✝³ x✝¹ = ↑x✝² x✝¹ ⊢ False → ↑x✝² x✝¹ = some x✝ [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g h : α ≃. β fg : f ≤ g gh : f ≤ h a : α b : β ⊢ b ∈ ↑f a → b ∈ ↑(g ⊓ h) a [PROOFSTEP] intro H [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g h : α ≃. β fg : f ≤ g gh : f ≤ h a : α b : β H : b ∈ ↑f a ⊢ b ∈ ↑(g ⊓ h) a [PROOFSTEP] have hf := fg a b H [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g h : α ≃. β fg : f ≤ g gh : f ≤ h a : α b : β H : b ∈ ↑f a hf : b ∈ ↑g a ⊢ b ∈ ↑(g ⊓ h) a [PROOFSTEP] have hg := gh a b H [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g h : α ≃. β fg : f ≤ g gh : f ≤ h a : α b : β H : b ∈ ↑f a hf : b ∈ ↑g a hg : b ∈ ↑h a ⊢ b ∈ ↑(g ⊓ h) a [PROOFSTEP] simp only [Option.mem_def, PEquiv.coe_mk_apply] at * [GOAL] α : Type u β : Type v γ : Type w δ : Type x inst✝¹ : DecidableEq α inst✝ : DecidableEq β src✝ : PartialOrder (α ≃. β) := instPartialOrderPEquiv f g h : α ≃. β fg : f ≤ g gh : f ≤ h a : α b : β H : ↑f a = some b hf : ↑g a = some b hg : ↑h a = some b ⊢ (if ↑g a = ↑h a then ↑g a else none) = some b [PROOFSTEP] rw [hf, hg, if_pos rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α ≃ β ⊢ ∀ (a : α) (b : β), a ∈ (some ∘ ↑f.symm) b ↔ b ∈ (some ∘ ↑f) a [PROOFSTEP] simp [Equiv.eq_symm_apply, eq_comm]
{"mathlib_filename": "Mathlib.Data.PEquiv", "llama_tokens": 19860}
[GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x : ℚ ⊢ ↑x ∈ s [PROOFSTEP] simpa only [Rat.cast_def] using div_mem (coe_int_mem s x.num) (coe_nat_mem s x.den) [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S a : ℚ x : { x // x ∈ s } ⊢ a • ↑x ∈ s [PROOFSTEP] simpa only [Rat.smul_def] using mul_mem (coe_rat_mem s a) x.prop [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ↑0 = 0 [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ↑1 = 1 [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x y : { x // x ∈ s }), ↑(x + y) = ↑x + ↑y [PROOFSTEP] intros _ _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ y✝ : { x // x ∈ s } ⊢ ↑(x✝ + y✝) = ↑x✝ + ↑y✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x y : { x // x ∈ s }), ↑(x * y) = ↑x * ↑y [PROOFSTEP] intros _ _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ y✝ : { x // x ∈ s } ⊢ ↑(x✝ * y✝) = ↑x✝ * ↑y✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x : { x // x ∈ s }), ↑(-x) = -↑x [PROOFSTEP] intros _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ : { x // x ∈ s } ⊢ ↑(-x✝) = -↑x✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x y : { x // x ∈ s }), ↑(x - y) = ↑x - ↑y [PROOFSTEP] intros _ _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ y✝ : { x // x ∈ s } ⊢ ↑(x✝ - y✝) = ↑x✝ - ↑y✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x : { x // x ∈ s }), ↑x⁻¹ = (↑x)⁻¹ [PROOFSTEP] intros _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ : { x // x ∈ s } ⊢ ↑x✝⁻¹ = (↑x✝)⁻¹ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x y : { x // x ∈ s }), ↑(x / y) = ↑x / ↑y [PROOFSTEP] intros _ _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ y✝ : { x // x ∈ s } ⊢ ↑(x✝ / y✝) = ↑x✝ / ↑y✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x : { x // x ∈ s }) (n : ℕ), ↑(n • x) = n • ↑x [PROOFSTEP] intros _ _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ : { x // x ∈ s } n✝ : ℕ ⊢ ↑(n✝ • x✝) = n✝ • ↑x✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x : { x // x ∈ s }) (n : ℤ), ↑(n • x) = n • ↑x [PROOFSTEP] intros _ _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ : { x // x ∈ s } n✝ : ℤ ⊢ ↑(n✝ • x✝) = n✝ • ↑x✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x : { x // x ∈ s }) (n : ℚ), ↑(n • x) = n • ↑x [PROOFSTEP] intros _ _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ : { x // x ∈ s } n✝ : ℚ ⊢ ↑(n✝ • x✝) = n✝ • ↑x✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x : { x // x ∈ s }) (n : ℕ), ↑(x ^ n) = ↑x ^ n [PROOFSTEP] intros _ _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ : { x // x ∈ s } n✝ : ℕ ⊢ ↑(x✝ ^ n✝) = ↑x✝ ^ n✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (x : { x // x ∈ s }) (n : ℤ), ↑(x ^ n) = ↑x ^ n [PROOFSTEP] intros _ _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S x✝ : { x // x ∈ s } n✝ : ℤ ⊢ ↑(x✝ ^ n✝) = ↑x✝ ^ n✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (n : ℕ), ↑↑n = ↑n [PROOFSTEP] intros _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S n✝ : ℕ ⊢ ↑↑n✝ = ↑n✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (n : ℤ), ↑↑n = ↑n [PROOFSTEP] intros _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S n✝ : ℤ ⊢ ↑↑n✝ = ↑n✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S ⊢ ∀ (n : ℚ), ↑↑n = ↑n [PROOFSTEP] intros _ [GOAL] K : Type u L : Type v M : Type w inst✝³ : Field K inst✝² : Field L inst✝¹ : Field M S : Type u_1 inst✝ : SetLike S K h : SubfieldClass S K s : S n✝ : ℚ ⊢ ↑↑n✝ = ↑n✝ [PROOFSTEP] rfl [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M p q : Subfield K h : (fun s => s.carrier) p = (fun s => s.carrier) q ⊢ p = q [PROOFSTEP] cases p [GOAL] case mk K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M q : Subfield K toSubring✝ : Subring K inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier → x⁻¹ ∈ toSubring✝.carrier h : (fun s => s.carrier) { toSubring := toSubring✝, inv_mem' := inv_mem'✝ } = (fun s => s.carrier) q ⊢ { toSubring := toSubring✝, inv_mem' := inv_mem'✝ } = q [PROOFSTEP] cases q [GOAL] case mk.mk K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M toSubring✝¹ : Subring K inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier → x⁻¹ ∈ toSubring✝¹.carrier toSubring✝ : Subring K inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier → x⁻¹ ∈ toSubring✝.carrier h : (fun s => s.carrier) { toSubring := toSubring✝¹, inv_mem' := inv_mem'✝¹ } = (fun s => s.carrier) { toSubring := toSubring✝, inv_mem' := inv_mem'✝ } ⊢ { toSubring := toSubring✝¹, inv_mem' := inv_mem'✝¹ } = { toSubring := toSubring✝, inv_mem' := inv_mem'✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toSubring K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M toSubring✝¹ : Subring K inv_mem'✝¹ : ∀ (x : K), x ∈ toSubring✝¹.carrier → x⁻¹ ∈ toSubring✝¹.carrier toSubring✝ : Subring K inv_mem'✝ : ∀ (x : K), x ∈ toSubring✝.carrier → x⁻¹ ∈ toSubring✝.carrier h : (fun s => s.carrier) { toSubring := toSubring✝¹, inv_mem' := inv_mem'✝¹ } = (fun s => s.carrier) { toSubring := toSubring✝, inv_mem' := inv_mem'✝ } ⊢ toSubring✝¹ = toSubring✝ [PROOFSTEP] exact SetLike.ext' h [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s t : Subfield K x : K hx : x ∈ s n : ℤ ⊢ x ^ n ∈ s [PROOFSTEP] cases n [GOAL] case ofNat K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s t : Subfield K x : K hx : x ∈ s a✝ : ℕ ⊢ x ^ Int.ofNat a✝ ∈ s [PROOFSTEP] simpa using s.pow_mem hx _ [GOAL] case negSucc K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s t : Subfield K x : K hx : x ∈ s a✝ : ℕ ⊢ x ^ Int.negSucc a✝ ∈ s [PROOFSTEP] simpa [pow_succ] using s.inv_mem (s.mul_mem hx (s.pow_mem hx _)) [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s✝ t : Subfield K f : K →+* L s : Subfield L src✝ : Subring K := Subring.comap f s.toSubring x : K hx : x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ⊢ ↑f x⁻¹ ∈ s [PROOFSTEP] rw [map_inv₀ f] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s✝ t : Subfield K f : K →+* L s : Subfield L src✝ : Subring K := Subring.comap f s.toSubring x : K hx : x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ⊢ (↑f x)⁻¹ ∈ s [PROOFSTEP] exact s.inv_mem hx [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s✝ t : Subfield K f : K →+* L s : Subfield K src✝ : Subring L := Subring.map f s.toSubring ⊢ ∀ (x : L), x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : L}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → x⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : L}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s✝ t : Subfield K f : K →+* L s : Subfield K src✝ : Subring L := Subring.map f s.toSubring x : K hx : x ∈ s.carrier ⊢ (↑f x)⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : L}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] exact ⟨x⁻¹, s.inv_mem hx, map_inv₀ f x⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s✝ t : Subfield K f✝ f : K →+* L s : Subfield K y : L ⊢ y ∈ map f s ↔ ∃ x, x ∈ s ∧ ↑f x = y [PROOFSTEP] unfold map [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s✝ t : Subfield K f✝ f : K →+* L s : Subfield K y : L ⊢ (y ∈ let src := Subring.map f s.toSubring; { toSubring := { toSubsemiring := src.toSubsemiring, neg_mem' := (_ : ∀ {x : L}, x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier → -x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier) }, inv_mem' := (_ : ∀ (x : L), x ∈ { toSubsemiring := (Subring.map f s.toSubring).toSubsemiring, neg_mem' := (_ : ∀ {x : L}, x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier → -x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → x⁻¹ ∈ { toSubsemiring := (Subring.map f s.toSubring).toSubsemiring, neg_mem' := (_ : ∀ {x : L}, x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier → -x ∈ (Subring.map f s.toSubring).toSubsemiring.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier) }) ↔ ∃ x, x ∈ s ∧ ↑f x = y [PROOFSTEP] simp only [mem_mk, Subring.mem_mk, Subring.mem_toSubsemiring, Subring.mem_map, mem_toSubring] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M g : L →+* M f : K →+* L ⊢ fieldRange f = Subfield.map f ⊤ [PROOFSTEP] ext [GOAL] case h K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M g : L →+* M f : K →+* L x✝ : L ⊢ x✝ ∈ fieldRange f ↔ x✝ ∈ Subfield.map f ⊤ [PROOFSTEP] simp [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M g : L →+* M f : K →+* L ⊢ Subfield.map g (fieldRange f) = fieldRange (comp g f) [PROOFSTEP] simpa only [fieldRange_eq_map] using (⊤ : Subfield K).map_map g f [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) src✝ : Subring K := sInf (toSubring '' S) ⊢ ∀ (x : K), x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → x⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] rintro x hx [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) src✝ : Subring K := sInf (toSubring '' S) x : K hx : x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ⊢ x⁻¹ ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] apply Subring.mem_sInf.mpr [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) src✝ : Subring K := sInf (toSubring '' S) x : K hx : x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ⊢ ∀ (p : Subring K), p ∈ toSubring '' S → x⁻¹ ∈ p [PROOFSTEP] rintro _ ⟨p, p_mem, rfl⟩ [GOAL] case intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) src✝ : Subring K := sInf (toSubring '' S) x : K hx : x ∈ { toSubsemiring := src✝.toSubsemiring, neg_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier p : Subfield K p_mem : p ∈ S ⊢ x⁻¹ ∈ p.toSubring [PROOFSTEP] exact p.inv_mem (Subring.mem_sInf.mp hx p.toSubring ⟨p, p_mem, rfl⟩) [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) ⊢ ↑(sInf (toSubring '' S)) = ⋂ (s : Subfield K) (_ : s ∈ S), ↑s [PROOFSTEP] ext x [GOAL] case h K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) x : K ⊢ x ∈ ↑(sInf (toSubring '' S)) ↔ x ∈ ⋂ (s : Subfield K) (_ : s ∈ S), ↑s [PROOFSTEP] rw [Subring.coe_sInf, Set.mem_iInter, Set.mem_iInter] [GOAL] case h K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) x : K ⊢ (∀ (i : Subring K), x ∈ ⋂ (_ : i ∈ toSubring '' S), ↑i) ↔ ∀ (i : Subfield K), x ∈ ⋂ (_ : i ∈ S), ↑i [PROOFSTEP] exact ⟨fun h s s' ⟨s_mem, s'_eq⟩ => h s.toSubring _ ⟨⟨s, s_mem, rfl⟩, s'_eq⟩, fun h s s' ⟨⟨s'', s''_mem, s_eq⟩, (s'_eq : ↑s = s')⟩ => h s'' _ ⟨s''_mem, by simp [← s_eq, ← s'_eq]⟩⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) x : K h : ∀ (i : Subfield K), x ∈ ⋂ (_ : i ∈ S), ↑i s : Subring K s' : Set K x✝ : s' ∈ Set.range fun h => ↑s s'' : Subfield K s''_mem : s'' ∈ S s_eq : s''.toSubring = s s'_eq : ↑s = s' ⊢ (fun h => ↑s'') s''_mem = s' [PROOFSTEP] simp [← s_eq, ← s'_eq] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set (Subfield K) ⊢ (sInf s).toSubring = ⨅ (t : Subfield K) (_ : t ∈ s), t.toSubring [PROOFSTEP] ext x [GOAL] case h K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set (Subfield K) x : K ⊢ x ∈ (sInf s).toSubring ↔ x ∈ ⨅ (t : Subfield K) (_ : t ∈ s), t.toSubring [PROOFSTEP] rw [mem_toSubring, mem_sInf] [GOAL] case h K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set (Subfield K) x : K ⊢ (∀ (p : Subfield K), p ∈ s → x ∈ p) ↔ x ∈ ⨅ (t : Subfield K) (_ : t ∈ s), t.toSubring [PROOFSTEP] erw [Subring.mem_sInf] [GOAL] case h K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set (Subfield K) x : K ⊢ (∀ (p : Subfield K), p ∈ s → x ∈ p) ↔ ∀ (p : Subring K), (p ∈ Set.range fun t => ⨅ (_ : t ∈ s), t.toSubring) → x ∈ p [PROOFSTEP] exact ⟨fun h p ⟨p', hp⟩ => hp ▸ Subring.mem_sInf.mpr fun p ⟨hp', hp⟩ => hp ▸ h _ hp', fun h p hp => h p.toSubring ⟨p, Subring.ext fun x => ⟨fun hx => Subring.mem_sInf.mp hx _ ⟨hp, rfl⟩, fun hx => Subring.mem_sInf.mpr fun p' ⟨_, p'_eq⟩ => p'_eq ▸ hx⟩⟩⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) ⊢ IsGLB S (sInf S) [PROOFSTEP] have : ∀ {s t : Subfield K}, (s : Set K) ≤ t ↔ s ≤ t := by simp [SetLike.coe_subset_coe] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) ⊢ ∀ {s t : Subfield K}, ↑s ≤ ↑t ↔ s ≤ t [PROOFSTEP] simp [SetLike.coe_subset_coe] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) this : ∀ {s t : Subfield K}, ↑s ≤ ↑t ↔ s ≤ t ⊢ IsGLB S (sInf S) [PROOFSTEP] refine' IsGLB.of_image this _ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) this : ∀ {s t : Subfield K}, ↑s ≤ ↑t ↔ s ≤ t ⊢ IsGLB ((fun {x} => ↑x) '' S) ↑(sInf S) [PROOFSTEP] convert isGLB_biInf (s := S) (f := SetLike.coe) [GOAL] case h.e'_4 K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) this : ∀ {s t : Subfield K}, ↑s ≤ ↑t ↔ s ≤ t ⊢ ↑(sInf S) = ⨅ (x : Subfield K) (_ : x ∈ S), ↑x [PROOFSTEP] exact coe_sInf _ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K a✝ b✝ : K x_mem : a✝ ∈ {z | ∃ x x_1 y x_2, x / y = z} y_mem : b✝ ∈ {z | ∃ x x_1 y x_2, x / y = z} ⊢ a✝ * b✝ ∈ {z | ∃ x x_1 y x_2, x / y = z} [PROOFSTEP] obtain ⟨nx, hnx, dx, hdx, rfl⟩ := id x_mem [GOAL] case intro.intro.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K b✝ : K y_mem : b✝ ∈ {z | ∃ x x_1 y x_2, x / y = z} nx : K hnx : nx ∈ Subring.closure s dx : K hdx : dx ∈ Subring.closure s x_mem : nx / dx ∈ {z | ∃ x x_1 y x_2, x / y = z} ⊢ nx / dx * b✝ ∈ {z | ∃ x x_1 y x_2, x / y = z} [PROOFSTEP] obtain ⟨ny, hny, dy, hdy, rfl⟩ := id y_mem [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K nx : K hnx : nx ∈ Subring.closure s dx : K hdx : dx ∈ Subring.closure s x_mem : nx / dx ∈ {z | ∃ x x_1 y x_2, x / y = z} ny : K hny : ny ∈ Subring.closure s dy : K hdy : dy ∈ Subring.closure s y_mem : ny / dy ∈ {z | ∃ x x_1 y x_2, x / y = z} ⊢ nx / dx * (ny / dy) ∈ {z | ∃ x x_1 y x_2, x / y = z} [PROOFSTEP] exact ⟨nx * ny, Subring.mul_mem _ hnx hny, dx * dy, Subring.mul_mem _ hdx hdy, (div_mul_div_comm _ _ _ _).symm⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K a✝ b✝ : K x_mem : a✝ ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier y_mem : b✝ ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier ⊢ a✝ + b✝ ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier [PROOFSTEP] obtain ⟨nx, hnx, dx, hdx, rfl⟩ := id x_mem [GOAL] case intro.intro.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K b✝ : K y_mem : b✝ ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier nx : K hnx : nx ∈ Subring.closure s dx : K hdx : dx ∈ Subring.closure s x_mem : nx / dx ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier ⊢ nx / dx + b✝ ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier [PROOFSTEP] obtain ⟨ny, hny, dy, hdy, rfl⟩ := id y_mem [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K nx : K hnx : nx ∈ Subring.closure s dx : K hdx : dx ∈ Subring.closure s x_mem : nx / dx ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier ny : K hny : ny ∈ Subring.closure s dy : K hdy : dy ∈ Subring.closure s y_mem : ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier ⊢ nx / dx + ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier [PROOFSTEP] by_cases hx0 : dx = 0 [GOAL] case pos K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K nx : K hnx : nx ∈ Subring.closure s dx : K hdx : dx ∈ Subring.closure s x_mem : nx / dx ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier ny : K hny : ny ∈ Subring.closure s dy : K hdy : dy ∈ Subring.closure s y_mem : ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier hx0 : dx = 0 ⊢ nx / dx + ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier [PROOFSTEP] rwa [hx0, div_zero, zero_add] [GOAL] case neg K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K nx : K hnx : nx ∈ Subring.closure s dx : K hdx : dx ∈ Subring.closure s x_mem : nx / dx ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier ny : K hny : ny ∈ Subring.closure s dy : K hdy : dy ∈ Subring.closure s y_mem : ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier hx0 : ¬dx = 0 ⊢ nx / dx + ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier [PROOFSTEP] by_cases hy0 : dy = 0 [GOAL] case pos K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K nx : K hnx : nx ∈ Subring.closure s dx : K hdx : dx ∈ Subring.closure s x_mem : nx / dx ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier ny : K hny : ny ∈ Subring.closure s dy : K hdy : dy ∈ Subring.closure s y_mem : ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier hx0 : ¬dx = 0 hy0 : dy = 0 ⊢ nx / dx + ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier [PROOFSTEP] rwa [hy0, div_zero, add_zero] [GOAL] case neg K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K nx : K hnx : nx ∈ Subring.closure s dx : K hdx : dx ∈ Subring.closure s x_mem : nx / dx ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier ny : K hny : ny ∈ Subring.closure s dy : K hdy : dy ∈ Subring.closure s y_mem : ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier hx0 : ¬dx = 0 hy0 : ¬dy = 0 ⊢ nx / dx + ny / dy ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier [PROOFSTEP] exact ⟨nx * dy + dx * ny, Subring.add_mem _ (Subring.mul_mem _ hnx hdy) (Subring.mul_mem _ hdx hny), dx * dy, Subring.mul_mem _ hdx hdy, (div_add_div nx ny hx0 hy0).symm⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K x : K ⊢ x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier → -x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] rintro ⟨y, hy, z, hz, x_eq⟩ [GOAL] case intro.intro.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K x y : K hy : y ∈ Subring.closure s z : K hz : z ∈ Subring.closure s x_eq : y / z = x ⊢ -x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] exact ⟨-y, Subring.neg_mem _ hy, z, hz, x_eq ▸ neg_div _ _⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K x : K ⊢ x ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }, neg_mem' := (_ : ∀ {x : K}, x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier → -x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier → x⁻¹ ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }, neg_mem' := (_ : ∀ {x : K}, x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier → -x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] rintro ⟨y, hy, z, hz, x_eq⟩ [GOAL] case intro.intro.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K x y : K hy : y ∈ Subring.closure s z : K hz : z ∈ Subring.closure s x_eq : y / z = x ⊢ x⁻¹ ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }, neg_mem' := (_ : ∀ {x : K}, x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier → -x ∈ { toSubmonoid := { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }, add_mem' := (_ : ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := {z | ∃ x x_1 y x_2, x / y = z}, mul_mem' := (_ : ∀ {a b : K}, a ∈ {z | ∃ x x_1 y x_2, x / y = z} → b ∈ {z | ∃ x x_1 y x_2, x / y = z} → a * b ∈ {z | ∃ x x_1 y x_2, x / y = z}) }, one_mem' := (_ : ∃ x x_1 y x_2, x / y = 1) }.toSubsemigroup.carrier), zero_mem' := (_ : ∃ x x_1 y x_2, x / y = 0) }.toSubmonoid.toSubsemigroup.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] exact ⟨z, hz, y, hy, x_eq ▸ (inv_div _ _).symm⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K x : K ⊢ x ∈ closure s ↔ ∃ y, y ∈ Subring.closure s ∧ ∃ z, z ∈ Subring.closure s ∧ y / z = x [PROOFSTEP] change x ∈ (closure s).carrier ↔ ∃ y ∈ Subring.closure s, ∃ z ∈ Subring.closure s, y / z = x [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K x : K ⊢ x ∈ (closure s).toSubring.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ↔ ∃ y, y ∈ Subring.closure s ∧ ∃ z, z ∈ Subring.closure s ∧ y / z = x [PROOFSTEP] simp only [closure, exists_prop, Set.mem_setOf_eq] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K p : K → Prop x : K h : x ∈ closure s Hs : ∀ (x : K), x ∈ s → p x H1 : p 1 Hadd : ∀ (x y : K), p x → p y → p (x + y) Hneg : ∀ (x : K), p x → p (-x) Hinv : ∀ (x : K), p x → p x⁻¹ Hmul : ∀ (x y : K), p x → p y → p (x * y) ⊢ p x [PROOFSTEP] letI : Subfield K := ⟨⟨⟨⟨⟨p, by intro _ _; exact Hmul _ _⟩, H1⟩, by intro _ _; exact Hadd _ _, @add_neg_self K _ 1 ▸ Hadd _ _ H1 (Hneg _ H1)⟩, by intro _; exact Hneg _⟩, Hinv⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K p : K → Prop x : K h : x ∈ closure s Hs : ∀ (x : K), x ∈ s → p x H1 : p 1 Hadd : ∀ (x y : K), p x → p y → p (x + y) Hneg : ∀ (x : K), p x → p (-x) Hinv : ∀ (x : K), p x → p x⁻¹ Hmul : ∀ (x y : K), p x → p y → p (x * y) ⊢ ∀ {a b : K}, a ∈ p → b ∈ p → a * b ∈ p [PROOFSTEP] intro _ _ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K p : K → Prop x : K h : x ∈ closure s Hs : ∀ (x : K), x ∈ s → p x H1 : p 1 Hadd : ∀ (x y : K), p x → p y → p (x + y) Hneg : ∀ (x : K), p x → p (-x) Hinv : ∀ (x : K), p x → p x⁻¹ Hmul : ∀ (x y : K), p x → p y → p (x * y) a✝ b✝ : K ⊢ a✝ ∈ p → b✝ ∈ p → a✝ * b✝ ∈ p [PROOFSTEP] exact Hmul _ _ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K p : K → Prop x : K h : x ∈ closure s Hs : ∀ (x : K), x ∈ s → p x H1 : p 1 Hadd : ∀ (x y : K), p x → p y → p (x + y) Hneg : ∀ (x : K), p x → p (-x) Hinv : ∀ (x : K), p x → p x⁻¹ Hmul : ∀ (x y : K), p x → p y → p (x * y) ⊢ ∀ {a b : K}, a ∈ { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }.toSubsemigroup.carrier → b ∈ { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }.toSubsemigroup.carrier → a + b ∈ { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }.toSubsemigroup.carrier [PROOFSTEP] intro _ _ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K p : K → Prop x : K h : x ∈ closure s Hs : ∀ (x : K), x ∈ s → p x H1 : p 1 Hadd : ∀ (x y : K), p x → p y → p (x + y) Hneg : ∀ (x : K), p x → p (-x) Hinv : ∀ (x : K), p x → p x⁻¹ Hmul : ∀ (x y : K), p x → p y → p (x * y) a✝ b✝ : K ⊢ a✝ ∈ { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }.toSubsemigroup.carrier → b✝ ∈ { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }.toSubsemigroup.carrier → a✝ + b✝ ∈ { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }.toSubsemigroup.carrier [PROOFSTEP] exact Hadd _ _ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K p : K → Prop x : K h : x ∈ closure s Hs : ∀ (x : K), x ∈ s → p x H1 : p 1 Hadd : ∀ (x y : K), p x → p y → p (x + y) Hneg : ∀ (x : K), p x → p (-x) Hinv : ∀ (x : K), p x → p x⁻¹ Hmul : ∀ (x y : K), p x → p y → p (x * y) ⊢ ∀ {x : K}, x ∈ { toSubmonoid := { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }, add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)), zero_mem' := (_ : p 0) }.toSubmonoid.toSubsemigroup.carrier → -x ∈ { toSubmonoid := { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }, add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)), zero_mem' := (_ : p 0) }.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] intro _ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K p : K → Prop x : K h : x ∈ closure s Hs : ∀ (x : K), x ∈ s → p x H1 : p 1 Hadd : ∀ (x y : K), p x → p y → p (x + y) Hneg : ∀ (x : K), p x → p (-x) Hinv : ∀ (x : K), p x → p x⁻¹ Hmul : ∀ (x y : K), p x → p y → p (x * y) x✝ : K ⊢ x✝ ∈ { toSubmonoid := { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }, add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)), zero_mem' := (_ : p 0) }.toSubmonoid.toSubsemigroup.carrier → -x✝ ∈ { toSubmonoid := { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }, add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)), zero_mem' := (_ : p 0) }.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] exact Hneg _ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Set K p : K → Prop x : K h : x ∈ closure s Hs : ∀ (x : K), x ∈ s → p x H1 : p 1 Hadd : ∀ (x y : K), p x → p y → p (x + y) Hneg : ∀ (x : K), p x → p (-x) Hinv : ∀ (x : K), p x → p x⁻¹ Hmul : ∀ (x y : K), p x → p y → p (x * y) this : Subfield K := { toSubring := { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := p, mul_mem' := (_ : ∀ {a b : K}, p a → p b → p (a * b)) }, one_mem' := H1 }, add_mem' := (_ : ∀ {a b : K}, p a → p b → p (a + b)), zero_mem' := (_ : p 0) }, neg_mem' := (_ : ∀ {x : K}, p x → p (-x)) }, inv_mem' := Hinv } ⊢ p x [PROOFSTEP] exact (closure_le (t := this)).2 Hs h [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K ⊢ x ∈ ⨆ (i : ι), S i ↔ ∃ i, x ∈ S i [PROOFSTEP] refine' ⟨_, fun ⟨i, hi⟩ => (SetLike.le_def.1 <| le_iSup S i) hi⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K ⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i [PROOFSTEP] suffices x ∈ closure (⋃ i, (S i : Set K)) → ∃ i, x ∈ S i by simpa only [closure_iUnion, closure_eq] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K this : x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i ⊢ x ∈ ⨆ (i : ι), S i → ∃ i, x ∈ S i [PROOFSTEP] simpa only [closure_iUnion, closure_eq] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K ⊢ x ∈ closure (⋃ (i : ι), ↑(S i)) → ∃ i, x ∈ S i [PROOFSTEP] refine' fun hx => closure_induction hx (fun x => Set.mem_iUnion.mp) _ _ _ _ _ [GOAL] case refine'_1 K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K hx : x ∈ closure (⋃ (i : ι), ↑(S i)) ⊢ ∃ i, 1 ∈ S i [PROOFSTEP] exact hι.elim fun i => ⟨i, (S i).one_mem⟩ [GOAL] case refine'_2 K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K hx : x ∈ closure (⋃ (i : ι), ↑(S i)) ⊢ ∀ (x y : K), (∃ i, x ∈ S i) → (∃ i, y ∈ S i) → ∃ i, x + y ∈ S i [PROOFSTEP] rintro x y ⟨i, hi⟩ ⟨j, hj⟩ [GOAL] case refine'_2.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : K hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x y : K i : ι hi : x ∈ S i j : ι hj : y ∈ S j ⊢ ∃ i, x + y ∈ S i [PROOFSTEP] obtain ⟨k, hki, hkj⟩ := hS i j [GOAL] case refine'_2.intro.intro.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : K hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x y : K i : ι hi : x ∈ S i j : ι hj : y ∈ S j k : ι hki : S i ≤ S k hkj : S j ≤ S k ⊢ ∃ i, x + y ∈ S i [PROOFSTEP] exact ⟨k, (S k).add_mem (hki hi) (hkj hj)⟩ [GOAL] case refine'_3 K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K hx : x ∈ closure (⋃ (i : ι), ↑(S i)) ⊢ ∀ (x : K), (∃ i, x ∈ S i) → ∃ i, -x ∈ S i [PROOFSTEP] rintro x ⟨i, hi⟩ [GOAL] case refine'_3.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : K hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x : K i : ι hi : x ∈ S i ⊢ ∃ i, -x ∈ S i [PROOFSTEP] exact ⟨i, (S i).neg_mem hi⟩ [GOAL] case refine'_4 K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K hx : x ∈ closure (⋃ (i : ι), ↑(S i)) ⊢ ∀ (x : K), (∃ i, x ∈ S i) → ∃ i, x⁻¹ ∈ S i [PROOFSTEP] rintro x ⟨i, hi⟩ [GOAL] case refine'_4.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : K hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x : K i : ι hi : x ∈ S i ⊢ ∃ i, x⁻¹ ∈ S i [PROOFSTEP] exact ⟨i, (S i).inv_mem hi⟩ [GOAL] case refine'_5 K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K hx : x ∈ closure (⋃ (i : ι), ↑(S i)) ⊢ ∀ (x y : K), (∃ i, x ∈ S i) → (∃ i, y ∈ S i) → ∃ i, x * y ∈ S i [PROOFSTEP] rintro x y ⟨i, hi⟩ ⟨j, hj⟩ [GOAL] case refine'_5.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : K hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x y : K i : ι hi : x ∈ S i j : ι hj : y ∈ S j ⊢ ∃ i, x * y ∈ S i [PROOFSTEP] obtain ⟨k, hki, hkj⟩ := hS i j [GOAL] case refine'_5.intro.intro.intro.intro K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x✝ : K hx : x✝ ∈ closure (⋃ (i : ι), ↑(S i)) x y : K i : ι hi : x ∈ S i j : ι hj : y ∈ S j k : ι hki : S i ≤ S k hkj : S j ≤ S k ⊢ ∃ i, x * y ∈ S i [PROOFSTEP] exact ⟨k, (S k).mul_mem (hki hi) (hkj hj)⟩ [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M ι : Sort u_1 hι : Nonempty ι S : ι → Subfield K hS : Directed (fun x x_1 => x ≤ x_1) S x : K ⊢ x ∈ ↑(⨆ (i : ι), S i) ↔ x ∈ ⋃ (i : ι), ↑(S i) [PROOFSTEP] simp [mem_iSup_of_directed hS] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) Sne : Set.Nonempty S hS : DirectedOn (fun x x_1 => x ≤ x_1) S x : K ⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s [PROOFSTEP] haveI : Nonempty S := Sne.to_subtype [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) Sne : Set.Nonempty S hS : DirectedOn (fun x x_1 => x ≤ x_1) S x : K this : Nonempty ↑S ⊢ x ∈ sSup S ↔ ∃ s, s ∈ S ∧ x ∈ s [PROOFSTEP] simp only [sSup_eq_iSup', mem_iSup_of_directed hS.directed_val, Subtype.exists, exists_prop] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M S : Set (Subfield K) Sne : Set.Nonempty S hS : DirectedOn (fun x x_1 => x ≤ x_1) S x : K ⊢ x ∈ ↑(sSup S) ↔ x ∈ ⋃ (s : Subfield K) (_ : s ∈ S), ↑s [PROOFSTEP] simp [mem_sSup_of_directedOn Sne hS] [GOAL] K : Type u L : Type v M : Type w inst✝² : Field K inst✝¹ : Field L inst✝ : Field M s : Subfield K f g : K →+* L src✝ : Subring K := eqLocus f g x : K hx : ↑f x = ↑g x ⊢ ↑f x⁻¹ = ↑g x⁻¹ [PROOFSTEP] rw [map_inv₀ f, map_inv₀ g, hx]
{"mathlib_filename": "Mathlib.FieldTheory.Subfield", "llama_tokens": 33698}
[GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E α : E hα : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ⊢ Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }) = finrank F { x // x ∈ F⟮α⟯ } [PROOFSTEP] letI : Fintype (F⟮α⟯ →ₐ[F] F⟮α⟯) := IntermediateField.fintypeOfAlgHomAdjoinIntegral F hα [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E α : E hα : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) this : Fintype ({ x // x ∈ F⟮α⟯ } →ₐ[F] { x // x ∈ F⟮α⟯ }) := IntermediateField.fintypeOfAlgHomAdjoinIntegral F hα ⊢ Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }) = finrank F { x // x ∈ F⟮α⟯ } [PROOFSTEP] rw [IntermediateField.adjoin.finrank hα] [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E α : E hα : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) this : Fintype ({ x // x ∈ F⟮α⟯ } →ₐ[F] { x // x ∈ F⟮α⟯ }) := IntermediateField.fintypeOfAlgHomAdjoinIntegral F hα ⊢ Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }) = Polynomial.natDegree (minpoly F α) [PROOFSTEP] rw [← IntermediateField.card_algHom_adjoin_integral F hα h_sep h_splits] [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E α : E hα : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) this : Fintype ({ x // x ∈ F⟮α⟯ } →ₐ[F] { x // x ∈ F⟮α⟯ }) := IntermediateField.fintypeOfAlgHomAdjoinIntegral F hα ⊢ Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }) = Fintype.card ({ x // x ∈ F⟮α⟯ } →ₐ[F] { x // x ∈ F⟮α⟯ }) [PROOFSTEP] exact Fintype.card_congr (algEquivEquivAlgHom F F⟮α⟯) [GOAL] F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] cases' Field.exists_primitive_element F E with α hα [GOAL] case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] let iso : F⟮α⟯ ≃ₐ[F] E := { toFun := fun e => e.val invFun := fun e => ⟨e, by rw [hα]; exact IntermediateField.mem_top⟩ left_inv := fun _ => by ext; rfl right_inv := fun _ => rfl map_mul' := fun _ _ => rfl map_add' := fun _ _ => rfl commutes' := fun _ => rfl } [GOAL] F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ e : E ⊢ e ∈ F⟮α⟯ [PROOFSTEP] rw [hα] [GOAL] F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ e : E ⊢ e ∈ ⊤ [PROOFSTEP] exact IntermediateField.mem_top [GOAL] F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ x✝ : { x // x ∈ F⟮α⟯ } ⊢ (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x✝) = x✝ [PROOFSTEP] ext [GOAL] case a F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ x✝ : { x // x ∈ F⟮α⟯ } ⊢ ↑((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x✝)) = ↑x✝ [PROOFSTEP] rfl [GOAL] case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] have H : IsIntegral F α := IsGalois.integral F α [GOAL] case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] have h_sep : (minpoly F α).Separable := IsGalois.separable F α [GOAL] case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] have h_splits : (minpoly F α).Splits (algebraMap F E) := IsGalois.splits F α [GOAL] case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F E) (minpoly F α) ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] replace h_splits : Polynomial.Splits (algebraMap F F⟮α⟯) (minpoly F α) [GOAL] case h_splits F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F E) (minpoly F α) ⊢ Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) [PROOFSTEP] simpa using Polynomial.splits_comp_of_splits (algebraMap F E) iso.symm.toAlgHom.toRingHom h_splits [GOAL] case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] rw [← LinearEquiv.finrank_eq iso.toLinearEquiv] [GOAL] case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F { x // x ∈ F⟮α⟯ } [PROOFSTEP] rw [← IntermediateField.AdjoinSimple.card_aut_eq_finrank F E H h_sep h_splits] [GOAL] case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ⊢ Fintype.card (E ≃ₐ[F] E) = Fintype.card ({ x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ }) [PROOFSTEP] apply Fintype.card_congr [GOAL] case intro.f F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ⊢ (E ≃ₐ[F] E) ≃ { x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ } [PROOFSTEP] apply Equiv.mk (fun ϕ => iso.trans (ϕ.trans iso.symm)) fun ϕ => iso.symm.trans (ϕ.trans iso) [GOAL] case intro.f.left_inv F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ⊢ Function.LeftInverse (fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso)) [PROOFSTEP] intro ϕ [GOAL] case intro.f.left_inv F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ϕ : E ≃ₐ[F] E ⊢ (fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) ((fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso))) ϕ) = ϕ [PROOFSTEP] ext1 [GOAL] case intro.f.left_inv.h F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ϕ : E ≃ₐ[F] E a✝ : E ⊢ ↑((fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) ((fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso))) ϕ)) a✝ = ↑ϕ a✝ [PROOFSTEP] simp only [trans_apply, apply_symm_apply] [GOAL] case intro.f.right_inv F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ⊢ Function.RightInverse (fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso)) [PROOFSTEP] intro ϕ [GOAL] case intro.f.right_inv F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ϕ : { x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ } ⊢ (fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso))) ((fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) ϕ) = ϕ [PROOFSTEP] ext1 [GOAL] case intro.f.right_inv.h F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E hα : F⟮α⟯ = ⊤ iso : { x // x ∈ F⟮α⟯ } ≃ₐ[F] E := { toEquiv := { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) }, map_mul' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x * x_1)), map_add' := (_ : ∀ (x x_1 : { x // x ∈ F⟮α⟯ }), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (x + x_1)), commutes' := (_ : ∀ (x : F), Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x) = Equiv.toFun { toFun := fun e => ↑e, invFun := fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }, left_inv := (_ : ∀ (x : { x // x ∈ F⟮α⟯ }), (fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) ((fun e => ↑e) x) = x), right_inv := (_ : ∀ (x : E), (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x) = (fun e => ↑e) ((fun e => { val := e, property := (_ : e ∈ F⟮α⟯) }) x)) } (↑(algebraMap F { x // x ∈ F⟮α⟯ }) x)) } H : IsIntegral F α h_sep : Polynomial.Separable (minpoly F α) h_splits : Polynomial.Splits (algebraMap F { x // x ∈ F⟮α⟯ }) (minpoly F α) ϕ : { x // x ∈ F⟮α⟯ } ≃ₐ[F] { x // x ∈ F⟮α⟯ } a✝ : { x // x ∈ F⟮α⟯ } ⊢ ↑((fun ϕ => AlgEquiv.trans iso (AlgEquiv.trans ϕ (AlgEquiv.symm iso))) ((fun ϕ => AlgEquiv.trans (AlgEquiv.symm iso) (AlgEquiv.trans ϕ iso)) ϕ)) a✝ = ↑ϕ a✝ [PROOFSTEP] simp only [trans_apply, symm_apply_apply] [GOAL] F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁸ : Field F inst✝⁷ : Field K inst✝⁶ : Field E E' : Type u_4 inst✝⁵ : Field E' inst✝⁴ : Algebra F E' inst✝³ : Algebra F K inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E ⊢ IsGalois { x // x ∈ ⊥ } E ↔ IsGalois F E [PROOFSTEP] constructor [GOAL] case mp F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁸ : Field F inst✝⁷ : Field K inst✝⁶ : Field E E' : Type u_4 inst✝⁵ : Field E' inst✝⁴ : Algebra F E' inst✝³ : Algebra F K inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E ⊢ IsGalois { x // x ∈ ⊥ } E → IsGalois F E [PROOFSTEP] intro h [GOAL] case mp F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁸ : Field F inst✝⁷ : Field K inst✝⁶ : Field E E' : Type u_4 inst✝⁵ : Field E' inst✝⁴ : Algebra F E' inst✝³ : Algebra F K inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : IsGalois { x // x ∈ ⊥ } E ⊢ IsGalois F E [PROOFSTEP] exact IsGalois.tower_top_of_isGalois (⊥ : IntermediateField F E) F E [GOAL] case mpr F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁸ : Field F inst✝⁷ : Field K inst✝⁶ : Field E E' : Type u_4 inst✝⁵ : Field E' inst✝⁴ : Algebra F E' inst✝³ : Algebra F K inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E ⊢ IsGalois F E → IsGalois { x // x ∈ ⊥ } E [PROOFSTEP] intro h [GOAL] case mpr F : Type u_1 K : Type u_2 E : Type u_3 inst✝⁸ : Field F inst✝⁷ : Field K inst✝⁶ : Field E E' : Type u_4 inst✝⁵ : Field E' inst✝⁴ : Algebra F E' inst✝³ : Algebra F K inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : IsGalois F E ⊢ IsGalois { x // x ∈ ⊥ } E [PROOFSTEP] infer_instance [GOAL] F : Type u_1 inst✝⁵ : Field F E : Type u_2 inst✝⁴ : Field E inst✝³ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E M : Type u_3 inst✝² : Monoid M inst✝¹ : MulSemiringAction M E inst✝ : SMulCommClass M F E src✝ : Subfield E := subfield M E a : F g : M ⊢ g • ↑(algebraMap F E) a = ↑(algebraMap F E) a [PROOFSTEP] rw [Algebra.algebraMap_eq_smul_one, smul_comm, smul_one] [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E x✝ : { x // x ∈ fixingSubgroup K } ⊢ (fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) ((fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) x✝) = x✝ [PROOFSTEP] ext [GOAL] case a.h F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E x✝ : { x // x ∈ fixingSubgroup K } a✝ : E ⊢ ↑↑((fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) ((fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) x✝)) a✝ = ↑↑x✝ a✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E x✝ : E ≃ₐ[{ x // x ∈ K }] E ⊢ (fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) ((fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) x✝) = x✝ [PROOFSTEP] ext [GOAL] case h F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E x✝ : E ≃ₐ[{ x // x ∈ K }] E a✝ : E ⊢ ↑((fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) ((fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) x✝)) a✝ = ↑x✝ a✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E x✝¹ x✝ : { x // x ∈ fixingSubgroup K } ⊢ Equiv.toFun { toFun := fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }, invFun := fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }, left_inv := (_ : ∀ (x : { x // x ∈ fixingSubgroup K }), (fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) ((fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) x) = x), right_inv := (_ : ∀ (x : E ≃ₐ[{ x // x ∈ K }] E), (fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) ((fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) x) = x) } (x✝¹ * x✝) = Equiv.toFun { toFun := fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }, invFun := fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }, left_inv := (_ : ∀ (x : { x // x ∈ fixingSubgroup K }), (fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) ((fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) x) = x), right_inv := (_ : ∀ (x : E ≃ₐ[{ x // x ∈ K }] E), (fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) ((fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) x) = x) } x✝¹ * Equiv.toFun { toFun := fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }, invFun := fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }, left_inv := (_ : ∀ (x : { x // x ∈ fixingSubgroup K }), (fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) ((fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) x) = x), right_inv := (_ : ∀ (x : E ≃ₐ[{ x // x ∈ K }] E), (fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) ((fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) x) = x) } x✝ [PROOFSTEP] ext [GOAL] case h F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E x✝¹ x✝ : { x // x ∈ fixingSubgroup K } a✝ : E ⊢ ↑(Equiv.toFun { toFun := fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }, invFun := fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }, left_inv := (_ : ∀ (x : { x // x ∈ fixingSubgroup K }), (fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) ((fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) x) = x), right_inv := (_ : ∀ (x : E ≃ₐ[{ x // x ∈ K }] E), (fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) ((fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) x) = x) } (x✝¹ * x✝)) a✝ = ↑(Equiv.toFun { toFun := fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }, invFun := fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }, left_inv := (_ : ∀ (x : { x // x ∈ fixingSubgroup K }), (fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) ((fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) x) = x), right_inv := (_ : ∀ (x : E ≃ₐ[{ x // x ∈ K }] E), (fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) ((fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) x) = x) } x✝¹ * Equiv.toFun { toFun := fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }, invFun := fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }, left_inv := (_ : ∀ (x : { x // x ∈ fixingSubgroup K }), (fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) ((fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) x) = x), right_inv := (_ : ∀ (x : E ≃ₐ[{ x // x ∈ K }] E), (fun ϕ => let src := toRingEquiv ↑ϕ; { toEquiv := src.toEquiv, map_mul' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x * y) = Equiv.toFun src.toEquiv x * Equiv.toFun src.toEquiv y), map_add' := (_ : ∀ (x y : E), Equiv.toFun src.toEquiv (x + y) = Equiv.toFun src.toEquiv x + Equiv.toFun src.toEquiv y), commutes' := (_ : ↑ϕ ∈ ↑(fixingSubgroup K)) }) ((fun ϕ => { val := AlgEquiv.restrictScalars F ϕ, property := (_ : ∀ (r : { x // x ∈ K }), ↑ϕ (↑(algebraMap { x // x ∈ K } E) r) = ↑(algebraMap { x // x ∈ K } E) r) }) x) = x) } x✝) a✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E ⊢ fixingSubgroup (fixedField H) = H [PROOFSTEP] have H_le : H ≤ fixingSubgroup (fixedField H) := (le_iff_le _ _).mp le_rfl [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E H_le : H ≤ fixingSubgroup (fixedField H) ⊢ fixingSubgroup (fixedField H) = H [PROOFSTEP] classical suffices Fintype.card H = Fintype.card (fixingSubgroup (fixedField H)) by exact SetLike.coe_injective (Set.eq_of_inclusion_surjective ((Fintype.bijective_iff_injective_and_card (Set.inclusion H_le)).mpr ⟨Set.inclusion_injective H_le, this⟩).2).symm apply Fintype.card_congr refine' (FixedPoints.toAlgHomEquiv H E).trans _ refine' (algEquivEquivAlgHom (fixedField H) E).toEquiv.symm.trans _ exact (fixingSubgroupEquiv (fixedField H)).toEquiv.symm [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E H_le : H ≤ fixingSubgroup (fixedField H) ⊢ fixingSubgroup (fixedField H) = H [PROOFSTEP] suffices Fintype.card H = Fintype.card (fixingSubgroup (fixedField H)) by exact SetLike.coe_injective (Set.eq_of_inclusion_surjective ((Fintype.bijective_iff_injective_and_card (Set.inclusion H_le)).mpr ⟨Set.inclusion_injective H_le, this⟩).2).symm [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E H_le : H ≤ fixingSubgroup (fixedField H) this : Fintype.card { x // x ∈ H } = Fintype.card { x // x ∈ fixingSubgroup (fixedField H) } ⊢ fixingSubgroup (fixedField H) = H [PROOFSTEP] exact SetLike.coe_injective (Set.eq_of_inclusion_surjective ((Fintype.bijective_iff_injective_and_card (Set.inclusion H_le)).mpr ⟨Set.inclusion_injective H_le, this⟩).2).symm [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E H_le : H ≤ fixingSubgroup (fixedField H) ⊢ Fintype.card { x // x ∈ H } = Fintype.card { x // x ∈ fixingSubgroup (fixedField H) } [PROOFSTEP] apply Fintype.card_congr [GOAL] case f F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E H_le : H ≤ fixingSubgroup (fixedField H) ⊢ { x // x ∈ H } ≃ { x // x ∈ fixingSubgroup (fixedField H) } [PROOFSTEP] refine' (FixedPoints.toAlgHomEquiv H E).trans _ [GOAL] case f F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E H_le : H ≤ fixingSubgroup (fixedField H) ⊢ (E →ₐ[{ x // x ∈ FixedPoints.subfield { x // x ∈ H } E }] E) ≃ { x // x ∈ fixingSubgroup (fixedField H) } [PROOFSTEP] refine' (algEquivEquivAlgHom (fixedField H) E).toEquiv.symm.trans _ [GOAL] case f F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E H_le : H ≤ fixingSubgroup (fixedField H) ⊢ (E ≃ₐ[{ x // x ∈ fixedField H }] E) ≃ { x // x ∈ fixingSubgroup (fixedField H) } [PROOFSTEP] exact (fixingSubgroupEquiv (fixedField H)).toEquiv.symm [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E x : { x // x ∈ K } y : { x // x ∈ fixedField (fixingSubgroup K) } ϕ : { x // x ∈ fixingSubgroup K } ⊢ ϕ • (↑x * ↑y) = ↑x * ↑y [PROOFSTEP] rw [smul_mul', show ϕ • (x : E) = ↑x from ϕ.2 x, show ϕ • (y : E) = ↑y from y.2 ϕ] [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E h : IsGalois F E ⊢ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K [PROOFSTEP] have K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) := (IntermediateField.le_iff_le _ _).mpr le_rfl [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E h : IsGalois F E K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) ⊢ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K [PROOFSTEP] suffices finrank K E = finrank (IntermediateField.fixedField (IntermediateField.fixingSubgroup K)) E by exact (IntermediateField.eq_of_le_of_finrank_eq' K_le this).symm [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E h : IsGalois F E K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) this : finrank { x // x ∈ K } E = finrank { x // x ∈ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) } E ⊢ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K [PROOFSTEP] exact (IntermediateField.eq_of_le_of_finrank_eq' K_le this).symm [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E h : IsGalois F E K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) ⊢ finrank { x // x ∈ K } E = finrank { x // x ∈ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) } E [PROOFSTEP] classical rw [IntermediateField.finrank_fixedField_eq_card, Fintype.card_congr (IntermediateField.fixingSubgroupEquiv K).toEquiv] exact (card_aut_eq_finrank K E).symm [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E h : IsGalois F E K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) ⊢ finrank { x // x ∈ K } E = finrank { x // x ∈ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) } E [PROOFSTEP] rw [IntermediateField.finrank_fixedField_eq_card, Fintype.card_congr (IntermediateField.fixingSubgroupEquiv K).toEquiv] [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝ : FiniteDimensional F E h : IsGalois F E K_le : K ≤ IntermediateField.fixedField (IntermediateField.fixingSubgroup K) ⊢ finrank { x // x ∈ K } E = Fintype.card (E ≃ₐ[{ x // x ∈ K }] E) [PROOFSTEP] exact (card_aut_eq_finrank K E).symm [GOAL] F : Type u_1 inst✝⁵ : Field F E : Type u_2 inst✝⁴ : Field E inst✝³ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝² : DecidablePred fun x => x ∈ IntermediateField.fixingSubgroup K inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E ⊢ Fintype.card { x // x ∈ IntermediateField.fixingSubgroup K } = finrank { x // x ∈ K } E [PROOFSTEP] conv_rhs => rw [← fixedField_fixingSubgroup K, IntermediateField.finrank_fixedField_eq_card] [GOAL] F : Type u_1 inst✝⁵ : Field F E : Type u_2 inst✝⁴ : Field E inst✝³ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝² : DecidablePred fun x => x ∈ IntermediateField.fixingSubgroup K inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E | finrank { x // x ∈ K } E [PROOFSTEP] rw [← fixedField_fixingSubgroup K, IntermediateField.finrank_fixedField_eq_card] [GOAL] F : Type u_1 inst✝⁵ : Field F E : Type u_2 inst✝⁴ : Field E inst✝³ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝² : DecidablePred fun x => x ∈ IntermediateField.fixingSubgroup K inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E | finrank { x // x ∈ K } E [PROOFSTEP] rw [← fixedField_fixingSubgroup K, IntermediateField.finrank_fixedField_eq_card] [GOAL] F : Type u_1 inst✝⁵ : Field F E : Type u_2 inst✝⁴ : Field E inst✝³ : Algebra F E H : Subgroup (E ≃ₐ[F] E) K : IntermediateField F E inst✝² : DecidablePred fun x => x ∈ IntermediateField.fixingSubgroup K inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E | finrank { x // x ∈ K } E [PROOFSTEP] rw [← fixedField_fixingSubgroup K, IntermediateField.finrank_fixedField_eq_card] [GOAL] F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E H : Subgroup (E ≃ₐ[F] E) K✝ : IntermediateField F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E K L : IntermediateField F E ⊢ ↑{ toFun := IntermediateField.fixingSubgroup, invFun := IntermediateField.fixedField, left_inv := (_ : ∀ (K : IntermediateField F E), IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K), right_inv := (_ : ∀ (H : (Subgroup (E ≃ₐ[F] E))ᵒᵈ), IntermediateField.fixingSubgroup (IntermediateField.fixedField H) = H) } K ≤ ↑{ toFun := IntermediateField.fixingSubgroup, invFun := IntermediateField.fixedField, left_inv := (_ : ∀ (K : IntermediateField F E), IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K), right_inv := (_ : ∀ (H : (Subgroup (E ≃ₐ[F] E))ᵒᵈ), IntermediateField.fixingSubgroup (IntermediateField.fixedField H) = H) } L ↔ K ≤ L [PROOFSTEP] rw [← fixedField_fixingSubgroup L, IntermediateField.le_iff_le, fixedField_fixingSubgroup L] [GOAL] F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E H : Subgroup (E ≃ₐ[F] E) K✝ : IntermediateField F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E K L : IntermediateField F E ⊢ ↑{ toFun := IntermediateField.fixingSubgroup, invFun := IntermediateField.fixedField, left_inv := (_ : ∀ (K : IntermediateField F E), IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K), right_inv := (_ : ∀ (H : (Subgroup (E ≃ₐ[F] E))ᵒᵈ), IntermediateField.fixingSubgroup (IntermediateField.fixedField H) = H) } K ≤ ↑{ toFun := IntermediateField.fixingSubgroup, invFun := IntermediateField.fixedField, left_inv := (_ : ∀ (K : IntermediateField F E), IntermediateField.fixedField (IntermediateField.fixingSubgroup K) = K), right_inv := (_ : ∀ (H : (Subgroup (E ≃ₐ[F] E))ᵒᵈ), IntermediateField.fixingSubgroup (IntermediateField.fixedField H) = H) } L ↔ IntermediateField.fixingSubgroup L ≤ IntermediateField.fixingSubgroup K [PROOFSTEP] rfl [GOAL] F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E ⊢ ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p [PROOFSTEP] cases' Field.exists_primitive_element F E with α h1 [GOAL] case intro F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E h1 : F⟮α⟯ = ⊤ ⊢ ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p [PROOFSTEP] use minpoly F α, separable F α, IsGalois.splits F α [GOAL] case adjoin_rootSet' F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E h1 : F⟮α⟯ = ⊤ ⊢ Algebra.adjoin F (Polynomial.rootSet (minpoly F α) E) = ⊤ [PROOFSTEP] rw [eq_top_iff, ← IntermediateField.top_toSubalgebra, ← h1] [GOAL] case adjoin_rootSet' F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E h1 : F⟮α⟯ = ⊤ ⊢ F⟮α⟯.toSubalgebra ≤ Algebra.adjoin F (Polynomial.rootSet (minpoly F α) E) [PROOFSTEP] rw [IntermediateField.adjoin_simple_toSubalgebra_of_integral (integral F α)] [GOAL] case adjoin_rootSet' F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E h1 : F⟮α⟯ = ⊤ ⊢ Algebra.adjoin F {α} ≤ Algebra.adjoin F (Polynomial.rootSet (minpoly F α) E) [PROOFSTEP] apply Algebra.adjoin_mono [GOAL] case adjoin_rootSet'.H F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E h1 : F⟮α⟯ = ⊤ ⊢ {α} ⊆ Polynomial.rootSet (minpoly F α) E [PROOFSTEP] rw [Set.singleton_subset_iff, Polynomial.mem_rootSet] [GOAL] case adjoin_rootSet'.H F : Type u_1 inst✝⁴ : Field F E : Type u_2 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : FiniteDimensional F E inst✝ : IsGalois F E α : E h1 : F⟮α⟯ = ⊤ ⊢ minpoly F α ≠ 0 ∧ ↑(Polynomial.aeval α) (minpoly F α) = 0 [PROOFSTEP] exact ⟨minpoly.ne_zero (integral F α), minpoly.aeval _ _⟩ [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : IntermediateField.fixedField ⊤ = ⊥ ⊢ IsGalois F E [PROOFSTEP] rw [← isGalois_iff_isGalois_bot, ← h] [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : IntermediateField.fixedField ⊤ = ⊥ ⊢ IsGalois { x // x ∈ IntermediateField.fixedField ⊤ } E [PROOFSTEP] classical exact IsGalois.of_fixed_field E (⊤ : Subgroup (E ≃ₐ[F] E)) [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : IntermediateField.fixedField ⊤ = ⊥ ⊢ IsGalois { x // x ∈ IntermediateField.fixedField ⊤ } E [PROOFSTEP] exact IsGalois.of_fixed_field E (⊤ : Subgroup (E ≃ₐ[F] E)) [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : Fintype.card (E ≃ₐ[F] E) = finrank F E ⊢ IsGalois F E [PROOFSTEP] apply of_fixedField_eq_bot [GOAL] case h F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : Fintype.card (E ≃ₐ[F] E) = finrank F E ⊢ IntermediateField.fixedField ⊤ = ⊥ [PROOFSTEP] have p : 0 < finrank (IntermediateField.fixedField (⊤ : Subgroup (E ≃ₐ[F] E))) E := finrank_pos [GOAL] case h F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : Fintype.card (E ≃ₐ[F] E) = finrank F E p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E ⊢ IntermediateField.fixedField ⊤ = ⊥ [PROOFSTEP] classical rw [← IntermediateField.finrank_eq_one_iff, ← mul_left_inj' (ne_of_lt p).symm, finrank_mul_finrank, ← h, one_mul, IntermediateField.finrank_fixedField_eq_card] apply Fintype.card_congr exact { toFun := fun g => ⟨g, Subgroup.mem_top g⟩ invFun := (↑) left_inv := fun g => rfl right_inv := fun _ => by ext; rfl } [GOAL] case h F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : Fintype.card (E ≃ₐ[F] E) = finrank F E p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E ⊢ IntermediateField.fixedField ⊤ = ⊥ [PROOFSTEP] rw [← IntermediateField.finrank_eq_one_iff, ← mul_left_inj' (ne_of_lt p).symm, finrank_mul_finrank, ← h, one_mul, IntermediateField.finrank_fixedField_eq_card] [GOAL] case h F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : Fintype.card (E ≃ₐ[F] E) = finrank F E p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E ⊢ Fintype.card (E ≃ₐ[F] E) = Fintype.card { x // x ∈ ⊤ } [PROOFSTEP] apply Fintype.card_congr [GOAL] case h.f F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : Fintype.card (E ≃ₐ[F] E) = finrank F E p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E ⊢ (E ≃ₐ[F] E) ≃ { x // x ∈ ⊤ } [PROOFSTEP] exact { toFun := fun g => ⟨g, Subgroup.mem_top g⟩ invFun := (↑) left_inv := fun g => rfl right_inv := fun _ => by ext; rfl } [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : Fintype.card (E ≃ₐ[F] E) = finrank F E p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E x✝ : { x // x ∈ ⊤ } ⊢ (fun g => { val := g, property := (_ : g ∈ ⊤) }) ↑x✝ = x✝ [PROOFSTEP] ext [GOAL] case a.h F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E inst✝ : FiniteDimensional F E h : Fintype.card (E ≃ₐ[F] E) = finrank F E p : 0 < finrank { x // x ∈ IntermediateField.fixedField ⊤ } E x✝ : { x // x ∈ ⊤ } a✝ : E ⊢ ↑↑((fun g => { val := g, property := (_ : g ∈ ⊤) }) ↑x✝) a✝ = ↑↑x✝ a✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) = Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ } [PROOFSTEP] have h : IsIntegral K x := isIntegral_of_isScalarTower (isIntegral_of_noetherian (IsNoetherian.iff_fg.2 hFE) x) [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x ⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) = Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ } [PROOFSTEP] have h1 : p ≠ 0 := fun hp => by rw [hp, Polynomial.map_zero, Polynomial.roots_zero] at hx exact Multiset.not_mem_zero x hx [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp✝ : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x hp : p = 0 ⊢ False [PROOFSTEP] rw [hp, Polynomial.map_zero, Polynomial.roots_zero] at hx [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp✝ : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ 0 inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x hp : p = 0 ⊢ False [PROOFSTEP] exact Multiset.not_mem_zero x hx [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 ⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) = Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ } [PROOFSTEP] have h2 : minpoly K x ∣ p.map (algebraMap F K) := by apply minpoly.dvd rw [Polynomial.aeval_def, Polynomial.eval₂_map, ← Polynomial.eval_map, ← IsScalarTower.algebraMap_eq] exact (Polynomial.mem_roots (Polynomial.map_ne_zero h1)).mp hx [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 ⊢ minpoly K x ∣ Polynomial.map (algebraMap F K) p [PROOFSTEP] apply minpoly.dvd [GOAL] case hp F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 ⊢ ↑(Polynomial.aeval x) (Polynomial.map (algebraMap F K) p) = 0 [PROOFSTEP] rw [Polynomial.aeval_def, Polynomial.eval₂_map, ← Polynomial.eval_map, ← IsScalarTower.algebraMap_eq] [GOAL] case hp F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 ⊢ Polynomial.eval x (Polynomial.map (algebraMap F E) p) = 0 [PROOFSTEP] exact (Polynomial.mem_roots (Polynomial.map_ne_zero h1)).mp hx [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p ⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) = Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ } [PROOFSTEP] let key_equiv : (K⟮x⟯.restrictScalars F →ₐ[F] E) ≃ Σ f : K →ₐ[F] E, @AlgHom K K⟮x⟯ E _ _ _ _ (RingHom.toAlgebra f) := by change (K⟮x⟯ →ₐ[F] E) ≃ Σ f : K →ₐ[F] E, _ exact algHomEquivSigma [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p ⊢ ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) [PROOFSTEP] change (K⟮x⟯ →ₐ[F] E) ≃ Σ f : K →ₐ[F] E, _ [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p ⊢ ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) [PROOFSTEP] exact algHomEquivSigma [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this ⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) = Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ } [PROOFSTEP] haveI : ∀ f : K →ₐ[F] E, Fintype (@AlgHom K K⟮x⟯ E _ _ _ _ (RingHom.toAlgebra f)) := fun f => by have := Fintype.ofEquiv _ key_equiv apply Fintype.ofInjective (Sigma.mk f) fun _ _ H => eq_of_heq (Sigma.ext_iff.mp H).2 [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this f : K →ₐ[F] E ⊢ Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) [PROOFSTEP] have := Fintype.ofEquiv _ key_equiv [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this f : K →ₐ[F] E this : Fintype ((f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)) ⊢ Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) [PROOFSTEP] apply Fintype.ofInjective (Sigma.mk f) fun _ _ H => eq_of_heq (Sigma.ext_iff.mp H).2 [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) ⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) = Fintype.card (K →ₐ[F] E) * finrank K { x_1 // x_1 ∈ K⟮x⟯ } [PROOFSTEP] rw [Fintype.card_congr key_equiv, Fintype.card_sigma, IntermediateField.adjoin.finrank h] [GOAL] F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) ⊢ (Finset.sum Finset.univ fun a => Fintype.card ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E)) = Fintype.card (K →ₐ[F] E) * Polynomial.natDegree (minpoly K x) [PROOFSTEP] apply Finset.sum_const_nat [GOAL] case h₁ F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) ⊢ ∀ (x_1 : K →ₐ[F] E), x_1 ∈ Finset.univ → Fintype.card ({ x_2 // x_2 ∈ K⟮x⟯ } →ₐ[K] E) = Polynomial.natDegree (minpoly K x) [PROOFSTEP] intro f _ [GOAL] case h₁ F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) f : K →ₐ[F] E a✝ : f ∈ Finset.univ ⊢ Fintype.card ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) = Polynomial.natDegree (minpoly K x) [PROOFSTEP] rw [← @IntermediateField.card_algHom_adjoin_integral K _ E _ _ x E _ (RingHom.toAlgebra f) h] [GOAL] case h₁ F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) f : K →ₐ[F] E a✝ : f ∈ Finset.univ ⊢ Fintype.card ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) = Fintype.card ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) [PROOFSTEP] congr! [GOAL] case h₁.h_sep F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) f : K →ₐ[F] E a✝ : f ∈ Finset.univ ⊢ Polynomial.Separable (minpoly K x) [PROOFSTEP] exact Polynomial.Separable.of_dvd ((Polynomial.separable_map (algebraMap F K)).mpr hp) h2 [GOAL] case h₁.h_splits F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) f : K →ₐ[F] E a✝ : f ∈ Finset.univ ⊢ Polynomial.Splits (algebraMap K E) (minpoly K x) [PROOFSTEP] refine' Polynomial.splits_of_splits_of_dvd _ (Polynomial.map_ne_zero h1) _ h2 [GOAL] case h₁.h_splits F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) f : K →ₐ[F] E a✝ : f ∈ Finset.univ ⊢ Polynomial.Splits (algebraMap K E) (Polynomial.map (algebraMap F K) p) [PROOFSTEP] rw [Polynomial.splits_map_iff, ← @IsScalarTower.algebraMap_eq _ _ _ _ _ _ _ (_) _ _] [GOAL] case h₁.h_splits F : Type u_1 inst✝⁸ : Field F E : Type u_2 inst✝⁷ : Field E inst✝⁶ : Algebra F E p : F[X] hFE : FiniteDimensional F E sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p K : Type u_3 inst✝⁵ : Field K inst✝⁴ : Algebra F K inst✝³ : Algebra K E inst✝² : IsScalarTower F K E x : E hx : x ∈ Polynomial.roots (Polynomial.map (algebraMap F E) p) inst✝¹ : Fintype (K →ₐ[F] E) inst✝ : Fintype ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) h : IsIntegral K x h1 : p ≠ 0 h2 : minpoly K x ∣ Polynomial.map (algebraMap F K) p key_equiv : ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F K⟮x⟯ } →ₐ[F] E) ≃ (f : K →ₐ[F] E) × ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) := let_fun this := algHomEquivSigma; this this : (f : K →ₐ[F] E) → Fintype ({ x_1 // x_1 ∈ K⟮x⟯ } →ₐ[K] E) f : K →ₐ[F] E a✝ : f ∈ Finset.univ ⊢ Polynomial.Splits (algebraMap F E) p [PROOFSTEP] exact sp.splits [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p ⊢ IsGalois F E [PROOFSTEP] haveI hFE : FiniteDimensional F E := Polynomial.IsSplittingField.finiteDimensional E p [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E ⊢ IsGalois F E [PROOFSTEP] letI := Classical.decEq E [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E ⊢ IsGalois F E [PROOFSTEP] let s := (p.map (algebraMap F E)).roots.toFinset [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) ⊢ IsGalois F E [PROOFSTEP] have adjoin_root : IntermediateField.adjoin F (s : Set E) = ⊤ := by apply IntermediateField.toSubalgebra_injective rw [IntermediateField.top_toSubalgebra, ← top_le_iff, ← sp.adjoin_rootSet] apply IntermediateField.algebra_adjoin_le_adjoin [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) ⊢ IntermediateField.adjoin F ↑s = ⊤ [PROOFSTEP] apply IntermediateField.toSubalgebra_injective [GOAL] case h F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) ⊢ (IntermediateField.adjoin F ↑s).toSubalgebra = ⊤.toSubalgebra [PROOFSTEP] rw [IntermediateField.top_toSubalgebra, ← top_le_iff, ← sp.adjoin_rootSet] [GOAL] case h F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) ⊢ Algebra.adjoin F (Polynomial.rootSet p E) ≤ (IntermediateField.adjoin F ↑s).toSubalgebra [PROOFSTEP] apply IntermediateField.algebra_adjoin_le_adjoin [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ ⊢ IsGalois F E [PROOFSTEP] let P : IntermediateField F E → Prop := fun K => Fintype.card (K →ₐ[F] E) = finrank F K [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } ⊢ IsGalois F E [PROOFSTEP] suffices P (IntermediateField.adjoin F ↑s) by rw [adjoin_root] at this apply of_card_aut_eq_finrank rw [← Eq.trans this (LinearEquiv.finrank_eq IntermediateField.topEquiv.toLinearEquiv)] exact Fintype.card_congr ((algEquivEquivAlgHom F E).toEquiv.trans (IntermediateField.topEquiv.symm.arrowCongr AlgEquiv.refl)) [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this✝ : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } this : P (IntermediateField.adjoin F ↑s) ⊢ IsGalois F E [PROOFSTEP] rw [adjoin_root] at this [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this✝ : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } this : P ⊤ ⊢ IsGalois F E [PROOFSTEP] apply of_card_aut_eq_finrank [GOAL] case h F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this✝ : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } this : P ⊤ ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] rw [← Eq.trans this (LinearEquiv.finrank_eq IntermediateField.topEquiv.toLinearEquiv)] [GOAL] case h F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this✝ : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } this : P ⊤ ⊢ Fintype.card (E ≃ₐ[F] E) = Fintype.card ({ x // x ∈ ⊤ } →ₐ[F] E) [PROOFSTEP] exact Fintype.card_congr ((algEquivEquivAlgHom F E).toEquiv.trans (IntermediateField.topEquiv.symm.arrowCongr AlgEquiv.refl)) [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } ⊢ P (IntermediateField.adjoin F ↑s) [PROOFSTEP] apply IntermediateField.induction_on_adjoin_finset s P [GOAL] case base F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } ⊢ P ⊥ [PROOFSTEP] have key := IntermediateField.card_algHom_adjoin_integral F (K := E) (show IsIntegral F (0 : E) from isIntegral_zero) [GOAL] case base F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } key : Polynomial.Separable (minpoly F 0) → Polynomial.Splits (algebraMap F E) (minpoly F 0) → Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = Polynomial.natDegree (minpoly F 0) ⊢ P ⊥ [PROOFSTEP] rw [minpoly.zero, Polynomial.natDegree_X] at key [GOAL] case base F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } key : Polynomial.Separable Polynomial.X → Polynomial.Splits (algebraMap F E) Polynomial.X → Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = 1 ⊢ P ⊥ [PROOFSTEP] specialize key Polynomial.separable_X (Polynomial.splits_X (algebraMap F E)) [GOAL] case base F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } key : Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = 1 ⊢ P ⊥ [PROOFSTEP] rw [← @Subalgebra.finrank_bot F E _ _ _, ← IntermediateField.bot_toSubalgebra] at key [GOAL] case base F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } key : Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = finrank F { x // x ∈ ⊥.toSubalgebra } ⊢ P ⊥ [PROOFSTEP] refine' Eq.trans _ key [GOAL] case base F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } key : Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = finrank F { x // x ∈ ⊥.toSubalgebra } ⊢ Fintype.card ({ x // x ∈ ⊥ } →ₐ[F] E) = Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) [PROOFSTEP] apply @Fintype.card_congr _ _ _ (_) _ [GOAL] F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } key : Fintype.card ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) = finrank F { x // x ∈ ⊥.toSubalgebra } ⊢ ({ x // x ∈ ⊥ } →ₐ[F] E) ≃ ({ x // x ∈ F⟮0⟯ } →ₐ[F] E) [PROOFSTEP] rw [IntermediateField.adjoin_zero] [GOAL] case ih F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } ⊢ ∀ (K : IntermediateField F E) (x : E), x ∈ s → P K → P (IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯) [PROOFSTEP] intro K x hx hK [GOAL] case ih F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑s = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } K : IntermediateField F E x : E hx : x ∈ s hK : P K ⊢ P (IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯) [PROOFSTEP] simp only at * -- Porting note: need to specify two implicit arguments of `finrank_mul_finrank` [GOAL] case ih F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑(Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))) = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } K : IntermediateField F E x : E hx : x ∈ Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) hK : Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } ⊢ Fintype.card ({ x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ } →ₐ[F] E) = finrank F { x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ } [PROOFSTEP] rw [of_separable_splitting_field_aux hp K (Multiset.mem_toFinset.mp hx), hK, @finrank_mul_finrank _ _ _ _ _ _ _ K⟮x⟯.module _ K⟮x⟯.isScalarTower _] [GOAL] case ih F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑(Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))) = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } K : IntermediateField F E x : E hx : x ∈ Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) hK : Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } ⊢ finrank F { x_1 // x_1 ∈ { x // x ∈ K }⟮x⟯ } = finrank F { x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ } [PROOFSTEP] symm [GOAL] case ih F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑(Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))) = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } K : IntermediateField F E x : E hx : x ∈ Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) hK : Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } ⊢ finrank F { x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ } = finrank F { x_1 // x_1 ∈ { x // x ∈ K }⟮x⟯ } [PROOFSTEP] refine' LinearEquiv.finrank_eq _ [GOAL] case ih F : Type u_1 inst✝² : Field F E : Type u_2 inst✝¹ : Field E inst✝ : Algebra F E p : F[X] sp : Polynomial.IsSplittingField F E p hp : Polynomial.Separable p hFE : FiniteDimensional F E this : DecidableEq E := Classical.decEq E s : Finset E := Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) adjoin_root : IntermediateField.adjoin F ↑(Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p))) = ⊤ P : IntermediateField F E → Prop := fun K => Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } K : IntermediateField F E x : E hx : x ∈ Multiset.toFinset (Polynomial.roots (Polynomial.map (algebraMap F E) p)) hK : Fintype.card ({ x // x ∈ K } →ₐ[F] E) = finrank F { x // x ∈ K } ⊢ { x_1 // x_1 ∈ IntermediateField.restrictScalars F { x // x ∈ K }⟮x⟯ } ≃ₗ[F] { x_1 // x_1 ∈ { x // x ∈ K }⟮x⟯ } [PROOFSTEP] rfl [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E ⊢ List.TFAE [IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E, ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p] [PROOFSTEP] tfae_have 1 → 2 [GOAL] case tfae_1_to_2 F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E ⊢ IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ [PROOFSTEP] exact fun h => OrderIso.map_bot (@intermediateFieldEquivSubgroup F _ E _ _ _ h).symm [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ ⊢ List.TFAE [IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E, ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p] [PROOFSTEP] tfae_have 1 → 3 [GOAL] case tfae_1_to_3 F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ ⊢ IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] intro [GOAL] case tfae_1_to_3 F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ ✝ : IsGalois F E ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E [PROOFSTEP] exact card_aut_eq_finrank F E [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E ⊢ List.TFAE [IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E, ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p] [PROOFSTEP] tfae_have 1 → 4 [GOAL] case tfae_1_to_4 F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E ⊢ IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p [PROOFSTEP] intro [GOAL] case tfae_1_to_4 F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E ✝ : IsGalois F E ⊢ ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p [PROOFSTEP] exact is_separable_splitting_field F E [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p ⊢ List.TFAE [IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E, ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p] [PROOFSTEP] tfae_have 2 → 1 [GOAL] case tfae_2_to_1 F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p ⊢ IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E [PROOFSTEP] exact of_fixedField_eq_bot F E [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E ⊢ List.TFAE [IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E, ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p] [PROOFSTEP] tfae_have 3 → 1 [GOAL] case tfae_3_to_1 F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E ⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E [PROOFSTEP] exact of_card_aut_eq_finrank F E [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E tfae_3_to_1 : Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E ⊢ List.TFAE [IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E, ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p] [PROOFSTEP] tfae_have 4 → 1 [GOAL] case tfae_4_to_1 F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E tfae_3_to_1 : Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E ⊢ (∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p) → IsGalois F E [PROOFSTEP] rintro ⟨h, hp1, _⟩ [GOAL] case tfae_4_to_1.intro.intro F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E tfae_3_to_1 : Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E h : F[X] hp1 : Polynomial.Separable h right✝ : Polynomial.IsSplittingField F E h ⊢ IsGalois F E [PROOFSTEP] exact of_separable_splitting_field hp1 [GOAL] F : Type u_1 inst✝³ : Field F E : Type u_2 inst✝² : Field E inst✝¹ : Algebra F E p : F[X] inst✝ : FiniteDimensional F E tfae_1_to_2 : IsGalois F E → IntermediateField.fixedField ⊤ = ⊥ tfae_1_to_3 : IsGalois F E → Fintype.card (E ≃ₐ[F] E) = finrank F E tfae_1_to_4 : IsGalois F E → ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p tfae_2_to_1 : IntermediateField.fixedField ⊤ = ⊥ → IsGalois F E tfae_3_to_1 : Fintype.card (E ≃ₐ[F] E) = finrank F E → IsGalois F E tfae_4_to_1 : (∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p) → IsGalois F E ⊢ List.TFAE [IsGalois F E, IntermediateField.fixedField ⊤ = ⊥, Fintype.card (E ≃ₐ[F] E) = finrank F E, ∃ p, Polynomial.Separable p ∧ Polynomial.IsSplittingField F E p] [PROOFSTEP] tfae_finish
{"mathlib_filename": "Mathlib.FieldTheory.Galois", "llama_tokens": 69721}
[GOAL] α : Type u x : Tree α ⊢ numLeaves x = numNodes x + 1 [PROOFSTEP] induction x [GOAL] case nil α : Type u ⊢ numLeaves nil = numNodes nil + 1 [PROOFSTEP] simp [*, Nat.add_comm, Nat.add_assoc, Nat.add_left_comm] [GOAL] case node α : Type u a✝² : α a✝¹ a✝ : Tree α a_ih✝¹ : numLeaves a✝¹ = numNodes a✝¹ + 1 a_ih✝ : numLeaves a✝ = numNodes a✝ + 1 ⊢ numLeaves (node a✝² a✝¹ a✝) = numNodes (node a✝² a✝¹ a✝) + 1 [PROOFSTEP] simp [*, Nat.add_comm, Nat.add_assoc, Nat.add_left_comm] [GOAL] α : Type u x : Tree α ⊢ 0 < numLeaves x [PROOFSTEP] rw [numLeaves_eq_numNodes_succ] [GOAL] α : Type u x : Tree α ⊢ 0 < numNodes x + 1 [PROOFSTEP] exact x.numNodes.zero_lt_succ [GOAL] α : Type u h : nil ≠ nil ⊢ node () (left nil) (right nil) = nil [PROOFSTEP] trivial
{"mathlib_filename": "Mathlib.Data.Tree", "llama_tokens": 393}
[GOAL] n : ℕ α : TypeVec n β : TypeVec n f g : α ⟹ β ⊢ (∀ (i : Fin2 n), f i = g i) → f = g [PROOFSTEP] intro h [GOAL] n : ℕ α : TypeVec n β : TypeVec n f g : α ⟹ β h : ∀ (i : Fin2 n), f i = g i ⊢ f = g [PROOFSTEP] funext i [GOAL] case h n : ℕ α : TypeVec n β : TypeVec n f g : α ⟹ β h : ∀ (i : Fin2 n), f i = g i i : Fin2 n ⊢ f i = g i [PROOFSTEP] apply h [GOAL] n : ℕ α : TypeVec (n + 1) i : Fin2 (n + 1) ⊢ (drop α ::: last α) i = α i [PROOFSTEP] cases i [GOAL] case fz n : ℕ α : TypeVec (n + 1) ⊢ (drop α ::: last α) Fin2.fz = α Fin2.fz [PROOFSTEP] rfl [GOAL] case fs n : ℕ α : TypeVec (n + 1) a✝ : Fin2 (Nat.add n 0) ⊢ (drop α ::: last α) (Fin2.fs a✝) = α (Fin2.fs a✝) [PROOFSTEP] rfl [GOAL] n : ℕ C : TypeVec (n + 1) → Sort u H : (α : TypeVec n) → (β : Type ?u.25747) → C (α ::: β) γ : TypeVec (n + 1) ⊢ C γ [PROOFSTEP] rw [← @append1_drop_last _ γ] [GOAL] n : ℕ C : TypeVec (n + 1) → Sort u H : (α : TypeVec n) → (β : Type ?u.25747) → C (α ::: β) γ : TypeVec (n + 1) ⊢ C (drop γ ::: last γ) [PROOFSTEP] apply H [GOAL] n : ℕ α : TypeVec 0 β : TypeVec 0 i : Fin2 0 ⊢ α i → β i [PROOFSTEP] apply Fin2.elim0 i [GOAL] n : ℕ α : TypeVec (n + 1) β : TypeVec (n + 1) f g : α ⟹ β h₀ : dropFun f = dropFun g h₁ : lastFun f = lastFun g ⊢ f = g [PROOFSTEP] refine funext (fun x => ?_) [GOAL] n : ℕ α : TypeVec (n + 1) β : TypeVec (n + 1) f g : α ⟹ β h₀ : dropFun f = dropFun g h₁ : lastFun f = lastFun g x : Fin2 (n + 1) ⊢ f x = g x [PROOFSTEP] cases x [GOAL] case fz n : ℕ α : TypeVec (n + 1) β : TypeVec (n + 1) f g : α ⟹ β h₀ : dropFun f = dropFun g h₁ : lastFun f = lastFun g ⊢ f Fin2.fz = g Fin2.fz [PROOFSTEP] apply h₁ [GOAL] case fs n : ℕ α : TypeVec (n + 1) β : TypeVec (n + 1) f g : α ⟹ β h₀ : dropFun f = dropFun g h₁ : lastFun f = lastFun g a✝ : Fin2 (Nat.add n 0) ⊢ f (Fin2.fs a✝) = g (Fin2.fs a✝) [PROOFSTEP] apply congr_fun h₀ [GOAL] n : ℕ α : TypeVec (n + 1) α' : TypeVec (n + 1) f f' : drop α ⟹ drop α' g g' : last α → last α' H : splitFun f g = splitFun f' g' ⊢ f = f' ∧ g = g' [PROOFSTEP] rw [← dropFun_splitFun f g, H, ← lastFun_splitFun f g, H] [GOAL] n : ℕ α : TypeVec (n + 1) α' : TypeVec (n + 1) f f' : drop α ⟹ drop α' g g' : last α → last α' H : splitFun f g = splitFun f' g' ⊢ dropFun (splitFun f' g') = f' ∧ lastFun (splitFun f' g') = g' [PROOFSTEP] simp [GOAL] n : ℕ α₀ : TypeVec 0 f₀ : α₀ ⟹ Fin2.elim0 x : Fin2 0 ⊢ (nilFun ⊚ f₀) x = f₀ x [PROOFSTEP] apply Fin2.elim0 x [GOAL] n : ℕ a✝ b : TypeVec 0 a : Fin2 0 ⊢ a✝ a = b a [PROOFSTEP] apply Fin2.elim0 a [GOAL] n : ℕ β : TypeVec 0 → Sort u_1 f : β Fin2.elim0 v : TypeVec 0 ⊢ β Fin2.elim0 = β v [PROOFSTEP] congr [GOAL] case e_a n : ℕ β : TypeVec 0 → Sort u_1 f : β Fin2.elim0 v : TypeVec 0 ⊢ Fin2.elim0 = v [PROOFSTEP] funext i [GOAL] case e_a.h n : ℕ β : TypeVec 0 → Sort u_1 f : β Fin2.elim0 v : TypeVec 0 i : Fin2 0 ⊢ Fin2.elim0 i = v i [PROOFSTEP] cases i [GOAL] n✝ n : ℕ β : TypeVec (n + 1) → Sort u_1 f : (t : Type ?u.47809) → (v : TypeVec n) → β (v ::: t) v : TypeVec (n + 1) ⊢ β (drop v ::: last v) = β v [PROOFSTEP] simp [GOAL] n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' ⊢ β v v' fs [PROOFSTEP] refine' cast _ f [GOAL] n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' ⊢ β Fin2.elim0 Fin2.elim0 nilFun = β v v' fs [PROOFSTEP] have eq₁ : v = Fin2.elim0 := by funext i; contradiction [GOAL] n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' ⊢ v = Fin2.elim0 [PROOFSTEP] funext i [GOAL] case h n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' i : Fin2 0 ⊢ v i = Fin2.elim0 i [PROOFSTEP] contradiction [GOAL] n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' eq₁ : v = Fin2.elim0 ⊢ β Fin2.elim0 Fin2.elim0 nilFun = β v v' fs [PROOFSTEP] have eq₂ : v' = Fin2.elim0 := by funext i; contradiction [GOAL] n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' eq₁ : v = Fin2.elim0 ⊢ v' = Fin2.elim0 [PROOFSTEP] funext i [GOAL] case h n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' eq₁ : v = Fin2.elim0 i : Fin2 0 ⊢ v' i = Fin2.elim0 i [PROOFSTEP] contradiction [GOAL] n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' eq₁ : v = Fin2.elim0 eq₂ : v' = Fin2.elim0 ⊢ β Fin2.elim0 Fin2.elim0 nilFun = β v v' fs [PROOFSTEP] have eq₃ : fs = nilFun := by funext i; contradiction [GOAL] n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' eq₁ : v = Fin2.elim0 eq₂ : v' = Fin2.elim0 ⊢ fs = nilFun [PROOFSTEP] funext i [GOAL] case h n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' eq₁ : v = Fin2.elim0 eq₂ : v' = Fin2.elim0 i : Fin2 0 ⊢ fs i = nilFun i [PROOFSTEP] contradiction [GOAL] n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v : TypeVec 0 v' : TypeVec 0 fs : v ⟹ v' eq₁ : v = Fin2.elim0 eq₂ : v' = Fin2.elim0 eq₃ : fs = nilFun ⊢ β Fin2.elim0 Fin2.elim0 nilFun = β v v' fs [PROOFSTEP] cases eq₁ [GOAL] case refl n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun v' : TypeVec 0 eq₂ : v' = Fin2.elim0 fs : Fin2.elim0 ⟹ v' eq₃ : fs = nilFun ⊢ β Fin2.elim0 Fin2.elim0 nilFun = β Fin2.elim0 v' fs [PROOFSTEP] cases eq₂ [GOAL] case refl.refl n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun fs : Fin2.elim0 ⟹ Fin2.elim0 eq₃ : fs = nilFun ⊢ β Fin2.elim0 Fin2.elim0 nilFun = β Fin2.elim0 Fin2.elim0 fs [PROOFSTEP] cases eq₃ [GOAL] case refl.refl.refl n : ℕ β : (v : TypeVec 0) → (v' : TypeVec 0) → v ⟹ v' → Sort u_1 f : β Fin2.elim0 Fin2.elim0 nilFun ⊢ β Fin2.elim0 Fin2.elim0 nilFun = β Fin2.elim0 Fin2.elim0 nilFun [PROOFSTEP] rfl [GOAL] n✝ n : ℕ β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1 F : (t : Type ?u.50165) → (t' : Type ?u.50168) → (f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f) ⊢ (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → (fs : v ⟹ v') → β v v' fs [PROOFSTEP] intro v v' [GOAL] n✝ n : ℕ β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1 F : (t : Type ?u.50165) → (t' : Type ?u.50168) → (f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f) v : TypeVec (n + 1) v' : TypeVec (n + 1) ⊢ (fs : v ⟹ v') → β v v' fs [PROOFSTEP] rw [← append1_drop_last v, ← append1_drop_last v'] [GOAL] n✝ n : ℕ β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1 F : (t : Type ?u.50165) → (t' : Type ?u.50168) → (f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f) v : TypeVec (n + 1) v' : TypeVec (n + 1) ⊢ (fs : drop v ::: last v ⟹ drop v' ::: last v') → β (drop v ::: last v) (drop v' ::: last v') fs [PROOFSTEP] intro fs [GOAL] n✝ n : ℕ β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1 F : (t : Type ?u.50165) → (t' : Type ?u.50168) → (f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f) v : TypeVec (n + 1) v' : TypeVec (n + 1) fs : drop v ::: last v ⟹ drop v' ::: last v' ⊢ β (drop v ::: last v) (drop v' ::: last v') fs [PROOFSTEP] rw [← split_dropFun_lastFun fs] [GOAL] n✝ n : ℕ β : (v : TypeVec (n + 1)) → (v' : TypeVec (n + 1)) → v ⟹ v' → Sort u_1 F : (t : Type ?u.50165) → (t' : Type ?u.50168) → (f : t → t') → (v : TypeVec n) → (v' : TypeVec n) → (fs : v ⟹ v') → β (v ::: t) (v' ::: t') (fs ::: f) v : TypeVec (n + 1) v' : TypeVec (n + 1) fs : drop v ::: last v ⟹ drop v' ::: last v' ⊢ β (drop v ::: last v) (drop v' ::: last v') (splitFun (dropFun fs) (lastFun fs)) [PROOFSTEP] apply F [GOAL] n : ℕ β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1 f : β nilFun ⊢ (f : Fin2.elim0 ⟹ Fin2.elim0) → β f [PROOFSTEP] intro g [GOAL] n : ℕ β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1 f : β nilFun g : Fin2.elim0 ⟹ Fin2.elim0 ⊢ β g [PROOFSTEP] have : g = nilFun [GOAL] case this n : ℕ β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1 f : β nilFun g : Fin2.elim0 ⟹ Fin2.elim0 ⊢ g = nilFun n : ℕ β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1 f : β nilFun g : Fin2.elim0 ⟹ Fin2.elim0 this : g = nilFun ⊢ β g [PROOFSTEP] ext ⟨⟩ [GOAL] n : ℕ β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1 f : β nilFun g : Fin2.elim0 ⟹ Fin2.elim0 this : g = nilFun ⊢ β g [PROOFSTEP] rw [this] [GOAL] n : ℕ β : Fin2.elim0 ⟹ Fin2.elim0 → Sort u_1 f : β nilFun g : Fin2.elim0 ⟹ Fin2.elim0 this : g = nilFun ⊢ β nilFun [PROOFSTEP] exact f [GOAL] n✝ n : ℕ t : Type u_1 t' : Type u_2 v : TypeVec n v' : TypeVec n β : v ::: t ⟹ v' ::: t' → Sort u_3 F : (f : t → t') → (fs : v ⟹ v') → β (fs ::: f) ⊢ (fs : v ::: t ⟹ v' ::: t') → β fs [PROOFSTEP] intro fs [GOAL] n✝ n : ℕ t : Type u_1 t' : Type u_2 v : TypeVec n v' : TypeVec n β : v ::: t ⟹ v' ::: t' → Sort u_3 F : (f : t → t') → (fs : v ⟹ v') → β (fs ::: f) fs : v ::: t ⟹ v' ::: t' ⊢ β fs [PROOFSTEP] rw [← split_dropFun_lastFun fs] [GOAL] n✝ n : ℕ t : Type u_1 t' : Type u_2 v : TypeVec n v' : TypeVec n β : v ::: t ⟹ v' ::: t' → Sort u_3 F : (f : t → t') → (fs : v ⟹ v') → β (fs ::: f) fs : v ::: t ⟹ v' ::: t' ⊢ β (splitFun (dropFun fs) (lastFun fs)) [PROOFSTEP] apply F [GOAL] n✝ : ℕ β : Type u_1 γ : Type u_2 x : γ n : ℕ α : TypeVec n ⊢ TypeVec.const x (α ::: β) = (TypeVec.const x α ::: fun x_1 => x) [PROOFSTEP] ext i : 1 [GOAL] case a n✝ : ℕ β : Type u_1 γ : Type u_2 x : γ n : ℕ α : TypeVec n i : Fin2 (n + 1) ⊢ TypeVec.const x (α ::: β) i = (TypeVec.const x α ::: fun x_1 => x) i [PROOFSTEP] cases i [GOAL] case a.fz n✝ : ℕ β : Type u_1 γ : Type u_2 x : γ n : ℕ α : TypeVec n ⊢ TypeVec.const x (α ::: β) Fin2.fz = (TypeVec.const x α ::: fun x_1 => x) Fin2.fz [PROOFSTEP] rfl [GOAL] case a.fs n✝ : ℕ β : Type u_1 γ : Type u_2 x : γ n : ℕ α : TypeVec n a✝ : Fin2 (Nat.add n 0) ⊢ TypeVec.const x (α ::: β) (Fin2.fs a✝) = (TypeVec.const x α ::: fun x_1 => x) (Fin2.fs a✝) [PROOFSTEP] rfl [GOAL] n : ℕ α : TypeVec 0 β : TypeVec 0 f : α ⟹ β ⊢ f = nilFun [PROOFSTEP] ext x [GOAL] case a.h n : ℕ α : TypeVec 0 β : TypeVec 0 f : α ⟹ β x : Fin2 0 x✝ : α x ⊢ f x x✝ = nilFun x x✝ [PROOFSTEP] cases x [GOAL] n : ℕ α : TypeVec 0 ⊢ id = nilFun [PROOFSTEP] ext x [GOAL] case a.h n : ℕ α : TypeVec 0 x : Fin2 0 x✝ : α x ⊢ id x x✝ = nilFun x x✝ [PROOFSTEP] cases x [GOAL] n : ℕ β : Type u_1 x : β α : TypeVec 0 ⊢ TypeVec.const x α = nilFun [PROOFSTEP] ext i : 1 [GOAL] case a n : ℕ β : Type u_1 x : β α : TypeVec 0 i : Fin2 0 ⊢ TypeVec.const x α i = nilFun i [PROOFSTEP] cases i [GOAL] n✝ : ℕ β : Type u_1 n : ℕ α : TypeVec n ⊢ repeatEq (α ::: β) = splitFun (repeatEq α) (uncurry Eq) [PROOFSTEP] induction n [GOAL] case zero n : ℕ β : Type u_1 α : TypeVec zero ⊢ repeatEq (α ::: β) = splitFun (repeatEq α) (uncurry Eq) [PROOFSTEP] rfl [GOAL] case succ n : ℕ β : Type u_1 n✝ : ℕ n_ih✝ : ∀ (α : TypeVec n✝), repeatEq (α ::: β) = splitFun (repeatEq α) (uncurry Eq) α : TypeVec (succ n✝) ⊢ repeatEq (α ::: β) = splitFun (repeatEq α) (uncurry Eq) [PROOFSTEP] rfl [GOAL] n : ℕ α : TypeVec 0 ⊢ repeatEq α = nilFun [PROOFSTEP] ext i [GOAL] case a.h n : ℕ α : TypeVec 0 i : Fin2 0 x✝ : (α ⊗ α) i ⊢ repeatEq α i x✝ = nilFun i x✝ [PROOFSTEP] cases i [GOAL] n : ℕ α : TypeVec n i : Fin2 n x : α i p : Prop ⊢ ofRepeat (TypeVec.const p α i x) ↔ p [PROOFSTEP] induction i [GOAL] case fz n : ℕ p : Prop n✝ : ℕ α : TypeVec (succ n✝) x : α Fin2.fz ⊢ ofRepeat (TypeVec.const p α Fin2.fz x) ↔ p case fs n : ℕ p : Prop n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} {x : α a✝}, ofRepeat (TypeVec.const p α a✝ x) ↔ p α : TypeVec (succ n✝) x : α (Fin2.fs a✝) ⊢ ofRepeat (TypeVec.const p α (Fin2.fs a✝) x) ↔ p [PROOFSTEP] case fz => rfl [GOAL] n : ℕ p : Prop n✝ : ℕ α : TypeVec (succ n✝) x : α Fin2.fz ⊢ ofRepeat (TypeVec.const p α Fin2.fz x) ↔ p [PROOFSTEP] case fz => rfl [GOAL] n : ℕ p : Prop n✝ : ℕ α : TypeVec (succ n✝) x : α Fin2.fz ⊢ ofRepeat (TypeVec.const p α Fin2.fz x) ↔ p [PROOFSTEP] rfl [GOAL] case fs n : ℕ p : Prop n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} {x : α a✝}, ofRepeat (TypeVec.const p α a✝ x) ↔ p α : TypeVec (succ n✝) x : α (Fin2.fs a✝) ⊢ ofRepeat (TypeVec.const p α (Fin2.fs a✝) x) ↔ p [PROOFSTEP] case fs _ ih => erw [TypeVec.const, @ih (drop α) x] [GOAL] n : ℕ p : Prop n✝ : ℕ a✝ : Fin2 n✝ ih : ∀ {α : TypeVec n✝} {x : α a✝}, ofRepeat (TypeVec.const p α a✝ x) ↔ p α : TypeVec (succ n✝) x : α (Fin2.fs a✝) ⊢ ofRepeat (TypeVec.const p α (Fin2.fs a✝) x) ↔ p [PROOFSTEP] case fs _ ih => erw [TypeVec.const, @ih (drop α) x] [GOAL] n : ℕ p : Prop n✝ : ℕ a✝ : Fin2 n✝ ih : ∀ {α : TypeVec n✝} {x : α a✝}, ofRepeat (TypeVec.const p α a✝ x) ↔ p α : TypeVec (succ n✝) x : α (Fin2.fs a✝) ⊢ ofRepeat (TypeVec.const p α (Fin2.fs a✝) x) ↔ p [PROOFSTEP] erw [TypeVec.const, @ih (drop α) x] [GOAL] n : ℕ α β : TypeVec n i : Fin2 n a : α i b : β i ⊢ prod.fst i (prod.mk i a b) = a [PROOFSTEP] induction' i with _ _ _ i_ih [GOAL] case fz n : ℕ α✝ β✝ : TypeVec n i : Fin2 n a✝ : α✝ i b✝ : β✝ i n✝ : ℕ α β : TypeVec (succ n✝) a : α Fin2.fz b : β Fin2.fz ⊢ prod.fst Fin2.fz (prod.mk Fin2.fz a b) = a case fs n : ℕ α✝ β✝ : TypeVec n i : Fin2 n a✝¹ : α✝ i b✝ : β✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.fst a✝ (prod.mk a✝ a b) = a α β : TypeVec (succ n✝) a : α (Fin2.fs a✝) b : β (Fin2.fs a✝) ⊢ prod.fst (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = a [PROOFSTEP] simp_all only [prod.fst, prod.mk] [GOAL] case fs n : ℕ α✝ β✝ : TypeVec n i : Fin2 n a✝¹ : α✝ i b✝ : β✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.fst a✝ (prod.mk a✝ a b) = a α β : TypeVec (succ n✝) a : α (Fin2.fs a✝) b : β (Fin2.fs a✝) ⊢ prod.fst (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = a [PROOFSTEP] apply i_ih [GOAL] n : ℕ α β : TypeVec n i : Fin2 n a : α i b : β i ⊢ prod.snd i (prod.mk i a b) = b [PROOFSTEP] induction' i with _ _ _ i_ih [GOAL] case fz n : ℕ α✝ β✝ : TypeVec n i : Fin2 n a✝ : α✝ i b✝ : β✝ i n✝ : ℕ α β : TypeVec (succ n✝) a : α Fin2.fz b : β Fin2.fz ⊢ prod.snd Fin2.fz (prod.mk Fin2.fz a b) = b case fs n : ℕ α✝ β✝ : TypeVec n i : Fin2 n a✝¹ : α✝ i b✝ : β✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.snd a✝ (prod.mk a✝ a b) = b α β : TypeVec (succ n✝) a : α (Fin2.fs a✝) b : β (Fin2.fs a✝) ⊢ prod.snd (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = b [PROOFSTEP] simp_all [prod.snd, prod.mk] [GOAL] case fs n : ℕ α✝ β✝ : TypeVec n i : Fin2 n a✝¹ : α✝ i b✝ : β✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α β : TypeVec n✝} (a : α a✝) (b : β a✝), prod.snd a✝ (prod.mk a✝ a b) = b α β : TypeVec (succ n✝) a : α (Fin2.fs a✝) b : β (Fin2.fs a✝) ⊢ prod.snd (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) a b) = b [PROOFSTEP] apply i_ih [GOAL] n : ℕ α α' β β' : TypeVec n f : α ⟹ β g : α' ⟹ β' ⊢ prod.fst ⊚ (f ⊗' g) = f ⊚ prod.fst [PROOFSTEP] funext i [GOAL] case h n : ℕ α α' β β' : TypeVec n f : α ⟹ β g : α' ⟹ β' i : Fin2 n ⊢ (prod.fst ⊚ (f ⊗' g)) i = (f ⊚ prod.fst) i [PROOFSTEP] induction i [GOAL] case h.fz n n✝ : ℕ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.fst ⊚ (f ⊗' g)) Fin2.fz = (f ⊚ prod.fst) Fin2.fz case h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.fst ⊚ (f ⊗' g)) a✝ = (f ⊚ prod.fst) a✝ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.fst ⊚ (f ⊗' g)) (Fin2.fs a✝) = (f ⊚ prod.fst) (Fin2.fs a✝) [PROOFSTEP] case fz => rfl [GOAL] n n✝ : ℕ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.fst ⊚ (f ⊗' g)) Fin2.fz = (f ⊚ prod.fst) Fin2.fz [PROOFSTEP] case fz => rfl [GOAL] n n✝ : ℕ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.fst ⊚ (f ⊗' g)) Fin2.fz = (f ⊚ prod.fst) Fin2.fz [PROOFSTEP] rfl [GOAL] case h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.fst ⊚ (f ⊗' g)) a✝ = (f ⊚ prod.fst) a✝ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.fst ⊚ (f ⊗' g)) (Fin2.fs a✝) = (f ⊚ prod.fst) (Fin2.fs a✝) [PROOFSTEP] case fs _ _ i_ih => apply i_ih [GOAL] n n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.fst ⊚ (f ⊗' g)) a✝ = (f ⊚ prod.fst) a✝ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.fst ⊚ (f ⊗' g)) (Fin2.fs a✝) = (f ⊚ prod.fst) (Fin2.fs a✝) [PROOFSTEP] case fs _ _ i_ih => apply i_ih [GOAL] n n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.fst ⊚ (f ⊗' g)) a✝ = (f ⊚ prod.fst) a✝ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.fst ⊚ (f ⊗' g)) (Fin2.fs a✝) = (f ⊚ prod.fst) (Fin2.fs a✝) [PROOFSTEP] apply i_ih [GOAL] n : ℕ α α' β β' : TypeVec n f : α ⟹ β g : α' ⟹ β' ⊢ prod.snd ⊚ (f ⊗' g) = g ⊚ prod.snd [PROOFSTEP] funext i [GOAL] case h n : ℕ α α' β β' : TypeVec n f : α ⟹ β g : α' ⟹ β' i : Fin2 n ⊢ (prod.snd ⊚ (f ⊗' g)) i = (g ⊚ prod.snd) i [PROOFSTEP] induction i [GOAL] case h.fz n n✝ : ℕ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.snd ⊚ (f ⊗' g)) Fin2.fz = (g ⊚ prod.snd) Fin2.fz case h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.snd ⊚ (f ⊗' g)) a✝ = (g ⊚ prod.snd) a✝ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.snd ⊚ (f ⊗' g)) (Fin2.fs a✝) = (g ⊚ prod.snd) (Fin2.fs a✝) [PROOFSTEP] case fz => rfl [GOAL] n n✝ : ℕ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.snd ⊚ (f ⊗' g)) Fin2.fz = (g ⊚ prod.snd) Fin2.fz [PROOFSTEP] case fz => rfl [GOAL] n n✝ : ℕ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.snd ⊚ (f ⊗' g)) Fin2.fz = (g ⊚ prod.snd) Fin2.fz [PROOFSTEP] rfl [GOAL] case h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.snd ⊚ (f ⊗' g)) a✝ = (g ⊚ prod.snd) a✝ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.snd ⊚ (f ⊗' g)) (Fin2.fs a✝) = (g ⊚ prod.snd) (Fin2.fs a✝) [PROOFSTEP] case fs _ _ i_ih => apply i_ih [GOAL] n n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.snd ⊚ (f ⊗' g)) a✝ = (g ⊚ prod.snd) a✝ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.snd ⊚ (f ⊗' g)) (Fin2.fs a✝) = (g ⊚ prod.snd) (Fin2.fs a✝) [PROOFSTEP] case fs _ _ i_ih => apply i_ih [GOAL] n n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α α' β β' : TypeVec n✝} (f : α ⟹ β) (g : α' ⟹ β'), (prod.snd ⊚ (f ⊗' g)) a✝ = (g ⊚ prod.snd) a✝ α α' β β' : TypeVec (succ n✝) f : α ⟹ β g : α' ⟹ β' ⊢ (prod.snd ⊚ (f ⊗' g)) (Fin2.fs a✝) = (g ⊚ prod.snd) (Fin2.fs a✝) [PROOFSTEP] apply i_ih [GOAL] n : ℕ α : TypeVec n ⊢ prod.fst ⊚ prod.diag = id [PROOFSTEP] funext i [GOAL] case h n : ℕ α : TypeVec n i : Fin2 n ⊢ (prod.fst ⊚ prod.diag) i = id i [PROOFSTEP] induction i [GOAL] case h.fz n n✝ : ℕ α : TypeVec (succ n✝) ⊢ (prod.fst ⊚ prod.diag) Fin2.fz = id Fin2.fz case h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝}, (prod.fst ⊚ prod.diag) a✝ = id a✝ α : TypeVec (succ n✝) ⊢ (prod.fst ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝) [PROOFSTEP] case fz => rfl [GOAL] n n✝ : ℕ α : TypeVec (succ n✝) ⊢ (prod.fst ⊚ prod.diag) Fin2.fz = id Fin2.fz [PROOFSTEP] case fz => rfl [GOAL] n n✝ : ℕ α : TypeVec (succ n✝) ⊢ (prod.fst ⊚ prod.diag) Fin2.fz = id Fin2.fz [PROOFSTEP] rfl [GOAL] case h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝}, (prod.fst ⊚ prod.diag) a✝ = id a✝ α : TypeVec (succ n✝) ⊢ (prod.fst ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝) [PROOFSTEP] case fs _ _ i_ih => apply i_ih [GOAL] n n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝}, (prod.fst ⊚ prod.diag) a✝ = id a✝ α : TypeVec (succ n✝) ⊢ (prod.fst ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝) [PROOFSTEP] case fs _ _ i_ih => apply i_ih [GOAL] n n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝}, (prod.fst ⊚ prod.diag) a✝ = id a✝ α : TypeVec (succ n✝) ⊢ (prod.fst ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝) [PROOFSTEP] apply i_ih [GOAL] n : ℕ α : TypeVec n ⊢ prod.snd ⊚ prod.diag = id [PROOFSTEP] funext i [GOAL] case h n : ℕ α : TypeVec n i : Fin2 n ⊢ (prod.snd ⊚ prod.diag) i = id i [PROOFSTEP] induction i [GOAL] case h.fz n n✝ : ℕ α : TypeVec (succ n✝) ⊢ (prod.snd ⊚ prod.diag) Fin2.fz = id Fin2.fz case h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝}, (prod.snd ⊚ prod.diag) a✝ = id a✝ α : TypeVec (succ n✝) ⊢ (prod.snd ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝) [PROOFSTEP] case fz => rfl [GOAL] n n✝ : ℕ α : TypeVec (succ n✝) ⊢ (prod.snd ⊚ prod.diag) Fin2.fz = id Fin2.fz [PROOFSTEP] case fz => rfl [GOAL] n n✝ : ℕ α : TypeVec (succ n✝) ⊢ (prod.snd ⊚ prod.diag) Fin2.fz = id Fin2.fz [PROOFSTEP] rfl [GOAL] case h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝}, (prod.snd ⊚ prod.diag) a✝ = id a✝ α : TypeVec (succ n✝) ⊢ (prod.snd ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝) [PROOFSTEP] case fs _ _ i_ih => apply i_ih [GOAL] n n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝}, (prod.snd ⊚ prod.diag) a✝ = id a✝ α : TypeVec (succ n✝) ⊢ (prod.snd ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝) [PROOFSTEP] case fs _ _ i_ih => apply i_ih [GOAL] n n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝}, (prod.snd ⊚ prod.diag) a✝ = id a✝ α : TypeVec (succ n✝) ⊢ (prod.snd ⊚ prod.diag) (Fin2.fs a✝) = id (Fin2.fs a✝) [PROOFSTEP] apply i_ih [GOAL] n : ℕ α : TypeVec n i : Fin2 n x y : α i ⊢ ofRepeat (repeatEq α i (prod.mk i x y)) ↔ x = y [PROOFSTEP] induction' i with _ _ _ i_ih [GOAL] case fz n : ℕ α✝ : TypeVec n i : Fin2 n x✝ y✝ : α✝ i n✝ : ℕ α : TypeVec (succ n✝) x y : α Fin2.fz ⊢ ofRepeat (repeatEq α Fin2.fz (prod.mk Fin2.fz x y)) ↔ x = y case fs n : ℕ α✝ : TypeVec n i : Fin2 n x✝ y✝ : α✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝} {x y : α a✝}, ofRepeat (repeatEq α a✝ (prod.mk a✝ x y)) ↔ x = y α : TypeVec (succ n✝) x y : α (Fin2.fs a✝) ⊢ ofRepeat (repeatEq α (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x y)) ↔ x = y [PROOFSTEP] rfl [GOAL] case fs n : ℕ α✝ : TypeVec n i : Fin2 n x✝ y✝ : α✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝} {x y : α a✝}, ofRepeat (repeatEq α a✝ (prod.mk a✝ x y)) ↔ x = y α : TypeVec (succ n✝) x y : α (Fin2.fs a✝) ⊢ ofRepeat (repeatEq α (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x y)) ↔ x = y [PROOFSTEP] erw [repeatEq, i_ih] [GOAL] n✝¹ n : ℕ α✝ : TypeVec n p✝ : α✝ ⊗ α✝ ⟹ repeat n Prop n✝ : ℕ α : TypeVec (succ n✝) p : α ⊗ α ⟹ repeat (succ n✝) Prop x : (fun i => { x // ofRepeat (p i (prod.mk i x.fst x.snd)) }) Fin2.fz ⊢ ofRepeat (p Fin2.fz (prod.mk Fin2.fz (↑x).fst (↑x).snd)) = p Fin2.fz ↑x [PROOFSTEP] congr [GOAL] n✝¹ n : ℕ α✝ : TypeVec n p✝ : α✝ ⊗ α✝ ⟹ repeat n Prop n✝ : ℕ α : TypeVec (succ n✝) p : α ⊗ α ⟹ repeat (succ n✝) Prop x : Subtype_ p Fin2.fz ⊢ p Fin2.fz ↑x = ofRepeat (p Fin2.fz (prod.mk Fin2.fz (↑x).fst (↑x).snd)) [PROOFSTEP] congr [GOAL] n : ℕ α : TypeVec 0 ps : α ⟹ repeat 0 Prop ⊢ ∀ (x : Fin2 0), subtypeVal ps x = nilFun x [PROOFSTEP] rintro ⟨⟩ [GOAL] n✝ n : ℕ α : TypeVec n ⊢ subtypeVal (repeatEq α) ⊚ diagSub = prod.diag [PROOFSTEP] ext i x [GOAL] case a.h n✝ n : ℕ α : TypeVec n i : Fin2 n x : α i ⊢ (subtypeVal (repeatEq α) ⊚ diagSub) i x = prod.diag i x [PROOFSTEP] induction' i with _ _ _ i_ih [GOAL] case a.h.fz n✝¹ n : ℕ α✝ : TypeVec n i : Fin2 n x✝ : α✝ i n✝ : ℕ α : TypeVec (succ n✝) x : α Fin2.fz ⊢ (subtypeVal (repeatEq α) ⊚ diagSub) Fin2.fz x = prod.diag Fin2.fz x case a.h.fs n✝¹ n : ℕ α✝ : TypeVec n i : Fin2 n x✝ : α✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝} (x : α a✝), (subtypeVal (repeatEq α) ⊚ diagSub) a✝ x = prod.diag a✝ x α : TypeVec (succ n✝) x : α (Fin2.fs a✝) ⊢ (subtypeVal (repeatEq α) ⊚ diagSub) (Fin2.fs a✝) x = prod.diag (Fin2.fs a✝) x [PROOFSTEP] simp [prod.diag, diagSub, repeatEq, subtypeVal, comp] [GOAL] case a.h.fs n✝¹ n : ℕ α✝ : TypeVec n i : Fin2 n x✝ : α✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝} (x : α a✝), (subtypeVal (repeatEq α) ⊚ diagSub) a✝ x = prod.diag a✝ x α : TypeVec (succ n✝) x : α (Fin2.fs a✝) ⊢ (subtypeVal (repeatEq α) ⊚ diagSub) (Fin2.fs a✝) x = prod.diag (Fin2.fs a✝) x [PROOFSTEP] apply @i_ih (drop α) [GOAL] n : ℕ ⊢ ∀ {n : ℕ} {α β : TypeVec n}, (id ⊗' id) = id [PROOFSTEP] intros [GOAL] n n✝ : ℕ α✝ β✝ : TypeVec n✝ ⊢ (id ⊗' id) = id [PROOFSTEP] ext i a [GOAL] case a.h n n✝ : ℕ α✝ β✝ : TypeVec n✝ i : Fin2 n✝ a : (α✝ ⊗ β✝) i ⊢ (id ⊗' id) i a = id i a [PROOFSTEP] induction' i with _ _ _ i_ih [GOAL] case a.h.fz n n✝¹ : ℕ α✝¹ β✝¹ : TypeVec n✝¹ i : Fin2 n✝¹ a✝ : (α✝¹ ⊗ β✝¹) i n✝ : ℕ α✝ β✝ : TypeVec (succ n✝) a : (α✝ ⊗ β✝) Fin2.fz ⊢ (id ⊗' id) Fin2.fz a = id Fin2.fz a [PROOFSTEP] cases a [GOAL] case a.h.fz.mk n n✝¹ : ℕ α✝¹ β✝¹ : TypeVec n✝¹ i : Fin2 n✝¹ a : (α✝¹ ⊗ β✝¹) i n✝ : ℕ α✝ β✝ : TypeVec (succ n✝) fst✝ : last α✝ snd✝ : last β✝ ⊢ (id ⊗' id) Fin2.fz (fst✝, snd✝) = id Fin2.fz (fst✝, snd✝) [PROOFSTEP] rfl [GOAL] case a.h.fs n n✝¹ : ℕ α✝¹ β✝¹ : TypeVec n✝¹ i : Fin2 n✝¹ a✝¹ : (α✝¹ ⊗ β✝¹) i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α β : TypeVec n✝} (a : (α ⊗ β) a✝), (id ⊗' id) a✝ a = id a✝ a α✝ β✝ : TypeVec (succ n✝) a : (α✝ ⊗ β✝) (Fin2.fs a✝) ⊢ (id ⊗' id) (Fin2.fs a✝) a = id (Fin2.fs a✝) a [PROOFSTEP] apply i_ih [GOAL] n✝ n : ℕ α α' β β' : TypeVec n φ φ' ψ ψ' : Type u f₀ : α ⟹ α' g₀ : β ⟹ β' f₁ : φ → φ' g₁ : ψ → ψ' ⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁)) [PROOFSTEP] ext i a [GOAL] case a.h n✝ n : ℕ α α' β β' : TypeVec n φ φ' ψ ψ' : Type u f₀ : α ⟹ α' g₀ : β ⟹ β' f₁ : φ → φ' g₁ : ψ → ψ' i : Fin2 (n + 1) a : ((α ⊗ β) ::: (φ × ψ)) i ⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) i a = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁)) i a [PROOFSTEP] cases i [GOAL] case a.h.fz n✝ n : ℕ α α' β β' : TypeVec n φ φ' ψ ψ' : Type u f₀ : α ⟹ α' g₀ : β ⟹ β' f₁ : φ → φ' g₁ : ψ → ψ' a : ((α ⊗ β) ::: (φ × ψ)) Fin2.fz ⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) Fin2.fz a = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁)) Fin2.fz a [PROOFSTEP] cases a [GOAL] case a.h.fz.mk n✝ n : ℕ α α' β β' : TypeVec n φ φ' ψ ψ' : Type u f₀ : α ⟹ α' g₀ : β ⟹ β' f₁ : φ → φ' g₁ : ψ → ψ' fst✝ : φ snd✝ : ψ ⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) Fin2.fz (fst✝, snd✝) = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁)) Fin2.fz (fst✝, snd✝) [PROOFSTEP] rfl [GOAL] case a.h.fs n✝ n : ℕ α α' β β' : TypeVec n φ φ' ψ ψ' : Type u f₀ : α ⟹ α' g₀ : β ⟹ β' f₁ : φ → φ' g₁ : ψ → ψ' a✝ : Fin2 (Nat.add n 0) a : ((α ⊗ β) ::: (φ × ψ)) (Fin2.fs a✝) ⊢ (f₀ ⊗' g₀ ::: Prod.map f₁ g₁) (Fin2.fs a✝) a = ((f₀ ::: f₁) ⊗' (g₀ ::: g₁)) (Fin2.fs a✝) a [PROOFSTEP] rfl [GOAL] n : ℕ α : TypeVec (n + 1) ⊢ dropFun prod.diag = prod.diag [PROOFSTEP] ext i : 2 [GOAL] case a.h n : ℕ α : TypeVec (n + 1) i : Fin2 n x✝ : drop α i ⊢ dropFun prod.diag i x✝ = prod.diag i x✝ [PROOFSTEP] induction i [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝ + 1) x✝ : drop α Fin2.fz ⊢ dropFun prod.diag Fin2.fz x✝ = prod.diag Fin2.fz x✝ [PROOFSTEP] simp [dropFun, *] [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec (n✝ + 1)} (x : drop α a✝), dropFun prod.diag a✝ x = prod.diag a✝ x α : TypeVec (Nat.succ n✝ + 1) x✝ : drop α (Fin2.fs a✝) ⊢ dropFun prod.diag (Fin2.fs a✝) x✝ = prod.diag (Fin2.fs a✝) x✝ [PROOFSTEP] simp [dropFun, *] [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝ + 1) x✝ : drop α Fin2.fz ⊢ prod.diag (Fin2.fs Fin2.fz) x✝ = prod.diag Fin2.fz x✝ [PROOFSTEP] rfl [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec (n✝ + 1)} (x : drop α a✝), dropFun prod.diag a✝ x = prod.diag a✝ x α : TypeVec (Nat.succ n✝ + 1) x✝ : drop α (Fin2.fs a✝) ⊢ prod.diag (Fin2.fs (Fin2.fs a✝)) x✝ = prod.diag (Fin2.fs a✝) x✝ [PROOFSTEP] rfl [GOAL] n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop ⊢ dropFun (toSubtype p) = toSubtype fun i x => p (Fin2.fs i) x [PROOFSTEP] ext i [GOAL] case a.h n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop i : Fin2 n x✝ : drop (fun i => { x // ofRepeat (p i x) }) i ⊢ dropFun (toSubtype p) i x✝ = toSubtype (fun i x => p (Fin2.fs i) x) i x✝ [PROOFSTEP] induction i [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝ + 1) p : α ⟹ repeat (Nat.succ n✝ + 1) Prop x✝ : drop (fun i => { x // ofRepeat (p i x) }) Fin2.fz ⊢ dropFun (toSubtype p) Fin2.fz x✝ = toSubtype (fun i x => p (Fin2.fs i) x) Fin2.fz x✝ [PROOFSTEP] simp [dropFun, *] [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec (n✝ + 1)} (p : α ⟹ repeat (n✝ + 1) Prop) (x : drop (fun i => { x // ofRepeat (p i x) }) a✝), dropFun (toSubtype p) a✝ x = toSubtype (fun i x => p (Fin2.fs i) x) a✝ x α : TypeVec (Nat.succ n✝ + 1) p : α ⟹ repeat (Nat.succ n✝ + 1) Prop x✝ : drop (fun i => { x // ofRepeat (p i x) }) (Fin2.fs a✝) ⊢ dropFun (toSubtype p) (Fin2.fs a✝) x✝ = toSubtype (fun i x => p (Fin2.fs i) x) (Fin2.fs a✝) x✝ [PROOFSTEP] simp [dropFun, *] [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝ + 1) p : α ⟹ repeat (Nat.succ n✝ + 1) Prop x✝ : drop (fun i => { x // ofRepeat (p i x) }) Fin2.fz ⊢ toSubtype p (Fin2.fs Fin2.fz) x✝ = toSubtype (fun i x => p (Fin2.fs i) x) Fin2.fz x✝ [PROOFSTEP] rfl [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec (n✝ + 1)} (p : α ⟹ repeat (n✝ + 1) Prop) (x : drop (fun i => { x // ofRepeat (p i x) }) a✝), dropFun (toSubtype p) a✝ x = toSubtype (fun i x => p (Fin2.fs i) x) a✝ x α : TypeVec (Nat.succ n✝ + 1) p : α ⟹ repeat (Nat.succ n✝ + 1) Prop x✝ : drop (fun i => { x // ofRepeat (p i x) }) (Fin2.fs a✝) ⊢ toSubtype p (Fin2.fs (Fin2.fs a✝)) x✝ = toSubtype (fun i x => p (Fin2.fs i) x) (Fin2.fs a✝) x✝ [PROOFSTEP] rfl [GOAL] n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop ⊢ lastFun (toSubtype p) = _root_.id [PROOFSTEP] ext i : 2 [GOAL] case h n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop i : last fun i => { x // ofRepeat (p i x) } ⊢ lastFun (toSubtype p) i = _root_.id i [PROOFSTEP] induction i [GOAL] case h.mk n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop val✝ : α Fin2.fz property✝ : ofRepeat (p Fin2.fz val✝) ⊢ lastFun (toSubtype p) { val := val✝, property := property✝ } = _root_.id { val := val✝, property := property✝ } [PROOFSTEP] simp [dropFun, *] [GOAL] case h.mk n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop val✝ : α Fin2.fz property✝ : ofRepeat (p Fin2.fz val✝) ⊢ lastFun (toSubtype p) { val := val✝, property := property✝ } = { val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop ⊢ dropFun (ofSubtype p) = ofSubtype (dropFun p) [PROOFSTEP] ext i : 2 [GOAL] case a.h n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop i : Fin2 n x✝ : drop (Subtype_ p) i ⊢ dropFun (ofSubtype p) i x✝ = ofSubtype (dropFun p) i x✝ [PROOFSTEP] induction i [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝ + 1) p : α ⟹ repeat (Nat.succ n✝ + 1) Prop x✝ : drop (Subtype_ p) Fin2.fz ⊢ dropFun (ofSubtype p) Fin2.fz x✝ = ofSubtype (dropFun p) Fin2.fz x✝ [PROOFSTEP] simp [dropFun, *] [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec (n✝ + 1)} (p : α ⟹ repeat (n✝ + 1) Prop) (x : drop (Subtype_ p) a✝), dropFun (ofSubtype p) a✝ x = ofSubtype (dropFun p) a✝ x α : TypeVec (Nat.succ n✝ + 1) p : α ⟹ repeat (Nat.succ n✝ + 1) Prop x✝ : drop (Subtype_ p) (Fin2.fs a✝) ⊢ dropFun (ofSubtype p) (Fin2.fs a✝) x✝ = ofSubtype (dropFun p) (Fin2.fs a✝) x✝ [PROOFSTEP] simp [dropFun, *] [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝ + 1) p : α ⟹ repeat (Nat.succ n✝ + 1) Prop x✝ : drop (Subtype_ p) Fin2.fz ⊢ ofSubtype p (Fin2.fs Fin2.fz) x✝ = ofSubtype (fun i => p (Fin2.fs i)) Fin2.fz x✝ [PROOFSTEP] rfl [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec (n✝ + 1)} (p : α ⟹ repeat (n✝ + 1) Prop) (x : drop (Subtype_ p) a✝), dropFun (ofSubtype p) a✝ x = ofSubtype (dropFun p) a✝ x α : TypeVec (Nat.succ n✝ + 1) p : α ⟹ repeat (Nat.succ n✝ + 1) Prop x✝ : drop (Subtype_ p) (Fin2.fs a✝) ⊢ ofSubtype p (Fin2.fs (Fin2.fs a✝)) x✝ = ofSubtype (fun i => p (Fin2.fs i)) (Fin2.fs a✝) x✝ [PROOFSTEP] rfl [GOAL] n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop ⊢ lastFun (ofSubtype p) = _root_.id [PROOFSTEP] ext i : 2 [GOAL] case h n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop i : last (Subtype_ p) ⊢ lastFun (ofSubtype p) i = _root_.id i [PROOFSTEP] induction i [GOAL] case h.mk n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop val✝ : α Fin2.fz property✝ : p Fin2.fz val✝ ⊢ lastFun (ofSubtype p) { val := val✝, property := property✝ } = _root_.id { val := val✝, property := property✝ } [PROOFSTEP] simp [dropFun, *] [GOAL] case h.mk n : ℕ α : TypeVec (n + 1) p : α ⟹ repeat (n + 1) Prop val✝ : α Fin2.fz property✝ : p Fin2.fz val✝ ⊢ lastFun (ofSubtype p) { val := val✝, property := property✝ } = { val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] n : ℕ α α' β β' : TypeVec (n + 1) f : α ⟹ β f' : α' ⟹ β' ⊢ dropFun (f ⊗' f') = (dropFun f ⊗' dropFun f') [PROOFSTEP] ext i : 2 [GOAL] case a.h n : ℕ α α' β β' : TypeVec (n + 1) f : α ⟹ β f' : α' ⟹ β' i : Fin2 n x✝ : drop (α ⊗ α') i ⊢ dropFun (f ⊗' f') i x✝ = (dropFun f ⊗' dropFun f') i x✝ [PROOFSTEP] induction i [GOAL] case a.h.fz n n✝ : ℕ α α' β β' : TypeVec (Nat.succ n✝ + 1) f : α ⟹ β f' : α' ⟹ β' x✝ : drop (α ⊗ α') Fin2.fz ⊢ dropFun (f ⊗' f') Fin2.fz x✝ = (dropFun f ⊗' dropFun f') Fin2.fz x✝ [PROOFSTEP] simp [dropFun, *] [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α α' β β' : TypeVec (n✝ + 1)} (f : α ⟹ β) (f' : α' ⟹ β') (x : drop (α ⊗ α') a✝), dropFun (f ⊗' f') a✝ x = (dropFun f ⊗' dropFun f') a✝ x α α' β β' : TypeVec (Nat.succ n✝ + 1) f : α ⟹ β f' : α' ⟹ β' x✝ : drop (α ⊗ α') (Fin2.fs a✝) ⊢ dropFun (f ⊗' f') (Fin2.fs a✝) x✝ = (dropFun f ⊗' dropFun f') (Fin2.fs a✝) x✝ [PROOFSTEP] simp [dropFun, *] [GOAL] case a.h.fz n n✝ : ℕ α α' β β' : TypeVec (Nat.succ n✝ + 1) f : α ⟹ β f' : α' ⟹ β' x✝ : drop (α ⊗ α') Fin2.fz ⊢ (f ⊗' f') (Fin2.fs Fin2.fz) x✝ = ((fun i => f (Fin2.fs i)) ⊗' fun i => f' (Fin2.fs i)) Fin2.fz x✝ [PROOFSTEP] rfl [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α α' β β' : TypeVec (n✝ + 1)} (f : α ⟹ β) (f' : α' ⟹ β') (x : drop (α ⊗ α') a✝), dropFun (f ⊗' f') a✝ x = (dropFun f ⊗' dropFun f') a✝ x α α' β β' : TypeVec (Nat.succ n✝ + 1) f : α ⟹ β f' : α' ⟹ β' x✝ : drop (α ⊗ α') (Fin2.fs a✝) ⊢ (f ⊗' f') (Fin2.fs (Fin2.fs a✝)) x✝ = ((fun i => f (Fin2.fs i)) ⊗' fun i => f' (Fin2.fs i)) (Fin2.fs a✝) x✝ [PROOFSTEP] rfl [GOAL] n : ℕ α α' β β' : TypeVec (n + 1) f : α ⟹ β f' : α' ⟹ β' ⊢ lastFun (f ⊗' f') = Prod.map (lastFun f) (lastFun f') [PROOFSTEP] ext i : 1 [GOAL] case h n : ℕ α α' β β' : TypeVec (n + 1) f : α ⟹ β f' : α' ⟹ β' i : last (α ⊗ α') ⊢ lastFun (f ⊗' f') i = Prod.map (lastFun f) (lastFun f') i [PROOFSTEP] induction i [GOAL] case h.mk n : ℕ α α' β β' : TypeVec (n + 1) f : α ⟹ β f' : α' ⟹ β' fst✝ : last α snd✝ : last α' ⊢ lastFun (f ⊗' f') (fst✝, snd✝) = Prod.map (lastFun f) (lastFun f') (fst✝, snd✝) [PROOFSTEP] simp [lastFun, *] [GOAL] case h.mk n : ℕ α α' β β' : TypeVec (n + 1) f : α ⟹ β f' : α' ⟹ β' fst✝ : last α snd✝ : last α' ⊢ (f ⊗' f') Fin2.fz (fst✝, snd✝) = Prod.map (f Fin2.fz) (f' Fin2.fz) (fst✝, snd✝) [PROOFSTEP] rfl [GOAL] n : ℕ α β : TypeVec n ⊢ (id ⊗' id) = id [PROOFSTEP] ext i x : 2 [GOAL] case a.h n : ℕ α β : TypeVec n i : Fin2 n x : (α ⊗ β) i ⊢ (id ⊗' id) i x = id i x [PROOFSTEP] induction i [GOAL] case a.h.fz n n✝ : ℕ α β : TypeVec (Nat.succ n✝) x : (α ⊗ β) Fin2.fz ⊢ (id ⊗' id) Fin2.fz x = id Fin2.fz x [PROOFSTEP] simp only [TypeVec.prod.map, *, dropFun_id] [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α β : TypeVec n✝} (x : (α ⊗ β) a✝), (id ⊗' id) a✝ x = id a✝ x α β : TypeVec (Nat.succ n✝) x : (α ⊗ β) (Fin2.fs a✝) ⊢ (id ⊗' id) (Fin2.fs a✝) x = id (Fin2.fs a✝) x [PROOFSTEP] simp only [TypeVec.prod.map, *, dropFun_id] [GOAL] case a.h.fz n n✝ : ℕ α β : TypeVec (Nat.succ n✝) x : (α ⊗ β) Fin2.fz ⊢ (id Fin2.fz x.fst, id Fin2.fz x.snd) = id Fin2.fz x case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α β : TypeVec n✝} (x : (α ⊗ β) a✝), (id ⊗' id) a✝ x = id a✝ x α β : TypeVec (Nat.succ n✝) x : (α ⊗ β) (Fin2.fs a✝) ⊢ id a✝ x = id (Fin2.fs a✝) x [PROOFSTEP] cases x [GOAL] case a.h.fz.mk n n✝ : ℕ α β : TypeVec (Nat.succ n✝) fst✝ : last α snd✝ : last β ⊢ (id Fin2.fz (fst✝, snd✝).fst, id Fin2.fz (fst✝, snd✝).snd) = id Fin2.fz (fst✝, snd✝) case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α β : TypeVec n✝} (x : (α ⊗ β) a✝), (id ⊗' id) a✝ x = id a✝ x α β : TypeVec (Nat.succ n✝) x : (α ⊗ β) (Fin2.fs a✝) ⊢ id a✝ x = id (Fin2.fs a✝) x [PROOFSTEP] rfl [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α β : TypeVec n✝} (x : (α ⊗ β) a✝), (id ⊗' id) a✝ x = id a✝ x α β : TypeVec (Nat.succ n✝) x : (α ⊗ β) (Fin2.fs a✝) ⊢ id a✝ x = id (Fin2.fs a✝) x [PROOFSTEP] rfl [GOAL] n : ℕ α : TypeVec n ⊢ subtypeVal (repeatEq α) ⊚ diagSub = prod.diag [PROOFSTEP] ext i x [GOAL] case a.h n : ℕ α : TypeVec n i : Fin2 n x : α i ⊢ (subtypeVal (repeatEq α) ⊚ diagSub) i x = prod.diag i x [PROOFSTEP] induction' i with _ _ _ i_ih [GOAL] case a.h.fz n : ℕ α✝ : TypeVec n i : Fin2 n x✝ : α✝ i n✝ : ℕ α : TypeVec (Nat.succ n✝) x : α Fin2.fz ⊢ (subtypeVal (repeatEq α) ⊚ diagSub) Fin2.fz x = prod.diag Fin2.fz x [PROOFSTEP] simp [comp, diagSub, subtypeVal, prod.diag] [GOAL] case a.h.fs n : ℕ α✝ : TypeVec n i : Fin2 n x✝ : α✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝} (x : α a✝), (subtypeVal (repeatEq α) ⊚ diagSub) a✝ x = prod.diag a✝ x α : TypeVec (Nat.succ n✝) x : α (Fin2.fs a✝) ⊢ (subtypeVal (repeatEq α) ⊚ diagSub) (Fin2.fs a✝) x = prod.diag (Fin2.fs a✝) x [PROOFSTEP] simp [prod.diag] [GOAL] case a.h.fs n : ℕ α✝ : TypeVec n i : Fin2 n x✝ : α✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝} (x : α a✝), (subtypeVal (repeatEq α) ⊚ diagSub) a✝ x = prod.diag a✝ x α : TypeVec (Nat.succ n✝) x : α (Fin2.fs a✝) ⊢ (subtypeVal (repeatEq α) ⊚ diagSub) (Fin2.fs a✝) x = prod.diag a✝ x [PROOFSTEP] simp [comp, diagSub, subtypeVal, prod.diag] at * [GOAL] case a.h.fs n : ℕ α✝ : TypeVec n i : Fin2 n x✝ : α✝ i n✝ : ℕ a✝ : Fin2 n✝ i_ih : ∀ {α : TypeVec n✝} (x : α a✝), subtypeVal (repeatEq α) a✝ (diagSub a✝ x) = prod.diag a✝ x α : TypeVec (Nat.succ n✝) x : α (Fin2.fs a✝) ⊢ subtypeVal (dropFun (repeatEq α)) a✝ (diagSub a✝ x) = prod.diag a✝ x [PROOFSTEP] apply @i_ih (drop _) [GOAL] n : ℕ α : TypeVec n p : α ⟹ repeat n Prop ⊢ toSubtype p ⊚ ofSubtype p = id [PROOFSTEP] ext i x [GOAL] case a.h n : ℕ α : TypeVec n p : α ⟹ repeat n Prop i : Fin2 n x : Subtype_ p i ⊢ (toSubtype p ⊚ ofSubtype p) i x = id i x [PROOFSTEP] induction i [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝) p : α ⟹ repeat (Nat.succ n✝) Prop x : Subtype_ p Fin2.fz ⊢ (toSubtype p ⊚ ofSubtype p) Fin2.fz x = id Fin2.fz x [PROOFSTEP] dsimp only [id, toSubtype, comp, ofSubtype] at * [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} (p : α ⟹ repeat n✝ Prop) (x : Subtype_ p a✝), (toSubtype p ⊚ ofSubtype p) a✝ x = id a✝ x α : TypeVec (Nat.succ n✝) p : α ⟹ repeat (Nat.succ n✝) Prop x : Subtype_ p (Fin2.fs a✝) ⊢ (toSubtype p ⊚ ofSubtype p) (Fin2.fs a✝) x = id (Fin2.fs a✝) x [PROOFSTEP] dsimp only [id, toSubtype, comp, ofSubtype] at * [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} (p : α ⟹ repeat n✝ Prop) (x : Subtype_ p a✝), toSubtype p a✝ (ofSubtype p a✝ x) = x α : TypeVec (Nat.succ n✝) p : α ⟹ repeat (Nat.succ n✝) Prop x : Subtype_ p (Fin2.fs a✝) ⊢ toSubtype (dropFun p) a✝ (ofSubtype (dropFun p) a✝ x) = x [PROOFSTEP] simp [*] [GOAL] n : ℕ α : TypeVec n p : α ⟹ repeat n Prop ⊢ subtypeVal p ⊚ toSubtype p = fun x => Subtype.val [PROOFSTEP] ext i x [GOAL] case a.h n : ℕ α : TypeVec n p : α ⟹ repeat n Prop i : Fin2 n x : (fun i => { x // ofRepeat (p i x) }) i ⊢ (subtypeVal p ⊚ toSubtype p) i x = ↑x [PROOFSTEP] induction i [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝) p : α ⟹ repeat (Nat.succ n✝) Prop x : { x // ofRepeat (p Fin2.fz x) } ⊢ (subtypeVal p ⊚ toSubtype p) Fin2.fz x = ↑x [PROOFSTEP] dsimp only [toSubtype, comp, subtypeVal] at * [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} (p : α ⟹ repeat n✝ Prop) (x : (fun i => { x // ofRepeat (p i x) }) a✝), (subtypeVal p ⊚ toSubtype p) a✝ x = ↑x α : TypeVec (Nat.succ n✝) p : α ⟹ repeat (Nat.succ n✝) Prop x : { x // ofRepeat (p (Fin2.fs a✝) x) } ⊢ (subtypeVal p ⊚ toSubtype p) (Fin2.fs a✝) x = ↑x [PROOFSTEP] dsimp only [toSubtype, comp, subtypeVal] at * [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} (p : α ⟹ repeat n✝ Prop) (x : { x // ofRepeat (p a✝ x) }), subtypeVal p a✝ (toSubtype p a✝ x) = ↑x α : TypeVec (Nat.succ n✝) p : α ⟹ repeat (Nat.succ n✝) Prop x : { x // ofRepeat (p (Fin2.fs a✝) x) } ⊢ subtypeVal (dropFun p) a✝ (toSubtype (dropFun p) a✝ x) = ↑x [PROOFSTEP] simp [*] [GOAL] n : ℕ α : TypeVec n β : TypeVec n p : α ⟹ repeat n Prop f : β ⟹ Subtype_ p ⊢ toSubtype p ⊚ (ofSubtype fun i x => p i x) ⊚ f = f [PROOFSTEP] rw [← comp_assoc, toSubtype_of_subtype] [GOAL] n : ℕ α : TypeVec n β : TypeVec n p : α ⟹ repeat n Prop f : β ⟹ Subtype_ p ⊢ id ⊚ f = f [PROOFSTEP] simp [GOAL] n : ℕ α : TypeVec n r : α ⊗ α ⟹ repeat n Prop ⊢ toSubtype' r ⊚ ofSubtype' r = id [PROOFSTEP] ext i x [GOAL] case a.h n : ℕ α : TypeVec n r : α ⊗ α ⟹ repeat n Prop i : Fin2 n x : Subtype_ r i ⊢ (toSubtype' r ⊚ ofSubtype' r) i x = id i x [PROOFSTEP] induction i [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝) r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop x : Subtype_ r Fin2.fz ⊢ (toSubtype' r ⊚ ofSubtype' r) Fin2.fz x = id Fin2.fz x [PROOFSTEP] dsimp only [id, toSubtype', comp, ofSubtype'] at * [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} (r : α ⊗ α ⟹ repeat n✝ Prop) (x : Subtype_ r a✝), (toSubtype' r ⊚ ofSubtype' r) a✝ x = id a✝ x α : TypeVec (Nat.succ n✝) r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop x : Subtype_ r (Fin2.fs a✝) ⊢ (toSubtype' r ⊚ ofSubtype' r) (Fin2.fs a✝) x = id (Fin2.fs a✝) x [PROOFSTEP] dsimp only [id, toSubtype', comp, ofSubtype'] at * [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝) r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop x : Subtype_ r Fin2.fz ⊢ { val := ↑x, property := (_ : r Fin2.fz ↑{ val := ↑x, property := (_ : ofRepeat (r Fin2.fz (prod.mk Fin2.fz (↑x).fst (↑x).snd))) }) } = x [PROOFSTEP] simp [Subtype.eta, *] [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} (r : α ⊗ α ⟹ repeat n✝ Prop) (x : Subtype_ r a✝), toSubtype' r a✝ (ofSubtype' r a✝ x) = x α : TypeVec (Nat.succ n✝) r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop x : Subtype_ r (Fin2.fs a✝) ⊢ toSubtype' (dropFun r) a✝ (ofSubtype' (dropFun r) a✝ x) = x [PROOFSTEP] simp [Subtype.eta, *] [GOAL] n : ℕ α : TypeVec n r : α ⊗ α ⟹ repeat n Prop ⊢ subtypeVal r ⊚ toSubtype' r = fun i x => prod.mk i (↑x).fst (↑x).snd [PROOFSTEP] ext i x [GOAL] case a.h n : ℕ α : TypeVec n r : α ⊗ α ⟹ repeat n Prop i : Fin2 n x : (fun i => { x // ofRepeat (r i (prod.mk i x.fst x.snd)) }) i ⊢ (subtypeVal r ⊚ toSubtype' r) i x = prod.mk i (↑x).fst (↑x).snd [PROOFSTEP] induction i [GOAL] case a.h.fz n n✝ : ℕ α : TypeVec (Nat.succ n✝) r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop x : { x // ofRepeat (r Fin2.fz (prod.mk Fin2.fz x.fst x.snd)) } ⊢ (subtypeVal r ⊚ toSubtype' r) Fin2.fz x = prod.mk Fin2.fz (↑x).fst (↑x).snd [PROOFSTEP] dsimp only [id, toSubtype', comp, subtypeVal, prod.mk] at * [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} (r : α ⊗ α ⟹ repeat n✝ Prop) (x : (fun i => { x // ofRepeat (r i (prod.mk i x.fst x.snd)) }) a✝), (subtypeVal r ⊚ toSubtype' r) a✝ x = prod.mk a✝ (↑x).fst (↑x).snd α : TypeVec (Nat.succ n✝) r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop x : { x // ofRepeat (r (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x.fst x.snd)) } ⊢ (subtypeVal r ⊚ toSubtype' r) (Fin2.fs a✝) x = prod.mk (Fin2.fs a✝) (↑x).fst (↑x).snd [PROOFSTEP] dsimp only [id, toSubtype', comp, subtypeVal, prod.mk] at * [GOAL] case a.h.fs n n✝ : ℕ a✝ : Fin2 n✝ a_ih✝ : ∀ {α : TypeVec n✝} (r : α ⊗ α ⟹ repeat n✝ Prop) (x : { x // ofRepeat (r a✝ (prod.mk a✝ x.fst x.snd)) }), subtypeVal r a✝ (toSubtype' r a✝ x) = prod.mk a✝ (↑x).fst (↑x).snd α : TypeVec (Nat.succ n✝) r : α ⊗ α ⟹ repeat (Nat.succ n✝) Prop x : { x // ofRepeat (r (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x.fst x.snd)) } ⊢ subtypeVal (dropFun r) a✝ (toSubtype' (dropFun r) a✝ x) = prod.mk a✝ (↑x).fst (↑x).snd [PROOFSTEP] simp [*]
{"mathlib_filename": "Mathlib.Data.TypeVec", "llama_tokens": 27175}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom ⊢ Option.isSome (toOption o) = true ↔ o.Dom [PROOFSTEP] by_cases h : o.Dom [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom h : o.Dom ⊢ Option.isSome (toOption o) = true ↔ o.Dom [PROOFSTEP] simp [h, toOption] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom h : ¬o.Dom ⊢ Option.isSome (toOption o) = true ↔ o.Dom [PROOFSTEP] simp [h, toOption] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom ⊢ Option.isNone (toOption o) = true ↔ ¬o.Dom [PROOFSTEP] by_cases h : o.Dom [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom h : o.Dom ⊢ Option.isNone (toOption o) = true ↔ ¬o.Dom [PROOFSTEP] simp [h, toOption] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom h : ¬o.Dom ⊢ Option.isNone (toOption o) = true ↔ ¬o.Dom [PROOFSTEP] simp [h, toOption] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 od : Prop o : od → α pd : Prop p : pd → α H1 : { Dom := od, get := o }.Dom ↔ { Dom := pd, get := p }.Dom H2 : ∀ (h₁ : { Dom := od, get := o }.Dom) (h₂ : { Dom := pd, get := p }.Dom), get { Dom := od, get := o } h₁ = get { Dom := pd, get := p } h₂ ⊢ { Dom := od, get := o } = { Dom := pd, get := p } [PROOFSTEP] have t : od = pd := propext H1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 od : Prop o : od → α pd : Prop p : pd → α H1 : { Dom := od, get := o }.Dom ↔ { Dom := pd, get := p }.Dom H2 : ∀ (h₁ : { Dom := od, get := o }.Dom) (h₂ : { Dom := pd, get := p }.Dom), get { Dom := od, get := o } h₁ = get { Dom := pd, get := p } h₂ t : od = pd ⊢ { Dom := od, get := o } = { Dom := pd, get := p } [PROOFSTEP] cases t [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 od : Prop o p : od → α H1 : { Dom := od, get := o }.Dom ↔ { Dom := od, get := p }.Dom H2 : ∀ (h₁ : { Dom := od, get := o }.Dom) (h₂ : { Dom := od, get := p }.Dom), get { Dom := od, get := o } h₁ = get { Dom := od, get := p } h₂ ⊢ { Dom := od, get := o } = { Dom := od, get := p } [PROOFSTEP] rw [show o = p from funext fun p => H2 p p] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α h : ∀ (a : α), ¬a ∈ o ⊢ ∀ (a : α), a ∈ o ↔ a ∈ none [PROOFSTEP] simpa [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 x : α ⊢ some x ≠ none [PROOFSTEP] intro h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 x : α h : some x = none ⊢ False [PROOFSTEP] exact true_ne_false (congr_arg Dom h) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α ⊢ o ≠ none ↔ ∃ x, o = some x [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α ⊢ o ≠ none → ∃ x, o = some x [PROOFSTEP] rw [Ne, eq_none_iff', not_not] [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α ⊢ o.Dom → ∃ x, o = some x [PROOFSTEP] exact fun h => ⟨o.get h, eq_some_iff.2 (get_mem h)⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α ⊢ (∃ x, o = some x) → o ≠ none [PROOFSTEP] rintro ⟨x, rfl⟩ [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 x : α ⊢ some x ≠ none [PROOFSTEP] apply some_ne_none [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a : Part α ha : a.Dom b : α h : get a ha = b ⊢ a = some b [PROOFSTEP] simp [h.symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a : Part α ha : a.Dom b : α h : a = some b ⊢ get a ha = b [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a : Part α ha : a.Dom b : Part α h : a = b ⊢ get a ha = get b (_ : b.Dom) [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom a : α ⊢ a ∈ toOption o ↔ a ∈ o [PROOFSTEP] unfold toOption [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom a : α ⊢ (a ∈ if h : o.Dom then Option.some (get o h) else Option.none) ↔ a ∈ o [PROOFSTEP] by_cases h : o.Dom [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom a : α h : o.Dom ⊢ (a ∈ if h : o.Dom then Option.some (get o h) else Option.none) ↔ a ∈ o [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom a : α h : ¬o.Dom ⊢ (a ∈ if h : o.Dom then Option.some (get o h) else Option.none) ↔ a ∈ o [PROOFSTEP] simp [h] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom a : α h : o.Dom ⊢ get o (_ : o.Dom) = a ↔ a ∈ o [PROOFSTEP] exact ⟨fun h => ⟨_, h⟩, fun ⟨_, h⟩ => h⟩ [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom a : α h : ¬o.Dom ⊢ ¬a ∈ o [PROOFSTEP] exact mt Exists.fst h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α inst✝ : Decidable o.Dom a : α ⊢ toOption o = Option.some a ↔ a ∈ o [PROOFSTEP] rw [← Option.mem_def, mem_toOption] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 α : Type u_4 β : Type u_5 a : Part α inst✝ : Decidable a.Dom b : β f : α → β ⊢ Option.elim (toOption a) b f = if h : a.Dom then f (get a h) else b [PROOFSTEP] split_ifs with h [GOAL] case pos α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 α : Type u_4 β : Type u_5 a : Part α inst✝ : Decidable a.Dom b : β f : α → β h : a.Dom ⊢ Option.elim (toOption a) b f = f (get a h) [PROOFSTEP] rw [h.toOption] [GOAL] case pos α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 α : Type u_4 β : Type u_5 a : Part α inst✝ : Decidable a.Dom b : β f : α → β h : a.Dom ⊢ Option.elim (Option.some (get a h)) b f = f (get a h) [PROOFSTEP] rfl [GOAL] case neg α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 α : Type u_4 β : Type u_5 a : Part α inst✝ : Decidable a.Dom b : β f : α → β h : ¬a.Dom ⊢ Option.elim (toOption a) b f = b [PROOFSTEP] rw [Part.toOption_eq_none_iff.2 h] [GOAL] case neg α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 α : Type u_4 β : Type u_5 a : Part α inst✝ : Decidable a.Dom b : β f : α → β h : ¬a.Dom ⊢ Option.elim Option.none b f = b [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_4 ⊢ (↑Option.none).Dom ↔ Option.isSome Option.none = true [PROOFSTEP] simp [ofOption, none] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_4 a : α ⊢ (↑(Option.some a)).Dom ↔ Option.isSome (Option.some a) = true [PROOFSTEP] simp [ofOption] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_4 o : Option α h₁ : (↑o).Dom h₂ : { Dom := Option.isSome o = true, get := Option.get o }.Dom ⊢ get (↑o) h₁ = get { Dom := Option.isSome o = true, get := Option.get o } h₂ [PROOFSTEP] cases o [GOAL] case none α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_4 h₁ : (↑Option.none).Dom h₂ : { Dom := Option.isSome Option.none = true, get := Option.get Option.none }.Dom ⊢ get (↑Option.none) h₁ = get { Dom := Option.isSome Option.none = true, get := Option.get Option.none } h₂ [PROOFSTEP] simp at h₂ [GOAL] case some α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_4 val✝ : α h₁ : (↑(Option.some val✝)).Dom h₂ : { Dom := Option.isSome (Option.some val✝) = true, get := Option.get (Option.some val✝) }.Dom ⊢ get (↑(Option.some val✝)) h₁ = get { Dom := Option.isSome (Option.some val✝) = true, get := Option.get (Option.some val✝) } h₂ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Option α ⊢ toOption ↑o = o [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 ⊢ toOption ↑Option.none = Option.none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 val✝ : α ⊢ toOption ↑(Option.some val✝) = Option.some val✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 this : (p : Prop) → Decidable p o : Option α ⊢ (fun o => toOption o) ↑o = toOption ↑o [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 this : (p : Prop) → Decidable p o : Option α ⊢ toOption ↑o = toOption ↑o [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ⊢ ∀ (a : Part α), ⊥ ≤ a [PROOFSTEP] introv x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a : Part α x : α ⊢ x ∈ ⊥ → x ∈ a [PROOFSTEP] rintro ⟨⟨_⟩, _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx : x ≤ z hy : y ≤ z ⊢ x ≤ y ∨ y ≤ x [PROOFSTEP] rcases Part.eq_none_or_eq_some x with (h | ⟨b, h₀⟩) [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx : x ≤ z hy : y ≤ z h : x = none ⊢ x ≤ y ∨ y ≤ x [PROOFSTEP] rw [h] [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx : x ≤ z hy : y ≤ z h : x = none ⊢ none ≤ y ∨ y ≤ none [PROOFSTEP] left [GOAL] case inl.h α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx : x ≤ z hy : y ≤ z h : x = none ⊢ none ≤ y [PROOFSTEP] apply OrderBot.bot_le _ [GOAL] case inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx : x ≤ z hy : y ≤ z b : α h₀ : x = some b ⊢ x ≤ y ∨ y ≤ x [PROOFSTEP] right [GOAL] case inr.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx : x ≤ z hy : y ≤ z b : α h₀ : x = some b ⊢ y ≤ x [PROOFSTEP] intro b' h₁ [GOAL] case inr.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx : x ≤ z hy : y ≤ z b : α h₀ : x = some b b' : α h₁ : b' ∈ y ⊢ b' ∈ x [PROOFSTEP] rw [Part.eq_some_iff] at h₀ [GOAL] case inr.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx : x ≤ z hy : y ≤ z b : α h₀ : b ∈ x b' : α h₁ : b' ∈ y ⊢ b' ∈ x [PROOFSTEP] have hx := hx _ h₀ [GOAL] case inr.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx✝ : x ≤ z hy : y ≤ z b : α h₀ : b ∈ x b' : α h₁ : b' ∈ y hx : b ∈ z ⊢ b' ∈ x [PROOFSTEP] have hy := hy _ h₁ [GOAL] case inr.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx✝ : x ≤ z hy✝ : y ≤ z b : α h₀ : b ∈ x b' : α h₁ : b' ∈ y hx : b ∈ z hy : b' ∈ z ⊢ b' ∈ x [PROOFSTEP] have hx := Part.mem_unique hx hy [GOAL] case inr.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx✝¹ : x ≤ z hy✝ : y ≤ z b : α h₀ : b ∈ x b' : α h₁ : b' ∈ y hx✝ : b ∈ z hy : b' ∈ z hx : b = b' ⊢ b' ∈ x [PROOFSTEP] subst hx [GOAL] case inr.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 x y z : Part α hx✝ : x ≤ z hy✝ : y ≤ z b : α h₀ : b ∈ x hx : b ∈ z h₁ : b ∈ y hy : b ∈ z ⊢ b ∈ x [PROOFSTEP] exact h₀ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β a : β ⊢ ¬a ∈ map f none [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : p ⊢ assert p f = f h [PROOFSTEP] dsimp [assert] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : p ⊢ { Dom := ∃ h, (f h).Dom, get := fun ha => get (f (_ : p)) (_ : (f (_ : p)).Dom) } = f h [PROOFSTEP] cases h' : f h [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : p Dom✝ : Prop get✝ : Dom✝ → α h' : f h = { Dom := Dom✝, get := get✝ } ⊢ { Dom := ∃ h, (f h).Dom, get := fun ha => get (f (_ : p)) (_ : (f (_ : p)).Dom) } = { Dom := Dom✝, get := get✝ } [PROOFSTEP] simp [h', mk.injEq, h, exists_prop_of_true, true_and] [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : p Dom✝ : Prop get✝ : Dom✝ → α h' : f h = { Dom := Dom✝, get := get✝ } ⊢ HEq (fun ha => get✝ (_ : { Dom := Dom✝, get := get✝ }.Dom)) get✝ [PROOFSTEP] apply Function.hfunext [GOAL] case mk.hα α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : p Dom✝ : Prop get✝ : Dom✝ → α h' : f h = { Dom := Dom✝, get := get✝ } ⊢ (∃ h, (f h).Dom) = Dom✝ [PROOFSTEP] simp only [h, h', exists_prop_of_true] [GOAL] case mk.h α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : p Dom✝ : Prop get✝ : Dom✝ → α h' : f h = { Dom := Dom✝, get := get✝ } ⊢ ∀ (a : ∃ h, (f h).Dom) (a' : Dom✝), HEq a a' → HEq (get✝ (_ : { Dom := Dom✝, get := get✝ }.Dom)) (get✝ a') [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : ¬p ⊢ assert p f = none [PROOFSTEP] dsimp [assert, none] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : ¬p ⊢ { Dom := ∃ h, (f h).Dom, get := fun ha => get (f (_ : p)) (_ : (f (_ : p)).Dom) } = { Dom := False, get := fun t => False.rec (fun x => α) t } [PROOFSTEP] congr [GOAL] case h.e_2 α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : ¬p ⊢ (∃ h, (f h).Dom) = False [PROOFSTEP] simp only [h, not_false_iff, exists_prop_of_false] [GOAL] case h.e_3 α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : ¬p ⊢ HEq (fun ha => get (f (_ : p)) (_ : (f (_ : p)).Dom)) fun t => False.rec (fun x => α) t [PROOFSTEP] apply Function.hfunext [GOAL] case h.e_3.hα α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : ¬p ⊢ (∃ h, (f h).Dom) = False [PROOFSTEP] simp only [h, not_false_iff, exists_prop_of_false] [GOAL] case h.e_3.h α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop f : p → Part α h : ¬p ⊢ ∀ (a : ∃ h, (f h).Dom) (a' : False), HEq a a' → HEq (get (f (_ : p)) (_ : (f (_ : p)).Dom)) (False.rec (fun x => α) a') [PROOFSTEP] simp at * [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α h : o.Dom f : α → Part β ⊢ Part.bind o f = f (get o h) [PROOFSTEP] ext b [GOAL] case H α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α h : o.Dom f : α → Part β b : β ⊢ b ∈ Part.bind o f ↔ b ∈ f (get o h) [PROOFSTEP] simp only [Part.mem_bind_iff, exists_prop] [GOAL] case H α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α h : o.Dom f : α → Part β b : β ⊢ (∃ a, a ∈ o ∧ b ∈ f a) ↔ b ∈ f (get o h) [PROOFSTEP] refine' ⟨_, fun hb => ⟨o.get h, Part.get_mem _, hb⟩⟩ [GOAL] case H α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α h : o.Dom f : α → Part β b : β ⊢ (∃ a, a ∈ o ∧ b ∈ f a) → b ∈ f (get o h) [PROOFSTEP] rintro ⟨a, ha, hb⟩ [GOAL] case H.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α h : o.Dom f : α → Part β b : β a : α ha : a ∈ o hb : b ∈ f a ⊢ b ∈ f (get o h) [PROOFSTEP] rwa [Part.get_eq_of_mem ha] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → Part β a : β ⊢ ¬a ∈ Part.bind none f [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a : α f : α → Part β ⊢ ∀ (a_1 : β), a_1 ∈ Part.bind (some a) f ↔ a_1 ∈ f a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 o : Part α a : α h : a ∈ o f : α → Part β ⊢ Part.bind o f = f a [PROOFSTEP] rw [eq_some_iff.2 h, bind_some] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β x : Part α ⊢ ∀ (a : β), a ∈ Part.bind x (some ∘ f) ↔ a ∈ map f x [PROOFSTEP] simp [eq_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → Part β o : Part α inst✝² : Decidable o.Dom inst✝¹ : (a : α) → Decidable (f a).Dom inst✝ : Decidable (Part.bind o f).Dom ⊢ toOption (Part.bind o f) = Option.elim (toOption o) Option.none fun a => toOption (f a) [PROOFSTEP] by_cases h : o.Dom [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 f : α → Part β o : Part α inst✝² : Decidable o.Dom inst✝¹ : (a : α) → Decidable (f a).Dom inst✝ : Decidable (Part.bind o f).Dom h : o.Dom ⊢ toOption (Part.bind o f) = Option.elim (toOption o) Option.none fun a => toOption (f a) [PROOFSTEP] simp_rw [h.toOption, h.bind] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 f : α → Part β o : Part α inst✝² : Decidable o.Dom inst✝¹ : (a : α) → Decidable (f a).Dom inst✝ : Decidable (Part.bind o f).Dom h : o.Dom ⊢ toOption (f (get o h)) = Option.elim (Option.some (get o h)) Option.none fun a => toOption (f a) [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f : α → Part β o : Part α inst✝² : Decidable o.Dom inst✝¹ : (a : α) → Decidable (f a).Dom inst✝ : Decidable (Part.bind o f).Dom h : ¬o.Dom ⊢ toOption (Part.bind o f) = Option.elim (toOption o) Option.none fun a => toOption (f a) [PROOFSTEP] rw [Part.toOption_eq_none_iff.2 h] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f : α → Part β o : Part α inst✝² : Decidable o.Dom inst✝¹ : (a : α) → Decidable (f a).Dom inst✝ : Decidable (Part.bind o f).Dom h : ¬o.Dom ⊢ toOption (Part.bind o f) = Option.elim Option.none Option.none fun a => toOption (f a) [PROOFSTEP] exact Part.toOption_eq_none_iff.2 fun ho => h ho.of_bind [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 γ : Type u_4 f : Part α g : α → Part β k : β → Part γ a : γ ⊢ a ∈ Part.bind (Part.bind f g) k ↔ a ∈ Part.bind f fun x => Part.bind (g x) k [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 γ : Type u_4 f : Part α g : α → Part β k : β → Part γ a : γ ⊢ (∃ a_1, (∃ a, a ∈ f ∧ a_1 ∈ g a) ∧ a ∈ k a_1) ↔ ∃ a_1, a_1 ∈ f ∧ ∃ a_2, a_2 ∈ g a_1 ∧ a ∈ k a_2 [PROOFSTEP] exact ⟨fun ⟨_, ⟨_, h₁, h₂⟩, h₃⟩ => ⟨_, h₁, _, h₂, h₃⟩, fun ⟨_, h₁, _, h₂, h₃⟩ => ⟨_, ⟨_, h₁, h₂⟩, h₃⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 γ : Type u_4 f : α → β x : Part α g : β → Part γ ⊢ Part.bind (map f x) g = Part.bind x fun y => g (f y) [PROOFSTEP] rw [← bind_some_eq_map, bind_assoc] [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 γ : Type u_4 f : α → β x : Part α g : β → Part γ ⊢ (Part.bind x fun x => Part.bind ((some ∘ f) x) g) = Part.bind x fun y => g (f y) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 γ : Type u_4 f : α → Part β x : Part α g : β → γ ⊢ map g (Part.bind x f) = Part.bind x fun y => map g (f y) [PROOFSTEP] rw [← bind_some_eq_map, bind_assoc] [GOAL] α : Type u_1 β : Type u_2 γ✝ : Type u_3 γ : Type u_4 f : α → Part β x : Part α g : β → γ ⊢ (Part.bind x fun x => Part.bind (f x) (some ∘ g)) = Part.bind x fun y => map g (f y) [PROOFSTEP] simp [bind_some_eq_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 g : β → γ f : α → β o : Part α ⊢ map g (map f o) = map (g ∘ f) o [PROOFSTEP] erw [← bind_some_eq_map, bind_map, bind_some_eq_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ⊢ ∀ {α β : Type ?u.35509}, Functor.mapConst = Functor.map ∘ const β [PROOFSTEP] simp [Functor.mapConst, Functor.map] --Porting TODO : In Lean3 these were automatic by a tactic [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 α✝ : Type ?u.35509 f : Part α✝ ⊢ id <$> f = f [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 α✝ : Type ?u.35509 Dom✝ : Prop get✝ : Dom✝ → α✝ ⊢ id <$> { Dom := Dom✝, get := get✝ } = { Dom := Dom✝, get := get✝ } [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 α✝ β✝ : Type ?u.35509 x : Part α✝ y : Part β✝ ⊢ (SeqLeft.seqLeft x fun x => y).Dom ↔ (Seq.seq (const β✝ <$> x) fun x => y).Dom [PROOFSTEP] simp [SeqLeft.seqLeft, Part.bind, assert, Seq.seq, const, (· <$> ·), and_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 α✝ β✝ : Type ?u.35509 x : Part α✝ y : Part β✝ ⊢ (SeqRight.seqRight x fun x => y).Dom ↔ (Seq.seq (const α✝ id <$> x) fun x => y).Dom [PROOFSTEP] simp [SeqRight.seqRight, Part.bind, assert, Seq.seq, const, (· <$> ·), and_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 α✝ β✝ : Type ?u.35509 x : α✝ → β✝ y : Part α✝ ⊢ (Seq.seq (pure x) fun x => y).Dom ↔ (x <$> y).Dom [PROOFSTEP] simp [Seq.seq, Part.bind, assert, (· <$> ·), pure] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 α✝ β✝ : Type ?u.35509 x : Part (α✝ → β✝) y : Part α✝ ⊢ (do let x ← x x <$> y).Dom ↔ (Seq.seq x fun x => y).Dom [PROOFSTEP] simp [(· >>= ·), Part.bind, assert, Seq.seq, get, (· <$> ·)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → α H : ∀ (x : α), f x = x o : Part α ⊢ map f o = o [PROOFSTEP] rw [show f = id from funext H] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → α H : ∀ (x : α), f x = x o : Part α ⊢ map id o = o [PROOFSTEP] exact id_map o [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 x : Part α ⊢ Part.bind x some = x [PROOFSTEP] erw [bind_some_eq_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 x : Part α ⊢ map (fun a => a) x = x [PROOFSTEP] simp [map_id'] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β ⊢ x >>= f ≤ y ↔ ∀ (a : α), a ∈ x → f a ≤ y [PROOFSTEP] constructor [GOAL] case mp α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β ⊢ x >>= f ≤ y → ∀ (a : α), a ∈ x → f a ≤ y [PROOFSTEP] intro h [GOAL] case mpr α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β ⊢ (∀ (a : α), a ∈ x → f a ≤ y) → x >>= f ≤ y [PROOFSTEP] intro h [GOAL] case mp α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β h : x >>= f ≤ y ⊢ ∀ (a : α), a ∈ x → f a ≤ y [PROOFSTEP] intro a h' b [GOAL] case mp α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β h : x >>= f ≤ y a : α h' : a ∈ x b : β ⊢ b ∈ f a → b ∈ y [PROOFSTEP] have h := h b [GOAL] case mp α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β h✝ : x >>= f ≤ y a : α h' : a ∈ x b : β h : b ∈ x >>= f → b ∈ y ⊢ b ∈ f a → b ∈ y [PROOFSTEP] simp only [and_imp, exists_prop, bind_eq_bind, mem_bind_iff, exists_imp] at h [GOAL] case mp α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β h✝ : x >>= f ≤ y a : α h' : a ∈ x b : β h : ∀ (x_1 : α), x_1 ∈ x → b ∈ f x_1 → b ∈ y ⊢ b ∈ f a → b ∈ y [PROOFSTEP] apply h _ h' [GOAL] case mpr α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β h : ∀ (a : α), a ∈ x → f a ≤ y ⊢ x >>= f ≤ y [PROOFSTEP] intro b h' [GOAL] case mpr α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β h : ∀ (a : α), a ∈ x → f a ≤ y b : β h' : b ∈ x >>= f ⊢ b ∈ y [PROOFSTEP] simp only [exists_prop, bind_eq_bind, mem_bind_iff] at h' [GOAL] case mpr α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β h : ∀ (a : α), a ∈ x → f a ≤ y b : β h' : ∃ a, a ∈ x ∧ b ∈ f a ⊢ b ∈ y [PROOFSTEP] rcases h' with ⟨a, h₀, h₁⟩ [GOAL] case mpr.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 α : Type u_2 x : Part α f : α → Part β y : Part β h : ∀ (a : α), a ∈ x → f a ≤ y b : β a : α h₀ : a ∈ x h₁ : b ∈ f a ⊢ b ∈ y [PROOFSTEP] apply h _ h₀ _ h₁ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop o : Part α h : p → o.Dom a : α ⊢ a ∈ restrict p o h ↔ p ∧ a ∈ o [PROOFSTEP] dsimp [restrict, mem_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop o : Part α h : p → o.Dom a : α ⊢ (∃ h_1, get o (_ : o.Dom) = a) ↔ p ∧ ∃ h, get o h = a [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop o : Part α h : p → o.Dom a : α ⊢ (∃ h_1, get o (_ : o.Dom) = a) → p ∧ ∃ h, get o h = a [PROOFSTEP] rintro ⟨h₀, h₁⟩ [GOAL] case mp.intro α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop o : Part α h : p → o.Dom a : α h₀ : p h₁ : get o (_ : o.Dom) = a ⊢ p ∧ ∃ h, get o h = a [PROOFSTEP] exact ⟨h₀, ⟨_, h₁⟩⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop o : Part α h : p → o.Dom a : α ⊢ (p ∧ ∃ h, get o h = a) → ∃ h_1, get o (_ : o.Dom) = a [PROOFSTEP] rintro ⟨h₀, _, h₂⟩ [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 p : Prop o : Part α h : p → o.Dom a : α h₀ : p w✝ : o.Dom h₂ : get o w✝ = a ⊢ ∃ h_1, get o (_ : o.Dom) = a [PROOFSTEP] exact ⟨h₀, h₂⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Mul α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ get (a * b) (_ : ∃ h, ((fun b_1 => (fun y => map y ((fun x => b) ())) (get ((fun x x_1 => x * x_1) <$> a) b_1)) h).Dom) = ma * mb [PROOFSTEP] simp [← ha.2, ← hb.2] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Mul α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ get (a * b) (_ : ∃ h, ((fun b_1 => (fun y => map y ((fun x => b) ())) (get ((fun x x_1 => x * x_1) <$> a) b_1)) h).Dom) = get a (_ : a.Dom) * get b (_ : b.Dom) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Mul α a b : α ⊢ some a * some b = some (a * b) [PROOFSTEP] simp [mul_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Inv α a : Part α ma : α ha : ma ∈ a ⊢ ma⁻¹ ∈ a⁻¹ [PROOFSTEP] simp [inv_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Inv α a : Part α ma : α ha : ma ∈ a ⊢ ∃ a_1, a_1 ∈ a ∧ a_1⁻¹ = ma⁻¹ [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Div α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ma / mb ∈ a / b [PROOFSTEP] simp [div_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Div α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 / a = ma / mb [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Div α a b : Part α hab : (a / b).Dom ⊢ get (a / b) hab = get a (_ : a.Dom) / get b (_ : b.Dom) [PROOFSTEP] simp [div_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Div α a b : Part α hab : (a / b).Dom ⊢ get (Part.bind a fun y => map (fun x => y / x) b) (_ : (Part.bind a fun y => map (fun x => y / x) b).Dom) = get a (_ : a.Dom) / get b (_ : b.Dom) [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Div α a b : α ⊢ some a / some b = some (a / b) [PROOFSTEP] simp [div_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Mod α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ma % mb ∈ a % b [PROOFSTEP] simp [mod_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Mod α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 % a = ma % mb [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Mod α a b : Part α hab : (a % b).Dom ⊢ get (a % b) hab = get a (_ : a.Dom) % get b (_ : b.Dom) [PROOFSTEP] simp [mod_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Mod α a b : Part α hab : (a % b).Dom ⊢ get (Part.bind a fun y => map (fun x => y % x) b) (_ : (Part.bind a fun y => map (fun x => y % x) b).Dom) = get a (_ : a.Dom) % get b (_ : b.Dom) [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Mod α a b : α ⊢ some a % some b = some (a % b) [PROOFSTEP] simp [mod_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Append α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ma ++ mb ∈ a ++ b [PROOFSTEP] simp [append_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Append α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 ++ a = ma ++ mb [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Append α a b : Part α hab : (a ++ b).Dom ⊢ get (a ++ b) hab = get a (_ : a.Dom) ++ get b (_ : b.Dom) [PROOFSTEP] simp [append_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Append α a b : Part α hab : (a ++ b).Dom ⊢ get (Part.bind a fun y => map (fun x => y ++ x) b) (_ : (Part.bind a fun y => map (fun x => y ++ x) b).Dom) = get a (_ : a.Dom) ++ get b (_ : b.Dom) [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Append α a b : α ⊢ some a ++ some b = some (a ++ b) [PROOFSTEP] simp [append_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Inter α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ma ∩ mb ∈ a ∩ b [PROOFSTEP] simp [inter_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Inter α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 ∩ a = ma ∩ mb [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Inter α a b : Part α hab : (a ∩ b).Dom ⊢ get (a ∩ b) hab = get a (_ : a.Dom) ∩ get b (_ : b.Dom) [PROOFSTEP] simp [inter_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Inter α a b : Part α hab : (a ∩ b).Dom ⊢ get (Part.bind a fun y => map (fun x => y ∩ x) b) (_ : (Part.bind a fun y => map (fun x => y ∩ x) b).Dom) = get a (_ : a.Dom) ∩ get b (_ : b.Dom) [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Inter α a b : α ⊢ some a ∩ some b = some (a ∩ b) [PROOFSTEP] simp [inter_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Union α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ma ∪ mb ∈ a ∪ b [PROOFSTEP] simp [union_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Union α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 ∪ a = ma ∪ mb [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Union α a b : Part α hab : (a ∪ b).Dom ⊢ get (a ∪ b) hab = get a (_ : a.Dom) ∪ get b (_ : b.Dom) [PROOFSTEP] simp [union_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Union α a b : Part α hab : (a ∪ b).Dom ⊢ get (Part.bind a fun y => map (fun x => y ∪ x) b) (_ : (Part.bind a fun y => map (fun x => y ∪ x) b).Dom) = get a (_ : a.Dom) ∪ get b (_ : b.Dom) [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : Union α a b : α ⊢ some a ∪ some b = some (a ∪ b) [PROOFSTEP] simp [union_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : SDiff α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ma \ mb ∈ a \ b [PROOFSTEP] simp [sdiff_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : SDiff α a b : Part α ma mb : α ha : ma ∈ a hb : mb ∈ b ⊢ ∃ a_1, a_1 ∈ a ∧ ∃ a, a ∈ b ∧ a_1 \ a = ma \ mb [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : SDiff α a b : Part α hab : (a \ b).Dom ⊢ get (a \ b) hab = get a (_ : a.Dom) \ get b (_ : b.Dom) [PROOFSTEP] simp [sdiff_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : SDiff α a b : Part α hab : (a \ b).Dom ⊢ get (Part.bind a fun y => map (fun x => y \ x) b) (_ : (Part.bind a fun y => map (fun x => y \ x) b).Dom) = get a (_ : a.Dom) \ get b (_ : b.Dom) [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : SDiff α a b : α ⊢ some a \ some b = some (a \ b) [PROOFSTEP] simp [sdiff_def]
{"mathlib_filename": "Mathlib.Data.Part", "llama_tokens": 15422}
{"mathlib_filename": "Mathlib.Data.LazyList", "llama_tokens": 0}
[GOAL] x : SignType ⊢ x ∈ ↑[zero, neg, pos] [PROOFSTEP] cases x [GOAL] case zero ⊢ zero ∈ ↑[zero, neg, pos] [PROOFSTEP] simp only [GOAL] case neg ⊢ neg ∈ ↑[zero, neg, pos] [PROOFSTEP] simp only [GOAL] case pos ⊢ pos ∈ ↑[zero, neg, pos] [PROOFSTEP] simp only [GOAL] a b : SignType ⊢ Decidable (SignType.LE a b) [PROOFSTEP] cases a [GOAL] case zero b : SignType ⊢ Decidable (SignType.LE SignType.zero b) [PROOFSTEP] cases b [GOAL] case neg b : SignType ⊢ Decidable (SignType.LE neg b) [PROOFSTEP] cases b [GOAL] case pos b : SignType ⊢ Decidable (SignType.LE pos b) [PROOFSTEP] cases b [GOAL] case zero.zero ⊢ Decidable (SignType.LE SignType.zero SignType.zero) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case zero.zero ⊢ Decidable (SignType.LE SignType.zero SignType.zero) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ SignType.LE SignType.zero SignType.zero [PROOFSTEP] constructor [GOAL] case zero.neg ⊢ Decidable (SignType.LE SignType.zero neg) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case zero.neg ⊢ Decidable (SignType.LE SignType.zero neg) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ SignType.LE SignType.zero neg [PROOFSTEP] constructor [GOAL] case zero.neg ⊢ Decidable (SignType.LE SignType.zero neg) [PROOFSTEP] exact isFalse (by rintro ⟨_⟩) [GOAL] ⊢ ¬SignType.LE SignType.zero neg [PROOFSTEP] rintro ⟨_⟩ [GOAL] case zero.pos ⊢ Decidable (SignType.LE SignType.zero pos) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case zero.pos ⊢ Decidable (SignType.LE SignType.zero pos) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ SignType.LE SignType.zero pos [PROOFSTEP] constructor [GOAL] case neg.zero ⊢ Decidable (SignType.LE neg SignType.zero) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case neg.zero ⊢ Decidable (SignType.LE neg SignType.zero) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ SignType.LE neg SignType.zero [PROOFSTEP] constructor [GOAL] case neg.neg ⊢ Decidable (SignType.LE neg neg) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case neg.neg ⊢ Decidable (SignType.LE neg neg) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ SignType.LE neg neg [PROOFSTEP] constructor [GOAL] case neg.pos ⊢ Decidable (SignType.LE neg pos) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case neg.pos ⊢ Decidable (SignType.LE neg pos) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ SignType.LE neg pos [PROOFSTEP] constructor [GOAL] case pos.zero ⊢ Decidable (SignType.LE pos SignType.zero) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case pos.zero ⊢ Decidable (SignType.LE pos SignType.zero) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ SignType.LE pos SignType.zero [PROOFSTEP] constructor [GOAL] case pos.zero ⊢ Decidable (SignType.LE pos SignType.zero) [PROOFSTEP] exact isFalse (by rintro ⟨_⟩) [GOAL] ⊢ ¬SignType.LE pos SignType.zero [PROOFSTEP] rintro ⟨_⟩ [GOAL] case pos.neg ⊢ Decidable (SignType.LE pos neg) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case pos.neg ⊢ Decidable (SignType.LE pos neg) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ SignType.LE pos neg [PROOFSTEP] constructor [GOAL] case pos.neg ⊢ Decidable (SignType.LE pos neg) [PROOFSTEP] exact isFalse (by rintro ⟨_⟩) [GOAL] ⊢ ¬SignType.LE pos neg [PROOFSTEP] rintro ⟨_⟩ [GOAL] case pos.pos ⊢ Decidable (SignType.LE pos pos) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case pos.pos ⊢ Decidable (SignType.LE pos pos) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ SignType.LE pos pos [PROOFSTEP] constructor [GOAL] a b : SignType ⊢ Decidable (a = b) [PROOFSTEP] cases a [GOAL] case zero b : SignType ⊢ Decidable (zero = b) [PROOFSTEP] cases b [GOAL] case neg b : SignType ⊢ Decidable (neg = b) [PROOFSTEP] cases b [GOAL] case pos b : SignType ⊢ Decidable (pos = b) [PROOFSTEP] cases b [GOAL] case zero.zero ⊢ Decidable (zero = zero) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case zero.zero ⊢ Decidable (zero = zero) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ zero = zero [PROOFSTEP] constructor [GOAL] case zero.neg ⊢ Decidable (zero = neg) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case zero.neg ⊢ Decidable (zero = neg) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ zero = neg [PROOFSTEP] constructor [GOAL] case zero.neg ⊢ Decidable (zero = neg) [PROOFSTEP] exact isFalse (by rintro ⟨_⟩) [GOAL] ⊢ ¬zero = neg [PROOFSTEP] rintro ⟨_⟩ [GOAL] case zero.pos ⊢ Decidable (zero = pos) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case zero.pos ⊢ Decidable (zero = pos) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ zero = pos [PROOFSTEP] constructor [GOAL] case zero.pos ⊢ Decidable (zero = pos) [PROOFSTEP] exact isFalse (by rintro ⟨_⟩) [GOAL] ⊢ ¬zero = pos [PROOFSTEP] rintro ⟨_⟩ [GOAL] case neg.zero ⊢ Decidable (neg = zero) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case neg.zero ⊢ Decidable (neg = zero) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ neg = zero [PROOFSTEP] constructor [GOAL] case neg.zero ⊢ Decidable (neg = zero) [PROOFSTEP] exact isFalse (by rintro ⟨_⟩) [GOAL] ⊢ ¬neg = zero [PROOFSTEP] rintro ⟨_⟩ [GOAL] case neg.neg ⊢ Decidable (neg = neg) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case neg.neg ⊢ Decidable (neg = neg) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ neg = neg [PROOFSTEP] constructor [GOAL] case neg.pos ⊢ Decidable (neg = pos) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case neg.pos ⊢ Decidable (neg = pos) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ neg = pos [PROOFSTEP] constructor [GOAL] case neg.pos ⊢ Decidable (neg = pos) [PROOFSTEP] exact isFalse (by rintro ⟨_⟩) [GOAL] ⊢ ¬neg = pos [PROOFSTEP] rintro ⟨_⟩ [GOAL] case pos.zero ⊢ Decidable (pos = zero) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case pos.zero ⊢ Decidable (pos = zero) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ pos = zero [PROOFSTEP] constructor [GOAL] case pos.zero ⊢ Decidable (pos = zero) [PROOFSTEP] exact isFalse (by rintro ⟨_⟩) [GOAL] ⊢ ¬pos = zero [PROOFSTEP] rintro ⟨_⟩ [GOAL] case pos.neg ⊢ Decidable (pos = neg) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case pos.neg ⊢ Decidable (pos = neg) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ pos = neg [PROOFSTEP] constructor [GOAL] case pos.neg ⊢ Decidable (pos = neg) [PROOFSTEP] exact isFalse (by rintro ⟨_⟩) [GOAL] ⊢ ¬pos = neg [PROOFSTEP] rintro ⟨_⟩ [GOAL] case pos.pos ⊢ Decidable (pos = pos) [PROOFSTEP] first | exact isTrue (by constructor) | exact isFalse (by rintro ⟨_⟩) [GOAL] case pos.pos ⊢ Decidable (pos = pos) [PROOFSTEP] exact isTrue (by constructor) [GOAL] ⊢ pos = pos [PROOFSTEP] constructor [GOAL] ⊢ ∀ (a b : SignType), a * b = b * a [PROOFSTEP] rintro ⟨⟩ ⟨⟩ [GOAL] case zero.zero ⊢ zero * zero = zero * zero [PROOFSTEP] rfl [GOAL] case zero.neg ⊢ zero * neg = neg * zero [PROOFSTEP] rfl [GOAL] case zero.pos ⊢ zero * pos = pos * zero [PROOFSTEP] rfl [GOAL] case neg.zero ⊢ neg * zero = zero * neg [PROOFSTEP] rfl [GOAL] case neg.neg ⊢ neg * neg = neg * neg [PROOFSTEP] rfl [GOAL] case neg.pos ⊢ neg * pos = pos * neg [PROOFSTEP] rfl [GOAL] case pos.zero ⊢ pos * zero = zero * pos [PROOFSTEP] rfl [GOAL] case pos.neg ⊢ pos * neg = neg * pos [PROOFSTEP] rfl [GOAL] case pos.pos ⊢ pos * pos = pos * pos [PROOFSTEP] rfl [GOAL] ⊢ ∀ (a b c : SignType), a * b * c = a * (b * c) [PROOFSTEP] rintro ⟨⟩ ⟨⟩ ⟨⟩ [GOAL] case zero.zero.zero ⊢ zero * zero * zero = zero * (zero * zero) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case zero.zero.neg ⊢ zero * zero * neg = zero * (zero * neg) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case zero.zero.pos ⊢ zero * zero * pos = zero * (zero * pos) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case zero.neg.zero ⊢ zero * neg * zero = zero * (neg * zero) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case zero.neg.neg ⊢ zero * neg * neg = zero * (neg * neg) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case zero.neg.pos ⊢ zero * neg * pos = zero * (neg * pos) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case zero.pos.zero ⊢ zero * pos * zero = zero * (pos * zero) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case zero.pos.neg ⊢ zero * pos * neg = zero * (pos * neg) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case zero.pos.pos ⊢ zero * pos * pos = zero * (pos * pos) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case neg.zero.zero ⊢ neg * zero * zero = neg * (zero * zero) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case neg.zero.neg ⊢ neg * zero * neg = neg * (zero * neg) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case neg.zero.pos ⊢ neg * zero * pos = neg * (zero * pos) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case neg.neg.zero ⊢ neg * neg * zero = neg * (neg * zero) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case neg.neg.neg ⊢ neg * neg * neg = neg * (neg * neg) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case neg.neg.pos ⊢ neg * neg * pos = neg * (neg * pos) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case neg.pos.zero ⊢ neg * pos * zero = neg * (pos * zero) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case neg.pos.neg ⊢ neg * pos * neg = neg * (pos * neg) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case neg.pos.pos ⊢ neg * pos * pos = neg * (pos * pos) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case pos.zero.zero ⊢ pos * zero * zero = pos * (zero * zero) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case pos.zero.neg ⊢ pos * zero * neg = pos * (zero * neg) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case pos.zero.pos ⊢ pos * zero * pos = pos * (zero * pos) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case pos.neg.zero ⊢ pos * neg * zero = pos * (neg * zero) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case pos.neg.neg ⊢ pos * neg * neg = pos * (neg * neg) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case pos.neg.pos ⊢ pos * neg * pos = pos * (neg * pos) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case pos.pos.zero ⊢ pos * pos * zero = pos * (pos * zero) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case pos.pos.neg ⊢ pos * pos * neg = pos * (pos * neg) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] case pos.pos.pos ⊢ pos * pos * pos = pos * (pos * pos) [PROOFSTEP] rfl /- We can define a `Field` instance on `SignType`, but it's not mathematically sensible, so we only define the `CommGroupWithZero`. -/ [GOAL] a : SignType ⊢ 1 * a = a [PROOFSTEP] cases a [GOAL] case zero ⊢ 1 * zero = zero [PROOFSTEP] rfl [GOAL] case neg ⊢ 1 * neg = neg [PROOFSTEP] rfl [GOAL] case pos ⊢ 1 * pos = pos [PROOFSTEP] rfl [GOAL] a : SignType ⊢ a * 1 = a [PROOFSTEP] cases a [GOAL] case zero ⊢ zero * 1 = zero [PROOFSTEP] rfl [GOAL] case neg ⊢ neg * 1 = neg [PROOFSTEP] rfl [GOAL] case pos ⊢ pos * 1 = pos [PROOFSTEP] rfl [GOAL] a : SignType ⊢ 0 * a = 0 [PROOFSTEP] cases a [GOAL] case zero ⊢ 0 * zero = 0 [PROOFSTEP] rfl [GOAL] case neg ⊢ 0 * neg = 0 [PROOFSTEP] rfl [GOAL] case pos ⊢ 0 * pos = 0 [PROOFSTEP] rfl [GOAL] a : SignType ⊢ a * 0 = 0 [PROOFSTEP] cases a [GOAL] case zero ⊢ zero * 0 = 0 [PROOFSTEP] rfl [GOAL] case neg ⊢ neg * 0 = 0 [PROOFSTEP] rfl [GOAL] case pos ⊢ pos * 0 = 0 [PROOFSTEP] rfl [GOAL] ⊢ 0 ≠ 1 [PROOFSTEP] rintro ⟨_⟩ [GOAL] a : SignType ha : a ≠ 0 ⊢ a * a⁻¹ = 1 [PROOFSTEP] cases a [GOAL] case zero ha : zero ≠ 0 ⊢ zero * zero⁻¹ = 1 [PROOFSTEP] trivial [GOAL] case neg ha : neg ≠ 0 ⊢ neg * neg⁻¹ = 1 [PROOFSTEP] trivial [GOAL] case pos ha : pos ≠ 0 ⊢ pos * pos⁻¹ = 1 [PROOFSTEP] trivial [GOAL] a b : SignType x✝¹ : a ≤ b x✝ : b ≤ a ⊢ a = b [PROOFSTEP] cases a [GOAL] case zero b : SignType x✝¹ : zero ≤ b x✝ : b ≤ zero ⊢ zero = b [PROOFSTEP] cases b [GOAL] case neg b : SignType x✝¹ : neg ≤ b x✝ : b ≤ neg ⊢ neg = b [PROOFSTEP] cases b [GOAL] case pos b : SignType x✝¹ : pos ≤ b x✝ : b ≤ pos ⊢ pos = b [PROOFSTEP] cases b [GOAL] case zero.zero x✝¹ x✝ : zero ≤ zero ⊢ zero = zero [PROOFSTEP] trivial [GOAL] case zero.neg x✝¹ : zero ≤ neg x✝ : neg ≤ zero ⊢ zero = neg [PROOFSTEP] trivial [GOAL] case zero.pos x✝¹ : zero ≤ pos x✝ : pos ≤ zero ⊢ zero = pos [PROOFSTEP] trivial [GOAL] case neg.zero x✝¹ : neg ≤ zero x✝ : zero ≤ neg ⊢ neg = zero [PROOFSTEP] trivial [GOAL] case neg.neg x✝¹ x✝ : neg ≤ neg ⊢ neg = neg [PROOFSTEP] trivial [GOAL] case neg.pos x✝¹ : neg ≤ pos x✝ : pos ≤ neg ⊢ neg = pos [PROOFSTEP] trivial [GOAL] case pos.zero x✝¹ : pos ≤ zero x✝ : zero ≤ pos ⊢ pos = zero [PROOFSTEP] trivial [GOAL] case pos.neg x✝¹ : pos ≤ neg x✝ : neg ≤ pos ⊢ pos = neg [PROOFSTEP] trivial [GOAL] case pos.pos x✝¹ x✝ : pos ≤ pos ⊢ pos = pos [PROOFSTEP] trivial [GOAL] a b c : SignType x✝¹ : a ≤ b x✝ : b ≤ c ⊢ a ≤ c [PROOFSTEP] cases a [GOAL] case zero b c : SignType x✝¹ : b ≤ c x✝ : zero ≤ b ⊢ zero ≤ c [PROOFSTEP] cases b [GOAL] case neg b c : SignType x✝¹ : b ≤ c x✝ : neg ≤ b ⊢ neg ≤ c [PROOFSTEP] cases b [GOAL] case pos b c : SignType x✝¹ : b ≤ c x✝ : pos ≤ b ⊢ pos ≤ c [PROOFSTEP] cases b [GOAL] case zero.zero c : SignType x✝¹ : zero ≤ c x✝ : zero ≤ zero ⊢ zero ≤ c [PROOFSTEP] cases c [GOAL] case zero.neg c : SignType x✝¹ : neg ≤ c x✝ : zero ≤ neg ⊢ zero ≤ c [PROOFSTEP] cases c [GOAL] case zero.pos c : SignType x✝¹ : pos ≤ c x✝ : zero ≤ pos ⊢ zero ≤ c [PROOFSTEP] cases c [GOAL] case neg.zero c : SignType x✝¹ : zero ≤ c x✝ : neg ≤ zero ⊢ neg ≤ c [PROOFSTEP] cases c [GOAL] case neg.neg c : SignType x✝¹ : neg ≤ c x✝ : neg ≤ neg ⊢ neg ≤ c [PROOFSTEP] cases c [GOAL] case neg.pos c : SignType x✝¹ : pos ≤ c x✝ : neg ≤ pos ⊢ neg ≤ c [PROOFSTEP] cases c [GOAL] case pos.zero c : SignType x✝¹ : zero ≤ c x✝ : pos ≤ zero ⊢ pos ≤ c [PROOFSTEP] cases c [GOAL] case pos.neg c : SignType x✝¹ : neg ≤ c x✝ : pos ≤ neg ⊢ pos ≤ c [PROOFSTEP] cases c [GOAL] case pos.pos c : SignType x✝¹ : pos ≤ c x✝ : pos ≤ pos ⊢ pos ≤ c [PROOFSTEP] cases c [GOAL] case zero.zero.zero x✝¹ x✝ : zero ≤ zero ⊢ zero ≤ zero [PROOFSTEP] first | tauto | constructor [GOAL] case zero.zero.zero x✝¹ x✝ : zero ≤ zero ⊢ zero ≤ zero [PROOFSTEP] tauto [GOAL] case zero.zero.neg x✝¹ : zero ≤ zero x✝ : zero ≤ neg ⊢ zero ≤ neg [PROOFSTEP] first | tauto | constructor [GOAL] case zero.zero.neg x✝¹ : zero ≤ zero x✝ : zero ≤ neg ⊢ zero ≤ neg [PROOFSTEP] tauto [GOAL] case zero.zero.pos x✝¹ : zero ≤ zero x✝ : zero ≤ pos ⊢ zero ≤ pos [PROOFSTEP] first | tauto | constructor [GOAL] case zero.zero.pos x✝¹ : zero ≤ zero x✝ : zero ≤ pos ⊢ zero ≤ pos [PROOFSTEP] tauto [GOAL] case zero.neg.zero x✝¹ : zero ≤ neg x✝ : neg ≤ zero ⊢ zero ≤ zero [PROOFSTEP] first | tauto | constructor [GOAL] case zero.neg.zero x✝¹ : zero ≤ neg x✝ : neg ≤ zero ⊢ zero ≤ zero [PROOFSTEP] tauto [GOAL] case zero.neg.neg x✝¹ : zero ≤ neg x✝ : neg ≤ neg ⊢ zero ≤ neg [PROOFSTEP] first | tauto | constructor [GOAL] case zero.neg.neg x✝¹ : zero ≤ neg x✝ : neg ≤ neg ⊢ zero ≤ neg [PROOFSTEP] tauto [GOAL] case zero.neg.pos x✝¹ : zero ≤ neg x✝ : neg ≤ pos ⊢ zero ≤ pos [PROOFSTEP] first | tauto | constructor [GOAL] case zero.neg.pos x✝¹ : zero ≤ neg x✝ : neg ≤ pos ⊢ zero ≤ pos [PROOFSTEP] tauto [GOAL] case zero.pos.zero x✝¹ : zero ≤ pos x✝ : pos ≤ zero ⊢ zero ≤ zero [PROOFSTEP] first | tauto | constructor [GOAL] case zero.pos.zero x✝¹ : zero ≤ pos x✝ : pos ≤ zero ⊢ zero ≤ zero [PROOFSTEP] tauto [GOAL] case zero.pos.neg x✝¹ : zero ≤ pos x✝ : pos ≤ neg ⊢ zero ≤ neg [PROOFSTEP] first | tauto | constructor [GOAL] case zero.pos.neg x✝¹ : zero ≤ pos x✝ : pos ≤ neg ⊢ zero ≤ neg [PROOFSTEP] tauto [GOAL] case zero.pos.pos x✝¹ : zero ≤ pos x✝ : pos ≤ pos ⊢ zero ≤ pos [PROOFSTEP] first | tauto | constructor [GOAL] case zero.pos.pos x✝¹ : zero ≤ pos x✝ : pos ≤ pos ⊢ zero ≤ pos [PROOFSTEP] tauto [GOAL] case neg.zero.zero x✝¹ : neg ≤ zero x✝ : zero ≤ zero ⊢ neg ≤ zero [PROOFSTEP] first | tauto | constructor [GOAL] case neg.zero.zero x✝¹ : neg ≤ zero x✝ : zero ≤ zero ⊢ neg ≤ zero [PROOFSTEP] tauto [GOAL] case neg.zero.neg x✝¹ : neg ≤ zero x✝ : zero ≤ neg ⊢ neg ≤ neg [PROOFSTEP] first | tauto | constructor [GOAL] case neg.zero.neg x✝¹ : neg ≤ zero x✝ : zero ≤ neg ⊢ neg ≤ neg [PROOFSTEP] tauto [GOAL] case neg.zero.pos x✝¹ : neg ≤ zero x✝ : zero ≤ pos ⊢ neg ≤ pos [PROOFSTEP] first | tauto | constructor [GOAL] case neg.zero.pos x✝¹ : neg ≤ zero x✝ : zero ≤ pos ⊢ neg ≤ pos [PROOFSTEP] tauto [GOAL] case neg.zero.pos x✝¹ : neg ≤ zero x✝ : zero ≤ pos ⊢ neg ≤ pos [PROOFSTEP] constructor [GOAL] case neg.neg.zero x✝¹ : neg ≤ neg x✝ : neg ≤ zero ⊢ neg ≤ zero [PROOFSTEP] first | tauto | constructor [GOAL] case neg.neg.zero x✝¹ : neg ≤ neg x✝ : neg ≤ zero ⊢ neg ≤ zero [PROOFSTEP] tauto [GOAL] case neg.neg.neg x✝¹ x✝ : neg ≤ neg ⊢ neg ≤ neg [PROOFSTEP] first | tauto | constructor [GOAL] case neg.neg.neg x✝¹ x✝ : neg ≤ neg ⊢ neg ≤ neg [PROOFSTEP] tauto [GOAL] case neg.neg.pos x✝¹ : neg ≤ neg x✝ : neg ≤ pos ⊢ neg ≤ pos [PROOFSTEP] first | tauto | constructor [GOAL] case neg.neg.pos x✝¹ : neg ≤ neg x✝ : neg ≤ pos ⊢ neg ≤ pos [PROOFSTEP] tauto [GOAL] case neg.pos.zero x✝¹ : neg ≤ pos x✝ : pos ≤ zero ⊢ neg ≤ zero [PROOFSTEP] first | tauto | constructor [GOAL] case neg.pos.zero x✝¹ : neg ≤ pos x✝ : pos ≤ zero ⊢ neg ≤ zero [PROOFSTEP] tauto [GOAL] case neg.pos.neg x✝¹ : neg ≤ pos x✝ : pos ≤ neg ⊢ neg ≤ neg [PROOFSTEP] first | tauto | constructor [GOAL] case neg.pos.neg x✝¹ : neg ≤ pos x✝ : pos ≤ neg ⊢ neg ≤ neg [PROOFSTEP] tauto [GOAL] case neg.pos.pos x✝¹ : neg ≤ pos x✝ : pos ≤ pos ⊢ neg ≤ pos [PROOFSTEP] first | tauto | constructor [GOAL] case neg.pos.pos x✝¹ : neg ≤ pos x✝ : pos ≤ pos ⊢ neg ≤ pos [PROOFSTEP] tauto [GOAL] case pos.zero.zero x✝¹ : pos ≤ zero x✝ : zero ≤ zero ⊢ pos ≤ zero [PROOFSTEP] first | tauto | constructor [GOAL] case pos.zero.zero x✝¹ : pos ≤ zero x✝ : zero ≤ zero ⊢ pos ≤ zero [PROOFSTEP] tauto [GOAL] case pos.zero.neg x✝¹ : pos ≤ zero x✝ : zero ≤ neg ⊢ pos ≤ neg [PROOFSTEP] first | tauto | constructor [GOAL] case pos.zero.neg x✝¹ : pos ≤ zero x✝ : zero ≤ neg ⊢ pos ≤ neg [PROOFSTEP] tauto [GOAL] case pos.zero.pos x✝¹ : pos ≤ zero x✝ : zero ≤ pos ⊢ pos ≤ pos [PROOFSTEP] first | tauto | constructor [GOAL] case pos.zero.pos x✝¹ : pos ≤ zero x✝ : zero ≤ pos ⊢ pos ≤ pos [PROOFSTEP] tauto [GOAL] case pos.neg.zero x✝¹ : pos ≤ neg x✝ : neg ≤ zero ⊢ pos ≤ zero [PROOFSTEP] first | tauto | constructor [GOAL] case pos.neg.zero x✝¹ : pos ≤ neg x✝ : neg ≤ zero ⊢ pos ≤ zero [PROOFSTEP] tauto [GOAL] case pos.neg.neg x✝¹ : pos ≤ neg x✝ : neg ≤ neg ⊢ pos ≤ neg [PROOFSTEP] first | tauto | constructor [GOAL] case pos.neg.neg x✝¹ : pos ≤ neg x✝ : neg ≤ neg ⊢ pos ≤ neg [PROOFSTEP] tauto [GOAL] case pos.neg.pos x✝¹ : pos ≤ neg x✝ : neg ≤ pos ⊢ pos ≤ pos [PROOFSTEP] first | tauto | constructor [GOAL] case pos.neg.pos x✝¹ : pos ≤ neg x✝ : neg ≤ pos ⊢ pos ≤ pos [PROOFSTEP] tauto [GOAL] case pos.pos.zero x✝¹ : pos ≤ pos x✝ : pos ≤ zero ⊢ pos ≤ zero [PROOFSTEP] first | tauto | constructor [GOAL] case pos.pos.zero x✝¹ : pos ≤ pos x✝ : pos ≤ zero ⊢ pos ≤ zero [PROOFSTEP] tauto [GOAL] case pos.pos.neg x✝¹ : pos ≤ pos x✝ : pos ≤ neg ⊢ pos ≤ neg [PROOFSTEP] first | tauto | constructor [GOAL] case pos.pos.neg x✝¹ : pos ≤ pos x✝ : pos ≤ neg ⊢ pos ≤ neg [PROOFSTEP] tauto [GOAL] case pos.pos.pos x✝¹ x✝ : pos ≤ pos ⊢ pos ≤ pos [PROOFSTEP] first | tauto | constructor [GOAL] case pos.pos.pos x✝¹ x✝ : pos ≤ pos ⊢ pos ≤ pos [PROOFSTEP] tauto [GOAL] a : SignType ⊢ a ≤ a [PROOFSTEP] cases a [GOAL] case zero ⊢ zero ≤ zero [PROOFSTEP] constructor [GOAL] case neg ⊢ neg ≤ neg [PROOFSTEP] constructor [GOAL] case pos ⊢ pos ≤ pos [PROOFSTEP] constructor [GOAL] a b : SignType ⊢ a ≤ b ∨ b ≤ a [PROOFSTEP] cases a [GOAL] case zero b : SignType ⊢ zero ≤ b ∨ b ≤ zero [PROOFSTEP] cases b [GOAL] case neg b : SignType ⊢ neg ≤ b ∨ b ≤ neg [PROOFSTEP] cases b [GOAL] case pos b : SignType ⊢ pos ≤ b ∨ b ≤ pos [PROOFSTEP] cases b [GOAL] case zero.zero ⊢ zero ≤ zero ∨ zero ≤ zero [PROOFSTEP] first | left; constructor | right; constructor [GOAL] case zero.zero ⊢ zero ≤ zero ∨ zero ≤ zero [PROOFSTEP] left [GOAL] case zero.zero.h ⊢ zero ≤ zero [PROOFSTEP] constructor [GOAL] case zero.neg ⊢ zero ≤ neg ∨ neg ≤ zero [PROOFSTEP] first | left; constructor | right; constructor [GOAL] case zero.neg ⊢ zero ≤ neg ∨ neg ≤ zero [PROOFSTEP] left [GOAL] case zero.neg.h ⊢ zero ≤ neg [PROOFSTEP] constructor [GOAL] case zero.neg ⊢ zero ≤ neg ∨ neg ≤ zero [PROOFSTEP] right [GOAL] case zero.neg.h ⊢ neg ≤ zero [PROOFSTEP] constructor [GOAL] case zero.pos ⊢ zero ≤ pos ∨ pos ≤ zero [PROOFSTEP] first | left; constructor | right; constructor [GOAL] case zero.pos ⊢ zero ≤ pos ∨ pos ≤ zero [PROOFSTEP] left [GOAL] case zero.pos.h ⊢ zero ≤ pos [PROOFSTEP] constructor [GOAL] case neg.zero ⊢ neg ≤ zero ∨ zero ≤ neg [PROOFSTEP] first | left; constructor | right; constructor [GOAL] case neg.zero ⊢ neg ≤ zero ∨ zero ≤ neg [PROOFSTEP] left [GOAL] case neg.zero.h ⊢ neg ≤ zero [PROOFSTEP] constructor [GOAL] case neg.neg ⊢ neg ≤ neg ∨ neg ≤ neg [PROOFSTEP] first | left; constructor | right; constructor [GOAL] case neg.neg ⊢ neg ≤ neg ∨ neg ≤ neg [PROOFSTEP] left [GOAL] case neg.neg.h ⊢ neg ≤ neg [PROOFSTEP] constructor [GOAL] case neg.pos ⊢ neg ≤ pos ∨ pos ≤ neg [PROOFSTEP] first | left; constructor | right; constructor [GOAL] case neg.pos ⊢ neg ≤ pos ∨ pos ≤ neg [PROOFSTEP] left [GOAL] case neg.pos.h ⊢ neg ≤ pos [PROOFSTEP] constructor [GOAL] case pos.zero ⊢ pos ≤ zero ∨ zero ≤ pos [PROOFSTEP] first | left; constructor | right; constructor [GOAL] case pos.zero ⊢ pos ≤ zero ∨ zero ≤ pos [PROOFSTEP] left [GOAL] case pos.zero.h ⊢ pos ≤ zero [PROOFSTEP] constructor [GOAL] case pos.zero ⊢ pos ≤ zero ∨ zero ≤ pos [PROOFSTEP] right [GOAL] case pos.zero.h ⊢ zero ≤ pos [PROOFSTEP] constructor [GOAL] case pos.neg ⊢ pos ≤ neg ∨ neg ≤ pos [PROOFSTEP] first | left; constructor | right; constructor [GOAL] case pos.neg ⊢ pos ≤ neg ∨ neg ≤ pos [PROOFSTEP] left [GOAL] case pos.neg.h ⊢ pos ≤ neg [PROOFSTEP] constructor [GOAL] case pos.neg ⊢ pos ≤ neg ∨ neg ≤ pos [PROOFSTEP] right [GOAL] case pos.neg.h ⊢ neg ≤ pos [PROOFSTEP] constructor [GOAL] case pos.pos ⊢ pos ≤ pos ∨ pos ≤ pos [PROOFSTEP] first | left; constructor | right; constructor [GOAL] case pos.pos ⊢ pos ≤ pos ∨ pos ≤ pos [PROOFSTEP] left [GOAL] case pos.pos.h ⊢ pos ≤ pos [PROOFSTEP] constructor [GOAL] x : SignType ⊢ - -x = x [PROOFSTEP] cases x [GOAL] case zero ⊢ - -zero = zero [PROOFSTEP] rfl [GOAL] case neg ⊢ - -neg = neg [PROOFSTEP] rfl [GOAL] case pos ⊢ - -pos = pos [PROOFSTEP] rfl [GOAL] x y : SignType ⊢ -x * y = -(x * y) [PROOFSTEP] cases x [GOAL] case zero y : SignType ⊢ -zero * y = -(zero * y) [PROOFSTEP] cases y [GOAL] case neg y : SignType ⊢ -neg * y = -(neg * y) [PROOFSTEP] cases y [GOAL] case pos y : SignType ⊢ -pos * y = -(pos * y) [PROOFSTEP] cases y [GOAL] case zero.zero ⊢ -zero * zero = -(zero * zero) [PROOFSTEP] rfl [GOAL] case zero.neg ⊢ -zero * neg = -(zero * neg) [PROOFSTEP] rfl [GOAL] case zero.pos ⊢ -zero * pos = -(zero * pos) [PROOFSTEP] rfl [GOAL] case neg.zero ⊢ -neg * zero = -(neg * zero) [PROOFSTEP] rfl [GOAL] case neg.neg ⊢ -neg * neg = -(neg * neg) [PROOFSTEP] rfl [GOAL] case neg.pos ⊢ -neg * pos = -(neg * pos) [PROOFSTEP] rfl [GOAL] case pos.zero ⊢ -pos * zero = -(pos * zero) [PROOFSTEP] rfl [GOAL] case pos.neg ⊢ -pos * neg = -(pos * neg) [PROOFSTEP] rfl [GOAL] case pos.pos ⊢ -pos * pos = -(pos * pos) [PROOFSTEP] rfl [GOAL] x y : SignType ⊢ x * -y = -(x * y) [PROOFSTEP] cases x [GOAL] case zero y : SignType ⊢ zero * -y = -(zero * y) [PROOFSTEP] cases y [GOAL] case neg y : SignType ⊢ neg * -y = -(neg * y) [PROOFSTEP] cases y [GOAL] case pos y : SignType ⊢ pos * -y = -(pos * y) [PROOFSTEP] cases y [GOAL] case zero.zero ⊢ zero * -zero = -(zero * zero) [PROOFSTEP] rfl [GOAL] case zero.neg ⊢ zero * -neg = -(zero * neg) [PROOFSTEP] rfl [GOAL] case zero.pos ⊢ zero * -pos = -(zero * pos) [PROOFSTEP] rfl [GOAL] case neg.zero ⊢ neg * -zero = -(neg * zero) [PROOFSTEP] rfl [GOAL] case neg.neg ⊢ neg * -neg = -(neg * neg) [PROOFSTEP] rfl [GOAL] case neg.pos ⊢ neg * -pos = -(neg * pos) [PROOFSTEP] rfl [GOAL] case pos.zero ⊢ pos * -zero = -(pos * zero) [PROOFSTEP] rfl [GOAL] case pos.neg ⊢ pos * -neg = -(pos * neg) [PROOFSTEP] rfl [GOAL] case pos.pos ⊢ pos * -pos = -(pos * pos) [PROOFSTEP] rfl [GOAL] a : SignType ⊢ 0 < 3 [PROOFSTEP] simp [GOAL] a : SignType ⊢ 1 < 3 [PROOFSTEP] simp [GOAL] a : SignType ⊢ 2 < 3 [PROOFSTEP] simp [GOAL] a : SignType ⊢ (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a [PROOFSTEP] cases a [GOAL] case zero ⊢ (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) zero) = zero [PROOFSTEP] rfl [GOAL] case neg ⊢ (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) neg) = neg [PROOFSTEP] rfl [GOAL] case pos ⊢ (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) pos) = pos [PROOFSTEP] rfl [GOAL] a : Fin 3 isLt✝ : 0 < 3 ⊢ (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) { val := 0, isLt := isLt✝ }) = { val := 0, isLt := isLt✝ } [PROOFSTEP] simp [GOAL] a : Fin 3 isLt✝ : 1 < 3 ⊢ (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) { val := 1, isLt := isLt✝ }) = { val := 1, isLt := isLt✝ } [PROOFSTEP] simp [GOAL] a : Fin 3 isLt✝ : 2 < 3 ⊢ (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) { val := 2, isLt := isLt✝ }) = { val := 2, isLt := isLt✝ } [PROOFSTEP] simp [GOAL] a : Fin 3 n : ℕ h : n + 3 < 3 ⊢ (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) { val := n + 3, isLt := h }) = { val := n + 3, isLt := h } [PROOFSTEP] simp at h [GOAL] a b : SignType ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (a * b) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } a * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } b [PROOFSTEP] cases a [GOAL] case zero b : SignType ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (zero * b) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } zero * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } b [PROOFSTEP] cases b [GOAL] case neg b : SignType ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (neg * b) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } neg * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } b [PROOFSTEP] cases b [GOAL] case pos b : SignType ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (pos * b) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } pos * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } b [PROOFSTEP] cases b [GOAL] case zero.zero ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (zero * zero) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } zero * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } zero [PROOFSTEP] simp [GOAL] case zero.neg ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (zero * neg) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } zero * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } neg [PROOFSTEP] simp [GOAL] case zero.pos ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (zero * pos) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } zero * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } pos [PROOFSTEP] simp [GOAL] case neg.zero ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (neg * zero) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } neg * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } zero [PROOFSTEP] simp [GOAL] case neg.neg ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (neg * neg) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } neg * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } neg [PROOFSTEP] simp [GOAL] case neg.pos ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (neg * pos) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } neg * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } pos [PROOFSTEP] simp [GOAL] case pos.zero ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (pos * zero) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } pos * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } zero [PROOFSTEP] simp [GOAL] case pos.neg ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (pos * neg) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } pos * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } neg [PROOFSTEP] simp [GOAL] case pos.pos ⊢ Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } (pos * pos) = Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } pos * Equiv.toFun { toFun := fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }, invFun := fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False), left_inv := (_ : ∀ (a : SignType), (fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) ((fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) a) = a), right_inv := (_ : ∀ (a : Fin 3), (fun a => match a with | zero => { val := 0, isLt := (_ : 0 < 3) } | pos => { val := 1, isLt := (_ : 1 < 3) } | neg => { val := 2, isLt := (_ : 2 < 3) }) ((fun a => match a with | { val := 0, isLt := isLt } => 0 | { val := 1, isLt := isLt } => 1 | { val := 2, isLt := isLt } => -1 | { val := Nat.succ (Nat.succ (Nat.succ n)), isLt := h } => False.elim (_ : False)) a) = a) } pos [PROOFSTEP] simp [GOAL] a : SignType ⊢ 0 ≤ a ↔ a = 0 ∨ a = 1 [PROOFSTEP] cases a [GOAL] case zero ⊢ 0 ≤ zero ↔ zero = 0 ∨ zero = 1 [PROOFSTEP] decide [GOAL] case neg ⊢ 0 ≤ neg ↔ neg = 0 ∨ neg = 1 [PROOFSTEP] decide [GOAL] case pos ⊢ 0 ≤ pos ↔ pos = 0 ∨ pos = 1 [PROOFSTEP] decide [GOAL] a : SignType ⊢ 0 ≤ a ↔ a ≠ -1 [PROOFSTEP] cases a [GOAL] case zero ⊢ 0 ≤ zero ↔ zero ≠ -1 [PROOFSTEP] decide [GOAL] case neg ⊢ 0 ≤ neg ↔ neg ≠ -1 [PROOFSTEP] decide [GOAL] case pos ⊢ 0 ≤ pos ↔ pos ≠ -1 [PROOFSTEP] decide [GOAL] a : SignType ⊢ -1 < a ↔ 0 ≤ a [PROOFSTEP] cases a [GOAL] case zero ⊢ -1 < zero ↔ 0 ≤ zero [PROOFSTEP] decide [GOAL] case neg ⊢ -1 < neg ↔ 0 ≤ neg [PROOFSTEP] decide [GOAL] case pos ⊢ -1 < pos ↔ 0 ≤ pos [PROOFSTEP] decide [GOAL] a : SignType ⊢ a ≤ 0 ↔ a = -1 ∨ a = 0 [PROOFSTEP] cases a [GOAL] case zero ⊢ zero ≤ 0 ↔ zero = -1 ∨ zero = 0 [PROOFSTEP] decide [GOAL] case neg ⊢ neg ≤ 0 ↔ neg = -1 ∨ neg = 0 [PROOFSTEP] decide [GOAL] case pos ⊢ pos ≤ 0 ↔ pos = -1 ∨ pos = 0 [PROOFSTEP] decide [GOAL] a : SignType ⊢ a ≤ 0 ↔ a ≠ 1 [PROOFSTEP] cases a [GOAL] case zero ⊢ zero ≤ 0 ↔ zero ≠ 1 [PROOFSTEP] decide [GOAL] case neg ⊢ neg ≤ 0 ↔ neg ≠ 1 [PROOFSTEP] decide [GOAL] case pos ⊢ pos ≤ 0 ↔ pos ≠ 1 [PROOFSTEP] decide [GOAL] a : SignType ⊢ a < 1 ↔ a ≤ 0 [PROOFSTEP] cases a [GOAL] case zero ⊢ zero < 1 ↔ zero ≤ 0 [PROOFSTEP] decide [GOAL] case neg ⊢ neg < 1 ↔ neg ≤ 0 [PROOFSTEP] decide [GOAL] case pos ⊢ pos < 1 ↔ pos ≤ 0 [PROOFSTEP] decide [GOAL] a : SignType ⊢ a < 0 ↔ a = -1 [PROOFSTEP] cases a [GOAL] case zero ⊢ zero < 0 ↔ zero = -1 [PROOFSTEP] decide [GOAL] case neg ⊢ neg < 0 ↔ neg = -1 [PROOFSTEP] decide [GOAL] case pos ⊢ pos < 0 ↔ pos = -1 [PROOFSTEP] decide [GOAL] a : SignType ⊢ 0 < a ↔ a = 1 [PROOFSTEP] cases a [GOAL] case zero ⊢ 0 < zero ↔ zero = 1 [PROOFSTEP] decide [GOAL] case neg ⊢ 0 < neg ↔ neg = 1 [PROOFSTEP] decide [GOAL] case pos ⊢ 0 < pos ↔ pos = 1 [PROOFSTEP] decide [GOAL] a : SignType ⊢ a = -a ↔ a = 0 [PROOFSTEP] cases a [GOAL] case zero ⊢ zero = -zero ↔ zero = 0 [PROOFSTEP] decide [GOAL] case neg ⊢ neg = -neg ↔ neg = 0 [PROOFSTEP] decide [GOAL] case pos ⊢ pos = -pos ↔ pos = 0 [PROOFSTEP] decide [GOAL] a : SignType ⊢ -a = a ↔ a = 0 [PROOFSTEP] cases a [GOAL] case zero ⊢ -zero = zero ↔ zero = 0 [PROOFSTEP] decide [GOAL] case neg ⊢ -neg = neg ↔ neg = 0 [PROOFSTEP] decide [GOAL] case pos ⊢ -pos = pos ↔ pos = 0 [PROOFSTEP] decide [GOAL] α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α x y : SignType ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (x * y) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } x * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } y [PROOFSTEP] cases x [GOAL] case zero α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α y : SignType ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (zero * y) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } y [PROOFSTEP] cases y [GOAL] case neg α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α y : SignType ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (neg * y) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } y [PROOFSTEP] cases y [GOAL] case pos α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α y : SignType ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (pos * y) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } y [PROOFSTEP] cases y [GOAL] case zero.zero α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (zero * zero) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero [PROOFSTEP] simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one] [GOAL] case zero.neg α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (zero * neg) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg [PROOFSTEP] simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one] [GOAL] case zero.pos α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (zero * pos) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos [PROOFSTEP] simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one] [GOAL] case neg.zero α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (neg * zero) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero [PROOFSTEP] simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one] [GOAL] case neg.neg α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (neg * neg) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg [PROOFSTEP] simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one] [GOAL] case neg.pos α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (neg * pos) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos [PROOFSTEP] simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one] [GOAL] case pos.zero α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (pos * zero) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } zero [PROOFSTEP] simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one] [GOAL] case pos.neg α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (pos * neg) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } neg [PROOFSTEP] simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one] [GOAL] case pos.pos α : Type ?u.34903 inst✝¹ : MulZeroOneClass α inst✝ : HasDistribNeg α ⊢ ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } (pos * pos) = ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos * ZeroHom.toFun { toFun := cast, map_zero' := (_ : ↑0 = ↑0) } pos [PROOFSTEP] simp [zero_eq_zero, pos_eq_one, neg_eq_neg_one] [GOAL] ⊢ Finset.univ = {0, -1, 1} [PROOFSTEP] decide [GOAL] α : Type u_1 f : SignType → α ⊢ Set.range f = {f zero, f neg, f pos} [PROOFSTEP] classical rw [← Fintype.coe_image_univ, univ_eq] [GOAL] α : Type u_1 f : SignType → α ⊢ Set.range f = {f zero, f neg, f pos} [PROOFSTEP] rw [← Fintype.coe_image_univ, univ_eq] [GOAL] α : Type u_1 f : SignType → α ⊢ ↑(Finset.image f {0, -1, 1}) = {f zero, f neg, f pos} [PROOFSTEP] classical simp [Finset.coe_insert] [GOAL] α : Type u_1 f : SignType → α ⊢ ↑(Finset.image f {0, -1, 1}) = {f zero, f neg, f pos} [PROOFSTEP] simp [Finset.coe_insert] [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b ⊢ (fun a => if 0 < a then 1 else if a < 0 then -1 else 0) a ≤ (fun a => if 0 < a then 1 else if a < 0 then -1 else 0) b [PROOFSTEP] dsimp [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b ⊢ (if 0 < a then 1 else if a < 0 then -1 else 0) ≤ if 0 < b then 1 else if b < 0 then -1 else 0 [PROOFSTEP] split_ifs with h₁ h₂ h₃ h₄ _ _ h₂ h₃ [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : 0 < a h₂ : 0 < b ⊢ 1 ≤ 1 [PROOFSTEP] try constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : 0 < a h₂ : 0 < b ⊢ 1 ≤ 1 [PROOFSTEP] constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : 0 < a h₂ : ¬0 < b h₃ : b < 0 ⊢ 1 ≤ -1 [PROOFSTEP] try constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : 0 < a h₂ : ¬0 < b h₃ : b < 0 ⊢ 1 ≤ -1 [PROOFSTEP] constructor [GOAL] case neg α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : 0 < a h₂ : ¬0 < b h₃ : ¬b < 0 ⊢ 1 ≤ 0 [PROOFSTEP] try constructor [GOAL] case neg α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : 0 < a h₂ : ¬0 < b h₃ : ¬b < 0 ⊢ 1 ≤ 0 [PROOFSTEP] constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : a < 0 _ : 0 < b ⊢ -1 ≤ 1 [PROOFSTEP] try constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : a < 0 _ : 0 < b ⊢ -1 ≤ 1 [PROOFSTEP] constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : a < 0 _✝ : ¬0 < b _ : b < 0 ⊢ -1 ≤ -1 [PROOFSTEP] try constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : a < 0 _✝ : ¬0 < b _ : b < 0 ⊢ -1 ≤ -1 [PROOFSTEP] constructor [GOAL] case neg α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : a < 0 _✝ : ¬0 < b _ : ¬b < 0 ⊢ -1 ≤ 0 [PROOFSTEP] try constructor [GOAL] case neg α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : a < 0 _✝ : ¬0 < b _ : ¬b < 0 ⊢ -1 ≤ 0 [PROOFSTEP] constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : ¬a < 0 h₂ : 0 < b ⊢ 0 ≤ 1 [PROOFSTEP] try constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : ¬a < 0 h₂ : 0 < b ⊢ 0 ≤ 1 [PROOFSTEP] constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : ¬a < 0 h₂ : ¬0 < b h₃ : b < 0 ⊢ 0 ≤ -1 [PROOFSTEP] try constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : ¬a < 0 h₂ : ¬0 < b h₃ : b < 0 ⊢ 0 ≤ -1 [PROOFSTEP] constructor [GOAL] case neg α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : ¬a < 0 h₂ : ¬0 < b h₃ : ¬b < 0 ⊢ 0 ≤ 0 [PROOFSTEP] try constructor [GOAL] case neg α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : ¬a < 0 h₂ : ¬0 < b h₃ : ¬b < 0 ⊢ 0 ≤ 0 [PROOFSTEP] constructor [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : 0 < a h₂ : ¬0 < b h₃ : b < 0 ⊢ 1 ≤ -1 [PROOFSTEP] cases lt_irrefl 0 (h₁.trans <| h.trans_lt h₃) [GOAL] case neg α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : 0 < a h₂ : ¬0 < b h₃ : ¬b < 0 ⊢ 1 ≤ 0 [PROOFSTEP] cases h₂ (h₁.trans_le h) [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a✝ a b : α h : a ≤ b h₁ : ¬0 < a h₄ : ¬a < 0 h₂ : ¬0 < b h₃ : b < 0 ⊢ 0 ≤ -1 [PROOFSTEP] cases h₄ (h.trans_lt h₃) [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α ⊢ ↑sign 0 = 0 [PROOFSTEP] simp [sign_apply] [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α ha : 0 < a ⊢ ↑sign a = 1 [PROOFSTEP] rwa [sign_apply, if_pos] [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α ha : a < 0 ⊢ ↑sign a = -1 [PROOFSTEP] rwa [sign_apply, if_neg <| asymm ha, if_pos] [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α ⊢ ↑sign a = 1 ↔ 0 < a [PROOFSTEP] refine' ⟨fun h => _, fun h => sign_pos h⟩ [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α h : ↑sign a = 1 ⊢ 0 < a [PROOFSTEP] by_contra hn [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α h : ↑sign a = 1 hn : ¬0 < a ⊢ False [PROOFSTEP] rw [sign_apply, if_neg hn] at h [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α h : (if a < 0 then -1 else 0) = 1 hn : ¬0 < a ⊢ False [PROOFSTEP] split_ifs at h [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α ⊢ ↑sign a = -1 ↔ a < 0 [PROOFSTEP] refine' ⟨fun h => _, fun h => sign_neg h⟩ [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α h : ↑sign a = -1 ⊢ a < 0 [PROOFSTEP] rw [sign_apply] at h [GOAL] α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α h : (if 0 < a then 1 else if a < 0 then -1 else 0) = -1 ⊢ a < 0 [PROOFSTEP] split_ifs at h [GOAL] case pos α : Type u_1 inst✝² : Zero α inst✝¹ : Preorder α inst✝ : DecidableRel fun x x_1 => x < x_1 a : α h✝¹ : ¬0 < a h✝ : a < 0 h : -1 = -1 ⊢ a < 0 [PROOFSTEP] assumption [GOAL] α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α ⊢ ↑sign a = 0 ↔ a = 0 [PROOFSTEP] refine' ⟨fun h => _, fun h => h.symm ▸ sign_zero⟩ [GOAL] α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h : ↑sign a = 0 ⊢ a = 0 [PROOFSTEP] rw [sign_apply] at h [GOAL] α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h : (if 0 < a then 1 else if a < 0 then -1 else 0) = 0 ⊢ a = 0 [PROOFSTEP] split_ifs at h with h_1 h_2 [GOAL] case neg α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h_1 : ¬0 < a h_2 : ¬a < 0 h : 0 = 0 ⊢ a = 0 [PROOFSTEP] cases' h [GOAL] case neg.refl α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h_1 : ¬0 < a h_2 : ¬a < 0 ⊢ a = 0 [PROOFSTEP] exact (le_of_not_lt h_1).eq_of_not_lt h_2 [GOAL] α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α ⊢ 0 ≤ ↑sign a ↔ 0 ≤ a [PROOFSTEP] rcases lt_trichotomy 0 a with (h | h | h) [GOAL] case inl α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h : 0 < a ⊢ 0 ≤ ↑sign a ↔ 0 ≤ a [PROOFSTEP] simp [h, h.le] [GOAL] case inr.inl α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h : 0 = a ⊢ 0 ≤ ↑sign a ↔ 0 ≤ a [PROOFSTEP] simp [← h] [GOAL] case inr.inr α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h : a < 0 ⊢ 0 ≤ ↑sign a ↔ 0 ≤ a [PROOFSTEP] simp [h, h.not_le] [GOAL] α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α ⊢ ↑sign a ≤ 0 ↔ a ≤ 0 [PROOFSTEP] rcases lt_trichotomy 0 a with (h | h | h) [GOAL] case inl α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h : 0 < a ⊢ ↑sign a ≤ 0 ↔ a ≤ 0 [PROOFSTEP] simp [h, h.not_le] [GOAL] case inr.inl α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h : 0 = a ⊢ ↑sign a ≤ 0 ↔ a ≤ 0 [PROOFSTEP] simp [← h] [GOAL] case inr.inr α : Type u_1 inst✝¹ : Zero α inst✝ : LinearOrder α a : α h : a < 0 ⊢ ↑sign a ≤ 0 ↔ a ≤ 0 [PROOFSTEP] simp [h, h.le] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] rcases lt_trichotomy x 0 with (hx | hx | hx) [GOAL] case inl α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : x < 0 ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] rcases lt_trichotomy y 0 with (hy | hy | hy) [GOAL] case inr.inl α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : x = 0 ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] rcases lt_trichotomy y 0 with (hy | hy | hy) [GOAL] case inr.inr α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : 0 < x ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] rcases lt_trichotomy y 0 with (hy | hy | hy) [GOAL] case inl.inl α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : x < 0 hy : y < 0 ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case inl.inr.inl α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : x < 0 hy : y = 0 ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case inl.inr.inr α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : x < 0 hy : 0 < y ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case inr.inl.inl α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : x = 0 hy : y < 0 ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case inr.inl.inr.inl α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : x = 0 hy : y = 0 ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case inr.inl.inr.inr α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : x = 0 hy : 0 < y ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case inr.inr.inl α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : 0 < x hy : y < 0 ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case inr.inr.inr.inl α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : 0 < x hy : y = 0 ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] case inr.inr.inr.inr α : Type u_1 inst✝ : LinearOrderedRing α a b x y : α hx : 0 < x hy : 0 < y ⊢ ↑sign (x * y) = ↑sign x * ↑sign y [PROOFSTEP] simp [hx, hy, mul_pos_of_neg_of_neg, mul_neg_of_neg_of_pos, mul_neg_of_pos_of_neg] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b x : α ⊢ ↑(↑sign x) * |x| = x [PROOFSTEP] rcases lt_trichotomy x 0 with (hx | rfl | hx) [GOAL] case inl α : Type u_1 inst✝ : LinearOrderedRing α a b x : α hx : x < 0 ⊢ ↑(↑sign x) * |x| = x [PROOFSTEP] rw [sign_neg hx, abs_of_neg hx, coe_neg_one, neg_one_mul, neg_neg] [GOAL] case inr.inl α : Type u_1 inst✝ : LinearOrderedRing α a b : α ⊢ ↑(↑sign 0) * |0| = 0 [PROOFSTEP] rw [abs_zero, mul_zero] [GOAL] case inr.inr α : Type u_1 inst✝ : LinearOrderedRing α a b x : α hx : 0 < x ⊢ ↑(↑sign x) * |x| = x [PROOFSTEP] rw [sign_pos hx, abs_of_pos hx, coe_one, one_mul] [GOAL] α : Type u_1 inst✝ : LinearOrderedRing α a b x : α ⊢ |x| * ↑(↑sign x) = x [PROOFSTEP] rcases lt_trichotomy x 0 with (hx | rfl | hx) [GOAL] case inl α : Type u_1 inst✝ : LinearOrderedRing α a b x : α hx : x < 0 ⊢ |x| * ↑(↑sign x) = x [PROOFSTEP] rw [sign_neg hx, abs_of_neg hx, coe_neg_one, mul_neg_one, neg_neg] [GOAL] case inr.inl α : Type u_1 inst✝ : LinearOrderedRing α a b : α ⊢ |0| * ↑(↑sign 0) = 0 [PROOFSTEP] rw [abs_zero, zero_mul] [GOAL] case inr.inr α : Type u_1 inst✝ : LinearOrderedRing α a b x : α hx : 0 < x ⊢ |x| * ↑(↑sign x) = x [PROOFSTEP] rw [sign_pos hx, abs_of_pos hx, coe_one, mul_one] [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α ⊢ ↑sign (-a) = -↑sign a [PROOFSTEP] simp_rw [sign_apply, Left.neg_pos_iff, Left.neg_neg_iff] [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α ⊢ (if a < 0 then 1 else if 0 < a then -1 else 0) = -if 0 < a then 1 else if a < 0 then -1 else 0 [PROOFSTEP] split_ifs with h h' [GOAL] case pos α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α h : a < 0 h' : 0 < a ⊢ False [PROOFSTEP] exact False.elim (lt_asymm h h') [GOAL] case neg α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α h : a < 0 h' : ¬0 < a ⊢ 1 = - -1 [PROOFSTEP] simp [GOAL] case pos α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α h : ¬a < 0 h✝ : 0 < a ⊢ -1 = -1 [PROOFSTEP] simp [GOAL] case neg α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α h : ¬a < 0 h✝ : ¬0 < a ⊢ 0 = -0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α ⊢ ↑sign (-a) = -↑sign a [PROOFSTEP] simp_rw [sign_apply, Right.neg_pos_iff, Right.neg_neg_iff] [GOAL] α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α ⊢ (if a < 0 then 1 else if 0 < a then -1 else 0) = -if 0 < a then 1 else if a < 0 then -1 else 0 [PROOFSTEP] split_ifs with h h' [GOAL] case pos α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α h : a < 0 h' : 0 < a ⊢ False [PROOFSTEP] exact False.elim (lt_asymm h h') [GOAL] case neg α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α h : a < 0 h' : ¬0 < a ⊢ 1 = - -1 [PROOFSTEP] simp [GOAL] case pos α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α h : ¬a < 0 h✝ : 0 < a ⊢ -1 = -1 [PROOFSTEP] simp [GOAL] case neg α : Type u_1 inst✝³ : AddGroup α inst✝² : Preorder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : CovariantClass α α (Function.swap fun x x_1 => x + x_1) fun x x_1 => x < x_1 a : α h : ¬a < 0 h✝ : ¬0 < a ⊢ 0 = -0 [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : LinearOrderedAddCommGroup α ι : Type u_2 s : Finset ι f : ι → α hs : Finset.Nonempty s t : SignType h : ∀ (i : ι), i ∈ s → ↑sign (f i) = t ⊢ ↑sign (∑ i in s, f i) = t [PROOFSTEP] cases t [GOAL] case zero α : Type u_1 inst✝ : LinearOrderedAddCommGroup α ι : Type u_2 s : Finset ι f : ι → α hs : Finset.Nonempty s h : ∀ (i : ι), i ∈ s → ↑sign (f i) = zero ⊢ ↑sign (∑ i in s, f i) = zero [PROOFSTEP] simp_rw [zero_eq_zero, sign_eq_zero_iff] at h ⊢ [GOAL] case zero α : Type u_1 inst✝ : LinearOrderedAddCommGroup α ι : Type u_2 s : Finset ι f : ι → α hs : Finset.Nonempty s h : ∀ (i : ι), i ∈ s → f i = 0 ⊢ ∑ i in s, f i = 0 [PROOFSTEP] exact Finset.sum_eq_zero h [GOAL] case neg α : Type u_1 inst✝ : LinearOrderedAddCommGroup α ι : Type u_2 s : Finset ι f : ι → α hs : Finset.Nonempty s h : ∀ (i : ι), i ∈ s → ↑sign (f i) = neg ⊢ ↑sign (∑ i in s, f i) = neg [PROOFSTEP] simp_rw [neg_eq_neg_one, sign_eq_neg_one_iff] at h ⊢ [GOAL] case neg α : Type u_1 inst✝ : LinearOrderedAddCommGroup α ι : Type u_2 s : Finset ι f : ι → α hs : Finset.Nonempty s h : ∀ (i : ι), i ∈ s → f i < 0 ⊢ ∑ i in s, f i < 0 [PROOFSTEP] exact Finset.sum_neg h hs [GOAL] case pos α : Type u_1 inst✝ : LinearOrderedAddCommGroup α ι : Type u_2 s : Finset ι f : ι → α hs : Finset.Nonempty s h : ∀ (i : ι), i ∈ s → ↑sign (f i) = pos ⊢ ↑sign (∑ i in s, f i) = pos [PROOFSTEP] simp_rw [pos_eq_one, sign_eq_one_iff] at h ⊢ [GOAL] case pos α : Type u_1 inst✝ : LinearOrderedAddCommGroup α ι : Type u_2 s : Finset ι f : ι → α hs : Finset.Nonempty s h : ∀ (i : ι), i ∈ s → 0 < f i ⊢ 0 < ∑ i in s, f i [PROOFSTEP] exact Finset.sum_pos h hs [GOAL] α : Type u_1 n : ℤ ⊢ sign n = ↑(↑SignType.sign n) [PROOFSTEP] obtain (n | _) | _ := n [GOAL] case ofNat.zero α : Type u_1 ⊢ sign (ofNat Nat.zero) = ↑(↑SignType.sign (ofNat Nat.zero)) [PROOFSTEP] simp [sign, Int.sign_neg, negSucc_lt_zero] [GOAL] case ofNat.succ α : Type u_1 n✝ : ℕ ⊢ sign (ofNat (Nat.succ n✝)) = ↑(↑SignType.sign (ofNat (Nat.succ n✝))) [PROOFSTEP] simp [sign, Int.sign_neg, negSucc_lt_zero] [GOAL] case negSucc α : Type u_1 a✝ : ℕ ⊢ sign -[a✝+1] = ↑(↑SignType.sign -[a✝+1]) [PROOFSTEP] simp [sign, Int.sign_neg, negSucc_lt_zero] [GOAL] α✝ α : Type u_1 inst✝ : DecidableEq α s : Finset α f : α → ℤ ⊢ ∃ β t sgn g, (∀ (b : β), g b ∈ s) ∧ card t = ∑ a in s, Int.natAbs (f a) ∧ ∀ (a : α), a ∈ s → (∑ b in t, if g b = a then ↑(sgn b) else 0) = f a [PROOFSTEP] refine' ⟨(Σ _ : { x // x ∈ s }, ℕ), Finset.univ.sigma fun a => range (f a).natAbs, fun a => sign (f a.1), fun a => a.1, fun a => a.1.2, _, _⟩ [GOAL] case refine'_1 α✝ α : Type u_1 inst✝ : DecidableEq α s : Finset α f : α → ℤ ⊢ card (Finset.sigma univ fun a => range (Int.natAbs (f ↑a))) = ∑ a in s, Int.natAbs (f a) [PROOFSTEP] simp [sum_attach (f := fun a => (f a).natAbs)] [GOAL] case refine'_2 α✝ α : Type u_1 inst✝ : DecidableEq α s : Finset α f : α → ℤ ⊢ ∀ (a : α), a ∈ s → (∑ b in Finset.sigma univ fun a => range (Int.natAbs (f ↑a)), if (fun a => ↑a.fst) b = a then ↑((fun a => ↑sign (f ↑a.fst)) b) else 0) = f a [PROOFSTEP] intro x hx [GOAL] case refine'_2 α✝ α : Type u_1 inst✝ : DecidableEq α s : Finset α f : α → ℤ x : α hx : x ∈ s ⊢ (∑ b in Finset.sigma univ fun a => range (Int.natAbs (f ↑a)), if (fun a => ↑a.fst) b = x then ↑((fun a => ↑sign (f ↑a.fst)) b) else 0) = f x [PROOFSTEP] simp [sum_sigma, hx, ← Int.sign_eq_sign, Int.sign_mul_abs, mul_comm |f _|, sum_attach (s := s) (f := fun y => if y = x then f y else 0)] [GOAL] α✝ α : Type u_1 inst✝ : DecidableEq α s : Finset α f : α → ℤ β : Type u_1 t : Finset β sgn : β → SignType g : β → α hg : ∀ (b : β), g b ∈ s ht : card t = ∑ a in s, Int.natAbs (f a) hf : ∀ (a : α), a ∈ s → (∑ b in t, if g b = a then ↑(sgn b) else 0) = f a ⊢ Fintype.card { x // x ∈ t } = ∑ a in s, Int.natAbs (f a) [PROOFSTEP] simp [ht] [GOAL] α✝ α : Type u_1 inst✝¹ : Nonempty α inst✝ : DecidableEq α s : Finset α f : α → ℤ n : ℕ h : ∑ i in s, Int.natAbs (f i) ≤ n ⊢ ∃ β x sgn g, (∀ (b : β), ¬g b ∈ s → sgn b = 0) ∧ Fintype.card β = n ∧ ∀ (a : α), a ∈ s → (∑ i : β, if g i = a then ↑(sgn i) else 0) = f a [PROOFSTEP] obtain ⟨β, _, sgn, g, hg, hβ, hf⟩ := exists_signed_sum s f [GOAL] case intro.intro.intro.intro.intro.intro α✝ α : Type u_1 inst✝¹ : Nonempty α inst✝ : DecidableEq α s : Finset α f : α → ℤ n : ℕ h : ∑ i in s, Int.natAbs (f i) ≤ n β : Type u_1 w✝ : Fintype β sgn : β → SignType g : β → α hg : ∀ (b : β), g b ∈ s hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a) hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a ⊢ ∃ β x sgn g, (∀ (b : β), ¬g b ∈ s → sgn b = 0) ∧ Fintype.card β = n ∧ ∀ (a : α), a ∈ s → (∑ i : β, if g i = a then ↑(sgn i) else 0) = f a [PROOFSTEP] refine' ⟨Sum β (Fin (n - ∑ i in s, (f i).natAbs)), inferInstance, Sum.elim sgn 0, Sum.elim g (Classical.arbitrary (Fin (n - Finset.sum s fun i => Int.natAbs (f i)) → α)), _, by simp [hβ, h], fun a ha => by simp [hf _ ha]⟩ [GOAL] α✝ α : Type u_1 inst✝¹ : Nonempty α inst✝ : DecidableEq α s : Finset α f : α → ℤ n : ℕ h : ∑ i in s, Int.natAbs (f i) ≤ n β : Type u_1 w✝ : Fintype β sgn : β → SignType g : β → α hg : ∀ (b : β), g b ∈ s hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a) hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a ⊢ Fintype.card (β ⊕ Fin (n - ∑ i in s, Int.natAbs (f i))) = n [PROOFSTEP] simp [hβ, h] [GOAL] α✝ α : Type u_1 inst✝¹ : Nonempty α inst✝ : DecidableEq α s : Finset α f : α → ℤ n : ℕ h : ∑ i in s, Int.natAbs (f i) ≤ n β : Type u_1 w✝ : Fintype β sgn : β → SignType g : β → α hg : ∀ (b : β), g b ∈ s hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a) hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a a : α ha : a ∈ s ⊢ (∑ i : β ⊕ Fin (n - ∑ i in s, Int.natAbs (f i)), if Sum.elim g (Classical.arbitrary (Fin (n - ∑ i in s, Int.natAbs (f i)) → α)) i = a then ↑(Sum.elim sgn 0 i) else 0) = f a [PROOFSTEP] simp [hf _ ha] [GOAL] case intro.intro.intro.intro.intro.intro α✝ α : Type u_1 inst✝¹ : Nonempty α inst✝ : DecidableEq α s : Finset α f : α → ℤ n : ℕ h : ∑ i in s, Int.natAbs (f i) ≤ n β : Type u_1 w✝ : Fintype β sgn : β → SignType g : β → α hg : ∀ (b : β), g b ∈ s hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a) hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a ⊢ ∀ (b : β ⊕ Fin (n - ∑ i in s, Int.natAbs (f i))), ¬Sum.elim g (Classical.arbitrary (Fin (n - ∑ i in s, Int.natAbs (f i)) → α)) b ∈ s → Sum.elim sgn 0 b = 0 [PROOFSTEP] rintro (b | b) hb [GOAL] case intro.intro.intro.intro.intro.intro.inl α✝ α : Type u_1 inst✝¹ : Nonempty α inst✝ : DecidableEq α s : Finset α f : α → ℤ n : ℕ h : ∑ i in s, Int.natAbs (f i) ≤ n β : Type u_1 w✝ : Fintype β sgn : β → SignType g : β → α hg : ∀ (b : β), g b ∈ s hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a) hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a b : β hb : ¬Sum.elim g (Classical.arbitrary (Fin (n - ∑ i in s, Int.natAbs (f i)) → α)) (Sum.inl b) ∈ s ⊢ Sum.elim sgn 0 (Sum.inl b) = 0 [PROOFSTEP] cases hb (hg _) [GOAL] case intro.intro.intro.intro.intro.intro.inr α✝ α : Type u_1 inst✝¹ : Nonempty α inst✝ : DecidableEq α s : Finset α f : α → ℤ n : ℕ h : ∑ i in s, Int.natAbs (f i) ≤ n β : Type u_1 w✝ : Fintype β sgn : β → SignType g : β → α hg : ∀ (b : β), g b ∈ s hβ : Fintype.card β = ∑ a in s, Int.natAbs (f a) hf : ∀ (a : α), a ∈ s → (∑ b : β, if g b = a then ↑(sgn b) else 0) = f a b : Fin (n - ∑ i in s, Int.natAbs (f i)) hb : ¬Sum.elim g (Classical.arbitrary (Fin (n - ∑ i in s, Int.natAbs (f i)) → α)) (Sum.inr b) ∈ s ⊢ Sum.elim sgn 0 (Sum.inr b) = 0 [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Data.Sign", "llama_tokens": 57892}
{"mathlib_filename": "Mathlib.Data.ULift", "llama_tokens": 0}
[GOAL] c : Char ⊢ 0 < utf8Size c [PROOFSTEP] simp only [utf8Size] [GOAL] c : Char ⊢ 0 < if c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 then UInt32.ofNatCore 1 utf8Size.proof_2 else if c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 then UInt32.ofNatCore 2 utf8Size.proof_4 else if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6 else UInt32.ofNatCore 4 utf8Size.proof_7 [PROOFSTEP] repeat (split; decide) [GOAL] c : Char ⊢ 0 < if c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 then UInt32.ofNatCore 1 utf8Size.proof_2 else if c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 then UInt32.ofNatCore 2 utf8Size.proof_4 else if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6 else UInt32.ofNatCore 4 utf8Size.proof_7 [PROOFSTEP] split [GOAL] case inl c : Char h✝ : c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 ⊢ 0 < UInt32.ofNatCore 1 utf8Size.proof_2 case inr c : Char h✝ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 ⊢ 0 < if c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 then UInt32.ofNatCore 2 utf8Size.proof_4 else if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6 else UInt32.ofNatCore 4 utf8Size.proof_7 [PROOFSTEP] decide [GOAL] case inr c : Char h✝ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 ⊢ 0 < if c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 then UInt32.ofNatCore 2 utf8Size.proof_4 else if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6 else UInt32.ofNatCore 4 utf8Size.proof_7 [PROOFSTEP] split [GOAL] case inr.inl c : Char h✝¹ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 h✝ : c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 ⊢ 0 < UInt32.ofNatCore 2 utf8Size.proof_4 case inr.inr c : Char h✝¹ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 h✝ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 ⊢ 0 < if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6 else UInt32.ofNatCore 4 utf8Size.proof_7 [PROOFSTEP] decide [GOAL] case inr.inr c : Char h✝¹ : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 h✝ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 ⊢ 0 < if c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 then UInt32.ofNatCore 3 utf8Size.proof_6 else UInt32.ofNatCore 4 utf8Size.proof_7 [PROOFSTEP] split [GOAL] case inr.inr.inl c : Char h✝² : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 h✝¹ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 h✝ : c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 ⊢ 0 < UInt32.ofNatCore 3 utf8Size.proof_6 case inr.inr.inr c : Char h✝² : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 h✝¹ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 h✝ : ¬c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 ⊢ 0 < UInt32.ofNatCore 4 utf8Size.proof_7 [PROOFSTEP] decide [GOAL] case inr.inr.inr c : Char h✝² : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 h✝¹ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 h✝ : ¬c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 ⊢ 0 < UInt32.ofNatCore 4 utf8Size.proof_7 [PROOFSTEP] split [GOAL] case inr.inr.inr c : Char h✝² : ¬c.val ≤ UInt32.ofNatCore 127 utf8Size.proof_1 h✝¹ : ¬c.val ≤ UInt32.ofNatCore 2047 utf8Size.proof_3 h✝ : ¬c.val ≤ UInt32.ofNatCore 65535 utf8Size.proof_5 ⊢ 0 < UInt32.ofNatCore 4 utf8Size.proof_7 [PROOFSTEP] decide [GOAL] c : Char h : isValidCharNat (toNat c) ⊢ ofNat (toNat c) = c [PROOFSTEP] rw [Char.ofNat, dif_pos h] [GOAL] c : Char h : isValidCharNat (toNat c) ⊢ ofNatAux (toNat c) h = c [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Data.Char", "llama_tokens": 2000}
[GOAL] ds₁ ds₂ ds₃ is : List ℕ eq : ds₁ = ds₂ h : Forall₂ (fun x x_1 => x < x_1) is ds₁ ⊢ ↑(cast (_ : HolorIndex ds₁ = HolorIndex ds₂) { val := is, property := h }) = is [PROOFSTEP] subst eq [GOAL] ds₁ ds₃ is : List ℕ h : Forall₂ (fun x x_1 => x < x_1) is ds₁ ⊢ ↑(cast (_ : HolorIndex ds₁ = HolorIndex ds₁) { val := is, property := h }) = is [PROOFSTEP] rfl [GOAL] ds₁ ds₂ ds₃ is : List ℕ h : Forall₂ (fun x x_1 => x < x_1) is (ds₁ ++ ds₂ ++ ds₃) ⊢ ↑(take (assocRight { val := is, property := h })) = ↑(take (take { val := is, property := h })) [PROOFSTEP] simp [assocRight, take, cast_type, List.take_take, Nat.le_add_right, min_eq_left] [GOAL] ds₁ ds₂ ds₃ is : List ℕ h : Forall₂ (fun x x_1 => x < x_1) is (ds₁ ++ ds₂ ++ ds₃) ⊢ ↑(take (drop (assocRight { val := is, property := h }))) = ↑(drop (take { val := is, property := h })) [PROOFSTEP] simp [assocRight, take, drop, cast_type, List.drop_take] [GOAL] ds₁ ds₂ ds₃ is : List ℕ h : Forall₂ (fun x x_1 => x < x_1) is (ds₁ ++ ds₂ ++ ds₃) ⊢ ↑(drop (drop (assocRight { val := is, property := h }))) = ↑(drop { val := is, property := h }) [PROOFSTEP] simp [add_comm, assocRight, drop, cast_type, List.drop_drop] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ eq : ds₁ = ds₂ a : Holor α ds₁ ⊢ cast (_ : Holor α ds₁ = Holor α ds₂) a = fun t => a (cast (_ : HolorIndex ds₂ = HolorIndex ds₁) t) [PROOFSTEP] subst eq [GOAL] α : Type d : ℕ ds ds₁ ds₃ : List ℕ a : Holor α ds₁ ⊢ cast (_ : Holor α ds₁ = Holor α ds₁) a = fun t => a (cast (_ : HolorIndex ds₁ = HolorIndex ds₁) t) [PROOFSTEP] rfl [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Semigroup α x : Holor α ds₁ y : Holor α ds₂ z : Holor α ds₃ t : HolorIndex (ds₁ ++ ds₂ ++ ds₃) ⊢ (x ⊗ y ⊗ z) t = assocLeft (x ⊗ (y ⊗ z)) t [PROOFSTEP] rw [assocLeft] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Semigroup α x : Holor α ds₁ y : Holor α ds₂ z : Holor α ds₃ t : HolorIndex (ds₁ ++ ds₂ ++ ds₃) ⊢ (x ⊗ y ⊗ z) t = cast (_ : Holor α (ds₁ ++ (ds₂ ++ ds₃)) = Holor α (ds₁ ++ ds₂ ++ ds₃)) (x ⊗ (y ⊗ z)) t [PROOFSTEP] unfold mul [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Semigroup α x : Holor α ds₁ y : Holor α ds₂ z : Holor α ds₃ t : HolorIndex (ds₁ ++ ds₂ ++ ds₃) ⊢ x (HolorIndex.take (HolorIndex.take t)) * y (HolorIndex.drop (HolorIndex.take t)) * z (HolorIndex.drop t) = cast (_ : Holor α (ds₁ ++ (ds₂ ++ ds₃)) = Holor α (ds₁ ++ ds₂ ++ ds₃)) (fun t => x (HolorIndex.take t) * (y (HolorIndex.take (HolorIndex.drop t)) * z (HolorIndex.drop (HolorIndex.drop t)))) t [PROOFSTEP] rw [mul_assoc, ← HolorIndex.take_take, ← HolorIndex.drop_take, ← HolorIndex.drop_drop, cast_type] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Semigroup α x : Holor α ds₁ y : Holor α ds₂ z : Holor α ds₃ t : HolorIndex (ds₁ ++ ds₂ ++ ds₃) ⊢ x (HolorIndex.take (HolorIndex.assocRight t)) * (y (HolorIndex.take (HolorIndex.drop (HolorIndex.assocRight t))) * z (HolorIndex.drop (HolorIndex.drop (HolorIndex.assocRight t)))) = (fun t => x (HolorIndex.take (cast (_ : HolorIndex (ds₁ ++ ds₂ ++ ds₃) = HolorIndex (ds₁ ++ (ds₂ ++ ds₃))) t)) * (y (HolorIndex.take (HolorIndex.drop (cast (_ : HolorIndex (ds₁ ++ ds₂ ++ ds₃) = HolorIndex (ds₁ ++ (ds₂ ++ ds₃))) t))) * z (HolorIndex.drop (HolorIndex.drop (cast (_ : HolorIndex (ds₁ ++ ds₂ ++ ds₃) = HolorIndex (ds₁ ++ (ds₂ ++ ds₃))) t))))) t case eq α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Semigroup α x : Holor α ds₁ y : Holor α ds₂ z : Holor α ds₃ t : HolorIndex (ds₁ ++ ds₂ ++ ds₃) ⊢ ds₁ ++ (ds₂ ++ ds₃) = ds₁ ++ ds₂ ++ ds₃ [PROOFSTEP] rfl [GOAL] case eq α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Semigroup α x : Holor α ds₁ y : Holor α ds₂ z : Holor α ds₃ t : HolorIndex (ds₁ ++ ds₂ ++ ds₃) ⊢ ds₁ ++ (ds₂ ++ ds₃) = ds₁ ++ ds₂ ++ ds₃ [PROOFSTEP] rw [append_assoc] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Semigroup α x : Holor α ds₁ y : Holor α ds₂ z : Holor α ds₃ ⊢ HEq (x ⊗ y ⊗ z) (x ⊗ (y ⊗ z)) [PROOFSTEP] simp [cast_heq, mul_assoc0, assocLeft] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Monoid α x : Holor α [] y : Holor α ds ⊢ x ⊗ y = x { val := [], property := (_ : Forall₂ (fun x x_1 => x < x_1) [] []) } • y [PROOFSTEP] simp [mul, SMul.smul, HolorIndex.take, HolorIndex.drop, HSMul.hSMul] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ p : HolorIndex (d :: ds) → Prop t : HolorIndex (d :: ds) i : ℕ is : List ℕ h : ↑t = i :: is ⊢ Forall₂ (fun x x_1 => x < x_1) (i :: is) (d :: ds) [PROOFSTEP] rw [← h] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ p : HolorIndex (d :: ds) → Prop t : HolorIndex (d :: ds) i : ℕ is : List ℕ h : ↑t = i :: is ⊢ Forall₂ (fun x x_1 => x < x_1) (↑t) (d :: ds) [PROOFSTEP] exact t.2 [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ x y : Holor α (d :: ds) h : slice x = slice y t : HolorIndex (d :: ds) i : ℕ is : List ℕ hiis : ↑t = i :: is ⊢ Forall₂ (fun x x_1 => x < x_1) (i :: is) (d :: ds) [PROOFSTEP] rw [← hiis] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ x y : Holor α (d :: ds) h : slice x = slice y t : HolorIndex (d :: ds) i : ℕ is : List ℕ hiis : ↑t = i :: is ⊢ Forall₂ (fun x x_1 => x < x_1) (↑t) (d :: ds) [PROOFSTEP] exact t.2 [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ x y : Holor α (d :: ds) h : slice x = slice y t : HolorIndex (d :: ds) i : ℕ is : List ℕ hiis : ↑t = i :: is hiisdds : Forall₂ (fun x x_1 => x < x_1) (i :: is) (d :: ds) hid : i < d hisds : Forall₂ (fun x x_1 => x < x_1) is ds ⊢ slice x i hid { val := is, property := hisds } = slice y i hid { val := is, property := hisds } [PROOFSTEP] rw [h] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α i j : ℕ hid : i < d x : Holor α ds t : HolorIndex ds h : i = j ⊢ slice (unitVec d j ⊗ x) i hid t = ite (i = j) x 0 t [PROOFSTEP] simp [slice, mul, HolorIndex.take, unitVec, HolorIndex.drop, h] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α i j : ℕ hid : i < d x : Holor α ds t : HolorIndex ds h : ¬i = j ⊢ slice (unitVec d j ⊗ x) i hid t = ite (i = j) x 0 t [PROOFSTEP] simp [slice, mul, HolorIndex.take, unitVec, HolorIndex.drop, h] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α i j : ℕ hid : i < d x : Holor α ds t : HolorIndex ds h : ¬i = j ⊢ 0 = OfNat.ofNat 0 t [PROOFSTEP] rfl [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Add α i : ℕ hid : i < d x y : Holor α (d :: ds) t : HolorIndex ds ⊢ (slice x i hid + slice y i hid) t = slice (x + y) i hid t [PROOFSTEP] simp [slice, (· + ·), Add.add] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : AddCommMonoid α β : Type i : ℕ hid : i < d s : Finset β f : β → Holor α (d :: ds) ⊢ ∑ x in s, slice (f x) i hid = slice (∑ x in s, f x) i hid [PROOFSTEP] letI := Classical.decEq β [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : AddCommMonoid α β : Type i : ℕ hid : i < d s : Finset β f : β → Holor α (d :: ds) this : DecidableEq β := Classical.decEq β ⊢ ∑ x in s, slice (f x) i hid = slice (∑ x in s, f x) i hid [PROOFSTEP] refine' Finset.induction_on s _ _ [GOAL] case refine'_1 α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : AddCommMonoid α β : Type i : ℕ hid : i < d s : Finset β f : β → Holor α (d :: ds) this : DecidableEq β := Classical.decEq β ⊢ ∑ x in ∅, slice (f x) i hid = slice (∑ x in ∅, f x) i hid [PROOFSTEP] simp [slice_zero] [GOAL] case refine'_2 α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : AddCommMonoid α β : Type i : ℕ hid : i < d s : Finset β f : β → Holor α (d :: ds) this : DecidableEq β := Classical.decEq β ⊢ ∀ ⦃a : β⦄ {s : Finset β}, ¬a ∈ s → ∑ x in s, slice (f x) i hid = slice (∑ x in s, f x) i hid → ∑ x in insert a s, slice (f x) i hid = slice (∑ x in insert a s, f x) i hid [PROOFSTEP] intro _ _ h_not_in ih [GOAL] case refine'_2 α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : AddCommMonoid α β : Type i : ℕ hid : i < d s : Finset β f : β → Holor α (d :: ds) this : DecidableEq β := Classical.decEq β a✝ : β s✝ : Finset β h_not_in : ¬a✝ ∈ s✝ ih : ∑ x in s✝, slice (f x) i hid = slice (∑ x in s✝, f x) i hid ⊢ ∑ x in insert a✝ s✝, slice (f x) i hid = slice (∑ x in insert a✝ s✝, f x) i hid [PROOFSTEP] rw [Finset.sum_insert h_not_in, ih, slice_add, Finset.sum_insert h_not_in] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) ⊢ ∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d) = x [PROOFSTEP] apply slice_eq _ _ _ [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) ⊢ slice (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d)) = slice x [PROOFSTEP] ext i hid [GOAL] case h.h α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d ⊢ slice (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d)) i hid = slice x i hid [PROOFSTEP] rw [← slice_sum] [GOAL] case h.h α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d ⊢ ∑ x_1 in Finset.attach (Finset.range d), slice (unitVec d ↑x_1 ⊗ slice x ↑x_1 (_ : Nat.succ ↑x_1 ≤ d)) i hid = slice x i hid [PROOFSTEP] simp only [slice_unitVec_mul hid] [GOAL] case h.h α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d ⊢ (∑ x_1 in Finset.attach (Finset.range d), if i = ↑x_1 then slice x ↑x_1 (_ : Nat.succ ↑x_1 ≤ d) else 0) = slice x i hid [PROOFSTEP] rw [Finset.sum_eq_single (Subtype.mk i <| Finset.mem_range.2 hid)] [GOAL] case h.h α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d ⊢ (if i = ↑{ val := i, property := (_ : i ∈ Finset.range d) } then slice x ↑{ val := i, property := (_ : i ∈ Finset.range d) } (_ : Nat.succ ↑{ val := i, property := (_ : i ∈ Finset.range d) } ≤ d) else 0) = slice x i hid [PROOFSTEP] simp [GOAL] case h.h.h₀ α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d ⊢ ∀ (b : { x // x ∈ Finset.range d }), b ∈ Finset.attach (Finset.range d) → b ≠ { val := i, property := (_ : i ∈ Finset.range d) } → (if i = ↑b then slice x ↑b (_ : Nat.succ ↑b ≤ d) else 0) = 0 [PROOFSTEP] intro (b : { x // x ∈ Finset.range d }) (_ : b ∈ (Finset.range d).attach) (hbi : b ≠ ⟨i, _⟩) [GOAL] case h.h.h₀ α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d b : { x // x ∈ Finset.range d } x✝ : b ∈ Finset.attach (Finset.range d) hbi : b ≠ { val := i, property := (_ : i ∈ Finset.range d) } ⊢ (if i = ↑b then slice x ↑b (_ : Nat.succ ↑b ≤ d) else 0) = 0 [PROOFSTEP] have hbi' : i ≠ b := by simpa only [Ne.def, Subtype.ext_iff, Subtype.coe_mk] using hbi.symm [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d b : { x // x ∈ Finset.range d } x✝ : b ∈ Finset.attach (Finset.range d) hbi : b ≠ { val := i, property := (_ : i ∈ Finset.range d) } ⊢ i ≠ ↑b [PROOFSTEP] simpa only [Ne.def, Subtype.ext_iff, Subtype.coe_mk] using hbi.symm [GOAL] case h.h.h₀ α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d b : { x // x ∈ Finset.range d } x✝ : b ∈ Finset.attach (Finset.range d) hbi : b ≠ { val := i, property := (_ : i ∈ Finset.range d) } hbi' : i ≠ ↑b ⊢ (if i = ↑b then slice x ↑b (_ : Nat.succ ↑b ≤ d) else 0) = 0 [PROOFSTEP] simp [hbi'] [GOAL] case h.h.h₁ α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d ⊢ ¬{ val := i, property := (_ : i ∈ Finset.range d) } ∈ Finset.attach (Finset.range d) → (if i = ↑{ val := i, property := (_ : i ∈ Finset.range d) } then slice x ↑{ val := i, property := (_ : i ∈ Finset.range d) } (_ : Nat.succ ↑{ val := i, property := (_ : i ∈ Finset.range d) } ≤ d) else 0) = 0 [PROOFSTEP] intro (hid' : Subtype.mk i _ ∉ Finset.attach (Finset.range d)) [GOAL] case h.h.h₁ α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d hid' : ¬{ val := i, property := (_ : i ∈ Finset.range d) } ∈ Finset.attach (Finset.range d) ⊢ (if i = ↑{ val := i, property := (_ : i ∈ Finset.range d) } then slice x ↑{ val := i, property := (_ : i ∈ Finset.range d) } (_ : Nat.succ ↑{ val := i, property := (_ : i ∈ Finset.range d) } ≤ d) else 0) = 0 [PROOFSTEP] exfalso [GOAL] case h.h.h₁.h α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α (d :: ds) i : ℕ hid : i < d hid' : ¬{ val := i, property := (_ : i ∈ Finset.range d) } ∈ Finset.attach (Finset.range d) ⊢ False [PROOFSTEP] exact absurd (Finset.mem_attach _ _) hid' [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α x : Holor α [] ⊢ CPRankMax 1 x [PROOFSTEP] have h := CPRankMax.succ 0 x 0 (CPRankMax1.nil x) CPRankMax.zero [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α x : Holor α [] h : CPRankMax (0 + 1) (x + 0) ⊢ CPRankMax 1 x [PROOFSTEP] rwa [add_zero x, zero_add] at h [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α x : Holor α ds h : CPRankMax1 x ⊢ CPRankMax 1 x [PROOFSTEP] have h' := CPRankMax.succ 0 x 0 h CPRankMax.zero [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α x : Holor α ds h : CPRankMax1 x h' : CPRankMax (0 + 1) (x + 0) ⊢ CPRankMax 1 x [PROOFSTEP] rwa [zero_add, add_zero] at h' [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α n : ℕ x y : Holor α ds hx : CPRankMax 0 x hy : CPRankMax n y ⊢ CPRankMax (0 + n) (x + y) [PROOFSTEP] match hx with | CPRankMax.zero => simp only [zero_add, hy] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α n : ℕ x y : Holor α ds hx : CPRankMax 0 x hy : CPRankMax n y ⊢ CPRankMax (0 + n) (0 + y) [PROOFSTEP] simp only [zero_add, hy] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α m n : ℕ y x₁ x₂ : Holor α ds hx₁ : CPRankMax1 x₁ hx₂ : CPRankMax m x₂ hy : CPRankMax n y ⊢ CPRankMax (m + 1 + n) (x₁ + x₂ + y) [PROOFSTEP] simp only [add_comm, add_assoc] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α m n : ℕ y x₁ x₂ : Holor α ds hx₁ : CPRankMax1 x₁ hx₂ : CPRankMax m x₂ hy : CPRankMax n y ⊢ CPRankMax (n + (m + 1)) (x₁ + (x₂ + y)) [PROOFSTEP] apply CPRankMax.succ [GOAL] case a α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α m n : ℕ y x₁ x₂ : Holor α ds hx₁ : CPRankMax1 x₁ hx₂ : CPRankMax m x₂ hy : CPRankMax n y ⊢ CPRankMax1 x₁ [PROOFSTEP] assumption [GOAL] case a α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α m n : ℕ y x₁ x₂ : Holor α ds hx₁ : CPRankMax1 x₁ hx₂ : CPRankMax m x₂ hy : CPRankMax n y ⊢ CPRankMax (Nat.add n (Nat.add m 0)) (x₂ + y) [PROOFSTEP] simp only [Nat.add_eq, add_zero, add_comm n m] [GOAL] case a α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝¹ : Monoid α inst✝ : AddMonoid α m n : ℕ y x₁ x₂ : Holor α ds hx₁ : CPRankMax1 x₁ hx₂ : CPRankMax m x₂ hy : CPRankMax n y ⊢ CPRankMax (m + n) (x₂ + y) [PROOFSTEP] exact cprankMax_add hx₂ hy [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α x : Holor α [d] ⊢ CPRankMax 0 (x ⊗ 0) [PROOFSTEP] simp [mul_zero x, CPRankMax.zero] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α n : ℕ x : Holor α [d] y₁ y₂ : Holor α ds hy₁ : CPRankMax1 y₁ hy₂ : CPRankMax n y₂ ⊢ CPRankMax (n + 1) (x ⊗ (y₁ + y₂)) [PROOFSTEP] rw [mul_left_distrib] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α n : ℕ x : Holor α [d] y₁ y₂ : Holor α ds hy₁ : CPRankMax1 y₁ hy₂ : CPRankMax n y₂ ⊢ CPRankMax (n + 1) (x ⊗ y₁ + x ⊗ y₂) [PROOFSTEP] rw [Nat.add_comm] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α n : ℕ x : Holor α [d] y₁ y₂ : Holor α ds hy₁ : CPRankMax1 y₁ hy₂ : CPRankMax n y₂ ⊢ CPRankMax (1 + n) (x ⊗ y₁ + x ⊗ y₂) [PROOFSTEP] apply cprankMax_add [GOAL] case a α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α n : ℕ x : Holor α [d] y₁ y₂ : Holor α ds hy₁ : CPRankMax1 y₁ hy₂ : CPRankMax n y₂ ⊢ CPRankMax 1 (x ⊗ y₁) [PROOFSTEP] exact cprankMax_1 (CPRankMax1.cons _ _ hy₁) [GOAL] case a α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α n : ℕ x : Holor α [d] y₁ y₂ : Holor α ds hy₁ : CPRankMax1 y₁ hy₂ : CPRankMax n y₂ ⊢ CPRankMax n (x ⊗ y₂) [PROOFSTEP] exact cprankMax_mul _ x y₂ hy₂ [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β ⊢ (∀ (x : β), x ∈ ∅ → CPRankMax n (f x)) → CPRankMax (Finset.card ∅ * n) (∑ x in ∅, f x) [PROOFSTEP] simp [CPRankMax.zero] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β ⊢ ∀ ⦃a : β⦄ {s : Finset β}, ¬a ∈ s → ((∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x)) → (∀ (x : β), x ∈ insert a s → CPRankMax n (f x)) → CPRankMax (Finset.card (insert a s) * n) (∑ x in insert a s, f x) [PROOFSTEP] intro x s (h_x_notin_s : x ∉ s) ih h_cprank [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x : β s : Finset β h_x_notin_s : ¬x ∈ s ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x) h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1) ⊢ CPRankMax (Finset.card (insert x s) * n) (∑ x in insert x s, f x) [PROOFSTEP] simp only [Finset.sum_insert h_x_notin_s, Finset.card_insert_of_not_mem h_x_notin_s] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x : β s : Finset β h_x_notin_s : ¬x ∈ s ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x) h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1) ⊢ CPRankMax ((Finset.card s + 1) * n) (f x + ∑ x in s, f x) [PROOFSTEP] rw [Nat.right_distrib] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x : β s : Finset β h_x_notin_s : ¬x ∈ s ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x) h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1) ⊢ CPRankMax (Finset.card s * n + 1 * n) (f x + ∑ x in s, f x) [PROOFSTEP] simp only [Nat.one_mul, Nat.add_comm] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x : β s : Finset β h_x_notin_s : ¬x ∈ s ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x) h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1) ⊢ CPRankMax (n + Finset.card s * n) (f x + ∑ x in s, f x) [PROOFSTEP] have ih' : CPRankMax (Finset.card s * n) (∑ x in s, f x) := by apply ih intro (x : β) (h_x_in_s : x ∈ s) simp only [h_cprank, Finset.mem_insert_of_mem, h_x_in_s] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x : β s : Finset β h_x_notin_s : ¬x ∈ s ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x) h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1) ⊢ CPRankMax (Finset.card s * n) (∑ x in s, f x) [PROOFSTEP] apply ih [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x : β s : Finset β h_x_notin_s : ¬x ∈ s ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x) h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1) ⊢ ∀ (x : β), x ∈ s → CPRankMax n (f x) [PROOFSTEP] intro (x : β) (h_x_in_s : x ∈ s) [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x✝ : β s : Finset β h_x_notin_s : ¬x✝ ∈ s ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x) h_cprank : ∀ (x : β), x ∈ insert x✝ s → CPRankMax n (f x) x : β h_x_in_s : x ∈ s ⊢ CPRankMax n (f x) [PROOFSTEP] simp only [h_cprank, Finset.mem_insert_of_mem, h_x_in_s] [GOAL] α : Type d : ℕ ds ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α β : Type u_1 n : ℕ s✝ : Finset β f : β → Holor α ds this : DecidableEq β := Classical.decEq β x : β s : Finset β h_x_notin_s : ¬x ∈ s ih : (∀ (x : β), x ∈ s → CPRankMax n (f x)) → CPRankMax (Finset.card s * n) (∑ x in s, f x) h_cprank : ∀ (x_1 : β), x_1 ∈ insert x s → CPRankMax n (f x_1) ih' : CPRankMax (Finset.card s * n) (∑ x in s, f x) ⊢ CPRankMax (n + Finset.card s * n) (f x + ∑ x in s, f x) [PROOFSTEP] exact cprankMax_add (h_cprank x (Finset.mem_insert_self x s)) ih' [GOAL] α : Type d✝ : ℕ ds✝ ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α d : ℕ ds : List ℕ x : Holor α (d :: ds) ⊢ CPRankMax (prod (d :: ds)) x [PROOFSTEP] have h_summands : ∀ i : { x // x ∈ Finset.range d }, CPRankMax ds.prod (unitVec d i.1 ⊗ slice x i.1 (mem_range.1 i.2)) := fun i => cprankMax_mul _ _ _ (cprankMax_upper_bound (slice x i.1 (mem_range.1 i.2))) [GOAL] α : Type d✝ : ℕ ds✝ ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α d : ℕ ds : List ℕ x : Holor α (d :: ds) h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) ⊢ CPRankMax (prod (d :: ds)) x [PROOFSTEP] have h_dds_prod : (List.cons d ds).prod = Finset.card (Finset.range d) * prod ds := by simp [Finset.card_range] [GOAL] α : Type d✝ : ℕ ds✝ ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α d : ℕ ds : List ℕ x : Holor α (d :: ds) h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) ⊢ prod (d :: ds) = Finset.card (Finset.range d) * prod ds [PROOFSTEP] simp [Finset.card_range] [GOAL] α : Type d✝ : ℕ ds✝ ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α d : ℕ ds : List ℕ x : Holor α (d :: ds) h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds ⊢ CPRankMax (prod (d :: ds)) x [PROOFSTEP] have : CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d i.val ⊗ slice x i.val (mem_range.1 i.2)) := cprankMax_sum (Finset.range d).attach _ fun i _ => h_summands i [GOAL] α : Type d✝ : ℕ ds✝ ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α d : ℕ ds : List ℕ x : Holor α (d :: ds) h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds this : CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) ⊢ CPRankMax (prod (d :: ds)) x [PROOFSTEP] have h_cprankMax_sum : CPRankMax (Finset.card (Finset.range d) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d i.val ⊗ slice x i.val (mem_range.1 i.2)) := by rwa [Finset.card_attach] at this [GOAL] α : Type d✝ : ℕ ds✝ ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α d : ℕ ds : List ℕ x : Holor α (d :: ds) h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds this : CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) ⊢ CPRankMax (Finset.card (Finset.range d) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) [PROOFSTEP] rwa [Finset.card_attach] at this [GOAL] α : Type d✝ : ℕ ds✝ ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α d : ℕ ds : List ℕ x : Holor α (d :: ds) h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds this : CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) h_cprankMax_sum : CPRankMax (Finset.card (Finset.range d) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) ⊢ CPRankMax (prod (d :: ds)) x [PROOFSTEP] rw [← sum_unitVec_mul_slice x] [GOAL] α : Type d✝ : ℕ ds✝ ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α d : ℕ ds : List ℕ x : Holor α (d :: ds) h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds this : CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) h_cprankMax_sum : CPRankMax (Finset.card (Finset.range d) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) ⊢ CPRankMax (prod (d :: ds)) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d)) [PROOFSTEP] rw [h_dds_prod] [GOAL] α : Type d✝ : ℕ ds✝ ds₁ ds₂ ds₃ : List ℕ inst✝ : Ring α d : ℕ ds : List ℕ x : Holor α (d :: ds) h_summands : ∀ (i : { x // x ∈ Finset.range d }), CPRankMax (prod ds) (unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) h_dds_prod : prod (d :: ds) = Finset.card (Finset.range d) * prod ds this : CPRankMax (Finset.card (Finset.attach (Finset.range d)) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) h_cprankMax_sum : CPRankMax (Finset.card (Finset.range d) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : ↑i < d)) ⊢ CPRankMax (Finset.card (Finset.range d) * prod ds) (∑ i in Finset.attach (Finset.range d), unitVec d ↑i ⊗ slice x ↑i (_ : Nat.succ ↑i ≤ d)) [PROOFSTEP] exact h_cprankMax_sum
{"mathlib_filename": "Mathlib.Data.Holor", "llama_tokens": 13068}
{"mathlib_filename": "Mathlib.Data.TypeMax", "llama_tokens": 0}
[GOAL] α : Sort u_1 a : α ⊢ out (mk a) = a [PROOFSTEP] let h := (mk a).2 [GOAL] α : Sort u_1 a : α h : ∃ a_1, (fun b => a_1 = b) = (mk a).fst := (mk a).snd ⊢ out (mk a) = a [PROOFSTEP] show Classical.choose h = a [GOAL] α : Sort u_1 a : α h : ∃ a_1, (fun b => a_1 = b) = (mk a).fst := (mk a).snd ⊢ Classical.choose h = a [PROOFSTEP] have := Classical.choose_spec h [GOAL] α : Sort u_1 a : α h : ∃ a_1, (fun b => a_1 = b) = (mk a).fst := (mk a).snd this : (fun b => Classical.choose h = b) = (mk a).fst ⊢ Classical.choose h = a [PROOFSTEP] exact cast (congr_fun this a).symm rfl [GOAL] α : Sort u_1 s : α → Prop h : ∃ a, (fun b => a = b) = s ⊢ mk (out { fst := s, snd := h }) = { fst := s, snd := h } [PROOFSTEP] simp [mk] [GOAL] α : Sort u_1 s : α → Prop h : ∃ a, (fun b => a = b) = s ⊢ { fst := fun b => out { fst := s, snd := h } = b, snd := (_ : ∃ a, (fun b => a = b) = fun b => out { fst := s, snd := h } = b) } = { fst := s, snd := h } [PROOFSTEP] congr [GOAL] case e_fst α : Sort u_1 s : α → Prop h : ∃ a, (fun b => a = b) = s ⊢ (fun b => out { fst := s, snd := h } = b) = s [PROOFSTEP] exact Classical.choose_spec h [GOAL] α : Sort u_1 a b : Erased α h : out a = out b ⊢ a = b [PROOFSTEP] simpa using congr_arg mk h [GOAL] α : Sort u_1 β : Sort u_2 f : α → β a : Erased α ⊢ out (map f a) = f (out a) [PROOFSTEP] simp [map] [GOAL] src✝ : Monad Erased := Erased.Monad ⊢ ∀ {α β : Type ?u.5529}, Functor.mapConst = Functor.map ∘ Function.const β [PROOFSTEP] intros [GOAL] src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] ext [GOAL] case h.h.h src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 x✝¹ : α✝ x✝ : Erased β✝ ⊢ out (Functor.mapConst x✝¹ x✝) = out ((Functor.map ∘ Function.const β✝) x✝¹ x✝) [PROOFSTEP] simp [Functor.mapConst] [GOAL] src✝ : Monad Erased := Erased.Monad ⊢ ∀ {α : Type ?u.5529} (x : Erased α), id <$> x = x [PROOFSTEP] intros [GOAL] src✝ : Monad Erased := Erased.Monad α✝ : Type ?u.5529 x✝ : Erased α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] ext [GOAL] case h src✝ : Monad Erased := Erased.Monad α✝ : Type ?u.5529 x✝ : Erased α✝ ⊢ out (id <$> x✝) = out x✝ [PROOFSTEP] simp [GOAL] src✝ : Monad Erased := Erased.Monad ⊢ ∀ {α β : Type ?u.5529} (x : Erased α) (y : Erased β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y [PROOFSTEP] intros [GOAL] src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 x✝ : Erased α✝ y✝ : Erased β✝ ⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝ [PROOFSTEP] ext [GOAL] case h src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 x✝ : Erased α✝ y✝ : Erased β✝ ⊢ out (SeqLeft.seqLeft x✝ fun x => y✝) = out (Seq.seq (Function.const β✝ <$> x✝) fun x => y✝) [PROOFSTEP] simp [Seq.seq, Functor.mapConst, SeqLeft.seqLeft] [GOAL] src✝ : Monad Erased := Erased.Monad ⊢ ∀ {α β : Type ?u.5529} (x : Erased α) (y : Erased β), (SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α id <$> x) fun x => y [PROOFSTEP] intros [GOAL] src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 x✝ : Erased α✝ y✝ : Erased β✝ ⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝ [PROOFSTEP] ext [GOAL] case h src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 x✝ : Erased α✝ y✝ : Erased β✝ ⊢ out (SeqRight.seqRight x✝ fun x => y✝) = out (Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝) [PROOFSTEP] simp [Seq.seq, Functor.mapConst, SeqRight.seqRight] [GOAL] src✝ : Monad Erased := Erased.Monad ⊢ ∀ {α β : Type ?u.5529} (g : α → β) (x : Erased α), (Seq.seq (pure g) fun x_1 => x) = g <$> x [PROOFSTEP] intros [GOAL] src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 g✝ : α✝ → β✝ x✝ : Erased α✝ ⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝ [PROOFSTEP] ext [GOAL] case h src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 g✝ : α✝ → β✝ x✝ : Erased α✝ ⊢ out (Seq.seq (pure g✝) fun x => x✝) = out (g✝ <$> x✝) [PROOFSTEP] simp [Seq.seq, Functor.mapConst, SeqRight.seqRight] [GOAL] src✝ : Monad Erased := Erased.Monad ⊢ ∀ {α β : Type ?u.5529} (f : α → β) (x : Erased α), (do let a ← x pure (f a)) = f <$> x [PROOFSTEP] intros [GOAL] src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 f✝ : α✝ → β✝ x✝ : Erased α✝ ⊢ (do let a ← x✝ pure (f✝ a)) = f✝ <$> x✝ [PROOFSTEP] ext [GOAL] case h src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 f✝ : α✝ → β✝ x✝ : Erased α✝ ⊢ (out do let a ← x✝ pure (f✝ a)) = out (f✝ <$> x✝) [PROOFSTEP] simp [GOAL] src✝ : Monad Erased := Erased.Monad ⊢ ∀ {α β : Type ?u.5529} (f : Erased (α → β)) (x : Erased α), (do let x_1 ← f x_1 <$> x) = Seq.seq f fun x_1 => x [PROOFSTEP] intros [GOAL] src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 f✝ : Erased (α✝ → β✝) x✝ : Erased α✝ ⊢ (do let x ← f✝ x <$> x✝) = Seq.seq f✝ fun x => x✝ [PROOFSTEP] ext [GOAL] case h src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 f✝ : Erased (α✝ → β✝) x✝ : Erased α✝ ⊢ (out do let x ← f✝ x <$> x✝) = out (Seq.seq f✝ fun x => x✝) [PROOFSTEP] simp [Seq.seq] [GOAL] src✝ : Monad Erased := Erased.Monad ⊢ ∀ {α β : Type ?u.5529} (x : α) (f : α → Erased β), pure x >>= f = f x [PROOFSTEP] intros [GOAL] src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 x✝ : α✝ f✝ : α✝ → Erased β✝ ⊢ pure x✝ >>= f✝ = f✝ x✝ [PROOFSTEP] ext [GOAL] case h src✝ : Monad Erased := Erased.Monad α✝ β✝ : Type ?u.5529 x✝ : α✝ f✝ : α✝ → Erased β✝ ⊢ out (pure x✝ >>= f✝) = out (f✝ x✝) [PROOFSTEP] simp [GOAL] src✝ : Monad Erased := Erased.Monad ⊢ ∀ {α β γ : Type ?u.5529} (x : Erased α) (f : α → Erased β) (g : β → Erased γ), x >>= f >>= g = x >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] src✝ : Monad Erased := Erased.Monad α✝ β✝ γ✝ : Type ?u.5529 x✝ : Erased α✝ f✝ : α✝ → Erased β✝ g✝ : β✝ → Erased γ✝ ⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] ext [GOAL] case h src✝ : Monad Erased := Erased.Monad α✝ β✝ γ✝ : Type ?u.5529 x✝ : Erased α✝ f✝ : α✝ → Erased β✝ g✝ : β✝ → Erased γ✝ ⊢ out (x✝ >>= f✝ >>= g✝) = out (x✝ >>= fun x => f✝ x >>= g✝) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Data.Erased", "llama_tokens": 3582}
[GOAL] ⊢ size ≠ 0 [PROOFSTEP] decide [GOAL] ⊢ size ≠ 0 [PROOFSTEP] decide [GOAL] ⊢ size ≠ 0 [PROOFSTEP] decide [GOAL] ⊢ size ≠ 0 [PROOFSTEP] decide [GOAL] n : ℕ h : n < size ⊢ Nat.isValidChar ↑(UInt32.ofNat n).val [PROOFSTEP] rw [UInt32.val_eq_of_lt] [GOAL] n : ℕ h : n < size ⊢ Nat.isValidChar n n : ℕ h : n < size ⊢ n < UInt32.size [PROOFSTEP] exact Or.inl $ Nat.lt_trans h $ by decide [GOAL] n : ℕ h : n < size ⊢ size < 55296 [PROOFSTEP] decide [GOAL] n : ℕ h : n < size ⊢ n < UInt32.size [PROOFSTEP] exact Nat.lt_trans h $ by decide [GOAL] n : ℕ h : n < size ⊢ size < UInt32.size [PROOFSTEP] decide
{"mathlib_filename": "Mathlib.Data.UInt", "llama_tokens": 333}
[GOAL] n : ℕ F : TypeVec n → Type u inst✝¹ : MvFunctor F q : MvQPF F G : TypeVec n → Type u inst✝ : MvFunctor G FG_abs : {α : TypeVec n} → F α → G α FG_repr : {α : TypeVec n} → G α → F α FG_abs_repr : ∀ {α : TypeVec n} (x : G α), FG_abs (FG_repr x) = x FG_abs_map : ∀ {α β : TypeVec n} (f : α ⟹ β) (x : F α), FG_abs (f <$$> x) = f <$$> FG_abs x α✝ : TypeVec n x : G α✝ ⊢ (fun {α} p => FG_abs (abs p)) ((fun {α} x => repr (FG_repr x)) x) = x [PROOFSTEP] dsimp [GOAL] n : ℕ F : TypeVec n → Type u inst✝¹ : MvFunctor F q : MvQPF F G : TypeVec n → Type u inst✝ : MvFunctor G FG_abs : {α : TypeVec n} → F α → G α FG_repr : {α : TypeVec n} → G α → F α FG_abs_repr : ∀ {α : TypeVec n} (x : G α), FG_abs (FG_repr x) = x FG_abs_map : ∀ {α β : TypeVec n} (f : α ⟹ β) (x : F α), FG_abs (f <$$> x) = f <$$> FG_abs x α✝ : TypeVec n x : G α✝ ⊢ FG_abs (abs (repr (FG_repr x))) = x [PROOFSTEP] rw [abs_repr, FG_abs_repr] [GOAL] n : ℕ F : TypeVec n → Type u inst✝¹ : MvFunctor F q : MvQPF F G : TypeVec n → Type u inst✝ : MvFunctor G FG_abs : {α : TypeVec n} → F α → G α FG_repr : {α : TypeVec n} → G α → F α FG_abs_repr : ∀ {α : TypeVec n} (x : G α), FG_abs (FG_repr x) = x FG_abs_map : ∀ {α β : TypeVec n} (f : α ⟹ β) (x : F α), FG_abs (f <$$> x) = f <$$> FG_abs x α✝ β✝ : TypeVec n f : α✝ ⟹ β✝ p : MvPFunctor.Obj (P F) α✝ ⊢ (fun {α} p => FG_abs (abs p)) (f <$$> p) = f <$$> (fun {α} p => FG_abs (abs p)) p [PROOFSTEP] dsimp [GOAL] n : ℕ F : TypeVec n → Type u inst✝¹ : MvFunctor F q : MvQPF F G : TypeVec n → Type u inst✝ : MvFunctor G FG_abs : {α : TypeVec n} → F α → G α FG_repr : {α : TypeVec n} → G α → F α FG_abs_repr : ∀ {α : TypeVec n} (x : G α), FG_abs (FG_repr x) = x FG_abs_map : ∀ {α β : TypeVec n} (f : α ⟹ β) (x : F α), FG_abs (f <$$> x) = f <$$> FG_abs x α✝ β✝ : TypeVec n f : α✝ ⟹ β✝ p : MvPFunctor.Obj (P F) α✝ ⊢ FG_abs (abs (f <$$> p)) = f <$$> FG_abs (abs p) [PROOFSTEP] rw [abs_map, FG_abs_map]
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Quot", "llama_tokens": 1097}
[GOAL] n : ℕ m : UFModel n k : ℕ le : n ≤ k i : Fin k ⊢ ↑((fun i => if h : ↑i < n then match parent m { val := ↑i, isLt := h } with | { val := a, isLt := h' } => { val := a, isLt := (_ : a < k) } else i) i) ≠ ↑i → (fun i => if i < n then rank m i else 0) ↑i < (fun i => if i < n then rank m i else 0) ↑((fun i => if h : ↑i < n then match parent m { val := ↑i, isLt := h } with | { val := a, isLt := h' } => { val := a, isLt := (_ : a < k) } else i) i) [PROOFSTEP] simp [GOAL] n : ℕ m : UFModel n k : ℕ le : n ≤ k i : Fin k ⊢ ¬↑(if h : ↑i < n then { val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }), isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } else i) = ↑i → (if ↑i < n then rank m ↑i else 0) < if ↑(if h : ↑i < n then { val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }), isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } else i) < n then rank m ↑(if h : ↑i < n then { val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }), isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } else i) else 0 [PROOFSTEP] split [GOAL] case inl n : ℕ m : UFModel n k : ℕ le : n ≤ k i : Fin k h✝ : ↑i < n ⊢ ¬↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }), isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } = ↑i → rank m ↑i < if ↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }), isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } < n then rank m ↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }), isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } else 0 [PROOFSTEP] rename_i h [GOAL] case inr n : ℕ m : UFModel n k : ℕ le : n ≤ k i : Fin k h✝ : ¬↑i < n ⊢ ¬↑i = ↑i → 0 < 0 [PROOFSTEP] rename_i h [GOAL] case inl n : ℕ m : UFModel n k : ℕ le : n ≤ k i : Fin k h : ↑i < n ⊢ ¬↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }), isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } = ↑i → rank m ↑i < if ↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }), isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } < n then rank m ↑{ val := ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }), isLt := (_ : ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) < k) } else 0 [PROOFSTEP] simp [(m.parent ⟨i, h⟩).2, h] [GOAL] case inl n : ℕ m : UFModel n k : ℕ le : n ≤ k i : Fin k h : ↑i < n ⊢ ¬↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) = ↑i → rank m ↑i < rank m ↑(m.1 { val := ↑i, isLt := (_ : ↑i < n) }) [PROOFSTEP] exact m.rank_lt _ [GOAL] case inr n : ℕ m : UFModel n k : ℕ le : n ≤ k i : Fin k h : ¬↑i < n ⊢ ¬↑i = ↑i → 0 < 0 [PROOFSTEP] intro . [GOAL] case inr n : ℕ m : UFModel n k : ℕ le : n ≤ k i : Fin k h : ¬↑i < n ⊢ ¬↑i = ↑i → 0 < 0 [PROOFSTEP] intro. [GOAL] n : ℕ m : UFModel n x y : Fin n h : rank m ↑x < rank m ↑y i : Fin n ⊢ ↑((fun i => if ↑x = ↑i then y else parent m i) i) ≠ ↑i → rank m ↑i < rank m ↑((fun i => if ↑x = ↑i then y else parent m i) i) [PROOFSTEP] simp [GOAL] n : ℕ m : UFModel n x y : Fin n h : rank m ↑x < rank m ↑y i : Fin n ⊢ ¬↑(if ↑x = ↑i then y else parent m i) = ↑i → rank m ↑i < rank m ↑(if ↑x = ↑i then y else parent m i) [PROOFSTEP] split [GOAL] case inl n : ℕ m : UFModel n x y : Fin n h : rank m ↑x < rank m ↑y i : Fin n h✝ : ↑x = ↑i ⊢ ¬↑y = ↑i → rank m ↑i < rank m ↑y [PROOFSTEP] rename_i h' [GOAL] case inr n : ℕ m : UFModel n x y : Fin n h : rank m ↑x < rank m ↑y i : Fin n h✝ : ¬↑x = ↑i ⊢ ¬↑(parent m i) = ↑i → rank m ↑i < rank m ↑(parent m i) [PROOFSTEP] rename_i h' [GOAL] case inl n : ℕ m : UFModel n x y : Fin n h : rank m ↑x < rank m ↑y i : Fin n h' : ↑x = ↑i ⊢ ¬↑y = ↑i → rank m ↑i < rank m ↑y [PROOFSTEP] rw [← h'] [GOAL] case inl n : ℕ m : UFModel n x y : Fin n h : rank m ↑x < rank m ↑y i : Fin n h' : ↑x = ↑i ⊢ ¬↑y = ↑x → rank m ↑x < rank m ↑y [PROOFSTEP] exact fun _ ↦ h [GOAL] case inr n : ℕ m : UFModel n x y : Fin n h : rank m ↑x < rank m ↑y i : Fin n h' : ¬↑x = ↑i ⊢ ¬↑(parent m i) = ↑i → rank m ↑i < rank m ↑(parent m i) [PROOFSTEP] exact m.rank_lt i [GOAL] n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n ⊢ ↑((fun i => if ↑x = ↑i then y else parent m i) i) ≠ ↑i → (fun i => if ↑y = i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m i) ↑i < (fun i => if ↑y = i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m i) ↑((fun i => if ↑x = ↑i then y else parent m i) i) [PROOFSTEP] simp [GOAL] n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n ⊢ ¬↑(if ↑x = ↑i then y else parent m i) = ↑i → (if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) < if ↑y = ↑(if ↑x = ↑i then y else parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(if ↑x = ↑i then y else parent m i) [PROOFSTEP] split [GOAL] case inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h✝ : ↑x = ↑i ⊢ ¬↑y = ↑i → (if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) < if ↑y = ↑y ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] rename_i h₁ [GOAL] case inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i ⊢ ¬↑y = ↑i → (if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) < if ↑y = ↑y ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] try simp [h₁] [GOAL] case inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i ⊢ ¬↑y = ↑i → (if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) < if ↑y = ↑y ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] simp [h₁] [GOAL] case inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i ⊢ ¬↑y = ↑i → (if ↑y = ↑i ∧ rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑i) < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] split [GOAL] case inl.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h✝ : ↑y = ↑i ∧ rank m ↑i = rank m ↑y ⊢ ¬↑y = ↑i → rank m ↑y + 1 < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] rename_i h₂ [GOAL] case inl.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h✝ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) ⊢ ¬↑y = ↑i → rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] rename_i h₂ [GOAL] case inl.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ↑y = ↑i ∧ rank m ↑i = rank m ↑y ⊢ ¬↑y = ↑i → rank m ↑y + 1 < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] intro h [GOAL] case inl.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ↑y = ↑i ∧ rank m ↑i = rank m ↑y h : ¬↑y = ↑i ⊢ rank m ↑y + 1 < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] try simp [h] at h₂ <;> simp [h₁, h₂, h] [GOAL] case inl.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ↑y = ↑i ∧ rank m ↑i = rank m ↑y h : ¬↑y = ↑i ⊢ rank m ↑y + 1 < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] simp [h] at h₂ [GOAL] case inl.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) ⊢ ¬↑y = ↑i → rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] intro h [GOAL] case inl.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) h : ¬↑y = ↑i ⊢ rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] try simp [h] at h₂ <;> simp [h₁, h₂, h] [GOAL] case inl.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) h : ¬↑y = ↑i ⊢ rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] simp [h] at h₂ [GOAL] case inl.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h : ¬↑y = ↑i h₂ : True ⊢ rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] simp [h₁, h₂, h] [GOAL] case inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h✝ : ¬↑x = ↑i ⊢ ¬↑(parent m i) = ↑i → (if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] rename_i h₁ [GOAL] case inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i ⊢ ¬↑(parent m i) = ↑i → (if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] try simp [h₁] [GOAL] case inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i ⊢ ¬↑(parent m i) = ↑i → (if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] simp [h₁] [GOAL] case inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i ⊢ ¬↑(parent m i) = ↑i → (if ↑y = ↑i ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑i) < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] split [GOAL] case inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h✝ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y ⊢ ¬↑(parent m i) = ↑i → rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] rename_i h₂ [GOAL] case inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h✝ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) ⊢ ¬↑(parent m i) = ↑i → rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] rename_i h₂ [GOAL] case inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y ⊢ ¬↑(parent m i) = ↑i → rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] intro h [GOAL] case inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y h : ¬↑(parent m i) = ↑i ⊢ rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] try simp [h] at h₂ <;> simp [h₁, h₂, h] [GOAL] case inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y h : ¬↑(parent m i) = ↑i ⊢ rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] simp [h] at h₂ [GOAL] case inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) ⊢ ¬↑(parent m i) = ↑i → rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] intro h [GOAL] case inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) h : ¬↑(parent m i) = ↑i ⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] try simp [h] at h₂ <;> simp [h₁, h₂, h] [GOAL] case inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) h : ¬↑(parent m i) = ↑i ⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] simp [h] at h₂ [GOAL] case inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h : ¬↑(parent m i) = ↑i h₂ : ↑y = ↑i → ¬rank m ↑x = rank m ↑y ⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] simp [h₁, h₂, h] [GOAL] case inl.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) h : ¬↑y = ↑i ⊢ rank m ↑i < if rank m ↑i = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] simp [← h₁] [GOAL] case inl.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) h : ¬↑y = ↑i ⊢ rank m ↑x < if rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑y [PROOFSTEP] split [GOAL] case inl.inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) h : ¬↑y = ↑i h✝ : rank m ↑x = rank m ↑y ⊢ rank m ↑x < rank m ↑y + 1 [PROOFSTEP] rename_i h₃ [GOAL] case inl.inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) h : ¬↑y = ↑i h✝ : ¬rank m ↑x = rank m ↑y ⊢ rank m ↑x < rank m ↑y [PROOFSTEP] rename_i h₃ [GOAL] case inl.inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) h : ¬↑y = ↑i h₃ : rank m ↑x = rank m ↑y ⊢ rank m ↑x < rank m ↑y + 1 [PROOFSTEP] rw [h₃] [GOAL] case inl.inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) h : ¬↑y = ↑i h₃ : rank m ↑x = rank m ↑y ⊢ rank m ↑y < rank m ↑y + 1 [PROOFSTEP] apply Nat.lt_succ_self [GOAL] case inl.inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑i = rank m ↑y) h : ¬↑y = ↑i h₃ : ¬rank m ↑x = rank m ↑y ⊢ rank m ↑x < rank m ↑y [PROOFSTEP] exact lt_of_le_of_ne H h₃ [GOAL] case inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y h : ¬↑(parent m i) = ↑i ⊢ rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] have := Fin.eq_of_val_eq h₂.1 [GOAL] case inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ↑y = ↑i ∧ rank m ↑x = rank m ↑y h : ¬↑(parent m i) = ↑i this : y = i ⊢ rank m ↑y + 1 < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] subst this [GOAL] case inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y h₁ : ¬↑x = ↑y h₂ : ↑y = ↑y ∧ rank m ↑x = rank m ↑y h : ¬↑(parent m y) = ↑y ⊢ rank m ↑y + 1 < if ↑y = ↑(parent m y) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m y) [PROOFSTEP] simp [hroot] at h [GOAL] case inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) h : ¬↑(parent m i) = ↑i ⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] have := m.rank_lt i h [GOAL] case inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) h : ¬↑(parent m i) = ↑i this : rank m ↑i < rank m ↑(parent m i) ⊢ rank m ↑i < if ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y then rank m ↑y + 1 else rank m ↑(parent m i) [PROOFSTEP] split [GOAL] case inr.inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) h : ¬↑(parent m i) = ↑i this : rank m ↑i < rank m ↑(parent m i) h✝ : ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y ⊢ rank m ↑i < rank m ↑y + 1 [PROOFSTEP] rename_i h₃ [GOAL] case inr.inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) h : ¬↑(parent m i) = ↑i this : rank m ↑i < rank m ↑(parent m i) h✝ : ¬(↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y) ⊢ rank m ↑i < rank m ↑(parent m i) [PROOFSTEP] rename_i h₃ [GOAL] case inr.inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) h : ¬↑(parent m i) = ↑i this : rank m ↑i < rank m ↑(parent m i) h₃ : ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y ⊢ rank m ↑i < rank m ↑y + 1 [PROOFSTEP] rw [h₃.1] [GOAL] case inr.inr.inl n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) h : ¬↑(parent m i) = ↑i this : rank m ↑i < rank m ↑(parent m i) h₃ : ↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y ⊢ rank m ↑i < rank m ↑(parent m i) + 1 [PROOFSTEP] exact Nat.lt_succ_of_lt this [GOAL] case inr.inr.inr n : ℕ m : UFModel n x y : Fin n H : rank m ↑x ≤ rank m ↑y hroot : ↑(parent m y) = ↑y i : Fin n h₁ : ¬↑x = ↑i h₂ : ¬(↑y = ↑i ∧ rank m ↑x = rank m ↑y) h : ¬↑(parent m i) = ↑i this : rank m ↑i < rank m ↑(parent m i) h₃ : ¬(↑y = ↑(parent m i) ∧ rank m ↑x = rank m ↑y) ⊢ rank m ↑i < rank m ↑(parent m i) [PROOFSTEP] exact this [GOAL] α : Type u_1 β : Sort u_2 arr : Array α f : α → β n : ℕ g : Fin n → β e : n = Array.size arr H : ∀ (i : ℕ) (h₁ : i < Array.size arr) (h₂ : i < n), f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ } ⊢ Agrees arr f g [PROOFSTEP] cases e [GOAL] case refl α : Type u_1 β : Sort u_2 arr : Array α f : α → β g : Fin (Array.size arr) → β H : ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ } ⊢ Agrees arr f g [PROOFSTEP] have : (fun i ↦ f (arr.get i)) = g := by funext ⟨i, h⟩; apply H [GOAL] α : Type u_1 β : Sort u_2 arr : Array α f : α → β g : Fin (Array.size arr) → β H : ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ } ⊢ (fun i => f (Array.get arr i)) = g [PROOFSTEP] funext ⟨i, h⟩ [GOAL] case h α : Type u_1 β : Sort u_2 arr : Array α f : α → β g : Fin (Array.size arr) → β H : ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ } i : ℕ h : i < Array.size arr ⊢ f (Array.get arr { val := i, isLt := h }) = g { val := i, isLt := h } [PROOFSTEP] apply H [GOAL] case refl α : Type u_1 β : Sort u_2 arr : Array α f : α → β g : Fin (Array.size arr) → β H : ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = g { val := i, isLt := h₂ } this : (fun i => f (Array.get arr i)) = g ⊢ Agrees arr f g [PROOFSTEP] cases this [GOAL] case refl.refl α : Type u_1 β : Sort u_2 arr : Array α f : α → β H : ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = (fun i => f (Array.get arr i)) { val := i, isLt := h₂ } ⊢ Agrees arr f fun i => f (Array.get arr i) [PROOFSTEP] constructor [GOAL] α : Type u_1 n : ℕ β : Sort u_2 f : α → β arr : Array α m : Fin n → β H : Agrees arr f m ⊢ n = Array.size arr [PROOFSTEP] cases H [GOAL] case mk α : Type u_1 β : Sort u_2 f : α → β arr : Array α ⊢ Array.size arr = Array.size arr [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Sort u_2 f : α → β arr : Array α n : ℕ m : Fin n → β H : Agrees arr f m ⊢ ∀ (i : ℕ) (h₁ : i < Array.size arr) (h₂ : i < n), f (Array.get arr { val := i, isLt := h₁ }) = m { val := i, isLt := h₂ } [PROOFSTEP] cases H [GOAL] case mk α : Type u_1 β : Sort u_2 f : α → β arr : Array α ⊢ ∀ (i : ℕ) (h₁ h₂ : i < Array.size arr), f (Array.get arr { val := i, isLt := h₁ }) = (fun i => f (Array.get arr i)) { val := i, isLt := h₂ } [PROOFSTEP] exact fun i h _ ↦ rfl [GOAL] α : Type u_1 β : Sort u_2 f : α → β arr : Array α n : ℕ m : Fin n → β H : Agrees arr f m k : ℕ hk : k = n + 1 x : α m' : Fin k → β hm₁ : ∀ (i : Fin k) (h : ↑i < n), m' i = m { val := ↑i, isLt := h } hm₂ : ∀ (h : n < k), f x = m' { val := n, isLt := h } ⊢ Agrees (Array.push arr x) f m' [PROOFSTEP] cases H [GOAL] case mk α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h } ⊢ Agrees (Array.push arr x) f m' [PROOFSTEP] have : k = (arr.push x).size := by simp [hk] [GOAL] α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h } ⊢ k = Array.size (Array.push arr x) [PROOFSTEP] simp [hk] [GOAL] case mk α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h } this : k = Array.size (Array.push arr x) ⊢ Agrees (Array.push arr x) f m' [PROOFSTEP] refine mk' this fun i h₁ h₂ ↦ ?_ [GOAL] case mk α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h } this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k ⊢ f (Array.get (Array.push arr x) { val := i, isLt := h₁ }) = m' { val := i, isLt := h₂ } [PROOFSTEP] simp [Array.get_push] [GOAL] case mk α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h } this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k ⊢ f (if h : i < Array.size arr then arr[i] else x) = m' { val := i, isLt := h₂ } [PROOFSTEP] split [GOAL] case mk.inl α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h } this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h✝ : i < Array.size arr ⊢ f arr[i] = m' { val := i, isLt := h₂ } [PROOFSTEP] rename_i h [GOAL] case mk.inl α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h } this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h : i < Array.size arr ⊢ f arr[i] = m' { val := i, isLt := h₂ } [PROOFSTEP] simp at hm₁ ⊢ [GOAL] case mk.inr α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h } this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h✝ : ¬i < Array.size arr ⊢ f x = m' { val := i, isLt := h₂ } [PROOFSTEP] rename_i h [GOAL] case mk.inr α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = (fun i => f (Array.get arr i)) { val := ↑i, isLt := h } this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h : ¬i < Array.size arr ⊢ f x = m' { val := i, isLt := h₂ } [PROOFSTEP] simp at hm₁ ⊢ [GOAL] case mk.inl α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i] this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h : i < Array.size arr ⊢ f arr[i] = m' { val := i, isLt := h₂ } [PROOFSTEP] rw [← hm₁ ⟨i, h₂⟩] [GOAL] case mk.inl α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i] this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h : i < Array.size arr ⊢ ↑{ val := i, isLt := h₂ } < Array.size arr [PROOFSTEP] assumption [GOAL] case mk.inr α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i] this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h : ¬i < Array.size arr ⊢ f x = m' { val := i, isLt := h₂ } [PROOFSTEP] cases show i = arr.size by apply le_antisymm <;> simp_all [Nat.lt_succ] [GOAL] α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i] this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h : ¬i < Array.size arr ⊢ i = Array.size arr [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i] this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h : ¬i < Array.size arr ⊢ i ≤ Array.size arr [PROOFSTEP] simp_all [Nat.lt_succ] [GOAL] case a α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i] this : k = Array.size (Array.push arr x) i : ℕ h₁ : i < Array.size (Array.push arr x) h₂ : i < k h : ¬i < Array.size arr ⊢ Array.size arr ≤ i [PROOFSTEP] simp_all [Nat.lt_succ] [GOAL] case mk.inr.refl α : Type u_1 β : Sort u_2 f : α → β arr : Array α k : ℕ x : α m' : Fin k → β hk : k = Array.size arr + 1 hm₂ : ∀ (h : Array.size arr < k), f x = m' { val := Array.size arr, isLt := h } hm₁ : ∀ (i : Fin k) (h : ↑i < Array.size arr), m' i = f arr[↑i] this : k = Array.size (Array.push arr x) h₁ : Array.size arr < Array.size (Array.push arr x) h₂ : Array.size arr < k h : ¬Array.size arr < Array.size arr ⊢ f x = m' { val := Array.size arr, isLt := h₂ } [PROOFSTEP] rw [hm₂] [GOAL] α : Type u_1 β : Sort u_2 f : α → β arr : Array α n : ℕ m : Fin n → β H : Agrees arr f m i : Fin (Array.size arr) x : α m' : Fin n → β hm₁ : ∀ (j : Fin n), ↑j ≠ ↑i → m' j = m j hm₂ : ∀ (h : ↑i < n), f x = m' { val := ↑i, isLt := h } ⊢ Agrees (Array.set arr i x) f m' [PROOFSTEP] cases H [GOAL] case mk α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j ⊢ Agrees (Array.set arr i x) f m' [PROOFSTEP] refine mk' (by simp) fun j hj₁ hj₂ ↦ ?_ [GOAL] α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j ⊢ Array.size arr = Array.size (Array.set arr i x) [PROOFSTEP] simp [GOAL] case mk α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j j : ℕ hj₁ : j < Array.size (Array.set arr i x) hj₂ : j < Array.size arr ⊢ f (Array.get (Array.set arr i x) { val := j, isLt := hj₁ }) = m' { val := j, isLt := hj₂ } [PROOFSTEP] suffices f (Array.set arr i x)[j] = m' ⟨j, hj₂⟩ by simp_all [Array.get_set] [GOAL] α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j j : ℕ hj₁ : j < Array.size (Array.set arr i x) hj₂ : j < Array.size arr this : f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ } ⊢ f (Array.get (Array.set arr i x) { val := j, isLt := hj₁ }) = m' { val := j, isLt := hj₂ } [PROOFSTEP] simp_all [Array.get_set] [GOAL] case mk α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j j : ℕ hj₁ : j < Array.size (Array.set arr i x) hj₂ : j < Array.size arr ⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ } [PROOFSTEP] by_cases h : i = j [GOAL] case pos α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j j : ℕ hj₁ : j < Array.size (Array.set arr i x) hj₂ : j < Array.size arr h : ↑i = j ⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ } [PROOFSTEP] subst h [GOAL] case pos α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j hj₁ : ↑i < Array.size (Array.set arr i x) hj₂ : ↑i < Array.size arr ⊢ f (Array.set arr i x)[↑i] = m' { val := ↑i, isLt := hj₂ } [PROOFSTEP] rw [Array.get_set_eq, ← hm₂] [GOAL] case neg α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j j : ℕ hj₁ : j < Array.size (Array.set arr i x) hj₂ : j < Array.size arr h : ¬↑i = j ⊢ f (Array.set arr i x)[j] = m' { val := j, isLt := hj₂ } [PROOFSTEP] rw [arr.get_set_ne _ _ _ h, hm₁ ⟨j, _⟩ (Ne.symm h)] [GOAL] case neg α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j j : ℕ hj₁ : j < Array.size (Array.set arr i x) hj₂ : j < Array.size arr h : ¬↑i = j ⊢ f arr[j] = (fun i => f (Array.get arr i)) { val := j, isLt := hj₂ } α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j j : ℕ hj₁ : j < Array.size (Array.set arr i x) hj₂ : j < Array.size arr h : ¬↑i = j ⊢ j < Array.size arr α : Type u_1 β : Sort u_2 f : α → β arr : Array α i : Fin (Array.size arr) x : α m' : Fin (Array.size arr) → β hm₂ : ∀ (h : ↑i < Array.size arr), f x = m' { val := ↑i, isLt := h } hm₁ : ∀ (j : Fin (Array.size arr)), ↑j ≠ ↑i → m' j = (fun i => f (Array.get arr i)) j j : ℕ hj₁ : j < Array.size (Array.set arr i x) hj₂ : j < Array.size arr h : ¬↑i = j ⊢ j < Array.size arr [PROOFSTEP] rfl [GOAL] α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H : Models arr m i : ℕ h : i < Array.size arr ⊢ i < n [PROOFSTEP] rw [H.size_eq] [GOAL] α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H : Models arr m i : ℕ h : i < Array.size arr ⊢ i < Array.size arr [PROOFSTEP] exact h [GOAL] α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H : Models arr m k : ℕ hk : k = n + 1 x : α ⊢ Models (Array.push arr { parent := n, value := x, rank := 0 }) (UFModel.push m k (_ : n ≤ k)) [PROOFSTEP] apply H.imp [GOAL] case f α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H : Models arr m k : ℕ hk : k = n + 1 x : α ⊢ (Agrees arr (fun x => x.parent) fun i => ↑(parent m i)) → Agrees (Array.push arr { parent := n, value := x, rank := 0 }) (fun x => x.parent) fun i => ↑(parent (UFModel.push m k (_ : n ≤ k)) i) [PROOFSTEP] intro H [GOAL] case f α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H✝ : Models arr m k : ℕ hk : k = n + 1 x : α H : Agrees arr (fun x => x.parent) fun i => ↑(parent m i) ⊢ Agrees (Array.push arr { parent := n, value := x, rank := 0 }) (fun x => x.parent) fun i => ↑(parent (UFModel.push m k (_ : n ≤ k)) i) [PROOFSTEP] refine H.push _ hk _ _ (fun i h ↦ ?_) (fun h ↦ ?_) [GOAL] case f.refine_1 α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H✝ : Models arr m k : ℕ hk : k = n + 1 x : α H : Agrees arr (fun x => x.parent) fun i => ↑(parent m i) i : Fin k h : ↑i < n ⊢ ↑(parent (UFModel.push m k (_ : n ≤ k)) i) = ↑(parent m { val := ↑i, isLt := h }) [PROOFSTEP] simp [UFModel.push, h, lt_irrefl] [GOAL] case f.refine_2 α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H✝ : Models arr m k : ℕ hk : k = n + 1 x : α H : Agrees arr (fun x => x.parent) fun i => ↑(parent m i) h : n < k ⊢ { parent := n, value := x, rank := 0 }.parent = ↑(parent (UFModel.push m k (_ : n ≤ k)) { val := n, isLt := h }) [PROOFSTEP] simp [UFModel.push, h, lt_irrefl] [GOAL] case g α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H : Models arr m k : ℕ hk : k = n + 1 x : α ⊢ (Agrees arr (fun x => x.rank) fun i => rank m ↑i) → Agrees (Array.push arr { parent := n, value := x, rank := 0 }) (fun x => x.rank) fun i => rank (UFModel.push m k (_ : n ≤ k)) ↑i [PROOFSTEP] intro H [GOAL] case g α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H✝ : Models arr m k : ℕ hk : k = n + 1 x : α H : Agrees arr (fun x => x.rank) fun i => rank m ↑i ⊢ Agrees (Array.push arr { parent := n, value := x, rank := 0 }) (fun x => x.rank) fun i => rank (UFModel.push m k (_ : n ≤ k)) ↑i [PROOFSTEP] refine H.push _ hk _ _ (fun i h ↦ ?_) (fun h ↦ ?_) [GOAL] case g.refine_1 α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H✝ : Models arr m k : ℕ hk : k = n + 1 x : α H : Agrees arr (fun x => x.rank) fun i => rank m ↑i i : Fin k h : ↑i < n ⊢ rank (UFModel.push m k (_ : n ≤ k)) ↑i = rank m ↑{ val := ↑i, isLt := h } [PROOFSTEP] simp [UFModel.push, h, lt_irrefl] [GOAL] case g.refine_2 α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n H✝ : Models arr m k : ℕ hk : k = n + 1 x : α H : Agrees arr (fun x => x.rank) fun i => rank m ↑i h : n < k ⊢ { parent := n, value := x, rank := 0 }.rank = rank (UFModel.push m k (_ : n ≤ k)) ↑{ val := n, isLt := h } [PROOFSTEP] simp [UFModel.push, h, lt_irrefl] [GOAL] α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n hm : Models arr m i j : Fin n H : rank m ↑i < rank m ↑j hi : ↑i < Array.size arr x : UFNode α hp : x.parent = ↑j hrk : x.rank = arr[i].rank k : Fin n h : ↑k ≠ ↑i ⊢ ↑(parent (UFModel.setParent m i j H) k) = ↑(parent m k) [PROOFSTEP] simp [UFModel.setParent, h.symm] [GOAL] α : Type u_1 arr : Array (UFNode α) n : ℕ m : UFModel n hm : Models arr m i j : Fin n H : rank m ↑i < rank m ↑j hi : ↑i < Array.size arr x : UFNode α hp : x.parent = ↑j hrk : x.rank = arr[i].rank h : ↑{ val := ↑i, isLt := hi } < n ⊢ x.parent = ↑(parent (UFModel.setParent m i j H) { val := ↑{ val := ↑i, isLt := hi }, isLt := h }) [PROOFSTEP] simp [UFModel.setParent, hp] [GOAL] α : Type u_1 self : UnionFind α ⊢ ∃ m, UFModel.Models self.arr m [PROOFSTEP] let ⟨n, m, hm⟩ := self.model [GOAL] α : Type u_1 self : UnionFind α n : ℕ m : UFModel n hm : UFModel.Models self.arr m ⊢ ∃ m, UFModel.Models self.arr m [PROOFSTEP] cases hm.size_eq [GOAL] case refl α : Type u_1 self : UnionFind α m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m ⊢ ∃ m, UFModel.Models self.arr m [PROOFSTEP] exact ⟨m, hm⟩ [GOAL] α : Type ?u.46031 self : UnionFind α i : ℕ ⊢ { k // ∀ (j : ℕ), j < i + 1 → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k } [PROOFSTEP] let ⟨k, H⟩ := rankMaxAux self i [GOAL] α : Type ?u.46031 self : UnionFind α i k : ℕ H : ∀ (j : ℕ), j < i → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k ⊢ { k // ∀ (j : ℕ), j < i + 1 → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k } [PROOFSTEP] refine ⟨max k (if h : _ then (self.arr.get ⟨i, h⟩).rank else 0), fun j hj h ↦ ?_⟩ [GOAL] α : Type ?u.46031 self : UnionFind α i k : ℕ H : ∀ (j : ℕ), j < i → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k j : ℕ hj : j < i + 1 h : j < Array.size self.arr ⊢ (Array.get self.arr { val := j, isLt := h }).rank ≤ max k (if h : i < Array.size self.arr then (Array.get self.arr { val := i, isLt := h }).rank else 0) [PROOFSTEP] match j, lt_or_eq_of_le (Nat.le_of_lt_succ hj) with | j, Or.inl hj => exact le_trans (H _ hj h) (le_max_left _ _) | _, Or.inr rfl => simp [h, le_max_right] [GOAL] α : Type ?u.46031 self : UnionFind α i k : ℕ H : ∀ (j : ℕ), j < i → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k j✝ j : ℕ hj : j < i hj✝ : j < i + 1 h : j < Array.size self.arr ⊢ (Array.get self.arr { val := j, isLt := h }).rank ≤ max k (if h : i < Array.size self.arr then (Array.get self.arr { val := i, isLt := h }).rank else 0) [PROOFSTEP] exact le_trans (H _ hj h) (le_max_left _ _) [GOAL] α : Type ?u.46031 self : UnionFind α i k : ℕ H : ∀ (j : ℕ), j < i → ∀ (h : j < Array.size self.arr), (Array.get self.arr { val := j, isLt := h }).rank ≤ k j : ℕ hj : i < i + 1 h : i < Array.size self.arr ⊢ (Array.get self.arr { val := i, isLt := h }).rank ≤ max k (if h : i < Array.size self.arr then (Array.get self.arr { val := i, isLt := h }).rank else 0) [PROOFSTEP] simp [h, le_max_right] [GOAL] α : Type u_1 self : UnionFind α i : ℕ ⊢ rank self i < rankMax self [PROOFSTEP] simp [rank] [GOAL] α : Type u_1 self : UnionFind α i : ℕ ⊢ (if h : i < size self then self.arr[i].rank else 0) < rankMax self [PROOFSTEP] split [GOAL] case inl α : Type u_1 self : UnionFind α i : ℕ h✝ : i < size self ⊢ self.arr[i].rank < rankMax self case inr α : Type u_1 self : UnionFind α i : ℕ h✝ : ¬i < size self ⊢ 0 < rankMax self [PROOFSTEP] {apply lt_rankMax' } [GOAL] case inl α : Type u_1 self : UnionFind α i : ℕ h✝ : i < size self ⊢ self.arr[i].rank < rankMax self [PROOFSTEP] apply lt_rankMax' [GOAL] case inr α : Type u_1 self : UnionFind α i : ℕ h✝ : ¬i < size self ⊢ 0 < rankMax self [PROOFSTEP] apply Nat.succ_pos [GOAL] α : Type u_1 self : UnionFind α n : ℕ m : UFModel n H : UFModel.Models self.arr m i : ℕ h : i < size self ⊢ rank self i = UFModel.rank m i [PROOFSTEP] simp [rank, h, H.rank_eq] [GOAL] α : Type u_1 self : UnionFind α i : ℕ h : i < Array.size self.arr ⊢ self.arr[i].parent ≠ i → rank self i < rank self self.arr[i].parent [PROOFSTEP] let ⟨m, hm⟩ := self.model' [GOAL] α : Type u_1 self : UnionFind α i : ℕ h : i < Array.size self.arr m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m ⊢ self.arr[i].parent ≠ i → rank self i < rank self self.arr[i].parent [PROOFSTEP] simpa [hm.parent_eq, hm.rank_eq, rank, size, h, (m.parent ⟨i, h⟩).2] using m.rank_lt ⟨i, h⟩ [GOAL] α : Type u_1 self : UnionFind α i : ℕ h : i < Array.size self.arr ⊢ self.arr[i].parent < size self [PROOFSTEP] let ⟨m, hm⟩ := self.model' [GOAL] α : Type u_1 self : UnionFind α i : ℕ h : i < Array.size self.arr m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m ⊢ self.arr[i].parent < size self [PROOFSTEP] simp [hm.parent_eq, size, (m.parent ⟨i, h⟩).2, h] [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) ⊢ (s : Array (UFNode α)) ×' (root : Fin (Array.size s)) ×' ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models s m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑root [PROOFSTEP] let y := self.arr[x].parent [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent ⊢ (s : Array (UFNode α)) ×' (root : Fin (Array.size s)) ×' ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models s m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑root [PROOFSTEP] refine if h : y = x then ⟨self.arr, x, ?a'⟩ else have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank_lt _ h) let ⟨arr₁, root, H⟩ := self.findAux ⟨y, self.parent_lt _ x.2⟩ have hx := ?hx let arr₂ := arr₁.set ⟨x, hx⟩ { arr₁.get ⟨x, hx⟩ with parent := root } ⟨arr₂, ⟨root, by simp [root.2]⟩, ?b'⟩ -- start proof [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root, value := src.value, rank := src.rank }) ⊢ ↑root < Array.size arr₂ [PROOFSTEP] simp [root.2] [GOAL] case a' α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : y = ↑x ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models self.arr m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑x, isLt := hr }) = ↑x) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑x case hx α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ↑x < Array.size arr₁ case b' α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root, value := src.value, rank := src.rank }) ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] case a' => -- FIXME: hygiene bug causes `case a` to fail let ⟨m, hm⟩ := self.model' exact ⟨_, m, m, hm, hm, rfl, ⟨x.2, by rwa [← hm.parent_eq]⟩, le_refl _⟩ [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : y = ↑x ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models self.arr m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑x, isLt := hr }) = ↑x) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑x [PROOFSTEP] case a' => -- FIXME: hygiene bug causes `case a` to fail let ⟨m, hm⟩ := self.model' exact ⟨_, m, m, hm, hm, rfl, ⟨x.2, by rwa [← hm.parent_eq]⟩, le_refl _⟩ [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : y = ↑x ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models self.arr m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑x, isLt := hr }) = ↑x) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑x [PROOFSTEP] let ⟨m, hm⟩ := self.model' [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : y = ↑x m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models self.arr m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑x, isLt := hr }) = ↑x) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑x [PROOFSTEP] exact ⟨_, m, m, hm, hm, rfl, ⟨x.2, by rwa [← hm.parent_eq]⟩, le_refl _⟩ [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : y = ↑x m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m ⊢ ↑(UFModel.parent m { val := ↑x, isLt := (_ : ↑x < size self) }) = ↑x [PROOFSTEP] rwa [← hm.parent_eq] [GOAL] case hx α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ↑x < Array.size arr₁ case b' α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root, value := src.value, rank := src.rank }) ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] all_goals let ⟨n, m, m', hm, hm', e, ⟨_, hr⟩, le⟩ := H [GOAL] case hx α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ↑x < Array.size arr₁ [PROOFSTEP] let ⟨n, m, m', hm, hm', e, ⟨_, hr⟩, le⟩ := H [GOAL] case b' α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root, value := src.value, rank := src.rank }) ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] let ⟨n, m, m', hm, hm', e, ⟨_, hr⟩, le⟩ := H [GOAL] case hx α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root < n hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ↑x < Array.size arr₁ case b' α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root < n hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] case hx => exact hm'.size_eq ▸ hm.size_eq.symm ▸ x.2 [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root < n hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ↑x < Array.size arr₁ [PROOFSTEP] case hx => exact hm'.size_eq ▸ hm.size_eq.symm ▸ x.2 [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root < n hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ↑x < Array.size arr₁ [PROOFSTEP] exact hm'.size_eq ▸ hm.size_eq.symm ▸ x.2 [GOAL] case b' α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root < n hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] case b' => let x' : Fin n := ⟨x, hm.size_eq ▸ x.2⟩ let root : Fin n := ⟨root, hm'.size_eq.symm ▸ root.2⟩ have hy : (UFModel.parent m x').1 = y := by rw [← hm.parent_eq x x.2 x'.2]; rfl have := m.rank_lt x'; rw [hy] at this have := lt_of_lt_of_le (this h) le refine ⟨n, m, _, hm, hm'.setParent x' root (by rw [e]; exact this) hx _ rfl rfl, e, ⟨root.2, ?_⟩, le_of_lt this⟩ have : x.1 ≠ root := mt (congrArg _) (ne_of_lt this); dsimp only at this simp [UFModel.setParent, this, hr] [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root < n hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] case b' => let x' : Fin n := ⟨x, hm.size_eq ▸ x.2⟩ let root : Fin n := ⟨root, hm'.size_eq.symm ▸ root.2⟩ have hy : (UFModel.parent m x').1 = y := by rw [← hm.parent_eq x x.2 x'.2]; rfl have := m.rank_lt x'; rw [hy] at this have := lt_of_lt_of_le (this h) le refine ⟨n, m, _, hm, hm'.setParent x' root (by rw [e]; exact this) hx _ rfl rfl, e, ⟨root.2, ?_⟩, le_of_lt this⟩ have : x.1 ≠ root := mt (congrArg _) (ne_of_lt this); dsimp only at this simp [UFModel.setParent, this, hr] [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root < n hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] let x' : Fin n := ⟨x, hm.size_eq ▸ x.2⟩ [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root < n hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root, isLt := (_ : ↑root < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] let root : Fin n := ⟨root, hm'.size_eq.symm ▸ root.2⟩ [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] have hy : (UFModel.parent m x').1 = y := by rw [← hm.parent_eq x x.2 x'.2]; rfl [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } ⊢ ↑(UFModel.parent m x') = y [PROOFSTEP] rw [← hm.parent_eq x x.2 x'.2] [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } ⊢ self.arr[↑x].parent = y [PROOFSTEP] rfl [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } hy : ↑(UFModel.parent m x') = y ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] have := m.rank_lt x' [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this✝ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } hy : ↑(UFModel.parent m x') = y this : ↑(UFModel.parent m x') ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m ↑(UFModel.parent m x') ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] rw [hy] at this [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this✝ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } hy : ↑(UFModel.parent m x') = y this : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] have := lt_of_lt_of_le (this h) le [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this✝¹ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } hy : ↑(UFModel.parent m x') = y this✝ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y this : UFModel.rank m ↑x' < UFModel.rank m ↑root✝ ⊢ ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₂ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := hr }) = ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] refine ⟨n, m, _, hm, hm'.setParent x' root (by rw [e]; exact this) hx _ rfl rfl, e, ⟨root.2, ?_⟩, le_of_lt this⟩ [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this✝¹ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } hy : ↑(UFModel.parent m x') = y this✝ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y this : UFModel.rank m ↑x' < UFModel.rank m ↑root✝ ⊢ UFModel.rank m' ↑x' < UFModel.rank m' ↑root [PROOFSTEP] rw [e] [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this✝¹ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } hy : ↑(UFModel.parent m x') = y this✝ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y this : UFModel.rank m ↑x' < UFModel.rank m ↑root✝ ⊢ UFModel.rank m ↑x' < UFModel.rank m ↑root [PROOFSTEP] exact this [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this✝¹ : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } hy : ↑(UFModel.parent m x') = y this✝ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y this : UFModel.rank m ↑x' < UFModel.rank m ↑root✝ ⊢ ↑(UFModel.parent (UFModel.setParent m' x' root (_ : UFModel.rank m' ↑x' < UFModel.rank m' ↑root)) { val := ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := (_ : ↑root < n) }) = ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] have : x.1 ≠ root := mt (congrArg _) (ne_of_lt this) [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this✝² : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } hy : ↑(UFModel.parent m x') = y this✝¹ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y this✝ : UFModel.rank m ↑x' < UFModel.rank m ↑root✝ this : ↑x ≠ ↑root ⊢ ↑(UFModel.parent (UFModel.setParent m' x' root (_ : UFModel.rank m' ↑x' < UFModel.rank m' ↑root)) { val := ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := (_ : ↑root < n) }) = ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] dsimp only at this [GOAL] α : Type ?u.56700 self : UnionFind α x : Fin (size self) y : ℕ := self.arr[x].parent h : ¬y = ↑x this✝² : rankMax self - rank self self.arr[↑x].parent < rankMax self - rank self ↑x arr₁ : Array (UFNode α) root✝ : Fin (Array.size arr₁) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models arr₁ m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root✝, isLt := hr }) = ↑root✝) ∧ UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ hx : ↑x < Array.size arr₁ arr₂ : Array (UFNode α) := Array.set arr₁ { val := ↑x, isLt := hx } (let src := Array.get arr₁ { val := ↑x, isLt := hx }; { parent := ↑root✝, value := src.value, rank := src.rank }) n : ℕ m m' : UFModel n hm : UFModel.Models self.arr m hm' : UFModel.Models arr₁ m' e : m'.rank = m.rank w✝ : ↑root✝ < n hr : ↑(UFModel.parent m' { val := ↑root✝, isLt := w✝ }) = ↑root✝ le : UFModel.rank m ↑{ val := y, isLt := (_ : self.arr[↑x].parent < size self) } ≤ UFModel.rank m ↑root✝ x' : Fin n := { val := ↑x, isLt := (_ : ↑x < n) } root : Fin n := { val := ↑root✝, isLt := (_ : ↑root✝ < n) } hy : ↑(UFModel.parent m x') = y this✝¹ : y ≠ ↑x' → UFModel.rank m ↑x' < UFModel.rank m y this✝ : UFModel.rank m ↑x' < UFModel.rank m ↑root✝ this : ↑x ≠ ↑root✝ ⊢ ↑(UFModel.parent (UFModel.setParent m' x' root (_ : UFModel.rank m' ↑x' < UFModel.rank m' ↑root)) { val := ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) }, isLt := (_ : ↑root < n) }) = ↑{ val := ↑root✝, isLt := (_ : ↑root✝ < Array.size (Array.set arr₁ { val := ↑x, isLt := hx } { parent := ↑root✝, value := arr₁[↑x].value, rank := arr₁[↑x].rank })) } [PROOFSTEP] simp [UFModel.setParent, this, hr] [GOAL] α : Type ?u.79923 self : UnionFind α x : Fin (size self) s : Array (UFNode α) root : Fin (Array.size s) H : ∃ n m m', UFModel.Models self.arr m ∧ UFModel.Models s m' ∧ m'.rank = m.rank ∧ (∃ hr, ↑(UFModel.parent m' { val := ↑root, isLt := hr }) = ↑root) ∧ UFModel.rank m ↑x ≤ UFModel.rank m ↑root n : ℕ w✝¹ m' : UFModel n hm : UFModel.Models self.arr w✝¹ hm' : UFModel.Models s m' left✝ : m'.rank = w✝¹.rank w✝ : ↑root < n hr : ↑(UFModel.parent m' { val := ↑root, isLt := w✝ }) = ↑root right✝ : UFModel.rank w✝¹ ↑x ≤ UFModel.rank w✝¹ ↑root ⊢ s[↑root].parent = ↑root [PROOFSTEP] rwa [hm'.parent_eq] [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ⊢ UnionFind α [PROOFSTEP] refine if ne : x.1 = y then self else let nx := self.arr[x] let ny := self.arr[y] if h : ny.rank < nx.rank then ⟨self.arr.set y { ny with parent := x }, ?a⟩ else let arr₁ := self.arr.set x { nx with parent := y } let arr₂ := if nx.rank = ny.rank then arr₁.set ⟨y, by simp; exact y.2⟩ { ny with rank := ny.rank + 1 } else arr₁ ⟨arr₂, ?b⟩ -- start proof [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } ⊢ ↑y < Array.size arr₁ [PROOFSTEP] simp [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } ⊢ ↑y < Array.size self.arr [PROOFSTEP] exact y.2 [GOAL] case a α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ny.rank < nx.rank ⊢ ∃ n m, UFModel.Models (Array.set self.arr y { parent := ↑x, value := ny.value, rank := ny.rank }) m case b α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ ⊢ ∃ n m, UFModel.Models arr₂ m [PROOFSTEP] case a => let ⟨m, hm⟩ := self.model' exact ⟨_, _, hm.setParent y x (by simpa [hm.rank_eq] using h) _ _ rfl rfl⟩ [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ny.rank < nx.rank ⊢ ∃ n m, UFModel.Models (Array.set self.arr y { parent := ↑x, value := ny.value, rank := ny.rank }) m [PROOFSTEP] case a => let ⟨m, hm⟩ := self.model' exact ⟨_, _, hm.setParent y x (by simpa [hm.rank_eq] using h) _ _ rfl rfl⟩ [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ny.rank < nx.rank ⊢ ∃ n m, UFModel.Models (Array.set self.arr y { parent := ↑x, value := ny.value, rank := ny.rank }) m [PROOFSTEP] let ⟨m, hm⟩ := self.model' [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ny.rank < nx.rank m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m ⊢ ∃ n m, UFModel.Models (Array.set self.arr y { parent := ↑x, value := ny.value, rank := ny.rank }) m [PROOFSTEP] exact ⟨_, _, hm.setParent y x (by simpa [hm.rank_eq] using h) _ _ rfl rfl⟩ [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ny.rank < nx.rank m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m ⊢ UFModel.rank m ↑y < UFModel.rank m ↑x [PROOFSTEP] simpa [hm.rank_eq] using h [GOAL] case b α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ ⊢ ∃ n m, UFModel.Models arr₂ m [PROOFSTEP] case b => let ⟨m, hm⟩ := self.model'; let n := self.size refine ⟨_, m.setParentBump x y (by simpa [hm.rank_eq] using h) (by simpa [← hm.parent_eq'] using yroot), ?_⟩ let parent (i : Fin n) := (if x.1 = i then y else m.parent i).1 have : UFModel.Agrees arr₁ (·.parent) parent := hm.1.set (fun i h ↦ by simp; rw [if_neg h.symm]) (fun h ↦ by simp) have H1 : UFModel.Agrees arr₂ (·.parent) parent := by simp; split · exact this.set (fun i h ↦ by simp [h.symm]) (fun h ↦ by simp [ne, hm.parent_eq']) · exact this have : UFModel.Agrees arr₁ (·.rank) (fun i : Fin n ↦ m.rank i) := hm.2.set (fun i _ ↦ by simp) (fun _ ↦ by simp [hm.rank_eq]) let rank (i : Fin n) := if y.1 = i ∧ m.rank x = m.rank y then m.rank y + 1 else m.rank i have H2 : UFModel.Agrees arr₂ (·.rank) rank := by simp; split <;> (rename_i xy; simp [hm.rank_eq] at xy ; simp [xy]) · exact this.set (fun i h ↦ by rw [if_neg h.symm]) (fun h ↦ by simp [hm.rank_eq]) · exact this exact ⟨H1, H2⟩ [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ ⊢ ∃ n m, UFModel.Models arr₂ m [PROOFSTEP] case b => let ⟨m, hm⟩ := self.model'; let n := self.size refine ⟨_, m.setParentBump x y (by simpa [hm.rank_eq] using h) (by simpa [← hm.parent_eq'] using yroot), ?_⟩ let parent (i : Fin n) := (if x.1 = i then y else m.parent i).1 have : UFModel.Agrees arr₁ (·.parent) parent := hm.1.set (fun i h ↦ by simp; rw [if_neg h.symm]) (fun h ↦ by simp) have H1 : UFModel.Agrees arr₂ (·.parent) parent := by simp; split · exact this.set (fun i h ↦ by simp [h.symm]) (fun h ↦ by simp [ne, hm.parent_eq']) · exact this have : UFModel.Agrees arr₁ (·.rank) (fun i : Fin n ↦ m.rank i) := hm.2.set (fun i _ ↦ by simp) (fun _ ↦ by simp [hm.rank_eq]) let rank (i : Fin n) := if y.1 = i ∧ m.rank x = m.rank y then m.rank y + 1 else m.rank i have H2 : UFModel.Agrees arr₂ (·.rank) rank := by simp; split <;> (rename_i xy; simp [hm.rank_eq] at xy ; simp [xy]) · exact this.set (fun i h ↦ by rw [if_neg h.symm]) (fun h ↦ by simp [hm.rank_eq]) · exact this exact ⟨H1, H2⟩ [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ ⊢ ∃ n m, UFModel.Models arr₂ m [PROOFSTEP] let ⟨m, hm⟩ := self.model' [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m ⊢ ∃ n m, UFModel.Models arr₂ m [PROOFSTEP] let n := self.size [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self ⊢ ∃ n m, UFModel.Models arr₂ m [PROOFSTEP] refine ⟨_, m.setParentBump x y (by simpa [hm.rank_eq] using h) (by simpa [← hm.parent_eq'] using yroot), ?_⟩ [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self ⊢ UFModel.rank m ↑x ≤ UFModel.rank m ↑y [PROOFSTEP] simpa [hm.rank_eq] using h [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self ⊢ ↑(UFModel.parent m y) = ↑y [PROOFSTEP] simpa [← hm.parent_eq'] using yroot [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self ⊢ UFModel.Models arr₂ (UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y)) [PROOFSTEP] let parent (i : Fin n) := (if x.1 = i then y else m.parent i).1 [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) ⊢ UFModel.Models arr₂ (UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y)) [PROOFSTEP] have : UFModel.Agrees arr₁ (·.parent) parent := hm.1.set (fun i h ↦ by simp; rw [if_neg h.symm]) (fun h ↦ by simp) [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h✝ : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) i : Fin (Array.size self.arr) h : ↑i ≠ ↑x ⊢ parent i = ↑(UFModel.parent m i) [PROOFSTEP] simp [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h✝ : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) i : Fin (Array.size self.arr) h : ↑i ≠ ↑x ⊢ ↑(if ↑x = ↑i then y else UFModel.parent m i) = ↑(UFModel.parent m i) [PROOFSTEP] rw [if_neg h.symm] [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h✝ : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) h : ↑x < Array.size self.arr ⊢ { parent := ↑y, value := nx.value, rank := nx.rank }.parent = parent { val := ↑x, isLt := h } [PROOFSTEP] simp [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent ⊢ UFModel.Models arr₂ (UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y)) [PROOFSTEP] have H1 : UFModel.Agrees arr₂ (·.parent) parent := by simp; split · exact this.set (fun i h ↦ by simp [h.symm]) (fun h ↦ by simp [ne, hm.parent_eq']) · exact this [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent ⊢ UFModel.Agrees arr₂ (fun x => x.parent) parent [PROOFSTEP] simp [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent ⊢ UFModel.Agrees (if self.arr[↑x].rank = self.arr[↑y].rank then Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 } else Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) (fun x => x.parent) fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) [PROOFSTEP] split [GOAL] case inl α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent h✝ : self.arr[↑x].rank = self.arr[↑y].rank ⊢ UFModel.Agrees (Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }) (fun x => x.parent) fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) [PROOFSTEP] exact this.set (fun i h ↦ by simp [h.symm]) (fun h ↦ by simp [ne, hm.parent_eq']) [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h✝¹ : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent h✝ : self.arr[↑x].rank = self.arr[↑y].rank i : Fin n h : ↑i ≠ ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } ⊢ ↑(if ↑x = ↑i then y else UFModel.parent m i) = parent i [PROOFSTEP] simp [h.symm] [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h✝¹ : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent h✝ : self.arr[↑x].rank = self.arr[↑y].rank h : ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } < n ⊢ { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }.parent = ↑(if ↑x = ↑{ val := ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }, isLt := h } then y else UFModel.parent m { val := ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }, isLt := h }) [PROOFSTEP] simp [ne, hm.parent_eq'] [GOAL] case inr α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent h✝ : ¬self.arr[↑x].rank = self.arr[↑y].rank ⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) (fun x => x.parent) fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) [PROOFSTEP] exact this [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent ⊢ UFModel.Models arr₂ (UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y)) [PROOFSTEP] have : UFModel.Agrees arr₁ (·.rank) (fun i : Fin n ↦ m.rank i) := hm.2.set (fun i _ ↦ by simp) (fun _ ↦ by simp [hm.rank_eq]) [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent i : Fin (Array.size self.arr) x✝ : ↑i ≠ ↑x ⊢ UFModel.rank m ↑i = UFModel.rank m ↑i [PROOFSTEP] simp [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent x✝ : ↑x < Array.size self.arr ⊢ { parent := ↑y, value := nx.value, rank := nx.rank }.rank = UFModel.rank m ↑{ val := ↑x, isLt := x✝ } [PROOFSTEP] simp [hm.rank_eq] [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i ⊢ UFModel.Models arr₂ (UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y)) [PROOFSTEP] let rank (i : Fin n) := if y.1 = i ∧ m.rank x = m.rank y then m.rank y + 1 else m.rank i [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i ⊢ UFModel.Models arr₂ (UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y)) [PROOFSTEP] have H2 : UFModel.Agrees arr₂ (·.rank) rank := by simp; split <;> (rename_i xy; simp [hm.rank_eq] at xy ; simp [xy]) · exact this.set (fun i h ↦ by rw [if_neg h.symm]) (fun h ↦ by simp [hm.rank_eq]) · exact this [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i ⊢ UFModel.Agrees arr₂ (fun x => x.rank) rank [PROOFSTEP] simp [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i ⊢ UFModel.Agrees (if self.arr[↑x].rank = self.arr[↑y].rank then Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 } else Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) (fun x => x.rank) fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i [PROOFSTEP] split [GOAL] case inl α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i h✝ : self.arr[↑x].rank = self.arr[↑y].rank ⊢ UFModel.Agrees (Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }) (fun x => x.rank) fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i [PROOFSTEP] rename_i xy [GOAL] case inl α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i xy : self.arr[↑x].rank = self.arr[↑y].rank ⊢ UFModel.Agrees (Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }) (fun x => x.rank) fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i [PROOFSTEP] simp [hm.rank_eq] at xy [GOAL] case inl α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i xy : UFModel.rank m ↑x = UFModel.rank m ↑y ⊢ UFModel.Agrees (Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }) (fun x => x.rank) fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i [PROOFSTEP] simp [xy] [GOAL] case inr α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i h✝ : ¬self.arr[↑x].rank = self.arr[↑y].rank ⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) (fun x => x.rank) fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i [PROOFSTEP] rename_i xy [GOAL] case inr α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i xy : ¬self.arr[↑x].rank = self.arr[↑y].rank ⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) (fun x => x.rank) fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i [PROOFSTEP] simp [hm.rank_eq] at xy [GOAL] case inr α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i xy : ¬UFModel.rank m ↑x = UFModel.rank m ↑y ⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) (fun x => x.rank) fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i [PROOFSTEP] simp [xy] [GOAL] case inl α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i xy : UFModel.rank m ↑x = UFModel.rank m ↑y ⊢ UFModel.Agrees (Array.set (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }) (fun x => x.rank) fun i => if ↑y = ↑i then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i [PROOFSTEP] exact this.set (fun i h ↦ by rw [if_neg h.symm]) (fun h ↦ by simp [hm.rank_eq]) [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h✝ : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i xy : UFModel.rank m ↑x = UFModel.rank m ↑y i : Fin n h : ↑i ≠ ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } ⊢ (if ↑y = ↑i then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i) = UFModel.rank m ↑i [PROOFSTEP] rw [if_neg h.symm] [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h✝ : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i xy : UFModel.rank m ↑x = UFModel.rank m ↑y h : ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } < n ⊢ { parent := self.arr[↑y].parent, value := self.arr[↑y].value, rank := self.arr[↑y].rank + 1 }.rank = if ↑y = ↑{ val := ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }, isLt := h } then UFModel.rank m ↑y + 1 else UFModel.rank m ↑{ val := ↑{ val := ↑y, isLt := (_ : ↑y < Array.size arr₁) }, isLt := h } [PROOFSTEP] simp [hm.rank_eq] [GOAL] case inr α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i xy : ¬UFModel.rank m ↑x = UFModel.rank m ↑y ⊢ UFModel.Agrees (Array.set self.arr x { parent := ↑y, value := self.arr[↑x].value, rank := self.arr[↑x].rank }) (fun x => x.rank) fun i => UFModel.rank m ↑i [PROOFSTEP] exact this [GOAL] α : Type ?u.82096 self : UnionFind α x y : Fin (size self) yroot : (Array.get self.arr y).parent = ↑y ne : ¬↑x = ↑y nx : UFNode α := self.arr[x] ny : UFNode α := self.arr[y] h : ¬ny.rank < nx.rank arr₁ : Array (UFNode α) := Array.set self.arr x { parent := ↑y, value := nx.value, rank := nx.rank } arr₂ : Array (UFNode α) := if nx.rank = ny.rank then Array.set arr₁ { val := ↑y, isLt := (_ : ↑y < Array.size arr₁) } { parent := ny.parent, value := ny.value, rank := ny.rank + 1 } else arr₁ m : UFModel (Array.size self.arr) hm : UFModel.Models self.arr m n : ℕ := size self parent : Fin n → ℕ := fun i => ↑(if ↑x = ↑i then y else UFModel.parent m i) this✝ : UFModel.Agrees arr₁ (fun x => x.parent) parent H1 : UFModel.Agrees arr₂ (fun x => x.parent) parent this : UFModel.Agrees arr₁ (fun x => x.rank) fun i => UFModel.rank m ↑i rank : Fin n → ℕ := fun i => if ↑y = ↑i ∧ UFModel.rank m ↑x = UFModel.rank m ↑y then UFModel.rank m ↑y + 1 else UFModel.rank m ↑i H2 : UFModel.Agrees arr₂ (fun x => x.rank) rank ⊢ UFModel.Models arr₂ (UFModel.setParentBump m x y (_ : UFModel.rank m ↑x ≤ UFModel.rank m ↑y) (_ : ↑(UFModel.parent m y) = ↑y)) [PROOFSTEP] exact ⟨H1, H2⟩ [GOAL] α : Type ?u.99196 self : UnionFind α x y : Fin (size self) self₁ : UnionFind α rx : Fin (size self₁) e : size self₁ = size self right✝ : (Array.get self₁.arr rx).parent = ↑rx ⊢ ↑y < size self₁ [PROOFSTEP] rw [e] [GOAL] α : Type ?u.99196 self : UnionFind α x y : Fin (size self) self₁ : UnionFind α rx : Fin (size self₁) e : size self₁ = size self right✝ : (Array.get self₁.arr rx).parent = ↑rx ⊢ ↑y < size self [PROOFSTEP] exact y.2 [GOAL] α : Type ?u.99196 self : UnionFind α x y : Fin (size self) self₁ : UnionFind α rx : Fin (size self₁) e✝ : size self₁ = size self right✝ : (Array.get self₁.arr rx).parent = ↑rx self₂ : UnionFind α ry : Fin (size self₂) e : size self₂ = size self₁ hry : (Array.get self₂.arr ry).parent = ↑ry ⊢ ↑rx < size self₂ [PROOFSTEP] rw [e] [GOAL] α : Type ?u.99196 self : UnionFind α x y : Fin (size self) self₁ : UnionFind α rx : Fin (size self₁) e✝ : size self₁ = size self right✝ : (Array.get self₁.arr rx).parent = ↑rx self₂ : UnionFind α ry : Fin (size self₂) e : size self₂ = size self₁ hry : (Array.get self₂.arr ry).parent = ↑ry ⊢ ↑rx < size self₁ [PROOFSTEP] exact rx.2
{"mathlib_filename": "Mathlib.Data.UnionFind", "llama_tokens": 64012}
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Const", "llama_tokens": 0}
[GOAL] n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) ⊢ ∀ {α : TypeVec n} (x : Sigma F α), (fun {α} => Sigma.abs F) ((fun {α} => Sigma.repr F) x) = x [PROOFSTEP] rintro α ⟨x, f⟩ [GOAL] case mk n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) α : TypeVec n x : A f : F x α ⊢ (fun {α} => Sigma.abs F) ((fun {α} => Sigma.repr F) { fst := x, snd := f }) = { fst := x, snd := f } [PROOFSTEP] simp only [Sigma.abs, Sigma.repr, Sigma.eta, abs_repr] [GOAL] n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) ⊢ ∀ {α β : TypeVec n} (f : α ⟹ β) (p : MvPFunctor.Obj (Sigma.P F) α), (fun {α} => Sigma.abs F) (f <$$> p) = f <$$> (fun {α} => Sigma.abs F) p [PROOFSTEP] rintro α β f ⟨x, g⟩ [GOAL] case mk n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) α β : TypeVec n f : α ⟹ β x : (Sigma.P F).A g : MvPFunctor.B (Sigma.P F) x ⟹ α ⊢ (fun {α} => Sigma.abs F) (f <$$> { fst := x, snd := g }) = f <$$> (fun {α} => Sigma.abs F) { fst := x, snd := g } [PROOFSTEP] simp only [Sigma.abs, MvPFunctor.map_eq] [GOAL] case mk n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) α β : TypeVec n f : α ⟹ β x : (Sigma.P F).A g : MvPFunctor.B (Sigma.P F) x ⟹ α ⊢ { fst := x.fst, snd := abs { fst := x.snd, snd := f ⊚ g } } = f <$$> { fst := x.fst, snd := abs { fst := x.snd, snd := g } } [PROOFSTEP] simp only [(· <$$> ·), ← abs_map, ← MvPFunctor.map_eq] [GOAL] n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) ⊢ ∀ {α : TypeVec n} (x : Pi F α), Pi.abs F (Pi.repr F x) = x [PROOFSTEP] rintro α f [GOAL] n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) α : TypeVec n f : Pi F α ⊢ Pi.abs F (Pi.repr F f) = f [PROOFSTEP] simp only [Pi.abs, Pi.repr, Sigma.eta, abs_repr] [GOAL] n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) ⊢ ∀ {α β : TypeVec n} (f : α ⟹ β) (p : MvPFunctor.Obj (Pi.P F) α), Pi.abs F (f <$$> p) = f <$$> Pi.abs F p [PROOFSTEP] rintro α β f ⟨x, g⟩ [GOAL] case mk n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) α β : TypeVec n f : α ⟹ β x : (Pi.P F).A g : MvPFunctor.B (Pi.P F) x ⟹ α ⊢ Pi.abs F (f <$$> { fst := x, snd := g }) = f <$$> Pi.abs F { fst := x, snd := g } [PROOFSTEP] simp only [Pi.abs, (· <$$> ·), ← abs_map] [GOAL] case mk n : ℕ A : Type u F : A → TypeVec n → Type u inst✝¹ : (α : A) → MvFunctor (F α) inst✝ : (α : A) → MvQPF (F α) α β : TypeVec n f : α ⟹ β x : (Pi.P F).A g : MvPFunctor.B (Pi.P F) x ⟹ α ⊢ (match MvPFunctor.map (Pi.P F) f { fst := x, snd := g } with | { fst := a, snd := f } => fun x => abs { fst := a x, snd := fun i y => f i { fst := x, snd := y } }) = fun a => abs (MvPFunctor.map (P (F a)) f { fst := x a, snd := fun i y => g i { fst := a, snd := y } }) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Sigma", "llama_tokens": 1728}
[GOAL] α : Type u β : α → Type v m : Multiset ((a : α) × β a) ⊢ Nodup (keys m) ↔ NodupKeys m [PROOFSTEP] rcases m with ⟨l⟩ [GOAL] case mk α : Type u β : α → Type v m : Multiset ((a : α) × β a) l : List ((a : α) × β a) ⊢ Nodup (keys (Quot.mk Setoid.r l)) ↔ NodupKeys (Quot.mk Setoid.r l) [PROOFSTEP] rfl [GOAL] α : Type u β : α → Type v s₁ s₂ : AList β ⊢ ⟦s₁⟧ = ⟦s₂⟧ ↔ s₁.entries ~ s₂.entries [PROOFSTEP] cases s₁ [GOAL] case mk α : Type u β : α → Type v s₂ : AList β entries✝ : List (Sigma β) nodupKeys✝ : NodupKeys entries✝ ⊢ ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ = ⟦s₂⟧ ↔ { entries := entries✝, nodupKeys := nodupKeys✝ }.entries ~ s₂.entries [PROOFSTEP] cases s₂ [GOAL] case mk.mk α : Type u β : α → Type v entries✝¹ : List (Sigma β) nodupKeys✝¹ : NodupKeys entries✝¹ entries✝ : List (Sigma β) nodupKeys✝ : NodupKeys entries✝ ⊢ ⟦{ entries := entries✝¹, nodupKeys := nodupKeys✝¹ }⟧ = ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ ↔ { entries := entries✝¹, nodupKeys := nodupKeys✝¹ }.entries ~ { entries := entries✝, nodupKeys := nodupKeys✝ }.entries [PROOFSTEP] simp [AList.toFinmap] [GOAL] α : Type u β : α → Type v γ : Sort ?u.11051 s : Finmap β f : AList β → γ H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b ⊢ γ [PROOFSTEP] refine' (Quotient.liftOn s.entries (fun (l : List (Sigma β)) => (⟨_, fun nd => f ⟨l, nd⟩⟩ : Part γ)) (fun l₁ l₂ p => Part.ext' (perm_nodupKeys p) _) : Part γ).get _ [GOAL] case refine'_1 α : Type u β : α → Type v γ : Type ?u.11103 s : Finmap β f : AList β → γ H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b l₁ l₂ : List (Sigma β) p : l₁ ≈ l₂ ⊢ ∀ (h₁ : ((fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁).Dom) (h₂ : ((fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂).Dom), Part.get ((fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁) h₁ = Part.get ((fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂) h₂ [PROOFSTEP] exact fun h1 h2 => H _ _ p [GOAL] case refine'_2 α : Type u β : α → Type v γ : Type ?u.11103 s : Finmap β f : AList β → γ H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b ⊢ (Quotient.liftOn s.entries (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) (_ : ∀ (l₁ l₂ : List (Sigma β)), l₁ ≈ l₂ → (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁ = (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂)).Dom [PROOFSTEP] have := s.nodupKeys [GOAL] case refine'_2 α : Type u β : α → Type v γ : Type ?u.11103 s : Finmap β f : AList β → γ H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b this : Multiset.NodupKeys s.entries ⊢ (Quotient.liftOn s.entries (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) (_ : ∀ (l₁ l₂ : List (Sigma β)), l₁ ≈ l₂ → (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁ = (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂)).Dom [PROOFSTEP] revert this [GOAL] case refine'_2 α : Type u β : α → Type v γ : Type ?u.11103 s : Finmap β f : AList β → γ H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b ⊢ Multiset.NodupKeys s.entries → (Quotient.liftOn s.entries (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) (_ : ∀ (l₁ l₂ : List (Sigma β)), l₁ ≈ l₂ → (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁ = (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂)).Dom [PROOFSTEP] rcases s.entries with ⟨l⟩ [GOAL] case refine'_2.mk α : Type u β : α → Type v γ : Type ?u.11103 s : Finmap β f : AList β → γ H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b x✝ : Multiset (Sigma β) l : List (Sigma β) ⊢ Multiset.NodupKeys (Quot.mk Setoid.r l) → (Quotient.liftOn (Quot.mk Setoid.r l) (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) (_ : ∀ (l₁ l₂ : List (Sigma β)), l₁ ≈ l₂ → (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₁ = (fun l => { Dom := NodupKeys l, get := fun nd => f { entries := l, nodupKeys := nd } }) l₂)).Dom [PROOFSTEP] exact id [GOAL] α : Type u β : α → Type v γ : Type u_1 s : AList β f : AList β → γ H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b ⊢ liftOn ⟦s⟧ f H = f s [PROOFSTEP] cases s [GOAL] case mk α : Type u β : α → Type v γ : Type u_1 f : AList β → γ H : ∀ (a b : AList β), a.entries ~ b.entries → f a = f b entries✝ : List (Sigma β) nodupKeys✝ : NodupKeys entries✝ ⊢ liftOn ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ f H = f { entries := entries✝, nodupKeys := nodupKeys✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : α → Type v γ : Type ?u.20104 s₁ s₂ : Finmap β f : AList β → AList β → γ H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂ a₁ a₂ : AList β p : a₁.entries ~ a₂.entries ⊢ (fun l₁ => liftOn s₂ (f l₁) (_ : ∀ (b₁ b₂ : AList β), b₁.entries ~ b₂.entries → f l₁ b₁ = f l₁ b₂)) a₁ = (fun l₁ => liftOn s₂ (f l₁) (_ : ∀ (b₁ b₂ : AList β), b₁.entries ~ b₂.entries → f l₁ b₁ = f l₁ b₂)) a₂ [PROOFSTEP] have H' : f a₁ = f a₂ := funext fun _ => H _ _ _ _ p (Perm.refl _) [GOAL] α : Type u β : α → Type v γ : Type ?u.20104 s₁ s₂ : Finmap β f : AList β → AList β → γ H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂ a₁ a₂ : AList β p : a₁.entries ~ a₂.entries H' : f a₁ = f a₂ ⊢ (fun l₁ => liftOn s₂ (f l₁) (_ : ∀ (b₁ b₂ : AList β), b₁.entries ~ b₂.entries → f l₁ b₁ = f l₁ b₂)) a₁ = (fun l₁ => liftOn s₂ (f l₁) (_ : ∀ (b₁ b₂ : AList β), b₁.entries ~ b₂.entries → f l₁ b₁ = f l₁ b₂)) a₂ [PROOFSTEP] simp only [H'] [GOAL] α : Type u β : α → Type v γ : Type u_1 s₁ s₂ : AList β f : AList β → AList β → γ H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂ ⊢ liftOn₂ ⟦s₁⟧ ⟦s₂⟧ f H = f s₁ s₂ [PROOFSTEP] cases s₁ [GOAL] case mk α : Type u β : α → Type v γ : Type u_1 s₂ : AList β f : AList β → AList β → γ H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂ entries✝ : List (Sigma β) nodupKeys✝ : NodupKeys entries✝ ⊢ liftOn₂ ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ ⟦s₂⟧ f H = f { entries := entries✝, nodupKeys := nodupKeys✝ } s₂ [PROOFSTEP] cases s₂ [GOAL] case mk.mk α : Type u β : α → Type v γ : Type u_1 f : AList β → AList β → γ H : ∀ (a₁ b₁ a₂ b₂ : AList β), a₁.entries ~ a₂.entries → b₁.entries ~ b₂.entries → f a₁ b₁ = f a₂ b₂ entries✝¹ : List (Sigma β) nodupKeys✝¹ : NodupKeys entries✝¹ entries✝ : List (Sigma β) nodupKeys✝ : NodupKeys entries✝ ⊢ liftOn₂ ⟦{ entries := entries✝¹, nodupKeys := nodupKeys✝¹ }⟧ ⟦{ entries := entries✝, nodupKeys := nodupKeys✝ }⟧ f H = f { entries := entries✝¹, nodupKeys := nodupKeys✝¹ } { entries := entries✝, nodupKeys := nodupKeys✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : α → Type v C : Finmap β → Prop s : Finmap β H : ∀ (a : AList β), C ⟦a⟧ ⊢ C s [PROOFSTEP] rcases s with ⟨⟨a⟩, h⟩ [GOAL] case mk.mk α : Type u β : α → Type v C : Finmap β → Prop H : ∀ (a : AList β), C ⟦a⟧ entries✝ : Multiset (Sigma β) a : List (Sigma β) h : Multiset.NodupKeys (Quot.mk Setoid.r a) ⊢ C { entries := Quot.mk Setoid.r a, nodupKeys := h } [PROOFSTEP] exact H ⟨a, h⟩ [GOAL] α : Type u β : α → Type v l₁ : Multiset (Sigma β) h₁ : Multiset.NodupKeys l₁ l₂ : Multiset (Sigma β) nodupKeys✝ : Multiset.NodupKeys l₂ H : { entries := l₁, nodupKeys := h₁ }.entries = { entries := l₂, nodupKeys := nodupKeys✝ }.entries ⊢ { entries := l₁, nodupKeys := h₁ } = { entries := l₂, nodupKeys := nodupKeys✝ } [PROOFSTEP] congr [GOAL] α : Type u β : α → Type v s₁ s₂ : AList β ⊢ keys ⟦s₁⟧ = keys ⟦s₂⟧ ↔ AList.keys s₁ ~ AList.keys s₂ [PROOFSTEP] simp [keys, AList.keys] [GOAL] α : Type u β : α → Type v x y : α b : β y ⊢ x ∈ singleton y b ↔ x = y [PROOFSTEP] simp only [singleton] [GOAL] α : Type u β : α → Type v x y : α b : β y ⊢ x ∈ ⟦AList.singleton y b⟧ ↔ x = y [PROOFSTEP] erw [mem_cons, mem_nil_iff, or_false_iff] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α s : List (Sigma β) ⊢ lookup a (List.toFinmap s) = dlookup a s [PROOFSTEP] rw [List.toFinmap, lookup_toFinmap, lookup_to_alist] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s : Finmap β a : α b : β a ⊢ b ∈ lookup a s ↔ { fst := a, snd := b } ∈ s.entries [PROOFSTEP] rcases s with ⟨⟨l⟩, hl⟩ [GOAL] case mk.mk α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a entries✝ : Multiset (Sigma β) l : List (Sigma β) hl : Multiset.NodupKeys (Quot.mk Setoid.r l) ⊢ b ∈ lookup a { entries := Quot.mk Setoid.r l, nodupKeys := hl } ↔ { fst := a, snd := b } ∈ { entries := Quot.mk Setoid.r l, nodupKeys := hl }.entries [PROOFSTEP] exact List.mem_dlookup_iff hl [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s : Finmap β ⊢ (Finset.sigma (keys s) fun i => Option.toFinset (lookup i s)) = { val := s.entries, nodup := (_ : Multiset.Nodup s.entries) } [PROOFSTEP] ext x [GOAL] case a α : Type u β : α → Type v inst✝ : DecidableEq α s : Finmap β x : (i : α) × β i ⊢ (x ∈ Finset.sigma (keys s) fun i => Option.toFinset (lookup i s)) ↔ x ∈ { val := s.entries, nodup := (_ : Multiset.Nodup s.entries) } [PROOFSTEP] have : x ∈ s.entries → x.1 ∈ s.keys := Multiset.mem_map_of_mem _ [GOAL] case a α : Type u β : α → Type v inst✝ : DecidableEq α s : Finmap β x : (i : α) × β i this : x ∈ s.entries → x.fst ∈ keys s ⊢ (x ∈ Finset.sigma (keys s) fun i => Option.toFinset (lookup i s)) ↔ x ∈ { val := s.entries, nodup := (_ : Multiset.Nodup s.entries) } [PROOFSTEP] simpa [lookup_eq_some_iff] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a ⊢ lookup a (singleton a b) = some b [PROOFSTEP] rw [singleton, lookup_toFinmap, AList.singleton, AList.lookup, dlookup_cons_eq] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β h : ∀ (x : α), lookup x ⟦s₁⟧ = lookup x ⟦s₂⟧ ⊢ ⟦s₁⟧ = ⟦s₂⟧ [PROOFSTEP] simp only [AList.lookup, lookup_toFinmap] at h [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries ⊢ ⟦s₁⟧ = ⟦s₂⟧ [PROOFSTEP] rw [AList.toFinmap_eq] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries ⊢ s₁.entries ~ s₂.entries [PROOFSTEP] apply lookup_ext s₁.nodupKeys s₂.nodupKeys [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries ⊢ ∀ (x : α) (y : β x), y ∈ dlookup x s₁.entries ↔ y ∈ dlookup x s₂.entries [PROOFSTEP] intro x y [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β h : ∀ (x : α), dlookup x s₁.entries = dlookup x s₂.entries x : α y : β x ⊢ y ∈ dlookup x s₁.entries ↔ y ∈ dlookup x s₂.entries [PROOFSTEP] rw [h] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α f : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst } ⊢ Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val [PROOFSTEP] refine Multiset.nodup_keys.1 ((Finset.nodup _).map_on ?_) [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α f : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst } ⊢ ∀ (x : (a : α) × β a), x ∈ (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val → ∀ (y : (a : α) × β a), y ∈ (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val → x.fst = y.fst → x = y [PROOFSTEP] simp only [Finset.mem_val, Finset.mem_sigma, Option.mem_toFinset, Option.mem_def] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α f : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst } ⊢ ∀ (x : (a : α) × β a), x.fst ∈ (↑f).fst ∧ Prod.snd (↑f) x.fst = some x.snd → ∀ (y : (a : α) × β a), y.fst ∈ (↑f).fst ∧ Prod.snd (↑f) y.fst = some y.snd → x.fst = y.fst → x = y [PROOFSTEP] rintro ⟨i, x⟩ ⟨_, hx⟩ ⟨j, y⟩ ⟨_, hy⟩ (rfl : i = j) [GOAL] case mk.intro.mk.intro α : Type u β : α → Type v inst✝ : DecidableEq α f : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst } i : α x : β i left✝¹ : { fst := i, snd := x }.fst ∈ (↑f).fst hx : Prod.snd ↑f { fst := i, snd := x }.fst = some { fst := i, snd := x }.snd y : β i left✝ : { fst := i, snd := y }.fst ∈ (↑f).fst hy : Prod.snd ↑f { fst := i, snd := y }.fst = some { fst := i, snd := y }.snd ⊢ { fst := i, snd := x } = { fst := i, snd := y } [PROOFSTEP] simpa using hx.symm.trans hy [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α f : Finmap β ⊢ ((fun f => { entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val, nodupKeys := (_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) }) ((fun s => { val := (keys s, fun i => lookup i s), property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) }) f)).entries = f.entries [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α x✝ : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst } s : Finset α f : (a : α) → Option (β a) hf : ∀ (i : α), Option.isSome (Prod.snd (s, f) i) = true ↔ i ∈ (s, f).fst ⊢ (fun s => { val := (keys s, fun i => lookup i s), property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) }) ((fun f => { entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val, nodupKeys := (_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) }) { val := (s, f), property := hf }) = { val := (s, f), property := hf } [PROOFSTEP] dsimp only at hf [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α x✝ : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst } s : Finset α f : (a : α) → Option (β a) hf : ∀ (i : α), Option.isSome (f i) = true ↔ i ∈ s ⊢ (fun s => { val := (keys s, fun i => lookup i s), property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) }) ((fun f => { entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val, nodupKeys := (_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) }) { val := (s, f), property := hf }) = { val := (s, f), property := hf } [PROOFSTEP] ext [GOAL] case a.h₁.a α : Type u β : α → Type v inst✝ : DecidableEq α x✝ : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst } s : Finset α f : (a : α) → Option (β a) hf : ∀ (i : α), Option.isSome (f i) = true ↔ i ∈ s a✝ : α ⊢ a✝ ∈ (↑((fun s => { val := (keys s, fun i => lookup i s), property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) }) ((fun f => { entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val, nodupKeys := (_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) }) { val := (s, f), property := hf }))).fst ↔ a✝ ∈ (↑{ val := (s, f), property := hf }).fst [PROOFSTEP] simp [keys, Multiset.keys, ← hf, Option.isSome_iff_exists] [GOAL] case a.h₂.h.a α : Type u β : α → Type v inst✝ : DecidableEq α x✝¹ : { f // ∀ (i : α), Option.isSome (Prod.snd f i) = true ↔ i ∈ f.fst } s : Finset α f : (a : α) → Option (β a) hf : ∀ (i : α), Option.isSome (f i) = true ↔ i ∈ s x✝ : α a✝ : β x✝ ⊢ a✝ ∈ Prod.snd (↑((fun s => { val := (keys s, fun i => lookup i s), property := (_ : ∀ (x : α), Option.isSome (lookup x s) = true ↔ x ∈ s) }) ((fun f => { entries := (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val, nodupKeys := (_ : Multiset.NodupKeys (Finset.sigma (↑f).fst fun i => Option.toFinset (Prod.snd (↑f) i)).val) }) { val := (s, f), property := hf }))) x✝ ↔ a✝ ∈ Prod.snd (↑{ val := (s, f), property := hf }) x✝ [PROOFSTEP] simp (config := { contextual := true }) [lookup_eq_some_iff, ← hf] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α x✝ : Finmap fun a => β a ⊢ keys (↑keysLookupEquiv.symm (↑keysLookupEquiv x✝)) = (↑(↑keysLookupEquiv x✝)).fst [PROOFSTEP] simp only [Equiv.symm_apply_apply, keysLookupEquiv_apply_coe_fst] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α x✝¹ : Finmap fun a => β a x✝ : α ⊢ lookup x✝ (↑keysLookupEquiv.symm (↑keysLookupEquiv x✝¹)) = Prod.snd (↑(↑keysLookupEquiv x✝¹)) x✝ [PROOFSTEP] simp only [Equiv.symm_apply_apply, keysLookupEquiv_apply_coe_snd] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : AList β ⊢ replace a b ⟦s⟧ = ⟦AList.replace a b s⟧ [PROOFSTEP] simp [replace] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s✝ : Finmap β s : AList β ⊢ keys (replace a b ⟦s⟧) = keys ⟦s⟧ [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a a' : α b : β a s✝ : Finmap β s : AList β ⊢ a' ∈ replace a b ⟦s⟧ ↔ a' ∈ ⟦s⟧ [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v f : (x : α) → β x → Bool s : Finmap β x✝³ : Bool x✝² : α x✝¹ : β x✝² x✝ : α ⊢ ∀ (b₂ : β x✝), (fun x y z => x || f y z) ((fun x y z => x || f y z) x✝³ x✝² x✝¹) x✝ b₂ = (fun x y z => x || f y z) ((fun x y z => x || f y z) x✝³ x✝ b₂) x✝² x✝¹ [PROOFSTEP] simp_rw [Bool.or_assoc, Bool.or_comm, imp_true_iff] [GOAL] α : Type u β : α → Type v f : (x : α) → β x → Bool s : Finmap β x✝³ : Bool x✝² : α x✝¹ : β x✝² x✝ : α ⊢ ∀ (b₂ : β x✝), (fun x y z => x && f y z) ((fun x y z => x && f y z) x✝³ x✝² x✝¹) x✝ b₂ = (fun x y z => x && f y z) ((fun x y z => x && f y z) x✝³ x✝ b₂) x✝² x✝¹ [PROOFSTEP] simp_rw [Bool.and_assoc, Bool.and_comm, imp_true_iff] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α s : AList β ⊢ erase a ⟦s⟧ = ⟦AList.erase a s⟧ [PROOFSTEP] simp [erase] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α s : AList β ⊢ keys ⟦AList.erase a s⟧ = Finset.erase (keys ⟦s⟧) a [PROOFSTEP] simp [Finset.erase, keys, AList.erase, keys_kerase] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α s✝ : Finmap β s : AList β ⊢ keys (erase a ⟦s⟧) = Finset.erase (keys ⟦s⟧) a [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a a' : α s✝ : Finmap β s : AList β ⊢ a' ∈ erase a ⟦s⟧ ↔ a' ≠ a ∧ a' ∈ ⟦s⟧ [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α s : Finmap β ⊢ ¬a ∈ erase a s [PROOFSTEP] rw [mem_erase, not_and_or, not_not] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α s : Finmap β ⊢ a = a ∨ ¬a ∈ s [PROOFSTEP] left [GOAL] case h α : Type u β : α → Type v inst✝ : DecidableEq α a : α s : Finmap β ⊢ a = a [PROOFSTEP] rfl [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a a' : α s✝ : Finmap β s : AList β ⊢ (erase a (erase a' ⟦s⟧)).entries = (erase a' (erase a ⟦s⟧)).entries [PROOFSTEP] simp only [AList.erase_erase, erase_toFinmap] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : AList β ⊢ insert a b ⟦s⟧ = ⟦AList.insert a b s⟧ [PROOFSTEP] simp [insert] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s✝ : Finmap β s : AList β h : ¬a ∈ ⟦s⟧ ⊢ (insert a b ⟦s⟧).entries = { fst := a, snd := b } ::ₘ ⟦s⟧.entries [PROOFSTEP] simp [AList.insert_entries_of_neg (mt mem_toFinmap.1 h), -insert_entries] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s✝ : Finmap β s : AList β ⊢ lookup a (insert a b ⟦s⟧) = some b [PROOFSTEP] simp only [insert_toFinmap, lookup_toFinmap, AList.lookup_insert] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a a' : α b : β a s✝ : Finmap β h : a' ≠ a s : AList β ⊢ lookup a' (insert a b ⟦s⟧) = lookup a' ⟦s⟧ [PROOFSTEP] simp only [insert_toFinmap, lookup_toFinmap, lookup_insert_ne h] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b b' : β a s✝ : Finmap β s : AList β ⊢ insert a b' (insert a b ⟦s⟧) = insert a b' ⟦s⟧ [PROOFSTEP] simp only [insert_toFinmap, AList.insert_insert] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a a' : α b : β a b' : β a' s✝ : Finmap β h : a ≠ a' s : AList β ⊢ insert a' b' (insert a b ⟦s⟧) = insert a b (insert a' b' ⟦s⟧) [PROOFSTEP] simp only [insert_toFinmap, AList.toFinmap_eq, AList.insert_insert_of_ne _ h] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α xs : List (Sigma β) ⊢ a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs [PROOFSTEP] induction' xs with x xs [GOAL] case nil α : Type u β : α → Type v inst✝ : DecidableEq α a : α ⊢ a ∈ List.toFinmap [] ↔ ∃ b, { fst := a, snd := b } ∈ [] [PROOFSTEP] simp only [toFinmap_nil, not_mem_empty, find?, not_mem_nil, exists_false] [GOAL] case cons α : Type u β : α → Type v inst✝ : DecidableEq α a : α x : Sigma β xs : List (Sigma β) tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs ⊢ a ∈ List.toFinmap (x :: xs) ↔ ∃ b, { fst := a, snd := b } ∈ x :: xs [PROOFSTEP] cases' x with fst_i snd_i [GOAL] case cons.mk α : Type u β : α → Type v inst✝ : DecidableEq α a : α xs : List (Sigma β) tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs fst_i : α snd_i : β fst_i ⊢ a ∈ List.toFinmap ({ fst := fst_i, snd := snd_i } :: xs) ↔ ∃ b, { fst := a, snd := b } ∈ { fst := fst_i, snd := snd_i } :: xs [PROOFSTEP] simp only [toFinmap_cons, *, exists_or, mem_cons, mem_insert, exists_and_left, Sigma.mk.inj_iff] [GOAL] case cons.mk α : Type u β : α → Type v inst✝ : DecidableEq α a : α xs : List (Sigma β) tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs fst_i : α snd_i : β fst_i ⊢ (a = fst_i ∨ ∃ b, { fst := a, snd := b } ∈ xs) ↔ (a = fst_i ∧ ∃ x, HEq x snd_i) ∨ ∃ x, { fst := a, snd := x } ∈ xs [PROOFSTEP] refine (or_congr_left <| and_iff_left_of_imp ?_).symm [GOAL] case cons.mk α : Type u β : α → Type v inst✝ : DecidableEq α a : α xs : List (Sigma β) tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs fst_i : α snd_i : β fst_i ⊢ a = fst_i → ∃ x, HEq x snd_i [PROOFSTEP] rintro rfl [GOAL] case cons.mk α : Type u β : α → Type v inst✝ : DecidableEq α a : α xs : List (Sigma β) tail_ih✝ : a ∈ List.toFinmap xs ↔ ∃ b, { fst := a, snd := b } ∈ xs snd_i : β a ⊢ ∃ x, HEq x snd_i [PROOFSTEP] simp only [exists_eq, heq_iff_eq] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b b' : β a ⊢ insert a b (singleton a b') = singleton a b [PROOFSTEP] simp only [singleton, Finmap.insert_toFinmap, AList.insert_singleton_eq] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α s : Finmap β s₁ s₂ : AList β p : s₁.entries ~ s₂.entries ⊢ Prod.map id AList.toFinmap (AList.extract a s₁) = Prod.map id AList.toFinmap (AList.extract a s₂) [PROOFSTEP] simp [perm_lookup p, toFinmap_eq, perm_erase p] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α s✝ : Finmap β s : AList β ⊢ extract a ⟦s⟧ = (lookup a ⟦s⟧, erase a ⟦s⟧) [PROOFSTEP] simp [extract] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁ s₂ : AList β ⊢ ⟦s₁⟧ ∪ ⟦s₂⟧ = ⟦s₁ ∪ s₂⟧ [PROOFSTEP] simp [(· ∪ ·), union] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β ⊢ ∀ (a : α), a ∈ keys (⟦s₁⟧ ∪ ⟦s₂⟧) ↔ a ∈ keys ⟦s₁⟧ ∪ keys ⟦s₂⟧ [PROOFSTEP] simp [keys] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α s₁ s₂ : Finmap β h : ¬a ∈ s₂ ⊢ lookup a (s₁ ∪ s₂) = lookup a s₁ [PROOFSTEP] by_cases h' : a ∈ s₁ [GOAL] case pos α : Type u β : α → Type v inst✝ : DecidableEq α a : α s₁ s₂ : Finmap β h : ¬a ∈ s₂ h' : a ∈ s₁ ⊢ lookup a (s₁ ∪ s₂) = lookup a s₁ [PROOFSTEP] rw [lookup_union_left h'] [GOAL] case neg α : Type u β : α → Type v inst✝ : DecidableEq α a : α s₁ s₂ : Finmap β h : ¬a ∈ s₂ h' : ¬a ∈ s₁ ⊢ lookup a (s₁ ∪ s₂) = lookup a s₁ [PROOFSTEP] rw [lookup_union_right h', lookup_eq_none.mpr h, lookup_eq_none.mpr h'] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s₁ s₂ : Finmap β a₁ a₂ : AList β ⊢ insert a b (⟦a₁⟧ ∪ ⟦a₂⟧) = insert a b ⟦a₁⟧ ∪ ⟦a₂⟧ [PROOFSTEP] simp [AList.insert_union] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ s₃✝ : Finmap β s₁ s₂ s₃ : AList β ⊢ ⟦s₁⟧ ∪ ⟦s₂⟧ ∪ ⟦s₃⟧ = ⟦s₁⟧ ∪ (⟦s₂⟧ ∪ ⟦s₃⟧) [PROOFSTEP] simp only [AList.toFinmap_eq, union_toFinmap, AList.union_assoc] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ : Finmap β s₁ : AList β ⊢ ∅ ∪ ⟦s₁⟧ = ⟦s₁⟧ [PROOFSTEP] rw [← empty_toFinmap] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ : Finmap β s₁ : AList β ⊢ ⟦∅⟧ ∪ ⟦s₁⟧ = ⟦s₁⟧ [PROOFSTEP] simp [-empty_toFinmap, AList.toFinmap_eq, union_toFinmap, AList.union_assoc] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ : Finmap β s₁ : AList β ⊢ ⟦s₁⟧ ∪ ∅ = ⟦s₁⟧ [PROOFSTEP] rw [← empty_toFinmap] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ : Finmap β s₁ : AList β ⊢ ⟦s₁⟧ ∪ ⟦∅⟧ = ⟦s₁⟧ [PROOFSTEP] simp [-empty_toFinmap, AList.toFinmap_eq, union_toFinmap, AList.union_assoc] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : Finmap β h : lookup a s = some b x : α ⊢ lookup x (erase a s ∪ singleton a b) = lookup x s [PROOFSTEP] by_cases h' : x = a [GOAL] case pos α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : Finmap β h : lookup a s = some b x : α h' : x = a ⊢ lookup x (erase a s ∪ singleton a b) = lookup x s [PROOFSTEP] subst a [GOAL] case pos α : Type u β : α → Type v inst✝ : DecidableEq α s : Finmap β x : α b : β x h : lookup x s = some b ⊢ lookup x (erase x s ∪ singleton x b) = lookup x s [PROOFSTEP] rw [lookup_union_right not_mem_erase_self, lookup_singleton_eq, h] [GOAL] case neg α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : Finmap β h : lookup a s = some b x : α h' : ¬x = a ⊢ lookup x (erase a s ∪ singleton a b) = lookup x s [PROOFSTEP] have : x ∉ singleton a b := by rwa [mem_singleton] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : Finmap β h : lookup a s = some b x : α h' : ¬x = a ⊢ ¬x ∈ singleton a b [PROOFSTEP] rwa [mem_singleton] [GOAL] case neg α : Type u β : α → Type v inst✝ : DecidableEq α a : α b : β a s : Finmap β h : lookup a s = some b x : α h' : ¬x = a this : ¬x ∈ singleton a b ⊢ lookup x (erase a s ∪ singleton a b) = lookup x s [PROOFSTEP] rw [lookup_union_left_of_not_in this, lookup_erase_ne h'] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α x y : Finmap β ⊢ Decidable (Disjoint x y) [PROOFSTEP] dsimp only [Disjoint] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α x y : Finmap β ⊢ Decidable (∀ (x_1 : α), x_1 ∈ x → ¬x_1 ∈ y) [PROOFSTEP] infer_instance [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α x y z : Finmap β ⊢ Disjoint (x ∪ y) z ↔ Disjoint x z ∧ Disjoint y z [PROOFSTEP] simp [Disjoint, Finmap.mem_union, or_imp, forall_and] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α x y z : Finmap β ⊢ Disjoint x (y ∪ z) ↔ Disjoint x y ∧ Disjoint x z [PROOFSTEP] rw [Disjoint.symm_iff, disjoint_union_left, Disjoint.symm_iff _ x, Disjoint.symm_iff _ x] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β ⊢ Disjoint ⟦s₁⟧ ⟦s₂⟧ → ⟦s₁⟧ ∪ ⟦s₂⟧ = ⟦s₂⟧ ∪ ⟦s₁⟧ [PROOFSTEP] intro h [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁✝ s₂✝ : Finmap β s₁ s₂ : AList β h : Disjoint ⟦s₁⟧ ⟦s₂⟧ ⊢ ⟦s₁⟧ ∪ ⟦s₂⟧ = ⟦s₂⟧ ∪ ⟦s₁⟧ [PROOFSTEP] simp only [AList.toFinmap_eq, union_toFinmap, AList.union_comm_of_disjoint h] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s₁ s₂ s₃ : Finmap β h : Disjoint s₁ s₃ h' : Disjoint s₂ s₃ h'' : s₁ ∪ s₃ = s₂ ∪ s₃ ⊢ s₁ = s₂ [PROOFSTEP] apply ext_lookup [GOAL] case a α : Type u β : α → Type v inst✝ : DecidableEq α s₁ s₂ s₃ : Finmap β h : Disjoint s₁ s₃ h' : Disjoint s₂ s₃ h'' : s₁ ∪ s₃ = s₂ ∪ s₃ ⊢ ∀ (x : α), lookup x s₁ = lookup x s₂ [PROOFSTEP] intro x [GOAL] case a α : Type u β : α → Type v inst✝ : DecidableEq α s₁ s₂ s₃ : Finmap β h : Disjoint s₁ s₃ h' : Disjoint s₂ s₃ h'' : s₁ ∪ s₃ = s₂ ∪ s₃ x : α ⊢ lookup x s₁ = lookup x s₂ [PROOFSTEP] have : (s₁ ∪ s₃).lookup x = (s₂ ∪ s₃).lookup x := h'' ▸ rfl [GOAL] case a α : Type u β : α → Type v inst✝ : DecidableEq α s₁ s₂ s₃ : Finmap β h : Disjoint s₁ s₃ h' : Disjoint s₂ s₃ h'' : s₁ ∪ s₃ = s₂ ∪ s₃ x : α this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃) ⊢ lookup x s₁ = lookup x s₂ [PROOFSTEP] by_cases hs₁ : x ∈ s₁ [GOAL] case pos α : Type u β : α → Type v inst✝ : DecidableEq α s₁ s₂ s₃ : Finmap β h : Disjoint s₁ s₃ h' : Disjoint s₂ s₃ h'' : s₁ ∪ s₃ = s₂ ∪ s₃ x : α this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃) hs₁ : x ∈ s₁ ⊢ lookup x s₁ = lookup x s₂ [PROOFSTEP] rwa [lookup_union_left hs₁, lookup_union_left_of_not_in (h _ hs₁)] at this [GOAL] case neg α : Type u β : α → Type v inst✝ : DecidableEq α s₁ s₂ s₃ : Finmap β h : Disjoint s₁ s₃ h' : Disjoint s₂ s₃ h'' : s₁ ∪ s₃ = s₂ ∪ s₃ x : α this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃) hs₁ : ¬x ∈ s₁ ⊢ lookup x s₁ = lookup x s₂ [PROOFSTEP] by_cases hs₂ : x ∈ s₂ [GOAL] case pos α : Type u β : α → Type v inst✝ : DecidableEq α s₁ s₂ s₃ : Finmap β h : Disjoint s₁ s₃ h' : Disjoint s₂ s₃ h'' : s₁ ∪ s₃ = s₂ ∪ s₃ x : α this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃) hs₁ : ¬x ∈ s₁ hs₂ : x ∈ s₂ ⊢ lookup x s₁ = lookup x s₂ [PROOFSTEP] rwa [lookup_union_left_of_not_in (h' _ hs₂), lookup_union_left hs₂] at this [GOAL] case neg α : Type u β : α → Type v inst✝ : DecidableEq α s₁ s₂ s₃ : Finmap β h : Disjoint s₁ s₃ h' : Disjoint s₂ s₃ h'' : s₁ ∪ s₃ = s₂ ∪ s₃ x : α this : lookup x (s₁ ∪ s₃) = lookup x (s₂ ∪ s₃) hs₁ : ¬x ∈ s₁ hs₂ : ¬x ∈ s₂ ⊢ lookup x s₁ = lookup x s₂ [PROOFSTEP] rw [lookup_eq_none.mpr hs₁, lookup_eq_none.mpr hs₂]
{"mathlib_filename": "Mathlib.Data.Finmap", "llama_tokens": 15362}
[GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α xs : List α h : ∀ (x : α), x ∈ xs h' : List.Nodup xs x : α ⊢ List.indexOf x xs < List.length xs [PROOFSTEP] rw [List.indexOf_lt_length] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α xs : List α h : ∀ (x : α), x ∈ xs h' : List.Nodup xs x : α ⊢ x ∈ xs [PROOFSTEP] apply h [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α xs : List α h : ∀ (x : α), x ∈ xs h' : List.Nodup xs x : α ⊢ (fun x => match x with | { val := i, isLt := h } => List.nthLe xs i h) ((fun x => { val := List.indexOf x xs, isLt := (_ : List.indexOf x xs < List.length xs) }) x) = x [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α xs : List α h✝ : ∀ (x : α), x ∈ xs h' : List.Nodup xs x✝ : Fin (List.length xs) i : ℕ h : i < List.length xs ⊢ (fun x => { val := List.indexOf x xs, isLt := (_ : List.indexOf x xs < List.length xs) }) ((fun x => match x with | { val := i, isLt := h } => List.nthLe xs i h) { val := i, isLt := h }) = { val := i, isLt := h } [PROOFSTEP] simp [*] [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α xs : List α h : ∀ (x : α), x ∈ xs ⊢ ∀ (x : α), x ∈ List.dedup xs [PROOFSTEP] simp [*] [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α x : α ⊢ x ∈ toList α [PROOFSTEP] simp [toList] [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α x : α ⊢ ∃ a, ↑equiv.symm a = x [PROOFSTEP] exists equiv x [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α x : α ⊢ ↑equiv.symm (↑equiv x) = x [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α ⊢ List.Nodup (toList α) [PROOFSTEP] simp [toList] [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α ⊢ List.Nodup (List.map (↑equiv.symm) (List.finRange (card α))) [PROOFSTEP] apply List.Nodup.map <;> [apply Equiv.injective; apply List.nodup_finRange] [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α ⊢ List.Nodup (List.map (↑equiv.symm) (List.finRange (card α))) [PROOFSTEP] apply List.Nodup.map [GOAL] case hf α : Type u β : α → Type v inst✝ : FinEnum α ⊢ Injective ↑equiv.symm [PROOFSTEP] apply Equiv.injective [GOAL] case a α : Type u β : α → Type v inst✝ : FinEnum α ⊢ List.Nodup (List.finRange (card α)) [PROOFSTEP] apply List.nodup_finRange [GOAL] α : Type u β✝ : α → Type v β : Type ?u.8688 f : β → α inst✝¹ : DecidableEq α inst✝ : FinEnum β h : Surjective f ⊢ ∀ (x : α), x ∈ List.map f (toList β) [PROOFSTEP] intro [GOAL] α : Type u β✝ : α → Type v β : Type ?u.8688 f : β → α inst✝¹ : DecidableEq α inst✝ : FinEnum β h : Surjective f x✝ : α ⊢ x✝ ∈ List.map f (toList β) [PROOFSTEP] simp [GOAL] α : Type u β✝ : α → Type v β : Type ?u.8688 f : β → α inst✝¹ : DecidableEq α inst✝ : FinEnum β h : Surjective f x✝ : α ⊢ ∃ a, f a = x✝ [PROOFSTEP] exact h _ [GOAL] α✝ : Type u β✝ : α✝ → Type v α : Type ?u.11794 β : Type ?u.11876 f : α → β inst✝¹ : DecidableEq α inst✝ : FinEnum β h : Injective f ⊢ ∀ (x : α), x ∈ List.filterMap (partialInv f) (toList β) [PROOFSTEP] intro x [GOAL] α✝ : Type u β✝ : α✝ → Type v α : Type ?u.11794 β : Type ?u.11876 f : α → β inst✝¹ : DecidableEq α inst✝ : FinEnum β h : Injective f x : α ⊢ x ∈ List.filterMap (partialInv f) (toList β) [PROOFSTEP] simp only [mem_toList, true_and_iff, List.mem_filterMap] [GOAL] α✝ : Type u β✝ : α✝ → Type v α : Type ?u.11794 β : Type ?u.11876 f : α → β inst✝¹ : DecidableEq α inst✝ : FinEnum β h : Injective f x : α ⊢ ∃ a, partialInv f a = some x [PROOFSTEP] use f x [GOAL] case h α✝ : Type u β✝ : α✝ → Type v α : Type ?u.11794 β : Type ?u.11876 f : α → β inst✝¹ : DecidableEq α inst✝ : FinEnum β h : Injective f x : α ⊢ partialInv f (f x) = some x [PROOFSTEP] simp only [h, Function.partialInv_left] [GOAL] α : Type u β : α → Type v x : PUnit ⊢ x ∈ [PUnit.unit] [PROOFSTEP] cases x [GOAL] case unit α : Type u β : α → Type v ⊢ PUnit.unit ∈ [PUnit.unit] [PROOFSTEP] simp [GOAL] α : Type u β✝ : α → Type v β : Type ?u.13079 inst✝¹ : FinEnum α inst✝ : FinEnum β x : α × β ⊢ x ∈ toList α ×ˢ toList β [PROOFSTEP] cases x [GOAL] case mk α : Type u β✝ : α → Type v β : Type ?u.13079 inst✝¹ : FinEnum α inst✝ : FinEnum β fst✝ : α snd✝ : β ⊢ (fst✝, snd✝) ∈ toList α ×ˢ toList β [PROOFSTEP] simp [GOAL] α : Type u β✝ : α → Type v β : Type ?u.16461 inst✝¹ : FinEnum α inst✝ : FinEnum β x : α ⊕ β ⊢ x ∈ List.map Sum.inl (toList α) ++ List.map Sum.inr (toList β) [PROOFSTEP] cases x [GOAL] case inl α : Type u β✝ : α → Type v β : Type ?u.16461 inst✝¹ : FinEnum α inst✝ : FinEnum β val✝ : α ⊢ Sum.inl val✝ ∈ List.map Sum.inl (toList α) ++ List.map Sum.inr (toList β) [PROOFSTEP] simp [GOAL] case inr α : Type u β✝ : α → Type v β : Type ?u.16461 inst✝¹ : FinEnum α inst✝ : FinEnum β val✝ : β ⊢ Sum.inr val✝ ∈ List.map Sum.inl (toList α) ++ List.map Sum.inr (toList β) [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v n : ℕ ⊢ ∀ (x : Fin n), x ∈ List.finRange n [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α s : Finset α xs : List α ⊢ s ∈ enum xs ↔ ∀ (x : α), x ∈ s → x ∈ xs [PROOFSTEP] induction' xs with xs_hd generalizing s [GOAL] case nil α : Type u β : α → Type v inst✝ : DecidableEq α s✝ s : Finset α ⊢ s ∈ enum [] ↔ ∀ (x : α), x ∈ s → x ∈ [] [PROOFSTEP] simp [*, Finset.enum] [GOAL] case cons α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α ⊢ s ∈ enum (xs_hd :: tail✝) ↔ ∀ (x : α), x ∈ s → x ∈ xs_hd :: tail✝ [PROOFSTEP] simp [*, Finset.enum] [GOAL] case nil α : Type u β : α → Type v inst✝ : DecidableEq α s✝ s : Finset α ⊢ s = ∅ ↔ ∀ (x : α), x ∈ s → False [PROOFSTEP] simp [Finset.eq_empty_iff_forall_not_mem] [GOAL] case cons α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α ⊢ (∃ a, (∀ (x : α), x ∈ a → x ∈ tail✝) ∧ (s = a ∨ s = {xs_hd} ∪ a)) ↔ ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝ [PROOFSTEP] constructor [GOAL] case cons.mp α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α ⊢ (∃ a, (∀ (x : α), x ∈ a → x ∈ tail✝) ∧ (s = a ∨ s = {xs_hd} ∪ a)) → ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝ [PROOFSTEP] rintro ⟨a, h, h'⟩ x hx [GOAL] case cons.mp.intro.intro α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s a : Finset α h : ∀ (x : α), x ∈ a → x ∈ tail✝ h' : s = a ∨ s = {xs_hd} ∪ a x : α hx : x ∈ s ⊢ x = xs_hd ∨ x ∈ tail✝ [PROOFSTEP] cases' h' with _ h' a b [GOAL] case cons.mp.intro.intro.inl α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s a : Finset α h : ∀ (x : α), x ∈ a → x ∈ tail✝ x : α hx : x ∈ s h✝ : s = a ⊢ x = xs_hd ∨ x ∈ tail✝ [PROOFSTEP] right [GOAL] case cons.mp.intro.intro.inl.h α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s a : Finset α h : ∀ (x : α), x ∈ a → x ∈ tail✝ x : α hx : x ∈ s h✝ : s = a ⊢ x ∈ tail✝ [PROOFSTEP] apply h [GOAL] case cons.mp.intro.intro.inl.h.a α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s a : Finset α h : ∀ (x : α), x ∈ a → x ∈ tail✝ x : α hx : x ∈ s h✝ : s = a ⊢ x ∈ a [PROOFSTEP] subst a [GOAL] case cons.mp.intro.intro.inl.h.a α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α x : α hx : x ∈ s h : ∀ (x : α), x ∈ s → x ∈ tail✝ ⊢ x ∈ s [PROOFSTEP] exact hx [GOAL] case cons.mp.intro.intro.inr α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s a : Finset α h : ∀ (x : α), x ∈ a → x ∈ tail✝ x : α hx : x ∈ s h' : s = {xs_hd} ∪ a ⊢ x = xs_hd ∨ x ∈ tail✝ [PROOFSTEP] simp only [h', mem_union, mem_singleton] at hx ⊢ [GOAL] case cons.mp.intro.intro.inr α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s a : Finset α h : ∀ (x : α), x ∈ a → x ∈ tail✝ x : α h' : s = {xs_hd} ∪ a hx : x = xs_hd ∨ x ∈ a ⊢ x = xs_hd ∨ x ∈ tail✝ [PROOFSTEP] cases' hx with hx hx' [GOAL] case cons.mp.intro.intro.inr.inl α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s a : Finset α h : ∀ (x : α), x ∈ a → x ∈ tail✝ x : α h' : s = {xs_hd} ∪ a hx : x = xs_hd ⊢ x = xs_hd ∨ x ∈ tail✝ [PROOFSTEP] exact Or.inl hx [GOAL] case cons.mp.intro.intro.inr.inr α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s a : Finset α h : ∀ (x : α), x ∈ a → x ∈ tail✝ x : α h' : s = {xs_hd} ∪ a hx' : x ∈ a ⊢ x = xs_hd ∨ x ∈ tail✝ [PROOFSTEP] exact Or.inr (h _ hx') [GOAL] case cons.mpr α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α ⊢ (∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝) → ∃ a, (∀ (x : α), x ∈ a → x ∈ tail✝) ∧ (s = a ∨ s = {xs_hd} ∪ a) [PROOFSTEP] intro h [GOAL] case cons.mpr α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h : ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝ ⊢ ∃ a, (∀ (x : α), x ∈ a → x ∈ tail✝) ∧ (s = a ∨ s = {xs_hd} ∪ a) [PROOFSTEP] exists s \ ({ xs_hd } : Finset α) [GOAL] case cons.mpr α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h : ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝ ⊢ (∀ (x : α), x ∈ s \ {xs_hd} → x ∈ tail✝) ∧ (s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd}) [PROOFSTEP] simp only [and_imp, mem_sdiff, mem_singleton] [GOAL] case cons.mpr α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h : ∀ (x : α), x ∈ s → x = xs_hd ∨ x ∈ tail✝ ⊢ (∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝) ∧ (s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd}) [PROOFSTEP] simp only [or_iff_not_imp_left] at h [GOAL] case cons.mpr α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ ⊢ (∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝) ∧ (s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd}) [PROOFSTEP] exists h [GOAL] case cons.mpr α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ ⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd} [PROOFSTEP] by_cases h : xs_hd ∈ s [GOAL] case pos α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : xs_hd ∈ s ⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd} [PROOFSTEP] have : { xs_hd } ⊆ s [GOAL] case this α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : xs_hd ∈ s ⊢ {xs_hd} ⊆ s case pos α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : xs_hd ∈ s this : {xs_hd} ⊆ s ⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd} [PROOFSTEP] simp only [HasSubset.Subset, *, forall_eq, mem_singleton] [GOAL] case pos α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : xs_hd ∈ s this : {xs_hd} ⊆ s ⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd} [PROOFSTEP] simp only [union_sdiff_of_subset this, or_true_iff, Finset.union_sdiff_of_subset, eq_self_iff_true] [GOAL] case neg α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : ¬xs_hd ∈ s ⊢ s = s \ {xs_hd} ∨ s = {xs_hd} ∪ s \ {xs_hd} [PROOFSTEP] left [GOAL] case neg.h α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : ¬xs_hd ∈ s ⊢ s = s \ {xs_hd} [PROOFSTEP] symm [GOAL] case neg.h α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : ¬xs_hd ∈ s ⊢ s \ {xs_hd} = s [PROOFSTEP] simp only [sdiff_eq_self] [GOAL] case neg.h α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : ¬xs_hd ∈ s ⊢ s ∩ {xs_hd} ⊆ ∅ [PROOFSTEP] intro a [GOAL] case neg.h α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : ¬xs_hd ∈ s a : α ⊢ a ∈ s ∩ {xs_hd} → a ∈ ∅ [PROOFSTEP] simp only [and_imp, mem_inter, mem_singleton] [GOAL] case neg.h α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α xs_hd : α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α h✝ : ∀ (x : α), x ∈ s → ¬x = xs_hd → x ∈ tail✝ h : ¬xs_hd ∈ s a : α ⊢ a ∈ s → a = xs_hd → a ∈ ∅ [PROOFSTEP] rintro h₀ rfl [GOAL] case neg.h α : Type u β : α → Type v inst✝ : DecidableEq α s✝ : Finset α tail✝ : List α tail_ih✝ : ∀ (s : Finset α), s ∈ enum tail✝ ↔ ∀ (x : α), x ∈ s → x ∈ tail✝ s : Finset α a : α h₀ : a ∈ s h✝ : ∀ (x : α), x ∈ s → ¬x = a → x ∈ tail✝ h : ¬a ∈ s ⊢ a ∈ ∅ [PROOFSTEP] exact (h h₀).elim [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α ⊢ ∀ (x : Finset α), x ∈ enum (toList α) [PROOFSTEP] intro [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α x✝ : Finset α ⊢ x✝ ∈ enum (toList α) [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝¹ : FinEnum α p : α → Prop inst✝ : DecidablePred p ⊢ ∀ (x : { x // p x }), x ∈ List.filterMap (fun x => if h : p x then some { val := x, property := h } else none) (toList α) [PROOFSTEP] rintro ⟨x, h⟩ [GOAL] case mk α : Type u β : α → Type v inst✝¹ : FinEnum α p : α → Prop inst✝ : DecidablePred p x : α h : p x ⊢ { val := x, property := h } ∈ List.filterMap (fun x => if h : p x then some { val := x, property := h } else none) (toList α) [PROOFSTEP] simp [GOAL] case mk α : Type u β : α → Type v inst✝¹ : FinEnum α p : α → Prop inst✝ : DecidablePred p x : α h : p x ⊢ ∃ a, (if h : p a then some { val := a, property := h } else none) = some { val := x, property := h } [PROOFSTEP] exists x [GOAL] case mk α : Type u β : α → Type v inst✝¹ : FinEnum α p : α → Prop inst✝ : DecidablePred p x : α h : p x ⊢ (if h : p x then some { val := x, property := h } else none) = some { val := x, property := h } [PROOFSTEP] simp [*] [GOAL] α : Type u β✝ β : α → Type v inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) ⊢ ∀ (x : Sigma β), x ∈ List.bind (toList α) fun a => List.map (Sigma.mk a) (toList (β a)) [PROOFSTEP] intro x [GOAL] α : Type u β✝ β : α → Type v inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) x : Sigma β ⊢ x ∈ List.bind (toList α) fun a => List.map (Sigma.mk a) (toList (β a)) [PROOFSTEP] cases x [GOAL] case mk α : Type u β✝ β : α → Type v inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) fst✝ : α snd✝ : β fst✝ ⊢ { fst := fst✝, snd := snd✝ } ∈ List.bind (toList α) fun a => List.map (Sigma.mk a) (toList (β a)) [PROOFSTEP] simp [GOAL] α✝ : Type u β✝ : α✝ → Type v α : Prop β : α → Type v inst✝¹ : (a : α) → FinEnum (β a) inst✝ : Decidable α h : α x✝ : (a : α) ×' β a a : α Ba : β a ⊢ { fst := a, snd := Ba } ∈ List.map (PSigma.mk h) (toList (β h)) [PROOFSTEP] simp [GOAL] α✝ : Type u β✝ : α✝ → Type v α : Prop β : α → Prop inst✝¹ : Decidable α inst✝ : (a : α) → Decidable (β a) h : ∃ a, β a ⊢ ∀ (x : (a : α) ×' β a), x ∈ [{ fst := (_ : α), snd := (_ : β (_ : α)) }] [PROOFSTEP] rintro ⟨⟩ [GOAL] case mk α✝ : Type u β✝ : α✝ → Type v α : Prop β : α → Prop inst✝¹ : Decidable α inst✝ : (a : α) → Decidable (β a) h : ∃ a, β a fst✝ : α snd✝ : β fst✝ ⊢ { fst := fst✝, snd := snd✝ } ∈ [{ fst := (_ : α), snd := (_ : β (_ : α)) }] [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α ⊢ ∀ (x : α), x ∈ map (Equiv.toEmbedding equiv.symm) univ [PROOFSTEP] intros [GOAL] α : Type u β : α → Type v inst✝ : FinEnum α x✝ : α ⊢ x✝ ∈ map (Equiv.toEmbedding equiv.symm) univ [PROOFSTEP] simp [GOAL] α : Type u β : α → Type v inst✝ : DecidableEq α x : α xs : List α y : β x f : (a : α) → a ∈ xs → β a b : α h : b ∈ x :: xs h' : b = x ⊢ β x = β b [PROOFSTEP] rw [h'] [GOAL] α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f : (a : α) → a ∈ xs → β a ⊢ f ∈ pi xs fun x => toList (β x) [PROOFSTEP] induction' xs with xs_hd xs_tl xs_ih [GOAL] case nil α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a f : (a : α) → a ∈ [] → β a ⊢ f ∈ pi [] fun x => toList (β x) [PROOFSTEP] simp [pi, -List.map_eq_map, monad_norm, functor_norm] [GOAL] case cons α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a ⊢ f ∈ pi (xs_hd :: xs_tl) fun x => toList (β x) [PROOFSTEP] simp [pi, -List.map_eq_map, monad_norm, functor_norm] [GOAL] case nil α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a f : (a : α) → a ∈ [] → β a ⊢ f = fun x h => False.elim (_ : False) [PROOFSTEP] ext a ⟨⟩ [GOAL] case cons α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a ⊢ ∃ a, (∃ a_1, a = Pi.cons xs_hd xs_tl a_1) ∧ ∃ a_1, (a_1 ∈ pi xs_tl fun x => toList (β x)) ∧ f = a a_1 [PROOFSTEP] exists Pi.cons xs_hd xs_tl (f _ (List.mem_cons_self _ _)) [GOAL] case cons α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a ⊢ (∃ a, Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) = Pi.cons xs_hd xs_tl a) ∧ ∃ a, (a ∈ pi xs_tl fun x => toList (β x)) ∧ f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) a [PROOFSTEP] constructor [GOAL] case cons.left α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a ⊢ ∃ a, Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) = Pi.cons xs_hd xs_tl a case cons.right α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a ⊢ ∃ a, (a ∈ pi xs_tl fun x => toList (β x)) ∧ f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) a [PROOFSTEP] exact ⟨_, rfl⟩ [GOAL] case cons.right α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a ⊢ ∃ a, (a ∈ pi xs_tl fun x => toList (β x)) ∧ f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) a [PROOFSTEP] exists Pi.tail f [GOAL] case cons.right α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a ⊢ (Pi.tail f ∈ pi xs_tl fun x => toList (β x)) ∧ f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) (Pi.tail f) [PROOFSTEP] constructor [GOAL] case cons.right.left α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a ⊢ Pi.tail f ∈ pi xs_tl fun x => toList (β x) [PROOFSTEP] apply xs_ih [GOAL] case cons.right.right α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a ⊢ f = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) (Pi.tail f) [PROOFSTEP] ext x h [GOAL] case cons.right.right.h.h α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a x : α h : x ∈ xs_hd :: xs_tl ⊢ f x h = Pi.cons xs_hd xs_tl (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) (Pi.tail f) x h [PROOFSTEP] simp [Pi.cons] [GOAL] case cons.right.right.h.h α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a x : α h : x ∈ xs_hd :: xs_tl ⊢ f x h = if h' : x = xs_hd then cast (_ : β xs_hd = β x) (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) else Pi.tail f x (_ : x ∈ xs_tl) [PROOFSTEP] split_ifs [GOAL] case pos α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a x : α h : x ∈ xs_hd :: xs_tl h✝ : x = xs_hd ⊢ f x h = cast (_ : β xs_hd = β x) (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) [PROOFSTEP] subst x [GOAL] case pos α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a h : xs_hd ∈ xs_hd :: xs_tl ⊢ f xs_hd h = cast (_ : β xs_hd = β xs_hd) (f xs_hd (_ : xs_hd ∈ xs_hd :: xs_tl)) [PROOFSTEP] rfl [GOAL] case neg α : Type u β✝ : α → Type v β : α → Type (max u u_1) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) xs : List α f✝ : (a : α) → a ∈ xs → β a xs_hd : α xs_tl : List α xs_ih : ∀ (f : (a : α) → a ∈ xs_tl → β a), f ∈ pi xs_tl fun x => toList (β x) f : (a : α) → a ∈ xs_hd :: xs_tl → β a x : α h : x ∈ xs_hd :: xs_tl h✝ : ¬x = xs_hd ⊢ f x h = Pi.tail f x (_ : x ∈ xs_tl) [PROOFSTEP] rfl [GOAL] α : Type u β✝ : α → Type v β : α → Type (max u v) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) f : (a : α) → β a ⊢ f ∈ enum β [PROOFSTEP] simp [pi.enum] [GOAL] α : Type u β✝ : α → Type v β : α → Type (max u v) inst✝¹ : FinEnum α inst✝ : (a : α) → FinEnum (β a) f : (a : α) → β a ⊢ ∃ a, (a ∈ pi (toList α) fun x => toList (β x)) ∧ (fun x => a x (_ : x ∈ toList α)) = f [PROOFSTEP] refine' ⟨fun a _ => f a, mem_pi _ _, rfl⟩ [GOAL] α✝ : Type u β : α✝ → Type v p : Prop inst✝¹ : Decidable p α : p → Type inst✝ : (hp : p) → FinEnum (α hp) hp : p ⊢ ∀ (x : (hp : p) → α hp), x ∈ List.map (fun x x_1 => x) (toList (α hp)) [PROOFSTEP] intro x [GOAL] α✝ : Type u β : α✝ → Type v p : Prop inst✝¹ : Decidable p α : p → Type inst✝ : (hp : p) → FinEnum (α hp) hp : p x : (hp : p) → α hp ⊢ x ∈ List.map (fun x x_1 => x) (toList (α hp)) [PROOFSTEP] simp [GOAL] α✝ : Type u β : α✝ → Type v p : Prop inst✝¹ : Decidable p α : p → Type inst✝ : (hp : p) → FinEnum (α hp) hp : p x : (hp : p) → α hp ⊢ ∃ a, (fun x => a) = x [PROOFSTEP] exact ⟨x hp, rfl⟩ [GOAL] α✝ : Type u β : α✝ → Type v p : Prop inst✝¹ : Decidable p α : p → Type inst✝ : (hp : p) → FinEnum (α hp) hp : ¬p ⊢ ∀ (x : (hp : p) → α hp), x ∈ [fun hp' => False.elim (_ : False)] [PROOFSTEP] intro [GOAL] α✝ : Type u β : α✝ → Type v p : Prop inst✝¹ : Decidable p α : p → Type inst✝ : (hp : p) → FinEnum (α hp) hp : ¬p x✝ : (hp : p) → α hp ⊢ x✝ ∈ [fun hp' => False.elim (_ : False)] [PROOFSTEP] simp [GOAL] α✝ : Type u β : α✝ → Type v p : Prop inst✝¹ : Decidable p α : p → Type inst✝ : (hp : p) → FinEnum (α hp) hp : ¬p x✝ : (hp : p) → α hp ⊢ x✝ = fun hp' => False.elim (_ : False) [PROOFSTEP] ext hp' [GOAL] case h α✝ : Type u β : α✝ → Type v p : Prop inst✝¹ : Decidable p α : p → Type inst✝ : (hp : p) → FinEnum (α hp) hp : ¬p x✝ : (hp : p) → α hp hp' : p ⊢ x✝ hp' = False.elim (_ : False) [PROOFSTEP] cases hp hp'
{"mathlib_filename": "Mathlib.Data.FinEnum", "llama_tokens": 14708}
[GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α ⊢ TypeVec.id <$$> x = x [PROOFSTEP] rw [← abs_repr x] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α ⊢ TypeVec.id <$$> abs (repr x) = abs (repr x) [PROOFSTEP] cases' repr x with a f [GOAL] case mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ TypeVec.id <$$> abs { fst := a, snd := f } = abs { fst := a, snd := f } [PROOFSTEP] rw [← abs_map] [GOAL] case mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ abs (TypeVec.id <$$> { fst := a, snd := f }) = abs { fst := a, snd := f } [PROOFSTEP] rfl [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α β γ : TypeVec n f : α ⟹ β g : β ⟹ γ x : F α ⊢ (g ⊚ f) <$$> x = g <$$> f <$$> x [PROOFSTEP] rw [← abs_repr x] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α β γ : TypeVec n f : α ⟹ β g : β ⟹ γ x : F α ⊢ (g ⊚ f) <$$> abs (repr x) = g <$$> f <$$> abs (repr x) [PROOFSTEP] cases' repr x with a f [GOAL] case mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α β γ : TypeVec n f✝ : α ⟹ β g : β ⟹ γ x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ (g ⊚ f✝) <$$> abs { fst := a, snd := f } = g <$$> f✝ <$$> abs { fst := a, snd := f } [PROOFSTEP] rw [← abs_map, ← abs_map, ← abs_map] [GOAL] case mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α β γ : TypeVec n f✝ : α ⟹ β g : β ⟹ γ x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ abs ((g ⊚ f✝) <$$> { fst := a, snd := f }) = abs (g <$$> f✝ <$$> { fst := a, snd := f }) [PROOFSTEP] rfl [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α ⊢ LiftP p x ↔ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j) [PROOFSTEP] constructor [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α ⊢ LiftP p x → ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j) [PROOFSTEP] rintro ⟨y, hy⟩ [GOAL] case mp.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α y : F fun i => Subtype p hy : (fun i => Subtype.val) <$$> y = x ⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j) [PROOFSTEP] cases' h : repr y with a f [GOAL] case mp.intro.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α y : F fun i => Subtype p hy : (fun i => Subtype.val) <$$> y = x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p h : repr y = { fst := a, snd := f } ⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j) [PROOFSTEP] use a, fun i j => (f i j).val [GOAL] case h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α y : F fun i => Subtype p hy : (fun i => Subtype.val) <$$> y = x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p h : repr y = { fst := a, snd := f } ⊢ x = abs { fst := a, snd := fun i j => ↑(f i j) } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p ↑(f i j) [PROOFSTEP] constructor [GOAL] case h.left n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α y : F fun i => Subtype p hy : (fun i => Subtype.val) <$$> y = x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p h : repr y = { fst := a, snd := f } ⊢ x = abs { fst := a, snd := fun i j => ↑(f i j) } [PROOFSTEP] rw [← hy, ← abs_repr y, h, ← abs_map] [GOAL] case h.left n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α y : F fun i => Subtype p hy : (fun i => Subtype.val) <$$> y = x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p h : repr y = { fst := a, snd := f } ⊢ abs ((fun i => Subtype.val) <$$> { fst := a, snd := f }) = abs { fst := a, snd := fun i j => ↑(f i j) } [PROOFSTEP] rfl [GOAL] case h.right n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α y : F fun i => Subtype p hy : (fun i => Subtype.val) <$$> y = x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p h : repr y = { fst := a, snd := f } ⊢ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p ↑(f i j) [PROOFSTEP] intro i j [GOAL] case h.right n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α y : F fun i => Subtype p hy : (fun i => Subtype.val) <$$> y = x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => Subtype p h : repr y = { fst := a, snd := f } i : Fin2 n j : MvPFunctor.B (P F) a i ⊢ p ↑(f i j) [PROOFSTEP] apply (f i j).property [GOAL] case mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α ⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j)) → LiftP p x [PROOFSTEP] rintro ⟨a, f, h₀, h₁⟩ [GOAL] case mpr.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h₀ : x = abs { fst := a, snd := f } h₁ : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j) ⊢ LiftP p x [PROOFSTEP] use abs ⟨a, fun i j => ⟨f i j, h₁ i j⟩⟩ [GOAL] case h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h₀ : x = abs { fst := a, snd := f } h₁ : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j) ⊢ (fun i => Subtype.val) <$$> abs { fst := a, snd := fun i j => { val := f i j, property := (_ : p (f i j)) } } = x [PROOFSTEP] rw [← abs_map, h₀] [GOAL] case h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h₀ : x = abs { fst := a, snd := f } h₁ : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p (f i j) ⊢ abs ((fun i => Subtype.val) <$$> { fst := a, snd := fun i j => { val := f i j, property := (_ : p (f i j)) } }) = abs { fst := a, snd := f } [PROOFSTEP] rfl [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α ⊢ LiftR (fun {i} => r) x y ↔ ∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) [PROOFSTEP] constructor [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α ⊢ LiftR (fun {i} => r) x y → ∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) [PROOFSTEP] rintro ⟨u, xeq, yeq⟩ [GOAL] case mp.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y ⊢ ∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) [PROOFSTEP] cases' h : repr u with a f [GOAL] case mp.intro.intro.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ ∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) [PROOFSTEP] use a, fun i j => (f i j).val.fst, fun i j => (f i j).val.snd [GOAL] case h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ x = abs { fst := a, snd := fun i j => (↑(f i j)).fst } ∧ y = abs { fst := a, snd := fun i j => (↑(f i j)).snd } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (↑(f i j)).fst (↑(f i j)).snd [PROOFSTEP] constructor [GOAL] case h.left n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ x = abs { fst := a, snd := fun i j => (↑(f i j)).fst } [PROOFSTEP] rw [← xeq, ← abs_repr u, h, ← abs_map] [GOAL] case h.left n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ abs ((fun i t => (↑t).fst) <$$> { fst := a, snd := f }) = abs { fst := a, snd := fun i j => (↑(f i j)).fst } [PROOFSTEP] rfl [GOAL] case h.right n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ y = abs { fst := a, snd := fun i j => (↑(f i j)).snd } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (↑(f i j)).fst (↑(f i j)).snd [PROOFSTEP] constructor [GOAL] case h.right.left n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ y = abs { fst := a, snd := fun i j => (↑(f i j)).snd } [PROOFSTEP] rw [← yeq, ← abs_repr u, h, ← abs_map] [GOAL] case h.right.left n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ abs ((fun i t => (↑t).snd) <$$> { fst := a, snd := f }) = abs { fst := a, snd := fun i j => (↑(f i j)).snd } [PROOFSTEP] rfl [GOAL] case h.right.right n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (↑(f i j)).fst (↑(f i j)).snd [PROOFSTEP] intro i j [GOAL] case h.right.right n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α u : F fun i => { p // (fun {i} => r) p.fst p.snd } xeq : (fun i t => (↑t).fst) <$$> u = x yeq : (fun i t => (↑t).snd) <$$> u = y a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => { p // (fun {i} => r) p.fst p.snd } h : repr u = { fst := a, snd := f } i : Fin2 n j : MvPFunctor.B (P F) a i ⊢ r (↑(f i j)).fst (↑(f i j)).snd [PROOFSTEP] exact (f i j).property [GOAL] case mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α ⊢ (∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j)) → LiftR (fun {i} => r) x y [PROOFSTEP] rintro ⟨a, f₀, f₁, xeq, yeq, h⟩ [GOAL] case mpr.intro.intro.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α a : (P F).A f₀ f₁ : MvPFunctor.B (P F) a ⟹ α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) ⊢ LiftR (fun {i} => r) x y [PROOFSTEP] use abs ⟨a, fun i j => ⟨(f₀ i j, f₁ i j), h i j⟩⟩ [GOAL] case h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α a : (P F).A f₀ f₁ : MvPFunctor.B (P F) a ⟹ α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) ⊢ (fun i t => (↑t).fst) <$$> abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } = x ∧ (fun i t => (↑t).snd) <$$> abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } = y [PROOFSTEP] dsimp [GOAL] case h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α a : (P F).A f₀ f₁ : MvPFunctor.B (P F) a ⟹ α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) ⊢ (fun i t => (↑t).fst) <$$> abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } = x ∧ (fun i t => (↑t).snd) <$$> abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } = y [PROOFSTEP] constructor [GOAL] case h.left n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α a : (P F).A f₀ f₁ : MvPFunctor.B (P F) a ⟹ α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) ⊢ (fun i t => (↑t).fst) <$$> abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } = x [PROOFSTEP] rw [xeq, ← abs_map] [GOAL] case h.left n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α a : (P F).A f₀ f₁ : MvPFunctor.B (P F) a ⟹ α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) ⊢ abs ((fun i t => (↑t).fst) <$$> { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } }) = abs { fst := a, snd := f₀ } [PROOFSTEP] rfl [GOAL] case h.right n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α a : (P F).A f₀ f₁ : MvPFunctor.B (P F) a ⟹ α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) ⊢ (fun i t => (↑t).snd) <$$> abs { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } } = y [PROOFSTEP] rw [yeq, ← abs_map] [GOAL] case h.right n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n r : {i : Fin2 n} → α i → α i → Prop x y : F α a : (P F).A f₀ f₁ : MvPFunctor.B (P F) a ⟹ α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), r (f₀ i j) (f₁ i j) ⊢ abs ((fun i t => (↑t).snd) <$$> { fst := a, snd := fun i j => { val := (f₀ i j, f₁ i j), property := (_ : r (f₀ i j) (f₁ i j)) } }) = abs { fst := a, snd := f₁ } [PROOFSTEP] rfl [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i ⊢ u ∈ supp x i ↔ ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ [PROOFSTEP] rw [supp] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i ⊢ u ∈ {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} ↔ ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ [PROOFSTEP] dsimp [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i ⊢ (∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u) ↔ ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ [PROOFSTEP] constructor [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i ⊢ (∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u) → ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ [PROOFSTEP] intro h a f haf [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u a : (P F).A f : MvPFunctor.B (P F) a ⟹ α haf : abs { fst := a, snd := f } = x ⊢ u ∈ f i '' univ [PROOFSTEP] have : LiftP (fun i u => u ∈ f i '' univ) x := by rw [liftP_iff] refine' ⟨a, f, haf.symm, _⟩ intro i u exact mem_image_of_mem _ (mem_univ _) [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u a : (P F).A f : MvPFunctor.B (P F) a ⟹ α haf : abs { fst := a, snd := f } = x ⊢ LiftP (fun i u => u ∈ f i '' univ) x [PROOFSTEP] rw [liftP_iff] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u a : (P F).A f : MvPFunctor.B (P F) a ⟹ α haf : abs { fst := a, snd := f } = x ⊢ ∃ a_1 f_1, x = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_1 i), f_1 i j ∈ f i '' univ [PROOFSTEP] refine' ⟨a, f, haf.symm, _⟩ [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u a : (P F).A f : MvPFunctor.B (P F) a ⟹ α haf : abs { fst := a, snd := f } = x ⊢ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), f i j ∈ f i '' univ [PROOFSTEP] intro i u [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i✝ : Fin2 n u✝ : α i✝ h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i✝ u✝ a : (P F).A f : MvPFunctor.B (P F) a ⟹ α haf : abs { fst := a, snd := f } = x i : Fin2 n u : MvPFunctor.B (P F) a i ⊢ f i u ∈ f i '' univ [PROOFSTEP] exact mem_image_of_mem _ (mem_univ _) [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i h : ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u a : (P F).A f : MvPFunctor.B (P F) a ⟹ α haf : abs { fst := a, snd := f } = x this : LiftP (fun i u => u ∈ f i '' univ) x ⊢ u ∈ f i '' univ [PROOFSTEP] exact h this [GOAL] case mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i ⊢ (∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ) → ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i u [PROOFSTEP] intro h p [GOAL] case mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ p : (i : Fin2 n) → α i → Prop ⊢ LiftP p x → p i u [PROOFSTEP] rw [liftP_iff] [GOAL] case mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ p : (i : Fin2 n) → α i → Prop ⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)) → p i u [PROOFSTEP] rintro ⟨a, f, xeq, h'⟩ [GOAL] case mpr.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i : Fin2 n u : α i h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j) ⊢ p i u [PROOFSTEP] rcases h a f xeq.symm with ⟨i, _, hi⟩ [GOAL] case mpr.intro.intro.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i✝ : Fin2 n u : α i✝ h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i✝ '' univ p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j) i : MvPFunctor.B (P F) a i✝ left✝ : i ∈ univ hi : f i✝ i = u ⊢ p i✝ u [PROOFSTEP] rw [← hi] [GOAL] case mpr.intro.intro.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α i✝ : Fin2 n u : α i✝ h : ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i✝ '' univ p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j) i : MvPFunctor.B (P F) a i✝ left✝ : i ∈ univ hi : f i✝ i = u ⊢ p i✝ (f i✝ i) [PROOFSTEP] apply h' [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n i : Fin2 n x : F α ⊢ supp x i = {u | ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ} [PROOFSTEP] ext [GOAL] case h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n i : Fin2 n x : F α x✝ : α i ⊢ x✝ ∈ supp x i ↔ x✝ ∈ {u | ∀ (a : (P F).A) (f : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f } = x → u ∈ f i '' univ} [PROOFSTEP] apply mem_supp [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α ⊢ (∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u) ↔ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ [PROOFSTEP] constructor [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α ⊢ (∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u) → ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ [PROOFSTEP] intro h [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u ⊢ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ [PROOFSTEP] have : LiftP (supp x) x := by rw [h]; introv ; exact id [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u ⊢ LiftP (supp x) x [PROOFSTEP] rw [h] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u ⊢ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → supp x i u [PROOFSTEP] introv [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u i : Fin2 n u : α i ⊢ u ∈ supp x i → supp x i u [PROOFSTEP] exact id [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u this : LiftP (supp x) x ⊢ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ [PROOFSTEP] rw [liftP_iff] at this [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u this✝ : LiftP (supp x) x this : ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j) ⊢ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ [PROOFSTEP] rcases this with ⟨a, f, xeq, h'⟩ [GOAL] case mp.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u this : LiftP (supp x) x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j) ⊢ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ [PROOFSTEP] refine' ⟨a, f, xeq.symm, _⟩ [GOAL] case mp.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u this : LiftP (supp x) x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j) ⊢ ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ [PROOFSTEP] intro a' f' h'' [GOAL] case mp.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u this : LiftP (supp x) x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j) a' : Fin2 n f' : (P F).A h'' : MvPFunctor.B (P F) f' ⟹ α ⊢ abs { fst := f', snd := h'' } = x → f a' '' univ ⊆ h'' a' '' univ [PROOFSTEP] rintro hu u ⟨j, _h₂, hfi⟩ [GOAL] case mp.intro.intro.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u this : LiftP (supp x) x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j) a' : Fin2 n f' : (P F).A h'' : MvPFunctor.B (P F) f' ⟹ α hu : abs { fst := f', snd := h'' } = x u : α a' j : MvPFunctor.B (P F) a a' _h₂ : j ∈ univ hfi : f a' j = u ⊢ u ∈ h'' a' '' univ [PROOFSTEP] have hh : u ∈ supp x a' := by rw [← hfi]; apply h' [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u this : LiftP (supp x) x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j) a' : Fin2 n f' : (P F).A h'' : MvPFunctor.B (P F) f' ⟹ α hu : abs { fst := f', snd := h'' } = x u : α a' j : MvPFunctor.B (P F) a a' _h₂ : j ∈ univ hfi : f a' j = u ⊢ u ∈ supp x a' [PROOFSTEP] rw [← hfi] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u this : LiftP (supp x) x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j) a' : Fin2 n f' : (P F).A h'' : MvPFunctor.B (P F) f' ⟹ α hu : abs { fst := f', snd := h'' } = x u : α a' j : MvPFunctor.B (P F) a a' _h₂ : j ∈ univ hfi : f a' j = u ⊢ f a' j ∈ supp x a' [PROOFSTEP] apply h' [GOAL] case mp.intro.intro.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α h : ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u this : LiftP (supp x) x a : (P F).A f : MvPFunctor.B (P F) a ⟹ fun i => α i xeq : x = abs { fst := a, snd := f } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), supp x i (f i j) a' : Fin2 n f' : (P F).A h'' : MvPFunctor.B (P F) f' ⟹ α hu : abs { fst := f', snd := h'' } = x u : α a' j : MvPFunctor.B (P F) a a' _h₂ : j ∈ univ hfi : f a' j = u hh : u ∈ supp x a' ⊢ u ∈ h'' a' '' univ [PROOFSTEP] refine' (mem_supp x _ u).mp hh _ _ hu [GOAL] case mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α ⊢ (∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ) → ∀ (p : (i : Fin2 n) → α i → Prop), LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u [PROOFSTEP] rintro ⟨a, f, xeq, h⟩ p [GOAL] case mpr.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop ⊢ LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u [PROOFSTEP] rw [liftP_iff] [GOAL] case mpr.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop ⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)) ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u [PROOFSTEP] constructor [GOAL] case mpr.intro.intro.intro.mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop ⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)) → ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u [PROOFSTEP] rintro ⟨a', f', xeq', h'⟩ i u usuppx [GOAL] case mpr.intro.intro.intro.mp.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ fun i => α i xeq' : x = abs { fst := a', snd := f' } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j) i : Fin2 n u : α i usuppx : u ∈ supp x i ⊢ p i u [PROOFSTEP] rcases(mem_supp x _ u).mp (@usuppx) a' f' xeq'.symm with ⟨i, _, f'ieq⟩ [GOAL] case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ fun i => α i xeq' : x = abs { fst := a', snd := f' } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j) i✝ : Fin2 n u : α i✝ usuppx : u ∈ supp x i✝ i : MvPFunctor.B (P F) a' i✝ left✝ : i ∈ univ f'ieq : f' i✝ i = u ⊢ p i✝ u [PROOFSTEP] rw [← f'ieq] [GOAL] case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ fun i => α i xeq' : x = abs { fst := a', snd := f' } h' : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j) i✝ : Fin2 n u : α i✝ usuppx : u ∈ supp x i✝ i : MvPFunctor.B (P F) a' i✝ left✝ : i ∈ univ f'ieq : f' i✝ i = u ⊢ p i✝ (f' i✝ i) [PROOFSTEP] apply h' [GOAL] case mpr.intro.intro.intro.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop ⊢ (∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u) → ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j) [PROOFSTEP] intro h' [GOAL] case mpr.intro.intro.intro.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u ⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j) [PROOFSTEP] refine' ⟨a, f, xeq.symm, _⟩ [GOAL] case mpr.intro.intro.intro.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u ⊢ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j) [PROOFSTEP] intro j y [GOAL] case mpr.intro.intro.intro.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u j : Fin2 n y : MvPFunctor.B (P F) a j ⊢ p j (f j y) [PROOFSTEP] apply h' [GOAL] case mpr.intro.intro.intro.mpr.a n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u j : Fin2 n y : MvPFunctor.B (P F) a j ⊢ f j y ∈ supp x j [PROOFSTEP] rw [mem_supp] [GOAL] case mpr.intro.intro.intro.mpr.a n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u j : Fin2 n y : MvPFunctor.B (P F) a j ⊢ ∀ (a : (P F).A) (f_1 : MvPFunctor.B (P F) a ⟹ α), abs { fst := a, snd := f_1 } = x → f j y ∈ f_1 j '' univ [PROOFSTEP] intro a' f' xeq' [GOAL] case mpr.intro.intro.intro.mpr.a n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u j : Fin2 n y : MvPFunctor.B (P F) a j a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ α xeq' : abs { fst := a', snd := f' } = x ⊢ f j y ∈ f' j '' univ [PROOFSTEP] apply h _ a' f' xeq' [GOAL] case mpr.intro.intro.intro.mpr.a.a n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F α a : (P F).A f : MvPFunctor.B (P F) a ⟹ α xeq : abs { fst := a, snd := f } = x h : ∀ (i : Fin2 n) (a' : (P F).A) (f' : MvPFunctor.B (P F) a' ⟹ α), abs { fst := a', snd := f' } = x → f i '' univ ⊆ f' i '' univ p : (i : Fin2 n) → α i → Prop h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u j : Fin2 n y : MvPFunctor.B (P F) a j a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ α xeq' : abs { fst := a', snd := f' } = x ⊢ f j y ∈ f j '' univ [PROOFSTEP] apply mem_image_of_mem _ (mem_univ _) [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ ∀ (i : Fin2 n), supp (abs { fst := a, snd := f }) i = f i '' univ [PROOFSTEP] intro [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α i✝ : Fin2 n ⊢ supp (abs { fst := a, snd := f }) i✝ = f i✝ '' univ [PROOFSTEP] ext u [GOAL] case h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α i✝ : Fin2 n u : α i✝ ⊢ u ∈ supp (abs { fst := a, snd := f }) i✝ ↔ u ∈ f i✝ '' univ [PROOFSTEP] rw [mem_supp] [GOAL] case h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α i✝ : Fin2 n u : α i✝ ⊢ (∀ (a_1 : (P F).A) (f_1 : MvPFunctor.B (P F) a_1 ⟹ α), abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 i✝ '' univ) ↔ u ∈ f i✝ '' univ [PROOFSTEP] constructor [GOAL] case h.mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α i✝ : Fin2 n u : α i✝ ⊢ (∀ (a_1 : (P F).A) (f_1 : MvPFunctor.B (P F) a_1 ⟹ α), abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 i✝ '' univ) → u ∈ f i✝ '' univ [PROOFSTEP] intro h' [GOAL] case h.mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α i✝ : Fin2 n u : α i✝ h' : ∀ (a_1 : (P F).A) (f_1 : MvPFunctor.B (P F) a_1 ⟹ α), abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 i✝ '' univ ⊢ u ∈ f i✝ '' univ [PROOFSTEP] apply h' _ _ rfl [GOAL] case h.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α i✝ : Fin2 n u : α i✝ ⊢ u ∈ f i✝ '' univ → ∀ (a_2 : (P F).A) (f_1 : MvPFunctor.B (P F) a_2 ⟹ α), abs { fst := a_2, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 i✝ '' univ [PROOFSTEP] intro h' a' f' e [GOAL] case h.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α i✝ : Fin2 n u : α i✝ h' : u ∈ f i✝ '' univ a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ α e : abs { fst := a', snd := f' } = abs { fst := a, snd := f } ⊢ u ∈ f' i✝ '' univ [PROOFSTEP] rw [← h _ _ _ _ e.symm] [GOAL] case h.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α i✝ : Fin2 n u : α i✝ h' : u ∈ f i✝ '' univ a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ α e : abs { fst := a', snd := f' } = abs { fst := a, snd := f } ⊢ u ∈ f i✝ '' univ [PROOFSTEP] apply h' [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop ⊢ LiftP p x ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp x i → p i u [PROOFSTEP] rw [liftP_iff, ← abs_repr x] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop ⊢ (∃ a f, abs (repr x) = abs { fst := a, snd := f } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a i), p i (f i j)) ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp (abs (repr x)) i → p i u [PROOFSTEP] cases' repr x with a f [GOAL] case mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ (∃ a_1 f_1, abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_1 i), p i (f_1 i j)) ↔ ∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u [PROOFSTEP] constructor [GOAL] case mk.mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ (∃ a_1 f_1, abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_1 i), p i (f_1 i j)) → ∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u [PROOFSTEP] rintro ⟨a', f', abseq, hf⟩ u [GOAL] case mk.mp.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ fun i => α i abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' } hf : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j) u : Fin2 n ⊢ ∀ (u_1 : α u), u_1 ∈ supp (abs { fst := a, snd := f }) u → p u u_1 [PROOFSTEP] rw [supp_eq_of_isUniform h, h _ _ _ _ abseq] [GOAL] case mk.mp.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ fun i => α i abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' } hf : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j) u : Fin2 n ⊢ ∀ (u_1 : α u), u_1 ∈ f' u '' univ → p u u_1 [PROOFSTEP] rintro b ⟨i, _, hi⟩ [GOAL] case mk.mp.intro.intro.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ fun i => α i abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' } hf : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j) u : Fin2 n b : α u i : MvPFunctor.B (P F) a' u left✝ : i ∈ univ hi : f' u i = b ⊢ p u b [PROOFSTEP] rw [← hi] [GOAL] case mk.mp.intro.intro.intro.intro.intro n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α a' : (P F).A f' : MvPFunctor.B (P F) a' ⟹ fun i => α i abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' } hf : ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a' i), p i (f' i j) u : Fin2 n b : α u i : MvPFunctor.B (P F) a' u left✝ : i ∈ univ hi : f' u i = b ⊢ p u (f' u i) [PROOFSTEP] apply hf [GOAL] case mk.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ (∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u) → ∃ a_2 f_1, abs { fst := a, snd := f } = abs { fst := a_2, snd := f_1 } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_2 i), p i (f_1 i j) [PROOFSTEP] intro h' [GOAL] case mk.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u ⊢ ∃ a_1 f_1, abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : Fin2 n) (j : MvPFunctor.B (P F) a_1 i), p i (f_1 i j) [PROOFSTEP] refine' ⟨a, f, rfl, fun _ i => h' _ _ _⟩ [GOAL] case mk.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u x✝ : Fin2 n i : MvPFunctor.B (P F) a x✝ ⊢ f x✝ i ∈ supp (abs { fst := a, snd := f }) x✝ [PROOFSTEP] rw [supp_eq_of_isUniform h] [GOAL] case mk.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n x : F α p : (i : Fin2 n) → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : ∀ (i : Fin2 n) (u : α i), u ∈ supp (abs { fst := a, snd := f }) i → p i u x✝ : Fin2 n i : MvPFunctor.B (P F) a x✝ ⊢ f x✝ i ∈ f x✝ '' univ [PROOFSTEP] exact ⟨i, mem_univ i, rfl⟩ [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α β : TypeVec n g : α ⟹ β x : F α i : Fin2 n ⊢ supp (g <$$> x) i = g i '' supp x i [PROOFSTEP] rw [← abs_repr x] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α β : TypeVec n g : α ⟹ β x : F α i : Fin2 n ⊢ supp (g <$$> abs (repr x)) i = g i '' supp (abs (repr x)) i [PROOFSTEP] cases' repr x with a f [GOAL] case mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α β : TypeVec n g : α ⟹ β x : F α i : Fin2 n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ supp (g <$$> abs { fst := a, snd := f }) i = g i '' supp (abs { fst := a, snd := f }) i [PROOFSTEP] rw [← abs_map, MvPFunctor.map_eq] [GOAL] case mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α β : TypeVec n g : α ⟹ β x : F α i : Fin2 n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ supp (abs { fst := a, snd := g ⊚ f }) i = g i '' supp (abs { fst := a, snd := f }) i [PROOFSTEP] rw [supp_eq_of_isUniform h, supp_eq_of_isUniform h, ← image_comp] [GOAL] case mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α β : TypeVec n g : α ⟹ β x : F α i : Fin2 n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ (g ⊚ f) i '' univ = g i ∘ f i '' univ [PROOFSTEP] rfl [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F ⊢ SuppPreservation ↔ IsUniform [PROOFSTEP] constructor [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F ⊢ SuppPreservation → IsUniform [PROOFSTEP] intro h α a a' f f' h' i [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : SuppPreservation α : TypeVec n a a' : (P F).A f : MvPFunctor.B (P F) a ⟹ α f' : MvPFunctor.B (P F) a' ⟹ α h' : abs { fst := a, snd := f } = abs { fst := a', snd := f' } i : Fin2 n ⊢ f i '' univ = f' i '' univ [PROOFSTEP] rw [← MvPFunctor.supp_eq, ← MvPFunctor.supp_eq, ← h, h', h] [GOAL] case mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F ⊢ IsUniform → SuppPreservation [PROOFSTEP] rintro h α ⟨a, f⟩ [GOAL] case mpr.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f } [PROOFSTEP] ext [GOAL] case mpr.mk.h.h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : IsUniform α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α x✝¹ : Fin2 n x✝ : α x✝¹ ⊢ x✝ ∈ supp (abs { fst := a, snd := f }) x✝¹ ↔ x✝ ∈ supp { fst := a, snd := f } x✝¹ [PROOFSTEP] rwa [supp_eq_of_isUniform, MvPFunctor.supp_eq] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F ⊢ SuppPreservation ↔ LiftPPreservation [PROOFSTEP] constructor [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F ⊢ SuppPreservation → LiftPPreservation [PROOFSTEP] intro h [GOAL] case mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F ⊢ LiftPPreservation → SuppPreservation [PROOFSTEP] intro h [GOAL] case mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : SuppPreservation ⊢ LiftPPreservation [PROOFSTEP] rintro α p ⟨a, f⟩ [GOAL] case mp.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : SuppPreservation α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ LiftP p (abs { fst := a, snd := f }) ↔ LiftP p { fst := a, snd := f } [PROOFSTEP] have h' := h [GOAL] case mp.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : SuppPreservation α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : SuppPreservation ⊢ LiftP p (abs { fst := a, snd := f }) ↔ LiftP p { fst := a, snd := f } [PROOFSTEP] rw [suppPreservation_iff_isUniform] at h' [GOAL] case mp.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : SuppPreservation α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : IsUniform ⊢ LiftP p (abs { fst := a, snd := f }) ↔ LiftP p { fst := a, snd := f } [PROOFSTEP] dsimp only [SuppPreservation, supp] at h [GOAL] case mp.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α), (fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : IsUniform ⊢ LiftP p (abs { fst := a, snd := f }) ↔ LiftP p { fst := a, snd := f } [PROOFSTEP] simp only [liftP_iff_of_isUniform, supp_eq_of_isUniform, MvPFunctor.liftP_iff', h', image_univ, mem_range, exists_imp] [GOAL] case mp.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α), (fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : IsUniform ⊢ (∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u) ↔ ∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x) [PROOFSTEP] constructor [GOAL] case mp.mk.mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α), (fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : IsUniform ⊢ (∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u) → ∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x) [PROOFSTEP] intros [GOAL] case mp.mk.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α), (fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : IsUniform ⊢ (∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x)) → ∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u [PROOFSTEP] intros [GOAL] case mp.mk.mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α), (fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : IsUniform a✝ : ∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u i✝ : Fin2 n x✝ : MvPFunctor.B (P F) a i✝ ⊢ p (f i✝ x✝) [PROOFSTEP] subst_vars [GOAL] case mp.mk.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α), (fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : IsUniform a✝¹ : ∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x) i✝ : Fin2 n u✝ : α i✝ x✝ : MvPFunctor.B (P F) a i✝ a✝ : f i✝ x✝ = u✝ ⊢ p u✝ [PROOFSTEP] subst_vars [GOAL] case mp.mk.mp n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α), (fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : IsUniform a✝ : ∀ (i : Fin2 n) (u : α i) (x : MvPFunctor.B (P F) a i), f i x = u → p u i✝ : Fin2 n x✝ : MvPFunctor.B (P F) a i✝ ⊢ p (f i✝ x✝) [PROOFSTEP] solve_by_elim [GOAL] case mp.mk.mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (x : MvPFunctor.Obj (P F) α), (fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P (abs x) → P i y}) = fun i => {y | ∀ ⦃P : (i : Fin2 n) → α i → Prop⦄, LiftP P x → P i y} α : TypeVec n p : ⦃i : Fin2 n⦄ → α i → Prop a : (P F).A f : MvPFunctor.B (P F) a ⟹ α h' : IsUniform a✝ : ∀ (i : Fin2 n) (x : MvPFunctor.B (P F) a i), p (f i x) i✝ : Fin2 n x✝ : MvPFunctor.B (P F) a i✝ ⊢ p (f i✝ x✝) [PROOFSTEP] solve_by_elim [GOAL] case mpr n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : LiftPPreservation ⊢ SuppPreservation [PROOFSTEP] rintro α ⟨a, f⟩ [GOAL] case mpr.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : LiftPPreservation α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f } [PROOFSTEP] simp only [LiftPPreservation] at h [GOAL] case mpr.mk n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (p : ⦃i : Fin2 n⦄ → α i → Prop) (x : MvPFunctor.Obj (P F) α), LiftP p (abs x) ↔ LiftP p x α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f } [PROOFSTEP] ext [GOAL] case mpr.mk.h.h n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F h : ∀ ⦃α : TypeVec n⦄ (p : ⦃i : Fin2 n⦄ → α i → Prop) (x : MvPFunctor.Obj (P F) α), LiftP p (abs x) ↔ LiftP p x α : TypeVec n a : (P F).A f : MvPFunctor.B (P F) a ⟹ α x✝¹ : Fin2 n x✝ : α x✝¹ ⊢ x✝ ∈ supp (abs { fst := a, snd := f }) x✝¹ ↔ x✝ ∈ supp { fst := a, snd := f } x✝¹ [PROOFSTEP] simp only [supp, h, mem_setOf_eq] [GOAL] n : ℕ F : TypeVec n → Type u_1 inst✝ : MvFunctor F q : MvQPF F ⊢ LiftPPreservation ↔ IsUniform [PROOFSTEP] rw [← suppPreservation_iff_liftpPreservation, suppPreservation_iff_isUniform]
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Basic", "llama_tokens": 31440}
[GOAL] n : ℕ i : Fin2 n ⊢ ∀ {α : TypeVec n} (x : Prj i α), abs i (repr i x) = x [PROOFSTEP] intros [GOAL] n : ℕ i : Fin2 n α✝ : TypeVec n x✝ : Prj i α✝ ⊢ abs i (repr i x✝) = x✝ [PROOFSTEP] rfl [GOAL] n : ℕ i : Fin2 n ⊢ ∀ {α β : TypeVec n} (f : α ⟹ β) (p : MvPFunctor.Obj (P i) α), abs i (f <$$> p) = f <$$> abs i p [PROOFSTEP] intros α β f P [GOAL] n : ℕ i : Fin2 n α β : TypeVec n f : α ⟹ β P : MvPFunctor.Obj (MvQPF.Prj.P i) α ⊢ abs i (f <$$> P) = f <$$> abs i P [PROOFSTEP] cases P [GOAL] case mk n : ℕ i : Fin2 n α β : TypeVec n f : α ⟹ β fst✝ : (P i).A snd✝ : MvPFunctor.B (P i) fst✝ ⟹ α ⊢ abs i (f <$$> { fst := fst✝, snd := snd✝ }) = f <$$> abs i { fst := fst✝, snd := snd✝ } [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Prj", "llama_tokens": 436}
[GOAL] F : Type u_1 K : Type u_2 inst✝³ : Field F inst✝² : Field K inst✝¹ : Algebra F K h : Normal F K inst✝ : FiniteDimensional F K ⊢ ∃ p, IsSplittingField F K p [PROOFSTEP] let s := Basis.ofVectorSpace F K [GOAL] F : Type u_1 K : Type u_2 inst✝³ : Field F inst✝² : Field K inst✝¹ : Algebra F K h : Normal F K inst✝ : FiniteDimensional F K s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K ⊢ ∃ p, IsSplittingField F K p [PROOFSTEP] refine' ⟨∏ x, minpoly F (s x), splits_prod _ fun x _ => h.splits (s x), Subalgebra.toSubmodule.injective _⟩ [GOAL] F : Type u_1 K : Type u_2 inst✝³ : Field F inst✝² : Field K inst✝¹ : Algebra F K h : Normal F K inst✝ : FiniteDimensional F K s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K ⊢ ↑Subalgebra.toSubmodule (Algebra.adjoin F (rootSet (∏ x : ↑(Basis.ofVectorSpaceIndex F K), minpoly F (↑s x)) K)) = ↑Subalgebra.toSubmodule ⊤ [PROOFSTEP] rw [Algebra.top_toSubmodule, eq_top_iff, ← s.span_eq, Submodule.span_le, Set.range_subset_iff] [GOAL] F : Type u_1 K : Type u_2 inst✝³ : Field F inst✝² : Field K inst✝¹ : Algebra F K h : Normal F K inst✝ : FiniteDimensional F K s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K ⊢ ∀ (y : ↑(Basis.ofVectorSpaceIndex F K)), ↑s y ∈ ↑(↑Subalgebra.toSubmodule (Algebra.adjoin F (rootSet (∏ x : ↑(Basis.ofVectorSpaceIndex F K), minpoly F (↑s x)) K))) [PROOFSTEP] refine' fun x => Algebra.subset_adjoin (Multiset.mem_toFinset.mpr <| (mem_roots <| mt (Polynomial.map_eq_zero <| algebraMap F K).1 <| Finset.prod_ne_zero_iff.2 fun x _ => _).2 _) [GOAL] case refine'_1 F : Type u_1 K : Type u_2 inst✝³ : Field F inst✝² : Field K inst✝¹ : Algebra F K h : Normal F K inst✝ : FiniteDimensional F K s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K x✝¹ x : ↑(Basis.ofVectorSpaceIndex F K) x✝ : x ∈ Finset.univ ⊢ minpoly F (↑s x) ≠ 0 [PROOFSTEP] exact minpoly.ne_zero (h.isIntegral (s x)) [GOAL] case refine'_2 F : Type u_1 K : Type u_2 inst✝³ : Field F inst✝² : Field K inst✝¹ : Algebra F K h : Normal F K inst✝ : FiniteDimensional F K s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K x : ↑(Basis.ofVectorSpaceIndex F K) ⊢ IsRoot (map (algebraMap F K) (∏ x : ↑(Basis.ofVectorSpaceIndex F K), minpoly F (↑s x))) (↑s x) [PROOFSTEP] rw [IsRoot.def, eval_map, ← aeval_def, AlgHom.map_prod] [GOAL] case refine'_2 F : Type u_1 K : Type u_2 inst✝³ : Field F inst✝² : Field K inst✝¹ : Algebra F K h : Normal F K inst✝ : FiniteDimensional F K s : Basis (↑(Basis.ofVectorSpaceIndex F K)) F K := Basis.ofVectorSpace F K x : ↑(Basis.ofVectorSpaceIndex F K) ⊢ ∏ x_1 : ↑(Basis.ofVectorSpaceIndex F K), ↑(aeval (↑s x)) (minpoly F (↑s x_1)) = 0 [PROOFSTEP] exact Finset.prod_eq_zero (Finset.mem_univ _) (minpoly.aeval _ _) [GOAL] F : Type u_1 K : Type u_2 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Algebra F K E : Type u_3 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : Normal F E x : E ⊢ IsIntegral K x ∧ Splits (algebraMap K E) (minpoly K x) [PROOFSTEP] cases' h.out x with hx hhx [GOAL] case intro F : Type u_1 K : Type u_2 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Algebra F K E : Type u_3 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : Normal F E x : E hx : IsIntegral F x hhx : Splits (algebraMap F E) (minpoly F x) ⊢ IsIntegral K x ∧ Splits (algebraMap K E) (minpoly K x) [PROOFSTEP] rw [algebraMap_eq F K E] at hhx [GOAL] case intro F : Type u_1 K : Type u_2 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Algebra F K E : Type u_3 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : Normal F E x : E hx : IsIntegral F x hhx : Splits (RingHom.comp (algebraMap K E) (algebraMap F K)) (minpoly F x) ⊢ IsIntegral K x ∧ Splits (algebraMap K E) (minpoly K x) [PROOFSTEP] exact ⟨isIntegral_of_isScalarTower hx, Polynomial.splits_of_splits_of_dvd (algebraMap K E) (Polynomial.map_ne_zero (minpoly.ne_zero hx)) ((Polynomial.splits_map_iff (algebraMap F K) (algebraMap K E)).mpr hhx) (minpoly.dvd_map_of_isScalarTower F K x)⟩ [GOAL] F : Type u_1 K : Type u_2 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Algebra F K E : Type u_3 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : Normal F E ϕ : E →ₐ[F] K x : K ⊢ ∃ a, ↑ϕ a = x [PROOFSTEP] letI : Algebra E K := ϕ.toRingHom.toAlgebra [GOAL] F : Type u_1 K : Type u_2 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Algebra F K E : Type u_3 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : Normal F E ϕ : E →ₐ[F] K x : K this : Algebra E K := RingHom.toAlgebra ↑ϕ ⊢ ∃ a, ↑ϕ a = x [PROOFSTEP] obtain ⟨h1, h2⟩ := h.out (algebraMap K E x) [GOAL] case intro F : Type u_1 K : Type u_2 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Algebra F K E : Type u_3 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : Normal F E ϕ : E →ₐ[F] K x : K this : Algebra E K := RingHom.toAlgebra ↑ϕ h1 : IsIntegral F (↑(algebraMap K E) x) h2 : Splits (algebraMap F E) (minpoly F (↑(algebraMap K E) x)) ⊢ ∃ a, ↑ϕ a = x [PROOFSTEP] cases' minpoly.mem_range_of_degree_eq_one E x (h2.def.resolve_left (minpoly.ne_zero h1) (minpoly.irreducible (isIntegral_of_isScalarTower ((isIntegral_algebraMap_iff (algebraMap K E).injective).mp h1))) (minpoly.dvd E x ((algebraMap K E).injective (by rw [RingHom.map_zero, aeval_map_algebraMap, ← aeval_algebraMap_apply] exact minpoly.aeval F (algebraMap K E x))))) with y hy [GOAL] F : Type u_1 K : Type u_2 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Algebra F K E : Type u_3 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : Normal F E ϕ : E →ₐ[F] K x : K this : Algebra E K := RingHom.toAlgebra ↑ϕ h1 : IsIntegral F (↑(algebraMap K E) x) h2 : Splits (algebraMap F E) (minpoly F (↑(algebraMap K E) x)) ⊢ ↑(algebraMap K E) (↑(aeval x) (map (algebraMap F E) (minpoly F (↑(algebraMap K E) x)))) = ↑(algebraMap K E) 0 [PROOFSTEP] rw [RingHom.map_zero, aeval_map_algebraMap, ← aeval_algebraMap_apply] [GOAL] F : Type u_1 K : Type u_2 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Algebra F K E : Type u_3 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : Normal F E ϕ : E →ₐ[F] K x : K this : Algebra E K := RingHom.toAlgebra ↑ϕ h1 : IsIntegral F (↑(algebraMap K E) x) h2 : Splits (algebraMap F E) (minpoly F (↑(algebraMap K E) x)) ⊢ ↑(aeval (↑(algebraMap K E) x)) (minpoly F (↑(algebraMap K E) x)) = 0 [PROOFSTEP] exact minpoly.aeval F (algebraMap K E x) [GOAL] case intro.intro F : Type u_1 K : Type u_2 inst✝⁶ : Field F inst✝⁵ : Field K inst✝⁴ : Algebra F K E : Type u_3 inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Algebra K E inst✝ : IsScalarTower F K E h : Normal F E ϕ : E →ₐ[F] K x : K this : Algebra E K := RingHom.toAlgebra ↑ϕ h1 : IsIntegral F (↑(algebraMap K E) x) h2 : Splits (algebraMap F E) (minpoly F (↑(algebraMap K E) x)) y : E hy : ↑(algebraMap E K) y = x ⊢ ∃ a, ↑ϕ a = x [PROOFSTEP] exact ⟨y, hy⟩ [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' ⊢ IsIntegral F x ∧ Splits (algebraMap F E') (minpoly F x) [PROOFSTEP] cases' h.out (f.symm x) with hx hhx [GOAL] case intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' hx : IsIntegral F (↑(AlgEquiv.symm f) x) hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x)) ⊢ IsIntegral F x ∧ Splits (algebraMap F E') (minpoly F x) [PROOFSTEP] have H := map_isIntegral f.toAlgHom hx [GOAL] case intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' hx : IsIntegral F (↑(AlgEquiv.symm f) x) hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x)) H : IsIntegral F (↑↑f (↑(AlgEquiv.symm f) x)) ⊢ IsIntegral F x ∧ Splits (algebraMap F E') (minpoly F x) [PROOFSTEP] simp [AlgEquiv.toAlgHom_eq_coe] at H [GOAL] case intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' hx : IsIntegral F (↑(AlgEquiv.symm f) x) hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x)) H : IsIntegral F x ⊢ IsIntegral F x ∧ Splits (algebraMap F E') (minpoly F x) [PROOFSTEP] use H [GOAL] case right F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' hx : IsIntegral F (↑(AlgEquiv.symm f) x) hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x)) H : IsIntegral F x ⊢ Splits (algebraMap F E') (minpoly F x) [PROOFSTEP] apply Polynomial.splits_of_splits_of_dvd (algebraMap F E') (minpoly.ne_zero hx) [GOAL] case right.hf F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' hx : IsIntegral F (↑(AlgEquiv.symm f) x) hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x)) H : IsIntegral F x ⊢ Splits (algebraMap F E') (minpoly F (↑(AlgEquiv.symm f) x)) [PROOFSTEP] rw [← AlgHom.comp_algebraMap f.toAlgHom] [GOAL] case right.hf F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' hx : IsIntegral F (↑(AlgEquiv.symm f) x) hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x)) H : IsIntegral F x ⊢ Splits (RingHom.comp (↑↑f) (algebraMap F E)) (minpoly F (↑(AlgEquiv.symm f) x)) [PROOFSTEP] exact Polynomial.splits_comp_of_splits (algebraMap F E) f.toAlgHom.toRingHom hhx [GOAL] case right.hgf F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' hx : IsIntegral F (↑(AlgEquiv.symm f) x) hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x)) H : IsIntegral F x ⊢ minpoly F x ∣ minpoly F (↑(AlgEquiv.symm f) x) [PROOFSTEP] apply minpoly.dvd _ _ [GOAL] case right.hgf F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' hx : IsIntegral F (↑(AlgEquiv.symm f) x) hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x)) H : IsIntegral F x ⊢ ↑(aeval x) (minpoly F (↑(AlgEquiv.symm f) x)) = 0 [PROOFSTEP] rw [← AddEquiv.map_eq_zero_iff f.symm.toAddEquiv] [GOAL] case right.hgf F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' h : Normal F E f : E ≃ₐ[F] E' x : E' hx : IsIntegral F (↑(AlgEquiv.symm f) x) hhx : Splits (algebraMap F E) (minpoly F (↑(AlgEquiv.symm f) x)) H : IsIntegral F x ⊢ ↑(AlgEquiv.toAddEquiv (AlgEquiv.symm f)) (↑(aeval x) (minpoly F (↑(AlgEquiv.symm f) x))) = 0 [PROOFSTEP] exact Eq.trans (Polynomial.aeval_algHom_apply f.symm.toAlgHom x (minpoly F (f.symm x))).symm (minpoly.aeval _ _) [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p ⊢ Normal F E [PROOFSTEP] rcases eq_or_ne p 0 with (rfl | hp) [GOAL] case inl F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' hFEp : IsSplittingField F E 0 ⊢ Normal F E [PROOFSTEP] have := hFEp.adjoin_rootSet [GOAL] case inl F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' hFEp : IsSplittingField F E 0 this : Algebra.adjoin F (rootSet 0 E) = ⊤ ⊢ Normal F E [PROOFSTEP] simp only [rootSet_zero, Algebra.adjoin_empty] at this [GOAL] case inl F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' hFEp : IsSplittingField F E 0 this : ⊥ = ⊤ ⊢ Normal F E [PROOFSTEP] exact Normal.of_algEquiv (AlgEquiv.ofBijective (Algebra.ofId F E) (Algebra.bijective_algebraMap_iff.2 this.symm)) [GOAL] case inr F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 ⊢ Normal F E [PROOFSTEP] refine' normal_iff.2 fun x => _ [GOAL] case inr F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E ⊢ IsIntegral F x ∧ Splits (algebraMap F E) (minpoly F x) [PROOFSTEP] have hFE : FiniteDimensional F E := IsSplittingField.finiteDimensional E p [GOAL] case inr F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E ⊢ IsIntegral F x ∧ Splits (algebraMap F E) (minpoly F x) [PROOFSTEP] have Hx : IsIntegral F x := isIntegral_of_noetherian (IsNoetherian.iff_fg.2 hFE) x [GOAL] case inr F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x ⊢ IsIntegral F x ∧ Splits (algebraMap F E) (minpoly F x) [PROOFSTEP] refine' ⟨Hx, Or.inr _⟩ [GOAL] case inr F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x ⊢ ∀ {g : E[X]}, Irreducible g → g ∣ map (algebraMap F E) (minpoly F x) → degree g = 1 [PROOFSTEP] rintro q q_irred ⟨r, hr⟩ [GOAL] case inr.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r ⊢ degree q = 1 [PROOFSTEP] let D := AdjoinRoot q [GOAL] case inr.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q ⊢ degree q = 1 [PROOFSTEP] haveI := Fact.mk q_irred [GOAL] case inr.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this : Fact (Irreducible q) ⊢ degree q = 1 [PROOFSTEP] let pbED := AdjoinRoot.powerBasis q_irred.ne_zero [GOAL] case inr.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) ⊢ degree q = 1 [PROOFSTEP] haveI : FiniteDimensional E D := PowerBasis.finiteDimensional pbED [GOAL] case inr.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this : FiniteDimensional E D ⊢ degree q = 1 [PROOFSTEP] have finrankED : FiniteDimensional.finrank E D = q.natDegree := by rw [PowerBasis.finrank pbED, AdjoinRoot.powerBasis_dim] [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this : FiniteDimensional E D ⊢ FiniteDimensional.finrank E D = natDegree q [PROOFSTEP] rw [PowerBasis.finrank pbED, AdjoinRoot.powerBasis_dim] [GOAL] case inr.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q ⊢ degree q = 1 [PROOFSTEP] haveI : FiniteDimensional F D := FiniteDimensional.trans F E D [GOAL] case inr.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D ⊢ degree q = 1 [PROOFSTEP] rsuffices ⟨ϕ⟩ : Nonempty (D →ₐ[F] E) --Porting note: the `change` was `rw [← WithBot.coe_one]` [GOAL] case inr.intro.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D ϕ : D →ₐ[F] E ⊢ degree q = 1 [PROOFSTEP] change degree q = ↑(1 : ℕ) [GOAL] case inr.intro.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D ϕ : D →ₐ[F] E ⊢ degree q = ↑1 [PROOFSTEP] rw [degree_eq_iff_natDegree_eq q_irred.ne_zero, ← finrankED] [GOAL] case inr.intro.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D ϕ : D →ₐ[F] E ⊢ FiniteDimensional.finrank E D = 1 [PROOFSTEP] have nat_lemma : ∀ a b c : ℕ, a * b = c → c ≤ a → 0 < c → b = 1 := by intro a b c h1 h2 h3 nlinarith [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D ϕ : D →ₐ[F] E ⊢ ∀ (a b c : ℕ), a * b = c → c ≤ a → 0 < c → b = 1 [PROOFSTEP] intro a b c h1 h2 h3 [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D ϕ : D →ₐ[F] E a b c : ℕ h1 : a * b = c h2 : c ≤ a h3 : 0 < c ⊢ b = 1 [PROOFSTEP] nlinarith [GOAL] case inr.intro.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D ϕ : D →ₐ[F] E nat_lemma : ∀ (a b c : ℕ), a * b = c → c ≤ a → 0 < c → b = 1 ⊢ FiniteDimensional.finrank E D = 1 [PROOFSTEP] exact nat_lemma _ _ _ (FiniteDimensional.finrank_mul_finrank F E D) (LinearMap.finrank_le_finrank_of_injective (show Function.Injective ϕ.toLinearMap from ϕ.toRingHom.injective)) FiniteDimensional.finrank_pos [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D ⊢ Nonempty (D →ₐ[F] E) [PROOFSTEP] let C := AdjoinRoot (minpoly F x) [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) ⊢ Nonempty (D →ₐ[F] E) [PROOFSTEP] haveI Hx_irred := Fact.mk (minpoly.irreducible Hx) -- Porting note: `heval` added since now Lean wants the proof explicitly in several places. [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) ⊢ Nonempty (D →ₐ[F] E) [PROOFSTEP] have heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 := by rw [algebraMap_eq F E D, ← eval₂_map, hr, AdjoinRoot.algebraMap_eq, eval₂_mul, AdjoinRoot.eval₂_root, zero_mul] [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) ⊢ eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 [PROOFSTEP] rw [algebraMap_eq F E D, ← eval₂_map, hr, AdjoinRoot.algebraMap_eq, eval₂_mul, AdjoinRoot.eval₂_root, zero_mul] [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝¹ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 ⊢ Nonempty (D →ₐ[F] E) [PROOFSTEP] letI : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝² : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝¹ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) ⊢ Nonempty (D →ₐ[F] E) [PROOFSTEP] letI : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (minpoly.aeval F x)) [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝³ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝² : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝¹ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) ⊢ Nonempty (D →ₐ[F] E) [PROOFSTEP] haveI : IsScalarTower F C D := of_algebraMap_eq fun y => (AdjoinRoot.lift_of heval).symm [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁴ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝³ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝² : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝¹ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this : IsScalarTower F C D ⊢ Nonempty (D →ₐ[F] E) [PROOFSTEP] haveI : IsScalarTower F C E := by refine' of_algebraMap_eq fun y => (AdjoinRoot.lift_of _).symm rw [← aeval_def, minpoly.aeval] [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁴ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝³ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝² : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝¹ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this : IsScalarTower F C D ⊢ IsScalarTower F C E [PROOFSTEP] refine' of_algebraMap_eq fun y => (AdjoinRoot.lift_of _).symm [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁴ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝³ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝² : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝¹ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this : IsScalarTower F C D y : F ⊢ eval₂ (algebraMap F E) x (minpoly F x) = 0 [PROOFSTEP] rw [← aeval_def, minpoly.aeval] [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E ⊢ Nonempty (D →ₐ[F] E) [PROOFSTEP] suffices Nonempty (D →ₐ[C] E) by exact Nonempty.map (AlgHom.restrictScalars F) this [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E this : Nonempty (D →ₐ[C] E) ⊢ Nonempty (D →ₐ[F] E) [PROOFSTEP] exact Nonempty.map (AlgHom.restrictScalars F) this [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E ⊢ Nonempty (D →ₐ[C] E) [PROOFSTEP] let S : Set D := ((p.map (algebraMap F E)).roots.map (algebraMap E D)).toFinset [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) ⊢ Nonempty (D →ₐ[C] E) [PROOFSTEP] suffices ⊤ ≤ IntermediateField.adjoin C S by refine' IntermediateField.algHom_mk_adjoin_splits' (top_le_iff.mp this) fun y hy => _ rcases Multiset.mem_map.mp (Multiset.mem_toFinset.mp hy) with ⟨z, hz1, hz2⟩ have Hz : IsIntegral F z := isIntegral_of_noetherian (IsNoetherian.iff_fg.2 hFE) z use show IsIntegral C y from isIntegral_of_noetherian (IsNoetherian.iff_fg.2 (FiniteDimensional.right F C D)) y apply splits_of_splits_of_dvd (algebraMap C E) (map_ne_zero (minpoly.ne_zero Hz)) · rw [splits_map_iff, ← algebraMap_eq F C E] exact splits_of_splits_of_dvd _ hp hFEp.splits (minpoly.dvd F z (Eq.trans (eval₂_eq_eval_map _) ((mem_roots (map_ne_zero hp)).mp hz1))) · apply minpoly.dvd rw [← hz2, aeval_def, eval₂_map, ← algebraMap_eq F C D, algebraMap_eq F E D, ← hom_eval₂, ← aeval_def, minpoly.aeval F z, RingHom.map_zero] [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : ⊤ ≤ IntermediateField.adjoin C S ⊢ Nonempty (D →ₐ[C] E) [PROOFSTEP] refine' IntermediateField.algHom_mk_adjoin_splits' (top_le_iff.mp this) fun y hy => _ [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : ⊤ ≤ IntermediateField.adjoin C S y : D hy : y ∈ S ⊢ IsIntegral C y ∧ Splits (algebraMap C E) (minpoly C y) [PROOFSTEP] rcases Multiset.mem_map.mp (Multiset.mem_toFinset.mp hy) with ⟨z, hz1, hz2⟩ [GOAL] case intro.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : ⊤ ≤ IntermediateField.adjoin C S y : D hy : y ∈ S z : E hz1 : z ∈ roots (map (algebraMap F E) p) hz2 : ↑(algebraMap E D) z = y ⊢ IsIntegral C y ∧ Splits (algebraMap C E) (minpoly C y) [PROOFSTEP] have Hz : IsIntegral F z := isIntegral_of_noetherian (IsNoetherian.iff_fg.2 hFE) z [GOAL] case intro.intro F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : ⊤ ≤ IntermediateField.adjoin C S y : D hy : y ∈ S z : E hz1 : z ∈ roots (map (algebraMap F E) p) hz2 : ↑(algebraMap E D) z = y Hz : IsIntegral F z ⊢ IsIntegral C y ∧ Splits (algebraMap C E) (minpoly C y) [PROOFSTEP] use show IsIntegral C y from isIntegral_of_noetherian (IsNoetherian.iff_fg.2 (FiniteDimensional.right F C D)) y [GOAL] case right F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : ⊤ ≤ IntermediateField.adjoin C S y : D hy : y ∈ S z : E hz1 : z ∈ roots (map (algebraMap F E) p) hz2 : ↑(algebraMap E D) z = y Hz : IsIntegral F z ⊢ Splits (algebraMap C E) (minpoly C y) [PROOFSTEP] apply splits_of_splits_of_dvd (algebraMap C E) (map_ne_zero (minpoly.ne_zero Hz)) [GOAL] case right.hf F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : ⊤ ≤ IntermediateField.adjoin C S y : D hy : y ∈ S z : E hz1 : z ∈ roots (map (algebraMap F E) p) hz2 : ↑(algebraMap E D) z = y Hz : IsIntegral F z ⊢ Splits (algebraMap C E) (map ?m.184453 (minpoly F z)) [PROOFSTEP] rw [splits_map_iff, ← algebraMap_eq F C E] [GOAL] case right.hf F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : ⊤ ≤ IntermediateField.adjoin C S y : D hy : y ∈ S z : E hz1 : z ∈ roots (map (algebraMap F E) p) hz2 : ↑(algebraMap E D) z = y Hz : IsIntegral F z ⊢ Splits (algebraMap F E) (minpoly F z) [PROOFSTEP] exact splits_of_splits_of_dvd _ hp hFEp.splits (minpoly.dvd F z (Eq.trans (eval₂_eq_eval_map _) ((mem_roots (map_ne_zero hp)).mp hz1))) [GOAL] case right.hgf F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : ⊤ ≤ IntermediateField.adjoin C S y : D hy : y ∈ S z : E hz1 : z ∈ roots (map (algebraMap F E) p) hz2 : ↑(algebraMap E D) z = y Hz : IsIntegral F z ⊢ minpoly C y ∣ map (algebraMap F C) (minpoly F z) [PROOFSTEP] apply minpoly.dvd [GOAL] case right.hgf.hp F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : ⊤ ≤ IntermediateField.adjoin C S y : D hy : y ∈ S z : E hz1 : z ∈ roots (map (algebraMap F E) p) hz2 : ↑(algebraMap E D) z = y Hz : IsIntegral F z ⊢ ↑(aeval y) (map (algebraMap F C) (minpoly F z)) = 0 [PROOFSTEP] rw [← hz2, aeval_def, eval₂_map, ← algebraMap_eq F C D, algebraMap_eq F E D, ← hom_eval₂, ← aeval_def, minpoly.aeval F z, RingHom.map_zero] [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) ⊢ ⊤ ≤ IntermediateField.adjoin C S [PROOFSTEP] rw [← IntermediateField.toSubalgebra_le_toSubalgebra, IntermediateField.top_toSubalgebra] [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) ⊢ ⊤ ≤ (IntermediateField.adjoin C S).toSubalgebra [PROOFSTEP] apply ge_trans (IntermediateField.algebra_adjoin_le_adjoin C S) [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) ⊢ Algebra.adjoin C S ≥ ⊤ [PROOFSTEP] suffices (Algebra.adjoin C S).restrictScalars F = (Algebra.adjoin E {AdjoinRoot.root q}).restrictScalars F by rw [AdjoinRoot.adjoinRoot_eq_top, Subalgebra.restrictScalars_top, ← @Subalgebra.restrictScalars_top F C] at this exact top_le_iff.mpr (Subalgebra.restrictScalars_injective F this) /- Porting note: the `change` was `dsimp only [S]`. This is the step that requires increasing `maxHeartbeats`. Using `set S ... with hS` doesn't work. -/ [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : Subalgebra.restrictScalars F (Algebra.adjoin C S) = Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q}) ⊢ Algebra.adjoin C S ≥ ⊤ [PROOFSTEP] rw [AdjoinRoot.adjoinRoot_eq_top, Subalgebra.restrictScalars_top, ← @Subalgebra.restrictScalars_top F C] at this [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁶ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁵ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝⁴ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝³ : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝² : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝¹ : IsScalarTower F C D this✝ : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) this : Subalgebra.restrictScalars F (Algebra.adjoin C S) = Subalgebra.restrictScalars F ⊤ ⊢ Algebra.adjoin C S ≥ ⊤ [PROOFSTEP] exact top_le_iff.mpr (Subalgebra.restrictScalars_injective F this) /- Porting note: the `change` was `dsimp only [S]`. This is the step that requires increasing `maxHeartbeats`. Using `set S ... with hS` doesn't work. -/ [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) ⊢ Subalgebra.restrictScalars F (Algebra.adjoin C S) = Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q}) [PROOFSTEP] change Subalgebra.restrictScalars F (Algebra.adjoin C (((p.map (algebraMap F E)).roots.map (algebraMap E D)).toFinset : Set D)) = _ [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) ⊢ Subalgebra.restrictScalars F (Algebra.adjoin C ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p))))) = Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q}) [PROOFSTEP] rw [← Finset.image_toFinset, Finset.coe_image] [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) ⊢ Subalgebra.restrictScalars F (Algebra.adjoin C (↑(algebraMap E D) '' ↑(Multiset.toFinset (roots (map (algebraMap F E) p))))) = Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q}) [PROOFSTEP] apply Eq.trans (Algebra.adjoin_res_eq_adjoin_res F E C D hFEp.adjoin_rootSet AdjoinRoot.adjoinRoot_eq_top) [GOAL] F : Type u_1 K : Type u_2 inst✝¹¹ : Field F inst✝¹⁰ : Field K inst✝⁹ : Algebra F K E : Type u_3 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra K E inst✝⁵ : IsScalarTower F K E E' : Type u_4 inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E inst✝¹ : Field E' inst✝ : Algebra F E' p : F[X] hFEp : IsSplittingField F E p hp : p ≠ 0 x : E hFE : FiniteDimensional F E Hx : IsIntegral F x q : E[X] q_irred : Irreducible q r : E[X] hr : map (algebraMap F E) (minpoly F x) = q * r D : Type u_3 := AdjoinRoot q this✝⁵ : Fact (Irreducible q) pbED : PowerBasis E (AdjoinRoot q) := AdjoinRoot.powerBasis (_ : q ≠ 0) this✝⁴ : FiniteDimensional E D finrankED : FiniteDimensional.finrank E D = natDegree q this✝³ : FiniteDimensional F D C : Type u_1 := AdjoinRoot (minpoly F x) Hx_irred : Fact (Irreducible (minpoly F x)) heval : eval₂ (algebraMap F D) (AdjoinRoot.root q) (minpoly F x) = 0 this✝² : Algebra C D := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F D) (AdjoinRoot.root q) heval) this✝¹ : Algebra C E := RingHom.toAlgebra (AdjoinRoot.lift (algebraMap F E) x (_ : ↑(aeval x) (minpoly F x) = 0)) this✝ : IsScalarTower F C D this : IsScalarTower F C E S : Set D := ↑(Multiset.toFinset (Multiset.map (↑(algebraMap E D)) (roots (map (algebraMap F E) p)))) ⊢ Subalgebra.restrictScalars F (Algebra.adjoin E (↑(algebraMap C D) '' {AdjoinRoot.root (minpoly F x)})) = Subalgebra.restrictScalars F (Algebra.adjoin E {AdjoinRoot.root q}) [PROOFSTEP] rw [Set.image_singleton, RingHom.algebraMap_toAlgebra, AdjoinRoot.lift_root] [GOAL] F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } ⊢ Normal F { x // x ∈ ⨆ (i : ι), t i } [PROOFSTEP] refine' ⟨isAlgebraic_iSup fun i => (h i).1, fun x => _⟩ [GOAL] F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } ⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x) [PROOFSTEP] obtain ⟨s, hx⟩ := exists_finset_of_mem_supr'' (fun i => (h i).1) x.2 [GOAL] case intro F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) ⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x) [PROOFSTEP] let E : IntermediateField F K := ⨆ i ∈ s, adjoin F ((minpoly F (i.2 : _)).rootSet K) [GOAL] case intro F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) ⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x) [PROOFSTEP] have hF : Normal F E := by haveI : IsSplittingField F E (∏ i in s, minpoly F i.snd) := by refine' isSplittingField_iSup _ fun i _ => adjoin_rootSet_isSplittingField _ · exact Finset.prod_ne_zero_iff.mpr fun i _ => minpoly.ne_zero ((h i.1).isIntegral i.2) · exact Polynomial.splits_comp_of_splits _ (algebraMap (t i.1) K) ((h i.1).splits i.2) apply Normal.of_isSplittingField (∏ i in s, minpoly F i.2) [GOAL] F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) ⊢ Normal F { x // x ∈ E } [PROOFSTEP] haveI : IsSplittingField F E (∏ i in s, minpoly F i.snd) := by refine' isSplittingField_iSup _ fun i _ => adjoin_rootSet_isSplittingField _ · exact Finset.prod_ne_zero_iff.mpr fun i _ => minpoly.ne_zero ((h i.1).isIntegral i.2) · exact Polynomial.splits_comp_of_splits _ (algebraMap (t i.1) K) ((h i.1).splits i.2) [GOAL] F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) ⊢ IsSplittingField F { x // x ∈ E } (∏ i in s, minpoly F i.snd) [PROOFSTEP] refine' isSplittingField_iSup _ fun i _ => adjoin_rootSet_isSplittingField _ [GOAL] case refine'_1 F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) ⊢ ∏ i in s, minpoly F i.snd ≠ 0 [PROOFSTEP] exact Finset.prod_ne_zero_iff.mpr fun i _ => minpoly.ne_zero ((h i.1).isIntegral i.2) [GOAL] case refine'_2 F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) i : (i : ι) × { x // x ∈ t i } x✝ : i ∈ s ⊢ Splits (algebraMap F K) (minpoly F i.snd) [PROOFSTEP] exact Polynomial.splits_comp_of_splits _ (algebraMap (t i.1) K) ((h i.1).splits i.2) [GOAL] F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) this : IsSplittingField F { x // x ∈ E } (∏ i in s, minpoly F i.snd) ⊢ Normal F { x // x ∈ E } [PROOFSTEP] apply Normal.of_isSplittingField (∏ i in s, minpoly F i.2) [GOAL] case intro F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) hF : Normal F { x // x ∈ E } ⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x) [PROOFSTEP] have hE : E ≤ ⨆ i, t i := by refine' iSup_le fun i => iSup_le fun _ => le_iSup_of_le i.1 _ rw [adjoin_le_iff, ← image_rootSet ((h i.1).splits i.2) (t i.1).val] exact fun _ ⟨a, _, h⟩ => h ▸ a.2 [GOAL] F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) hF : Normal F { x // x ∈ E } ⊢ E ≤ ⨆ (i : ι), t i [PROOFSTEP] refine' iSup_le fun i => iSup_le fun _ => le_iSup_of_le i.1 _ [GOAL] F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) hF : Normal F { x // x ∈ E } i : (i : ι) × { x // x ∈ t i } x✝ : i ∈ s ⊢ adjoin F (rootSet (minpoly F i.snd) K) ≤ t i.fst [PROOFSTEP] rw [adjoin_le_iff, ← image_rootSet ((h i.1).splits i.2) (t i.1).val] [GOAL] F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) hF : Normal F { x // x ∈ E } i : (i : ι) × { x // x ∈ t i } x✝ : i ∈ s ⊢ ↑(val (t i.fst)) '' rootSet (minpoly F i.snd) { x // x ∈ t i.fst } ≤ ↑(t i.fst) [PROOFSTEP] exact fun _ ⟨a, _, h⟩ => h ▸ a.2 [GOAL] case intro F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) hF : Normal F { x // x ∈ E } hE : E ≤ ⨆ (i : ι), t i ⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x) [PROOFSTEP] have := hF.splits ⟨x, hx⟩ [GOAL] case intro F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) hF : Normal F { x // x ∈ E } hE : E ≤ ⨆ (i : ι), t i this : Splits (algebraMap F { x // x ∈ E }) (minpoly F { val := ↑x, property := hx }) ⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x) [PROOFSTEP] rw [minpoly_eq, Subtype.coe_mk, ← minpoly_eq] at this [GOAL] case intro F : Type u_1 K : Type u_2 inst✝² : Field F inst✝¹ : Field K inst✝ : Algebra F K ι : Type u_3 t : ι → IntermediateField F K h : ∀ (i : ι), Normal F { x // x ∈ t i } x : { x // x ∈ ⨆ (i : ι), t i } s : Finset ((i : ι) × { x // x ∈ t i }) hx : ↑x ∈ ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) E : IntermediateField F K := ⨆ (i : (i : ι) × { x // x ∈ t i }) (_ : i ∈ s), adjoin F (rootSet (minpoly F i.snd) K) hF : Normal F { x // x ∈ E } hE : E ≤ ⨆ (i : ι), t i this : Splits (algebraMap F { x // x ∈ E }) (minpoly F x) ⊢ Splits (algebraMap F { x // x ∈ ⨆ (i : ι), t i }) (minpoly F x) [PROOFSTEP] exact Polynomial.splits_comp_of_splits _ (inclusion hE).toRingHom this [GOAL] F : Type u_1 K : Type u_2 inst✝⁴ : Field F inst✝³ : Field K inst✝² : Algebra F K E E' : IntermediateField F K inst✝¹ : Normal F { x // x ∈ E } inst✝ : Normal F { x // x ∈ E' } ⊢ ∀ (i : Bool), Normal F { x // x ∈ Bool.rec E' E i } [PROOFSTEP] intro i [GOAL] F : Type u_1 K : Type u_2 inst✝⁴ : Field F inst✝³ : Field K inst✝² : Algebra F K E E' : IntermediateField F K inst✝¹ : Normal F { x // x ∈ E } inst✝ : Normal F { x // x ∈ E' } i : Bool ⊢ Normal F { x // x ∈ Bool.rec E' E i } [PROOFSTEP] cases i [GOAL] case false F : Type u_1 K : Type u_2 inst✝⁴ : Field F inst✝³ : Field K inst✝² : Algebra F K E E' : IntermediateField F K inst✝¹ : Normal F { x // x ∈ E } inst✝ : Normal F { x // x ∈ E' } ⊢ Normal F { x // x ∈ Bool.rec E' E false } [PROOFSTEP] infer_instance [GOAL] case true F : Type u_1 K : Type u_2 inst✝⁴ : Field F inst✝³ : Field K inst✝² : Algebra F K E E' : IntermediateField F K inst✝¹ : Normal F { x // x ∈ E } inst✝ : Normal F { x // x ∈ E' } ⊢ Normal F { x // x ∈ Bool.rec E' E true } [PROOFSTEP] infer_instance [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } ⊢ ↑ϕ ↑x ∈ AlgHom.range (toAlgHom F E K₂) [PROOFSTEP] suffices (toAlgHom F E K₁).range.map ϕ ≤ _ by exact this ⟨x, Subtype.mem x, rfl⟩ [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } this : Subalgebra.map ϕ (AlgHom.range (toAlgHom F E K₁)) ≤ ?m.259090 ⊢ ↑ϕ ↑x ∈ AlgHom.range (toAlgHom F E K₂) [PROOFSTEP] exact this ⟨x, Subtype.mem x, rfl⟩ [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } ⊢ Subalgebra.map ϕ (AlgHom.range (toAlgHom F E K₁)) ≤ AlgHom.range (toAlgHom F E K₂) [PROOFSTEP] rintro x ⟨y, ⟨z, hy⟩, hx⟩ [GOAL] case intro.intro.intro F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } x : K₂ y : K₁ hx : ↑↑ϕ y = x z : E hy : ↑↑(toAlgHom F E K₁) z = y ⊢ x ∈ AlgHom.range (toAlgHom F E K₂) [PROOFSTEP] rw [← hx, ← hy] [GOAL] case intro.intro.intro F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } x : K₂ y : K₁ hx : ↑↑ϕ y = x z : E hy : ↑↑(toAlgHom F E K₁) z = y ⊢ ↑↑ϕ (↑↑(toAlgHom F E K₁) z) ∈ AlgHom.range (toAlgHom F E K₂) [PROOFSTEP] apply minpoly.mem_range_of_degree_eq_one E [GOAL] case intro.intro.intro.hx F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } x : K₂ y : K₁ hx : ↑↑ϕ y = x z : E hy : ↑↑(toAlgHom F E K₁) z = y ⊢ degree (minpoly E (↑↑ϕ (↑↑(toAlgHom F E K₁) z))) = 1 [PROOFSTEP] refine' Or.resolve_left (h.splits z).def (minpoly.ne_zero (h.isIntegral z)) (minpoly.irreducible _) (minpoly.dvd E _ (by simp [aeval_algHom_apply])) [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } x : K₂ y : K₁ hx : ↑↑ϕ y = x z : E hy : ↑↑(toAlgHom F E K₁) z = y ⊢ ↑(aeval (↑↑ϕ (↑↑(toAlgHom F E K₁) z))) (map (algebraMap F E) (minpoly F z)) = 0 [PROOFSTEP] simp [aeval_algHom_apply] [GOAL] case intro.intro.intro.hx F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } x : K₂ y : K₁ hx : ↑↑ϕ y = x z : E hy : ↑↑(toAlgHom F E K₁) z = y ⊢ IsIntegral E (↑↑ϕ (↑↑(toAlgHom F E K₁) z)) [PROOFSTEP] simp only [AlgHom.toRingHom_eq_coe, AlgHom.coe_toRingHom] [GOAL] case intro.intro.intro.hx F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } x : K₂ y : K₁ hx : ↑↑ϕ y = x z : E hy : ↑↑(toAlgHom F E K₁) z = y ⊢ IsIntegral E (↑ϕ (↑(toAlgHom F E K₁) z)) [PROOFSTEP] suffices IsIntegral F _ by exact isIntegral_of_isScalarTower this [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } x : K₂ y : K₁ hx : ↑↑ϕ y = x z : E hy : ↑↑(toAlgHom F E K₁) z = y this : IsIntegral F ?m.268983 ⊢ IsIntegral E (↑ϕ (↑(toAlgHom F E K₁) z)) [PROOFSTEP] exact isIntegral_of_isScalarTower this [GOAL] case intro.intro.intro.hx F : Type u_1 K : Type u_2 inst✝¹⁷ : Field F inst✝¹⁶ : Field K inst✝¹⁵ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁴ : Field F inst✝¹³ : Field K₁ inst✝¹² : Field K₂ inst✝¹¹ : Field K₃ inst✝¹⁰ : Algebra F K₁ inst✝⁹ : Algebra F K₂ inst✝⁸ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁷ : Field E inst✝⁶ : Algebra F E inst✝⁵ : Algebra E K₁ inst✝⁴ : Algebra E K₂ inst✝³ : Algebra E K₃ inst✝² : IsScalarTower F E K₁ inst✝¹ : IsScalarTower F E K₂ inst✝ : IsScalarTower F E K₃ h : Normal F E x✝ : { x // x ∈ AlgHom.range (toAlgHom F E K₁) } x : K₂ y : K₁ hx : ↑↑ϕ y = x z : E hy : ↑↑(toAlgHom F E K₁) z = y ⊢ IsIntegral F (↑ϕ (↑(toAlgHom F E K₁) z)) [PROOFSTEP] exact map_isIntegral ϕ (map_isIntegral (toAlgHom F E K₁) (h.isIntegral z)) [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁸ : Field F inst✝¹⁷ : Field K inst✝¹⁶ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁵ : Field F inst✝¹⁴ : Field K₁ inst✝¹³ : Field K₂ inst✝¹² : Field K₃ inst✝¹¹ : Algebra F K₁ inst✝¹⁰ : Algebra F K₂ inst✝⁹ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra E K₁ inst✝⁵ : Algebra E K₂ inst✝⁴ : Algebra E K₃ inst✝³ : IsScalarTower F E K₁ inst✝² : IsScalarTower F E K₂ inst✝¹ : IsScalarTower F E K₃ inst✝ : Normal F E x✝ : E ⊢ ↑(algebraMap E K₃) (↑(comp (restrictNormal ψ E) (restrictNormal ϕ E)) x✝) = ↑(algebraMap E K₃) (↑(restrictNormal (comp ψ ϕ) E) x✝) [PROOFSTEP] simp only [AlgHom.comp_apply, AlgHom.restrictNormal_commutes] [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁹ : Field F inst✝¹⁸ : Field K inst✝¹⁷ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁶ : Field F inst✝¹⁵ : Field K₁ inst✝¹⁴ : Field K₂ inst✝¹³ : Field K₃ inst✝¹² : Algebra F K₁ inst✝¹¹ : Algebra F K₂ inst✝¹⁰ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E✝ : Type u_6 inst✝⁹ : Field E✝ inst✝⁸ : Algebra F E✝ inst✝⁷ : Algebra E✝ K₁ inst✝⁶ : Algebra E✝ K₂ inst✝⁵ : Algebra E✝ K₃ inst✝⁴ : IsScalarTower F E✝ K₁ inst✝³ : IsScalarTower F E✝ K₂ inst✝² : IsScalarTower F E✝ K₃ inst✝¹ : Algebra F K E : IntermediateField F K inst✝ : Normal F { x // x ∈ E } f : { x // x ∈ E } →ₐ[F] K ⊢ fieldRange f = E [PROOFSTEP] letI : Algebra E E := Algebra.id E [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁹ : Field F inst✝¹⁸ : Field K inst✝¹⁷ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁶ : Field F inst✝¹⁵ : Field K₁ inst✝¹⁴ : Field K₂ inst✝¹³ : Field K₃ inst✝¹² : Algebra F K₁ inst✝¹¹ : Algebra F K₂ inst✝¹⁰ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E✝ : Type u_6 inst✝⁹ : Field E✝ inst✝⁸ : Algebra F E✝ inst✝⁷ : Algebra E✝ K₁ inst✝⁶ : Algebra E✝ K₂ inst✝⁵ : Algebra E✝ K₃ inst✝⁴ : IsScalarTower F E✝ K₁ inst✝³ : IsScalarTower F E✝ K₂ inst✝² : IsScalarTower F E✝ K₃ inst✝¹ : Algebra F K E : IntermediateField F K inst✝ : Normal F { x // x ∈ E } f : { x // x ∈ E } →ₐ[F] K this : Algebra { x // x ∈ E } { x // x ∈ E } := Algebra.id { x // x ∈ E } ⊢ fieldRange f = E [PROOFSTEP] let g := f.restrictNormal' E [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁹ : Field F inst✝¹⁸ : Field K inst✝¹⁷ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁶ : Field F inst✝¹⁵ : Field K₁ inst✝¹⁴ : Field K₂ inst✝¹³ : Field K₃ inst✝¹² : Algebra F K₁ inst✝¹¹ : Algebra F K₂ inst✝¹⁰ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E✝ : Type u_6 inst✝⁹ : Field E✝ inst✝⁸ : Algebra F E✝ inst✝⁷ : Algebra E✝ K₁ inst✝⁶ : Algebra E✝ K₂ inst✝⁵ : Algebra E✝ K₃ inst✝⁴ : IsScalarTower F E✝ K₁ inst✝³ : IsScalarTower F E✝ K₂ inst✝² : IsScalarTower F E✝ K₃ inst✝¹ : Algebra F K E : IntermediateField F K inst✝ : Normal F { x // x ∈ E } f : { x // x ∈ E } →ₐ[F] K this : Algebra { x // x ∈ E } { x // x ∈ E } := Algebra.id { x // x ∈ E } g : { x // x ∈ E } ≃ₐ[F] { x // x ∈ E } := restrictNormal' f { x // x ∈ E } ⊢ fieldRange f = E [PROOFSTEP] rw [← show E.val.comp ↑g = f from FunLike.ext_iff.mpr (f.restrictNormal_commutes E), ← IntermediateField.AlgHom.map_fieldRange, IntermediateField.AlgEquiv.fieldRange_eq_top g, ← IntermediateField.AlgHom.fieldRange_eq_map, IntermediateField.fieldRange_val] [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁸ : Field F inst✝¹⁷ : Field K inst✝¹⁶ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁵ : Field F inst✝¹⁴ : Field K₁ inst✝¹³ : Field K₂ inst✝¹² : Field K₃ inst✝¹¹ : Algebra F K₁ inst✝¹⁰ : Algebra F K₂ inst✝⁹ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra E K₁ inst✝⁵ : Algebra E K₂ inst✝⁴ : Algebra E K₃ inst✝³ : IsScalarTower F E K₁ inst✝² : IsScalarTower F E K₂ inst✝¹ : IsScalarTower F E K₃ inst✝ : Normal F E x✝ : E ⊢ ↑(algebraMap E K₃) (↑(restrictNormal (trans χ ω) E) x✝) = ↑(algebraMap E K₃) (↑(trans (restrictNormal χ E) (restrictNormal ω E)) x✝) [PROOFSTEP] simp only [AlgEquiv.trans_apply, AlgEquiv.restrictNormal_commutes] [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁸ : Field F inst✝¹⁷ : Field K inst✝¹⁶ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁵ : Field F inst✝¹⁴ : Field K₁ inst✝¹³ : Field K₂ inst✝¹² : Field K₃ inst✝¹¹ : Algebra F K₁ inst✝¹⁰ : Algebra F K₂ inst✝⁹ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra E K₁ inst✝⁵ : Algebra E K₂ inst✝⁴ : Algebra E K₃ inst✝³ : IsScalarTower F E K₁ inst✝² : IsScalarTower F E K₂ inst✝¹ : IsScalarTower F E K₃ inst✝ : Normal F E σ : E →ₐ[F] K₁ ⊢ (fun σ => AlgHom.comp (toAlgHom F E K₁) ↑σ) ((fun σ => AlgHom.restrictNormal' σ E) σ) = σ [PROOFSTEP] ext [GOAL] case H F : Type u_1 K : Type u_2 inst✝¹⁸ : Field F inst✝¹⁷ : Field K inst✝¹⁶ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁵ : Field F inst✝¹⁴ : Field K₁ inst✝¹³ : Field K₂ inst✝¹² : Field K₃ inst✝¹¹ : Algebra F K₁ inst✝¹⁰ : Algebra F K₂ inst✝⁹ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra E K₁ inst✝⁵ : Algebra E K₂ inst✝⁴ : Algebra E K₃ inst✝³ : IsScalarTower F E K₁ inst✝² : IsScalarTower F E K₂ inst✝¹ : IsScalarTower F E K₃ inst✝ : Normal F E σ : E →ₐ[F] K₁ x✝ : E ⊢ ↑((fun σ => AlgHom.comp (toAlgHom F E K₁) ↑σ) ((fun σ => AlgHom.restrictNormal' σ E) σ)) x✝ = ↑σ x✝ [PROOFSTEP] simp [AlgHom.restrictNormal'] [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁸ : Field F inst✝¹⁷ : Field K inst✝¹⁶ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁵ : Field F inst✝¹⁴ : Field K₁ inst✝¹³ : Field K₂ inst✝¹² : Field K₃ inst✝¹¹ : Algebra F K₁ inst✝¹⁰ : Algebra F K₂ inst✝⁹ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra E K₁ inst✝⁵ : Algebra E K₂ inst✝⁴ : Algebra E K₃ inst✝³ : IsScalarTower F E K₁ inst✝² : IsScalarTower F E K₂ inst✝¹ : IsScalarTower F E K₃ inst✝ : Normal F E σ : E ≃ₐ[F] E ⊢ (fun σ => AlgHom.restrictNormal' σ E) ((fun σ => AlgHom.comp (toAlgHom F E K₁) ↑σ) σ) = σ [PROOFSTEP] ext [GOAL] case h F : Type u_1 K : Type u_2 inst✝¹⁸ : Field F inst✝¹⁷ : Field K inst✝¹⁶ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁵ : Field F inst✝¹⁴ : Field K₁ inst✝¹³ : Field K₂ inst✝¹² : Field K₃ inst✝¹¹ : Algebra F K₁ inst✝¹⁰ : Algebra F K₂ inst✝⁹ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra E K₁ inst✝⁵ : Algebra E K₂ inst✝⁴ : Algebra E K₃ inst✝³ : IsScalarTower F E K₁ inst✝² : IsScalarTower F E K₂ inst✝¹ : IsScalarTower F E K₃ inst✝ : Normal F E σ : E ≃ₐ[F] E a✝ : E ⊢ ↑((fun σ => AlgHom.restrictNormal' σ E) ((fun σ => AlgHom.comp (toAlgHom F E K₁) ↑σ) σ)) a✝ = ↑σ a✝ [PROOFSTEP] simp only [AlgHom.restrictNormal', AlgEquiv.toAlgHom_eq_coe, AlgEquiv.coe_ofBijective] [GOAL] case h F : Type u_1 K : Type u_2 inst✝¹⁸ : Field F inst✝¹⁷ : Field K inst✝¹⁶ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁵ : Field F inst✝¹⁴ : Field K₁ inst✝¹³ : Field K₂ inst✝¹² : Field K₃ inst✝¹¹ : Algebra F K₁ inst✝¹⁰ : Algebra F K₂ inst✝⁹ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra E K₁ inst✝⁵ : Algebra E K₂ inst✝⁴ : Algebra E K₃ inst✝³ : IsScalarTower F E K₁ inst✝² : IsScalarTower F E K₂ inst✝¹ : IsScalarTower F E K₃ inst✝ : Normal F E σ : E ≃ₐ[F] E a✝ : E ⊢ ↑(AlgHom.restrictNormal (AlgHom.comp (toAlgHom F E K₁) ↑σ) E) a✝ = ↑σ a✝ [PROOFSTEP] apply NoZeroSMulDivisors.algebraMap_injective E K₁ [GOAL] case h.a F : Type u_1 K : Type u_2 inst✝¹⁸ : Field F inst✝¹⁷ : Field K inst✝¹⁶ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁵ : Field F inst✝¹⁴ : Field K₁ inst✝¹³ : Field K₂ inst✝¹² : Field K₃ inst✝¹¹ : Algebra F K₁ inst✝¹⁰ : Algebra F K₂ inst✝⁹ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra E K₁ inst✝⁵ : Algebra E K₂ inst✝⁴ : Algebra E K₃ inst✝³ : IsScalarTower F E K₁ inst✝² : IsScalarTower F E K₂ inst✝¹ : IsScalarTower F E K₃ inst✝ : Normal F E σ : E ≃ₐ[F] E a✝ : E ⊢ ↑(algebraMap E K₁) (↑(AlgHom.restrictNormal (AlgHom.comp (toAlgHom F E K₁) ↑σ) E) a✝) = ↑(algebraMap E K₁) (↑σ a✝) [PROOFSTEP] rw [AlgHom.restrictNormal_commutes] [GOAL] case h.a F : Type u_1 K : Type u_2 inst✝¹⁸ : Field F inst✝¹⁷ : Field K inst✝¹⁶ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹⁵ : Field F inst✝¹⁴ : Field K₁ inst✝¹³ : Field K₂ inst✝¹² : Field K₃ inst✝¹¹ : Algebra F K₁ inst✝¹⁰ : Algebra F K₂ inst✝⁹ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁸ : Field E inst✝⁷ : Algebra F E inst✝⁶ : Algebra E K₁ inst✝⁵ : Algebra E K₂ inst✝⁴ : Algebra E K₃ inst✝³ : IsScalarTower F E K₁ inst✝² : IsScalarTower F E K₂ inst✝¹ : IsScalarTower F E K₃ inst✝ : Normal F E σ : E ≃ₐ[F] E a✝ : E ⊢ ↑(AlgHom.comp (toAlgHom F E K₁) ↑σ) (↑(algebraMap E E) a✝) = ↑(algebraMap E K₁) (↑σ a✝) [PROOFSTEP] simp [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁵ : Field F inst✝¹⁴ : Field K inst✝¹³ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹² : Field F inst✝¹¹ : Field K₁ inst✝¹⁰ : Field K₂ inst✝⁹ : Field K₃ inst✝⁸ : Algebra F K₁ inst✝⁷ : Algebra F K₂ inst✝⁶ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁵ : Field E inst✝⁴ : Algebra F E inst✝³ : Algebra K₁ E inst✝² : Algebra K₂ E inst✝¹ : IsScalarTower F K₁ E inst✝ : IsScalarTower F K₂ E h : Normal F E x : E x✝ : x ∈ Set.univ ⊢ Splits (algebraMap K₁ E) (map (algebraMap F K₁) (minpoly F x)) [PROOFSTEP] rw [splits_map_iff, ← @IsScalarTower.algebraMap_eq _ _ _ _ _ _ (_) (_) (_)] [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁵ : Field F inst✝¹⁴ : Field K inst✝¹³ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹² : Field F inst✝¹¹ : Field K₁ inst✝¹⁰ : Field K₂ inst✝⁹ : Field K₃ inst✝⁸ : Algebra F K₁ inst✝⁷ : Algebra F K₂ inst✝⁶ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁵ : Field E inst✝⁴ : Algebra F E inst✝³ : Algebra K₁ E inst✝² : Algebra K₂ E inst✝¹ : IsScalarTower F K₁ E inst✝ : IsScalarTower F K₂ E h : Normal F E x : E x✝ : x ∈ Set.univ ⊢ Splits (algebraMap F E) (minpoly F x) [PROOFSTEP] exact (h.out x).2 [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁶ : Field F inst✝¹⁵ : Field K inst✝¹⁴ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹³ : Field F inst✝¹² : Field K₁ inst✝¹¹ : Field K₂ inst✝¹⁰ : Field K₃ inst✝⁹ : Algebra F K₁ inst✝⁸ : Algebra F K₂ inst✝⁷ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁶ : Field E inst✝⁵ : Algebra F E inst✝⁴ : Algebra K₁ E inst✝³ : Algebra K₂ E inst✝² : IsScalarTower F K₁ E inst✝¹ : IsScalarTower F K₂ E inst✝ : Normal F K₁ h1 : IsSolvable (K₁ ≃ₐ[F] K₁) h2 : IsSolvable (E ≃ₐ[K₁] E) ⊢ IsSolvable (E ≃ₐ[F] E) [PROOFSTEP] let f : (E ≃ₐ[K₁] E) →* E ≃ₐ[F] E := { toFun := fun ϕ => AlgEquiv.ofAlgHom (ϕ.toAlgHom.restrictScalars F) (ϕ.symm.toAlgHom.restrictScalars F) (AlgHom.ext fun x => ϕ.apply_symm_apply x) (AlgHom.ext fun x => ϕ.symm_apply_apply x) map_one' := AlgEquiv.ext fun _ => rfl map_mul' := fun _ _ => AlgEquiv.ext fun _ => rfl } [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁶ : Field F inst✝¹⁵ : Field K inst✝¹⁴ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹³ : Field F inst✝¹² : Field K₁ inst✝¹¹ : Field K₂ inst✝¹⁰ : Field K₃ inst✝⁹ : Algebra F K₁ inst✝⁸ : Algebra F K₂ inst✝⁷ : Algebra F K₃ ϕ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁶ : Field E inst✝⁵ : Algebra F E inst✝⁴ : Algebra K₁ E inst✝³ : Algebra K₂ E inst✝² : IsScalarTower F K₁ E inst✝¹ : IsScalarTower F K₂ E inst✝ : Normal F K₁ h1 : IsSolvable (K₁ ≃ₐ[F] K₁) h2 : IsSolvable (E ≃ₐ[K₁] E) f : (E ≃ₐ[K₁] E) →* E ≃ₐ[F] E := { toOneHom := { toFun := fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E), map_one' := (_ : (fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E)) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : E ≃ₐ[K₁] E), OneHom.toFun { toFun := fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E), map_one' := (_ : (fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E)) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E), map_one' := (_ : (fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E)) 1 = 1) } x * OneHom.toFun { toFun := fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E), map_one' := (_ : (fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E)) 1 = 1) } x_1) } ⊢ IsSolvable (E ≃ₐ[F] E) [PROOFSTEP] refine' solvable_of_ker_le_range f (AlgEquiv.restrictNormalHom K₁) fun ϕ hϕ => ⟨{ ϕ with commutes' := fun x => _ }, AlgEquiv.ext fun _ => rfl⟩ [GOAL] F : Type u_1 K : Type u_2 inst✝¹⁶ : Field F inst✝¹⁵ : Field K inst✝¹⁴ : Algebra F K K₁ : Type u_3 K₂ : Type u_4 K₃ : Type u_5 inst✝¹³ : Field F inst✝¹² : Field K₁ inst✝¹¹ : Field K₂ inst✝¹⁰ : Field K₃ inst✝⁹ : Algebra F K₁ inst✝⁸ : Algebra F K₂ inst✝⁷ : Algebra F K₃ ϕ✝ : K₁ →ₐ[F] K₂ χ : K₁ ≃ₐ[F] K₂ ψ : K₂ →ₐ[F] K₃ ω : K₂ ≃ₐ[F] K₃ E : Type u_6 inst✝⁶ : Field E inst✝⁵ : Algebra F E inst✝⁴ : Algebra K₁ E inst✝³ : Algebra K₂ E inst✝² : IsScalarTower F K₁ E inst✝¹ : IsScalarTower F K₂ E inst✝ : Normal F K₁ h1 : IsSolvable (K₁ ≃ₐ[F] K₁) h2 : IsSolvable (E ≃ₐ[K₁] E) f : (E ≃ₐ[K₁] E) →* E ≃ₐ[F] E := { toOneHom := { toFun := fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E), map_one' := (_ : (fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E)) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : E ≃ₐ[K₁] E), OneHom.toFun { toFun := fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E), map_one' := (_ : (fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E)) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E), map_one' := (_ : (fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E)) 1 = 1) } x * OneHom.toFun { toFun := fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E), map_one' := (_ : (fun ϕ => AlgEquiv.ofAlgHom (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑ϕ) (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) = AlgHom.id F E) (_ : AlgHom.comp (AlgHom.restrictScalars F ↑(AlgEquiv.symm ϕ)) (AlgHom.restrictScalars F ↑ϕ) = AlgHom.id F E)) 1 = 1) } x_1) } ϕ : E ≃ₐ[F] E hϕ : ϕ ∈ MonoidHom.ker (AlgEquiv.restrictNormalHom K₁) x : K₁ ⊢ Equiv.toFun ϕ.toEquiv (↑(algebraMap K₁ E) x) = ↑(algebraMap K₁ E) x [PROOFSTEP] exact Eq.trans (ϕ.restrictNormal_commutes K₁ x).symm (congr_arg _ (AlgEquiv.ext_iff.mp hϕ x))
{"mathlib_filename": "Mathlib.FieldTheory.Normal", "llama_tokens": 55946}
[GOAL] α✝ : Type u_1 β✝ : Type u_2 α : Type u_3 β : Type u_4 b : β f : α → β a : Option α ⊢ Option.elim' b f a = Option.elim a b f [PROOFSTEP] cases a [GOAL] case none α✝ : Type u_1 β✝ : Type u_2 α : Type u_3 β : Type u_4 b : β f : α → β ⊢ Option.elim' b f none = Option.elim none b f [PROOFSTEP] rfl [GOAL] case some α✝ : Type u_1 β✝ : Type u_2 α : Type u_3 β : Type u_4 b : β f : α → β val✝ : α ⊢ Option.elim' b f (some val✝) = Option.elim (some val✝) b f [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 a b : α ⊢ a ∈ some b ↔ b = a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 p : α → Prop inst✝ : DecidablePred p ⊢ ∀ (a : α), a ∈ none → p a [PROOFSTEP] simp [false_imp_iff] [GOAL] α : Type u_1 β : Type u_2 p : α → Prop inst✝ : DecidablePred p x✝ : ∃ a, a ∈ none ∧ p a a : α h : a ∈ none right✝ : p a ⊢ False [PROOFSTEP] cases h [GOAL] α : Type u_1 β : Type u_2 a : α o : Option α ⊢ a ∈ toList o ↔ a ∈ o [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 a : α ⊢ a ∈ toList none ↔ a ∈ none [PROOFSTEP] simp [toList, eq_comm] [GOAL] case some α : Type u_1 β : Type u_2 a val✝ : α ⊢ a ∈ toList (some val✝) ↔ a ∈ some val✝ [PROOFSTEP] simp [toList, eq_comm] [GOAL] α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsCommutative α f a b : Option α ⊢ liftOrGet f a b = liftOrGet f b a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsCommutative α f b : Option α ⊢ liftOrGet f none b = liftOrGet f b none [PROOFSTEP] cases b [GOAL] case some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsCommutative α f b : Option α val✝ : α ⊢ liftOrGet f (some val✝) b = liftOrGet f b (some val✝) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsCommutative α f ⊢ liftOrGet f none none = liftOrGet f none none [PROOFSTEP] simp [liftOrGet, IsCommutative.comm] [GOAL] case none.some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsCommutative α f val✝ : α ⊢ liftOrGet f none (some val✝) = liftOrGet f (some val✝) none [PROOFSTEP] simp [liftOrGet, IsCommutative.comm] [GOAL] case some.none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsCommutative α f val✝ : α ⊢ liftOrGet f (some val✝) none = liftOrGet f none (some val✝) [PROOFSTEP] simp [liftOrGet, IsCommutative.comm] [GOAL] case some.some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsCommutative α f val✝¹ val✝ : α ⊢ liftOrGet f (some val✝¹) (some val✝) = liftOrGet f (some val✝) (some val✝¹) [PROOFSTEP] simp [liftOrGet, IsCommutative.comm] [GOAL] α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f a b c : Option α ⊢ liftOrGet f (liftOrGet f a b) c = liftOrGet f a (liftOrGet f b c) [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f b c : Option α ⊢ liftOrGet f (liftOrGet f none b) c = liftOrGet f none (liftOrGet f b c) [PROOFSTEP] cases b [GOAL] case some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f b c : Option α val✝ : α ⊢ liftOrGet f (liftOrGet f (some val✝) b) c = liftOrGet f (some val✝) (liftOrGet f b c) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f c : Option α ⊢ liftOrGet f (liftOrGet f none none) c = liftOrGet f none (liftOrGet f none c) [PROOFSTEP] cases c [GOAL] case none.some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f c : Option α val✝ : α ⊢ liftOrGet f (liftOrGet f none (some val✝)) c = liftOrGet f none (liftOrGet f (some val✝) c) [PROOFSTEP] cases c [GOAL] case some.none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f c : Option α val✝ : α ⊢ liftOrGet f (liftOrGet f (some val✝) none) c = liftOrGet f (some val✝) (liftOrGet f none c) [PROOFSTEP] cases c [GOAL] case some.some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f c : Option α val✝¹ val✝ : α ⊢ liftOrGet f (liftOrGet f (some val✝¹) (some val✝)) c = liftOrGet f (some val✝¹) (liftOrGet f (some val✝) c) [PROOFSTEP] cases c [GOAL] case none.none.none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f ⊢ liftOrGet f (liftOrGet f none none) none = liftOrGet f none (liftOrGet f none none) [PROOFSTEP] simp [liftOrGet, IsAssociative.assoc] [GOAL] case none.none.some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f val✝ : α ⊢ liftOrGet f (liftOrGet f none none) (some val✝) = liftOrGet f none (liftOrGet f none (some val✝)) [PROOFSTEP] simp [liftOrGet, IsAssociative.assoc] [GOAL] case none.some.none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f val✝ : α ⊢ liftOrGet f (liftOrGet f none (some val✝)) none = liftOrGet f none (liftOrGet f (some val✝) none) [PROOFSTEP] simp [liftOrGet, IsAssociative.assoc] [GOAL] case none.some.some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f val✝¹ val✝ : α ⊢ liftOrGet f (liftOrGet f none (some val✝¹)) (some val✝) = liftOrGet f none (liftOrGet f (some val✝¹) (some val✝)) [PROOFSTEP] simp [liftOrGet, IsAssociative.assoc] [GOAL] case some.none.none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f val✝ : α ⊢ liftOrGet f (liftOrGet f (some val✝) none) none = liftOrGet f (some val✝) (liftOrGet f none none) [PROOFSTEP] simp [liftOrGet, IsAssociative.assoc] [GOAL] case some.none.some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f val✝¹ val✝ : α ⊢ liftOrGet f (liftOrGet f (some val✝¹) none) (some val✝) = liftOrGet f (some val✝¹) (liftOrGet f none (some val✝)) [PROOFSTEP] simp [liftOrGet, IsAssociative.assoc] [GOAL] case some.some.none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f val✝¹ val✝ : α ⊢ liftOrGet f (liftOrGet f (some val✝¹) (some val✝)) none = liftOrGet f (some val✝¹) (liftOrGet f (some val✝) none) [PROOFSTEP] simp [liftOrGet, IsAssociative.assoc] [GOAL] case some.some.some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsAssociative α f val✝² val✝¹ val✝ : α ⊢ liftOrGet f (liftOrGet f (some val✝²) (some val✝¹)) (some val✝) = liftOrGet f (some val✝²) (liftOrGet f (some val✝¹) (some val✝)) [PROOFSTEP] simp [liftOrGet, IsAssociative.assoc] [GOAL] α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsIdempotent α f a : Option α ⊢ liftOrGet f a a = a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsIdempotent α f ⊢ liftOrGet f none none = none [PROOFSTEP] simp [liftOrGet, IsIdempotent.idempotent] [GOAL] case some α : Type u_1 β : Type u_2 f : α → α → α inst✝ : IsIdempotent α f val✝ : α ⊢ liftOrGet f (some val✝) (some val✝) = some val✝ [PROOFSTEP] simp [liftOrGet, IsIdempotent.idempotent] [GOAL] α : Type u_1 β : Type u_2 f : α → α → α a : Option α ⊢ liftOrGet f none a = a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 f : α → α → α ⊢ liftOrGet f none none = none [PROOFSTEP] simp [liftOrGet] [GOAL] case some α : Type u_1 β : Type u_2 f : α → α → α val✝ : α ⊢ liftOrGet f none (some val✝) = some val✝ [PROOFSTEP] simp [liftOrGet] [GOAL] α : Type u_1 β : Type u_2 f : α → α → α a : Option α ⊢ liftOrGet f a none = a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 f : α → α → α ⊢ liftOrGet f none none = none [PROOFSTEP] simp [liftOrGet] [GOAL] case some α : Type u_1 β : Type u_2 f : α → α → α val✝ : α ⊢ liftOrGet f (some val✝) none = some val✝ [PROOFSTEP] simp [liftOrGet]
{"mathlib_filename": "Mathlib.Data.Option.Defs", "llama_tokens": 3607}
[GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α ⊢ id <$> x = x [PROOFSTEP] rw [← abs_repr x] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α ⊢ id <$> abs (repr x) = abs (repr x) [PROOFSTEP] cases' repr x with a f [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α ⊢ id <$> abs { fst := a, snd := f } = abs { fst := a, snd := f } [PROOFSTEP] rw [← abs_map] [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α ⊢ abs (id <$> { fst := a, snd := f }) = abs { fst := a, snd := f } [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α β γ : Type u f : α → β g : β → γ x : F α ⊢ (g ∘ f) <$> x = g <$> f <$> x [PROOFSTEP] rw [← abs_repr x] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α β γ : Type u f : α → β g : β → γ x : F α ⊢ (g ∘ f) <$> abs (repr x) = g <$> f <$> abs (repr x) [PROOFSTEP] cases' repr x with a f [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F α β γ : Type u f✝ : α → β g : β → γ x : F α a : (P F).A f : PFunctor.B (P F) a → α ⊢ (g ∘ f✝) <$> abs { fst := a, snd := f } = g <$> f✝ <$> abs { fst := a, snd := f } [PROOFSTEP] rw [← abs_map, ← abs_map, ← abs_map] [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F α β γ : Type u f✝ : α → β g : β → γ x : F α a : (P F).A f : PFunctor.B (P F) a → α ⊢ abs ((g ∘ f✝) <$> { fst := a, snd := f }) = abs (g <$> f✝ <$> { fst := a, snd := f }) [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α ⊢ Liftp p x ↔ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] constructor [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α ⊢ Liftp p x → ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] rintro ⟨y, hy⟩ [GOAL] case mp.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x ⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] cases' h : repr y with a f [GOAL] case mp.intro.mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] use a, fun i => (f i).val [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ x = abs { fst := a, snd := fun i => ↑(f i) } ∧ ∀ (i : PFunctor.B (P F) a), p ↑(f i) [PROOFSTEP] constructor [GOAL] case h.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ x = abs { fst := a, snd := fun i => ↑(f i) } [PROOFSTEP] rw [← hy, ← abs_repr y, h, ← abs_map] [GOAL] case h.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ abs (Subtype.val <$> { fst := a, snd := f }) = abs { fst := a, snd := fun i => ↑(f i) } [PROOFSTEP] rfl [GOAL] case h.right F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ ∀ (i : PFunctor.B (P F) a), p ↑(f i) [PROOFSTEP] intro i [GOAL] case h.right F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } i : PFunctor.B (P F) a ⊢ p ↑(f i) [PROOFSTEP] apply (f i).property [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α ⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) → Liftp p x [PROOFSTEP] rintro ⟨a, f, h₀, h₁⟩ [GOAL] case mpr.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α a : (P F).A f : PFunctor.B (P F) a → α h₀ : x = abs { fst := a, snd := f } h₁ : ∀ (i : PFunctor.B (P F) a), p (f i) ⊢ Liftp p x [PROOFSTEP] use abs ⟨a, fun i => ⟨f i, h₁ i⟩⟩ [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α a : (P F).A f : PFunctor.B (P F) a → α h₀ : x = abs { fst := a, snd := f } h₁ : ∀ (i : PFunctor.B (P F) a), p (f i) ⊢ Subtype.val <$> abs { fst := a, snd := fun i => { val := f i, property := (_ : p (f i)) } } = x [PROOFSTEP] rw [← abs_map, h₀] [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α a : (P F).A f : PFunctor.B (P F) a → α h₀ : x = abs { fst := a, snd := f } h₁ : ∀ (i : PFunctor.B (P F) a), p (f i) ⊢ abs (Subtype.val <$> { fst := a, snd := fun i => { val := f i, property := (_ : p (f i)) } }) = abs { fst := a, snd := f } [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α ⊢ Liftp p x ↔ ∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i) [PROOFSTEP] constructor [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α ⊢ Liftp p x → ∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i) [PROOFSTEP] rintro ⟨y, hy⟩ [GOAL] case mp.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x ⊢ ∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i) [PROOFSTEP] cases' h : repr y with a f [GOAL] case mp.intro.mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ ∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i) [PROOFSTEP] use⟨a, fun i => (f i).val⟩ [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ abs { fst := a, snd := fun i => ↑(f i) } = x ∧ ∀ (i : PFunctor.B (P F) { fst := a, snd := fun i => ↑(f i) }.fst), p (Sigma.snd { fst := a, snd := fun i => ↑(f i) } i) [PROOFSTEP] dsimp [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ abs { fst := a, snd := fun i => ↑(f i) } = x ∧ ∀ (i : PFunctor.B (P F) a), p ↑(f i) [PROOFSTEP] constructor [GOAL] case h.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ abs { fst := a, snd := fun i => ↑(f i) } = x [PROOFSTEP] rw [← hy, ← abs_repr y, h, ← abs_map] [GOAL] case h.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ abs { fst := a, snd := fun i => ↑(f i) } = abs (Subtype.val <$> { fst := a, snd := f }) [PROOFSTEP] rfl [GOAL] case h.right F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } ⊢ ∀ (i : PFunctor.B (P F) a), p ↑(f i) [PROOFSTEP] intro i [GOAL] case h.right F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α y : F (Subtype p) hy : Subtype.val <$> y = x a : (P F).A f : PFunctor.B (P F) a → Subtype p h : repr y = { fst := a, snd := f } i : PFunctor.B (P F) a ⊢ p ↑(f i) [PROOFSTEP] apply (f i).property [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α ⊢ (∃ u, abs u = x ∧ ∀ (i : PFunctor.B (P F) u.fst), p (Sigma.snd u i)) → Liftp p x [PROOFSTEP] rintro ⟨⟨a, f⟩, h₀, h₁⟩ [GOAL] case mpr.intro.mk.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α a : (P F).A f : PFunctor.B (P F) a → α h₀ : abs { fst := a, snd := f } = x h₁ : ∀ (i : PFunctor.B (P F) { fst := a, snd := f }.fst), p (Sigma.snd { fst := a, snd := f } i) ⊢ Liftp p x [PROOFSTEP] dsimp at * [GOAL] case mpr.intro.mk.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α a : (P F).A f : PFunctor.B (P F) a → α h₀ : abs { fst := a, snd := f } = x h₁ : ∀ (i : PFunctor.B (P F) a), p (f i) ⊢ Liftp p x [PROOFSTEP] use abs ⟨a, fun i => ⟨f i, h₁ i⟩⟩ [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α a : (P F).A f : PFunctor.B (P F) a → α h₀ : abs { fst := a, snd := f } = x h₁ : ∀ (i : PFunctor.B (P F) a), p (f i) ⊢ Subtype.val <$> abs { fst := a, snd := fun i => { val := f i, property := (_ : p (f i)) } } = x [PROOFSTEP] rw [← abs_map, ← h₀] [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u p : α → Prop x : F α a : (P F).A f : PFunctor.B (P F) a → α h₀ : abs { fst := a, snd := f } = x h₁ : ∀ (i : PFunctor.B (P F) a), p (f i) ⊢ abs (Subtype.val <$> { fst := a, snd := fun i => { val := f i, property := (_ : p (f i)) } }) = abs { fst := a, snd := f } [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α ⊢ Liftr r x y ↔ ∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) [PROOFSTEP] constructor [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α ⊢ Liftr r x y → ∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) [PROOFSTEP] rintro ⟨u, xeq, yeq⟩ [GOAL] case mp.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y ⊢ ∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) [PROOFSTEP] cases' h : repr u with a f [GOAL] case mp.intro.intro.mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y a : (P F).A f : PFunctor.B (P F) a → { p // r p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ ∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) [PROOFSTEP] use a, fun i => (f i).val.fst, fun i => (f i).val.snd [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y a : (P F).A f : PFunctor.B (P F) a → { p // r p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ x = abs { fst := a, snd := fun i => (↑(f i)).fst } ∧ y = abs { fst := a, snd := fun i => (↑(f i)).snd } ∧ ∀ (i : PFunctor.B (P F) a), r (↑(f i)).fst (↑(f i)).snd [PROOFSTEP] constructor [GOAL] case h.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y a : (P F).A f : PFunctor.B (P F) a → { p // r p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ x = abs { fst := a, snd := fun i => (↑(f i)).fst } [PROOFSTEP] rw [← xeq, ← abs_repr u, h, ← abs_map] [GOAL] case h.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y a : (P F).A f : PFunctor.B (P F) a → { p // r p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ abs ((fun t => (↑t).fst) <$> { fst := a, snd := f }) = abs { fst := a, snd := fun i => (↑(f i)).fst } [PROOFSTEP] rfl [GOAL] case h.right F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y a : (P F).A f : PFunctor.B (P F) a → { p // r p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ y = abs { fst := a, snd := fun i => (↑(f i)).snd } ∧ ∀ (i : PFunctor.B (P F) a), r (↑(f i)).fst (↑(f i)).snd [PROOFSTEP] constructor [GOAL] case h.right.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y a : (P F).A f : PFunctor.B (P F) a → { p // r p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ y = abs { fst := a, snd := fun i => (↑(f i)).snd } [PROOFSTEP] rw [← yeq, ← abs_repr u, h, ← abs_map] [GOAL] case h.right.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y a : (P F).A f : PFunctor.B (P F) a → { p // r p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ abs ((fun t => (↑t).snd) <$> { fst := a, snd := f }) = abs { fst := a, snd := fun i => (↑(f i)).snd } [PROOFSTEP] rfl [GOAL] case h.right.right F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y a : (P F).A f : PFunctor.B (P F) a → { p // r p.fst p.snd } h : repr u = { fst := a, snd := f } ⊢ ∀ (i : PFunctor.B (P F) a), r (↑(f i)).fst (↑(f i)).snd [PROOFSTEP] intro i [GOAL] case h.right.right F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α u : F { p // r p.fst p.snd } xeq : (fun t => (↑t).fst) <$> u = x yeq : (fun t => (↑t).snd) <$> u = y a : (P F).A f : PFunctor.B (P F) a → { p // r p.fst p.snd } h : repr u = { fst := a, snd := f } i : PFunctor.B (P F) a ⊢ r (↑(f i)).fst (↑(f i)).snd [PROOFSTEP] exact (f i).property [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α ⊢ (∃ a f₀ f₁, x = abs { fst := a, snd := f₀ } ∧ y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i)) → Liftr r x y [PROOFSTEP] rintro ⟨a, f₀, f₁, xeq, yeq, h⟩ [GOAL] case mpr.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α a : (P F).A f₀ f₁ : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) ⊢ Liftr r x y [PROOFSTEP] use abs ⟨a, fun i => ⟨(f₀ i, f₁ i), h i⟩⟩ [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α a : (P F).A f₀ f₁ : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) ⊢ (fun t => (↑t).fst) <$> abs { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } } = x ∧ (fun t => (↑t).snd) <$> abs { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } } = y [PROOFSTEP] constructor [GOAL] case h.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α a : (P F).A f₀ f₁ : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) ⊢ (fun t => (↑t).fst) <$> abs { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } } = x [PROOFSTEP] rw [xeq, ← abs_map] [GOAL] case h.left F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α a : (P F).A f₀ f₁ : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) ⊢ abs ((fun t => (↑t).fst) <$> { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } }) = abs { fst := a, snd := f₀ } [PROOFSTEP] rfl [GOAL] case h.right F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α a : (P F).A f₀ f₁ : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) ⊢ (fun t => (↑t).snd) <$> abs { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } } = y [PROOFSTEP] rw [yeq, ← abs_map] [GOAL] case h.right F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u r : α → α → Prop x y : F α a : (P F).A f₀ f₁ : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f₀ } yeq : y = abs { fst := a, snd := f₁ } h : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) ⊢ abs ((fun t => (↑t).snd) <$> { fst := a, snd := fun i => { val := (f₀ i, f₁ i), property := (_ : r (f₀ i) (f₁ i)) } }) = abs { fst := a, snd := f₁ } [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : PFunctor.W (P F) ⊢ recF g x = g (abs (recF g <$> PFunctor.W.dest x)) [PROOFSTEP] cases x [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α a✝ : (P F).A f✝ : PFunctor.B (P F) a✝ → WType (P F).B ⊢ recF g (WType.mk a✝ f✝) = g (abs (recF g <$> PFunctor.W.dest (WType.mk a✝ f✝))) [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y : PFunctor.W (P F) ⊢ Wequiv x y → recF u x = recF u y [PROOFSTEP] intro h [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y : PFunctor.W (P F) h : Wequiv x y ⊢ recF u x = recF u y [PROOFSTEP] induction h [GOAL] case ind F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y : PFunctor.W (P F) a✝¹ : (P F).A f✝ f'✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F) a✝ : ∀ (x : PFunctor.B (P F) a✝¹), Wequiv (f✝ x) (f'✝ x) a_ih✝ : ∀ (x : PFunctor.B (P F) a✝¹), recF u (f✝ x) = recF u (f'✝ x) ⊢ recF u (WType.mk a✝¹ f✝) = recF u (WType.mk a✝¹ f'✝) case abs F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y : PFunctor.W (P F) a✝¹ : (P F).A f✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F) a'✝ : (P F).A f'✝ : PFunctor.B (P F) a'✝ → PFunctor.W (P F) a✝ : abs { fst := a✝¹, snd := f✝ } = abs { fst := a'✝, snd := f'✝ } ⊢ recF u (WType.mk a✝¹ f✝) = recF u (WType.mk a'✝ f'✝) case trans F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y u✝ v✝ w✝ : PFunctor.W (P F) a✝¹ : Wequiv u✝ v✝ a✝ : Wequiv v✝ w✝ a_ih✝¹ : recF u u✝ = recF u v✝ a_ih✝ : recF u v✝ = recF u w✝ ⊢ recF u u✝ = recF u w✝ [PROOFSTEP] case ind a f f' _ ih => simp only [recF_eq', PFunctor.map_eq, Function.comp, ih] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y : PFunctor.W (P F) a : (P F).A f f' : PFunctor.B (P F) a → PFunctor.W (P F) a✝ : ∀ (x : PFunctor.B (P F) a), Wequiv (f x) (f' x) ih : ∀ (x : PFunctor.B (P F) a), recF u (f x) = recF u (f' x) ⊢ recF u (WType.mk a f) = recF u (WType.mk a f') [PROOFSTEP] case ind a f f' _ ih => simp only [recF_eq', PFunctor.map_eq, Function.comp, ih] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y : PFunctor.W (P F) a : (P F).A f f' : PFunctor.B (P F) a → PFunctor.W (P F) a✝ : ∀ (x : PFunctor.B (P F) a), Wequiv (f x) (f' x) ih : ∀ (x : PFunctor.B (P F) a), recF u (f x) = recF u (f' x) ⊢ recF u (WType.mk a f) = recF u (WType.mk a f') [PROOFSTEP] simp only [recF_eq', PFunctor.map_eq, Function.comp, ih] [GOAL] case abs F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y : PFunctor.W (P F) a✝¹ : (P F).A f✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F) a'✝ : (P F).A f'✝ : PFunctor.B (P F) a'✝ → PFunctor.W (P F) a✝ : abs { fst := a✝¹, snd := f✝ } = abs { fst := a'✝, snd := f'✝ } ⊢ recF u (WType.mk a✝¹ f✝) = recF u (WType.mk a'✝ f'✝) case trans F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y u✝ v✝ w✝ : PFunctor.W (P F) a✝¹ : Wequiv u✝ v✝ a✝ : Wequiv v✝ w✝ a_ih✝¹ : recF u u✝ = recF u v✝ a_ih✝ : recF u v✝ = recF u w✝ ⊢ recF u u✝ = recF u w✝ [PROOFSTEP] case abs a f a' f' h => simp only [recF_eq', abs_map, h] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y : PFunctor.W (P F) a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) a' : (P F).A f' : PFunctor.B (P F) a' → PFunctor.W (P F) h : abs { fst := a, snd := f } = abs { fst := a', snd := f' } ⊢ recF u (WType.mk a f) = recF u (WType.mk a' f') [PROOFSTEP] case abs a f a' f' h => simp only [recF_eq', abs_map, h] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y : PFunctor.W (P F) a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) a' : (P F).A f' : PFunctor.B (P F) a' → PFunctor.W (P F) h : abs { fst := a, snd := f } = abs { fst := a', snd := f' } ⊢ recF u (WType.mk a f) = recF u (WType.mk a' f') [PROOFSTEP] simp only [recF_eq', abs_map, h] [GOAL] case trans F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x y u✝ v✝ w✝ : PFunctor.W (P F) a✝¹ : Wequiv u✝ v✝ a✝ : Wequiv v✝ w✝ a_ih✝¹ : recF u u✝ = recF u v✝ a_ih✝ : recF u v✝ = recF u w✝ ⊢ recF u u✝ = recF u w✝ [PROOFSTEP] case trans x y z _ _ ih₁ ih₂ => exact Eq.trans ih₁ ih₂ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x✝ y✝ x y z : PFunctor.W (P F) a✝¹ : Wequiv x y a✝ : Wequiv y z ih₁ : recF u x = recF u y ih₂ : recF u y = recF u z ⊢ recF u x = recF u z [PROOFSTEP] case trans x y z _ _ ih₁ ih₂ => exact Eq.trans ih₁ ih₂ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u u : F α → α x✝ y✝ x y z : PFunctor.W (P F) a✝¹ : Wequiv x y a✝ : Wequiv y z ih₁ : recF u x = recF u y ih₂ : recF u y = recF u z ⊢ recF u x = recF u z [PROOFSTEP] exact Eq.trans ih₁ ih₂ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) h : Qpf.abs (PFunctor.W.dest x) = Qpf.abs (PFunctor.W.dest y) ⊢ Wequiv x y [PROOFSTEP] cases x [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F y : PFunctor.W (P F) a✝ : (P F).A f✝ : PFunctor.B (P F) a✝ → WType (P F).B h : Qpf.abs (PFunctor.W.dest (WType.mk a✝ f✝)) = Qpf.abs (PFunctor.W.dest y) ⊢ Wequiv (WType.mk a✝ f✝) y [PROOFSTEP] cases y [GOAL] case mk.mk F : Type u → Type u inst✝ : Functor F q : Qpf F a✝¹ : (P F).A f✝¹ : PFunctor.B (P F) a✝¹ → WType (P F).B a✝ : (P F).A f✝ : PFunctor.B (P F) a✝ → WType (P F).B h : Qpf.abs (PFunctor.W.dest (WType.mk a✝¹ f✝¹)) = Qpf.abs (PFunctor.W.dest (WType.mk a✝ f✝)) ⊢ Wequiv (WType.mk a✝¹ f✝¹) (WType.mk a✝ f✝) [PROOFSTEP] apply Wequiv.abs [GOAL] case mk.mk.a F : Type u → Type u inst✝ : Functor F q : Qpf F a✝¹ : (P F).A f✝¹ : PFunctor.B (P F) a✝¹ → WType (P F).B a✝ : (P F).A f✝ : PFunctor.B (P F) a✝ → WType (P F).B h : Qpf.abs (PFunctor.W.dest (WType.mk a✝¹ f✝¹)) = Qpf.abs (PFunctor.W.dest (WType.mk a✝ f✝)) ⊢ Qpf.abs { fst := a✝¹, snd := f✝¹ } = Qpf.abs { fst := a✝, snd := f✝ } [PROOFSTEP] apply h [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : PFunctor.W (P F) ⊢ Wequiv x x [PROOFSTEP] cases' x with a f [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ⊢ Wequiv (WType.mk a f) (WType.mk a f) [PROOFSTEP] exact Wequiv.abs a f a f rfl [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) ⊢ Wequiv x y → Wequiv y x [PROOFSTEP] intro h [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) h : Wequiv x y ⊢ Wequiv y x [PROOFSTEP] induction h [GOAL] case ind F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) a✝¹ : (P F).A f✝ f'✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F) a✝ : ∀ (x : PFunctor.B (P F) a✝¹), Wequiv (f✝ x) (f'✝ x) a_ih✝ : ∀ (x : PFunctor.B (P F) a✝¹), Wequiv (f'✝ x) (f✝ x) ⊢ Wequiv (WType.mk a✝¹ f'✝) (WType.mk a✝¹ f✝) case abs F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) a✝¹ : (P F).A f✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F) a'✝ : (P F).A f'✝ : PFunctor.B (P F) a'✝ → PFunctor.W (P F) a✝ : Qpf.abs { fst := a✝¹, snd := f✝ } = Qpf.abs { fst := a'✝, snd := f'✝ } ⊢ Wequiv (WType.mk a'✝ f'✝) (WType.mk a✝¹ f✝) case trans F : Type u → Type u inst✝ : Functor F q : Qpf F x y u✝ v✝ w✝ : PFunctor.W (P F) a✝¹ : Wequiv u✝ v✝ a✝ : Wequiv v✝ w✝ a_ih✝¹ : Wequiv v✝ u✝ a_ih✝ : Wequiv w✝ v✝ ⊢ Wequiv w✝ u✝ [PROOFSTEP] case ind a f f' _ ih => exact Wequiv.ind _ _ _ ih [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) a : (P F).A f f' : PFunctor.B (P F) a → PFunctor.W (P F) a✝ : ∀ (x : PFunctor.B (P F) a), Wequiv (f x) (f' x) ih : ∀ (x : PFunctor.B (P F) a), Wequiv (f' x) (f x) ⊢ Wequiv (WType.mk a f') (WType.mk a f) [PROOFSTEP] case ind a f f' _ ih => exact Wequiv.ind _ _ _ ih [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) a : (P F).A f f' : PFunctor.B (P F) a → PFunctor.W (P F) a✝ : ∀ (x : PFunctor.B (P F) a), Wequiv (f x) (f' x) ih : ∀ (x : PFunctor.B (P F) a), Wequiv (f' x) (f x) ⊢ Wequiv (WType.mk a f') (WType.mk a f) [PROOFSTEP] exact Wequiv.ind _ _ _ ih [GOAL] case abs F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) a✝¹ : (P F).A f✝ : PFunctor.B (P F) a✝¹ → PFunctor.W (P F) a'✝ : (P F).A f'✝ : PFunctor.B (P F) a'✝ → PFunctor.W (P F) a✝ : Qpf.abs { fst := a✝¹, snd := f✝ } = Qpf.abs { fst := a'✝, snd := f'✝ } ⊢ Wequiv (WType.mk a'✝ f'✝) (WType.mk a✝¹ f✝) case trans F : Type u → Type u inst✝ : Functor F q : Qpf F x y u✝ v✝ w✝ : PFunctor.W (P F) a✝¹ : Wequiv u✝ v✝ a✝ : Wequiv v✝ w✝ a_ih✝¹ : Wequiv v✝ u✝ a_ih✝ : Wequiv w✝ v✝ ⊢ Wequiv w✝ u✝ [PROOFSTEP] case abs a f a' f' h => exact Wequiv.abs _ _ _ _ h.symm [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) a' : (P F).A f' : PFunctor.B (P F) a' → PFunctor.W (P F) h : Qpf.abs { fst := a, snd := f } = Qpf.abs { fst := a', snd := f' } ⊢ Wequiv (WType.mk a' f') (WType.mk a f) [PROOFSTEP] case abs a f a' f' h => exact Wequiv.abs _ _ _ _ h.symm [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.W (P F) a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) a' : (P F).A f' : PFunctor.B (P F) a' → PFunctor.W (P F) h : Qpf.abs { fst := a, snd := f } = Qpf.abs { fst := a', snd := f' } ⊢ Wequiv (WType.mk a' f') (WType.mk a f) [PROOFSTEP] exact Wequiv.abs _ _ _ _ h.symm [GOAL] case trans F : Type u → Type u inst✝ : Functor F q : Qpf F x y u✝ v✝ w✝ : PFunctor.W (P F) a✝¹ : Wequiv u✝ v✝ a✝ : Wequiv v✝ w✝ a_ih✝¹ : Wequiv v✝ u✝ a_ih✝ : Wequiv w✝ v✝ ⊢ Wequiv w✝ u✝ [PROOFSTEP] case trans x y z _ _ ih₁ ih₂ => exact Qpf.Wequiv.trans _ _ _ ih₂ ih₁ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x✝ y✝ x y z : PFunctor.W (P F) a✝¹ : Wequiv x y a✝ : Wequiv y z ih₁ : Wequiv y x ih₂ : Wequiv z y ⊢ Wequiv z x [PROOFSTEP] case trans x y z _ _ ih₁ ih₂ => exact Qpf.Wequiv.trans _ _ _ ih₂ ih₁ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x✝ y✝ x y z : PFunctor.W (P F) a✝¹ : Wequiv x y a✝ : Wequiv y z ih₁ : Wequiv y x ih₂ : Wequiv z y ⊢ Wequiv z x [PROOFSTEP] exact Qpf.Wequiv.trans _ _ _ ih₂ ih₁ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : PFunctor.W (P F) ⊢ Wequiv (Wrepr x) x [PROOFSTEP] induction' x with a f ih [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a) ⊢ Wequiv (Wrepr (WType.mk a f)) (WType.mk a f) [PROOFSTEP] apply Wequiv.trans [GOAL] case mk.a F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a) ⊢ Wequiv (Wrepr (WType.mk a f)) ?mk.v [PROOFSTEP] change Wequiv (Wrepr ⟨a, f⟩) (PFunctor.W.mk (Wrepr <$> ⟨a, f⟩)) [GOAL] case mk.a F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a) ⊢ Wequiv (Wrepr (WType.mk a f)) (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f })) [PROOFSTEP] apply Wequiv.abs' [GOAL] case mk.a.h F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a) ⊢ abs (PFunctor.W.dest (Wrepr (WType.mk a f))) = abs (PFunctor.W.dest (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f }))) [PROOFSTEP] have : Wrepr ⟨a, f⟩ = PFunctor.W.mk (repr (abs (Wrepr <$> ⟨a, f⟩))) := rfl [GOAL] case mk.a.h F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a) this : Wrepr (WType.mk a f) = PFunctor.W.mk (repr (abs (Wrepr <$> { fst := a, snd := f }))) ⊢ abs (PFunctor.W.dest (Wrepr (WType.mk a f))) = abs (PFunctor.W.dest (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f }))) [PROOFSTEP] rw [this, PFunctor.W.dest_mk, abs_repr] [GOAL] case mk.a.h F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a) this : Wrepr (WType.mk a f) = PFunctor.W.mk (repr (abs (Wrepr <$> { fst := a, snd := f }))) ⊢ abs (Wrepr <$> { fst := a, snd := f }) = abs (PFunctor.W.dest (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f }))) [PROOFSTEP] rfl [GOAL] case mk.a F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a) ⊢ Wequiv (PFunctor.W.mk (Wrepr <$> { fst := a, snd := f })) (WType.mk a f) [PROOFSTEP] apply Wequiv.ind [GOAL] case mk.a.a F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), Wequiv (Wrepr (f a)) (f a) ⊢ ∀ (x : PFunctor.B (P F) a), Wequiv ((Wrepr ∘ f) x) (f x) [PROOFSTEP] exact ih [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) ⊢ rec g (mk x) = g (rec g <$> x) [PROOFSTEP] have : recF g ∘ fixToW = Fix.rec g := by apply funext apply Quotient.ind intro x apply recF_eq_of_Wequiv rw [fixToW] apply Wrepr_equiv [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) ⊢ recF g ∘ fixToW = rec g [PROOFSTEP] apply funext [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) ⊢ ∀ (x : Fix F), (recF g ∘ fixToW) x = rec g x [PROOFSTEP] apply Quotient.ind [GOAL] case h.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) ⊢ ∀ (a : PFunctor.W (P F)), (recF g ∘ fixToW) (Quotient.mk Wsetoid a) = rec g (Quotient.mk Wsetoid a) [PROOFSTEP] intro x [GOAL] case h.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x✝ : F (Fix F) x : PFunctor.W (P F) ⊢ (recF g ∘ fixToW) (Quotient.mk Wsetoid x) = rec g (Quotient.mk Wsetoid x) [PROOFSTEP] apply recF_eq_of_Wequiv [GOAL] case h.a.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x✝ : F (Fix F) x : PFunctor.W (P F) ⊢ Wequiv (fixToW (Quotient.mk Wsetoid x)) x [PROOFSTEP] rw [fixToW] [GOAL] case h.a.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x✝ : F (Fix F) x : PFunctor.W (P F) ⊢ Wequiv (Quotient.lift Wrepr (_ : ∀ (x y : PFunctor.W (P F)), Wequiv x y → recF (fun x => PFunctor.W.mk (repr x)) x = recF (fun x => PFunctor.W.mk (repr x)) y) (Quotient.mk Wsetoid x)) x [PROOFSTEP] apply Wrepr_equiv [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) this : recF g ∘ fixToW = rec g ⊢ rec g (mk x) = g (rec g <$> x) [PROOFSTEP] conv => lhs rw [Fix.rec, Fix.mk] dsimp [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) this : recF g ∘ fixToW = rec g | rec g (mk x) = g (rec g <$> x) [PROOFSTEP] lhs rw [Fix.rec, Fix.mk] dsimp [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) this : recF g ∘ fixToW = rec g | rec g (mk x) = g (rec g <$> x) [PROOFSTEP] lhs rw [Fix.rec, Fix.mk] dsimp [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) this : recF g ∘ fixToW = rec g | rec g (mk x) = g (rec g <$> x) [PROOFSTEP] lhs [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) this : recF g ∘ fixToW = rec g | rec g (mk x) [PROOFSTEP] rw [Fix.rec, Fix.mk] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) this : recF g ∘ fixToW = rec g | Quot.lift (recF g) (_ : ∀ (x y : PFunctor.W (P F)), Wequiv x y → recF g x = recF g y) (Quot.mk Setoid.r (PFunctor.W.mk (fixToW <$> repr x))) [PROOFSTEP] dsimp [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) this : recF g ∘ fixToW = rec g ⊢ recF g (PFunctor.W.mk (fixToW <$> repr x)) = g (rec g <$> x) [PROOFSTEP] cases' h : repr x with a f [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α x : F (Fix F) this : recF g ∘ fixToW = rec g a : (P F).A f : PFunctor.B (P F) a → Fix F h : repr x = { fst := a, snd := f } ⊢ recF g (PFunctor.W.mk (fixToW <$> { fst := a, snd := f })) = g (rec g <$> x) [PROOFSTEP] rw [PFunctor.map_eq, recF_eq, ← PFunctor.map_eq, PFunctor.W.dest_mk, ← PFunctor.comp_map, abs_map, ← h, abs_repr, this] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) ⊢ mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (WType.mk a f) [PROOFSTEP] have : Fix.mk (abs ⟨a, fun x => ⟦f x⟧⟩) = ⟦Wrepr ⟨a, f⟩⟧ := by apply Quot.sound; apply Wequiv.abs' rw [PFunctor.W.dest_mk, abs_map, abs_repr, ← abs_map, PFunctor.map_eq] conv => rhs simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) ⊢ mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (Wrepr (WType.mk a f)) [PROOFSTEP] apply Quot.sound [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) ⊢ Setoid.r (PFunctor.W.mk (fixToW <$> repr (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }))) (Wrepr (WType.mk a f)) [PROOFSTEP] apply Wequiv.abs' [GOAL] case a.h F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) ⊢ abs (PFunctor.W.dest (PFunctor.W.mk (fixToW <$> repr (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) })))) = abs (PFunctor.W.dest (Wrepr (WType.mk a f))) [PROOFSTEP] rw [PFunctor.W.dest_mk, abs_map, abs_repr, ← abs_map, PFunctor.map_eq] [GOAL] case a.h F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) ⊢ abs { fst := a, snd := fixToW ∘ fun x => Quotient.mk Wsetoid (f x) } = abs (PFunctor.W.dest (Wrepr (WType.mk a f))) [PROOFSTEP] conv => rhs simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) | abs { fst := a, snd := fixToW ∘ fun x => Quotient.mk Wsetoid (f x) } = abs (PFunctor.W.dest (Wrepr (WType.mk a f))) [PROOFSTEP] rhs simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) | abs { fst := a, snd := fixToW ∘ fun x => Quotient.mk Wsetoid (f x) } = abs (PFunctor.W.dest (Wrepr (WType.mk a f))) [PROOFSTEP] rhs simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) | abs { fst := a, snd := fixToW ∘ fun x => Quotient.mk Wsetoid (f x) } = abs (PFunctor.W.dest (Wrepr (WType.mk a f))) [PROOFSTEP] rhs [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) | abs (PFunctor.W.dest (Wrepr (WType.mk a f))) [PROOFSTEP] simp only [Wrepr, recF_eq, PFunctor.W.dest_mk, abs_repr, Function.comp] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) this : mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (Wrepr (WType.mk a f)) ⊢ mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (WType.mk a f) [PROOFSTEP] rw [this] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) this : mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (Wrepr (WType.mk a f)) ⊢ Quotient.mk Wsetoid (Wrepr (WType.mk a f)) = Quotient.mk Wsetoid (WType.mk a f) [PROOFSTEP] apply Quot.sound [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F a : (P F).A f : PFunctor.B (P F) a → PFunctor.W (P F) this : mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) = Quotient.mk Wsetoid (Wrepr (WType.mk a f)) ⊢ Setoid.r (Wrepr (WType.mk a f)) (WType.mk a f) [PROOFSTEP] apply Wrepr_equiv [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g₁ g₂ : Fix F → α h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x) ⊢ ∀ (x : Fix F), g₁ x = g₂ x [PROOFSTEP] apply Quot.ind [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g₁ g₂ : Fix F → α h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x) ⊢ ∀ (a : PFunctor.W (P F)), g₁ (Quot.mk Setoid.r a) = g₂ (Quot.mk Setoid.r a) [PROOFSTEP] intro x [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g₁ g₂ : Fix F → α h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x) x : PFunctor.W (P F) ⊢ g₁ (Quot.mk Setoid.r x) = g₂ (Quot.mk Setoid.r x) [PROOFSTEP] induction' x with a f ih [GOAL] case mk.mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g₁ g₂ : Fix F → α h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a)) ⊢ g₁ (Quot.mk Setoid.r (WType.mk a f)) = g₂ (Quot.mk Setoid.r (WType.mk a f)) [PROOFSTEP] change g₁ ⟦⟨a, f⟩⟧ = g₂ ⟦⟨a, f⟩⟧ [GOAL] case mk.mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g₁ g₂ : Fix F → α h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a)) ⊢ g₁ (Quotient.mk Wsetoid (WType.mk a f)) = g₂ (Quotient.mk Wsetoid (WType.mk a f)) [PROOFSTEP] rw [← Fix.ind_aux a f] [GOAL] case mk.mk F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g₁ g₂ : Fix F → α h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a)) ⊢ g₁ (mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) })) = g₂ (mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) })) [PROOFSTEP] apply h [GOAL] case mk.mk.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g₁ g₂ : Fix F → α h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a)) ⊢ g₁ <$> abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) } = g₂ <$> abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) } [PROOFSTEP] rw [← abs_map, ← abs_map, PFunctor.map_eq, PFunctor.map_eq] [GOAL] case mk.mk.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g₁ g₂ : Fix F → α h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a)) ⊢ abs { fst := a, snd := g₁ ∘ fun x => Quotient.mk Wsetoid (f x) } = abs { fst := a, snd := g₂ ∘ fun x => Quotient.mk Wsetoid (f x) } [PROOFSTEP] congr with x [GOAL] case mk.mk.a.e_a.e_snd.h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g₁ g₂ : Fix F → α h : ∀ (x : F (Fix F)), g₁ <$> x = g₂ <$> x → g₁ (mk x) = g₂ (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), g₁ (Quot.mk Setoid.r (f a)) = g₂ (Quot.mk Setoid.r (f a)) x : PFunctor.B (P F) a ⊢ (g₁ ∘ fun x => Quotient.mk Wsetoid (f x)) x = (g₂ ∘ fun x => Quotient.mk Wsetoid (f x)) x [PROOFSTEP] apply ih [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α h : Fix F → α hyp : ∀ (x : F (Fix F)), h (mk x) = g (h <$> x) ⊢ rec g = h [PROOFSTEP] ext x [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α h : Fix F → α hyp : ∀ (x : F (Fix F)), h (mk x) = g (h <$> x) x : Fix F ⊢ rec g x = h x [PROOFSTEP] apply Fix.ind_rec [GOAL] case h.h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α h : Fix F → α hyp : ∀ (x : F (Fix F)), h (mk x) = g (h <$> x) x : Fix F ⊢ ∀ (x : F (Fix F)), rec g <$> x = (fun x => h x) <$> x → rec g (mk x) = h (mk x) [PROOFSTEP] intro x hyp' [GOAL] case h.h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : F α → α h : Fix F → α hyp : ∀ (x : F (Fix F)), h (mk x) = g (h <$> x) x✝ : Fix F x : F (Fix F) hyp' : rec g <$> x = (fun x => h x) <$> x ⊢ rec g (mk x) = h (mk x) [PROOFSTEP] rw [hyp, ← hyp', Fix.rec_eq] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : Fix F ⊢ mk (dest x) = x [PROOFSTEP] change (Fix.mk ∘ Fix.dest) x = id x [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : Fix F ⊢ (mk ∘ dest) x = id x [PROOFSTEP] apply Fix.ind_rec (mk ∘ dest) id [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F x : Fix F ⊢ ∀ (x : F (Fix F)), (mk ∘ dest) <$> x = id <$> x → (mk ∘ dest) (mk x) = id (mk x) [PROOFSTEP] intro x [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F x✝ : Fix F x : F (Fix F) ⊢ (mk ∘ dest) <$> x = id <$> x → (mk ∘ dest) (mk x) = id (mk x) [PROOFSTEP] rw [Function.comp_apply, id_eq, Fix.dest, Fix.rec_eq, id_map, comp_map] [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F x✝ : Fix F x : F (Fix F) ⊢ mk <$> rec (Functor.map mk) <$> x = x → mk (mk <$> rec (Functor.map mk) <$> x) = mk x [PROOFSTEP] intro h [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F x✝ : Fix F x : F (Fix F) h : mk <$> rec (Functor.map mk) <$> x = x ⊢ mk (mk <$> rec (Functor.map mk) <$> x) = mk x [PROOFSTEP] rw [h] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : F (Fix F) ⊢ dest (mk x) = x [PROOFSTEP] unfold Fix.dest [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : F (Fix F) ⊢ rec (Functor.map mk) (mk x) = x [PROOFSTEP] rw [Fix.rec_eq, ← Fix.dest, ← comp_map] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : F (Fix F) ⊢ (mk ∘ dest) <$> x = x [PROOFSTEP] conv => rhs rw [← id_map x] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : F (Fix F) | (mk ∘ dest) <$> x = x [PROOFSTEP] rhs rw [← id_map x] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : F (Fix F) | (mk ∘ dest) <$> x = x [PROOFSTEP] rhs rw [← id_map x] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : F (Fix F) | (mk ∘ dest) <$> x = x [PROOFSTEP] rhs [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : F (Fix F) | x [PROOFSTEP] rw [← id_map x] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x : F (Fix F) ⊢ (mk ∘ dest) <$> x = id <$> x [PROOFSTEP] congr with x [GOAL] case e_a.h F : Type u → Type u inst✝ : Functor F q : Qpf F x✝ : F (Fix F) x : Fix F ⊢ (mk ∘ dest) x = id x [PROOFSTEP] apply Fix.mk_dest [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F p : Fix F → Prop h : ∀ (x : F (Fix F)), Liftp p x → p (mk x) ⊢ ∀ (x : Fix F), p x [PROOFSTEP] apply Quot.ind [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F p : Fix F → Prop h : ∀ (x : F (Fix F)), Liftp p x → p (mk x) ⊢ ∀ (a : PFunctor.W (P F)), p (Quot.mk Setoid.r a) [PROOFSTEP] intro x [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F p : Fix F → Prop h : ∀ (x : F (Fix F)), Liftp p x → p (mk x) x : PFunctor.W (P F) ⊢ p (Quot.mk Setoid.r x) [PROOFSTEP] induction' x with a f ih [GOAL] case mk.mk F : Type u → Type u inst✝ : Functor F q : Qpf F p : Fix F → Prop h : ∀ (x : F (Fix F)), Liftp p x → p (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a)) ⊢ p (Quot.mk Setoid.r (WType.mk a f)) [PROOFSTEP] change p ⟦⟨a, f⟩⟧ [GOAL] case mk.mk F : Type u → Type u inst✝ : Functor F q : Qpf F p : Fix F → Prop h : ∀ (x : F (Fix F)), Liftp p x → p (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a)) ⊢ p (Quotient.mk Wsetoid (WType.mk a f)) [PROOFSTEP] rw [← Fix.ind_aux a f] [GOAL] case mk.mk F : Type u → Type u inst✝ : Functor F q : Qpf F p : Fix F → Prop h : ∀ (x : F (Fix F)), Liftp p x → p (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a)) ⊢ p (mk (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) })) [PROOFSTEP] apply h [GOAL] case mk.mk.a F : Type u → Type u inst✝ : Functor F q : Qpf F p : Fix F → Prop h : ∀ (x : F (Fix F)), Liftp p x → p (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a)) ⊢ Liftp p (abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) }) [PROOFSTEP] rw [liftp_iff] [GOAL] case mk.mk.a F : Type u → Type u inst✝ : Functor F q : Qpf F p : Fix F → Prop h : ∀ (x : F (Fix F)), Liftp p x → p (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a)) ⊢ ∃ a_1 f_1, abs { fst := a, snd := fun x => Quotient.mk Wsetoid (f x) } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_1), p (f_1 i) [PROOFSTEP] refine' ⟨_, _, rfl, _⟩ [GOAL] case mk.mk.a F : Type u → Type u inst✝ : Functor F q : Qpf F p : Fix F → Prop h : ∀ (x : F (Fix F)), Liftp p x → p (mk x) a : (P F).A f : PFunctor.B (P F) a → WType (P F).B ih : ∀ (a : PFunctor.B (P F) a), p (Quot.mk Setoid.r (f a)) ⊢ ∀ (i : PFunctor.B (P F) a), p (Quotient.mk Wsetoid (f i)) [PROOFSTEP] convert ih [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : α → F α x : α ⊢ PFunctor.M.dest (corecF g x) = corecF g <$> repr (g x) [PROOFSTEP] rw [corecF, PFunctor.M.dest_corec] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F ⊢ ∀ (a b : PFunctor.M (P F)), Mcongr a b → (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) a = (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) b [PROOFSTEP] rintro x y ⟨r, pr, rxy⟩ [GOAL] case intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x y ⊢ (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) x = (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) y [PROOFSTEP] dsimp [GOAL] case intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x y ⊢ Quot.mk Mcongr <$> abs (PFunctor.M.dest x) = Quot.mk Mcongr <$> abs (PFunctor.M.dest y) [PROOFSTEP] have : ∀ x y, r x y → Mcongr x y := by intro x y h exact ⟨r, pr, h⟩ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x y ⊢ ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y [PROOFSTEP] intro x y h [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x✝ y✝ : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x✝ y✝ x y : PFunctor.M (P F) h : r x y ⊢ Mcongr x y [PROOFSTEP] exact ⟨r, pr, h⟩ [GOAL] case intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x y this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y ⊢ Quot.mk Mcongr <$> abs (PFunctor.M.dest x) = Quot.mk Mcongr <$> abs (PFunctor.M.dest y) [PROOFSTEP] rw [← Quot.factor_mk_eq _ _ this] [GOAL] case intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x y this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y ⊢ (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x) = (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest y) [PROOFSTEP] conv => lhs rw [comp_map, ← abs_map, pr rxy, abs_map, ← comp_map] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x y this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y | (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x) = (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest y) [PROOFSTEP] lhs rw [comp_map, ← abs_map, pr rxy, abs_map, ← comp_map] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x y this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y | (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x) = (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest y) [PROOFSTEP] lhs rw [comp_map, ← abs_map, pr rxy, abs_map, ← comp_map] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x y this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y | (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x) = (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest y) [PROOFSTEP] lhs [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F x y : PFunctor.M (P F) r : PFunctor.M (P F) → PFunctor.M (P F) → Prop pr : IsPrecongr r rxy : r x y this : ∀ (x y : PFunctor.M (P F)), r x y → Mcongr x y | (Quot.factor (fun x y => r x y) (fun x y => Mcongr x y) this ∘ Quot.mk fun x y => r x y) <$> abs (PFunctor.M.dest x) [PROOFSTEP] rw [comp_map, ← abs_map, pr rxy, abs_map, ← comp_map] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : α → F α x : α ⊢ dest (corec g x) = corec g <$> g x [PROOFSTEP] conv => lhs rw [Cofix.dest, Cofix.corec]; [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : α → F α x : α | dest (corec g x) = corec g <$> g x [PROOFSTEP] lhs rw [Cofix.dest, Cofix.corec]; [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : α → F α x : α | dest (corec g x) = corec g <$> g x [PROOFSTEP] lhs rw [Cofix.dest, Cofix.corec]; [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : α → F α x : α | dest (corec g x) = corec g <$> g x [PROOFSTEP] lhs [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : α → F α x : α | dest (corec g x) [PROOFSTEP] rw [Cofix.dest, Cofix.corec] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : α → F α x : α ⊢ Quot.lift (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) (_ : ∀ (x y : PFunctor.M (P F)), Mcongr x y → (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) x = (fun x => Quot.mk Mcongr <$> abs (PFunctor.M.dest x)) y) (Quot.mk Mcongr (corecF g x)) = corec g <$> g x [PROOFSTEP] dsimp [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : α → F α x : α ⊢ Quot.mk Mcongr <$> abs (PFunctor.M.dest (corecF g x)) = corec g <$> g x [PROOFSTEP] rw [corecF_eq, abs_map, abs_repr, ← comp_map] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u g : α → F α x : α ⊢ (Quot.mk Mcongr ∘ corecF g) <$> g x = corec g <$> g x [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y ⊢ ∀ (x y : Cofix F), r x y → x = y [PROOFSTEP] intro x [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x : Cofix F ⊢ ∀ (y : Cofix F), r x y → x = y [PROOFSTEP] apply Quot.inductionOn (motive := _) x [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x : Cofix F ⊢ ∀ (a : PFunctor.M (P F)) (y : Cofix F), r (Quot.mk Mcongr a) y → Quot.mk Mcongr a = y [PROOFSTEP] clear x [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y ⊢ ∀ (a : PFunctor.M (P F)) (y : Cofix F), r (Quot.mk Mcongr a) y → Quot.mk Mcongr a = y [PROOFSTEP] intro x y [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x : PFunctor.M (P F) y : Cofix F ⊢ r (Quot.mk Mcongr x) y → Quot.mk Mcongr x = y [PROOFSTEP] apply Quot.inductionOn (motive := _) y [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x : PFunctor.M (P F) y : Cofix F ⊢ ∀ (a : PFunctor.M (P F)), r (Quot.mk Mcongr x) (Quot.mk Mcongr a) → Quot.mk Mcongr x = Quot.mk Mcongr a [PROOFSTEP] clear y [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x : PFunctor.M (P F) ⊢ ∀ (a : PFunctor.M (P F)), r (Quot.mk Mcongr x) (Quot.mk Mcongr a) → Quot.mk Mcongr x = Quot.mk Mcongr a [PROOFSTEP] intro y rxy [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) ⊢ Quot.mk Mcongr x = Quot.mk Mcongr y [PROOFSTEP] apply Quot.sound [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) ⊢ Mcongr x y [PROOFSTEP] let r' x y := r (Quot.mk _ x) (Quot.mk _ y) [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) ⊢ Mcongr x y [PROOFSTEP] have : IsPrecongr r' := by intro a b r'ab have h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) := h _ _ r'ab have h₁ : ∀ u v : q.P.M, Mcongr u v → Quot.mk r' u = Quot.mk r' v := by intro u v cuv apply Quot.sound simp only rw [Quot.sound cuv] apply h' let f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') h₁) (by intro c; apply Quot.inductionOn (motive := _) c; clear c intro c d; apply Quot.inductionOn (motive := _) d; clear d intro d rcd; apply Quot.sound; apply rcd) have : f ∘ Quot.mk r ∘ Quot.mk Mcongr = Quot.mk r' := rfl rw [← this, PFunctor.comp_map _ _ f, PFunctor.comp_map _ _ (Quot.mk r), abs_map, abs_map, abs_map, h₀] rw [PFunctor.comp_map _ _ f, PFunctor.comp_map _ _ (Quot.mk r), abs_map, abs_map, abs_map] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) ⊢ IsPrecongr r' [PROOFSTEP] intro a b r'ab [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b ⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b) [PROOFSTEP] have h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) := h _ _ r'ab [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) ⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b) [PROOFSTEP] have h₁ : ∀ u v : q.P.M, Mcongr u v → Quot.mk r' u = Quot.mk r' v := by intro u v cuv apply Quot.sound simp only rw [Quot.sound cuv] apply h' [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) ⊢ ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v [PROOFSTEP] intro u v cuv [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) u v : PFunctor.M (P F) cuv : Mcongr u v ⊢ Quot.mk r' u = Quot.mk r' v [PROOFSTEP] apply Quot.sound [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) u v : PFunctor.M (P F) cuv : Mcongr u v ⊢ r' u v [PROOFSTEP] simp only [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) u v : PFunctor.M (P F) cuv : Mcongr u v ⊢ r (Quot.mk Mcongr u) (Quot.mk Mcongr v) [PROOFSTEP] rw [Quot.sound cuv] [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) u v : PFunctor.M (P F) cuv : Mcongr u v ⊢ r (Quot.mk Mcongr v) (Quot.mk Mcongr v) [PROOFSTEP] apply h' [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v ⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b) [PROOFSTEP] let f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') h₁) (by intro c; apply Quot.inductionOn (motive := _) c; clear c intro c d; apply Quot.inductionOn (motive := _) d; clear d intro d rcd; apply Quot.sound; apply rcd) [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v ⊢ ∀ (a b : Cofix F), r a b → Quot.lift (Quot.mk r') h₁ a = Quot.lift (Quot.mk r') h₁ b [PROOFSTEP] intro c [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v c : Cofix F ⊢ ∀ (b : Cofix F), r c b → Quot.lift (Quot.mk r') h₁ c = Quot.lift (Quot.mk r') h₁ b [PROOFSTEP] apply Quot.inductionOn (motive := _) c [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v c : Cofix F ⊢ ∀ (a : PFunctor.M (P F)) (b : Cofix F), r (Quot.mk Mcongr a) b → Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr a) = Quot.lift (Quot.mk r') h₁ b [PROOFSTEP] clear c [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v ⊢ ∀ (a : PFunctor.M (P F)) (b : Cofix F), r (Quot.mk Mcongr a) b → Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr a) = Quot.lift (Quot.mk r') h₁ b [PROOFSTEP] intro c d [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v c : PFunctor.M (P F) d : Cofix F ⊢ r (Quot.mk Mcongr c) d → Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ d [PROOFSTEP] apply Quot.inductionOn (motive := _) d [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v c : PFunctor.M (P F) d : Cofix F ⊢ ∀ (a : PFunctor.M (P F)), r (Quot.mk Mcongr c) (Quot.mk Mcongr a) → Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr a) [PROOFSTEP] clear d [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v c : PFunctor.M (P F) ⊢ ∀ (a : PFunctor.M (P F)), r (Quot.mk Mcongr c) (Quot.mk Mcongr a) → Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr a) [PROOFSTEP] intro d rcd [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v c d : PFunctor.M (P F) rcd : r (Quot.mk Mcongr c) (Quot.mk Mcongr d) ⊢ Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr c) = Quot.lift (Quot.mk r') h₁ (Quot.mk Mcongr d) [PROOFSTEP] apply Quot.sound [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v c d : PFunctor.M (P F) rcd : r (Quot.mk Mcongr c) (Quot.mk Mcongr d) ⊢ r' c d [PROOFSTEP] apply rcd [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') h₁) (_ : ∀ (c b : Cofix F), r c b → Quot.lift (Quot.mk r') h₁ c = Quot.lift (Quot.mk r') h₁ b) ⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b) [PROOFSTEP] have : f ∘ Quot.mk r ∘ Quot.mk Mcongr = Quot.mk r' := rfl [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') h₁) (_ : ∀ (c b : Cofix F), r c b → Quot.lift (Quot.mk r') h₁ c = Quot.lift (Quot.mk r') h₁ b) this : f ∘ Quot.mk r ∘ Quot.mk Mcongr = Quot.mk r' ⊢ abs (Quot.mk r' <$> PFunctor.M.dest a) = abs (Quot.mk r' <$> PFunctor.M.dest b) [PROOFSTEP] rw [← this, PFunctor.comp_map _ _ f, PFunctor.comp_map _ _ (Quot.mk r), abs_map, abs_map, abs_map, h₀] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) a b : PFunctor.M (P F) r'ab : r' a b h₀ : Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest a) = Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) h₁ : ∀ (u v : PFunctor.M (P F)), Mcongr u v → Quot.mk r' u = Quot.mk r' v f : Quot r → Quot r' := Quot.lift (Quot.lift (Quot.mk r') h₁) (_ : ∀ (c b : Cofix F), r c b → Quot.lift (Quot.mk r') h₁ c = Quot.lift (Quot.mk r') h₁ b) this : f ∘ Quot.mk r ∘ Quot.mk Mcongr = Quot.mk r' ⊢ f <$> Quot.mk r <$> Quot.mk Mcongr <$> abs (PFunctor.M.dest b) = abs ((f ∘ Quot.mk r ∘ Quot.mk Mcongr) <$> PFunctor.M.dest b) [PROOFSTEP] rw [PFunctor.comp_map _ _ f, PFunctor.comp_map _ _ (Quot.mk r), abs_map, abs_map, abs_map] [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h' : ∀ (x : Cofix F), r x x h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y x y : PFunctor.M (P F) rxy : r (Quot.mk Mcongr x) (Quot.mk Mcongr y) r' : PFunctor.M (P F) → PFunctor.M (P F) → Prop := fun x y => r (Quot.mk Mcongr x) (Quot.mk Mcongr y) this : IsPrecongr r' ⊢ Mcongr x y [PROOFSTEP] refine' ⟨r', this, rxy⟩ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y ⊢ ∀ (x y : Cofix F), r x y → x = y [PROOFSTEP] let r' (x y) := x = y ∨ r x y [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y ⊢ ∀ (x y : Cofix F), r x y → x = y [PROOFSTEP] intro x y rxy [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x y : Cofix F rxy : r x y ⊢ x = y [PROOFSTEP] apply Cofix.bisim_aux r' [GOAL] case h' F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x y : Cofix F rxy : r x y ⊢ ∀ (x : Cofix F), r' x x [PROOFSTEP] intro x [GOAL] case h' F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x✝ y : Cofix F rxy : r x✝ y x : Cofix F ⊢ r' x x [PROOFSTEP] left [GOAL] case h'.h F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x✝ y : Cofix F rxy : r x✝ y x : Cofix F ⊢ x = x [PROOFSTEP] rfl [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x y : Cofix F rxy : r x y ⊢ ∀ (x y : Cofix F), r' x y → Quot.mk r' <$> dest x = Quot.mk r' <$> dest y [PROOFSTEP] intro x y r'xy [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x✝ y✝ : Cofix F rxy : r x✝ y✝ x y : Cofix F r'xy : r' x y ⊢ Quot.mk r' <$> dest x = Quot.mk r' <$> dest y [PROOFSTEP] cases' r'xy with r'xy r'xy [GOAL] case h.inl F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x✝ y✝ : Cofix F rxy : r x✝ y✝ x y : Cofix F r'xy : x = y ⊢ Quot.mk r' <$> dest x = Quot.mk r' <$> dest y [PROOFSTEP] rw [r'xy] [GOAL] case h.inr F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x✝ y✝ : Cofix F rxy : r x✝ y✝ x y : Cofix F r'xy : r x y ⊢ Quot.mk r' <$> dest x = Quot.mk r' <$> dest y [PROOFSTEP] have : ∀ x y, r x y → r' x y := fun x y h => Or.inr h [GOAL] case h.inr F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x✝ y✝ : Cofix F rxy : r x✝ y✝ x y : Cofix F r'xy : r x y this : ∀ (x y : Cofix F), r x y → r' x y ⊢ Quot.mk r' <$> dest x = Quot.mk r' <$> dest y [PROOFSTEP] rw [← Quot.factor_mk_eq _ _ this] [GOAL] case h.inr F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x✝ y✝ : Cofix F rxy : r x✝ y✝ x y : Cofix F r'xy : r x y this : ∀ (x y : Cofix F), r x y → r' x y ⊢ (Quot.factor (fun x y => r x y) (fun x y => r' x y) this ∘ Quot.mk fun x y => r x y) <$> dest x = (Quot.factor (fun x y => r x y) (fun x y => r' x y) this ∘ Quot.mk fun x y => r x y) <$> dest y [PROOFSTEP] dsimp [GOAL] case h.inr F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x✝ y✝ : Cofix F rxy : r x✝ y✝ x y : Cofix F r'xy : r x y this : ∀ (x y : Cofix F), r x y → r' x y ⊢ (Quot.factor (fun x y => r x y) (fun x y => x = y ∨ r x y) this ∘ Quot.mk fun x y => r x y) <$> dest x = (Quot.factor (fun x y => r x y) (fun x y => x = y ∨ r x y) this ∘ Quot.mk fun x y => r x y) <$> dest y [PROOFSTEP] rw [@comp_map _ _ q _ _ _ (Quot.mk r), @comp_map _ _ q _ _ _ (Quot.mk r)] [GOAL] case h.inr F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x✝ y✝ : Cofix F rxy : r x✝ y✝ x y : Cofix F r'xy : r x y this : ∀ (x y : Cofix F), r x y → r' x y ⊢ Quot.factor (fun x y => r x y) (fun x y => x = y ∨ r x y) this <$> Quot.mk r <$> dest x = Quot.factor (fun x y => r x y) (fun x y => x = y ∨ r x y) this <$> Quot.mk r <$> dest y [PROOFSTEP] rw [h _ _ r'xy] [GOAL] case a F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x y : Cofix F rxy : r x y ⊢ r' x y [PROOFSTEP] right [GOAL] case a.h F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Quot.mk r <$> dest x = Quot.mk r <$> dest y r' : Cofix F → Cofix F → Prop := fun x y => x = y ∨ r x y x y : Cofix F rxy : r x y ⊢ r x y [PROOFSTEP] exact rxy [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y) ⊢ ∀ (x y : Cofix F), r x y → x = y [PROOFSTEP] apply Cofix.bisim_rel [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y) ⊢ ∀ (x y : Cofix F), r x y → (Quot.mk fun x y => r x y) <$> dest x = (Quot.mk fun x y => r x y) <$> dest y [PROOFSTEP] intro x y rxy [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y) x y : Cofix F rxy : r x y ⊢ (Quot.mk fun x y => r x y) <$> dest x = (Quot.mk fun x y => r x y) <$> dest y [PROOFSTEP] rcases(liftr_iff r _ _).mp (h x y rxy) with ⟨a, f₀, f₁, dxeq, dyeq, h'⟩ [GOAL] case h.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y) x y : Cofix F rxy : r x y a : (P F).A f₀ f₁ : PFunctor.B (P F) a → Cofix F dxeq : dest x = abs { fst := a, snd := f₀ } dyeq : dest y = abs { fst := a, snd := f₁ } h' : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) ⊢ (Quot.mk fun x y => r x y) <$> dest x = (Quot.mk fun x y => r x y) <$> dest y [PROOFSTEP] rw [dxeq, dyeq, ← abs_map, ← abs_map, PFunctor.map_eq, PFunctor.map_eq] [GOAL] case h.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y) x y : Cofix F rxy : r x y a : (P F).A f₀ f₁ : PFunctor.B (P F) a → Cofix F dxeq : dest x = abs { fst := a, snd := f₀ } dyeq : dest y = abs { fst := a, snd := f₁ } h' : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) ⊢ abs { fst := a, snd := (Quot.mk fun x y => r x y) ∘ f₀ } = abs { fst := a, snd := (Quot.mk fun x y => r x y) ∘ f₁ } [PROOFSTEP] congr 2 with i [GOAL] case h.intro.intro.intro.intro.intro.e_a.e_snd.h F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y) x y : Cofix F rxy : r x y a : (P F).A f₀ f₁ : PFunctor.B (P F) a → Cofix F dxeq : dest x = abs { fst := a, snd := f₀ } dyeq : dest y = abs { fst := a, snd := f₁ } h' : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) i : PFunctor.B (P F) a ⊢ ((Quot.mk fun x y => r x y) ∘ f₀) i = ((Quot.mk fun x y => r x y) ∘ f₁) i [PROOFSTEP] apply Quot.sound [GOAL] case h.intro.intro.intro.intro.intro.e_a.e_snd.h.a F : Type u → Type u inst✝ : Functor F q : Qpf F r : Cofix F → Cofix F → Prop h : ∀ (x y : Cofix F), r x y → Liftr r (dest x) (dest y) x y : Cofix F rxy : r x y a : (P F).A f₀ f₁ : PFunctor.B (P F) a → Cofix F dxeq : dest x = abs { fst := a, snd := f₀ } dyeq : dest y = abs { fst := a, snd := f₁ } h' : ∀ (i : PFunctor.B (P F) a), r (f₀ i) (f₁ i) i : PFunctor.B (P F) a ⊢ r (f₀ i) (f₁ i) [PROOFSTEP] apply h' [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u_1 Q : α → Prop u v : α → Cofix F h : ∀ (x : α), Q x → ∃ a f f', dest (u x) = abs { fst := a, snd := f } ∧ dest (v x) = abs { fst := a, snd := f' } ∧ ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x' x✝¹ : α Qx : Q x✝¹ R : Cofix F → Cofix F → Prop := fun w z => ∃ x', Q x' ∧ w = u x' ∧ z = v x' x y : Cofix F x✝ : R x y x' : α Qx' : Q x' xeq : x = u x' yeq : y = v x' ⊢ Liftr R (dest x) (dest y) [PROOFSTEP] rcases h x' Qx' with ⟨a, f, f', ux'eq, vx'eq, h'⟩ [GOAL] case intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u_1 Q : α → Prop u v : α → Cofix F h : ∀ (x : α), Q x → ∃ a f f', dest (u x) = abs { fst := a, snd := f } ∧ dest (v x) = abs { fst := a, snd := f' } ∧ ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x' x✝¹ : α Qx : Q x✝¹ R : Cofix F → Cofix F → Prop := fun w z => ∃ x', Q x' ∧ w = u x' ∧ z = v x' x y : Cofix F x✝ : R x y x' : α Qx' : Q x' xeq : x = u x' yeq : y = v x' a : (P F).A f f' : PFunctor.B (P F) a → Cofix F ux'eq : dest (u x') = abs { fst := a, snd := f } vx'eq : dest (v x') = abs { fst := a, snd := f' } h' : ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x' ⊢ Liftr R (dest x) (dest y) [PROOFSTEP] rw [liftr_iff] [GOAL] case intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u_1 Q : α → Prop u v : α → Cofix F h : ∀ (x : α), Q x → ∃ a f f', dest (u x) = abs { fst := a, snd := f } ∧ dest (v x) = abs { fst := a, snd := f' } ∧ ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x' x✝¹ : α Qx : Q x✝¹ R : Cofix F → Cofix F → Prop := fun w z => ∃ x', Q x' ∧ w = u x' ∧ z = v x' x y : Cofix F x✝ : R x y x' : α Qx' : Q x' xeq : x = u x' yeq : y = v x' a : (P F).A f f' : PFunctor.B (P F) a → Cofix F ux'eq : dest (u x') = abs { fst := a, snd := f } vx'eq : dest (v x') = abs { fst := a, snd := f' } h' : ∀ (i : PFunctor.B (P F) a), ∃ x', Q x' ∧ f i = u x' ∧ f' i = v x' ⊢ ∃ a f₀ f₁, dest x = abs { fst := a, snd := f₀ } ∧ dest y = abs { fst := a, snd := f₁ } ∧ ∀ (i : PFunctor.B (P F) a), R (f₀ i) (f₁ i) [PROOFSTEP] refine' ⟨a, f, f', xeq.symm ▸ ux'eq, yeq.symm ▸ vx'eq, h'⟩ [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u ⊢ PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α → Functor.Comp F₂ F₁ α [PROOFSTEP] dsimp [Functor.Comp] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u ⊢ PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α → F₂ (F₁ α) [PROOFSTEP] intro p [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u p : PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α ⊢ F₂ (F₁ α) [PROOFSTEP] exact abs ⟨p.1.1, fun x => abs ⟨p.1.2 x, fun y => p.2 ⟨x, y⟩⟩⟩ [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u ⊢ Functor.Comp F₂ F₁ α → PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α [PROOFSTEP] dsimp [Functor.Comp] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u ⊢ F₂ (F₁ α) → PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α [PROOFSTEP] intro y [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u y : F₂ (F₁ α) ⊢ PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α [PROOFSTEP] refine' ⟨⟨(repr y).1, fun u => (repr ((repr y).2 u)).1⟩, _⟩ [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u y : F₂ (F₁ α) ⊢ PFunctor.B (PFunctor.comp (P F₂) (P F₁)) { fst := (repr y).fst, snd := fun u => (repr (Sigma.snd (repr y) u)).fst } → α [PROOFSTEP] dsimp [PFunctor.comp] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u y : F₂ (F₁ α) ⊢ (u : PFunctor.B (P F₂) (repr y).fst) × PFunctor.B (P F₁) (repr (Sigma.snd (repr y) u)).fst → α [PROOFSTEP] intro x [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u y : F₂ (F₁ α) x : (u : PFunctor.B (P F₂) (repr y).fst) × PFunctor.B (P F₁) (repr (Sigma.snd (repr y) u)).fst ⊢ α [PROOFSTEP] exact (repr ((repr y).2 x.1)).snd x.2 [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u ⊢ ∀ (x : Functor.Comp F₂ F₁ α), (fun {α} => id fun p => abs { fst := p.fst.fst, snd := fun x => abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } }) ((fun {α} => id fun y => { fst := { fst := (repr y).fst, snd := fun u => (repr (Sigma.snd (repr y) u)).fst }, snd := id fun x => Sigma.snd (repr (Sigma.snd (repr y) x.fst)) x.snd }) x) = x [PROOFSTEP] dsimp [Functor.Comp] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u ⊢ ∀ (x : F₂ (F₁ α)), abs { fst := (repr x).fst, snd := fun x_1 => abs { fst := (repr (Sigma.snd (repr x) x_1)).fst, snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } = x [PROOFSTEP] intro x [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x : F₂ (F₁ α) ⊢ abs { fst := (repr x).fst, snd := fun x_1 => abs { fst := (repr (Sigma.snd (repr x) x_1)).fst, snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } = x [PROOFSTEP] conv => rhs rw [← abs_repr x] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x : F₂ (F₁ α) | abs { fst := (repr x).fst, snd := fun x_1 => abs { fst := (repr (Sigma.snd (repr x) x_1)).fst, snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } = x [PROOFSTEP] rhs rw [← abs_repr x] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x : F₂ (F₁ α) | abs { fst := (repr x).fst, snd := fun x_1 => abs { fst := (repr (Sigma.snd (repr x) x_1)).fst, snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } = x [PROOFSTEP] rhs rw [← abs_repr x] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x : F₂ (F₁ α) | abs { fst := (repr x).fst, snd := fun x_1 => abs { fst := (repr (Sigma.snd (repr x) x_1)).fst, snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } = x [PROOFSTEP] rhs [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x : F₂ (F₁ α) | x [PROOFSTEP] rw [← abs_repr x] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x : F₂ (F₁ α) ⊢ abs { fst := (repr x).fst, snd := fun x_1 => abs { fst := (repr (Sigma.snd (repr x) x_1)).fst, snd := fun y => Sigma.snd (repr (Sigma.snd (repr x) x_1)) y } } = abs (repr x) [PROOFSTEP] cases' h : repr x with a f [GOAL] case mk F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x : F₂ (F₁ α) a : (P F₂).A f : PFunctor.B (P F₂) a → F₁ α h : repr x = { fst := a, snd := f } ⊢ abs { fst := { fst := a, snd := f }.fst, snd := fun x => abs { fst := (repr (Sigma.snd { fst := a, snd := f } x)).fst, snd := fun y => Sigma.snd (repr (Sigma.snd { fst := a, snd := f } x)) y } } = abs { fst := a, snd := f } [PROOFSTEP] dsimp [GOAL] case mk F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x : F₂ (F₁ α) a : (P F₂).A f : PFunctor.B (P F₂) a → F₁ α h : repr x = { fst := a, snd := f } ⊢ abs { fst := a, snd := fun x => abs { fst := (repr (f x)).fst, snd := fun y => Sigma.snd (repr (f x)) y } } = abs { fst := a, snd := f } [PROOFSTEP] congr with x [GOAL] case mk.e_a.e_snd.h F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x✝ : F₂ (F₁ α) a : (P F₂).A f : PFunctor.B (P F₂) a → F₁ α h : repr x✝ = { fst := a, snd := f } x : PFunctor.B (P F₂) a ⊢ abs { fst := (repr (f x)).fst, snd := fun y => Sigma.snd (repr (f x)) y } = f x [PROOFSTEP] cases' h' : repr (f x) with b g [GOAL] case mk.e_a.e_snd.h.mk F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x✝ : F₂ (F₁ α) a : (P F₂).A f : PFunctor.B (P F₂) a → F₁ α h : repr x✝ = { fst := a, snd := f } x : PFunctor.B (P F₂) a b : (P F₁).A g : PFunctor.B (P F₁) b → α h' : repr (f x) = { fst := b, snd := g } ⊢ abs { fst := { fst := b, snd := g }.fst, snd := fun y => Sigma.snd { fst := b, snd := g } y } = f x [PROOFSTEP] dsimp [GOAL] case mk.e_a.e_snd.h.mk F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α : Type u x✝ : F₂ (F₁ α) a : (P F₂).A f : PFunctor.B (P F₂) a → F₁ α h : repr x✝ = { fst := a, snd := f } x : PFunctor.B (P F₂) a b : (P F₁).A g : PFunctor.B (P F₁) b → α h' : repr (f x) = { fst := b, snd := g } ⊢ abs { fst := b, snd := fun y => g y } = f x [PROOFSTEP] rw [← h', abs_repr] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β ⊢ ∀ (p : PFunctor.Obj (PFunctor.comp (P F₂) (P F₁)) α), (fun {α} => id fun p => abs { fst := p.fst.fst, snd := fun x => abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } }) (f <$> p) = f <$> (fun {α} => id fun p => abs { fst := p.fst.fst, snd := fun x => abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } }) p [PROOFSTEP] dsimp [Functor.Comp, PFunctor.comp] [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β ⊢ ∀ (p : PFunctor.Obj { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } α), abs { fst := (f <$> p).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> p).fst x, snd := fun y => Sigma.snd (f <$> p) { fst := x, snd := y } } } = f <$> abs { fst := p.fst.fst, snd := fun x => abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } } [PROOFSTEP] intro p [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β p : PFunctor.Obj { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } α ⊢ abs { fst := (f <$> p).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> p).fst x, snd := fun y => Sigma.snd (f <$> p) { fst := x, snd := y } } } = f <$> abs { fst := p.fst.fst, snd := fun x => abs { fst := Sigma.snd p.fst x, snd := fun y => Sigma.snd p { fst := x, snd := y } } } [PROOFSTEP] cases' p with a g [GOAL] case mk F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β a : { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }.A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } a → α ⊢ abs { fst := (f <$> { fst := a, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := a, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := a, snd := g }) { fst := x, snd := y } } } = f <$> abs { fst := { fst := a, snd := g }.fst.fst, snd := fun x => abs { fst := Sigma.snd { fst := a, snd := g }.fst x, snd := fun y => Sigma.snd { fst := a, snd := g } { fst := x, snd := y } } } [PROOFSTEP] dsimp [GOAL] case mk F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β a : { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) }.A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } a → α ⊢ abs { fst := (f <$> { fst := a, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := a, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := a, snd := g }) { fst := x, snd := y } } } = f <$> abs { fst := a.fst, snd := fun x => abs { fst := Sigma.snd a x, snd := fun y => g { fst := x, snd := y } } } [PROOFSTEP] cases' a with b h [GOAL] case mk.mk F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ abs { fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } = f <$> abs { fst := { fst := b, snd := h }.fst, snd := fun x => abs { fst := Sigma.snd { fst := b, snd := h } x, snd := fun y => g { fst := x, snd := y } } } [PROOFSTEP] dsimp [GOAL] case mk.mk F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ abs { fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } = f <$> abs { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } [PROOFSTEP] symm [GOAL] case mk.mk F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ f <$> abs { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } = abs { fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } [PROOFSTEP] trans [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ f <$> abs { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } = ?m.45227 F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ ?m.45227 = abs { fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ F₂ (F₁ β) [PROOFSTEP] symm [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ ?a = f <$> abs { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ ?a = abs { fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } [PROOFSTEP] apply abs_map [GOAL] F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ abs ((fun x x_1 => x <$> x_1) f <$> { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } }) = abs { fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } [PROOFSTEP] congr [GOAL] case e_a F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ (fun x x_1 => x <$> x_1) f <$> { fst := b, snd := fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } = { fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } [PROOFSTEP] rw [PFunctor.map_eq] [GOAL] case e_a F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ { fst := b, snd := (fun x x_1 => x <$> x_1) f ∘ fun x => abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } = { fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } [PROOFSTEP] dsimp [Function.comp] [GOAL] case e_a F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ { fst := b, snd := fun x => f <$> abs { fst := h x, snd := fun y => g { fst := x, snd := y } } } = { fst := (f <$> { fst := { fst := b, snd := h }, snd := g }).fst.fst, snd := fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } } [PROOFSTEP] congr [GOAL] case e_a.e_snd F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α ⊢ (fun x => f <$> abs { fst := h x, snd := fun y => g { fst := x, snd := y } }) = fun x => abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } [PROOFSTEP] ext x [GOAL] case e_a.e_snd.h F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α x : PFunctor.B (P F₂) b ⊢ f <$> abs { fst := h x, snd := fun y => g { fst := x, snd := y } } = abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } [PROOFSTEP] rw [← abs_map] [GOAL] case e_a.e_snd.h F₂ : Type u → Type u inst✝¹ : Functor F₂ q₂ : Qpf F₂ F₁ : Type u → Type u inst✝ : Functor F₁ q₁ : Qpf F₁ α β : Type u f : α → β b : (P F₂).A h : PFunctor.B (P F₂) b → (P F₁).A g : PFunctor.B { A := (a₂ : (P F₂).A) × (PFunctor.B (P F₂) a₂ → (P F₁).A), B := fun a₂a₁ => (u : PFunctor.B (P F₂) a₂a₁.fst) × PFunctor.B (P F₁) (Sigma.snd a₂a₁ u) } { fst := b, snd := h } → α x : PFunctor.B (P F₂) b ⊢ abs (f <$> { fst := h x, snd := fun y => g { fst := x, snd := y } }) = abs { fst := Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }).fst x, snd := fun y => Sigma.snd (f <$> { fst := { fst := b, snd := h }, snd := g }) { fst := x, snd := y } } [PROOFSTEP] rfl [GOAL] F : Type u → Type u inst✝¹ : Functor F q : Qpf F G : Type u → Type u inst✝ : Functor G FG_abs : {α : Type u} → F α → G α FG_repr : {α : Type u} → G α → F α FG_abs_repr : ∀ {α : Type u} (x : G α), FG_abs (FG_repr x) = x FG_abs_map : ∀ {α β : Type u} (f : α → β) (x : F α), FG_abs (f <$> x) = f <$> FG_abs x α : Type u x : G α ⊢ (fun {α} p => FG_abs (abs p)) ((fun {α} x => repr (FG_repr x)) x) = x [PROOFSTEP] simp only [GOAL] F : Type u → Type u inst✝¹ : Functor F q : Qpf F G : Type u → Type u inst✝ : Functor G FG_abs : {α : Type u} → F α → G α FG_repr : {α : Type u} → G α → F α FG_abs_repr : ∀ {α : Type u} (x : G α), FG_abs (FG_repr x) = x FG_abs_map : ∀ {α β : Type u} (f : α → β) (x : F α), FG_abs (f <$> x) = f <$> FG_abs x α : Type u x : G α ⊢ FG_abs (abs (repr (FG_repr x))) = x [PROOFSTEP] rw [abs_repr, FG_abs_repr] [GOAL] F : Type u → Type u inst✝¹ : Functor F q : Qpf F G : Type u → Type u inst✝ : Functor G FG_abs : {α : Type u} → F α → G α FG_repr : {α : Type u} → G α → F α FG_abs_repr : ∀ {α : Type u} (x : G α), FG_abs (FG_repr x) = x FG_abs_map : ∀ {α β : Type u} (f : α → β) (x : F α), FG_abs (f <$> x) = f <$> FG_abs x α β : Type u f : α → β x : PFunctor.Obj (P F) α ⊢ (fun {α} p => FG_abs (abs p)) (f <$> x) = f <$> (fun {α} p => FG_abs (abs p)) x [PROOFSTEP] simp only [GOAL] F : Type u → Type u inst✝¹ : Functor F q : Qpf F G : Type u → Type u inst✝ : Functor G FG_abs : {α : Type u} → F α → G α FG_repr : {α : Type u} → G α → F α FG_abs_repr : ∀ {α : Type u} (x : G α), FG_abs (FG_repr x) = x FG_abs_map : ∀ {α β : Type u} (f : α → β) (x : F α), FG_abs (f <$> x) = f <$> FG_abs x α β : Type u f : α → β x : PFunctor.Obj (P F) α ⊢ FG_abs (abs (f <$> x)) = f <$> FG_abs (abs x) [PROOFSTEP] rw [abs_map, FG_abs_map] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α ⊢ u ∈ supp x ↔ ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ [PROOFSTEP] rw [supp] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α ⊢ u ∈ {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} ↔ ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ [PROOFSTEP] dsimp [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α ⊢ (∀ ⦃p : α → Prop⦄, Liftp p x → p u) ↔ ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ [PROOFSTEP] constructor [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α ⊢ (∀ ⦃p : α → Prop⦄, Liftp p x → p u) → ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ [PROOFSTEP] intro h a f haf [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α h : ∀ ⦃p : α → Prop⦄, Liftp p x → p u a : (P F).A f : PFunctor.B (P F) a → α haf : abs { fst := a, snd := f } = x ⊢ u ∈ f '' univ [PROOFSTEP] have : Liftp (fun u => u ∈ f '' univ) x := by rw [liftp_iff] refine' ⟨a, f, haf.symm, fun i => mem_image_of_mem _ (mem_univ _)⟩ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α h : ∀ ⦃p : α → Prop⦄, Liftp p x → p u a : (P F).A f : PFunctor.B (P F) a → α haf : abs { fst := a, snd := f } = x ⊢ Liftp (fun u => u ∈ f '' univ) x [PROOFSTEP] rw [liftp_iff] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α h : ∀ ⦃p : α → Prop⦄, Liftp p x → p u a : (P F).A f : PFunctor.B (P F) a → α haf : abs { fst := a, snd := f } = x ⊢ ∃ a_1 f_1, x = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_1), f_1 i ∈ f '' univ [PROOFSTEP] refine' ⟨a, f, haf.symm, fun i => mem_image_of_mem _ (mem_univ _)⟩ [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α h : ∀ ⦃p : α → Prop⦄, Liftp p x → p u a : (P F).A f : PFunctor.B (P F) a → α haf : abs { fst := a, snd := f } = x this : Liftp (fun u => u ∈ f '' univ) x ⊢ u ∈ f '' univ [PROOFSTEP] exact h this [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α ⊢ (∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ) → ∀ ⦃p : α → Prop⦄, Liftp p x → p u [PROOFSTEP] intro h p [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ p : α → Prop ⊢ Liftp p x → p u [PROOFSTEP] rw [liftp_iff] [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ p : α → Prop ⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) → p u [PROOFSTEP] rintro ⟨a, f, xeq, h'⟩ [GOAL] case mpr.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), p (f i) ⊢ p u [PROOFSTEP] rcases h a f xeq.symm with ⟨i, _, hi⟩ [GOAL] case mpr.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), p (f i) i : PFunctor.B (P F) a left✝ : i ∈ univ hi : f i = u ⊢ p u [PROOFSTEP] rw [← hi] [GOAL] case mpr.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α u : α h : ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), p (f i) i : PFunctor.B (P F) a left✝ : i ∈ univ hi : f i = u ⊢ p (f i) [PROOFSTEP] apply h' [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α ⊢ supp x = {u | ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ} [PROOFSTEP] ext [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α x✝ : α ⊢ x✝ ∈ supp x ↔ x✝ ∈ {u | ∀ (a : (P F).A) (f : PFunctor.B (P F) a → α), abs { fst := a, snd := f } = x → u ∈ f '' univ} [PROOFSTEP] apply mem_supp [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α ⊢ (∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u) ↔ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ [PROOFSTEP] constructor [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α ⊢ (∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u) → ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ [PROOFSTEP] intro h [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u ⊢ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ [PROOFSTEP] have : Liftp (supp x) x := by rw [h]; intro u; exact id [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u ⊢ Liftp (supp x) x [PROOFSTEP] rw [h] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u ⊢ ∀ (u : α), u ∈ supp x → supp x u [PROOFSTEP] intro u [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u u : α ⊢ u ∈ supp x → supp x u [PROOFSTEP] exact id [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u this : Liftp (supp x) x ⊢ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ [PROOFSTEP] rw [liftp_iff] at this [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u this✝ : Liftp (supp x) x this : ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), supp x (f i) ⊢ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ [PROOFSTEP] rcases this with ⟨a, f, xeq, h'⟩ [GOAL] case mp.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u this : Liftp (supp x) x a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), supp x (f i) ⊢ ∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ [PROOFSTEP] refine' ⟨a, f, xeq.symm, _⟩ [GOAL] case mp.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u this : Liftp (supp x) x a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), supp x (f i) ⊢ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ [PROOFSTEP] intro a' f' h'' [GOAL] case mp.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u this : Liftp (supp x) x a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), supp x (f i) a' : (P F).A f' : PFunctor.B (P F) a' → α h'' : abs { fst := a', snd := f' } = x ⊢ f '' univ ⊆ f' '' univ [PROOFSTEP] rintro u ⟨i, _, hfi⟩ [GOAL] case mp.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u this : Liftp (supp x) x a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), supp x (f i) a' : (P F).A f' : PFunctor.B (P F) a' → α h'' : abs { fst := a', snd := f' } = x u : α i : PFunctor.B (P F) a left✝ : i ∈ univ hfi : f i = u ⊢ u ∈ f' '' univ [PROOFSTEP] have : u ∈ supp x := by rw [← hfi]; apply h' [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u this : Liftp (supp x) x a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), supp x (f i) a' : (P F).A f' : PFunctor.B (P F) a' → α h'' : abs { fst := a', snd := f' } = x u : α i : PFunctor.B (P F) a left✝ : i ∈ univ hfi : f i = u ⊢ u ∈ supp x [PROOFSTEP] rw [← hfi] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u this : Liftp (supp x) x a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), supp x (f i) a' : (P F).A f' : PFunctor.B (P F) a' → α h'' : abs { fst := a', snd := f' } = x u : α i : PFunctor.B (P F) a left✝ : i ∈ univ hfi : f i = u ⊢ f i ∈ supp x [PROOFSTEP] apply h' [GOAL] case mp.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α h : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u this✝ : Liftp (supp x) x a : (P F).A f : PFunctor.B (P F) a → α xeq : x = abs { fst := a, snd := f } h' : ∀ (i : PFunctor.B (P F) a), supp x (f i) a' : (P F).A f' : PFunctor.B (P F) a' → α h'' : abs { fst := a', snd := f' } = x u : α i : PFunctor.B (P F) a left✝ : i ∈ univ hfi : f i = u this : u ∈ supp x ⊢ u ∈ f' '' univ [PROOFSTEP] exact (mem_supp x u).mp this _ _ h'' [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α ⊢ (∃ a f, abs { fst := a, snd := f } = x ∧ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ) → ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u [PROOFSTEP] rintro ⟨a, f, xeq, h⟩ p [GOAL] case mpr.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop ⊢ Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u [PROOFSTEP] rw [liftp_iff] [GOAL] case mpr.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop ⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) ↔ ∀ (u : α), u ∈ supp x → p u [PROOFSTEP] constructor [GOAL] case mpr.intro.intro.intro.mp F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop ⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) → ∀ (u : α), u ∈ supp x → p u [PROOFSTEP] rintro ⟨a', f', xeq', h'⟩ u usuppx [GOAL] case mpr.intro.intro.intro.mp.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop a' : (P F).A f' : PFunctor.B (P F) a' → α xeq' : x = abs { fst := a', snd := f' } h' : ∀ (i : PFunctor.B (P F) a'), p (f' i) u : α usuppx : u ∈ supp x ⊢ p u [PROOFSTEP] rcases(mem_supp x u).mp usuppx a' f' xeq'.symm with ⟨i, _, f'ieq⟩ [GOAL] case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop a' : (P F).A f' : PFunctor.B (P F) a' → α xeq' : x = abs { fst := a', snd := f' } h' : ∀ (i : PFunctor.B (P F) a'), p (f' i) u : α usuppx : u ∈ supp x i : PFunctor.B (P F) a' left✝ : i ∈ univ f'ieq : f' i = u ⊢ p u [PROOFSTEP] rw [← f'ieq] [GOAL] case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop a' : (P F).A f' : PFunctor.B (P F) a' → α xeq' : x = abs { fst := a', snd := f' } h' : ∀ (i : PFunctor.B (P F) a'), p (f' i) u : α usuppx : u ∈ supp x i : PFunctor.B (P F) a' left✝ : i ∈ univ f'ieq : f' i = u ⊢ p (f' i) [PROOFSTEP] apply h' [GOAL] case mpr.intro.intro.intro.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop ⊢ (∀ (u : α), u ∈ supp x → p u) → ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] intro h' [GOAL] case mpr.intro.intro.intro.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop h' : ∀ (u : α), u ∈ supp x → p u ⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] refine' ⟨a, f, xeq.symm, _⟩ [GOAL] case mpr.intro.intro.intro.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop h' : ∀ (u : α), u ∈ supp x → p u ⊢ ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] intro i [GOAL] case mpr.intro.intro.intro.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop h' : ∀ (u : α), u ∈ supp x → p u i : PFunctor.B (P F) a ⊢ p (f i) [PROOFSTEP] apply h' [GOAL] case mpr.intro.intro.intro.mpr.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop h' : ∀ (u : α), u ∈ supp x → p u i : PFunctor.B (P F) a ⊢ f i ∈ supp x [PROOFSTEP] rw [mem_supp] [GOAL] case mpr.intro.intro.intro.mpr.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop h' : ∀ (u : α), u ∈ supp x → p u i : PFunctor.B (P F) a ⊢ ∀ (a : (P F).A) (f_1 : PFunctor.B (P F) a → α), abs { fst := a, snd := f_1 } = x → f i ∈ f_1 '' univ [PROOFSTEP] intro a' f' xeq' [GOAL] case mpr.intro.intro.intro.mpr.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop h' : ∀ (u : α), u ∈ supp x → p u i : PFunctor.B (P F) a a' : (P F).A f' : PFunctor.B (P F) a' → α xeq' : abs { fst := a', snd := f' } = x ⊢ f i ∈ f' '' univ [PROOFSTEP] apply h a' f' xeq' [GOAL] case mpr.intro.intro.intro.mpr.a.a F : Type u → Type u inst✝ : Functor F q : Qpf F α : Type u x : F α a : (P F).A f : PFunctor.B (P F) a → α xeq : abs { fst := a, snd := f } = x h : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ p : α → Prop h' : ∀ (u : α), u ∈ supp x → p u i : PFunctor.B (P F) a a' : (P F).A f' : PFunctor.B (P F) a' → α xeq' : abs { fst := a', snd := f' } = x ⊢ f i ∈ f '' univ [PROOFSTEP] apply mem_image_of_mem _ (mem_univ _) [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u a : (P F).A f : PFunctor.B (P F) a → α ⊢ supp (abs { fst := a, snd := f }) = f '' univ [PROOFSTEP] ext u [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u a : (P F).A f : PFunctor.B (P F) a → α u : α ⊢ u ∈ supp (abs { fst := a, snd := f }) ↔ u ∈ f '' univ [PROOFSTEP] rw [mem_supp] [GOAL] case h F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u a : (P F).A f : PFunctor.B (P F) a → α u : α ⊢ (∀ (a_1 : (P F).A) (f_1 : PFunctor.B (P F) a_1 → α), abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 '' univ) ↔ u ∈ f '' univ [PROOFSTEP] constructor [GOAL] case h.mp F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u a : (P F).A f : PFunctor.B (P F) a → α u : α ⊢ (∀ (a_1 : (P F).A) (f_1 : PFunctor.B (P F) a_1 → α), abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 '' univ) → u ∈ f '' univ [PROOFSTEP] intro h' [GOAL] case h.mp F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u a : (P F).A f : PFunctor.B (P F) a → α u : α h' : ∀ (a_1 : (P F).A) (f_1 : PFunctor.B (P F) a_1 → α), abs { fst := a_1, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 '' univ ⊢ u ∈ f '' univ [PROOFSTEP] apply h' _ _ rfl [GOAL] case h.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u a : (P F).A f : PFunctor.B (P F) a → α u : α ⊢ u ∈ f '' univ → ∀ (a_2 : (P F).A) (f_1 : PFunctor.B (P F) a_2 → α), abs { fst := a_2, snd := f_1 } = abs { fst := a, snd := f } → u ∈ f_1 '' univ [PROOFSTEP] intro h' a' f' e [GOAL] case h.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u a : (P F).A f : PFunctor.B (P F) a → α u : α h' : u ∈ f '' univ a' : (P F).A f' : PFunctor.B (P F) a' → α e : abs { fst := a', snd := f' } = abs { fst := a, snd := f } ⊢ u ∈ f' '' univ [PROOFSTEP] rw [← h _ _ _ _ e.symm] [GOAL] case h.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u a : (P F).A f : PFunctor.B (P F) a → α u : α h' : u ∈ f '' univ a' : (P F).A f' : PFunctor.B (P F) a' → α e : abs { fst := a', snd := f' } = abs { fst := a, snd := f } ⊢ u ∈ f '' univ [PROOFSTEP] apply h' [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop ⊢ Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u [PROOFSTEP] rw [liftp_iff, ← abs_repr x] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop ⊢ (∃ a f, abs (repr x) = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) ↔ ∀ (u : α), u ∈ supp (abs (repr x)) → p u [PROOFSTEP] cases' repr x with a f [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α ⊢ (∃ a_1 f_1, abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_1), p (f_1 i)) ↔ ∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u [PROOFSTEP] constructor [GOAL] case mk.mp F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α ⊢ (∃ a_1 f_1, abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_1), p (f_1 i)) → ∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u [PROOFSTEP] rintro ⟨a', f', abseq, hf⟩ u [GOAL] case mk.mp.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α a' : (P F).A f' : PFunctor.B (P F) a' → α abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' } hf : ∀ (i : PFunctor.B (P F) a'), p (f' i) u : α ⊢ u ∈ supp (abs { fst := a, snd := f }) → p u [PROOFSTEP] rw [supp_eq_of_isUniform h, h _ _ _ _ abseq] [GOAL] case mk.mp.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α a' : (P F).A f' : PFunctor.B (P F) a' → α abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' } hf : ∀ (i : PFunctor.B (P F) a'), p (f' i) u : α ⊢ u ∈ f' '' univ → p u [PROOFSTEP] rintro ⟨i, _, hi⟩ [GOAL] case mk.mp.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α a' : (P F).A f' : PFunctor.B (P F) a' → α abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' } hf : ∀ (i : PFunctor.B (P F) a'), p (f' i) u : α i : PFunctor.B (P F) a' left✝ : i ∈ univ hi : f' i = u ⊢ p u [PROOFSTEP] rw [← hi] [GOAL] case mk.mp.intro.intro.intro.intro.intro F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α a' : (P F).A f' : PFunctor.B (P F) a' → α abseq : abs { fst := a, snd := f } = abs { fst := a', snd := f' } hf : ∀ (i : PFunctor.B (P F) a'), p (f' i) u : α i : PFunctor.B (P F) a' left✝ : i ∈ univ hi : f' i = u ⊢ p (f' i) [PROOFSTEP] apply hf [GOAL] case mk.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α ⊢ (∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u) → ∃ a_2 f_1, abs { fst := a, snd := f } = abs { fst := a_2, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_2), p (f_1 i) [PROOFSTEP] intro h' [GOAL] case mk.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : ∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u ⊢ ∃ a_1 f_1, abs { fst := a, snd := f } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : PFunctor.B (P F) a_1), p (f_1 i) [PROOFSTEP] refine' ⟨a, f, rfl, fun i => h' _ _⟩ [GOAL] case mk.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : ∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u i : PFunctor.B (P F) a ⊢ f i ∈ supp (abs { fst := a, snd := f }) [PROOFSTEP] rw [supp_eq_of_isUniform h] [GOAL] case mk.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u x : F α p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : ∀ (u : α), u ∈ supp (abs { fst := a, snd := f }) → p u i : PFunctor.B (P F) a ⊢ f i ∈ f '' univ [PROOFSTEP] exact ⟨i, mem_univ i, rfl⟩ [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α β : Type u g : α → β x : F α ⊢ supp (g <$> x) = g '' supp x [PROOFSTEP] rw [← abs_repr x] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α β : Type u g : α → β x : F α ⊢ supp (g <$> abs (repr x)) = g '' supp (abs (repr x)) [PROOFSTEP] cases' repr x with a f [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α β : Type u g : α → β x : F α a : (P F).A f : PFunctor.B (P F) a → α ⊢ supp (g <$> abs { fst := a, snd := f }) = g '' supp (abs { fst := a, snd := f }) [PROOFSTEP] rw [← abs_map, PFunctor.map_eq] [GOAL] case mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α β : Type u g : α → β x : F α a : (P F).A f : PFunctor.B (P F) a → α ⊢ supp (abs { fst := a, snd := g ∘ f }) = g '' supp (abs { fst := a, snd := f }) [PROOFSTEP] rw [supp_eq_of_isUniform h, supp_eq_of_isUniform h, image_comp] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F ⊢ SuppPreservation ↔ IsUniform [PROOFSTEP] constructor [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F ⊢ SuppPreservation → IsUniform [PROOFSTEP] intro h α a a' f f' h' [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F h : SuppPreservation α : Type u a a' : (P F).A f : PFunctor.B (P F) a → α f' : PFunctor.B (P F) a' → α h' : abs { fst := a, snd := f } = abs { fst := a', snd := f' } ⊢ f '' univ = f' '' univ [PROOFSTEP] rw [← PFunctor.supp_eq, ← PFunctor.supp_eq, ← h, h', h] [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F ⊢ IsUniform → SuppPreservation [PROOFSTEP] rintro h α ⟨a, f⟩ [GOAL] case mpr.mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : IsUniform α : Type u a : (P F).A f : PFunctor.B (P F) a → α ⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f } [PROOFSTEP] rwa [supp_eq_of_isUniform, PFunctor.supp_eq] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F ⊢ SuppPreservation ↔ LiftpPreservation [PROOFSTEP] constructor [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F ⊢ SuppPreservation → LiftpPreservation [PROOFSTEP] intro h [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F ⊢ LiftpPreservation → SuppPreservation [PROOFSTEP] intro h [GOAL] case mp F : Type u → Type u inst✝ : Functor F q : Qpf F h : SuppPreservation ⊢ LiftpPreservation [PROOFSTEP] rintro α p ⟨a, f⟩ [GOAL] case mp.mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : SuppPreservation α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α ⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f } [PROOFSTEP] have h' := h [GOAL] case mp.mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : SuppPreservation α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : SuppPreservation ⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f } [PROOFSTEP] rw [suppPreservation_iff_uniform] at h' [GOAL] case mp.mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : SuppPreservation α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform ⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f } [PROOFSTEP] dsimp only [SuppPreservation, supp] at h [GOAL] case mp.mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α), {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform ⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f } [PROOFSTEP] rw [liftp_iff_of_isUniform h', supp_eq_of_isUniform h', PFunctor.liftp_iff'] [GOAL] case mp.mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α), {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform ⊢ (∀ (u : α), u ∈ f '' univ → p u) ↔ ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] simp only [image_univ, mem_range, exists_imp] [GOAL] case mp.mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α), {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform ⊢ (∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u) ↔ ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] constructor [GOAL] case mp.mk.mp F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α), {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform ⊢ (∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u) → ∀ (i : PFunctor.B (P F) a), p (f i) [PROOFSTEP] intros [GOAL] case mp.mk.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α), {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform ⊢ (∀ (i : PFunctor.B (P F) a), p (f i)) → ∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u [PROOFSTEP] intros [GOAL] case mp.mk.mp F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α), {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform a✝ : ∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u i✝ : PFunctor.B (P F) a ⊢ p (f i✝) [PROOFSTEP] subst_vars [GOAL] case mp.mk.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α), {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform a✝¹ : ∀ (i : PFunctor.B (P F) a), p (f i) u✝ : α x✝ : PFunctor.B (P F) a a✝ : f x✝ = u✝ ⊢ p u✝ [PROOFSTEP] subst_vars [GOAL] case mp.mk.mp F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α), {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform a✝ : ∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u i✝ : PFunctor.B (P F) a ⊢ p (f i✝) [PROOFSTEP] solve_by_elim [GOAL] case mp.mk.mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α), {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y} α : Type u p : α → Prop a : (P F).A f : PFunctor.B (P F) a → α h' : IsUniform a✝ : ∀ (i : PFunctor.B (P F) a), p (f i) x✝ : PFunctor.B (P F) a ⊢ p (f x✝) [PROOFSTEP] solve_by_elim [GOAL] case mpr F : Type u → Type u inst✝ : Functor F q : Qpf F h : LiftpPreservation ⊢ SuppPreservation [PROOFSTEP] rintro α ⟨a, f⟩ [GOAL] case mpr.mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : LiftpPreservation α : Type u a : (P F).A f : PFunctor.B (P F) a → α ⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f } [PROOFSTEP] simp only [LiftpPreservation] at h [GOAL] case mpr.mk F : Type u → Type u inst✝ : Functor F q : Qpf F h : ∀ ⦃α : Type u⦄ (p : α → Prop) (x : PFunctor.Obj (P F) α), Liftp p (abs x) ↔ Liftp p x α : Type u a : (P F).A f : PFunctor.B (P F) a → α ⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f } [PROOFSTEP] simp only [supp, h] [GOAL] F : Type u → Type u inst✝ : Functor F q : Qpf F ⊢ LiftpPreservation ↔ IsUniform [PROOFSTEP] rw [← suppPreservation_iff_liftpPreservation, suppPreservation_iff_uniform]
{"mathlib_filename": "Mathlib.Data.QPF.Univariate.Basic", "llama_tokens": 74022}
[GOAL] α✝ : Type ?u.229 β✝ : Type ?u.232 γ✝ : Type ?u.235 f✝ : α✝ → β✝ → γ✝ a✝ : Option α✝ b✝ : Option β✝ c : Option γ✝ α β γ : Type u_1 f : α → β → γ a : Option α b : Option β ⊢ map₂ f a b = Seq.seq (f <$> a) fun x => b [PROOFSTEP] cases a [GOAL] case none α✝ : Type ?u.229 β✝ : Type ?u.232 γ✝ : Type ?u.235 f✝ : α✝ → β✝ → γ✝ a : Option α✝ b✝ : Option β✝ c : Option γ✝ α β γ : Type u_1 f : α → β → γ b : Option β ⊢ map₂ f none b = Seq.seq (f <$> none) fun x => b [PROOFSTEP] rfl [GOAL] case some α✝ : Type ?u.229 β✝ : Type ?u.232 γ✝ : Type ?u.235 f✝ : α✝ → β✝ → γ✝ a : Option α✝ b✝ : Option β✝ c : Option γ✝ α β γ : Type u_1 f : α → β → γ b : Option β val✝ : α ⊢ map₂ f (some val✝) b = Seq.seq (f <$> some val✝) fun x => b [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_3 γ : Type u_2 f✝ : α → β → γ a✝ : Option α b : Option β c : Option γ f : α → β → γ a : Option α ⊢ map₂ f a none = none [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_3 γ : Type u_2 f✝ : α → β → γ a : Option α b : Option β c : Option γ f : α → β → γ ⊢ map₂ f none none = none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_3 γ : Type u_2 f✝ : α → β → γ a : Option α b : Option β c : Option γ f : α → β → γ val✝ : α ⊢ map₂ f (some val✝) none = none [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_3 γ : Type u_2 f✝ : α → β → γ a✝ : Option α b✝ : Option β c : Option γ f : α → β → γ a : Option α b : β ⊢ map₂ f a (some b) = Option.map (fun a => f a b) a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_3 γ : Type u_2 f✝ : α → β → γ a : Option α b✝ : Option β c : Option γ f : α → β → γ b : β ⊢ map₂ f none (some b) = Option.map (fun a => f a b) none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_3 γ : Type u_2 f✝ : α → β → γ a : Option α b✝ : Option β c : Option γ f : α → β → γ b : β val✝ : α ⊢ map₂ f (some val✝) (some b) = Option.map (fun a => f a b) (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ a : Option α b : Option β c✝ : Option γ c : γ ⊢ c ∈ map₂ f a b ↔ ∃ a' b', a' ∈ a ∧ b' ∈ b ∧ f a' b' = c [PROOFSTEP] simp [map₂] [GOAL] α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ a : Option α b : Option β c : Option γ ⊢ map₂ f a b = none ↔ a = none ∨ b = none [PROOFSTEP] cases a [GOAL] case none α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ b : Option β c : Option γ ⊢ map₂ f none b = none ↔ none = none ∨ b = none [PROOFSTEP] cases b [GOAL] case some α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ b : Option β c : Option γ val✝ : α ⊢ map₂ f (some val✝) b = none ↔ some val✝ = none ∨ b = none [PROOFSTEP] cases b [GOAL] case none.none α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ c : Option γ ⊢ map₂ f none none = none ↔ none = none ∨ none = none [PROOFSTEP] simp [GOAL] case none.some α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ c : Option γ val✝ : β ⊢ map₂ f none (some val✝) = none ↔ none = none ∨ some val✝ = none [PROOFSTEP] simp [GOAL] case some.none α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ c : Option γ val✝ : α ⊢ map₂ f (some val✝) none = none ↔ some val✝ = none ∨ none = none [PROOFSTEP] simp [GOAL] case some.some α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ c : Option γ val✝¹ : α val✝ : β ⊢ map₂ f (some val✝¹) (some val✝) = none ↔ some val✝¹ = none ∨ some val✝ = none [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f✝ : α → β → γ a✝ : Option α b✝ : Option β c : Option γ f : α → β → γ a : Option α b : Option β ⊢ map₂ f a b = map₂ (fun a b => f b a) b a [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 f✝ : α → β → γ a : Option α b✝ : Option β c : Option γ f : α → β → γ b : Option β ⊢ map₂ f none b = map₂ (fun a b => f b a) b none [PROOFSTEP] cases b [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 f✝ : α → β → γ a : Option α b✝ : Option β c : Option γ f : α → β → γ b : Option β val✝ : α ⊢ map₂ f (some val✝) b = map₂ (fun a b => f b a) b (some val✝) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_1 β : Type u_2 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ f : α → β → γ ⊢ map₂ f none none = map₂ (fun a b => f b a) none none [PROOFSTEP] rfl [GOAL] case none.some α : Type u_1 β : Type u_2 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ f : α → β → γ val✝ : β ⊢ map₂ f none (some val✝) = map₂ (fun a b => f b a) (some val✝) none [PROOFSTEP] rfl [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ f : α → β → γ val✝ : α ⊢ map₂ f (some val✝) none = map₂ (fun a b => f b a) none (some val✝) [PROOFSTEP] rfl [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ f : α → β → γ val✝¹ : α val✝ : β ⊢ map₂ f (some val✝¹) (some val✝) = map₂ (fun a b => f b a) (some val✝) (some val✝¹) [PROOFSTEP] rfl [GOAL] α : Type u_3 β : Type u_4 γ : Type u_2 f✝ : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 f : α → β → γ g : γ → δ ⊢ Option.map g (map₂ f a b) = map₂ (fun a b => g (f a b)) a b [PROOFSTEP] cases a [GOAL] case none α : Type u_3 β : Type u_4 γ : Type u_2 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 f : α → β → γ g : γ → δ ⊢ Option.map g (map₂ f none b) = map₂ (fun a b => g (f a b)) none b [PROOFSTEP] cases b [GOAL] case some α : Type u_3 β : Type u_4 γ : Type u_2 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 f : α → β → γ g : γ → δ val✝ : α ⊢ Option.map g (map₂ f (some val✝) b) = map₂ (fun a b => g (f a b)) (some val✝) b [PROOFSTEP] cases b [GOAL] case none.none α : Type u_3 β : Type u_4 γ : Type u_2 f✝ : α → β → γ c : Option γ δ : Type u_1 f : α → β → γ g : γ → δ ⊢ Option.map g (map₂ f none none) = map₂ (fun a b => g (f a b)) none none [PROOFSTEP] rfl [GOAL] case none.some α : Type u_3 β : Type u_4 γ : Type u_2 f✝ : α → β → γ c : Option γ δ : Type u_1 f : α → β → γ g : γ → δ val✝ : β ⊢ Option.map g (map₂ f none (some val✝)) = map₂ (fun a b => g (f a b)) none (some val✝) [PROOFSTEP] rfl [GOAL] case some.none α : Type u_3 β : Type u_4 γ : Type u_2 f✝ : α → β → γ c : Option γ δ : Type u_1 f : α → β → γ g : γ → δ val✝ : α ⊢ Option.map g (map₂ f (some val✝) none) = map₂ (fun a b => g (f a b)) (some val✝) none [PROOFSTEP] rfl [GOAL] case some.some α : Type u_3 β : Type u_4 γ : Type u_2 f✝ : α → β → γ c : Option γ δ : Type u_1 f : α → β → γ g : γ → δ val✝¹ : α val✝ : β ⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ (fun a b => g (f a b)) (some val✝¹) (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u_4 β : Type u_3 γ : Type u_2 f✝ : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 f : γ → β → δ g : α → γ ⊢ map₂ f (Option.map g a) b = map₂ (fun a b => f (g a) b) a b [PROOFSTEP] cases a [GOAL] case none α : Type u_4 β : Type u_3 γ : Type u_2 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 f : γ → β → δ g : α → γ ⊢ map₂ f (Option.map g none) b = map₂ (fun a b => f (g a) b) none b [PROOFSTEP] rfl [GOAL] case some α : Type u_4 β : Type u_3 γ : Type u_2 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 f : γ → β → δ g : α → γ val✝ : α ⊢ map₂ f (Option.map g (some val✝)) b = map₂ (fun a b => f (g a) b) (some val✝) b [PROOFSTEP] rfl [GOAL] α : Type u_2 β : Type u_4 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 f : α → γ → δ g : β → γ ⊢ map₂ f a (Option.map g b) = map₂ (fun a b => f a (g b)) a b [PROOFSTEP] cases b [GOAL] case none α : Type u_2 β : Type u_4 γ : Type u_3 f✝ : α → β → γ a : Option α c : Option γ δ : Type u_1 f : α → γ → δ g : β → γ ⊢ map₂ f a (Option.map g none) = map₂ (fun a b => f a (g b)) a none [PROOFSTEP] rfl [GOAL] case some α : Type u_2 β : Type u_4 γ : Type u_3 f✝ : α → β → γ a : Option α c : Option γ δ : Type u_1 f : α → γ → δ g : β → γ val✝ : β ⊢ map₂ f a (Option.map g (some val✝)) = map₂ (fun a b => f a (g b)) a (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u_2 β : Type u_1 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ f : α → β → γ x : Option (α × β) ⊢ Option.map (uncurry f) x = map₂ f (Option.map Prod.fst x) (Option.map Prod.snd x) [PROOFSTEP] cases x [GOAL] case none α : Type u_2 β : Type u_1 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ f : α → β → γ ⊢ Option.map (uncurry f) none = map₂ f (Option.map Prod.fst none) (Option.map Prod.snd none) [PROOFSTEP] rfl [GOAL] case some α : Type u_2 β : Type u_1 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ f : α → β → γ val✝ : α × β ⊢ Option.map (uncurry f) (some val✝) = map₂ f (Option.map Prod.fst (some val✝)) (Option.map Prod.snd (some val✝)) [PROOFSTEP] rfl [GOAL] α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) ⊢ map₂ f (map₂ g a b) c = map₂ f' a (map₂ g' b c) [PROOFSTEP] cases a [GOAL] case none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) ⊢ map₂ f (map₂ g none b) c = map₂ f' none (map₂ g' b c) [PROOFSTEP] cases b [GOAL] case some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝ : α ⊢ map₂ f (map₂ g (some val✝) b) c = map₂ f' (some val✝) (map₂ g' b c) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) ⊢ map₂ f (map₂ g none none) c = map₂ f' none (map₂ g' none c) [PROOFSTEP] cases c [GOAL] case none.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝ : β ⊢ map₂ f (map₂ g none (some val✝)) c = map₂ f' none (map₂ g' (some val✝) c) [PROOFSTEP] cases c [GOAL] case some.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝ : α ⊢ map₂ f (map₂ g (some val✝) none) c = map₂ f' (some val✝) (map₂ g' none c) [PROOFSTEP] cases c [GOAL] case some.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝¹ : α val✝ : β ⊢ map₂ f (map₂ g (some val✝¹) (some val✝)) c = map₂ f' (some val✝¹) (map₂ g' (some val✝) c) [PROOFSTEP] cases c [GOAL] case none.none.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) ⊢ map₂ f (map₂ g none none) none = map₂ f' none (map₂ g' none none) [PROOFSTEP] simp [h_assoc] [GOAL] case none.none.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝ : γ ⊢ map₂ f (map₂ g none none) (some val✝) = map₂ f' none (map₂ g' none (some val✝)) [PROOFSTEP] simp [h_assoc] [GOAL] case none.some.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝ : β ⊢ map₂ f (map₂ g none (some val✝)) none = map₂ f' none (map₂ g' (some val✝) none) [PROOFSTEP] simp [h_assoc] [GOAL] case none.some.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝¹ : β val✝ : γ ⊢ map₂ f (map₂ g none (some val✝¹)) (some val✝) = map₂ f' none (map₂ g' (some val✝¹) (some val✝)) [PROOFSTEP] simp [h_assoc] [GOAL] case some.none.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝ : α ⊢ map₂ f (map₂ g (some val✝) none) none = map₂ f' (some val✝) (map₂ g' none none) [PROOFSTEP] simp [h_assoc] [GOAL] case some.none.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝¹ : α val✝ : γ ⊢ map₂ f (map₂ g (some val✝¹) none) (some val✝) = map₂ f' (some val✝¹) (map₂ g' none (some val✝)) [PROOFSTEP] simp [h_assoc] [GOAL] case some.some.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝¹ : α val✝ : β ⊢ map₂ f (map₂ g (some val✝¹) (some val✝)) none = map₂ f' (some val✝¹) (map₂ g' (some val✝) none) [PROOFSTEP] simp [h_assoc] [GOAL] case some.some.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 ε' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → ε' → ε g' : β → γ → ε' h_assoc : ∀ (a : α) (b : β) (c : γ), f (g a b) c = f' a (g' b c) val✝² : α val✝¹ : β val✝ : γ ⊢ map₂ f (map₂ g (some val✝²) (some val✝¹)) (some val✝) = map₂ f' (some val✝²) (map₂ g' (some val✝¹) (some val✝)) [PROOFSTEP] simp [h_assoc] [GOAL] α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ a : Option α b : Option β c : Option γ g : β → α → γ h_comm : ∀ (a : α) (b : β), f a b = g b a ⊢ map₂ f a b = map₂ g b a [PROOFSTEP] cases a [GOAL] case none α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ b : Option β c : Option γ g : β → α → γ h_comm : ∀ (a : α) (b : β), f a b = g b a ⊢ map₂ f none b = map₂ g b none [PROOFSTEP] cases b [GOAL] case some α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ b : Option β c : Option γ g : β → α → γ h_comm : ∀ (a : α) (b : β), f a b = g b a val✝ : α ⊢ map₂ f (some val✝) b = map₂ g b (some val✝) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ c : Option γ g : β → α → γ h_comm : ∀ (a : α) (b : β), f a b = g b a ⊢ map₂ f none none = map₂ g none none [PROOFSTEP] simp [h_comm] [GOAL] case none.some α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ c : Option γ g : β → α → γ h_comm : ∀ (a : α) (b : β), f a b = g b a val✝ : β ⊢ map₂ f none (some val✝) = map₂ g (some val✝) none [PROOFSTEP] simp [h_comm] [GOAL] case some.none α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ c : Option γ g : β → α → γ h_comm : ∀ (a : α) (b : β), f a b = g b a val✝ : α ⊢ map₂ f (some val✝) none = map₂ g none (some val✝) [PROOFSTEP] simp [h_comm] [GOAL] case some.some α : Type u_2 β : Type u_3 γ : Type u_1 f : α → β → γ c : Option γ g : β → α → γ h_comm : ∀ (a : α) (b : β), f a b = g b a val✝¹ : α val✝ : β ⊢ map₂ f (some val✝¹) (some val✝) = map₂ g (some val✝) (some val✝¹) [PROOFSTEP] simp [h_comm] [GOAL] α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) ⊢ map₂ f a (map₂ g b c) = map₂ g' b (map₂ f' a c) [PROOFSTEP] cases a [GOAL] case none α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) ⊢ map₂ f none (map₂ g b c) = map₂ g' b (map₂ f' none c) [PROOFSTEP] cases b [GOAL] case some α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝ : α ⊢ map₂ f (some val✝) (map₂ g b c) = map₂ g' b (map₂ f' (some val✝) c) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) ⊢ map₂ f none (map₂ g none c) = map₂ g' none (map₂ f' none c) [PROOFSTEP] cases c [GOAL] case none.some α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝ : β ⊢ map₂ f none (map₂ g (some val✝) c) = map₂ g' (some val✝) (map₂ f' none c) [PROOFSTEP] cases c [GOAL] case some.none α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝ : α ⊢ map₂ f (some val✝) (map₂ g none c) = map₂ g' none (map₂ f' (some val✝) c) [PROOFSTEP] cases c [GOAL] case some.some α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝¹ : α val✝ : β ⊢ map₂ f (some val✝¹) (map₂ g (some val✝) c) = map₂ g' (some val✝) (map₂ f' (some val✝¹) c) [PROOFSTEP] cases c [GOAL] case none.none.none α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) ⊢ map₂ f none (map₂ g none none) = map₂ g' none (map₂ f' none none) [PROOFSTEP] simp [h_left_comm] [GOAL] case none.none.some α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝ : γ ⊢ map₂ f none (map₂ g none (some val✝)) = map₂ g' none (map₂ f' none (some val✝)) [PROOFSTEP] simp [h_left_comm] [GOAL] case none.some.none α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝ : β ⊢ map₂ f none (map₂ g (some val✝) none) = map₂ g' (some val✝) (map₂ f' none none) [PROOFSTEP] simp [h_left_comm] [GOAL] case none.some.some α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝¹ : β val✝ : γ ⊢ map₂ f none (map₂ g (some val✝¹) (some val✝)) = map₂ g' (some val✝¹) (map₂ f' none (some val✝)) [PROOFSTEP] simp [h_left_comm] [GOAL] case some.none.none α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝ : α ⊢ map₂ f (some val✝) (map₂ g none none) = map₂ g' none (map₂ f' (some val✝) none) [PROOFSTEP] simp [h_left_comm] [GOAL] case some.none.some α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝¹ : α val✝ : γ ⊢ map₂ f (some val✝¹) (map₂ g none (some val✝)) = map₂ g' none (map₂ f' (some val✝¹) (some val✝)) [PROOFSTEP] simp [h_left_comm] [GOAL] case some.some.none α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝¹ : α val✝ : β ⊢ map₂ f (some val✝¹) (map₂ g (some val✝) none) = map₂ g' (some val✝) (map₂ f' (some val✝¹) none) [PROOFSTEP] simp [h_left_comm] [GOAL] case some.some.some α : Type u_4 β : Type u_5 γ : Type u_6 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : α → δ → ε g : β → γ → δ f' : α → γ → δ' g' : β → δ' → ε h_left_comm : ∀ (a : α) (b : β) (c : γ), f a (g b c) = g' b (f' a c) val✝² : α val✝¹ : β val✝ : γ ⊢ map₂ f (some val✝²) (map₂ g (some val✝¹) (some val✝)) = map₂ g' (some val✝¹) (map₂ f' (some val✝²) (some val✝)) [PROOFSTEP] simp [h_left_comm] [GOAL] α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b ⊢ map₂ f (map₂ g a b) c = map₂ g' (map₂ f' a c) b [PROOFSTEP] cases a [GOAL] case none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b ⊢ map₂ f (map₂ g none b) c = map₂ g' (map₂ f' none c) b [PROOFSTEP] cases b [GOAL] case some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ b : Option β c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝ : α ⊢ map₂ f (map₂ g (some val✝) b) c = map₂ g' (map₂ f' (some val✝) c) b [PROOFSTEP] cases b [GOAL] case none.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b ⊢ map₂ f (map₂ g none none) c = map₂ g' (map₂ f' none c) none [PROOFSTEP] cases c [GOAL] case none.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝ : β ⊢ map₂ f (map₂ g none (some val✝)) c = map₂ g' (map₂ f' none c) (some val✝) [PROOFSTEP] cases c [GOAL] case some.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝ : α ⊢ map₂ f (map₂ g (some val✝) none) c = map₂ g' (map₂ f' (some val✝) c) none [PROOFSTEP] cases c [GOAL] case some.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ c : Option γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝¹ : α val✝ : β ⊢ map₂ f (map₂ g (some val✝¹) (some val✝)) c = map₂ g' (map₂ f' (some val✝¹) c) (some val✝) [PROOFSTEP] cases c [GOAL] case none.none.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b ⊢ map₂ f (map₂ g none none) none = map₂ g' (map₂ f' none none) none [PROOFSTEP] simp [h_right_comm] [GOAL] case none.none.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝ : γ ⊢ map₂ f (map₂ g none none) (some val✝) = map₂ g' (map₂ f' none (some val✝)) none [PROOFSTEP] simp [h_right_comm] [GOAL] case none.some.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝ : β ⊢ map₂ f (map₂ g none (some val✝)) none = map₂ g' (map₂ f' none none) (some val✝) [PROOFSTEP] simp [h_right_comm] [GOAL] case none.some.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝¹ : β val✝ : γ ⊢ map₂ f (map₂ g none (some val✝¹)) (some val✝) = map₂ g' (map₂ f' none (some val✝)) (some val✝¹) [PROOFSTEP] simp [h_right_comm] [GOAL] case some.none.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝ : α ⊢ map₂ f (map₂ g (some val✝) none) none = map₂ g' (map₂ f' (some val✝) none) none [PROOFSTEP] simp [h_right_comm] [GOAL] case some.none.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝¹ : α val✝ : γ ⊢ map₂ f (map₂ g (some val✝¹) none) (some val✝) = map₂ g' (map₂ f' (some val✝¹) (some val✝)) none [PROOFSTEP] simp [h_right_comm] [GOAL] case some.some.none α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝¹ : α val✝ : β ⊢ map₂ f (map₂ g (some val✝¹) (some val✝)) none = map₂ g' (map₂ f' (some val✝¹) none) (some val✝) [PROOFSTEP] simp [h_right_comm] [GOAL] case some.some.some α : Type u_5 β : Type u_6 γ : Type u_4 f✝ : α → β → γ δ : Type u_1 ε : Type u_2 δ' : Type u_3 f : δ → γ → ε g : α → β → δ f' : α → γ → δ' g' : δ' → β → ε h_right_comm : ∀ (a : α) (b : β) (c : γ), f (g a b) c = g' (f' a c) b val✝² : α val✝¹ : β val✝ : γ ⊢ map₂ f (map₂ g (some val✝²) (some val✝¹)) (some val✝) = map₂ g' (map₂ f' (some val✝²) (some val✝)) (some val✝¹) [PROOFSTEP] simp [h_right_comm] [GOAL] α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 α' : Type u_2 β' : Type u_3 g : γ → δ f' : α' → β' → δ g₁ : α → α' g₂ : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b) ⊢ Option.map g (map₂ f a b) = map₂ f' (Option.map g₁ a) (Option.map g₂ b) [PROOFSTEP] cases a [GOAL] case none α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ b : Option β c : Option γ δ : Type u_1 α' : Type u_2 β' : Type u_3 g : γ → δ f' : α' → β' → δ g₁ : α → α' g₂ : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b) ⊢ Option.map g (map₂ f none b) = map₂ f' (Option.map g₁ none) (Option.map g₂ b) [PROOFSTEP] cases b [GOAL] case some α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ b : Option β c : Option γ δ : Type u_1 α' : Type u_2 β' : Type u_3 g : γ → δ f' : α' → β' → δ g₁ : α → α' g₂ : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b) val✝ : α ⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (Option.map g₁ (some val✝)) (Option.map g₂ b) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 β' : Type u_3 g : γ → δ f' : α' → β' → δ g₁ : α → α' g₂ : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b) ⊢ Option.map g (map₂ f none none) = map₂ f' (Option.map g₁ none) (Option.map g₂ none) [PROOFSTEP] simp [h_distrib] [GOAL] case none.some α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 β' : Type u_3 g : γ → δ f' : α' → β' → δ g₁ : α → α' g₂ : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b) val✝ : β ⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (Option.map g₁ none) (Option.map g₂ (some val✝)) [PROOFSTEP] simp [h_distrib] [GOAL] case some.none α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 β' : Type u_3 g : γ → δ f' : α' → β' → δ g₁ : α → α' g₂ : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b) val✝ : α ⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (Option.map g₁ (some val✝)) (Option.map g₂ none) [PROOFSTEP] simp [h_distrib] [GOAL] case some.some α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 β' : Type u_3 g : γ → δ f' : α' → β' → δ g₁ : α → α' g₂ : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ a) (g₂ b) val✝¹ : α val✝ : β ⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (Option.map g₁ (some val✝¹)) (Option.map g₂ (some val✝)) [PROOFSTEP] simp [h_distrib] [GOAL] α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : α' → β → δ g' : α → α' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b ⊢ Option.map g (map₂ f a b) = map₂ f' (Option.map g' a) b [PROOFSTEP] cases a [GOAL] case none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ b : Option β c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : α' → β → δ g' : α → α' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b ⊢ Option.map g (map₂ f none b) = map₂ f' (Option.map g' none) b [PROOFSTEP] cases b [GOAL] case some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ b : Option β c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : α' → β → δ g' : α → α' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b val✝ : α ⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (Option.map g' (some val✝)) b [PROOFSTEP] cases b [GOAL] case none.none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : α' → β → δ g' : α → α' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b ⊢ Option.map g (map₂ f none none) = map₂ f' (Option.map g' none) none [PROOFSTEP] simp [h_distrib] [GOAL] case none.some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : α' → β → δ g' : α → α' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b val✝ : β ⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (Option.map g' none) (some val✝) [PROOFSTEP] simp [h_distrib] [GOAL] case some.none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : α' → β → δ g' : α → α' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b val✝ : α ⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (Option.map g' (some val✝)) none [PROOFSTEP] simp [h_distrib] [GOAL] case some.some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : α' → β → δ g' : α → α' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' (g' a) b val✝¹ : α val✝ : β ⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (Option.map g' (some val✝¹)) (some val✝) [PROOFSTEP] simp [h_distrib] [GOAL] α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : α → β' → δ g' : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b) ⊢ Option.map g (map₂ f a b) = map₂ f' a (Option.map g' b) [PROOFSTEP] cases a [GOAL] case none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ b : Option β c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : α → β' → δ g' : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b) ⊢ Option.map g (map₂ f none b) = map₂ f' none (Option.map g' b) [PROOFSTEP] cases b [GOAL] case some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ b : Option β c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : α → β' → δ g' : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b) val✝ : α ⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (some val✝) (Option.map g' b) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : α → β' → δ g' : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b) ⊢ Option.map g (map₂ f none none) = map₂ f' none (Option.map g' none) [PROOFSTEP] simp [h_distrib] [GOAL] case none.some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : α → β' → δ g' : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b) val✝ : β ⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' none (Option.map g' (some val✝)) [PROOFSTEP] simp [h_distrib] [GOAL] case some.none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : α → β' → δ g' : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b) val✝ : α ⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (some val✝) (Option.map g' none) [PROOFSTEP] simp [h_distrib] [GOAL] case some.some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : α → β' → δ g' : β → β' h_distrib : ∀ (a : α) (b : β), g (f a b) = f' a (g' b) val✝¹ : α val✝ : β ⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (some val✝¹) (Option.map g' (some val✝)) [PROOFSTEP] simp [h_distrib] [GOAL] α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : α → β → δ g' : δ → γ h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b) ⊢ map₂ f (Option.map g a) b = Option.map g' (map₂ f' a b) [PROOFSTEP] cases a [GOAL] case none α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ b : Option β c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : α → β → δ g' : δ → γ h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b) ⊢ map₂ f (Option.map g none) b = Option.map g' (map₂ f' none b) [PROOFSTEP] cases b [GOAL] case some α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ b : Option β c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : α → β → δ g' : δ → γ h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b) val✝ : α ⊢ map₂ f (Option.map g (some val✝)) b = Option.map g' (map₂ f' (some val✝) b) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : α → β → δ g' : δ → γ h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b) ⊢ map₂ f (Option.map g none) none = Option.map g' (map₂ f' none none) [PROOFSTEP] simp [h_left_comm] [GOAL] case none.some α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : α → β → δ g' : δ → γ h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b) val✝ : β ⊢ map₂ f (Option.map g none) (some val✝) = Option.map g' (map₂ f' none (some val✝)) [PROOFSTEP] simp [h_left_comm] [GOAL] case some.none α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : α → β → δ g' : δ → γ h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b) val✝ : α ⊢ map₂ f (Option.map g (some val✝)) none = Option.map g' (map₂ f' (some val✝) none) [PROOFSTEP] simp [h_left_comm] [GOAL] case some.some α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : α → β → δ g' : δ → γ h_left_comm : ∀ (a : α) (b : β), f (g a) b = g' (f' a b) val✝¹ : α val✝ : β ⊢ map₂ f (Option.map g (some val✝¹)) (some val✝) = Option.map g' (map₂ f' (some val✝¹) (some val✝)) [PROOFSTEP] simp [h_left_comm] [GOAL] α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : α → β → δ g' : δ → γ h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b) ⊢ map₂ f a (Option.map g b) = Option.map g' (map₂ f' a b) [PROOFSTEP] cases a [GOAL] case none α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ b : Option β c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : α → β → δ g' : δ → γ h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b) ⊢ map₂ f none (Option.map g b) = Option.map g' (map₂ f' none b) [PROOFSTEP] cases b [GOAL] case some α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ b : Option β c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : α → β → δ g' : δ → γ h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b) val✝ : α ⊢ map₂ f (some val✝) (Option.map g b) = Option.map g' (map₂ f' (some val✝) b) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : α → β → δ g' : δ → γ h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b) ⊢ map₂ f none (Option.map g none) = Option.map g' (map₂ f' none none) [PROOFSTEP] simp [h_right_comm] [GOAL] case none.some α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : α → β → δ g' : δ → γ h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b) val✝ : β ⊢ map₂ f none (Option.map g (some val✝)) = Option.map g' (map₂ f' none (some val✝)) [PROOFSTEP] simp [h_right_comm] [GOAL] case some.none α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : α → β → δ g' : δ → γ h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b) val✝ : α ⊢ map₂ f (some val✝) (Option.map g none) = Option.map g' (map₂ f' (some val✝) none) [PROOFSTEP] simp [h_right_comm] [GOAL] case some.some α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : α → β → δ g' : δ → γ h_right_comm : ∀ (a : α) (b : β), f a (g b) = g' (f' a b) val✝¹ : α val✝ : β ⊢ map₂ f (some val✝¹) (Option.map g (some val✝)) = Option.map g' (map₂ f' (some val✝¹) (some val✝)) [PROOFSTEP] simp [h_right_comm] [GOAL] α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 β' : Type u_2 α' : Type u_3 g : γ → δ f' : β' → α' → δ g₁ : β → β' g₂ : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a) ⊢ Option.map g (map₂ f a b) = map₂ f' (Option.map g₁ b) (Option.map g₂ a) [PROOFSTEP] cases a [GOAL] case none α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ b : Option β c : Option γ δ : Type u_1 β' : Type u_2 α' : Type u_3 g : γ → δ f' : β' → α' → δ g₁ : β → β' g₂ : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a) ⊢ Option.map g (map₂ f none b) = map₂ f' (Option.map g₁ b) (Option.map g₂ none) [PROOFSTEP] cases b [GOAL] case some α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ b : Option β c : Option γ δ : Type u_1 β' : Type u_2 α' : Type u_3 g : γ → δ f' : β' → α' → δ g₁ : β → β' g₂ : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a) val✝ : α ⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (Option.map g₁ b) (Option.map g₂ (some val✝)) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 α' : Type u_3 g : γ → δ f' : β' → α' → δ g₁ : β → β' g₂ : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a) ⊢ Option.map g (map₂ f none none) = map₂ f' (Option.map g₁ none) (Option.map g₂ none) [PROOFSTEP] simp [h_antidistrib] [GOAL] case none.some α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 α' : Type u_3 g : γ → δ f' : β' → α' → δ g₁ : β → β' g₂ : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a) val✝ : β ⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (Option.map g₁ (some val✝)) (Option.map g₂ none) [PROOFSTEP] simp [h_antidistrib] [GOAL] case some.none α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 α' : Type u_3 g : γ → δ f' : β' → α' → δ g₁ : β → β' g₂ : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a) val✝ : α ⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (Option.map g₁ none) (Option.map g₂ (some val✝)) [PROOFSTEP] simp [h_antidistrib] [GOAL] case some.some α : Type u_5 β : Type u_6 γ : Type u_4 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 α' : Type u_3 g : γ → δ f' : β' → α' → δ g₁ : β → β' g₂ : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g₁ b) (g₂ a) val✝¹ : α val✝ : β ⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (Option.map g₁ (some val✝)) (Option.map g₂ (some val✝¹)) [PROOFSTEP] simp [h_antidistrib] [GOAL] α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : β' → α → δ g' : β → β' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a ⊢ Option.map g (map₂ f a b) = map₂ f' (Option.map g' b) a [PROOFSTEP] cases a [GOAL] case none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ b : Option β c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : β' → α → δ g' : β → β' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a ⊢ Option.map g (map₂ f none b) = map₂ f' (Option.map g' b) none [PROOFSTEP] cases b [GOAL] case some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ b : Option β c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : β' → α → δ g' : β → β' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a val✝ : α ⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' (Option.map g' b) (some val✝) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : β' → α → δ g' : β → β' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a ⊢ Option.map g (map₂ f none none) = map₂ f' (Option.map g' none) none [PROOFSTEP] simp [h_antidistrib] [GOAL] case none.some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : β' → α → δ g' : β → β' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a val✝ : β ⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (Option.map g' (some val✝)) none [PROOFSTEP] simp [h_antidistrib] [GOAL] case some.none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : β' → α → δ g' : β → β' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a val✝ : α ⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' (Option.map g' none) (some val✝) [PROOFSTEP] simp [h_antidistrib] [GOAL] case some.some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 β' : Type u_2 g : γ → δ f' : β' → α → δ g' : β → β' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' (g' b) a val✝¹ : α val✝ : β ⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (Option.map g' (some val✝)) (some val✝¹) [PROOFSTEP] simp [h_antidistrib] [GOAL] α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ a : Option α b : Option β c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : β → α' → δ g' : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a) ⊢ Option.map g (map₂ f a b) = map₂ f' b (Option.map g' a) [PROOFSTEP] cases a [GOAL] case none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ b : Option β c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : β → α' → δ g' : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a) ⊢ Option.map g (map₂ f none b) = map₂ f' b (Option.map g' none) [PROOFSTEP] cases b [GOAL] case some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ b : Option β c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : β → α' → δ g' : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a) val✝ : α ⊢ Option.map g (map₂ f (some val✝) b) = map₂ f' b (Option.map g' (some val✝)) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : β → α' → δ g' : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a) ⊢ Option.map g (map₂ f none none) = map₂ f' none (Option.map g' none) [PROOFSTEP] simp [h_antidistrib] [GOAL] case none.some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : β → α' → δ g' : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a) val✝ : β ⊢ Option.map g (map₂ f none (some val✝)) = map₂ f' (some val✝) (Option.map g' none) [PROOFSTEP] simp [h_antidistrib] [GOAL] case some.none α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : β → α' → δ g' : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a) val✝ : α ⊢ Option.map g (map₂ f (some val✝) none) = map₂ f' none (Option.map g' (some val✝)) [PROOFSTEP] simp [h_antidistrib] [GOAL] case some.some α : Type u_4 β : Type u_5 γ : Type u_3 f : α → β → γ c : Option γ δ : Type u_1 α' : Type u_2 g : γ → δ f' : β → α' → δ g' : α → α' h_antidistrib : ∀ (a : α) (b : β), g (f a b) = f' b (g' a) val✝¹ : α val✝ : β ⊢ Option.map g (map₂ f (some val✝¹) (some val✝)) = map₂ f' (some val✝) (Option.map g' (some val✝¹)) [PROOFSTEP] simp [h_antidistrib] [GOAL] α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : β → α → δ g' : δ → γ h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a) ⊢ map₂ f (Option.map g a) b = Option.map g' (map₂ f' b a) [PROOFSTEP] cases a [GOAL] case none α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ b : Option β c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : β → α → δ g' : δ → γ h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a) ⊢ map₂ f (Option.map g none) b = Option.map g' (map₂ f' b none) [PROOFSTEP] cases b [GOAL] case some α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ b : Option β c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : β → α → δ g' : δ → γ h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a) val✝ : α ⊢ map₂ f (Option.map g (some val✝)) b = Option.map g' (map₂ f' b (some val✝)) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : β → α → δ g' : δ → γ h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a) ⊢ map₂ f (Option.map g none) none = Option.map g' (map₂ f' none none) [PROOFSTEP] simp [h_left_anticomm] [GOAL] case none.some α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : β → α → δ g' : δ → γ h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a) val✝ : β ⊢ map₂ f (Option.map g none) (some val✝) = Option.map g' (map₂ f' (some val✝) none) [PROOFSTEP] simp [h_left_anticomm] [GOAL] case some.none α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : β → α → δ g' : δ → γ h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a) val✝ : α ⊢ map₂ f (Option.map g (some val✝)) none = Option.map g' (map₂ f' none (some val✝)) [PROOFSTEP] simp [h_left_anticomm] [GOAL] case some.some α : Type u_5 β : Type u_4 γ : Type u_3 f✝ : α → β → γ c : Option γ α' : Type u_1 δ : Type u_2 f : α' → β → γ g : α → α' f' : β → α → δ g' : δ → γ h_left_anticomm : ∀ (a : α) (b : β), f (g a) b = g' (f' b a) val✝¹ : α val✝ : β ⊢ map₂ f (Option.map g (some val✝¹)) (some val✝) = Option.map g' (map₂ f' (some val✝) (some val✝¹)) [PROOFSTEP] simp [h_left_anticomm] [GOAL] α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ a : Option α b : Option β c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : β → α → δ g' : δ → γ h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a) ⊢ map₂ f a (Option.map g b) = Option.map g' (map₂ f' b a) [PROOFSTEP] cases a [GOAL] case none α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ b : Option β c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : β → α → δ g' : δ → γ h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a) ⊢ map₂ f none (Option.map g b) = Option.map g' (map₂ f' b none) [PROOFSTEP] cases b [GOAL] case some α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ b : Option β c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : β → α → δ g' : δ → γ h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a) val✝ : α ⊢ map₂ f (some val✝) (Option.map g b) = Option.map g' (map₂ f' b (some val✝)) [PROOFSTEP] cases b [GOAL] case none.none α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : β → α → δ g' : δ → γ h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a) ⊢ map₂ f none (Option.map g none) = Option.map g' (map₂ f' none none) [PROOFSTEP] simp [h_right_anticomm] [GOAL] case none.some α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : β → α → δ g' : δ → γ h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a) val✝ : β ⊢ map₂ f none (Option.map g (some val✝)) = Option.map g' (map₂ f' (some val✝) none) [PROOFSTEP] simp [h_right_anticomm] [GOAL] case some.none α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : β → α → δ g' : δ → γ h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a) val✝ : α ⊢ map₂ f (some val✝) (Option.map g none) = Option.map g' (map₂ f' none (some val✝)) [PROOFSTEP] simp [h_right_anticomm] [GOAL] case some.some α : Type u_4 β : Type u_5 γ : Type u_3 f✝ : α → β → γ c : Option γ β' : Type u_1 δ : Type u_2 f : α → β' → γ g : β → β' f' : β → α → δ g' : δ → γ h_right_anticomm : ∀ (a : α) (b : β), f a (g b) = g' (f' b a) val✝¹ : α val✝ : β ⊢ map₂ f (some val✝¹) (Option.map g (some val✝)) = Option.map g' (map₂ f' (some val✝) (some val✝¹)) [PROOFSTEP] simp [h_right_anticomm] [GOAL] α : Type u_2 β : Type u_1 γ : Type ?u.32843 f✝ : α → β → γ a✝ : Option α b : Option β c : Option γ f : α → β → β a : α h : ∀ (b : β), f a b = b o : Option β ⊢ map₂ f (some a) o = o [PROOFSTEP] cases o [GOAL] case none α : Type u_2 β : Type u_1 γ : Type ?u.32843 f✝ : α → β → γ a✝ : Option α b : Option β c : Option γ f : α → β → β a : α h : ∀ (b : β), f a b = b ⊢ map₂ f (some a) none = none case some α : Type u_2 β : Type u_1 γ : Type ?u.32843 f✝ : α → β → γ a✝ : Option α b : Option β c : Option γ f : α → β → β a : α h : ∀ (b : β), f a b = b val✝ : β ⊢ map₂ f (some a) (some val✝) = some val✝ [PROOFSTEP] exacts [rfl, congr_arg some (h _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type ?u.33033 f✝ : α → β → γ a : Option α b✝ : Option β c : Option γ f : α → β → α b : β h : ∀ (a : α), f a b = a o : Option α ⊢ map₂ f o (some b) = o [PROOFSTEP] simp [h, map₂]
{"mathlib_filename": "Mathlib.Data.Option.NAry", "llama_tokens": 29634}
[GOAL] n m : ℕ F : TypeVec n → Type u_1 fF : MvFunctor F q : MvQPF F G : Fin2 n → TypeVec m → Type u fG : (i : Fin2 n) → MvFunctor (G i) q' : (i : Fin2 n) → MvQPF (G i) α β : TypeVec m f : α ⟹ β ⊢ ∀ {α : TypeVec m} (x : Comp F G α), (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) ((fun {α} => comp.mk ∘ repr ∘ (MvFunctor.map fun i => repr) ∘ Comp.get) x) = x [PROOFSTEP] intros [GOAL] n m : ℕ F : TypeVec n → Type u_1 fF : MvFunctor F q : MvQPF F G : Fin2 n → TypeVec m → Type u fG : (i : Fin2 n) → MvFunctor (G i) q' : (i : Fin2 n) → MvQPF (G i) α β : TypeVec m f : α ⟹ β α✝ : TypeVec m x✝ : Comp F G α✝ ⊢ (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) ((fun {α} => comp.mk ∘ repr ∘ (MvFunctor.map fun i => repr) ∘ Comp.get) x✝) = x✝ [PROOFSTEP] simp only [(· ∘ ·), comp.get_mk, abs_repr, map_map, TypeVec.comp, MvFunctor.id_map', Comp.mk_get] [GOAL] n m : ℕ F : TypeVec n → Type u_1 fF : MvFunctor F q : MvQPF F G : Fin2 n → TypeVec m → Type u fG : (i : Fin2 n) → MvFunctor (G i) q' : (i : Fin2 n) → MvQPF (G i) α β : TypeVec m f : α ⟹ β ⊢ ∀ {α β : TypeVec m} (f : α ⟹ β) (p : Obj (comp (P F) fun i => P (G i)) α), (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) (f <$$> p) = f <$$> (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) p [PROOFSTEP] intros [GOAL] n m : ℕ F : TypeVec n → Type u_1 fF : MvFunctor F q : MvQPF F G : Fin2 n → TypeVec m → Type u fG : (i : Fin2 n) → MvFunctor (G i) q' : (i : Fin2 n) → MvQPF (G i) α β : TypeVec m f : α ⟹ β α✝ β✝ : TypeVec m f✝ : α✝ ⟹ β✝ p✝ : Obj (comp (P F) fun i => P (G i)) α✝ ⊢ (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) (f✝ <$$> p✝) = f✝ <$$> (fun {α} => Comp.mk ∘ (MvFunctor.map fun i => abs) ∘ abs ∘ comp.get) p✝ [PROOFSTEP] simp only [(· ∘ ·)] [GOAL] n m : ℕ F : TypeVec n → Type u_1 fF : MvFunctor F q : MvQPF F G : Fin2 n → TypeVec m → Type u fG : (i : Fin2 n) → MvFunctor (G i) q' : (i : Fin2 n) → MvQPF (G i) α β : TypeVec m f : α ⟹ β α✝ β✝ : TypeVec m f✝ : α✝ ⟹ β✝ p✝ : Obj (comp (P F) fun i => P (G i)) α✝ ⊢ Comp.mk ((fun i => abs) <$$> abs (comp.get (f✝ <$$> p✝))) = f✝ <$$> Comp.mk ((fun i => abs) <$$> abs (comp.get p✝)) [PROOFSTEP] rw [← abs_map] [GOAL] n m : ℕ F : TypeVec n → Type u_1 fF : MvFunctor F q : MvQPF F G : Fin2 n → TypeVec m → Type u fG : (i : Fin2 n) → MvFunctor (G i) q' : (i : Fin2 n) → MvQPF (G i) α β : TypeVec m f : α ⟹ β α✝ β✝ : TypeVec m f✝ : α✝ ⟹ β✝ p✝ : Obj (comp (P F) fun i => P (G i)) α✝ ⊢ Comp.mk (abs ((fun i => abs) <$$> comp.get (f✝ <$$> p✝))) = f✝ <$$> Comp.mk ((fun i => abs) <$$> abs (comp.get p✝)) [PROOFSTEP] simp only [comp.get_map, map_map, TypeVec.comp, abs_map, map_mk]
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Comp", "llama_tokens": 1511}
[GOAL] ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i ⊢ Lex r s a b ↔ r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i ⊢ Lex r s a b → r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd [PROOFSTEP] rintro (⟨a, b, hij⟩ | ⟨a, b, hab⟩) [GOAL] case mp.left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i✝ j✝ : ι a : α i✝ b : α j✝ hij : r i✝ j✝ ⊢ r { fst := i✝, snd := a }.fst { fst := j✝, snd := b }.fst ∨ ∃ h, s { fst := j✝, snd := b }.fst (h ▸ { fst := i✝, snd := a }.snd) { fst := j✝, snd := b }.snd [PROOFSTEP] exact Or.inl hij [GOAL] case mp.right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i✝ : ι a b : α i✝ hab : s i✝ a b ⊢ r { fst := i✝, snd := a }.fst { fst := i✝, snd := b }.fst ∨ ∃ h, s { fst := i✝, snd := b }.fst (h ▸ { fst := i✝, snd := a }.snd) { fst := i✝, snd := b }.snd [PROOFSTEP] exact Or.inr ⟨rfl, hab⟩ [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i ⊢ (r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd) → Lex r s a b [PROOFSTEP] obtain ⟨i, a⟩ := a [GOAL] case mpr.mk ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop b : (i : ι) × α i i : ι a : α i ⊢ (r { fst := i, snd := a }.fst b.fst ∨ ∃ h, s b.fst (h ▸ { fst := i, snd := a }.snd) b.snd) → Lex r s { fst := i, snd := a } b [PROOFSTEP] obtain ⟨j, b⟩ := b [GOAL] case mpr.mk.mk ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i : ι a : α i j : ι b : α j ⊢ (r { fst := i, snd := a }.fst { fst := j, snd := b }.fst ∨ ∃ h, s { fst := j, snd := b }.fst (h ▸ { fst := i, snd := a }.snd) { fst := j, snd := b }.snd) → Lex r s { fst := i, snd := a } { fst := j, snd := b } [PROOFSTEP] dsimp only [GOAL] case mpr.mk.mk ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i : ι a : α i j : ι b : α j ⊢ (r i j ∨ ∃ h, s j (h ▸ a) b) → Lex r s { fst := i, snd := a } { fst := j, snd := b } [PROOFSTEP] rintro (h | ⟨rfl, h⟩) [GOAL] case mpr.mk.mk.inl ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i : ι a : α i j : ι b : α j h : r i j ⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } [PROOFSTEP] exact Lex.left _ _ h [GOAL] case mpr.mk.mk.inr.intro ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i : ι a b : α i h : s i ((_ : i = i) ▸ a) b ⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } [PROOFSTEP] exact Lex.right _ _ h [GOAL] ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i hr : ∀ (a b : ι), r₁ a b → r₂ a b hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b a b : (i : ι) × α i h : Lex r₁ s₁ a b ⊢ Lex r₂ s₂ a b [PROOFSTEP] obtain ⟨a, b, hij⟩ | ⟨a, b, hab⟩ := h [GOAL] case left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i hr : ∀ (a b : ι), r₁ a b → r₂ a b hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b i✝ j✝ : ι a : α i✝ b : α j✝ hij : r₁ i✝ j✝ ⊢ Lex r₂ s₂ { fst := i✝, snd := a } { fst := j✝, snd := b } [PROOFSTEP] exact Lex.left _ _ (hr _ _ hij) [GOAL] case right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i hr : ∀ (a b : ι), r₁ a b → r₂ a b hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b i✝ : ι a b : α i✝ hab : s₁ i✝ a b ⊢ Lex r₂ s₂ { fst := i✝, snd := a } { fst := i✝, snd := b } [PROOFSTEP] exact Lex.right _ _ (hs _ _ _ hab) [GOAL] ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i ⊢ Lex (Function.swap r) s a b ↔ Lex r (fun i => Function.swap (s i)) b a [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i ⊢ Lex (Function.swap r) s a b → Lex r (fun i => Function.swap (s i)) b a [PROOFSTEP] rintro (⟨a, b, h⟩ | ⟨a, b, h⟩) [GOAL] case mp.left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i✝ j✝ : ι a : α i✝ b : α j✝ h : Function.swap r i✝ j✝ ⊢ Lex r (fun i => Function.swap (s i)) { fst := j✝, snd := b } { fst := i✝, snd := a } case mp.right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i✝ : ι a b : α i✝ h : s i✝ a b ⊢ Lex r (fun i => Function.swap (s i)) { fst := i✝, snd := b } { fst := i✝, snd := a } [PROOFSTEP] exacts [Lex.left _ _ h, Lex.right _ _ h] [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i ⊢ Lex r (fun i => Function.swap (s i)) b a → Lex (Function.swap r) s a b [PROOFSTEP] rintro (⟨a, b, h⟩ | ⟨a, b, h⟩) [GOAL] case mpr.left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i✝ j✝ : ι a : α i✝ b : α j✝ h : r i✝ j✝ ⊢ Lex (Function.swap r) s { fst := j✝, snd := b } { fst := i✝, snd := a } case mpr.right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i✝ : ι a b : α i✝ h : Function.swap (s i✝) a b ⊢ Lex (Function.swap r) s { fst := i✝, snd := b } { fst := i✝, snd := a } [PROOFSTEP] exacts [Lex.left _ _ h, Lex.right _ _ h] [GOAL] ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i inst✝¹ : IsIrrefl ι r inst✝ : ∀ (i : ι), IsIrrefl (α i) (s i) ⊢ ∀ (a : (i : ι) × α i), ¬Lex r s a a [PROOFSTEP] rintro _ (⟨a, b, hi⟩ | ⟨a, b, ha⟩) [GOAL] case left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b : (i : ι) × α i inst✝¹ : IsIrrefl ι r inst✝ : ∀ (i : ι), IsIrrefl (α i) (s i) i✝ : ι a : α i✝ hi : r i✝ i✝ ⊢ False [PROOFSTEP] exact irrefl _ hi [GOAL] case right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b : (i : ι) × α i inst✝¹ : IsIrrefl ι r inst✝ : ∀ (i : ι), IsIrrefl (α i) (s i) i✝ : ι a : α i✝ ha : s i✝ a a ⊢ False [PROOFSTEP] exact irrefl _ ha [GOAL] ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i inst✝¹ : IsTrans ι r inst✝ : ∀ (i : ι), IsTrans (α i) (s i) ⊢ ∀ (a b c : (i : ι) × α i), Lex r s a b → Lex r s b c → Lex r s a c [PROOFSTEP] rintro _ _ _ (⟨a, b, hij⟩ | ⟨a, b, hab⟩) (⟨_, c, hk⟩ | ⟨_, c, hc⟩) [GOAL] case left.left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrans ι r inst✝ : ∀ (i : ι), IsTrans (α i) (s i) i✝ j✝¹ : ι a : α i✝ b : α j✝¹ hij : r i✝ j✝¹ j✝ : ι c : α j✝ hk : r j✝¹ j✝ ⊢ Lex r s { fst := i✝, snd := a } { fst := j✝, snd := c } [PROOFSTEP] exact Lex.left _ _ (_root_.trans hij hk) [GOAL] case left.right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrans ι r inst✝ : ∀ (i : ι), IsTrans (α i) (s i) i✝ j✝ : ι a : α i✝ b : α j✝ hij : r i✝ j✝ c : α j✝ hc : s j✝ b c ⊢ Lex r s { fst := i✝, snd := a } { fst := j✝, snd := c } [PROOFSTEP] exact Lex.left _ _ hij [GOAL] case right.left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrans ι r inst✝ : ∀ (i : ι), IsTrans (α i) (s i) i✝ : ι a b : α i✝ hab : s i✝ a b j✝ : ι c : α j✝ hk : r i✝ j✝ ⊢ Lex r s { fst := i✝, snd := a } { fst := j✝, snd := c } [PROOFSTEP] exact Lex.left _ _ hk [GOAL] case right.right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrans ι r inst✝ : ∀ (i : ι), IsTrans (α i) (s i) i✝ : ι a b : α i✝ hab : s i✝ a b c : α i✝ hc : s i✝ b c ⊢ Lex r s { fst := i✝, snd := a } { fst := i✝, snd := c } [PROOFSTEP] exact Lex.right _ _ (_root_.trans hab hc) [GOAL] ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i inst✝¹ : IsSymm ι r inst✝ : ∀ (i : ι), IsSymm (α i) (s i) ⊢ ∀ (a b : (i : ι) × α i), Lex r s a b → Lex r s b a [PROOFSTEP] rintro _ _ (⟨a, b, hij⟩ | ⟨a, b, hab⟩) [GOAL] case left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsSymm ι r inst✝ : ∀ (i : ι), IsSymm (α i) (s i) i✝ j✝ : ι a : α i✝ b : α j✝ hij : r i✝ j✝ ⊢ Lex r s { fst := j✝, snd := b } { fst := i✝, snd := a } [PROOFSTEP] exact Lex.left _ _ (symm hij) [GOAL] case right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsSymm ι r inst✝ : ∀ (i : ι), IsSymm (α i) (s i) i✝ : ι a b : α i✝ hab : s i✝ a b ⊢ Lex r s { fst := i✝, snd := b } { fst := i✝, snd := a } [PROOFSTEP] exact Lex.right _ _ (symm hab) [GOAL] ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i inst✝¹ : IsAsymm ι r inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i) ⊢ ∀ (a b : (i : ι) × α i), Lex r s a b → Lex r s b a → a = b [PROOFSTEP] rintro _ _ (⟨a, b, hij⟩ | ⟨a, b, hab⟩) (⟨_, _, hji⟩ | ⟨_, _, hba⟩) [GOAL] case left.left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsAsymm ι r inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i) i✝ j✝ : ι a : α i✝ b : α j✝ hij : r i✝ j✝ hji : r j✝ i✝ ⊢ { fst := i✝, snd := a } = { fst := j✝, snd := b } [PROOFSTEP] exact (asymm hij hji).elim [GOAL] case left.right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsAsymm ι r inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i) i✝ : ι a b : α i✝ hij : r i✝ i✝ hba : s i✝ b a ⊢ { fst := i✝, snd := a } = { fst := i✝, snd := b } [PROOFSTEP] exact (irrefl _ hij).elim [GOAL] case right.left ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsAsymm ι r inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i) i✝ : ι a b : α i✝ hab : s i✝ a b hji : r i✝ i✝ ⊢ { fst := i✝, snd := a } = { fst := i✝, snd := b } [PROOFSTEP] exact (irrefl _ hji).elim [GOAL] case right.right ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsAsymm ι r inst✝ : ∀ (i : ι), IsAntisymm (α i) (s i) i✝ : ι a b : α i✝ hab : s i✝ a b hba : s i✝ b a ⊢ { fst := i✝, snd := a } = { fst := i✝, snd := b } [PROOFSTEP] exact ext rfl (heq_of_eq $ antisymm hab hba) [GOAL] ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTotal (α i) (s i) ⊢ ∀ (a b : (i : ι) × α i), Lex r s a b ∨ Lex r s b a [PROOFSTEP] rintro ⟨i, a⟩ ⟨j, b⟩ [GOAL] case mk.mk ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTotal (α i) (s i) i : ι a : α i j : ι b : α j ⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a } [PROOFSTEP] obtain hij | rfl | hji := trichotomous_of r i j [GOAL] case mk.mk.inl ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTotal (α i) (s i) i : ι a : α i j : ι b : α j hij : r i j ⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a } [PROOFSTEP] exact Or.inl (Lex.left _ _ hij) [GOAL] case mk.mk.inr.inl ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTotal (α i) (s i) i : ι a b : α i ⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a } [PROOFSTEP] obtain hab | hba := total_of (s i) a b [GOAL] case mk.mk.inr.inl.inl ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTotal (α i) (s i) i : ι a b : α i hab : s i a b ⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a } [PROOFSTEP] exact Or.inl (Lex.right _ _ hab) [GOAL] case mk.mk.inr.inl.inr ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTotal (α i) (s i) i : ι a b : α i hba : s i b a ⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a } [PROOFSTEP] exact Or.inr (Lex.right _ _ hba) [GOAL] case mk.mk.inr.inr ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTotal (α i) (s i) i : ι a : α i j : ι b : α j hji : r j i ⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a } [PROOFSTEP] exact Or.inr (Lex.left _ _ hji) [GOAL] ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i) ⊢ ∀ (a b : (i : ι) × α i), Lex r s a b ∨ a = b ∨ Lex r s b a [PROOFSTEP] rintro ⟨i, a⟩ ⟨j, b⟩ [GOAL] case mk.mk ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i) i : ι a : α i j : ι b : α j ⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨ { fst := i, snd := a } = { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a } [PROOFSTEP] obtain hij | rfl | hji := trichotomous_of r i j [GOAL] case mk.mk.inl ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i) i : ι a : α i j : ι b : α j hij : r i j ⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨ { fst := i, snd := a } = { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a } [PROOFSTEP] exact Or.inl (Lex.left _ _ hij) [GOAL] case mk.mk.inr.inl ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i) i : ι a b : α i ⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨ { fst := i, snd := a } = { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a } [PROOFSTEP] obtain hab | rfl | hba := trichotomous_of (s i) a b [GOAL] case mk.mk.inr.inl.inl ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i) i : ι a b : α i hab : s i a b ⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨ { fst := i, snd := a } = { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a } [PROOFSTEP] exact Or.inl (Lex.right _ _ hab) [GOAL] case mk.mk.inr.inl.inr.inl ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i) i : ι a : α i ⊢ Lex r s { fst := i, snd := a } { fst := i, snd := a } ∨ { fst := i, snd := a } = { fst := i, snd := a } ∨ Lex r s { fst := i, snd := a } { fst := i, snd := a } [PROOFSTEP] exact Or.inr (Or.inl rfl) [GOAL] case mk.mk.inr.inl.inr.inr ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i) i : ι a b : α i hba : s i b a ⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } ∨ { fst := i, snd := a } = { fst := i, snd := b } ∨ Lex r s { fst := i, snd := b } { fst := i, snd := a } [PROOFSTEP] exact Or.inr (Or.inr $ Lex.right _ _ hba) [GOAL] case mk.mk.inr.inr ι : Type u_1 α : ι → Type u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a✝ b✝ : (i : ι) × α i inst✝¹ : IsTrichotomous ι r inst✝ : ∀ (i : ι), IsTrichotomous (α i) (s i) i : ι a : α i j : ι b : α j hji : r j i ⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } ∨ { fst := i, snd := a } = { fst := j, snd := b } ∨ Lex r s { fst := j, snd := b } { fst := i, snd := a } [PROOFSTEP] exact Or.inr (Or.inr $ Lex.left _ _ hji) [GOAL] ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) ×' α i ⊢ Lex r s a b ↔ r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd [PROOFSTEP] constructor [GOAL] case mp ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) ×' α i ⊢ Lex r s a b → r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd [PROOFSTEP] rintro (⟨a, b, hij⟩ | ⟨i, hab⟩) [GOAL] case mp.left ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a₁✝ : ι a : α a₁✝ a₂✝ : ι b : α a₂✝ hij : r a₁✝ a₂✝ ⊢ r { fst := a₁✝, snd := a }.fst { fst := a₂✝, snd := b }.fst ∨ ∃ h, s { fst := a₂✝, snd := b }.fst (h ▸ { fst := a₁✝, snd := a }.snd) { fst := a₂✝, snd := b }.snd [PROOFSTEP] exact Or.inl hij [GOAL] case mp.right ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i : ι b₁✝ b₂✝ : α i hab : s i b₁✝ b₂✝ ⊢ r { fst := i, snd := b₁✝ }.fst { fst := i, snd := b₂✝ }.fst ∨ ∃ h, s { fst := i, snd := b₂✝ }.fst (h ▸ { fst := i, snd := b₁✝ }.snd) { fst := i, snd := b₂✝ }.snd [PROOFSTEP] exact Or.inr ⟨rfl, hab⟩ [GOAL] case mpr ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop a b : (i : ι) ×' α i ⊢ (r a.fst b.fst ∨ ∃ h, s b.fst (h ▸ a.snd) b.snd) → Lex r s a b [PROOFSTEP] obtain ⟨i, a⟩ := a [GOAL] case mpr.mk ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop b : (i : ι) ×' α i i : ι a : α i ⊢ (r { fst := i, snd := a }.fst b.fst ∨ ∃ h, s b.fst (h ▸ { fst := i, snd := a }.snd) b.snd) → Lex r s { fst := i, snd := a } b [PROOFSTEP] obtain ⟨j, b⟩ := b [GOAL] case mpr.mk.mk ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i : ι a : α i j : ι b : α j ⊢ (r { fst := i, snd := a }.fst { fst := j, snd := b }.fst ∨ ∃ h, s { fst := j, snd := b }.fst (h ▸ { fst := i, snd := a }.snd) { fst := j, snd := b }.snd) → Lex r s { fst := i, snd := a } { fst := j, snd := b } [PROOFSTEP] dsimp only [GOAL] case mpr.mk.mk ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i : ι a : α i j : ι b : α j ⊢ (r i j ∨ ∃ h, s j (h ▸ a) b) → Lex r s { fst := i, snd := a } { fst := j, snd := b } [PROOFSTEP] rintro (h | ⟨rfl, h⟩) [GOAL] case mpr.mk.mk.inl ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i : ι a : α i j : ι b : α j h : r i j ⊢ Lex r s { fst := i, snd := a } { fst := j, snd := b } [PROOFSTEP] exact Lex.left _ _ h [GOAL] case mpr.mk.mk.inr.intro ι : Sort u_1 α : ι → Sort u_2 r r₁ r₂ : ι → ι → Prop s s₁ s₂ : (i : ι) → α i → α i → Prop i : ι a b : α i h : s i ((_ : i = i) ▸ a) b ⊢ Lex r s { fst := i, snd := a } { fst := i, snd := b } [PROOFSTEP] exact Lex.right _ h [GOAL] ι : Sort u_1 α : ι → Sort u_2 r r₁✝ r₂✝ : ι → ι → Prop s s₁✝ s₂✝ : (i : ι) → α i → α i → Prop r₁ r₂ : ι → ι → Prop s₁ s₂ : (i : ι) → α i → α i → Prop hr : ∀ (a b : ι), r₁ a b → r₂ a b hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b a b : (i : ι) ×' α i h : Lex r₁ s₁ a b ⊢ Lex r₂ s₂ a b [PROOFSTEP] obtain ⟨a, b, hij⟩ | ⟨i, hab⟩ := h [GOAL] case left ι : Sort u_1 α : ι → Sort u_2 r r₁✝ r₂✝ : ι → ι → Prop s s₁✝ s₂✝ : (i : ι) → α i → α i → Prop r₁ r₂ : ι → ι → Prop s₁ s₂ : (i : ι) → α i → α i → Prop hr : ∀ (a b : ι), r₁ a b → r₂ a b hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b a₁✝ : ι a : α a₁✝ a₂✝ : ι b : α a₂✝ hij : r₁ a₁✝ a₂✝ ⊢ Lex r₂ s₂ { fst := a₁✝, snd := a } { fst := a₂✝, snd := b } [PROOFSTEP] exact Lex.left _ _ (hr _ _ hij) [GOAL] case right ι : Sort u_1 α : ι → Sort u_2 r r₁✝ r₂✝ : ι → ι → Prop s s₁✝ s₂✝ : (i : ι) → α i → α i → Prop r₁ r₂ : ι → ι → Prop s₁ s₂ : (i : ι) → α i → α i → Prop hr : ∀ (a b : ι), r₁ a b → r₂ a b hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b i : ι b₁✝ b₂✝ : α i hab : s₁ i b₁✝ b₂✝ ⊢ Lex r₂ s₂ { fst := i, snd := b₁✝ } { fst := i, snd := b₂✝ } [PROOFSTEP] exact Lex.right _ (hs _ _ _ hab)
{"mathlib_filename": "Mathlib.Data.Sigma.Lex", "llama_tokens": 12368}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : α → β y : β o : Option α ⊢ y ∈ Option.map f o ↔ ∃ x, x ∈ o ∧ f x = y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : α → β H : Function.Injective f a : α o : Option α ⊢ f a ∈ Option.map f o ↔ a ∈ o [PROOFSTEP] aesop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : α → β o : Option α p : β → Prop ⊢ (∀ (y : β), y ∈ Option.map f o → p y) ↔ ∀ (x : α), x ∈ o → p (f x) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : α → β o : Option α p : β → Prop ⊢ (∃ y, y ∈ Option.map f o ∧ p y) ↔ ∃ x, x ∈ o ∧ p (f x) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : α → β Hf : Function.Injective f a₁ a₂ : α H : Option.map f (some a₁) = Option.map f (some a₂) ⊢ some a₁ = some a₂ [PROOFSTEP] rw [Hf (Option.some.inj H)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 x : Option α f : α → Option β b : β ⊢ Option.bind x f = some b ↔ ∃ a, x = some a ∧ f a = some b [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : α → Option β b : β ⊢ Option.bind none f = some b ↔ ∃ a, none = some a ∧ f a = some b [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : α → Option β b : β val✝ : α ⊢ Option.bind (some val✝) f = some b ↔ ∃ a, some val✝ = some a ∧ f a = some b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 o : Option α f : α → Option β ⊢ Option.bind o f = none ↔ ∀ (b : β) (a : α), a ∈ o → ¬b ∈ f a [PROOFSTEP] simp only [eq_none_iff_forall_not_mem, mem_def, bind_eq_some, not_exists, not_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f g : α → β h : Option.map f = Option.map g x : α ⊢ some (f x) = some (g x) [PROOFSTEP] simp only [← map_some', h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f₁ : α → β f₂ : α → γ g₁ : β → δ g₂ : γ → δ h : g₁ ∘ f₁ = g₂ ∘ f₂ a : α ⊢ Option.map g₁ (Option.map f₁ (some a)) = Option.map g₂ (Option.map f₂ (some a)) [PROOFSTEP] rw [map_map, h, ← map_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x✝ : Option α f : α → Option β x : Option α ⊢ (pbind x fun a x => f a) = Option.bind x f [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : α → Option β ⊢ (pbind none fun a x => f a) = Option.bind none f [PROOFSTEP] simp only [pbind, none_bind', some_bind'] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : α → Option β val✝ : α ⊢ (pbind (some val✝) fun a x => f a) = Option.bind (some val✝) f [PROOFSTEP] simp only [pbind, none_bind', some_bind'] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 δ : Type u_4 p : α✝ → Prop f✝ : (a : α✝) → p a → β✝ x✝ : Option α✝ α β γ : Type u_5 f : β → γ x : Option α g : α → Option β ⊢ Option.map f (x >>= g) = do let a ← x Option.map f (g a) [PROOFSTEP] simp only [← map_eq_map, ← bind_pure_comp, LawfulMonad.bind_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x✝ : Option α f : β → γ x : Option α g : α → Option β ⊢ Option.map f (Option.bind x g) = Option.bind x fun a => Option.map f (g a) [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : β → γ g : α → Option β ⊢ Option.map f (Option.bind none g) = Option.bind none fun a => Option.map f (g a) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : β → γ g : α → Option β val✝ : α ⊢ Option.map f (Option.bind (some val✝) g) = Option.bind (some val✝) fun a => Option.map f (g a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x✝ : Option α f : β → γ x : Option α g : (a : α) → a ∈ x → Option β ⊢ Option.map f (pbind x g) = pbind x fun a H => Option.map f (g a H) [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : β → γ g : (a : α) → a ∈ none → Option β ⊢ Option.map f (pbind none g) = pbind none fun a H => Option.map f (g a H) [PROOFSTEP] simp only [pbind, map_none'] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : β → γ val✝ : α g : (a : α) → a ∈ some val✝ → Option β ⊢ Option.map f (pbind (some val✝) g) = pbind (some val✝) fun a H => Option.map f (g a H) [PROOFSTEP] simp only [pbind, map_none'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x✝ : Option α f : α → β x : Option α g : (b : β) → b ∈ Option.map f x → Option γ ⊢ pbind (Option.map f x) g = pbind x fun a h => g (f a) (_ : f a ∈ Option.map f x) [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : α → β g : (b : β) → b ∈ Option.map f none → Option γ ⊢ pbind (Option.map f none) g = pbind none fun a h => g (f a) (_ : f a ∈ Option.map f none) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : α → β val✝ : α g : (b : β) → b ∈ Option.map f (some val✝) → Option γ ⊢ pbind (Option.map f (some val✝)) g = pbind (some val✝) fun a h => g (f a) (_ : f a ∈ Option.map f (some val✝)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β x : Option α a : α h : ∀ (a : α), a ∈ x → p a ha : a ∈ x ⊢ f a (_ : p a) ∈ pmap f x h [PROOFSTEP] rw [mem_def] at ha ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β x : Option α a : α h : ∀ (a : α), a ∈ x → p a ha✝ : a ∈ x ha : x = some a ⊢ pmap f x h = some (f a (_ : p a)) [PROOFSTEP] subst ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β a : α h : ∀ (a_1 : α), a_1 ∈ some a → p a_1 ha : a ∈ some a ⊢ pmap f (some a) h = some (f a (_ : p a)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β x✝ : Option α g : γ → α x : Option γ H : ∀ (a : α), a ∈ Option.map g x → p a ⊢ pmap f (Option.map g x) H = pmap (fun a h => f (g a) h) x (_ : ∀ (a : γ), a ∈ x → p (g a)) [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β x : Option α g : γ → α H : ∀ (a : α), a ∈ Option.map g none → p a ⊢ pmap f (Option.map g none) H = pmap (fun a h => f (g a) h) none (_ : ∀ (a : γ), a ∈ none → p (g a)) [PROOFSTEP] simp only [map_none', map_some', pmap] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β x : Option α g : γ → α val✝ : γ H : ∀ (a : α), a ∈ Option.map g (some val✝) → p a ⊢ pmap f (Option.map g (some val✝)) H = pmap (fun a h => f (g a) h) (some val✝) (_ : ∀ (a : γ), a ∈ some val✝ → p (g a)) [PROOFSTEP] simp only [map_none', map_some', pmap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x✝ : Option α g : β → γ f : (a : α) → p a → β x : Option α H : ∀ (a : α), a ∈ x → p a ⊢ Option.map g (pmap f x H) = pmap (fun a h => g (f a h)) x H [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α g : β → γ f : (a : α) → p a → β H : ∀ (a : α), a ∈ none → p a ⊢ Option.map g (pmap f none H) = pmap (fun a h => g (f a h)) none H [PROOFSTEP] simp only [map_none', map_some', pmap] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α g : β → γ f : (a : α) → p a → β val✝ : α H : ∀ (a : α), a ∈ some val✝ → p a ⊢ Option.map g (pmap f (some val✝) H) = pmap (fun a h => g (f a h)) (some val✝) H [PROOFSTEP] simp only [map_none', map_some', pmap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p✝ : α → Prop f✝ : (a : α) → p✝ a → β x✝ : Option α p : α → Prop f : α → β x : Option α H : ∀ (a : α), a ∈ x → p a ⊢ pmap (fun a x => f a) x H = Option.map f x [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p✝ : α → Prop f✝ : (a : α) → p✝ a → β x : Option α p : α → Prop f : α → β H : ∀ (a : α), a ∈ none → p a ⊢ pmap (fun a x => f a) none H = Option.map f none [PROOFSTEP] simp only [map_none', map_some', pmap] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p✝ : α → Prop f✝ : (a : α) → p✝ a → β x : Option α p : α → Prop f : α → β val✝ : α H : ∀ (a : α), a ∈ some val✝ → p a ⊢ pmap (fun a x => f a) (some val✝) H = Option.map f (some val✝) [PROOFSTEP] simp only [map_none', map_some', pmap] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 δ : Type u_4 p✝ : α✝ → Prop f✝ : (a : α✝) → p✝ a → β✝ x✝ : Option α✝ α β γ : Type u_5 x : Option α g : α → Option β p : β → Prop f : (b : β) → p b → γ H : ∀ (a : β), a ∈ x >>= g → p a H' : ∀ (a : α) (b : β), b ∈ g a → b ∈ x >>= g ⊢ pmap f (x >>= g) H = do let a ← x pmap f (g a) (_ : ∀ (b : β), b ∈ g a → p b) [PROOFSTEP] cases x [GOAL] case none α✝ : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 δ : Type u_4 p✝ : α✝ → Prop f✝ : (a : α✝) → p✝ a → β✝ x : Option α✝ α β γ : Type u_5 g : α → Option β p : β → Prop f : (b : β) → p b → γ H : ∀ (a : β), a ∈ none >>= g → p a H' : ∀ (a : α) (b : β), b ∈ g a → b ∈ none >>= g ⊢ pmap f (none >>= g) H = do let a ← none pmap f (g a) (_ : ∀ (b : β), b ∈ g a → p b) [PROOFSTEP] simp only [pmap, bind_eq_bind, none_bind, some_bind] [GOAL] case some α✝ : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 δ : Type u_4 p✝ : α✝ → Prop f✝ : (a : α✝) → p✝ a → β✝ x : Option α✝ α β γ : Type u_5 g : α → Option β p : β → Prop f : (b : β) → p b → γ val✝ : α H : ∀ (a : β), a ∈ some val✝ >>= g → p a H' : ∀ (a : α) (b : β), b ∈ g a → b ∈ some val✝ >>= g ⊢ pmap f (some val✝ >>= g) H = do let a ← some val✝ pmap f (g a) (_ : ∀ (b : β), b ∈ g a → p b) [PROOFSTEP] simp only [pmap, bind_eq_bind, none_bind, some_bind] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 δ : Type u_4 p✝ : α✝ → Prop f✝ : (a : α✝) → p✝ a → β✝ x✝ : Option α✝ α : Type u_5 β γ : Type u_6 p : α → Prop f : (a : α) → p a → β x : Option α g : β → Option γ H : ∀ (a : α), a ∈ x → p a ⊢ pmap f x H >>= g = pbind x fun a h => g (f a (_ : p a)) [PROOFSTEP] cases x [GOAL] case none α✝ : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 δ : Type u_4 p✝ : α✝ → Prop f✝ : (a : α✝) → p✝ a → β✝ x : Option α✝ α : Type u_5 β γ : Type u_6 p : α → Prop f : (a : α) → p a → β g : β → Option γ H : ∀ (a : α), a ∈ none → p a ⊢ pmap f none H >>= g = pbind none fun a h => g (f a (_ : p a)) [PROOFSTEP] simp only [pmap, bind_eq_bind, none_bind, some_bind, pbind] [GOAL] case some α✝ : Type u_1 β✝ : Type u_2 γ✝ : Type u_3 δ : Type u_4 p✝ : α✝ → Prop f✝ : (a : α✝) → p✝ a → β✝ x : Option α✝ α : Type u_5 β γ : Type u_6 p : α → Prop f : (a : α) → p a → β g : β → Option γ val✝ : α H : ∀ (a : α), a ∈ some val✝ → p a ⊢ pmap f (some val✝) H >>= g = pbind (some val✝) fun a h => g (f a (_ : p a)) [PROOFSTEP] simp only [pmap, bind_eq_bind, none_bind, some_bind, pbind] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : (a : α) → a ∈ x → Option β h' : ∀ (a : α) (H : a ∈ x), f a H = none → x = none ⊢ pbind x f = none ↔ x = none [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β f : (a : α) → a ∈ none → Option β h' : ∀ (a : α) (H : a ∈ none), f a H = none → none = none ⊢ pbind none f = none ↔ none = none [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β val✝ : α f : (a : α) → a ∈ some val✝ → Option β h' : ∀ (a : α) (H : a ∈ some val✝), f a H = none → some val✝ = none ⊢ pbind (some val✝) f = none ↔ some val✝ = none [PROOFSTEP] simp only [pbind, iff_false] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β val✝ : α f : (a : α) → a ∈ some val✝ → Option β h' : ∀ (a : α) (H : a ∈ some val✝), f a H = none → some val✝ = none ⊢ ¬f val✝ (_ : some val✝ = some val✝) = none [PROOFSTEP] intro h [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β val✝ : α f : (a : α) → a ∈ some val✝ → Option β h' : ∀ (a : α) (H : a ∈ some val✝), f a H = none → some val✝ = none h : f val✝ (_ : some val✝ = some val✝) = none ⊢ False [PROOFSTEP] cases h' _ rfl h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : (a : α) → a ∈ x → Option β y : β ⊢ pbind x f = some y ↔ ∃ z H, f z H = some y [PROOFSTEP] rcases x with (_ | x) [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β y : β f : (a : α) → a ∈ none → Option β ⊢ pbind none f = some y ↔ ∃ z H, f z H = some y [PROOFSTEP] simp only [pbind, false_iff, not_exists] [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β y : β f : (a : α) → a ∈ none → Option β ⊢ ∀ (x : α) (x_1 : x ∈ none), ¬f x x_1 = some y [PROOFSTEP] intro z h [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β y : β f : (a : α) → a ∈ none → Option β z : α h : z ∈ none ⊢ ¬f z h = some y [PROOFSTEP] simp at h [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β y : β x : α f : (a : α) → a ∈ some x → Option β ⊢ pbind (some x) f = some y ↔ ∃ z H, f z H = some y [PROOFSTEP] simp only [pbind] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β y : β x : α f : (a : α) → a ∈ some x → Option β ⊢ f x (_ : some x = some x) = some y ↔ ∃ z H, f z H = some y [PROOFSTEP] refine ⟨λ h => ⟨x, rfl, h⟩, ?_⟩ [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β y : β x : α f : (a : α) → a ∈ some x → Option β ⊢ (∃ z H, f z H = some y) → f x (_ : some x = some x) = some y [PROOFSTEP] rintro ⟨z, H, hz⟩ [GOAL] case some.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β y : β x : α f : (a : α) → a ∈ some x → Option β z : α H : z ∈ some x hz : f z H = some y ⊢ f x (_ : some x = some x) = some y [PROOFSTEP] simp only [mem_def, Option.some_inj] at H [GOAL] case some.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β y : β x : α f : (a : α) → a ∈ some x → Option β z : α H✝ : z ∈ some x hz : f z H✝ = some y H : x = z ⊢ f x (_ : some x = some x) = some y [PROOFSTEP] simpa [H] using hz [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β x : Option α h : ∀ (a : α), a ∈ x → p a ⊢ pmap f x h = none ↔ x = none [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β h : ∀ (a : α), a ∈ none → p a ⊢ pmap f none h = none ↔ none = none [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β val✝ : α h : ∀ (a : α), a ∈ some val✝ → p a ⊢ pmap f (some val✝) h = none ↔ some val✝ = none [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β x : Option α hf : ∀ (a : α), a ∈ x → p a y : β ⊢ pmap f x hf = some y ↔ ∃ a H, f a (_ : p a) = y [PROOFSTEP] rcases x with (_ | x) [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β y : β hf : ∀ (a : α), a ∈ none → p a ⊢ pmap f none hf = some y ↔ ∃ a H, f a (_ : p a) = y [PROOFSTEP] simp only [not_mem_none, exists_false, pmap, not_false_iff, exists_prop_of_false] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β y : β x : α hf : ∀ (a : α), a ∈ some x → p a ⊢ pmap f (some x) hf = some y ↔ ∃ a H, f a (_ : p a) = y [PROOFSTEP] constructor [GOAL] case some.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β y : β x : α hf : ∀ (a : α), a ∈ some x → p a ⊢ pmap f (some x) hf = some y → ∃ a H, f a (_ : p a) = y [PROOFSTEP] intro h [GOAL] case some.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β y : β x : α hf : ∀ (a : α), a ∈ some x → p a h : pmap f (some x) hf = some y ⊢ ∃ a H, f a (_ : p a) = y [PROOFSTEP] simp only [pmap, Option.some_inj] at h [GOAL] case some.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β y : β x : α hf : ∀ (a : α), a ∈ some x → p a h : f x (_ : p x) = y ⊢ ∃ a H, f a (_ : p a) = y [PROOFSTEP] refine ⟨x, rfl, h⟩ [GOAL] case some.mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β y : β x : α hf : ∀ (a : α), a ∈ some x → p a ⊢ (∃ a H, f a (_ : p a) = y) → pmap f (some x) hf = some y [PROOFSTEP] rintro ⟨a, H, rfl⟩ [GOAL] case some.mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β x : α hf : ∀ (a : α), a ∈ some x → p a a : α H : some x = some a ⊢ pmap f (some x) hf = some (f a (_ : p a)) [PROOFSTEP] simp only [mem_def, Option.some_inj] at H [GOAL] case some.mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f : (a : α) → p a → β x : α hf : ∀ (a : α), a ∈ some x → p a a : α H✝ : some x = some a H : x = a ⊢ pmap f (some x) hf = some (f a (_ : p a)) [PROOFSTEP] simp only [H, pmap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x✝ : Option α f : (a : α) → p a → β x : Option (Option α) H : ∀ (a : Option α), a ∈ x → ∀ (a_2 : α), a_2 ∈ a → p a_2 ⊢ join (pmap (pmap f) x H) = pmap f (join x) (_ : ∀ (a : α), a ∈ join x → p a) [PROOFSTEP] rcases x with (_ | _ | x) [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : (a : α) → p a → β H : ∀ (a : Option α), a ∈ none → ∀ (a_2 : α), a_2 ∈ a → p a_2 ⊢ join (pmap (pmap f) none H) = pmap f (join none) (_ : ∀ (a : α), a ∈ join none → p a) [PROOFSTEP] simp [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x : Option α f : (a : α) → p a → β H : ∀ (a : Option α), a ∈ some none → ∀ (a_2 : α), a_2 ∈ a → p a_2 ⊢ join (pmap (pmap f) (some none) H) = pmap f (join (some none)) (_ : ∀ (a : α), a ∈ join (some none) → p a) [PROOFSTEP] simp [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : α → Prop f✝ : (a : α) → p a → β x✝ : Option α f : (a : α) → p a → β x : α H : ∀ (a : Option α), a ∈ some (some x) → ∀ (a_2 : α), a_2 ∈ a → p a_2 ⊢ join (pmap (pmap f) (some (some x)) H) = pmap f (join (some (some x))) (_ : ∀ (a : α), a ∈ join (some (some x)) → p a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 x : Option α ⊢ (Option.orElse none fun x_1 => x) = x [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ⊢ (Option.orElse none fun x => none) = none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 val✝ : α ⊢ (Option.orElse none fun x => some val✝) = some val✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 x : Option α ⊢ (Option.orElse x fun x => none) = x [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 ⊢ (Option.orElse none fun x => none) = none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 val✝ : α ⊢ (Option.orElse (some val✝) fun x => none) = some val✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Inhabited α o : Option α ⊢ getD o default = iget o [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Inhabited α ⊢ getD none default = iget none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Inhabited α val✝ : α ⊢ getD (some val✝) default = iget (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : Prop inst✝ : Decidable p u : Unit ⊢ _root_.guard p = some u ↔ p [PROOFSTEP] cases u [GOAL] case unit α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : Prop inst✝ : Decidable p ⊢ _root_.guard p = some PUnit.unit ↔ p [PROOFSTEP] by_cases h : p [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : Prop inst✝ : Decidable p h : p ⊢ _root_.guard p = some PUnit.unit ↔ p [PROOFSTEP] simp [_root_.guard, h] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 p : Prop inst✝ : Decidable p h : ¬p ⊢ _root_.guard p = some PUnit.unit ↔ p [PROOFSTEP] simp [_root_.guard, h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : α → α → α h : ∀ (a b : α), f a b = a ∨ f a b = b a b : α ⊢ liftOrGet f (some a) (some b) = some a ∨ liftOrGet f (some a) (some b) = some b [PROOFSTEP] simpa [liftOrGet] using h a b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : Option α → β o : Option α ⊢ casesOn' o (f none) (f ∘ fun a => some a) = f o [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : Option α → β ⊢ casesOn' none (f none) (f ∘ fun a => some a) = f none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : Option α → β val✝ : α ⊢ casesOn' (some val✝) (f none) (f ∘ fun a => some a) = f (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 o o' : Option α x : α ⊢ (HOrElse.hOrElse o fun x => o') = some x ↔ o = some x ∨ o = none ∧ o' = some x [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 o' : Option α x : α ⊢ (HOrElse.hOrElse none fun x => o') = some x ↔ none = some x ∨ none = none ∧ o' = some x [PROOFSTEP] simp only [true_and, false_or, eq_self_iff_true, none_orElse] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 o' : Option α x val✝ : α ⊢ (HOrElse.hOrElse (some val✝) fun x => o') = some x ↔ some val✝ = some x ∨ some val✝ = none ∧ o' = some x [PROOFSTEP] simp only [some_orElse, or_false, false_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 o o' : Option α ⊢ (HOrElse.hOrElse o fun x => o') = none ↔ o = none ∧ o' = none [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 o' : Option α ⊢ (HOrElse.hOrElse none fun x => o') = none ↔ none = none ∧ o' = none [PROOFSTEP] simp only [true_and, none_orElse, eq_self_iff_true] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 o' : Option α val✝ : α ⊢ (HOrElse.hOrElse (some val✝) fun x => o') = none ↔ some val✝ = none ∧ o' = none [PROOFSTEP] simp only [some_orElse, false_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : Option α → β o : Option α ⊢ Option.elim o (f none) (f ∘ some) = f o [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : Option α → β ⊢ Option.elim none (f none) (f ∘ some) = f none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 f : Option α → β val✝ : α ⊢ Option.elim (some val✝) (f none) (f ∘ some) = f (some val✝) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Data.Option.Basic", "llama_tokens": 12465}
[GOAL] α : Type u β : Type v γ : Type w c : Computation α n : ℕ a : α h : Stream'.cons none (↑c) n = some a ⊢ Stream'.cons none (↑c) (n + 1) = some a [PROOFSTEP] cases' n with n [GOAL] case zero α : Type u β : Type v γ : Type w c : Computation α a : α h : Stream'.cons none (↑c) Nat.zero = some a ⊢ Stream'.cons none (↑c) (Nat.zero + 1) = some a [PROOFSTEP] contradiction [GOAL] case succ α : Type u β : Type v γ : Type w c : Computation α a : α n : ℕ h : Stream'.cons none (↑c) (Nat.succ n) = some a ⊢ Stream'.cons none (↑c) (Nat.succ n + 1) = some a [PROOFSTEP] exact c.2 h [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α ⊢ destruct s = Sum.inl a → s = pure a [PROOFSTEP] dsimp [destruct] [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α ⊢ (match ↑s 0 with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inl a → s = pure a [PROOFSTEP] induction' f0 : s.1 0 with _ [GOAL] case none α : Type u β : Type v γ : Type w s : Computation α a : α x✝ : Option α f0✝ : ↑s 0 = x✝ f0 : ↑s 0 = none ⊢ (match none with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inl a → s = pure a [PROOFSTEP] intro h [GOAL] case some α : Type u β : Type v γ : Type w s : Computation α a : α x✝ : Option α f0✝ : ↑s 0 = x✝ val✝ : α f0 : ↑s 0 = some val✝ ⊢ (match some val✝ with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inl a → s = pure a [PROOFSTEP] intro h [GOAL] case none α : Type u β : Type v γ : Type w s : Computation α a : α x✝ : Option α f0✝ : ↑s 0 = x✝ f0 : ↑s 0 = none h : (match none with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inl a ⊢ s = pure a [PROOFSTEP] contradiction [GOAL] case some α : Type u β : Type v γ : Type w s : Computation α a : α x✝ : Option α f0✝ : ↑s 0 = x✝ val✝ : α f0 : ↑s 0 = some val✝ h : (match some val✝ with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inl a ⊢ s = pure a [PROOFSTEP] apply Subtype.eq [GOAL] case some.a α : Type u β : Type v γ : Type w s : Computation α a : α x✝ : Option α f0✝ : ↑s 0 = x✝ val✝ : α f0 : ↑s 0 = some val✝ h : (match some val✝ with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inl a ⊢ ↑s = ↑(pure a) [PROOFSTEP] funext n [GOAL] case some.a.h α : Type u β : Type v γ : Type w s : Computation α a : α x✝ : Option α f0✝ : ↑s 0 = x✝ val✝ : α f0 : ↑s 0 = some val✝ h : (match some val✝ with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inl a n : ℕ ⊢ ↑s n = ↑(pure a) n [PROOFSTEP] induction' n with n IH [GOAL] case some.a.h.zero α : Type u β : Type v γ : Type w s : Computation α a : α x✝ : Option α f0✝ : ↑s 0 = x✝ val✝ : α f0 : ↑s 0 = some val✝ h : (match some val✝ with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inl a ⊢ ↑s Nat.zero = ↑(pure a) Nat.zero [PROOFSTEP] injection h with h' [GOAL] case some.a.h.zero α : Type u β : Type v γ : Type w s : Computation α a : α x✝ : Option α f0✝ : ↑s 0 = x✝ val✝ : α f0 : ↑s 0 = some val✝ h' : val✝ = a ⊢ ↑s Nat.zero = ↑(pure a) Nat.zero [PROOFSTEP] rwa [h'] at f0 [GOAL] case some.a.h.succ α : Type u β : Type v γ : Type w s : Computation α a : α x✝ : Option α f0✝ : ↑s 0 = x✝ val✝ : α f0 : ↑s 0 = some val✝ h : (match some val✝ with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inl a n : ℕ IH : ↑s n = ↑(pure a) n ⊢ ↑s (Nat.succ n) = ↑(pure a) (Nat.succ n) [PROOFSTEP] exact s.2 IH [GOAL] α : Type u β : Type v γ : Type w s s' : Computation α ⊢ destruct s = Sum.inr s' → s = think s' [PROOFSTEP] dsimp [destruct] [GOAL] α : Type u β : Type v γ : Type w s s' : Computation α ⊢ (match ↑s 0 with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inr s' → s = think s' [PROOFSTEP] induction' f0 : s.1 0 with a' [GOAL] case none α : Type u β : Type v γ : Type w s s' : Computation α x✝ : Option α f0✝ : ↑s 0 = x✝ f0 : ↑s 0 = none ⊢ (match none with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inr s' → s = think s' [PROOFSTEP] intro h [GOAL] case some α : Type u β : Type v γ : Type w s s' : Computation α x✝ : Option α f0✝ : ↑s 0 = x✝ a' : α f0 : ↑s 0 = some a' ⊢ (match some a' with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inr s' → s = think s' [PROOFSTEP] intro h [GOAL] case none α : Type u β : Type v γ : Type w s s' : Computation α x✝ : Option α f0✝ : ↑s 0 = x✝ f0 : ↑s 0 = none h : (match none with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inr s' ⊢ s = think s' [PROOFSTEP] injection h with h' [GOAL] case none α : Type u β : Type v γ : Type w s s' : Computation α x✝ : Option α f0✝ : ↑s 0 = x✝ f0 : ↑s 0 = none h' : tail s = s' ⊢ s = think s' [PROOFSTEP] rw [← h'] [GOAL] case none α : Type u β : Type v γ : Type w s s' : Computation α x✝ : Option α f0✝ : ↑s 0 = x✝ f0 : ↑s 0 = none h' : tail s = s' ⊢ s = think (tail s) [PROOFSTEP] cases' s with f al [GOAL] case none.mk α : Type u β : Type v γ : Type w s' : Computation α x✝ : Option α f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a f0✝ : ↑{ val := f, property := al } 0 = x✝ f0 : ↑{ val := f, property := al } 0 = none h' : tail { val := f, property := al } = s' ⊢ { val := f, property := al } = think (tail { val := f, property := al }) [PROOFSTEP] apply Subtype.eq [GOAL] case none.mk.a α : Type u β : Type v γ : Type w s' : Computation α x✝ : Option α f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a f0✝ : ↑{ val := f, property := al } 0 = x✝ f0 : ↑{ val := f, property := al } 0 = none h' : tail { val := f, property := al } = s' ⊢ ↑{ val := f, property := al } = ↑(think (tail { val := f, property := al })) [PROOFSTEP] dsimp [think, tail] [GOAL] case none.mk.a α : Type u β : Type v γ : Type w s' : Computation α x✝ : Option α f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a f0✝ : ↑{ val := f, property := al } 0 = x✝ f0 : ↑{ val := f, property := al } 0 = none h' : tail { val := f, property := al } = s' ⊢ f = Stream'.cons none (Stream'.tail f) [PROOFSTEP] rw [← f0] [GOAL] case none.mk.a α : Type u β : Type v γ : Type w s' : Computation α x✝ : Option α f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a f0✝ : ↑{ val := f, property := al } 0 = x✝ f0 : ↑{ val := f, property := al } 0 = none h' : tail { val := f, property := al } = s' ⊢ f = Stream'.cons (↑{ val := f, property := al } 0) (Stream'.tail f) [PROOFSTEP] exact (Stream'.eta f).symm [GOAL] case some α : Type u β : Type v γ : Type w s s' : Computation α x✝ : Option α f0✝ : ↑s 0 = x✝ a' : α f0 : ↑s 0 = some a' h : (match some a' with | none => Sum.inr (tail s) | some a => Sum.inl a) = Sum.inr s' ⊢ s = think s' [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v γ : Type w s : Computation α ⊢ tail (think s) = s [PROOFSTEP] cases' s with f al [GOAL] case mk α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a ⊢ tail (think { val := f, property := al }) = { val := f, property := al } [PROOFSTEP] apply Subtype.eq [GOAL] case mk.a α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a ⊢ ↑(tail (think { val := f, property := al })) = ↑{ val := f, property := al } [PROOFSTEP] dsimp [tail, think] [GOAL] α : Type u β : Type v γ : Type w C : Computation α → Sort v s : Computation α h1 : (a : α) → C (pure a) h2 : (s : Computation α) → C (think s) v : α H : destruct s = Sum.inl v ⊢ C s [PROOFSTEP] rw [destruct_eq_pure H] [GOAL] α : Type u β : Type v γ : Type w C : Computation α → Sort v s : Computation α h1 : (a : α) → C (pure a) h2 : (s : Computation α) → C (think s) v : α H : destruct s = Sum.inl v ⊢ C (pure v) [PROOFSTEP] apply h1 [GOAL] α : Type u β : Type v γ : Type w C : Computation α → Sort v s : Computation α h1 : (a : α) → C (pure a) h2 : (s : Computation α) → C (think s) v : Computation α a : Stream' (Option α) s' : ∀ ⦃n : ℕ⦄ ⦃a_1 : α⦄, a n = some a_1 → a (n + 1) = some a_1 H : destruct s = Sum.inr { val := a, property := s' } ⊢ C s [PROOFSTEP] rw [destruct_eq_think H] [GOAL] α : Type u β : Type v γ : Type w C : Computation α → Sort v s : Computation α h1 : (a : α) → C (pure a) h2 : (s : Computation α) → C (think s) v : Computation α a : Stream' (Option α) s' : ∀ ⦃n : ℕ⦄ ⦃a_1 : α⦄, a n = some a_1 → a (n + 1) = some a_1 H : destruct s = Sum.inr { val := a, property := s' } ⊢ C (think { val := a, property := s' }) [PROOFSTEP] apply h2 [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β ⊢ Computation α [PROOFSTEP] refine' ⟨Stream'.corec' (Corec.f f) (Sum.inr b), fun n a' h => _⟩ [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β n : ℕ a' : α h : Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' ⊢ Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a' [PROOFSTEP] rw [Stream'.corec'_eq] [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β n : ℕ a' : α h : Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' ⊢ Stream'.cons (Corec.f f (Sum.inr b)).fst (Stream'.corec' (Corec.f f) (Corec.f f (Sum.inr b)).snd) (n + 1) = some a' [PROOFSTEP] change Stream'.corec' (Corec.f f) (Corec.f f (Sum.inr b)).2 n = some a' [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β n : ℕ a' : α h : Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' ⊢ Stream'.corec' (Corec.f f) (Corec.f f (Sum.inr b)).snd n = some a' [PROOFSTEP] revert h [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β n : ℕ a' : α ⊢ Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Corec.f f (Sum.inr b)).snd n = some a' [PROOFSTEP] generalize Sum.inr b = o [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β n : ℕ a' : α o : α ⊕ β ⊢ Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a' [PROOFSTEP] revert o [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β n : ℕ a' : α ⊢ ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a' [PROOFSTEP] induction' n with n IH [GOAL] case zero α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β a' : α ⊢ ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o Nat.zero = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd Nat.zero = some a' [PROOFSTEP] intro o [GOAL] case succ α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β a' : α n : ℕ IH : ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a' ⊢ ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o (Nat.succ n) = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd (Nat.succ n) = some a' [PROOFSTEP] intro o [GOAL] case zero α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β a' : α o : α ⊕ β ⊢ Stream'.corec' (Corec.f f) o Nat.zero = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd Nat.zero = some a' [PROOFSTEP] change (Corec.f f o).1 = some a' → (Corec.f f (Corec.f f o).2).1 = some a' [GOAL] case zero α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β a' : α o : α ⊕ β ⊢ (Corec.f f o).fst = some a' → (Corec.f f (Corec.f f o).snd).fst = some a' [PROOFSTEP] cases' o with _ b [GOAL] case zero.inl α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β a' val✝ : α ⊢ (Corec.f f (Sum.inl val✝)).fst = some a' → (Corec.f f (Corec.f f (Sum.inl val✝)).snd).fst = some a' [PROOFSTEP] intro h [GOAL] case zero.inr α : Type u β : Type v γ : Type w f : β → α ⊕ β b✝ : β a' : α b : β ⊢ (Corec.f f (Sum.inr b)).fst = some a' → (Corec.f f (Corec.f f (Sum.inr b)).snd).fst = some a' [PROOFSTEP] intro h [GOAL] case zero.inl α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β a' val✝ : α h : (Corec.f f (Sum.inl val✝)).fst = some a' ⊢ (Corec.f f (Corec.f f (Sum.inl val✝)).snd).fst = some a' [PROOFSTEP] exact h [GOAL] case zero.inr α : Type u β : Type v γ : Type w f : β → α ⊕ β b✝ : β a' : α b : β h : (Corec.f f (Sum.inr b)).fst = some a' ⊢ (Corec.f f (Corec.f f (Sum.inr b)).snd).fst = some a' [PROOFSTEP] unfold Corec.f at * [GOAL] case zero.inr α : Type u β : Type v γ : Type w f : β → α ⊕ β b✝ : β a' : α b : β h : (match Sum.inr b with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)).fst = some a' ⊢ (match (match Sum.inr b with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)).snd with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)).fst = some a' [PROOFSTEP] split [GOAL] case zero.inr.h_1 α : Type u β : Type v γ : Type w f : β → α ⊕ β b✝ : β a' : α b : β h : (match Sum.inr b with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)).fst = some a' x✝ : α ⊕ β a✝ : α heq✝ : (match Sum.inr b with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)).snd = Sum.inl a✝ ⊢ (some a✝, Sum.inl a✝).fst = some a' [PROOFSTEP] simp_all [GOAL] case zero.inr.h_2 α : Type u β : Type v γ : Type w f : β → α ⊕ β b✝ : β a' : α b : β h : (match Sum.inr b with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)).fst = some a' x✝ : α ⊕ β val✝ : β heq✝ : (match Sum.inr b with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)).snd = Sum.inr val✝ ⊢ (match f val✝ with | Sum.inl a => some a | Sum.inr val => none, f val✝).fst = some a' [PROOFSTEP] simp_all [GOAL] case succ α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β a' : α n : ℕ IH : ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a' o : α ⊕ β ⊢ Stream'.corec' (Corec.f f) o (Nat.succ n) = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd (Nat.succ n) = some a' [PROOFSTEP] rw [Stream'.corec'_eq (Corec.f f) (Corec.f f o).2, Stream'.corec'_eq (Corec.f f) o] [GOAL] case succ α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β a' : α n : ℕ IH : ∀ (o : α ⊕ β), Stream'.corec' (Corec.f f) o n = some a' → Stream'.corec' (Corec.f f) (Corec.f f o).snd n = some a' o : α ⊕ β ⊢ Stream'.cons (Corec.f f o).fst (Stream'.corec' (Corec.f f) (Corec.f f o).snd) (Nat.succ n) = some a' → Stream'.cons (Corec.f f (Corec.f f o).snd).fst (Stream'.corec' (Corec.f f) (Corec.f f (Corec.f f o).snd).snd) (Nat.succ n) = some a' [PROOFSTEP] exact IH (Corec.f f o).2 [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β ⊢ destruct (corec f b) = rmap (corec f) (f b) [PROOFSTEP] dsimp [corec, destruct] [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β ⊢ (match Stream'.corec' (Corec.f f) (Sum.inr b) 0 with | none => Sum.inr (tail { val := Stream'.corec' (Corec.f f) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }) | some a => Sum.inl a) = match f b with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr { val := Stream'.corec' (Corec.f f) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') } [PROOFSTEP] rw [show Stream'.corec' (Corec.f f) (Sum.inr b) 0 = Sum.rec Option.some (λ _ => none) (f b) by dsimp [Corec.f, Stream'.corec', Stream'.corec, Stream'.map, Stream'.nth, Stream'.iterate] match (f b) with | Sum.inl x => rfl | Sum.inr x => rfl] [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β ⊢ Stream'.corec' (Corec.f f) (Sum.inr b) 0 = Sum.rec some (fun x => none) (f b) [PROOFSTEP] dsimp [Corec.f, Stream'.corec', Stream'.corec, Stream'.map, Stream'.nth, Stream'.iterate] [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β ⊢ (match f b with | Sum.inl a => some a | Sum.inr val => none) = Sum.rec some (fun x => none) (f b) [PROOFSTEP] match (f b) with | Sum.inl x => rfl | Sum.inr x => rfl [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β x : α ⊢ (match Sum.inl x with | Sum.inl a => some a | Sum.inr val => none) = Sum.rec some (fun x => none) (Sum.inl x) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b x : β ⊢ (match Sum.inr x with | Sum.inl a => some a | Sum.inr val => none) = Sum.rec some (fun x => none) (Sum.inr x) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β ⊢ (match Sum.rec some (fun x => none) (f b) with | none => Sum.inr (tail { val := Stream'.corec' (Corec.f f) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }) | some a => Sum.inl a) = match f b with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr { val := Stream'.corec' (Corec.f f) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') } [PROOFSTEP] induction' h : f b with a b' [GOAL] case inl α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β x✝ : α ⊕ β h✝ : f b = x✝ a : α h : f b = Sum.inl a ⊢ (match Sum.rec some (fun x => none) (Sum.inl a) with | none => Sum.inr (tail { val := Stream'.corec' (Corec.f f) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }) | some a => Sum.inl a) = match Sum.inl a with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr { val := Stream'.corec' (Corec.f f) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') } [PROOFSTEP] rfl [GOAL] case inr α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β x✝ : α ⊕ β h✝ : f b = x✝ b' : β h : f b = Sum.inr b' ⊢ (match Sum.rec some (fun x => none) (Sum.inr b') with | none => Sum.inr (tail { val := Stream'.corec' (Corec.f f) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }) | some a => Sum.inl a) = match Sum.inr b' with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr { val := Stream'.corec' (Corec.f f) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') } [PROOFSTEP] dsimp [Corec.f, destruct] [GOAL] case inr α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β x✝ : α ⊕ β h✝ : f b = x✝ b' : β h : f b = Sum.inr b' ⊢ Sum.inr (tail { val := Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }) = Sum.inr { val := Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b'), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b') n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b') (n + 1) = some a') } [PROOFSTEP] apply congr_arg [GOAL] case inr.h α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β x✝ : α ⊕ β h✝ : f b = x✝ b' : β h : f b = Sum.inr b' ⊢ tail { val := Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') } = { val := Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b'), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b') n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b') (n + 1) = some a') } [PROOFSTEP] apply Subtype.eq [GOAL] case inr.h.a α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β x✝ : α ⊕ β h✝ : f b = x✝ b' : β h : f b = Sum.inr b' ⊢ ↑(tail { val := Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b) n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b) (n + 1) = some a') }) = ↑{ val := Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b'), property := (_ : ∀ (n : ℕ) (a' : α), Stream'.corec' (Corec.f f) (Sum.inr b') n = some a' → Stream'.corec' (Corec.f f) (Sum.inr b') (n + 1) = some a') } [PROOFSTEP] dsimp [corec, tail] [GOAL] case inr.h.a α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β x✝ : α ⊕ β h✝ : f b = x✝ b' : β h : f b = Sum.inr b' ⊢ Stream'.tail (Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b)) = Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b') [PROOFSTEP] rw [Stream'.corec'_eq, Stream'.tail_cons] [GOAL] case inr.h.a α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β x✝ : α ⊕ β h✝ : f b = x✝ b' : β h : f b = Sum.inr b' ⊢ Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (match Sum.inr b with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)).snd = Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b') [PROOFSTEP] dsimp [Corec.f] [GOAL] case inr.h.a α : Type u β : Type v γ : Type w f : β → α ⊕ β b : β x✝ : α ⊕ β h✝ : f b = x✝ b' : β h : f b = Sum.inr b' ⊢ Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (f b) = Stream'.corec' (fun x => match x with | Sum.inl a => (some a, Sum.inl a) | Sum.inr b => (match f b with | Sum.inl a => some a | Sum.inr val => none, f b)) (Sum.inr b') [PROOFSTEP] rw [h] [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ ⊢ s₁ = s₂ [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ ⊢ ↑s₁ = ↑s₂ [PROOFSTEP] apply Stream'.eq_of_bisim fun x y => ∃ s s' : Computation α, s.1 = x ∧ s'.1 = y ∧ R s s' [GOAL] case a.bisim α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ ⊢ Stream'.IsBisimulation fun x y => ∃ s s', ↑s = x ∧ ↑s' = y ∧ R s s' case a.a α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ ⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s' [PROOFSTEP] dsimp [Stream'.IsBisimulation] [GOAL] case a.bisim α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ ⊢ ∀ ⦃s₁ s₂ : Stream' (Option α)⦄, (∃ s s', ↑s = s₁ ∧ ↑s' = s₂ ∧ R s s') → Stream'.head s₁ = Stream'.head s₂ ∧ ∃ s s', ↑s = Stream'.tail s₁ ∧ ↑s' = Stream'.tail s₂ ∧ R s s' case a.a α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ ⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s' [PROOFSTEP] intro t₁ t₂ e [GOAL] case a.bisim α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' ⊢ Stream'.head t₁ = Stream'.head t₂ ∧ ∃ s s', ↑s = Stream'.tail t₁ ∧ ↑s' = Stream'.tail t₂ ∧ R s s' case a.a α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ ⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s' [PROOFSTEP] exact match t₁, t₂, e with | _, _, ⟨s, s', rfl, rfl, r⟩ => by suffices head s = head s' ∧ R (tail s) (tail s') from And.imp id (fun r => ⟨tail s, tail s', by cases s; rfl, by cases s'; rfl, r⟩) this have h := bisim r; revert r h apply recOn s _ _ <;> intro r' <;> apply recOn s' _ _ <;> intro a' r h · constructor <;> dsimp at h · rw [h] · rw [h] at r rw [tail_pure, tail_pure, h] assumption · rw [destruct_pure, destruct_think] at h exact False.elim h · rw [destruct_pure, destruct_think] at h exact False.elim h · simp at h simp [*] [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r : R s s' ⊢ Stream'.head ↑s = Stream'.head ↑s' ∧ ∃ s_1 s'_1, ↑s_1 = Stream'.tail ↑s ∧ ↑s'_1 = Stream'.tail ↑s' ∧ R s_1 s'_1 [PROOFSTEP] suffices head s = head s' ∧ R (tail s) (tail s') from And.imp id (fun r => ⟨tail s, tail s', by cases s; rfl, by cases s'; rfl, r⟩) this [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝¹ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r✝ : R s s' this : head s = head s' ∧ R (tail s) (tail s') r : R (tail s) (tail s') ⊢ ↑(tail s) = Stream'.tail ↑s [PROOFSTEP] cases s [GOAL] case mk α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝¹ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s' : Computation α val✝ : Stream' (Option α) property✝ : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, val✝ n = some a → val✝ (n + 1) = some a r✝ : R { val := val✝, property := property✝ } s' this : head { val := val✝, property := property✝ } = head s' ∧ R (tail { val := val✝, property := property✝ }) (tail s') r : R (tail { val := val✝, property := property✝ }) (tail s') ⊢ ↑(tail { val := val✝, property := property✝ }) = Stream'.tail ↑{ val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝¹ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r✝ : R s s' this : head s = head s' ∧ R (tail s) (tail s') r : R (tail s) (tail s') ⊢ ↑(tail s') = Stream'.tail ↑s' [PROOFSTEP] cases s' [GOAL] case mk α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝¹ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s : Computation α val✝ : Stream' (Option α) property✝ : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, val✝ n = some a → val✝ (n + 1) = some a r✝ : R s { val := val✝, property := property✝ } this : head s = head { val := val✝, property := property✝ } ∧ R (tail s) (tail { val := val✝, property := property✝ }) r : R (tail s) (tail { val := val✝, property := property✝ }) ⊢ ↑(tail { val := val✝, property := property✝ }) = Stream'.tail ↑{ val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r : R s s' ⊢ head s = head s' ∧ R (tail s) (tail s') [PROOFSTEP] have h := bisim r [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r : R s s' h : BisimO R (destruct s) (destruct s') ⊢ head s = head s' ∧ R (tail s) (tail s') [PROOFSTEP] revert r h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α ⊢ R s s' → BisimO R (destruct s) (destruct s') → head s = head s' ∧ R (tail s) (tail s') [PROOFSTEP] apply recOn s _ _ [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α ⊢ ∀ (a : α), R (pure a) s' → BisimO R (destruct (pure a)) (destruct s') → head (pure a) = head s' ∧ R (tail (pure a)) (tail s') [PROOFSTEP] intro r' [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α ⊢ ∀ (s : Computation α), R (think s) s' → BisimO R (destruct (think s)) (destruct s') → head (think s) = head s' ∧ R (tail (think s)) (tail s') [PROOFSTEP] intro r' [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' : α ⊢ R (pure r') s' → BisimO R (destruct (pure r')) (destruct s') → head (pure r') = head s' ∧ R (tail (pure r')) (tail s') [PROOFSTEP] apply recOn s' _ _ [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' r' : Computation α ⊢ R (think r') s' → BisimO R (destruct (think r')) (destruct s') → head (think r') = head s' ∧ R (tail (think r')) (tail s') [PROOFSTEP] apply recOn s' _ _ [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' : α ⊢ ∀ (a : α), R (pure r') (pure a) → BisimO R (destruct (pure r')) (destruct (pure a)) → head (pure r') = head (pure a) ∧ R (tail (pure r')) (tail (pure a)) [PROOFSTEP] intro a' r h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' : α ⊢ ∀ (s : Computation α), R (pure r') (think s) → BisimO R (destruct (pure r')) (destruct (think s)) → head (pure r') = head (think s) ∧ R (tail (pure r')) (tail (think s)) [PROOFSTEP] intro a' r h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' r' : Computation α ⊢ ∀ (a : α), R (think r') (pure a) → BisimO R (destruct (think r')) (destruct (pure a)) → head (think r') = head (pure a) ∧ R (tail (think r')) (tail (pure a)) [PROOFSTEP] intro a' r h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' r' : Computation α ⊢ ∀ (s : Computation α), R (think r') (think s) → BisimO R (destruct (think r')) (destruct (think s)) → head (think r') = head (think s) ∧ R (tail (think r')) (tail (think s)) [PROOFSTEP] intro a' r h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' a' : α r : R (pure r') (pure a') h : BisimO R (destruct (pure r')) (destruct (pure a')) ⊢ head (pure r') = head (pure a') ∧ R (tail (pure r')) (tail (pure a')) [PROOFSTEP] constructor [GOAL] case left α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' a' : α r : R (pure r') (pure a') h : BisimO R (destruct (pure r')) (destruct (pure a')) ⊢ head (pure r') = head (pure a') [PROOFSTEP] dsimp at h [GOAL] case right α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' a' : α r : R (pure r') (pure a') h : BisimO R (destruct (pure r')) (destruct (pure a')) ⊢ R (tail (pure r')) (tail (pure a')) [PROOFSTEP] dsimp at h [GOAL] case left α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' a' : α r : R (pure r') (pure a') h : r' = a' ⊢ head (pure r') = head (pure a') [PROOFSTEP] rw [h] [GOAL] case right α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' a' : α r : R (pure r') (pure a') h : r' = a' ⊢ R (tail (pure r')) (tail (pure a')) [PROOFSTEP] rw [h] at r [GOAL] case right α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' a' : α r : R (pure a') (pure a') h : r' = a' ⊢ R (tail (pure r')) (tail (pure a')) [PROOFSTEP] rw [tail_pure, tail_pure, h] [GOAL] case right α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' a' : α r : R (pure a') (pure a') h : r' = a' ⊢ R (pure a') (pure a') [PROOFSTEP] assumption [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' : α a' : Computation α r : R (pure r') (think a') h : BisimO R (destruct (pure r')) (destruct (think a')) ⊢ head (pure r') = head (think a') ∧ R (tail (pure r')) (tail (think a')) [PROOFSTEP] rw [destruct_pure, destruct_think] at h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Computation α r' : α a' : Computation α r : R (pure r') (think a') h : BisimO R (Sum.inl r') (Sum.inr a') ⊢ head (pure r') = head (think a') ∧ R (tail (pure r')) (tail (think a')) [PROOFSTEP] exact False.elim h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' r' : Computation α a' : α r : R (think r') (pure a') h : BisimO R (destruct (think r')) (destruct (pure a')) ⊢ head (think r') = head (pure a') ∧ R (tail (think r')) (tail (pure a')) [PROOFSTEP] rw [destruct_pure, destruct_think] at h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' r' : Computation α a' : α r : R (think r') (pure a') h : BisimO R (Sum.inr r') (Sum.inl a') ⊢ head (think r') = head (pure a') ∧ R (tail (think r')) (tail (pure a')) [PROOFSTEP] exact False.elim h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' r' a' : Computation α r : R (think r') (think a') h : BisimO R (destruct (think r')) (destruct (think a')) ⊢ head (think r') = head (think a') ∧ R (tail (think r')) (tail (think a')) [PROOFSTEP] simp at h [GOAL] α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' r' a' : Computation α r : R (think r') (think a') h : R r' a' ⊢ head (think r') = head (think a') ∧ R (tail (think r')) (tail (think a')) [PROOFSTEP] simp [*] [GOAL] case a.a α : Type u β : Type v γ : Type w R : Computation α → Computation α → Prop bisim : IsBisimulation R s₁ s₂ : Computation α r : R s₁ s₂ ⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s' [PROOFSTEP] exact ⟨s₁, s₂, rfl, rfl, r⟩ [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α m n : ℕ h : m ≤ n ⊢ ↑s m = some a → ↑s n = some a [PROOFSTEP] cases' s with f al [GOAL] case mk α : Type u β : Type v γ : Type w a : α m n : ℕ h : m ≤ n f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a ⊢ ↑{ val := f, property := al } m = some a → ↑{ val := f, property := al } n = some a [PROOFSTEP] induction' h with n _ IH [GOAL] case mk.refl α : Type u β : Type v γ : Type w a : α m n : ℕ f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a ⊢ ↑{ val := f, property := al } m = some a → ↑{ val := f, property := al } m = some a case mk.step α : Type u β : Type v γ : Type w a : α m n✝ : ℕ f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a n : ℕ a✝ : Nat.le m n IH : ↑{ val := f, property := al } m = some a → ↑{ val := f, property := al } n = some a ⊢ ↑{ val := f, property := al } m = some a → ↑{ val := f, property := al } (Nat.succ n) = some a [PROOFSTEP] exacts [id, fun h2 => al (IH h2)] [GOAL] α : Type u β : Type v γ : Type w s : Computation α a b : α m : ℕ ha : (fun b => some a = b) (Stream'.nth (↑s) m) n : ℕ hb : (fun b_1 => some b = b_1) (Stream'.nth (↑s) n) ⊢ a = b [PROOFSTEP] injection (le_stable s (le_max_left m n) ha.symm).symm.trans (le_stable s (le_max_right m n) hb.symm) [GOAL] α : Type u β : Type v γ : Type w s : Computation α x✝ : Terminates s a : α n : ℕ h : (fun b => some a = b) (Stream'.nth (↑s) n) ⊢ Option.isSome (↑s n) = true [PROOFSTEP] dsimp [Stream'.nth] at h [GOAL] α : Type u β : Type v γ : Type w s : Computation α x✝ : Terminates s a : α n : ℕ h : some a = ↑s n ⊢ Option.isSome (↑s n) = true [PROOFSTEP] rw [← h] [GOAL] α : Type u β : Type v γ : Type w s : Computation α x✝ : Terminates s a : α n : ℕ h : some a = ↑s n ⊢ Option.isSome (some a) = true [PROOFSTEP] exact rfl [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : (fun b => some a = b) (Stream'.nth (↑(think s)) n) ⊢ a ∈ s [PROOFSTEP] cases' n with n' [GOAL] case zero α : Type u β : Type v γ : Type w s : Computation α a : α h : some a = Stream'.nth (↑(think s)) Nat.zero ⊢ a ∈ s case succ α : Type u β : Type v γ : Type w s : Computation α a : α n' : ℕ h : some a = Stream'.nth (↑(think s)) (Nat.succ n') ⊢ a ∈ s [PROOFSTEP] contradiction [GOAL] case succ α : Type u β : Type v γ : Type w s : Computation α a : α n' : ℕ h : some a = Stream'.nth (↑(think s)) (Nat.succ n') ⊢ a ∈ s [PROOFSTEP] exact ⟨n', h⟩ [GOAL] α : Type u β : Type v γ : Type w a : α x✝ : a ∈ empty α n : ℕ h : (fun b => some a = b) (Stream'.nth (↑(empty α)) n) ⊢ False [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v γ : Type w s : Computation α H : ¬Terminates s ⊢ s = empty α [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w s : Computation α H : ¬Terminates s ⊢ ↑s = ↑(empty α) [PROOFSTEP] funext n [GOAL] case a.h α : Type u β : Type v γ : Type w s : Computation α H : ¬Terminates s n : ℕ ⊢ ↑s n = ↑(empty α) n [PROOFSTEP] induction' h : s.val n with _ [GOAL] case a.h.none α : Type u β : Type v γ : Type w s : Computation α H : ¬Terminates s n : ℕ x✝ : Option α h✝ : ↑s n = x✝ h : ↑s n = none ⊢ none = ↑(empty α) n [PROOFSTEP] rfl [GOAL] case a.h.some α : Type u β : Type v γ : Type w s : Computation α H : ¬Terminates s n : ℕ x✝ : Option α h✝ : ↑s n = x✝ val✝ : α h : ↑s n = some val✝ ⊢ some val✝ = ↑(empty α) n [PROOFSTEP] refine' absurd _ H [GOAL] case a.h.some α : Type u β : Type v γ : Type w s : Computation α H : ¬Terminates s n : ℕ x✝ : Option α h✝ : ↑s n = x✝ val✝ : α h : ↑s n = some val✝ ⊢ Terminates s [PROOFSTEP] exact ⟨⟨_, _, h.symm⟩⟩ [GOAL] α : Type u β : Type v γ : Type w s : Computation α h : Terminates s a : α ⊢ get s = a → a ∈ s [PROOFSTEP] intro h [GOAL] α : Type u β : Type v γ : Type w s : Computation α h✝ : Terminates s a : α h : get s = a ⊢ a ∈ s [PROOFSTEP] rw [← h] [GOAL] α : Type u β : Type v γ : Type w s : Computation α h✝ : Terminates s a : α h : get s = a ⊢ get s ∈ s [PROOFSTEP] apply get_mem [GOAL] α : Type u β : Type v γ : Type w s : Computation α h : Terminates s a : α p : s ~> a ⊢ a ∈ s [PROOFSTEP] cases' h with h [GOAL] case mk α : Type u β : Type v γ : Type w s : Computation α a : α p : s ~> a h : ∃ a, a ∈ s ⊢ a ∈ s [PROOFSTEP] cases' h with a' h [GOAL] case mk.intro α : Type u β : Type v γ : Type w s : Computation α a : α p : s ~> a a' : α h : a' ∈ s ⊢ a ∈ s [PROOFSTEP] rw [p h] [GOAL] case mk.intro α : Type u β : Type v γ : Type w s : Computation α a : α p : s ~> a a' : α h : a' ∈ s ⊢ a' ∈ s [PROOFSTEP] exact h [GOAL] α : Type u β : Type v γ : Type w s : Computation α T : Terminates s a : α h : a ∈ s ⊢ Results s a (length s) [PROOFSTEP] rw [← get_eq_of_mem _ h] [GOAL] α : Type u β : Type v γ : Type w s : Computation α T : Terminates s a : α h : a ∈ s ⊢ Results s (get s) (length s) [PROOFSTEP] apply results_of_terminates [GOAL] α : Type u β : Type v γ : Type w s : Computation α a b : α m n : ℕ h1 : Results s a m h2 : Results s b n ⊢ m = n [PROOFSTEP] haveI := h1.terminates [GOAL] α : Type u β : Type v γ : Type w s : Computation α a b : α m n : ℕ h1 : Results s a m h2 : Results s b n this : Terminates s ⊢ m = n [PROOFSTEP] haveI := h2.terminates [GOAL] α : Type u β : Type v γ : Type w s : Computation α a b : α m n : ℕ h1 : Results s a m h2 : Results s b n this✝ this : Terminates s ⊢ m = n [PROOFSTEP] rw [← h1.length, h2.length] [GOAL] α : Type u β : Type v γ : Type w s : Computation α h : Terminates s ⊢ length (think s) = length s + 1 [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u β : Type v γ : Type w s : Computation α h : Terminates s ⊢ length (think s) ≤ length s + 1 [PROOFSTEP] exact Nat.find_min' _ (Nat.find_spec ((terminates_def _).1 h)) [GOAL] case a α : Type u β : Type v γ : Type w s : Computation α h : Terminates s ⊢ length s + 1 ≤ length (think s) [PROOFSTEP] have : (Option.isSome ((think s).val (length (think s))) : Prop) := Nat.find_spec ((terminates_def _).1 s.think_terminates) [GOAL] case a α : Type u β : Type v γ : Type w s : Computation α h : Terminates s this : Option.isSome (↑(think s) (length (think s))) = true ⊢ length s + 1 ≤ length (think s) [PROOFSTEP] revert this [GOAL] case a α : Type u β : Type v γ : Type w s : Computation α h : Terminates s ⊢ Option.isSome (↑(think s) (length (think s))) = true → length s + 1 ≤ length (think s) [PROOFSTEP] cases' length (think s) with n [GOAL] case a.zero α : Type u β : Type v γ : Type w s : Computation α h : Terminates s ⊢ Option.isSome (↑(think s) Nat.zero) = true → length s + 1 ≤ Nat.zero [PROOFSTEP] intro this [GOAL] case a.succ α : Type u β : Type v γ : Type w s : Computation α h : Terminates s n : ℕ ⊢ Option.isSome (↑(think s) (Nat.succ n)) = true → length s + 1 ≤ Nat.succ n [PROOFSTEP] intro this [GOAL] case a.zero α : Type u β : Type v γ : Type w s : Computation α h : Terminates s this : Option.isSome (↑(think s) Nat.zero) = true ⊢ length s + 1 ≤ Nat.zero [PROOFSTEP] simp [think, Stream'.cons] at this [GOAL] case a.succ α : Type u β : Type v γ : Type w s : Computation α h : Terminates s n : ℕ this : Option.isSome (↑(think s) (Nat.succ n)) = true ⊢ length s + 1 ≤ Nat.succ n [PROOFSTEP] apply Nat.succ_le_succ [GOAL] case a.succ.a α : Type u β : Type v γ : Type w s : Computation α h : Terminates s n : ℕ this : Option.isSome (↑(think s) (Nat.succ n)) = true ⊢ length s ≤ n [PROOFSTEP] apply Nat.find_min' [GOAL] case a.succ.a.h α : Type u β : Type v γ : Type w s : Computation α h : Terminates s n : ℕ this : Option.isSome (↑(think s) (Nat.succ n)) = true ⊢ Option.isSome (↑s n) = true [PROOFSTEP] apply this [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : Results s a n this : Terminates s ⊢ length (think s) = n + 1 [PROOFSTEP] rw [length_think, h.length] [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : Results (think s) a n ⊢ ∃ m, Results s a m ∧ n = m + 1 [PROOFSTEP] haveI := of_think_terminates h.terminates [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : Results (think s) a n this : Terminates s ⊢ ∃ m, Results s a m ∧ n = m + 1 [PROOFSTEP] have := results_of_terminates' _ (of_think_mem h.mem) [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : Results (think s) a n this✝ : Terminates s this : Results s a (length s) ⊢ ∃ m, Results s a m ∧ n = m + 1 [PROOFSTEP] exact ⟨_, this, Results.len_unique h (results_think this)⟩ [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : Results (think s) a (n + 1) ⊢ Results s a n [PROOFSTEP] let ⟨n', r, e⟩ := of_results_think h [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : Results (think s) a (n + 1) n' : ℕ r : Results s a n' e : n + 1 = n' + 1 ⊢ Results s a n [PROOFSTEP] injection e with h' [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : Results (think s) a (n + 1) n' : ℕ r : Results s a n' h' : Nat.add n 0 = Nat.add n' 0 ⊢ Results s a n [PROOFSTEP] rw [Nat.add, Nat.add] at h' [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : Results (think s) a (n + 1) n' : ℕ r : Results s a n' h' : n = n' ⊢ Results s a n [PROOFSTEP] rwa [h'] [GOAL] α : Type u β : Type v γ : Type w a : α n : ℕ ⊢ Results (thinkN (pure a) n) a n [PROOFSTEP] have := results_thinkN n (results_pure a) [GOAL] α : Type u β : Type v γ : Type w a : α n : ℕ this : Results (thinkN (pure a) n) a (0 + n) ⊢ Results (thinkN (pure a) n) a n [PROOFSTEP] rwa [Nat.zero_add] at this [GOAL] α : Type u β : Type v γ : Type w s : Computation α a : α n : ℕ h : Results s a n ⊢ s = thinkN (pure a) n [PROOFSTEP] revert s [GOAL] α : Type u β : Type v γ : Type w a : α n : ℕ ⊢ ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n [PROOFSTEP] induction' n with n IH [GOAL] case zero α : Type u β : Type v γ : Type w a : α ⊢ ∀ {s : Computation α}, Results s a Nat.zero → s = thinkN (pure a) Nat.zero [PROOFSTEP] intro s [GOAL] case succ α : Type u β : Type v γ : Type w a : α n : ℕ IH : ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n ⊢ ∀ {s : Computation α}, Results s a (Nat.succ n) → s = thinkN (pure a) (Nat.succ n) [PROOFSTEP] intro s [GOAL] case zero α : Type u β : Type v γ : Type w a : α s : Computation α ⊢ Results s a Nat.zero → s = thinkN (pure a) Nat.zero [PROOFSTEP] apply recOn s (fun a' => _) fun s => _ [GOAL] case succ α : Type u β : Type v γ : Type w a : α n : ℕ IH : ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n s : Computation α ⊢ Results s a (Nat.succ n) → s = thinkN (pure a) (Nat.succ n) [PROOFSTEP] apply recOn s (fun a' => _) fun s => _ [GOAL] α : Type u β : Type v γ : Type w a : α s : Computation α ⊢ ∀ (a' : α), Results (pure a') a Nat.zero → pure a' = thinkN (pure a) Nat.zero [PROOFSTEP] intro a h [GOAL] α : Type u β : Type v γ : Type w a : α s : Computation α ⊢ ∀ (s : Computation α), Results (think s) a Nat.zero → think s = thinkN (pure a) Nat.zero [PROOFSTEP] intro a h [GOAL] α : Type u β : Type v γ : Type w a : α n : ℕ IH : ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n s : Computation α ⊢ ∀ (a' : α), Results (pure a') a (Nat.succ n) → pure a' = thinkN (pure a) (Nat.succ n) [PROOFSTEP] intro a h [GOAL] α : Type u β : Type v γ : Type w a : α n : ℕ IH : ∀ {s : Computation α}, Results s a n → s = thinkN (pure a) n s : Computation α ⊢ ∀ (s : Computation α), Results (think s) a (Nat.succ n) → think s = thinkN (pure a) (Nat.succ n) [PROOFSTEP] intro a h [GOAL] α : Type u β : Type v γ : Type w a✝ : α s : Computation α a : α h : Results (pure a) a✝ Nat.zero ⊢ pure a = thinkN (pure a✝) Nat.zero [PROOFSTEP] rw [← eq_of_pure_mem h.mem] [GOAL] α : Type u β : Type v γ : Type w a✝ : α s : Computation α a : α h : Results (pure a) a✝ Nat.zero ⊢ pure a✝ = thinkN (pure a✝) Nat.zero [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w a✝ : α s a : Computation α h : Results (think a) a✝ Nat.zero ⊢ think a = thinkN (pure a✝) Nat.zero [PROOFSTEP] cases' of_results_think h with n h [GOAL] case intro α : Type u β : Type v γ : Type w a✝ : α s a : Computation α h✝ : Results (think a) a✝ Nat.zero n : ℕ h : Results a a✝ n ∧ Nat.zero = n + 1 ⊢ think a = thinkN (pure a✝) Nat.zero [PROOFSTEP] cases h [GOAL] case intro.intro α : Type u β : Type v γ : Type w a✝ : α s a : Computation α h : Results (think a) a✝ Nat.zero n : ℕ left✝ : Results a a✝ n right✝ : Nat.zero = n + 1 ⊢ think a = thinkN (pure a✝) Nat.zero [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v γ : Type w a✝ : α n : ℕ IH : ∀ {s : Computation α}, Results s a✝ n → s = thinkN (pure a✝) n s : Computation α a : α h : Results (pure a) a✝ (Nat.succ n) ⊢ pure a = thinkN (pure a✝) (Nat.succ n) [PROOFSTEP] have := h.len_unique (results_pure _) [GOAL] α : Type u β : Type v γ : Type w a✝ : α n : ℕ IH : ∀ {s : Computation α}, Results s a✝ n → s = thinkN (pure a✝) n s : Computation α a : α h : Results (pure a) a✝ (Nat.succ n) this : Nat.succ n = 0 ⊢ pure a = thinkN (pure a✝) (Nat.succ n) [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v γ : Type w a✝ : α n : ℕ IH : ∀ {s : Computation α}, Results s a✝ n → s = thinkN (pure a✝) n s a : Computation α h : Results (think a) a✝ (Nat.succ n) ⊢ think a = thinkN (pure a✝) (Nat.succ n) [PROOFSTEP] rw [IH (results_think_iff.1 h)] [GOAL] α : Type u β : Type v γ : Type w a✝ : α n : ℕ IH : ∀ {s : Computation α}, Results s a✝ n → s = thinkN (pure a✝) n s a : Computation α h : Results (think a) a✝ (Nat.succ n) ⊢ think (thinkN (pure a✝) n) = thinkN (pure a✝) (Nat.succ n) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w C : Computation α → Sort v a : α s : Computation α M : a ∈ s h1 : C (pure a) h2 : (s : Computation α) → C s → C (think s) ⊢ C s [PROOFSTEP] haveI T := terminates_of_mem M [GOAL] α : Type u β : Type v γ : Type w C : Computation α → Sort v a : α s : Computation α M : a ∈ s h1 : C (pure a) h2 : (s : Computation α) → C s → C (think s) T : Terminates s ⊢ C s [PROOFSTEP] rw [eq_thinkN' s, get_eq_of_mem s M] [GOAL] α : Type u β : Type v γ : Type w C : Computation α → Sort v a : α s : Computation α M : a ∈ s h1 : C (pure a) h2 : (s : Computation α) → C s → C (think s) T : Terminates s ⊢ C (thinkN (pure a) (length s)) [PROOFSTEP] generalize length s = n [GOAL] α : Type u β : Type v γ : Type w C : Computation α → Sort v a : α s : Computation α M : a ∈ s h1 : C (pure a) h2 : (s : Computation α) → C s → C (think s) T : Terminates s n : ℕ ⊢ C (thinkN (pure a) n) [PROOFSTEP] induction' n with n IH [GOAL] case zero α : Type u β : Type v γ : Type w C : Computation α → Sort v a : α s : Computation α M : a ∈ s h1 : C (pure a) h2 : (s : Computation α) → C s → C (think s) T : Terminates s ⊢ C (thinkN (pure a) Nat.zero) case succ α : Type u β : Type v γ : Type w C : Computation α → Sort v a : α s : Computation α M : a ∈ s h1 : C (pure a) h2 : (s : Computation α) → C s → C (think s) T : Terminates s n : ℕ IH : C (thinkN (pure a) n) ⊢ C (thinkN (pure a) (Nat.succ n)) [PROOFSTEP] exacts [h1, h2 _ IH] [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a n : ℕ b : β ⊢ Stream'.map (fun o => Option.casesOn o none (some ∘ f)) s n = some b → Stream'.map (fun o => Option.casesOn o none (some ∘ f)) s (n + 1) = some b [PROOFSTEP] dsimp [Stream'.map, Stream'.nth] [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a n : ℕ b : β ⊢ Option.rec none (fun val => some (f val)) (s n) = some b → Option.rec none (fun val => some (f val)) (s (n + 1)) = some b [PROOFSTEP] induction' e : s n with a [GOAL] case none α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a n : ℕ b : β x✝ : Option α e✝ : s n = x✝ e : s n = none ⊢ Option.rec none (fun val => some (f val)) none = some b → Option.rec none (fun val => some (f val)) (s (n + 1)) = some b [PROOFSTEP] intro h [GOAL] case some α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a n : ℕ b : β x✝ : Option α e✝ : s n = x✝ a : α e : s n = some a ⊢ Option.rec none (fun val => some (f val)) (some a) = some b → Option.rec none (fun val => some (f val)) (s (n + 1)) = some b [PROOFSTEP] intro h [GOAL] case none α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a n : ℕ b : β x✝ : Option α e✝ : s n = x✝ e : s n = none h : Option.rec none (fun val => some (f val)) none = some b ⊢ Option.rec none (fun val => some (f val)) (s (n + 1)) = some b [PROOFSTEP] contradiction [GOAL] case some α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a n : ℕ b : β x✝ : Option α e✝ : s n = x✝ a : α e : s n = some a h : Option.rec none (fun val => some (f val)) (some a) = some b ⊢ Option.rec none (fun val => some (f val)) (s (n + 1)) = some b [PROOFSTEP] rw [al e] [GOAL] case some α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a n : ℕ b : β x✝ : Option α e✝ : s n = x✝ a : α e : s n = some a h : Option.rec none (fun val => some (f val)) (some a) = some b ⊢ Option.rec none (fun val => some (f val)) (some a) = some b [PROOFSTEP] exact h [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a ⊢ map f (think { val := s, property := al }) = think (map f { val := s, property := al }) [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a ⊢ ↑(map f (think { val := s, property := al })) = ↑(think (map f { val := s, property := al })) [PROOFSTEP] dsimp [think, map] [GOAL] case a α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a ⊢ Stream'.map (fun o => Option.rec none (fun val => some (f val)) o) (Stream'.cons none s) = Stream'.cons none (Stream'.map (fun o => Option.rec none (fun val => some (f val)) o) s) [PROOFSTEP] rw [Stream'.map_cons] [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Computation α ⊢ destruct (map f s) = lmap f (rmap (map f) (destruct s)) [PROOFSTEP] apply s.recOn [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β s : Computation α ⊢ ∀ (a : α), destruct (map f (pure a)) = lmap f (rmap (map f) (destruct (pure a))) [PROOFSTEP] intro [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β s : Computation α ⊢ ∀ (s : Computation α), destruct (map f (think s)) = lmap f (rmap (map f) (destruct (think s))) [PROOFSTEP] intro [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β s : Computation α a✝ : α ⊢ destruct (map f (pure a✝)) = lmap f (rmap (map f) (destruct (pure a✝))) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β s s✝ : Computation α ⊢ destruct (map f (think s✝)) = lmap f (rmap (map f) (destruct (think s✝))) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a ⊢ map id { val := f, property := al } = { val := f, property := al } [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a ⊢ ↑(map id { val := f, property := al }) = ↑{ val := f, property := al } [PROOFSTEP] simp [map, Function.comp] [GOAL] case a α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a ⊢ Stream'.map (fun o => Option.rec none (fun val => some val) o) f = f [PROOFSTEP] have e : @Option.rec α (fun _ => Option α) none some = id := by ext ⟨⟩ <;> rfl [GOAL] α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a ⊢ Option.rec none some = id [PROOFSTEP] ext ⟨⟩ [GOAL] case h.none.a α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a a✝ : α ⊢ a✝ ∈ Option.rec none some none ↔ a✝ ∈ id none [PROOFSTEP] rfl [GOAL] case h.some.a α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a val✝ a✝ : α ⊢ a✝ ∈ Option.rec none some (some val✝) ↔ a✝ ∈ id (some val✝) [PROOFSTEP] rfl [GOAL] case a α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a e : Option.rec none some = id ⊢ Stream'.map (fun o => Option.rec none (fun val => some val) o) f = f [PROOFSTEP] have h : ((fun x : Option α => x) = id) := by rfl [GOAL] α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a e : Option.rec none some = id ⊢ (fun x => x) = id [PROOFSTEP] rfl [GOAL] case a α : Type u β : Type v γ : Type w f : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, f n = some a → f (n + 1) = some a e : Option.rec none some = id h : (fun x => x) = id ⊢ Stream'.map (fun o => Option.rec none (fun val => some val) o) f = f [PROOFSTEP] simp [e, h, Stream'.map_id] [GOAL] α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a ⊢ map (g ∘ f) { val := s, property := al } = map g (map f { val := s, property := al }) [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a ⊢ ↑(map (g ∘ f) { val := s, property := al }) = ↑(map g (map f { val := s, property := al })) [PROOFSTEP] dsimp [map] [GOAL] case a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a ⊢ Stream'.map (fun o => Option.rec none (fun val => some (g (f val))) o) s = Stream'.map ((fun o => Option.rec none (fun val => some (g val)) o) ∘ fun o => Option.rec none (fun val => some (f val)) o) s [PROOFSTEP] apply congr_arg fun f : _ → Option γ => Stream'.map f s [GOAL] case a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a ⊢ (fun o => Option.rec none (fun val => some (g (f val))) o) = (fun o => Option.rec none (fun val => some (g val)) o) ∘ fun o => Option.rec none (fun val => some (f val)) o [PROOFSTEP] ext ⟨⟩ [GOAL] case a.h.none.a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a a✝ : γ ⊢ a✝ ∈ Option.rec none (fun val => some (g (f val))) none ↔ a✝ ∈ ((fun o => Option.rec none (fun val => some (g val)) o) ∘ fun o => Option.rec none (fun val => some (f val)) o) none [PROOFSTEP] rfl [GOAL] case a.h.some.a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a val✝ : α a✝ : γ ⊢ a✝ ∈ Option.rec none (fun val => some (g (f val))) (some val✝) ↔ a✝ ∈ ((fun o => Option.rec none (fun val => some (g val)) o) ∘ fun o => Option.rec none (fun val => some (f val)) o) (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w a : α f : α → Computation β ⊢ bind (pure a) f = f a [PROOFSTEP] apply eq_of_bisim fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) [GOAL] case bisim α : Type u β : Type v γ : Type w a : α f : α → Computation β ⊢ IsBisimulation fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) [PROOFSTEP] intro c₁ c₂ h [GOAL] case bisim α : Type u β : Type v γ : Type w a : α f : α → Computation β c₁ c₂ : Computation β h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) ⊢ BisimO (fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)) (destruct c₁) (destruct c₂) [PROOFSTEP] exact match c₁, c₂, h with | _, _, Or.inl ⟨rfl, rfl⟩ => by simp [bind, Bind.f] cases' destruct (f a) with b cb <;> simp [Bind.g] | _, c, Or.inr rfl => by simp [Bind.f] cases' destruct c with b cb <;> simp [Bind.g] [GOAL] α : Type u β : Type v γ : Type w a : α f : α → Computation β c₁ c₂ : Computation β h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) ⊢ BisimO (fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)) (destruct (bind (pure a) f)) (destruct (f a)) [PROOFSTEP] simp [bind, Bind.f] [GOAL] α : Type u β : Type v γ : Type w a : α f : α → Computation β c₁ c₂ : Computation β h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) ⊢ match match Bind.g (destruct (f a)) with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr (corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) b), destruct (f a) with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) (Sum.inl (pure a)) ∧ s' = f a ∨ s = corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) (Sum.inr s') | x, x_1 => False [PROOFSTEP] cases' destruct (f a) with b cb [GOAL] case inl α : Type u β : Type v γ : Type w a : α f : α → Computation β c₁ c₂ : Computation β h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) b : β ⊢ match match Bind.g (Sum.inl b) with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr (corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) b), Sum.inl b with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) (Sum.inl (pure a)) ∧ s' = f a ∨ s = corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) (Sum.inr s') | x, x_1 => False [PROOFSTEP] simp [Bind.g] [GOAL] case inr α : Type u β : Type v γ : Type w a : α f : α → Computation β c₁ c₂ : Computation β h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) cb : Computation β ⊢ match match Bind.g (Sum.inr cb) with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr (corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) b), Sum.inr cb with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) (Sum.inl (pure a)) ∧ s' = f a ∨ s = corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) (Sum.inr s') | x, x_1 => False [PROOFSTEP] simp [Bind.g] [GOAL] α : Type u β : Type v γ : Type w a : α f : α → Computation β c₁ c₂ : Computation β h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) c : Computation β ⊢ BisimO (fun c₁ c₂ => c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂)) (destruct (corec (Bind.f f) (Sum.inr c))) (destruct c) [PROOFSTEP] simp [Bind.f] [GOAL] α : Type u β : Type v γ : Type w a : α f : α → Computation β c₁ c₂ : Computation β h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) c : Computation β ⊢ match match Bind.g (destruct c) with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr (corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) b), destruct c with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = bind (pure a) f ∧ s' = f a ∨ s = corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) (Sum.inr s') | x, x_1 => False [PROOFSTEP] cases' destruct c with b cb [GOAL] case inl α : Type u β : Type v γ : Type w a : α f : α → Computation β c₁ c₂ : Computation β h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) c : Computation β b : β ⊢ match match Bind.g (Sum.inl b) with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr (corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) b), Sum.inl b with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = bind (pure a) f ∧ s' = f a ∨ s = corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) (Sum.inr s') | x, x_1 => False [PROOFSTEP] simp [Bind.g] [GOAL] case inr α : Type u β : Type v γ : Type w a : α f : α → Computation β c₁ c₂ : Computation β h : c₁ = bind (pure a) f ∧ c₂ = f a ∨ c₁ = corec (Bind.f f) (Sum.inr c₂) c cb : Computation β ⊢ match match Bind.g (Sum.inr cb) with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr (corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) b), Sum.inr cb with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = bind (pure a) f ∧ s' = f a ∨ s = corec (fun x => match x with | Sum.inl ca => match destruct ca with | Sum.inl a => Bind.g (destruct (f a)) | Sum.inr ca' => Sum.inr (Sum.inl ca') | Sum.inr cb => Bind.g (destruct cb)) (Sum.inr s') | x, x_1 => False [PROOFSTEP] simp [Bind.g] [GOAL] case r α : Type u β : Type v γ : Type w a : α f : α → Computation β ⊢ bind (pure a) f = bind (pure a) f ∧ f a = f a ∨ bind (pure a) f = corec (Bind.f f) (Sum.inr (f a)) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w c : Computation α f : α → Computation β ⊢ destruct (bind (think c) f) = Sum.inr (bind c f) [PROOFSTEP] simp [bind, Bind.f] [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Computation α ⊢ bind s (pure ∘ f) = map f s [PROOFSTEP] apply eq_of_bisim fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s [GOAL] case bisim α : Type u β : Type v γ : Type w f : α → β s : Computation α ⊢ IsBisimulation fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s [PROOFSTEP] intro c₁ c₂ h [GOAL] case bisim α : Type u β : Type v γ : Type w f : α → β s : Computation α c₁ c₂ : Computation β h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct c₁) (destruct c₂) [PROOFSTEP] exact match c₁, c₂, h with | _, c₂, Or.inl (Eq.refl _) => by cases' destruct c₂ with b cb <;> simp | _, _, Or.inr ⟨s, rfl, rfl⟩ => by apply recOn s <;> intro s <;> simp exact Or.inr ⟨s, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Computation α c₁ c₂✝ : Computation β h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂✝ = map f s c₂ : Computation β ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct c₂) (destruct c₂) [PROOFSTEP] cases' destruct c₂ with b cb [GOAL] case inl α : Type u β : Type v γ : Type w f : α → β s : Computation α c₁ c₂✝ : Computation β h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂✝ = map f s c₂ : Computation β b : β ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (Sum.inl b) (Sum.inl b) [PROOFSTEP] simp [GOAL] case inr α : Type u β : Type v γ : Type w f : α → β s : Computation α c₁ c₂✝ : Computation β h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂✝ = map f s c₂ cb : Computation β ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (Sum.inr cb) (Sum.inr cb) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w f : α → β s✝ : Computation α c₁ c₂ : Computation β h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s s : Computation α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind s (pure ∘ f))) (destruct (map f s)) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β s✝ : Computation α c₁ c₂ : Computation β h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s s : Computation α ⊢ ∀ (a : α), BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind (pure a) (pure ∘ f))) (destruct (map f (pure a))) [PROOFSTEP] intro s [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β s✝ : Computation α c₁ c₂ : Computation β h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s s : Computation α ⊢ ∀ (s : Computation α), BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind (think s) (pure ∘ f))) (destruct (map f (think s))) [PROOFSTEP] intro s [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β s✝¹ : Computation α c₁ c₂ : Computation β h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s s✝ : Computation α s : α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind (pure s) (pure ∘ f))) (destruct (map f (pure s))) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β s✝¹ : Computation α c₁ c₂ : Computation β h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s s✝ s : Computation α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s) (destruct (bind (think s) (pure ∘ f))) (destruct (map f (think s))) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β s✝¹ : Computation α c₁ c₂ : Computation β h : c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure ∘ f) ∧ c₂ = map f s s✝ s : Computation α ⊢ bind s (pure ∘ f) = map f s ∨ ∃ s_1, bind s (pure ∘ f) = bind s_1 (pure ∘ f) ∧ map f s = map f s_1 [PROOFSTEP] exact Or.inr ⟨s, rfl, rfl⟩ [GOAL] case r α : Type u β : Type v γ : Type w f : α → β s : Computation α ⊢ bind s (pure ∘ f) = map f s ∨ ∃ s_1, bind s (pure ∘ f) = bind s_1 (pure ∘ f) ∧ map f s = map f s_1 [PROOFSTEP] exact Or.inr ⟨s, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s : Computation α ⊢ bind s pure = s [PROOFSTEP] apply eq_of_bisim fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s (pure) ∧ c₂ = s [GOAL] case bisim α : Type u β : Type v γ : Type w s : Computation α ⊢ IsBisimulation fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s [PROOFSTEP] intro c₁ c₂ h [GOAL] case bisim α : Type u β : Type v γ : Type w s c₁ c₂ : Computation α h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct c₁) (destruct c₂) [PROOFSTEP] exact match c₁, c₂, h with | _, c₂, Or.inl (Eq.refl _) => by cases' destruct c₂ with b cb <;> simp | _, _, Or.inr ⟨s, rfl, rfl⟩ => by apply recOn s <;> intro s <;> simp [GOAL] α : Type u β : Type v γ : Type w s c₁ c₂✝ : Computation α h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s pure ∧ c₂✝ = s c₂ : Computation α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct c₂) (destruct c₂) [PROOFSTEP] cases' destruct c₂ with b cb [GOAL] case inl α : Type u β : Type v γ : Type w s c₁ c₂✝ : Computation α h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s pure ∧ c₂✝ = s c₂ : Computation α b : α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (Sum.inl b) (Sum.inl b) [PROOFSTEP] simp [GOAL] case inr α : Type u β : Type v γ : Type w s c₁ c₂✝ : Computation α h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind s pure ∧ c₂✝ = s c₂ cb : Computation α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (Sum.inr cb) (Sum.inr cb) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ c₁ c₂ : Computation α h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s s : Computation α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind s pure)) (destruct s) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w s✝ c₁ c₂ : Computation α h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s s : Computation α ⊢ ∀ (a : α), BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind (pure a) pure)) (destruct (pure a)) [PROOFSTEP] intro s [GOAL] case h2 α : Type u β : Type v γ : Type w s✝ c₁ c₂ : Computation α h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s s : Computation α ⊢ ∀ (s : Computation α), BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind (think s) pure)) (destruct (think s)) [PROOFSTEP] intro s [GOAL] case h1 α : Type u β : Type v γ : Type w s✝¹ c₁ c₂ : Computation α h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s s✝ : Computation α s : α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind (pure s) pure)) (destruct (pure s)) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w s✝¹ c₁ c₂ : Computation α h : c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s s✝ s : Computation α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind s pure ∧ c₂ = s) (destruct (bind (think s) pure)) (destruct (think s)) [PROOFSTEP] simp [GOAL] case r α : Type u β : Type v γ : Type w s : Computation α ⊢ bind s pure = s ∨ ∃ s_1, bind s pure = bind s_1 pure ∧ s = s_1 [PROOFSTEP] exact Or.inr ⟨s, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β g : β → Computation γ ⊢ bind (bind s f) g = bind s fun x => bind (f x) g [PROOFSTEP] apply eq_of_bisim fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x : α => bind (f x) g [GOAL] case bisim α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β g : β → Computation γ ⊢ IsBisimulation fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g [PROOFSTEP] intro c₁ c₂ h [GOAL] case bisim α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (destruct c₁) (destruct c₂) [PROOFSTEP] exact match c₁, c₂, h with | _, c₂, Or.inl (Eq.refl _) => by cases' destruct c₂ with b cb <;> simp | _, _, Or.inr ⟨s, rfl, rfl⟩ => by apply recOn s <;> intro s <;> simp · generalize f s = fs apply recOn fs <;> intro t <;> simp · cases' destruct (g t) with b cb <;> simp · exact Or.inr ⟨s, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β g : β → Computation γ c₁ c₂✝ : Computation γ h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂✝ = bind s fun x => bind (f x) g c₂ : Computation γ ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (destruct c₂) (destruct c₂) [PROOFSTEP] cases' destruct c₂ with b cb [GOAL] case inl α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β g : β → Computation γ c₁ c₂✝ : Computation γ h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂✝ = bind s fun x => bind (f x) g c₂ : Computation γ b : γ ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (Sum.inl b) (Sum.inl b) [PROOFSTEP] simp [GOAL] case inr α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β g : β → Computation γ c₁ c₂✝ : Computation γ h : c₁ = c₂✝ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂✝ = bind s fun x => bind (f x) g c₂ cb : Computation γ ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (Sum.inr cb) (Sum.inr cb) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s : Computation α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (destruct (bind (bind s f) g)) (destruct (bind s fun x => bind (f x) g)) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s : Computation α ⊢ ∀ (a : α), BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (destruct (bind (bind (pure a) f) g)) (destruct (bind (pure a) fun x => bind (f x) g)) [PROOFSTEP] intro s [GOAL] case h2 α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s : Computation α ⊢ ∀ (s : Computation α), BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (destruct (bind (bind (think s) f) g)) (destruct (bind (think s) fun x => bind (f x) g)) [PROOFSTEP] intro s [GOAL] case h1 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (destruct (bind (bind (pure s) f) g)) (destruct (bind (pure s) fun x => bind (f x) g)) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ s : Computation α ⊢ BisimO (fun c₁ c₂ => c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g) (destruct (bind (bind (think s) f) g)) (destruct (bind (think s) fun x => bind (f x) g)) [PROOFSTEP] simp [GOAL] case h1 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α ⊢ match destruct (bind (f s) g), destruct (bind (f s) g) with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g | x, x_1 => False [PROOFSTEP] generalize f s = fs [GOAL] case h1 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α fs : Computation β ⊢ match destruct (bind fs g), destruct (bind fs g) with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g | x, x_1 => False [PROOFSTEP] apply recOn fs [GOAL] case h1.h1 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α fs : Computation β ⊢ ∀ (a : β), match destruct (bind (pure a) g), destruct (bind (pure a) g) with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g | x, x_1 => False [PROOFSTEP] intro t [GOAL] case h1.h2 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α fs : Computation β ⊢ ∀ (s : Computation β), match destruct (bind (think s) g), destruct (bind (think s) g) with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g | x, x_1 => False [PROOFSTEP] intro t [GOAL] case h1.h1 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α fs : Computation β t : β ⊢ match destruct (bind (pure t) g), destruct (bind (pure t) g) with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α fs t : Computation β ⊢ match destruct (bind (think t) g), destruct (bind (think t) g) with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h1 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α fs : Computation β t : β ⊢ match destruct (g t), destruct (g t) with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g | x, x_1 => False [PROOFSTEP] cases' destruct (g t) with b cb [GOAL] case h1.h1.inl α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α fs : Computation β t : β b : γ ⊢ match Sum.inl b, Sum.inl b with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h1.inr α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ : Computation α s : α fs : Computation β t : β cb : Computation γ ⊢ match Sum.inr cb, Sum.inr cb with | Sum.inl a, Sum.inl a' => a = a' | Sum.inr s, Sum.inr s' => s = s' ∨ ∃ s_1, s = bind (bind s_1 f) g ∧ s' = bind s_1 fun x => bind (f x) g | x, x_1 => False [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w s✝¹ : Computation α f : α → Computation β g : β → Computation γ c₁ c₂ : Computation γ h : c₁ = c₂ ∨ ∃ s, c₁ = bind (bind s f) g ∧ c₂ = bind s fun x => bind (f x) g s✝ s : Computation α ⊢ (bind (bind s f) g = bind s fun x => bind (f x) g) ∨ ∃ s_1, bind (bind s f) g = bind (bind s_1 f) g ∧ (bind s fun x => bind (f x) g) = bind s_1 fun x => bind (f x) g [PROOFSTEP] exact Or.inr ⟨s, rfl, rfl⟩ [GOAL] case r α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β g : β → Computation γ ⊢ (bind (bind s f) g = bind s fun x => bind (f x) g) ∨ ∃ s_1, bind (bind s f) g = bind (bind s_1 f) g ∧ (bind s fun x => bind (f x) g) = bind s_1 fun x => bind (f x) g [PROOFSTEP] exact Or.inr ⟨s, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β m n : ℕ h1 : Results s a m h2 : Results (f a) b n ⊢ Results (bind s f) b (n + m) [PROOFSTEP] have := h1.mem [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β m n : ℕ h1 : Results s a m h2 : Results (f a) b n this : a ∈ s ⊢ Results (bind s f) b (n + m) [PROOFSTEP] revert m [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s ⊢ ∀ {m : ℕ}, Results s a m → Results (bind s f) b (n + m) [PROOFSTEP] apply memRecOn this _ fun s IH => _ [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s ⊢ ∀ {m : ℕ}, Results (pure a) a m → Results (bind (pure a) f) b (n + m) [PROOFSTEP] intro _ h1 [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s m✝ : ℕ h1 : Results (pure a) a m✝ ⊢ Results (bind (pure a) f) b (n + m✝) [PROOFSTEP] rw [ret_bind] [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s m✝ : ℕ h1 : Results (pure a) a m✝ ⊢ Results (f a) b (n + m✝) [PROOFSTEP] rw [h1.len_unique (results_pure _)] [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s m✝ : ℕ h1 : Results (pure a) a m✝ ⊢ Results (f a) b (n + 0) [PROOFSTEP] exact h2 [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s ⊢ ∀ (s : Computation α), (∀ {m : ℕ}, Results s a m → Results (bind s f) b (n + m)) → ∀ {m : ℕ}, Results (think s) a m → Results (bind (think s) f) b (n + m) [PROOFSTEP] intro _ h3 _ h1 [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m) m✝ : ℕ h1 : Results (think s✝) a m✝ ⊢ Results (bind (think s✝) f) b (n + m✝) [PROOFSTEP] rw [think_bind] [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m) m✝ : ℕ h1 : Results (think s✝) a m✝ ⊢ Results (think (bind s✝ f)) b (n + m✝) [PROOFSTEP] cases' of_results_think h1 with m' h [GOAL] case intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m) m✝ : ℕ h1 : Results (think s✝) a m✝ m' : ℕ h : Results s✝ a m' ∧ m✝ = m' + 1 ⊢ Results (think (bind s✝ f)) b (n + m✝) [PROOFSTEP] cases' h with h1 e [GOAL] case intro.intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m) m✝ : ℕ h1✝ : Results (think s✝) a m✝ m' : ℕ h1 : Results s✝ a m' e : m✝ = m' + 1 ⊢ Results (think (bind s✝ f)) b (n + m✝) [PROOFSTEP] rw [e] [GOAL] case intro.intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β n : ℕ h2 : Results (f a) b n this : a ∈ s s✝ : Computation α h3 : ∀ {m : ℕ}, Results s✝ a m → Results (bind s✝ f) b (n + m) m✝ : ℕ h1✝ : Results (think s✝) a m✝ m' : ℕ h1 : Results s✝ a m' e : m✝ = m' + 1 ⊢ Results (think (bind s✝ f)) b (n + (m' + 1)) [PROOFSTEP] exact results_think (h3 h1) [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β b : β k : ℕ ⊢ Results (bind s f) b k → ∃ a m n, Results s a m ∧ Results (f a) b n ∧ k = n + m [PROOFSTEP] induction' k with n IH generalizing s [GOAL] case zero α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β s : Computation α ⊢ Results (bind s f) b Nat.zero → ∃ a m n, Results s a m ∧ Results (f a) b n ∧ Nat.zero = n + m [PROOFSTEP] apply recOn s (fun a => _) fun s' => _ [GOAL] case succ α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s : Computation α ⊢ Results (bind s f) b (Nat.succ n) → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m [PROOFSTEP] apply recOn s (fun a => _) fun s' => _ [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β s : Computation α ⊢ ∀ (a : α), Results (bind (pure a) f) b Nat.zero → ∃ a_2 m n, Results (pure a) a_2 m ∧ Results (f a_2) b n ∧ Nat.zero = n + m [PROOFSTEP] intro e h [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β s : Computation α ⊢ ∀ (s' : Computation α), Results (bind (think s') f) b Nat.zero → ∃ a m n, Results (think s') a m ∧ Results (f a) b n ∧ Nat.zero = n + m [PROOFSTEP] intro e h [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s : Computation α ⊢ ∀ (a : α), Results (bind (pure a) f) b (Nat.succ n) → ∃ a_2 m n_1, Results (pure a) a_2 m ∧ Results (f a_2) b n_1 ∧ Nat.succ n = n_1 + m [PROOFSTEP] intro e h [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s : Computation α ⊢ ∀ (s' : Computation α), Results (bind (think s') f) b (Nat.succ n) → ∃ a m n_1, Results (think s') a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m [PROOFSTEP] intro e h [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β s : Computation α e : α h : Results (bind (pure e) f) b Nat.zero ⊢ ∃ a m n, Results (pure e) a m ∧ Results (f a) b n ∧ Nat.zero = n + m [PROOFSTEP] simp [thinkN] at h [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β s : Computation α e : α h : Results (f e) b 0 ⊢ ∃ a m n, Results (pure e) a m ∧ Results (f a) b n ∧ Nat.zero = n + m [PROOFSTEP] refine' ⟨e, _, _, results_pure _, h, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β s e : Computation α h : Results (bind (think e) f) b Nat.zero ⊢ ∃ a m n, Results (think e) a m ∧ Results (f a) b n ∧ Nat.zero = n + m [PROOFSTEP] have := congr_arg head (eq_thinkN h) [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β s e : Computation α h : Results (bind (think e) f) b Nat.zero this : head (bind (think e) f) = head (thinkN (pure b) Nat.zero) ⊢ ∃ a m n, Results (think e) a m ∧ Results (f a) b n ∧ Nat.zero = n + m [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s : Computation α e : α h : Results (bind (pure e) f) b (Nat.succ n) ⊢ ∃ a m n_1, Results (pure e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m [PROOFSTEP] simp at h [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s : Computation α e : α h : Results (f e) b (Nat.succ n) ⊢ ∃ a m n_1, Results (pure e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m [PROOFSTEP] refine' ⟨e, _, n + 1, results_pure _, h, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s e : Computation α h : Results (bind (think e) f) b (Nat.succ n) ⊢ ∃ a m n_1, Results (think e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m [PROOFSTEP] simp at h [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s e : Computation α h : Results (bind e f) b n ⊢ ∃ a m n_1, Results (think e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m [PROOFSTEP] exact by let ⟨a, m, n', h1, h2, e'⟩ := IH h rw [e']; exact ⟨a, m.succ, n', results_think h1, h2, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s e : Computation α h : Results (bind e f) b n ⊢ ∃ a m n_1, Results (think e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m [PROOFSTEP] let ⟨a, m, n', h1, h2, e'⟩ := IH h [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s e : Computation α h : Results (bind e f) b n a : α m n' : ℕ h1 : Results e a m h2 : Results (f a) b n' e' : n = n' + m ⊢ ∃ a m n_1, Results (think e) a m ∧ Results (f a) b n_1 ∧ Nat.succ n = n_1 + m [PROOFSTEP] rw [e'] [GOAL] α : Type u β : Type v γ : Type w s✝ : Computation α f : α → Computation β b : β n : ℕ IH : ∀ {s : Computation α}, Results (bind s f) b n → ∃ a m n_1, Results s a m ∧ Results (f a) b n_1 ∧ n = n_1 + m s e : Computation α h : Results (bind e f) b n a : α m n' : ℕ h1 : Results e a m h2 : Results (f a) b n' e' : n = n' + m ⊢ ∃ a m_1 n, Results (think e) a m_1 ∧ Results (f a) b n ∧ Nat.succ (n' + m) = n + m_1 [PROOFSTEP] exact ⟨a, m.succ, n', results_think h1, h2, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β h1 : s ~> a h2 : f a ~> b b' : β bB : b' ∈ bind s f ⊢ b = b' [PROOFSTEP] rcases exists_of_mem_bind bB with ⟨a', a's, ba'⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β h1 : s ~> a h2 : f a ~> b b' : β bB : b' ∈ bind s f a' : α a's : a' ∈ s ba' : b' ∈ f a' ⊢ b = b' [PROOFSTEP] rw [← h1 a's] at ba' [GOAL] case intro.intro α : Type u β : Type v γ : Type w s : Computation α f : α → Computation β a : α b : β h1 : s ~> a h2 : f a ~> b b' : β bB : b' ∈ bind s f a' : α a's : a' ∈ s ba' : b' ∈ f a ⊢ b = b' [PROOFSTEP] exact h2 ba' [GOAL] α : Type u β : Type v γ : Type w f : α → β a : α s : Computation α m : a ∈ s ⊢ f a ∈ map f s [PROOFSTEP] rw [← bind_pure] [GOAL] α : Type u β : Type v γ : Type w f : α → β a : α s : Computation α m : a ∈ s ⊢ f a ∈ bind s (pure ∘ f) [PROOFSTEP] apply mem_bind m [GOAL] α : Type u β : Type v γ : Type w f : α → β a : α s : Computation α m : a ∈ s ⊢ f a ∈ (pure ∘ f) a [PROOFSTEP] apply ret_mem [GOAL] α : Type u β : Type v γ : Type w f : α → β b : β s : Computation α h : b ∈ map f s ⊢ ∃ a, a ∈ s ∧ f a = b [PROOFSTEP] rw [← bind_pure] at h [GOAL] α : Type u β : Type v γ : Type w f : α → β b : β s : Computation α h : b ∈ bind s (pure ∘ f) ⊢ ∃ a, a ∈ s ∧ f a = b [PROOFSTEP] exact let ⟨a, as, fb⟩ := exists_of_mem_bind h ⟨a, as, mem_unique (ret_mem _) fb⟩ [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Computation α inst✝ : Terminates s ⊢ Terminates (map f s) [PROOFSTEP] rw [← bind_pure] [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Computation α inst✝ : Terminates s ⊢ Terminates (bind s (pure ∘ f)) [PROOFSTEP] exact terminates_of_mem (mem_bind (get_mem s) (get_mem (f (get s)))) [GOAL] α : Type u β : Type v γ : Type w a : α c₂ : Computation α ⊢ destruct (HOrElse.hOrElse (pure a) fun x => c₂) = Sum.inl a [PROOFSTEP] unfold HOrElse.hOrElse instHOrElse [GOAL] α : Type u β : Type v γ : Type w a : α c₂ : Computation α ⊢ destruct ({ hOrElse := fun a b => OrElse.orElse a b }.1 (pure a) fun x => c₂) = Sum.inl a [PROOFSTEP] unfold OrElse.orElse instOrElse Alternative.orElse instAlternativeComputation [GOAL] α : Type u β : Type v γ : Type w a : α c₂ : Computation α ⊢ destruct ({ hOrElse := fun a b => { orElse := (let src := monad; Alternative.mk empty @orElse).3 }.1 a b }.1 (pure a) fun x => c₂) = Sum.inl a [PROOFSTEP] simp [orElse] [GOAL] α : Type u β : Type v γ : Type w c₁ : Computation α a : α ⊢ destruct (HOrElse.hOrElse (think c₁) fun x => pure a) = Sum.inl a [PROOFSTEP] unfold HOrElse.hOrElse instHOrElse [GOAL] α : Type u β : Type v γ : Type w c₁ : Computation α a : α ⊢ destruct ({ hOrElse := fun a b => OrElse.orElse a b }.1 (think c₁) fun x => pure a) = Sum.inl a [PROOFSTEP] unfold OrElse.orElse instOrElse Alternative.orElse instAlternativeComputation [GOAL] α : Type u β : Type v γ : Type w c₁ : Computation α a : α ⊢ destruct ({ hOrElse := fun a b => { orElse := (let src := monad; Alternative.mk empty @orElse).3 }.1 a b }.1 (think c₁) fun x => pure a) = Sum.inl a [PROOFSTEP] simp [orElse] [GOAL] α : Type u β : Type v γ : Type w c₁ c₂ : Computation α ⊢ destruct (HOrElse.hOrElse (think c₁) fun x => think c₂) = Sum.inr (HOrElse.hOrElse c₁ fun x => c₂) [PROOFSTEP] unfold HOrElse.hOrElse instHOrElse [GOAL] α : Type u β : Type v γ : Type w c₁ c₂ : Computation α ⊢ destruct ({ hOrElse := fun a b => OrElse.orElse a b }.1 (think c₁) fun x => think c₂) = Sum.inr ({ hOrElse := fun a b => OrElse.orElse a b }.1 c₁ fun x => c₂) [PROOFSTEP] unfold OrElse.orElse instOrElse Alternative.orElse instAlternativeComputation [GOAL] α : Type u β : Type v γ : Type w c₁ c₂ : Computation α ⊢ destruct ({ hOrElse := fun a b => { orElse := (let src := monad; Alternative.mk empty @orElse).3 }.1 a b }.1 (think c₁) fun x => think c₂) = Sum.inr ({ hOrElse := fun a b => { orElse := (let src := monad; Alternative.mk empty @orElse).3 }.1 a b }.1 c₁ fun x => c₂) [PROOFSTEP] simp [orElse] [GOAL] α : Type u β : Type v γ : Type w c : Computation α ⊢ (HOrElse.hOrElse (empty α) fun x => c) = c [PROOFSTEP] apply eq_of_bisim (fun c₁ c₂ => (empty α <|> c₂) = c₁) _ rfl [GOAL] α : Type u β : Type v γ : Type w c : Computation α ⊢ IsBisimulation fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁ [PROOFSTEP] intro s' s h [GOAL] α : Type u β : Type v γ : Type w c s' s : Computation α h : (HOrElse.hOrElse (empty α) fun x => s) = s' ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁) (destruct s') (destruct s) [PROOFSTEP] rw [← h] [GOAL] α : Type u β : Type v γ : Type w c s' s : Computation α h : (HOrElse.hOrElse (empty α) fun x => s) = s' ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁) (destruct (HOrElse.hOrElse (empty α) fun x => s)) (destruct s) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w c s' s : Computation α h : (HOrElse.hOrElse (empty α) fun x => s) = s' ⊢ ∀ (a : α), BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁) (destruct (HOrElse.hOrElse (empty α) fun x => pure a)) (destruct (pure a)) [PROOFSTEP] intro s [GOAL] case h2 α : Type u β : Type v γ : Type w c s' s : Computation α h : (HOrElse.hOrElse (empty α) fun x => s) = s' ⊢ ∀ (s : Computation α), BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁) (destruct (HOrElse.hOrElse (empty α) fun x => think s)) (destruct (think s)) [PROOFSTEP] intro s [GOAL] case h1 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse (empty α) fun x => s✝) = s' s : α ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁) (destruct (HOrElse.hOrElse (empty α) fun x => pure s)) (destruct (pure s)) [PROOFSTEP] rw [think_empty] [GOAL] case h2 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse (empty α) fun x => s✝) = s' s : Computation α ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (empty α) fun x => c₂) = c₁) (destruct (HOrElse.hOrElse (empty α) fun x => think s)) (destruct (think s)) [PROOFSTEP] rw [think_empty] [GOAL] case h1 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse (empty α) fun x => s✝) = s' s : α ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (think (empty α)) fun x => c₂) = c₁) (destruct (HOrElse.hOrElse (think (empty α)) fun x => pure s)) (destruct (pure s)) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse (empty α) fun x => s✝) = s' s : Computation α ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse (think (empty α)) fun x => c₂) = c₁) (destruct (HOrElse.hOrElse (think (empty α)) fun x => think s)) (destruct (think s)) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse (empty α) fun x => s✝) = s' s : Computation α ⊢ (HOrElse.hOrElse (think (empty α)) fun x => s) = HOrElse.hOrElse (empty α) fun x => s [PROOFSTEP] rw [← think_empty] [GOAL] α : Type u β : Type v γ : Type w c : Computation α ⊢ (HOrElse.hOrElse c fun x => empty α) = c [PROOFSTEP] apply eq_of_bisim (fun c₁ c₂ => (c₂ <|> empty α) = c₁) _ rfl [GOAL] α : Type u β : Type v γ : Type w c : Computation α ⊢ IsBisimulation fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁ [PROOFSTEP] intro s' s h [GOAL] α : Type u β : Type v γ : Type w c s' s : Computation α h : (HOrElse.hOrElse s fun x => empty α) = s' ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁) (destruct s') (destruct s) [PROOFSTEP] rw [← h] [GOAL] α : Type u β : Type v γ : Type w c s' s : Computation α h : (HOrElse.hOrElse s fun x => empty α) = s' ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁) (destruct (HOrElse.hOrElse s fun x => empty α)) (destruct s) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w c s' s : Computation α h : (HOrElse.hOrElse s fun x => empty α) = s' ⊢ ∀ (a : α), BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁) (destruct (HOrElse.hOrElse (pure a) fun x => empty α)) (destruct (pure a)) [PROOFSTEP] intro s [GOAL] case h2 α : Type u β : Type v γ : Type w c s' s : Computation α h : (HOrElse.hOrElse s fun x => empty α) = s' ⊢ ∀ (s : Computation α), BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁) (destruct (HOrElse.hOrElse (think s) fun x => empty α)) (destruct (think s)) [PROOFSTEP] intro s [GOAL] case h1 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse s✝ fun x => empty α) = s' s : α ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁) (destruct (HOrElse.hOrElse (pure s) fun x => empty α)) (destruct (pure s)) [PROOFSTEP] rw [think_empty] [GOAL] case h2 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse s✝ fun x => empty α) = s' s : Computation α ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => empty α) = c₁) (destruct (HOrElse.hOrElse (think s) fun x => empty α)) (destruct (think s)) [PROOFSTEP] rw [think_empty] [GOAL] case h1 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse s✝ fun x => empty α) = s' s : α ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => think (empty α)) = c₁) (destruct (HOrElse.hOrElse (pure s) fun x => think (empty α))) (destruct (pure s)) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse s✝ fun x => empty α) = s' s : Computation α ⊢ BisimO (fun c₁ c₂ => (HOrElse.hOrElse c₂ fun x => think (empty α)) = c₁) (destruct (HOrElse.hOrElse (think s) fun x => think (empty α))) (destruct (think s)) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w c s' s✝ : Computation α h : (HOrElse.hOrElse s✝ fun x => empty α) = s' s : Computation α ⊢ (HOrElse.hOrElse s fun x => think (empty α)) = HOrElse.hOrElse s fun x => empty α [PROOFSTEP] rw [← think_empty] [GOAL] α : Type u β : Type v γ : Type w s t : Computation α a : α h1 : a ∈ s h2 : a ∈ t a' : α ma : a' ∈ s ⊢ a' ∈ t [PROOFSTEP] rw [mem_unique ma h1] [GOAL] α : Type u β : Type v γ : Type w s t : Computation α a : α h1 : a ∈ s h2 : a ∈ t a' : α ma : a' ∈ s ⊢ a ∈ t [PROOFSTEP] exact h2 [GOAL] α : Type u β : Type v γ : Type w s t : Computation α a : α h1 : a ∈ s h2 : a ∈ t a' : α ma : a' ∈ t ⊢ a' ∈ s [PROOFSTEP] rw [mem_unique ma h2] [GOAL] α : Type u β : Type v γ : Type w s t : Computation α a : α h1 : a ∈ s h2 : a ∈ t a' : α ma : a' ∈ t ⊢ a ∈ s [PROOFSTEP] exact h1 [GOAL] α : Type u β : Type v γ : Type w c₁ c₂ : Computation α h : c₁ ~ c₂ ⊢ Terminates c₁ ↔ Terminates c₂ [PROOFSTEP] simp only [terminates_iff, exists_congr h] [GOAL] α : Type u β : Type v γ : Type w c₁ c₂ : Computation α x✝ : LiftRel (fun x x_1 => x = x_1) c₁ c₂ a : α h1 : ∀ {a : α}, a ∈ c₁ → ∃ b, b ∈ c₂ ∧ (fun x x_1 => x = x_1) a b h2 : ∀ {b : α}, b ∈ c₂ → ∃ a, a ∈ c₁ ∧ (fun x x_1 => x = x_1) a b a1 : a ∈ c₁ ⊢ a ∈ c₂ [PROOFSTEP] let ⟨b, b2, ab⟩ := h1 a1 [GOAL] α : Type u β : Type v γ : Type w c₁ c₂ : Computation α x✝ : LiftRel (fun x x_1 => x = x_1) c₁ c₂ a : α h1 : ∀ {a : α}, a ∈ c₁ → ∃ b, b ∈ c₂ ∧ (fun x x_1 => x = x_1) a b h2 : ∀ {b : α}, b ∈ c₂ → ∃ a, a ∈ c₁ ∧ (fun x x_1 => x = x_1) a b a1 : a ∈ c₁ b : α b2 : b ∈ c₂ ab : (fun x x_1 => x = x_1) a b ⊢ a ∈ c₂ [PROOFSTEP] rwa [ab] [GOAL] α : Type u β : Type v γ : Type w c₁ c₂ : Computation α x✝ : LiftRel (fun x x_1 => x = x_1) c₁ c₂ a : α h1 : ∀ {a : α}, a ∈ c₁ → ∃ b, b ∈ c₂ ∧ (fun x x_1 => x = x_1) a b h2 : ∀ {b : α}, b ∈ c₂ → ∃ a, a ∈ c₁ ∧ (fun x x_1 => x = x_1) a b a2 : a ∈ c₂ ⊢ a ∈ c₁ [PROOFSTEP] let ⟨b, b1, ab⟩ := h2 a2 [GOAL] α : Type u β : Type v γ : Type w c₁ c₂ : Computation α x✝ : LiftRel (fun x x_1 => x = x_1) c₁ c₂ a : α h1 : ∀ {a : α}, a ∈ c₁ → ∃ b, b ∈ c₂ ∧ (fun x x_1 => x = x_1) a b h2 : ∀ {b : α}, b ∈ c₂ → ∃ a, a ∈ c₁ ∧ (fun x x_1 => x = x_1) a b a2 : a ∈ c₂ b : α b1 : b ∈ c₁ ab : (fun x x_1 => x = x_1) b a ⊢ a ∈ c₁ [PROOFSTEP] rwa [← ab] [GOAL] α : Type u β : Type v γ : Type w R : α → α → Prop refl : ∀ (x : α), R x x symm : ∀ {x y : α}, R x y → R y x trans : ∀ {x y z : α}, R x y → R y z → R x z ⊢ ∀ {x y : Computation α}, LiftRel R x y → LiftRel R y x [PROOFSTEP] apply LiftRel.symm [GOAL] case H α : Type u β : Type v γ : Type w R : α → α → Prop refl : ∀ (x : α), R x x symm : ∀ {x y : α}, R x y → R y x trans : ∀ {x y z : α}, R x y → R y z → R x z ⊢ Symmetric R [PROOFSTEP] apply symm [GOAL] α : Type u β : Type v γ : Type w R : α → α → Prop refl : ∀ (x : α), R x x symm : ∀ {x y : α}, R x y → R y x trans : ∀ {x y z : α}, R x y → R y z → R x z ⊢ ∀ {x y z : Computation α}, LiftRel R x y → LiftRel R y z → LiftRel R x z [PROOFSTEP] apply LiftRel.trans [GOAL] case H α : Type u β : Type v γ : Type w R : α → α → Prop refl : ∀ (x : α), R x x symm : ∀ {x y : α}, R x y → R y x trans : ∀ {x y z : α}, R x y → R y z → R x z ⊢ Transitive R [PROOFSTEP] apply trans [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop ca : Computation α cb : Computation β l : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b right✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b a : α b : β ma : a ∈ ca mb : b ∈ cb ⊢ R a b [PROOFSTEP] let ⟨b', mb', ab'⟩ := l ma [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop ca : Computation α cb : Computation β l : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b right✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b a : α b : β ma : a ∈ ca mb : b ∈ cb b' : β mb' : b' ∈ cb ab' : R a b' ⊢ R a b [PROOFSTEP] rw [mem_unique mb mb'] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop ca : Computation α cb : Computation β l : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b right✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b a : α b : β ma : a ∈ ca mb : b ∈ cb b' : β mb' : b' ∈ cb ab' : R a b' ⊢ R a b' [PROOFSTEP] exact ab' [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α b : β ca : Computation α cb : Computation β ma : a ∈ ca mb : b ∈ cb ab : R a b a' : α ma' : a' ∈ ca ⊢ ∃ b, b ∈ cb ∧ R a' b [PROOFSTEP] rw [mem_unique ma' ma] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α b : β ca : Computation α cb : Computation β ma : a ∈ ca mb : b ∈ cb ab : R a b a' : α ma' : a' ∈ ca ⊢ ∃ b, b ∈ cb ∧ R a b [PROOFSTEP] exact ⟨b, mb, ab⟩ [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α b : β ca : Computation α cb : Computation β ma : a ∈ ca mb : b ∈ cb ab : R a b b' : β mb' : b' ∈ cb ⊢ ∃ a, a ∈ ca ∧ R a b' [PROOFSTEP] rw [mem_unique mb' mb] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α b : β ca : Computation α cb : Computation β ma : a ∈ ca mb : b ∈ cb ab : R a b b' : β mb' : b' ∈ cb ⊢ ∃ a, a ∈ ca ∧ R a b [PROOFSTEP] exact ⟨a, ma, ab⟩ [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop ca : Computation α cb : Computation β h : LiftRel R ca cb a : α b : β ma : a ∈ ca mb : b ∈ cb ⊢ R a b [PROOFSTEP] let ⟨b', mb', ab⟩ := h.left ma [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop ca : Computation α cb : Computation β h : LiftRel R ca cb a : α b : β ma : a ∈ ca mb : b ∈ cb b' : β mb' : b' ∈ cb ab : R a b' ⊢ R a b [PROOFSTEP] rwa [mem_unique mb mb'] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α cb : Computation β x✝ : ∃ b, b ∈ cb ∧ R a b b : β mb : b ∈ cb ab : R a b a' : α ma' : a' ∈ pure a ⊢ ∃ b, b ∈ cb ∧ R a' b [PROOFSTEP] rw [eq_of_pure_mem ma'] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α cb : Computation β x✝ : ∃ b, b ∈ cb ∧ R a b b : β mb : b ∈ cb ab : R a b a' : α ma' : a' ∈ pure a ⊢ ∃ b, b ∈ cb ∧ R a b [PROOFSTEP] exact ⟨b, mb, ab⟩ [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α cb : Computation β x✝ : ∃ b, b ∈ cb ∧ R a b b : β mb : b ∈ cb ab : R a b b' : β mb' : b' ∈ cb ⊢ R a b' [PROOFSTEP] rw [mem_unique mb' mb] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α cb : Computation β x✝ : ∃ b, b ∈ cb ∧ R a b b : β mb : b ∈ cb ab : R a b b' : β mb' : b' ∈ cb ⊢ R a b [PROOFSTEP] exact ab [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop ca : Computation α b : β ⊢ LiftRel R ca (pure b) ↔ ∃ a, a ∈ ca ∧ R a b [PROOFSTEP] rw [LiftRel.swap, liftRel_pure_left] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α b : β ⊢ LiftRel R (pure a) (pure b) ↔ R a b [PROOFSTEP] rw [liftRel_pure_left] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α b : β ⊢ (∃ b_1, b_1 ∈ pure b ∧ R a b_1) ↔ R a b [PROOFSTEP] exact ⟨fun ⟨b', mb', ab'⟩ => by rwa [eq_of_pure_mem mb'] at ab' , fun ab => ⟨_, ret_mem _, ab⟩⟩ [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop a : α b : β x✝ : ∃ b_1, b_1 ∈ pure b ∧ R a b_1 b' : β mb' : b' ∈ pure b ab' : R a b' ⊢ R a b [PROOFSTEP] rwa [eq_of_pure_mem mb'] at ab' [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop ca : Computation α cb : Computation β ⊢ LiftRel R ca (think cb) ↔ LiftRel R ca cb [PROOFSTEP] rw [← LiftRel.swap R, ← LiftRel.swap R] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop ca : Computation α cb : Computation β ⊢ LiftRel (swap R) (think cb) ca ↔ LiftRel (swap R) cb ca [PROOFSTEP] apply liftRel_think_left [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 R : α → β → Prop S : γ → δ → Prop s1 : Computation α s2 : Computation β f1 : α → γ f2 : β → δ h1 : LiftRel R s1 s2 h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b) ⊢ LiftRel S (map f1 s1) (map f2 s2) [PROOFSTEP] rw [← bind_pure, ← bind_pure] [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 R : α → β → Prop S : γ → δ → Prop s1 : Computation α s2 : Computation β f1 : α → γ f2 : β → δ h1 : LiftRel R s1 s2 h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b) ⊢ LiftRel S (bind s1 (pure ∘ f1)) (bind s2 (pure ∘ f2)) [PROOFSTEP] apply liftRel_bind _ _ h1 [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 R : α → β → Prop S : γ → δ → Prop s1 : Computation α s2 : Computation β f1 : α → γ f2 : β → δ h1 : LiftRel R s1 s2 h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b) ⊢ ∀ {a : α} {b : β}, R a b → LiftRel S ((pure ∘ f1) a) ((pure ∘ f2) b) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 R : α → β → Prop S : γ → δ → Prop s1 : Computation α s2 : Computation β f1 : α → γ f2 : β → δ h1 : LiftRel R s1 s2 h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b) ⊢ ∀ {a : α} {b : β}, R a b → ∃ a_2, a_2 ∈ pure (f1 a) ∧ S a_2 (f2 b) [PROOFSTEP] intros a b h [GOAL] α : Type u β : Type v γ : Type w δ : Type u_1 R : α → β → Prop S : γ → δ → Prop s1 : Computation α s2 : Computation β f1 : α → γ f2 : β → δ h1 : LiftRel R s1 s2 h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b) a : α b : β h : R a b ⊢ ∃ a_1, a_1 ∈ pure (f1 a) ∧ S a_1 (f2 b) [PROOFSTEP] exact ⟨f1 a, ⟨ret_mem _, @h2 a b h⟩⟩ [GOAL] α : Type u β : Type v γ : Type w s1 s2 : Computation α f : α → β h1 : s1 ~ s2 ⊢ map f s1 ~ map f s2 [PROOFSTEP] rw [← lift_eq_iff_equiv] [GOAL] α : Type u β : Type v γ : Type w s1 s2 : Computation α f : α → β h1 : s1 ~ s2 ⊢ LiftRel (fun x x_1 => x = x_1) (map f s1) (map f s2) [PROOFSTEP] exact liftRel_map Eq _ ((lift_eq_iff_equiv _ _).2 h1) fun {a} b => congr_arg _ [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α cb : Computation β ⊢ LiftRelAux R C (Sum.inl a) (destruct cb) ↔ ∃ b, b ∈ cb ∧ R a b [PROOFSTEP] apply cb.recOn (fun b => _) fun cb => _ [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α cb : Computation β ⊢ ∀ (b : β), LiftRelAux R C (Sum.inl a) (destruct (pure b)) ↔ ∃ b_1, b_1 ∈ pure b ∧ R a b_1 [PROOFSTEP] intro b [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α cb : Computation β b : β ⊢ LiftRelAux R C (Sum.inl a) (destruct (pure b)) ↔ ∃ b_1, b_1 ∈ pure b ∧ R a b_1 [PROOFSTEP] exact ⟨fun h => ⟨_, ret_mem _, h⟩, fun ⟨b', mb, h⟩ => by rw [mem_unique (ret_mem _) mb]; exact h⟩ [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α cb : Computation β b : β x✝ : ∃ b_1, b_1 ∈ pure b ∧ R a b_1 b' : β mb : b' ∈ pure b h : R a b' ⊢ LiftRelAux R C (Sum.inl a) (destruct (pure b)) [PROOFSTEP] rw [mem_unique (ret_mem _) mb] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α cb : Computation β b : β x✝ : ∃ b_1, b_1 ∈ pure b ∧ R a b_1 b' : β mb : b' ∈ pure b h : R a b' ⊢ LiftRelAux R C (Sum.inl a) (destruct (pure b')) [PROOFSTEP] exact h [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α cb : Computation β ⊢ ∀ (cb : Computation β), LiftRelAux R C (Sum.inl a) (destruct (think cb)) ↔ ∃ b, b ∈ think cb ∧ R a b [PROOFSTEP] intro [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α cb cb✝ : Computation β ⊢ LiftRelAux R C (Sum.inl a) (destruct (think cb✝)) ↔ ∃ b, b ∈ think cb✝ ∧ R a b [PROOFSTEP] rw [destruct_think] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α cb cb✝ : Computation β ⊢ LiftRelAux R C (Sum.inl a) (Sum.inr cb✝) ↔ ∃ b, b ∈ think cb✝ ∧ R a b [PROOFSTEP] exact ⟨fun ⟨b, h, r⟩ => ⟨b, think_mem h, r⟩, fun ⟨b, h, r⟩ => ⟨b, of_think_mem h, r⟩⟩ [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α ⊕ Computation α b : β ⊕ Computation β ⊢ LiftRelAux (Function.swap R) (Function.swap C) b a = LiftRelAux R C a b [PROOFSTEP] cases' a with a ca [GOAL] case inl α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop b : β ⊕ Computation β a : α ⊢ LiftRelAux (Function.swap R) (Function.swap C) b (Sum.inl a) = LiftRelAux R C (Sum.inl a) b [PROOFSTEP] cases' b with b cb [GOAL] case inr α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop b : β ⊕ Computation β ca : Computation α ⊢ LiftRelAux (Function.swap R) (Function.swap C) b (Sum.inr ca) = LiftRelAux R C (Sum.inr ca) b [PROOFSTEP] cases' b with b cb [GOAL] case inl.inl α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α b : β ⊢ LiftRelAux (Function.swap R) (Function.swap C) (Sum.inl b) (Sum.inl a) = LiftRelAux R C (Sum.inl a) (Sum.inl b) [PROOFSTEP] simp only [LiftRelAux] [GOAL] case inl.inr α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop a : α cb : Computation β ⊢ LiftRelAux (Function.swap R) (Function.swap C) (Sum.inr cb) (Sum.inl a) = LiftRelAux R C (Sum.inl a) (Sum.inr cb) [PROOFSTEP] simp only [LiftRelAux] [GOAL] case inr.inl α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop ca : Computation α b : β ⊢ LiftRelAux (Function.swap R) (Function.swap C) (Sum.inl b) (Sum.inr ca) = LiftRelAux R C (Sum.inr ca) (Sum.inl b) [PROOFSTEP] simp only [LiftRelAux] [GOAL] case inr.inr α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop ca : Computation α cb : Computation β ⊢ LiftRelAux (Function.swap R) (Function.swap C) (Sum.inr cb) (Sum.inr ca) = LiftRelAux R C (Sum.inr ca) (Sum.inr cb) [PROOFSTEP] simp only [LiftRelAux] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop b : β ca : Computation α ⊢ LiftRelAux R C (destruct ca) (Sum.inl b) ↔ ∃ a, a ∈ ca ∧ R a b [PROOFSTEP] rw [← LiftRelAux.swap, LiftRelAux.ret_left] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α cb : Computation β Hc : C ca cb a : α ha : a ∈ ca ⊢ LiftRel R ca cb [PROOFSTEP] revert cb [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ⊢ ∀ (cb : Computation β), C ca cb → LiftRel R ca cb [PROOFSTEP] refine' memRecOn (C := (λ ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb)) ha _ (fun ca' IH => _) [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ⊢ (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) (pure a) [PROOFSTEP] intro cb Hc [GOAL] case refine'_2 α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' ⊢ (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) (think ca') [PROOFSTEP] intro cb Hc [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca cb : Computation β Hc : C (pure a) cb ⊢ LiftRel R (pure a) cb [PROOFSTEP] have h := H Hc [GOAL] case refine'_2 α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb ⊢ LiftRel R (think ca') cb [PROOFSTEP] have h := H Hc [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca cb : Computation β Hc : C (pure a) cb h : LiftRelAux R C (destruct (pure a)) (destruct cb) ⊢ LiftRel R (pure a) cb [PROOFSTEP] simp at h [GOAL] case refine'_1 α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca cb : Computation β Hc : C (pure a) cb h : ∃ b, b ∈ cb ∧ R a b ⊢ LiftRel R (pure a) cb [PROOFSTEP] simp [h] [GOAL] case refine'_2 α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb h : LiftRelAux R C (destruct (think ca')) (destruct cb) ⊢ LiftRel R (think ca') cb [PROOFSTEP] simp [GOAL] case refine'_2 α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb h : LiftRelAux R C (destruct (think ca')) (destruct cb) ⊢ LiftRel R ca' cb [PROOFSTEP] revert h [GOAL] case refine'_2 α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb ⊢ LiftRelAux R C (destruct (think ca')) (destruct cb) → LiftRel R ca' cb [PROOFSTEP] apply cb.recOn (fun b => _) fun cb' => _ [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb ⊢ ∀ (b : β), LiftRelAux R C (destruct (think ca')) (destruct (pure b)) → LiftRel R ca' (pure b) [PROOFSTEP] intros _ h [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb ⊢ ∀ (cb' : Computation β), LiftRelAux R C (destruct (think ca')) (destruct (think cb')) → LiftRel R ca' (think cb') [PROOFSTEP] intros _ h [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb b✝ : β h : LiftRelAux R C (destruct (think ca')) (destruct (pure b✝)) ⊢ LiftRel R ca' (pure b✝) [PROOFSTEP] simp at h [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb cb'✝ : Computation β h : LiftRelAux R C (destruct (think ca')) (destruct (think cb'✝)) ⊢ LiftRel R ca' (think cb'✝) [PROOFSTEP] simp at h [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb b✝ : β h : ∃ a, a ∈ ca' ∧ R a b✝ ⊢ LiftRel R ca' (pure b✝) [PROOFSTEP] simp [h] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb cb'✝ : Computation β h : C ca' cb'✝ ⊢ LiftRel R ca' (think cb'✝) [PROOFSTEP] simp [h] [GOAL] α : Type u β : Type v γ : Type w R : α → β → Prop C : Computation α → Computation β → Prop H : ∀ {ca : Computation α} {cb : Computation β}, C ca cb → LiftRelAux R C (destruct ca) (destruct cb) ca : Computation α a : α ha : a ∈ ca ca' : Computation α IH : (fun ca => ∀ (cb : Computation β), C ca cb → LiftRel R ca cb) ca' cb : Computation β Hc : C (think ca') cb cb'✝ : Computation β h : C ca' cb'✝ ⊢ LiftRel R ca' cb'✝ [PROOFSTEP] exact IH _ h
{"mathlib_filename": "Mathlib.Data.Seq.Computation", "llama_tokens": 62856}
[GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 a₁ a₂ : α b₁ : β a₁ b₂ : β a₂ h : { fst := a₁, snd := b₁ } = { fst := a₂, snd := b₂ } ⊢ a₁ = a₂ ∧ HEq b₁ b₂ [PROOFSTEP] cases h [GOAL] case refl α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 a₁ : α b₁ : β a₁ ⊢ a₁ = a₁ ∧ HEq b₁ b₁ [PROOFSTEP] exact ⟨rfl, heq_of_eq rfl⟩ [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 a₁ a₂ : α b₁ : β a₁ b₂ : β a₂ x✝ : a₁ = a₂ ∧ HEq b₁ b₂ h₁ : a₁ = a₂ h₂ : HEq b₁ b₂ ⊢ { fst := a₁, snd := b₁ } = { fst := a₂, snd := b₂ } [PROOFSTEP] subst h₁ [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 a₁ : α b₁ b₂ : β a₁ x✝ : a₁ = a₁ ∧ HEq b₁ b₂ h₂ : HEq b₁ b₂ ⊢ { fst := a₁, snd := b₁ } = { fst := a₁, snd := b₂ } [PROOFSTEP] rw [eq_of_heq h₂] [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 x₀ x₁ : Sigma β h₀ : x₀.fst = x₁.fst h₁ : HEq x₀.snd x₁.snd ⊢ x₀ = x₁ [PROOFSTEP] cases x₀ [GOAL] case mk α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 x₁ : Sigma β fst✝ : α snd✝ : β fst✝ h₀ : { fst := fst✝, snd := snd✝ }.fst = x₁.fst h₁ : HEq { fst := fst✝, snd := snd✝ }.snd x₁.snd ⊢ { fst := fst✝, snd := snd✝ } = x₁ [PROOFSTEP] cases x₁ [GOAL] case mk.mk α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 fst✝¹ : α snd✝¹ : β fst✝¹ fst✝ : α snd✝ : β fst✝ h₀ : { fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst h₁ : HEq { fst := fst✝¹, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd ⊢ { fst := fst✝¹, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ } [PROOFSTEP] cases h₀ [GOAL] case mk.mk.refl α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 fst✝ : α snd✝¹ snd✝ : β fst✝ h₁ : HEq { fst := fst✝, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd ⊢ { fst := fst✝, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ } [PROOFSTEP] cases h₁ [GOAL] case mk.mk.refl.refl α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 fst✝ : α snd✝ : β fst✝ ⊢ { fst := fst✝, snd := snd✝ } = { fst := fst✝, snd := snd✝ } [PROOFSTEP] rfl [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 x₀ x₁ : Sigma β ⊢ x₀ = x₁ ↔ x₀.fst = x₁.fst ∧ HEq x₀.snd x₁.snd [PROOFSTEP] cases x₀ [GOAL] case mk α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 x₁ : Sigma β fst✝ : α snd✝ : β fst✝ ⊢ { fst := fst✝, snd := snd✝ } = x₁ ↔ { fst := fst✝, snd := snd✝ }.fst = x₁.fst ∧ HEq { fst := fst✝, snd := snd✝ }.snd x₁.snd [PROOFSTEP] cases x₁ [GOAL] case mk.mk α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 fst✝¹ : α snd✝¹ : β fst✝¹ fst✝ : α snd✝ : β fst✝ ⊢ { fst := fst✝¹, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ } ↔ { fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst ∧ HEq { fst := fst✝¹, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd [PROOFSTEP] exact Sigma.mk.inj_iff [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 γ : Type u_7 inst✝ : Nonempty γ a b : α f : γ → β a g : γ → β b h : mk a ∘ f = mk b ∘ g ⊢ a = b ∧ HEq f g [PROOFSTEP] rcases‹Nonempty γ› with ⟨i⟩ [GOAL] case intro α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 γ : Type u_7 inst✝ : Nonempty γ a b : α f : γ → β a g : γ → β b h : mk a ∘ f = mk b ∘ g i : γ ⊢ a = b ∧ HEq f g [PROOFSTEP] obtain rfl : a = b := congr_arg Sigma.fst (congr_fun h i) [GOAL] case intro α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 γ : Type u_7 inst✝ : Nonempty γ a : α f : γ → β a i : γ g : γ → β a h : mk a ∘ f = mk a ∘ g ⊢ a = a ∧ HEq f g [PROOFSTEP] simpa [Function.funext_iff] using h [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 f₁ : α₁ → α₂ f₂ : (a : α₁) → β₁ a → β₂ (f₁ a) h₁ : Injective f₁ h₂ : ∀ (a : α₁), Injective (f₂ a) i : α₁ x : β₁ i j : α₁ y : β₁ j h : Sigma.map f₁ f₂ { fst := i, snd := x } = Sigma.map f₁ f₂ { fst := j, snd := y } ⊢ { fst := i, snd := x } = { fst := j, snd := y } [PROOFSTEP] obtain rfl : i = j := h₁ (Sigma.mk.inj_iff.mp h).1 [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 f₁ : α₁ → α₂ f₂ : (a : α₁) → β₁ a → β₂ (f₁ a) h₁ : Injective f₁ h₂ : ∀ (a : α₁), Injective (f₂ a) i : α₁ x y : β₁ i h : Sigma.map f₁ f₂ { fst := i, snd := x } = Sigma.map f₁ f₂ { fst := i, snd := y } ⊢ { fst := i, snd := x } = { fst := i, snd := y } [PROOFSTEP] obtain rfl : x = y := h₂ i (sigma_mk_injective h) [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 f₁ : α₁ → α₂ f₂ : (a : α₁) → β₁ a → β₂ (f₁ a) h₁ : Injective f₁ h₂ : ∀ (a : α₁), Injective (f₂ a) i : α₁ x : β₁ i h : Sigma.map f₁ f₂ { fst := i, snd := x } = Sigma.map f₁ f₂ { fst := i, snd := x } ⊢ { fst := i, snd := x } = { fst := i, snd := x } [PROOFSTEP] rfl [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 f₁ : α₁ → α₂ f₂ : (a : α₁) → β₁ a → β₂ (f₁ a) h₁ : Surjective f₁ h₂ : ∀ (a : α₁), Surjective (f₂ a) ⊢ Surjective (Sigma.map f₁ f₂) [PROOFSTEP] simp only [Function.Surjective, Sigma.forall, h₁.forall] [GOAL] α : Type u_1 α₁ : Type u_2 α₂ : Type u_3 β : α → Type u_4 β₁ : α₁ → Type u_5 β₂ : α₂ → Type u_6 f₁ : α₁ → α₂ f₂ : (a : α₁) → β₁ a → β₂ (f₁ a) h₁ : Surjective f₁ h₂ : ∀ (a : α₁), Surjective (f₂ a) ⊢ ∀ (x : α₁) (b : β₂ (f₁ x)), ∃ a, Sigma.map f₁ f₂ a = { fst := f₁ x, snd := b } [PROOFSTEP] exact fun i ↦ (h₂ _).forall.2 fun x ↦ ⟨⟨i, x⟩, rfl⟩ [GOAL] α : Sort u_1 β : α → Sort u_2 x₀ x₁ : PSigma β h₀ : x₀.fst = x₁.fst h₁ : HEq x₀.snd x₁.snd ⊢ x₀ = x₁ [PROOFSTEP] cases x₀ [GOAL] case mk α : Sort u_1 β : α → Sort u_2 x₁ : PSigma β fst✝ : α snd✝ : β fst✝ h₀ : { fst := fst✝, snd := snd✝ }.fst = x₁.fst h₁ : HEq { fst := fst✝, snd := snd✝ }.snd x₁.snd ⊢ { fst := fst✝, snd := snd✝ } = x₁ [PROOFSTEP] cases x₁ [GOAL] case mk.mk α : Sort u_1 β : α → Sort u_2 fst✝¹ : α snd✝¹ : β fst✝¹ fst✝ : α snd✝ : β fst✝ h₀ : { fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst h₁ : HEq { fst := fst✝¹, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd ⊢ { fst := fst✝¹, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ } [PROOFSTEP] cases h₀ [GOAL] case mk.mk.refl α : Sort u_1 β : α → Sort u_2 fst✝ : α snd✝¹ snd✝ : β fst✝ h₁ : HEq { fst := fst✝, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd ⊢ { fst := fst✝, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ } [PROOFSTEP] cases h₁ [GOAL] case mk.mk.refl.refl α : Sort u_1 β : α → Sort u_2 fst✝ : α snd✝ : β fst✝ ⊢ { fst := fst✝, snd := snd✝ } = { fst := fst✝, snd := snd✝ } [PROOFSTEP] rfl [GOAL] α : Sort u_1 β : α → Sort u_2 x₀ x₁ : PSigma β ⊢ x₀ = x₁ ↔ x₀.fst = x₁.fst ∧ HEq x₀.snd x₁.snd [PROOFSTEP] cases x₀ [GOAL] case mk α : Sort u_1 β : α → Sort u_2 x₁ : PSigma β fst✝ : α snd✝ : β fst✝ ⊢ { fst := fst✝, snd := snd✝ } = x₁ ↔ { fst := fst✝, snd := snd✝ }.fst = x₁.fst ∧ HEq { fst := fst✝, snd := snd✝ }.snd x₁.snd [PROOFSTEP] cases x₁ [GOAL] case mk.mk α : Sort u_1 β : α → Sort u_2 fst✝¹ : α snd✝¹ : β fst✝¹ fst✝ : α snd✝ : β fst✝ ⊢ { fst := fst✝¹, snd := snd✝¹ } = { fst := fst✝, snd := snd✝ } ↔ { fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst ∧ HEq { fst := fst✝¹, snd := snd✝¹ }.snd { fst := fst✝, snd := snd✝ }.snd [PROOFSTEP] exact PSigma.mk.inj_iff
{"mathlib_filename": "Mathlib.Data.Sigma.Basic", "llama_tokens": 4766}
[GOAL] ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LE (α i) a b : (i : ι) × α i ⊢ a ≤ b ↔ ∃ h, h ▸ a.snd ≤ b.snd [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LE (α i) a b : (i : ι) × α i ⊢ a ≤ b → ∃ h, h ▸ a.snd ≤ b.snd [PROOFSTEP] rintro ⟨i, a, b, h⟩ [GOAL] case mp.fiber ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LE (α i) i : ι a b : α i h : a ≤ b ⊢ ∃ h, h ▸ { fst := i, snd := a }.snd ≤ { fst := i, snd := b }.snd [PROOFSTEP] exact ⟨rfl, h⟩ [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LE (α i) a b : (i : ι) × α i ⊢ (∃ h, h ▸ a.snd ≤ b.snd) → a ≤ b [PROOFSTEP] obtain ⟨i, a⟩ := a [GOAL] case mpr.mk ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LE (α i) b : (i : ι) × α i i : ι a : α i ⊢ (∃ h, h ▸ { fst := i, snd := a }.snd ≤ b.snd) → { fst := i, snd := a } ≤ b [PROOFSTEP] obtain ⟨j, b⟩ := b [GOAL] case mpr.mk.mk ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LE (α i) i : ι a : α i j : ι b : α j ⊢ (∃ h, h ▸ { fst := i, snd := a }.snd ≤ { fst := j, snd := b }.snd) → { fst := i, snd := a } ≤ { fst := j, snd := b } [PROOFSTEP] rintro ⟨rfl : i = j, h⟩ [GOAL] case mpr.mk.mk.intro ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LE (α i) i : ι a b : α i h : (_ : i = i) ▸ { fst := i, snd := a }.snd ≤ { fst := i, snd := b }.snd ⊢ { fst := i, snd := a } ≤ { fst := i, snd := b } [PROOFSTEP] exact le.fiber _ _ _ h [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LT (α i) a b : (i : ι) × α i ⊢ a < b ↔ ∃ h, h ▸ a.snd < b.snd [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LT (α i) a b : (i : ι) × α i ⊢ a < b → ∃ h, h ▸ a.snd < b.snd [PROOFSTEP] rintro ⟨i, a, b, h⟩ [GOAL] case mp.fiber ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LT (α i) i : ι a b : α i h : a < b ⊢ ∃ h, h ▸ { fst := i, snd := a }.snd < { fst := i, snd := b }.snd [PROOFSTEP] exact ⟨rfl, h⟩ [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LT (α i) a b : (i : ι) × α i ⊢ (∃ h, h ▸ a.snd < b.snd) → a < b [PROOFSTEP] obtain ⟨i, a⟩ := a [GOAL] case mpr.mk ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LT (α i) b : (i : ι) × α i i : ι a : α i ⊢ (∃ h, h ▸ { fst := i, snd := a }.snd < b.snd) → { fst := i, snd := a } < b [PROOFSTEP] obtain ⟨j, b⟩ := b [GOAL] case mpr.mk.mk ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LT (α i) i : ι a : α i j : ι b : α j ⊢ (∃ h, h ▸ { fst := i, snd := a }.snd < { fst := j, snd := b }.snd) → { fst := i, snd := a } < { fst := j, snd := b } [PROOFSTEP] rintro ⟨rfl : i = j, h⟩ [GOAL] case mpr.mk.mk.intro ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → LT (α i) i : ι a b : α i h : (_ : i = i) ▸ { fst := i, snd := a }.snd < { fst := i, snd := b }.snd ⊢ { fst := i, snd := a } < { fst := i, snd := b } [PROOFSTEP] exact lt.fiber _ _ _ h [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE ((i : ι) × α i) := Sigma.LE src✝ : LT ((i : ι) × α i) := Sigma.LT ⊢ ∀ (a b c : (i : ι) × α i), a ≤ b → b ≤ c → a ≤ c [PROOFSTEP] rintro _ _ _ ⟨i, a, b, hab⟩ ⟨_, _, c, hbc⟩ [GOAL] case fiber.fiber ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE ((i : ι) × α i) := Sigma.LE src✝ : LT ((i : ι) × α i) := Sigma.LT i : ι a b : α i hab : a ≤ b c : α i hbc : b ≤ c ⊢ { fst := i, snd := a } ≤ { fst := i, snd := c } [PROOFSTEP] exact le.fiber i a c (hab.trans hbc) [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE ((i : ι) × α i) := Sigma.LE src✝ : LT ((i : ι) × α i) := Sigma.LT x✝¹ x✝ : (i : ι) × α i ⊢ x✝¹ < x✝ ↔ x✝¹ ≤ x✝ ∧ ¬x✝ ≤ x✝¹ [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE ((i : ι) × α i) := Sigma.LE src✝ : LT ((i : ι) × α i) := Sigma.LT x✝¹ x✝ : (i : ι) × α i ⊢ x✝¹ < x✝ → x✝¹ ≤ x✝ ∧ ¬x✝ ≤ x✝¹ [PROOFSTEP] rintro ⟨i, a, b, hab⟩ [GOAL] case mp.fiber ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE ((i : ι) × α i) := Sigma.LE src✝ : LT ((i : ι) × α i) := Sigma.LT i : ι a b : α i hab : a < b ⊢ { fst := i, snd := a } ≤ { fst := i, snd := b } ∧ ¬{ fst := i, snd := b } ≤ { fst := i, snd := a } [PROOFSTEP] rwa [mk_le_mk_iff, mk_le_mk_iff, ← lt_iff_le_not_le] [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE ((i : ι) × α i) := Sigma.LE src✝ : LT ((i : ι) × α i) := Sigma.LT x✝¹ x✝ : (i : ι) × α i ⊢ x✝¹ ≤ x✝ ∧ ¬x✝ ≤ x✝¹ → x✝¹ < x✝ [PROOFSTEP] rintro ⟨⟨i, a, b, hab⟩, h⟩ [GOAL] case mpr.intro.fiber ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE ((i : ι) × α i) := Sigma.LE src✝ : LT ((i : ι) × α i) := Sigma.LT i : ι a b : α i hab : a ≤ b h : ¬{ fst := i, snd := b } ≤ { fst := i, snd := a } ⊢ { fst := i, snd := a } < { fst := i, snd := b } [PROOFSTEP] rw [mk_le_mk_iff] at h [GOAL] case mpr.intro.fiber ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE ((i : ι) × α i) := Sigma.LE src✝ : LT ((i : ι) × α i) := Sigma.LT i : ι a b : α i hab : a ≤ b h : ¬b ≤ a ⊢ { fst := i, snd := a } < { fst := i, snd := b } [PROOFSTEP] exact mk_lt_mk_iff.2 (hab.lt_of_not_le h) [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → PartialOrder (α i) src✝ : Preorder ((i : ι) × α i) := Sigma.preorder ⊢ ∀ (a b : (i : ι) × α i), a ≤ b → b ≤ a → a = b [PROOFSTEP] rintro _ _ ⟨i, a, b, hab⟩ ⟨_, _, _, hba⟩ [GOAL] case fiber.fiber ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → PartialOrder (α i) src✝ : Preorder ((i : ι) × α i) := Sigma.preorder i : ι a b : (fun i => α i) i hab : a ≤ b hba : b ≤ a ⊢ { fst := i, snd := a } = { fst := i, snd := b } [PROOFSTEP] exact ext rfl (heq_of_eq <| hab.antisymm hba) [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) ⊢ ∀ (a₁ a₂ : (i : ι) × α i), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂ [PROOFSTEP] rintro ⟨i, a⟩ ⟨_, _⟩ ⟨_, _, b, h⟩ [GOAL] case mk.mk.fiber ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) i : ι a b : α i h : a < b ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b } [PROOFSTEP] obtain ⟨c, ha, hb⟩ := exists_between h [GOAL] case mk.mk.fiber.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) i : ι a b : α i h : a < b c : α i ha : a < c hb : c < b ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b } [PROOFSTEP] exact ⟨⟨i, c⟩, lt.fiber i a c ha, lt.fiber i c b hb⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT ⊢ ∀ (a b : Σₗ (i : ι), α i), a < b ↔ a ≤ b ∧ ¬b ≤ a [PROOFSTEP] refine' fun a b => ⟨fun hab => ⟨hab.mono_right fun i a b => le_of_lt, _⟩, _⟩ [GOAL] case refine'_1 ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT a b : Σₗ (i : ι), α i hab : a < b ⊢ ¬b ≤ a [PROOFSTEP] rintro (⟨b, a, hji⟩ | ⟨b, a, hba⟩) [GOAL] case refine'_1.left ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT i✝ j✝ : ι b : α i✝ a : α j✝ hji : i✝ < j✝ hab : { fst := j✝, snd := a } < { fst := i✝, snd := b } ⊢ False [PROOFSTEP] obtain ⟨_, _, hij⟩ | ⟨_, _, hab⟩ := hab [GOAL] case refine'_1.right ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT i✝ : ι b a : α i✝ hba : b ≤ a hab : { fst := i✝, snd := a } < { fst := i✝, snd := b } ⊢ False [PROOFSTEP] obtain ⟨_, _, hij⟩ | ⟨_, _, hab⟩ := hab [GOAL] case refine'_1.left.left ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT i✝ j✝ : ι b : α i✝ a : α j✝ hji : i✝ < j✝ hij : j✝ < i✝ ⊢ False [PROOFSTEP] exact hij.not_lt hji [GOAL] case refine'_1.left.right ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT i✝ : ι b a : α i✝ hji : i✝ < i✝ hab : a < b ⊢ False [PROOFSTEP] exact lt_irrefl _ hji [GOAL] case refine'_1.right.left ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT i✝ : ι b a : α i✝ hba : b ≤ a hij : i✝ < i✝ ⊢ False [PROOFSTEP] exact lt_irrefl _ hij [GOAL] case refine'_1.right.right ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT i✝ : ι b a : α i✝ hba : b ≤ a hab : a < b ⊢ False [PROOFSTEP] exact hab.not_le hba [GOAL] case refine'_2 ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT a b : Σₗ (i : ι), α i ⊢ a ≤ b ∧ ¬b ≤ a → a < b [PROOFSTEP] rintro ⟨⟨a, b, hij⟩ | ⟨a, b, hab⟩, hba⟩ [GOAL] case refine'_2.intro.left ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT i✝ j✝ : ι a : α i✝ b : α j✝ hij : i✝ < j✝ hba : ¬{ fst := j✝, snd := b } ≤ { fst := i✝, snd := a } ⊢ { fst := i✝, snd := a } < { fst := j✝, snd := b } [PROOFSTEP] exact Sigma.Lex.left _ _ hij [GOAL] case refine'_2.intro.right ι : Type u_1 α : ι → Type u_2 inst✝¹ : Preorder ι inst✝ : (i : ι) → Preorder (α i) src✝¹ : LE (Σₗ (i : ι), α i) := Lex.LE src✝ : LT (Σₗ (i : ι), α i) := Lex.LT i✝ : ι a b : α i✝ hab : a ≤ b hba : ¬{ fst := i✝, snd := b } ≤ { fst := i✝, snd := a } ⊢ { fst := i✝, snd := a } < { fst := i✝, snd := b } [PROOFSTEP] exact Sigma.Lex.right _ _ (hab.lt_of_not_le fun h => hba <| Sigma.Lex.right _ _ h) [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝³ : PartialOrder ι inst✝² : OrderBot ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : OrderBot (α ⊥) x✝ : Σₗ (i : ι), α i a : ι b : α a ⊢ ⊥ ≤ { fst := a, snd := b } [PROOFSTEP] obtain rfl | ha := eq_bot_or_bot_lt a [GOAL] case inl ι : Type u_1 α : ι → Type u_2 inst✝³ : PartialOrder ι inst✝² : OrderBot ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : OrderBot (α ⊥) x✝ : Σₗ (i : ι), α i b : α ⊥ ⊢ ⊥ ≤ { fst := ⊥, snd := b } [PROOFSTEP] exact Lex.right _ _ bot_le [GOAL] case inr ι : Type u_1 α : ι → Type u_2 inst✝³ : PartialOrder ι inst✝² : OrderBot ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : OrderBot (α ⊥) x✝ : Σₗ (i : ι), α i a : ι b : α a ha : ⊥ < a ⊢ ⊥ ≤ { fst := a, snd := b } [PROOFSTEP] exact Lex.left _ _ ha [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝³ : PartialOrder ι inst✝² : OrderTop ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : OrderTop (α ⊤) x✝ : Σₗ (i : ι), α i a : ι b : α a ⊢ { fst := a, snd := b } ≤ ⊤ [PROOFSTEP] obtain rfl | ha := eq_top_or_lt_top a [GOAL] case inl ι : Type u_1 α : ι → Type u_2 inst✝³ : PartialOrder ι inst✝² : OrderTop ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : OrderTop (α ⊤) x✝ : Σₗ (i : ι), α i b : α ⊤ ⊢ { fst := ⊤, snd := b } ≤ ⊤ [PROOFSTEP] exact Lex.right _ _ le_top [GOAL] case inr ι : Type u_1 α : ι → Type u_2 inst✝³ : PartialOrder ι inst✝² : OrderTop ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : OrderTop (α ⊤) x✝ : Σₗ (i : ι), α i a : ι b : α a ha : a < ⊤ ⊢ { fst := a, snd := b } ≤ ⊤ [PROOFSTEP] exact Lex.left _ _ ha [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝⁴ : Preorder ι inst✝³ : DenselyOrdered ι inst✝² : ∀ (i : ι), Nonempty (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) ⊢ ∀ (a₁ a₂ : Σₗ (i : ι), α i), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂ [PROOFSTEP] rintro ⟨i, a⟩ ⟨j, b⟩ (⟨_, _, h⟩ | ⟨_, b, h⟩) [GOAL] case mk.mk.left ι : Type u_1 α : ι → Type u_2 inst✝⁴ : Preorder ι inst✝³ : DenselyOrdered ι inst✝² : ∀ (i : ι), Nonempty (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) i : ι a : α i j : ι b : α j h : i < j ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b } [PROOFSTEP] obtain ⟨k, hi, hj⟩ := exists_between h [GOAL] case mk.mk.left.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝⁴ : Preorder ι inst✝³ : DenselyOrdered ι inst✝² : ∀ (i : ι), Nonempty (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) i : ι a : α i j : ι b : α j h : i < j k : ι hi : i < k hj : k < j ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b } [PROOFSTEP] obtain ⟨c⟩ : Nonempty (α k) := inferInstance [GOAL] case mk.mk.left.intro.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝⁴ : Preorder ι inst✝³ : DenselyOrdered ι inst✝² : ∀ (i : ι), Nonempty (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) i : ι a : α i j : ι b : α j h : i < j k : ι hi : i < k hj : k < j c : α k ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b } [PROOFSTEP] exact ⟨⟨k, c⟩, left _ _ hi, left _ _ hj⟩ [GOAL] case mk.mk.right ι : Type u_1 α : ι → Type u_2 inst✝⁴ : Preorder ι inst✝³ : DenselyOrdered ι inst✝² : ∀ (i : ι), Nonempty (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) i : ι a b : α i h : a < b ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b } [PROOFSTEP] obtain ⟨c, ha, hb⟩ := exists_between h [GOAL] case mk.mk.right.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝⁴ : Preorder ι inst✝³ : DenselyOrdered ι inst✝² : ∀ (i : ι), Nonempty (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), DenselyOrdered (α i) i : ι a b : α i h : a < b c : α i ha : a < c hb : c < b ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b } [PROOFSTEP] exact ⟨⟨i, c⟩, right _ _ ha, right _ _ hb⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMaxOrder (α i) ⊢ ∀ (a₁ a₂ : Σₗ (i : ι), α i), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂ [PROOFSTEP] rintro ⟨i, a⟩ ⟨j, b⟩ (⟨_, _, h⟩ | ⟨_, b, h⟩) [GOAL] case mk.mk.left ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMaxOrder (α i) i : ι a : α i j : ι b : α j h : i < j ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b } [PROOFSTEP] obtain ⟨c, ha⟩ := exists_gt a [GOAL] case mk.mk.left.intro ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMaxOrder (α i) i : ι a : α i j : ι b : α j h : i < j c : α i ha : a < c ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b } [PROOFSTEP] exact ⟨⟨i, c⟩, right _ _ ha, left _ _ h⟩ [GOAL] case mk.mk.right ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMaxOrder (α i) i : ι a b : α i h : a < b ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b } [PROOFSTEP] obtain ⟨c, ha, hb⟩ := exists_between h [GOAL] case mk.mk.right.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMaxOrder (α i) i : ι a b : α i h : a < b c : α i ha : a < c hb : c < b ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b } [PROOFSTEP] exact ⟨⟨i, c⟩, right _ _ ha, right _ _ hb⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMinOrder (α i) ⊢ ∀ (a₁ a₂ : Σₗ (i : ι), α i), a₁ < a₂ → ∃ a, a₁ < a ∧ a < a₂ [PROOFSTEP] rintro ⟨i, a⟩ ⟨j, b⟩ (⟨_, _, h⟩ | ⟨_, b, h⟩) [GOAL] case mk.mk.left ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMinOrder (α i) i : ι a : α i j : ι b : α j h : i < j ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b } [PROOFSTEP] obtain ⟨c, hb⟩ := exists_lt b [GOAL] case mk.mk.left.intro ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMinOrder (α i) i : ι a : α i j : ι b : α j h : i < j c : α j hb : c < b ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := j, snd := b } [PROOFSTEP] exact ⟨⟨j, c⟩, left _ _ h, right _ _ hb⟩ [GOAL] case mk.mk.right ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMinOrder (α i) i : ι a b : α i h : a < b ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b } [PROOFSTEP] obtain ⟨c, ha, hb⟩ := exists_between h [GOAL] case mk.mk.right.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : ∀ (i : ι), DenselyOrdered (α i) inst✝ : ∀ (i : ι), NoMinOrder (α i) i : ι a b : α i h : a < b c : α i ha : a < c hb : c < b ⊢ ∃ a_1, { fst := i, snd := a } < a_1 ∧ a_1 < { fst := i, snd := b } [PROOFSTEP] exact ⟨⟨i, c⟩, right _ _ ha, right _ _ hb⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : NoMaxOrder ι inst✝ : ∀ (i : ι), Nonempty (α i) ⊢ ∀ (a : Σₗ (i : ι), α i), ∃ b, a < b [PROOFSTEP] rintro ⟨i, a⟩ [GOAL] case mk ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : NoMaxOrder ι inst✝ : ∀ (i : ι), Nonempty (α i) i : ι a : α i ⊢ ∃ b, { fst := i, snd := a } < b [PROOFSTEP] obtain ⟨j, h⟩ := exists_gt i [GOAL] case mk.intro ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : NoMaxOrder ι inst✝ : ∀ (i : ι), Nonempty (α i) i : ι a : α i j : ι h : i < j ⊢ ∃ b, { fst := i, snd := a } < b [PROOFSTEP] obtain ⟨b⟩ : Nonempty (α j) := inferInstance [GOAL] case mk.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : NoMaxOrder ι inst✝ : ∀ (i : ι), Nonempty (α i) i : ι a : α i j : ι h : i < j b : α j ⊢ ∃ b, { fst := i, snd := a } < b [PROOFSTEP] exact ⟨⟨j, b⟩, left _ _ h⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : NoMinOrder ι inst✝ : ∀ (i : ι), Nonempty (α i) ⊢ ∀ (a : Σₗ (i : ι), α i), ∃ b, b < a [PROOFSTEP] rintro ⟨i, a⟩ [GOAL] case mk ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : NoMinOrder ι inst✝ : ∀ (i : ι), Nonempty (α i) i : ι a : α i ⊢ ∃ b, b < { fst := i, snd := a } [PROOFSTEP] obtain ⟨j, h⟩ := exists_lt i [GOAL] case mk.intro ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : NoMinOrder ι inst✝ : ∀ (i : ι), Nonempty (α i) i : ι a : α i j : ι h : j < i ⊢ ∃ b, b < { fst := i, snd := a } [PROOFSTEP] obtain ⟨b⟩ : Nonempty (α j) := inferInstance [GOAL] case mk.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝³ : Preorder ι inst✝² : (i : ι) → Preorder (α i) inst✝¹ : NoMinOrder ι inst✝ : ∀ (i : ι), Nonempty (α i) i : ι a : α i j : ι h : j < i b : α j ⊢ ∃ b, b < { fst := i, snd := a } [PROOFSTEP] exact ⟨⟨j, b⟩, left _ _ h⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : Preorder ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), NoMaxOrder (α i) ⊢ ∀ (a : Σₗ (i : ι), α i), ∃ b, a < b [PROOFSTEP] rintro ⟨i, a⟩ [GOAL] case mk ι : Type u_1 α : ι → Type u_2 inst✝² : Preorder ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), NoMaxOrder (α i) i : ι a : α i ⊢ ∃ b, { fst := i, snd := a } < b [PROOFSTEP] obtain ⟨b, h⟩ := exists_gt a [GOAL] case mk.intro ι : Type u_1 α : ι → Type u_2 inst✝² : Preorder ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), NoMaxOrder (α i) i : ι a b : α i h : a < b ⊢ ∃ b, { fst := i, snd := a } < b [PROOFSTEP] exact ⟨⟨i, b⟩, right _ _ h⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : Preorder ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), NoMinOrder (α i) ⊢ ∀ (a : Σₗ (i : ι), α i), ∃ b, b < a [PROOFSTEP] rintro ⟨i, a⟩ [GOAL] case mk ι : Type u_1 α : ι → Type u_2 inst✝² : Preorder ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), NoMinOrder (α i) i : ι a : α i ⊢ ∃ b, b < { fst := i, snd := a } [PROOFSTEP] obtain ⟨b, h⟩ := exists_lt a [GOAL] case mk.intro ι : Type u_1 α : ι → Type u_2 inst✝² : Preorder ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), NoMinOrder (α i) i : ι a b : α i h : b < a ⊢ ∃ b, b < { fst := i, snd := a } [PROOFSTEP] exact ⟨⟨i, b⟩, right _ _ h⟩
{"mathlib_filename": "Mathlib.Data.Sigma.Order", "llama_tokens": 11980}
[GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) inst✝¹ : Countable ι inst✝ : ∀ (i : ι), Countable (α i) ⊢ Countable (Π₀ (i : ι), α i) [PROOFSTEP] classical let _ := Encodable.ofCountable ι let _ := fun i ↦ Encodable.ofCountable (α i) infer_instance [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) inst✝¹ : Countable ι inst✝ : ∀ (i : ι), Countable (α i) ⊢ Countable (Π₀ (i : ι), α i) [PROOFSTEP] let _ := Encodable.ofCountable ι [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) inst✝¹ : Countable ι inst✝ : ∀ (i : ι), Countable (α i) x✝ : Encodable ι := Encodable.ofCountable ι ⊢ Countable (Π₀ (i : ι), α i) [PROOFSTEP] let _ := fun i ↦ Encodable.ofCountable (α i) [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) inst✝¹ : Countable ι inst✝ : ∀ (i : ι), Countable (α i) x✝¹ : Encodable ι := Encodable.ofCountable ι x✝ : (i : ι) → Encodable (α i) := fun i => Encodable.ofCountable (α i) ⊢ Countable (Π₀ (i : ι), α i) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Data.DFinsupp.Encodable", "llama_tokens": 539}
[GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝² x✝¹ x✝ : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k ⊢ { fst := k, snd := c } ∈ sigmaLift (fun x => Icc) { fst := i, snd := a } { fst := j, snd := b } ↔ { fst := i, snd := a } ≤ { fst := k, snd := c } ∧ { fst := k, snd := c } ≤ { fst := j, snd := b } [PROOFSTEP] simp_rw [mem_sigmaLift, le_def, mem_Icc, exists_and_left, ← exists_and_right, ← exists_prop] [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝² x✝¹ x✝ : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k ⊢ (∃ h _h x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔ ∃ h _h h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b [PROOFSTEP] exact bex_congr fun _ _ => by constructor <;> rintro ⟨⟨⟩, ht⟩ <;> exact ⟨rfl, ht⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a ≤ c ⊢ (∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔ ∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a ≤ c ⊢ (∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) → ∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b [PROOFSTEP] rintro ⟨⟨⟩, ht⟩ [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a ≤ c ⊢ (∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b) → ∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b [PROOFSTEP] rintro ⟨⟨⟩, ht⟩ [GOAL] case mp.intro.refl ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b c : α j x✝¹ : i = j x✝ : (_ : i = j) ▸ a ≤ c ht : c ≤ (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b ⊢ ∃ h, (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b [PROOFSTEP] exact ⟨rfl, ht⟩ [GOAL] case mpr.intro.refl ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b c : α j x✝¹ : i = j x✝ : (_ : i = j) ▸ a ≤ c ht : (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b ⊢ ∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b [PROOFSTEP] exact ⟨rfl, ht⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝² x✝¹ x✝ : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k ⊢ { fst := k, snd := c } ∈ sigmaLift (fun x => Ico) { fst := i, snd := a } { fst := j, snd := b } ↔ { fst := i, snd := a } ≤ { fst := k, snd := c } ∧ { fst := k, snd := c } < { fst := j, snd := b } [PROOFSTEP] simp_rw [mem_sigmaLift, le_def, lt_def, mem_Ico, exists_and_left, ← exists_and_right, ← exists_prop] [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝² x✝¹ x✝ : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k ⊢ (∃ h _h x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔ ∃ h _h h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b [PROOFSTEP] exact bex_congr fun _ _ => by constructor <;> rintro ⟨⟨⟩, ht⟩ <;> exact ⟨rfl, ht⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a ≤ c ⊢ (∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔ ∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a ≤ c ⊢ (∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) → ∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b [PROOFSTEP] rintro ⟨⟨⟩, ht⟩ [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a ≤ c ⊢ (∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b) → ∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b [PROOFSTEP] rintro ⟨⟨⟩, ht⟩ [GOAL] case mp.intro.refl ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b c : α j x✝¹ : i = j x✝ : (_ : i = j) ▸ a ≤ c ht : c < (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b ⊢ ∃ h, (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b [PROOFSTEP] exact ⟨rfl, ht⟩ [GOAL] case mpr.intro.refl ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b c : α j x✝¹ : i = j x✝ : (_ : i = j) ▸ a ≤ c ht : (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b ⊢ ∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b [PROOFSTEP] exact ⟨rfl, ht⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝² x✝¹ x✝ : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k ⊢ { fst := k, snd := c } ∈ sigmaLift (fun x => Ioc) { fst := i, snd := a } { fst := j, snd := b } ↔ { fst := i, snd := a } < { fst := k, snd := c } ∧ { fst := k, snd := c } ≤ { fst := j, snd := b } [PROOFSTEP] simp_rw [mem_sigmaLift, le_def, lt_def, mem_Ioc, exists_and_left, ← exists_and_right, ← exists_prop] [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝² x✝¹ x✝ : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k ⊢ (∃ h _h x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔ ∃ h _h h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b [PROOFSTEP] exact bex_congr fun _ _ => by constructor <;> rintro ⟨⟨⟩, ht⟩ <;> exact ⟨rfl, ht⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a < c ⊢ (∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔ ∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a < c ⊢ (∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) → ∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b [PROOFSTEP] rintro ⟨⟨⟩, ht⟩ [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a < c ⊢ (∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b) → ∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b [PROOFSTEP] rintro ⟨⟨⟩, ht⟩ [GOAL] case mp.intro.refl ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b c : α j x✝¹ : i = j x✝ : (_ : i = j) ▸ a < c ht : c ≤ (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b ⊢ ∃ h, (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b [PROOFSTEP] exact ⟨rfl, ht⟩ [GOAL] case mpr.intro.refl ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b c : α j x✝¹ : i = j x✝ : (_ : i = j) ▸ a < c ht : (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c ≤ b ⊢ ∃ x, c ≤ (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b [PROOFSTEP] exact ⟨rfl, ht⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝² x✝¹ x✝ : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k ⊢ { fst := k, snd := c } ∈ sigmaLift (fun x => Ioo) { fst := i, snd := a } { fst := j, snd := b } ↔ { fst := i, snd := a } < { fst := k, snd := c } ∧ { fst := k, snd := c } < { fst := j, snd := b } [PROOFSTEP] simp_rw [mem_sigmaLift, lt_def, mem_Ioo, exists_and_left, ← exists_and_right, ← exists_prop] [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝² x✝¹ x✝ : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k ⊢ (∃ h _h x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔ ∃ h _h h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b [PROOFSTEP] exact bex_congr fun _ _ => by constructor <;> rintro ⟨⟨⟩, ht⟩ <;> exact ⟨rfl, ht⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a < c ⊢ (∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) ↔ ∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a < c ⊢ (∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b) → ∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b [PROOFSTEP] rintro ⟨⟨⟩, ht⟩ [GOAL] case mpr ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b : α j k : ι c : α k x✝¹ : i = k x✝ : (_ : i = k) ▸ a < c ⊢ (∃ h, (_ : { fst := k, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b) → ∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := k, snd := c }.fst) ▸ b [PROOFSTEP] rintro ⟨⟨⟩, ht⟩ [GOAL] case mp.intro.refl ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b c : α j x✝¹ : i = j x✝ : (_ : i = j) ▸ a < c ht : c < (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b ⊢ ∃ h, (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b [PROOFSTEP] exact ⟨rfl, ht⟩ [GOAL] case mpr.intro.refl ι : Type u_1 α : ι → Type u_2 inst✝² : DecidableEq ι inst✝¹ : (i : ι) → Preorder (α i) inst✝ : (i : ι) → LocallyFiniteOrder (α i) x✝⁴ x✝³ x✝² : (i : ι) × α i i : ι a : α i j : ι b c : α j x✝¹ : i = j x✝ : (_ : i = j) ▸ a < c ht : (_ : { fst := j, snd := c }.fst = { fst := j, snd := b }.fst) ▸ c < b ⊢ ∃ x, c < (_ : { fst := j, snd := b }.fst = { fst := j, snd := c }.fst) ▸ b [PROOFSTEP] exact ⟨rfl, ht⟩
{"mathlib_filename": "Mathlib.Data.Sigma.Interval", "llama_tokens": 7513}
[GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ recF g (MvPFunctor.wMk (P F) a f' f) = g (abs { fst := a, snd := splitFun f' (recF g ∘ f) }) [PROOFSTEP] rw [recF, MvPFunctor.wRec_eq] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ g (abs { fst := a, snd := splitFun f' fun i => MvPFunctor.wRec (P F) (fun a f' _f rec => g (abs { fst := a, snd := splitFun f' rec })) (f i) }) = g (abs { fst := a, snd := splitFun f' ((MvPFunctor.wRec (P F) fun a f' _f rec => g (abs { fst := a, snd := splitFun f' rec })) ∘ f) }) [PROOFSTEP] rfl [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : MvPFunctor.W (P F) α ⊢ recF g x = g (abs ((TypeVec.id ::: recF g) <$$> MvPFunctor.wDest' (P F) x)) [PROOFSTEP] apply q.P.w_cases _ x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : MvPFunctor.W (P F) α ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α), recF g (MvPFunctor.wMk (P F) a f' f) = g (abs ((TypeVec.id ::: recF g) <$$> MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a f' f))) [PROOFSTEP] intro a f' f [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ recF g (MvPFunctor.wMk (P F) a f' f) = g (abs ((TypeVec.id ::: recF g) <$$> MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a f' f))) [PROOFSTEP] rw [recF_eq, q.P.wDest'_wMk, MvPFunctor.map_eq, appendFun_comp_splitFun, TypeVec.id_comp] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α ⊢ WEquiv x y → recF u x = recF u y [PROOFSTEP] apply q.P.w_cases _ x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α), WEquiv (MvPFunctor.wMk (P F) a f' f) y → recF u (MvPFunctor.wMk (P F) a f' f) = recF u y [PROOFSTEP] intro a₀ f'₀ f₀ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α ⊢ WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) y → recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u y [PROOFSTEP] apply q.P.w_cases _ y [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α), WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a f' f) → recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] intro a₁ f'₁ f₁ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α ⊢ WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) → recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁) [PROOFSTEP] intro h [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) ⊢ recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁) [PROOFSTEP] refine' @WEquiv.recOn _ _ _ _ _ (λ a a' _ => recF u a = recF u a') _ _ h _ _ _ [GOAL] case refine'_1 n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α) (a_1 : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)), (∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))) → (fun a a' x => recF u a = recF u a') (MvPFunctor.wMk (P F) a f' f₀) (MvPFunctor.wMk (P F) a f' f₁) (_ : WEquiv (MvPFunctor.wMk (P F) a f' f₀) (MvPFunctor.wMk (P F) a f' f₁)) [PROOFSTEP] intros a f' f₀ f₁ _h ih [GOAL] case refine'_1 n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝) a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α _h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x)) ⊢ recF u (MvPFunctor.wMk (P F) a f' f₀) = recF u (MvPFunctor.wMk (P F) a f' f₁) [PROOFSTEP] simp only [recF_eq, Function.comp] [GOAL] case refine'_1 n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝) a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α _h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x)) ⊢ u (abs { fst := a, snd := splitFun f' fun x => recF u (f₀ x) }) = u (abs { fst := a, snd := splitFun f' fun x => recF u (f₁ x) }) [PROOFSTEP] congr [GOAL] case refine'_1.e_a.e_a.e_snd n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝) a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α _h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x)) ⊢ (splitFun f' fun x => recF u (f₀ x)) = splitFun f' fun x => recF u (f₁ x) [PROOFSTEP] funext [GOAL] case refine'_1.e_a.e_a.e_snd.h.h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝) a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α _h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x)) x✝¹ : Fin2 (n + 1) x✝ : MvPFunctor.B (P F) a x✝¹ ⊢ splitFun f' (fun x => recF u (f₀ x)) x✝¹ x✝ = splitFun f' (fun x => recF u (f₁ x)) x✝¹ x✝ [PROOFSTEP] congr [GOAL] case refine'_1.e_a.e_a.e_snd.h.h.e_g n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝) a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α _h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x)) x✝¹ : Fin2 (n + 1) x✝ : MvPFunctor.B (P F) a x✝¹ ⊢ (fun x => recF u (f₀ x)) = fun x => recF u (f₁ x) [PROOFSTEP] funext [GOAL] case refine'_1.e_a.e_a.e_snd.h.h.e_g.h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝) a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α _h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x)) x✝² : Fin2 (n + 1) x✝¹ : MvPFunctor.B (P F) a x✝² x✝ : last (MvPFunctor.B (P F) a) ⊢ recF u (f₀ x✝) = recF u (f₁ x✝) [PROOFSTEP] apply ih [GOAL] case refine'_2 n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) ⊢ ∀ (a₀ : (P F).A) (f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α) (f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α) (a₁ : (P F).A) (f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α) (f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α) (a : abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }), (fun a a' x => recF u a = recF u a') (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) (_ : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)) [PROOFSTEP] intros a₀ f'₀ f₀ a₁ f'₁ f₁ h [GOAL] case refine'_2 n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀✝ : (P F).A f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α a₁✝ : (P F).A f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α h✝ : WEquiv (MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) (MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝) a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ } ⊢ recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁) [PROOFSTEP] simp only [recF_eq', abs_map, MvPFunctor.wDest'_wMk, h] [GOAL] case refine'_3 n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) ⊢ ∀ (u_1 v w : MvPFunctor.W (P F) α) (a : WEquiv u_1 v) (a_1 : WEquiv v w), (fun a a' x => recF u a = recF u a') u_1 v a → (fun a a' x => recF u a = recF u a') v w a_1 → (fun a a' x => recF u a = recF u a') u_1 w (_ : WEquiv u_1 w) [PROOFSTEP] intros x y z _e₁ _e₂ ih₁ ih₂ [GOAL] case refine'_3 n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u u : F (α ::: β) → β x✝ y✝ : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) x y z : MvPFunctor.W (P F) α _e₁ : WEquiv x y _e₂ : WEquiv y z ih₁ : recF u x = recF u y ih₂ : recF u y = recF u z ⊢ recF u x = recF u z [PROOFSTEP] exact Eq.trans ih₁ ih₂ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α h : abs (MvPFunctor.wDest' (P F) x) = abs (MvPFunctor.wDest' (P F) y) ⊢ WEquiv x y [PROOFSTEP] revert h [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α ⊢ abs (MvPFunctor.wDest' (P F) x) = abs (MvPFunctor.wDest' (P F) y) → WEquiv x y [PROOFSTEP] apply q.P.w_cases _ x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α), abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a f' f)) = abs (MvPFunctor.wDest' (P F) y) → WEquiv (MvPFunctor.wMk (P F) a f' f) y [PROOFSTEP] intro a₀ f'₀ f₀ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α ⊢ abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a₀ f'₀ f₀)) = abs (MvPFunctor.wDest' (P F) y) → WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) y [PROOFSTEP] apply q.P.w_cases _ y [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α), abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a₀ f'₀ f₀)) = abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a f' f)) → WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] intro a₁ f'₁ f₁ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α ⊢ abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a₀ f'₀ f₀)) = abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)) → WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) [PROOFSTEP] apply WEquiv.abs [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α ⊢ WEquiv x x [PROOFSTEP] apply q.P.w_cases _ x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α), WEquiv (MvPFunctor.wMk (P F) a f' f) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] intro a f' f [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ WEquiv (MvPFunctor.wMk (P F) a f' f) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] exact WEquiv.abs a f' f a f' f rfl [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α ⊢ WEquiv x y → WEquiv y x [PROOFSTEP] intro h [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α h : WEquiv x y ⊢ WEquiv y x [PROOFSTEP] induction h [GOAL] case ind n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a✝¹ : (P F).A f'✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a✝¹ ⟹ α f₀✝ f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a✝¹ → MvPFunctor.W (P F) α a✝ : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a✝¹), WEquiv (f₀✝ x) (f₁✝ x) a_ih✝ : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a✝¹), WEquiv (f₁✝ x) (f₀✝ x) ⊢ WEquiv (MvPFunctor.wMk (P F) a✝¹ f'✝ f₁✝) (MvPFunctor.wMk (P F) a✝¹ f'✝ f₀✝) case abs n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a₀✝ : (P F).A f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α a₁✝ : (P F).A f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α a✝ : abs { fst := a₀✝, snd := MvPFunctor.appendContents (P F) f'₀✝ f₀✝ } = abs { fst := a₁✝, snd := MvPFunctor.appendContents (P F) f'₁✝ f₁✝ } ⊢ WEquiv (MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝) (MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) case trans n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y u✝ v✝ w✝ : MvPFunctor.W (P F) α a✝¹ : WEquiv u✝ v✝ a✝ : WEquiv v✝ w✝ a_ih✝¹ : WEquiv v✝ u✝ a_ih✝ : WEquiv w✝ v✝ ⊢ WEquiv w✝ u✝ [PROOFSTEP] case ind a f' f₀ f₁ _h ih => exact WEquiv.ind _ _ _ _ ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α _h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₁ x) (f₀ x) ⊢ WEquiv (MvPFunctor.wMk (P F) a f' f₁) (MvPFunctor.wMk (P F) a f' f₀) [PROOFSTEP] case ind a f' f₀ f₁ _h ih => exact WEquiv.ind _ _ _ _ ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α _h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₁ x) (f₀ x) ⊢ WEquiv (MvPFunctor.wMk (P F) a f' f₁) (MvPFunctor.wMk (P F) a f' f₀) [PROOFSTEP] exact WEquiv.ind _ _ _ _ ih [GOAL] case abs n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a₀✝ : (P F).A f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α a₁✝ : (P F).A f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α a✝ : abs { fst := a₀✝, snd := MvPFunctor.appendContents (P F) f'₀✝ f₀✝ } = abs { fst := a₁✝, snd := MvPFunctor.appendContents (P F) f'₁✝ f₁✝ } ⊢ WEquiv (MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝) (MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) case trans n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y u✝ v✝ w✝ : MvPFunctor.W (P F) α a✝¹ : WEquiv u✝ v✝ a✝ : WEquiv v✝ w✝ a_ih✝¹ : WEquiv v✝ u✝ a_ih✝ : WEquiv w✝ v✝ ⊢ WEquiv w✝ u✝ [PROOFSTEP] case abs a₀ f'₀ f₀ a₁ f'₁ f₁ h => exact WEquiv.abs _ _ _ _ _ _ h.symm [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ } ⊢ WEquiv (MvPFunctor.wMk (P F) a₁ f'₁ f₁) (MvPFunctor.wMk (P F) a₀ f'₀ f₀) [PROOFSTEP] case abs a₀ f'₀ f₀ a₁ f'₁ f₁ h => exact WEquiv.abs _ _ _ _ _ _ h.symm [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ } ⊢ WEquiv (MvPFunctor.wMk (P F) a₁ f'₁ f₁) (MvPFunctor.wMk (P F) a₀ f'₀ f₀) [PROOFSTEP] exact WEquiv.abs _ _ _ _ _ _ h.symm [GOAL] case trans n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x y u✝ v✝ w✝ : MvPFunctor.W (P F) α a✝¹ : WEquiv u✝ v✝ a✝ : WEquiv v✝ w✝ a_ih✝¹ : WEquiv v✝ u✝ a_ih✝ : WEquiv w✝ v✝ ⊢ WEquiv w✝ u✝ [PROOFSTEP] case trans x y z _e₁ _e₂ ih₁ ih₂ => exact MvQPF.WEquiv.trans _ _ _ ih₂ ih₁ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x✝ y✝ x y z : MvPFunctor.W (P F) α _e₁ : WEquiv x y _e₂ : WEquiv y z ih₁ : WEquiv y x ih₂ : WEquiv z y ⊢ WEquiv z x [PROOFSTEP] case trans x y z _e₁ _e₂ ih₁ ih₂ => exact MvQPF.WEquiv.trans _ _ _ ih₂ ih₁ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x✝ y✝ x y z : MvPFunctor.W (P F) α _e₁ : WEquiv x y _e₂ : WEquiv y z ih₁ : WEquiv y x ih₂ : WEquiv z y ⊢ WEquiv z x [PROOFSTEP] exact MvQPF.WEquiv.trans _ _ _ ih₂ ih₁ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ wrepr (MvPFunctor.wMk (P F) a f' f) = MvPFunctor.wMk' (P F) (repr (abs ((TypeVec.id ::: wrepr) <$$> { fst := a, snd := MvPFunctor.appendContents (P F) f' f }))) [PROOFSTEP] rw [wrepr, recF_eq', q.P.wDest'_wMk] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ (MvPFunctor.wMk' (P F) ∘ repr) (abs ((TypeVec.id ::: recF (MvPFunctor.wMk' (P F) ∘ repr)) <$$> { fst := a, snd := splitFun f' f })) = MvPFunctor.wMk' (P F) (repr (abs ((TypeVec.id ::: recF (MvPFunctor.wMk' (P F) ∘ repr)) <$$> { fst := a, snd := MvPFunctor.appendContents (P F) f' f }))) [PROOFSTEP] rfl [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α ⊢ WEquiv (wrepr x) x [PROOFSTEP] apply q.P.w_ind _ x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α), (∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i)) → WEquiv (wrepr (MvPFunctor.wMk (P F) a f' f)) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] intro a f' f ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i) ⊢ WEquiv (wrepr (MvPFunctor.wMk (P F) a f' f)) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] apply WEquiv.trans _ (q.P.wMk' (appendFun id wrepr <$$> ⟨a, q.P.appendContents f' f⟩)) [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i) ⊢ WEquiv (wrepr (MvPFunctor.wMk (P F) a f' f)) (MvPFunctor.wMk' (P F) ((TypeVec.id ::: wrepr) <$$> { fst := a, snd := MvPFunctor.appendContents (P F) f' f })) [PROOFSTEP] apply wEquiv.abs' [GOAL] case a.h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i) ⊢ abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f))) = abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk' (P F) ((TypeVec.id ::: wrepr) <$$> { fst := a, snd := MvPFunctor.appendContents (P F) f' f }))) [PROOFSTEP] rw [wrepr_wMk, q.P.wDest'_wMk', q.P.wDest'_wMk', abs_repr] [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i) ⊢ WEquiv (MvPFunctor.wMk' (P F) ((TypeVec.id ::: wrepr) <$$> { fst := a, snd := MvPFunctor.appendContents (P F) f' f })) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] rw [q.P.map_eq, MvPFunctor.wMk', appendFun_comp_splitFun, id_comp] [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i) ⊢ WEquiv (match { fst := a, snd := splitFun f' (wrepr ∘ f) } with | { fst := a, snd := f } => MvPFunctor.wMk (P F) a (dropFun f) (lastFun f)) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] apply WEquiv.ind [GOAL] case a.a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (wrepr (f i)) (f i) ⊢ ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (lastFun (splitFun f' (wrepr ∘ f)) x) (f x) [PROOFSTEP] exact ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α ⊢ WEquiv x y → WEquiv (g <$$> x) (g <$$> y) [PROOFSTEP] intro h [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α h : WEquiv x y ⊢ WEquiv (g <$$> x) (g <$$> y) [PROOFSTEP] induction h [GOAL] case ind n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a✝¹ : (P F).A f'✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a✝¹ ⟹ α f₀✝ f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a✝¹ → MvPFunctor.W (P F) α a✝ : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a✝¹), WEquiv (f₀✝ x) (f₁✝ x) a_ih✝ : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a✝¹), WEquiv (g <$$> f₀✝ x) (g <$$> f₁✝ x) ⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a✝¹ f'✝ f₀✝) (g <$$> MvPFunctor.wMk (P F) a✝¹ f'✝ f₁✝) case abs n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a₀✝ : (P F).A f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α a₁✝ : (P F).A f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α a✝ : abs { fst := a₀✝, snd := MvPFunctor.appendContents (P F) f'₀✝ f₀✝ } = abs { fst := a₁✝, snd := MvPFunctor.appendContents (P F) f'₁✝ f₁✝ } ⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) (g <$$> MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝) case trans n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y u✝ v✝ w✝ : MvPFunctor.W (P F) α a✝¹ : WEquiv u✝ v✝ a✝ : WEquiv v✝ w✝ a_ih✝¹ : WEquiv (g <$$> u✝) (g <$$> v✝) a_ih✝ : WEquiv (g <$$> v✝) (g <$$> w✝) ⊢ WEquiv (g <$$> u✝) (g <$$> w✝) [PROOFSTEP] case ind a f' f₀ f₁ h ih => rw [q.P.w_map_wMk, q.P.w_map_wMk]; apply WEquiv.ind; exact ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x) ⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a f' f₀) (g <$$> MvPFunctor.wMk (P F) a f' f₁) [PROOFSTEP] case ind a f' f₀ f₁ h ih => rw [q.P.w_map_wMk, q.P.w_map_wMk]; apply WEquiv.ind; exact ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x) ⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a f' f₀) (g <$$> MvPFunctor.wMk (P F) a f' f₁) [PROOFSTEP] rw [q.P.w_map_wMk, q.P.w_map_wMk] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x) ⊢ WEquiv (MvPFunctor.wMk (P F) a (g ⊚ f') fun i => g <$$> f₀ i) (MvPFunctor.wMk (P F) a (g ⊚ f') fun i => g <$$> f₁ i) [PROOFSTEP] apply WEquiv.ind [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x) ih : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x) ⊢ ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (g <$$> f₀ x) (g <$$> f₁ x) [PROOFSTEP] exact ih [GOAL] case abs n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a₀✝ : (P F).A f'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α f₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α a₁✝ : (P F).A f'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α f₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α a✝ : abs { fst := a₀✝, snd := MvPFunctor.appendContents (P F) f'₀✝ f₀✝ } = abs { fst := a₁✝, snd := MvPFunctor.appendContents (P F) f'₁✝ f₁✝ } ⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) (g <$$> MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝) case trans n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y u✝ v✝ w✝ : MvPFunctor.W (P F) α a✝¹ : WEquiv u✝ v✝ a✝ : WEquiv v✝ w✝ a_ih✝¹ : WEquiv (g <$$> u✝) (g <$$> v✝) a_ih✝ : WEquiv (g <$$> v✝) (g <$$> w✝) ⊢ WEquiv (g <$$> u✝) (g <$$> w✝) [PROOFSTEP] case abs a₀ f'₀ f₀ a₁ f'₁ f₁ h => rw [q.P.w_map_wMk, q.P.w_map_wMk]; apply WEquiv.abs show abs (q.P.objAppend1 a₀ (g ⊚ f'₀) fun x => q.P.wMap g (f₀ x)) = abs (q.P.objAppend1 a₁ (g ⊚ f'₁) fun x => q.P.wMap g (f₁ x)) rw [← q.P.map_objAppend1, ← q.P.map_objAppend1, abs_map, abs_map, h] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ } ⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a₀ f'₀ f₀) (g <$$> MvPFunctor.wMk (P F) a₁ f'₁ f₁) [PROOFSTEP] case abs a₀ f'₀ f₀ a₁ f'₁ f₁ h => rw [q.P.w_map_wMk, q.P.w_map_wMk]; apply WEquiv.abs show abs (q.P.objAppend1 a₀ (g ⊚ f'₀) fun x => q.P.wMap g (f₀ x)) = abs (q.P.objAppend1 a₁ (g ⊚ f'₁) fun x => q.P.wMap g (f₁ x)) rw [← q.P.map_objAppend1, ← q.P.map_objAppend1, abs_map, abs_map, h] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ } ⊢ WEquiv (g <$$> MvPFunctor.wMk (P F) a₀ f'₀ f₀) (g <$$> MvPFunctor.wMk (P F) a₁ f'₁ f₁) [PROOFSTEP] rw [q.P.w_map_wMk, q.P.w_map_wMk] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ } ⊢ WEquiv (MvPFunctor.wMk (P F) a₀ (g ⊚ f'₀) fun i => g <$$> f₀ i) (MvPFunctor.wMk (P F) a₁ (g ⊚ f'₁) fun i => g <$$> f₁ i) [PROOFSTEP] apply WEquiv.abs [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ } ⊢ abs { fst := a₀, snd := MvPFunctor.appendContents (P F) (g ⊚ f'₀) fun i => g <$$> f₀ i } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) (g ⊚ f'₁) fun i => g <$$> f₁ i } [PROOFSTEP] show abs (q.P.objAppend1 a₀ (g ⊚ f'₀) fun x => q.P.wMap g (f₀ x)) = abs (q.P.objAppend1 a₁ (g ⊚ f'₁) fun x => q.P.wMap g (f₁ x)) [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y : MvPFunctor.W (P F) α a₀ : (P F).A f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α a₁ : (P F).A f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α h : abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } = abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ } ⊢ abs (MvPFunctor.objAppend1 (P F) a₀ (g ⊚ f'₀) fun x => MvPFunctor.wMap (P F) g (f₀ x)) = abs (MvPFunctor.objAppend1 (P F) a₁ (g ⊚ f'₁) fun x => MvPFunctor.wMap (P F) g (f₁ x)) [PROOFSTEP] rw [← q.P.map_objAppend1, ← q.P.map_objAppend1, abs_map, abs_map, h] [GOAL] case trans n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x y u✝ v✝ w✝ : MvPFunctor.W (P F) α a✝¹ : WEquiv u✝ v✝ a✝ : WEquiv v✝ w✝ a_ih✝¹ : WEquiv (g <$$> u✝) (g <$$> v✝) a_ih✝ : WEquiv (g <$$> v✝) (g <$$> w✝) ⊢ WEquiv (g <$$> u✝) (g <$$> w✝) [PROOFSTEP] case trans x y z _ _ ih₁ ih₂ => apply MvQPF.WEquiv.trans; apply ih₁; apply ih₂ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x✝ y✝ x y z : MvPFunctor.W (P F) α a✝¹ : WEquiv x y a✝ : WEquiv y z ih₁ : WEquiv (g <$$> x) (g <$$> y) ih₂ : WEquiv (g <$$> y) (g <$$> z) ⊢ WEquiv (g <$$> x) (g <$$> z) [PROOFSTEP] case trans x y z _ _ ih₁ ih₂ => apply MvQPF.WEquiv.trans; apply ih₁; apply ih₂ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x✝ y✝ x y z : MvPFunctor.W (P F) α a✝¹ : WEquiv x y a✝ : WEquiv y z ih₁ : WEquiv (g <$$> x) (g <$$> y) ih₂ : WEquiv (g <$$> y) (g <$$> z) ⊢ WEquiv (g <$$> x) (g <$$> z) [PROOFSTEP] apply MvQPF.WEquiv.trans [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x✝ y✝ x y z : MvPFunctor.W (P F) α a✝¹ : WEquiv x y a✝ : WEquiv y z ih₁ : WEquiv (g <$$> x) (g <$$> y) ih₂ : WEquiv (g <$$> y) (g <$$> z) ⊢ WEquiv (g <$$> x) ?v case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x✝ y✝ x y z : MvPFunctor.W (P F) α a✝¹ : WEquiv x y a✝ : WEquiv y z ih₁ : WEquiv (g <$$> x) (g <$$> y) ih₂ : WEquiv (g <$$> y) (g <$$> z) ⊢ WEquiv ?v (g <$$> z) case v n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x✝ y✝ x y z : MvPFunctor.W (P F) α a✝¹ : WEquiv x y a✝ : WEquiv y z ih₁ : WEquiv (g <$$> x) (g <$$> y) ih₂ : WEquiv (g <$$> y) (g <$$> z) ⊢ MvPFunctor.W (P F) β [PROOFSTEP] apply ih₁ [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α β : TypeVec n g : α ⟹ β x✝ y✝ x y z : MvPFunctor.W (P F) α a✝¹ : WEquiv x y a✝ : WEquiv y z ih₁ : WEquiv (g <$$> x) (g <$$> y) ih₂ : WEquiv (g <$$> y) (g <$$> z) ⊢ WEquiv (g <$$> y) (g <$$> z) [PROOFSTEP] apply ih₂ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) ⊢ rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x) [PROOFSTEP] have : recF g ∘ fixToW = Fix.rec g := by apply funext apply Quotient.ind intro x apply recF_eq_of_wEquiv apply wrepr_equiv [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) ⊢ recF g ∘ fixToW = rec g [PROOFSTEP] apply funext [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) ⊢ ∀ (x : Fix F α), (recF g ∘ fixToW) x = rec g x [PROOFSTEP] apply Quotient.ind [GOAL] case h.a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) ⊢ ∀ (a : MvPFunctor.W (P F) α), (recF g ∘ fixToW) (Quotient.mk (wSetoid α) a) = rec g (Quotient.mk (wSetoid α) a) [PROOFSTEP] intro x [GOAL] case h.a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x✝ : F (α ::: Fix F α) x : MvPFunctor.W (P F) α ⊢ (recF g ∘ fixToW) (Quotient.mk (wSetoid α) x) = rec g (Quotient.mk (wSetoid α) x) [PROOFSTEP] apply recF_eq_of_wEquiv [GOAL] case h.a.a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x✝ : F (α ::: Fix F α) x : MvPFunctor.W (P F) α ⊢ WEquiv (fixToW (Quotient.mk (wSetoid α) x)) x [PROOFSTEP] apply wrepr_equiv [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) this : recF g ∘ fixToW = rec g ⊢ rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x) [PROOFSTEP] conv => lhs rw [Fix.rec, Fix.mk] dsimp [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) this : recF g ∘ fixToW = rec g | rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x) [PROOFSTEP] lhs rw [Fix.rec, Fix.mk] dsimp [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) this : recF g ∘ fixToW = rec g | rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x) [PROOFSTEP] lhs rw [Fix.rec, Fix.mk] dsimp [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) this : recF g ∘ fixToW = rec g | rec g (mk x) = g ((TypeVec.id ::: rec g) <$$> x) [PROOFSTEP] lhs [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) this : recF g ∘ fixToW = rec g | rec g (mk x) [PROOFSTEP] rw [Fix.rec, Fix.mk] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) this : recF g ∘ fixToW = rec g | Quot.lift (recF g) (_ : ∀ (x y : MvPFunctor.W (P F) α), WEquiv x y → recF g x = recF g y) (Quot.mk Setoid.r (MvPFunctor.wMk' (P F) ((TypeVec.id ::: fixToW) <$$> repr x))) [PROOFSTEP] dsimp [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) this : recF g ∘ fixToW = rec g ⊢ recF g (MvPFunctor.wMk' (P F) ((TypeVec.id ::: fixToW) <$$> repr x)) = g ((TypeVec.id ::: rec g) <$$> x) [PROOFSTEP] cases' h : repr x with a f [GOAL] case mk n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) this : recF g ∘ fixToW = rec g a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ::: Fix F α h : repr x = { fst := a, snd := f } ⊢ recF g (MvPFunctor.wMk' (P F) ((TypeVec.id ::: fixToW) <$$> { fst := a, snd := f })) = g ((TypeVec.id ::: rec g) <$$> x) [PROOFSTEP] rw [MvPFunctor.map_eq, recF_eq', ← MvPFunctor.map_eq, MvPFunctor.wDest'_wMk'] [GOAL] case mk n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β x : F (α ::: Fix F α) this : recF g ∘ fixToW = rec g a : (P F).A f : MvPFunctor.B (P F) a ⟹ α ::: Fix F α h : repr x = { fst := a, snd := f } ⊢ g (abs ((TypeVec.id ::: recF g) <$$> (TypeVec.id ::: fixToW) <$$> { fst := a, snd := f })) = g ((TypeVec.id ::: rec g) <$$> x) [PROOFSTEP] rw [← MvPFunctor.comp_map, abs_map, ← h, abs_repr, ← appendFun_comp, id_comp, this] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) = Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] have : Fix.mk (abs ⟨a, q.P.appendContents f' fun x => ⟦f x⟧⟩) = ⟦wrepr (q.P.wMk a f' f)⟧ := by apply Quot.sound; apply wEquiv.abs' rw [MvPFunctor.wDest'_wMk', abs_map, abs_repr, ← abs_map, MvPFunctor.map_eq] conv => rhs rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq] congr 2; rw [MvPFunctor.appendContents, MvPFunctor.appendContents] rw [appendFun, appendFun, ← splitFun_comp, ← splitFun_comp] rfl [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) = Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f)) [PROOFSTEP] apply Quot.sound [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ Setoid.r (MvPFunctor.wMk' (P F) ((TypeVec.id ::: fixToW) <$$> repr (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }))) (wrepr (MvPFunctor.wMk (P F) a f' f)) [PROOFSTEP] apply wEquiv.abs' [GOAL] case a.h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ abs (MvPFunctor.wDest' (P F) (MvPFunctor.wMk' (P F) ((TypeVec.id ::: fixToW) <$$> repr (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) })))) = abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f))) [PROOFSTEP] rw [MvPFunctor.wDest'_wMk', abs_map, abs_repr, ← abs_map, MvPFunctor.map_eq] [GOAL] case a.h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ abs { fst := a, snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } = abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f))) [PROOFSTEP] conv => rhs rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α | abs { fst := a, snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } = abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f))) [PROOFSTEP] rhs rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α | abs { fst := a, snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } = abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f))) [PROOFSTEP] rhs rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α | abs { fst := a, snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } = abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f))) [PROOFSTEP] rhs [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α | abs (MvPFunctor.wDest' (P F) (wrepr (MvPFunctor.wMk (P F) a f' f))) [PROOFSTEP] rw [wrepr_wMk, q.P.wDest'_wMk', abs_repr, MvPFunctor.map_eq] [GOAL] case a.h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ abs { fst := a, snd := (TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } = abs { fst := a, snd := (TypeVec.id ::: wrepr) ⊚ MvPFunctor.appendContents (P F) f' f } [PROOFSTEP] congr 2 [GOAL] case a.h.e_a.e_snd n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ ((TypeVec.id ::: fixToW) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x)) = (TypeVec.id ::: wrepr) ⊚ MvPFunctor.appendContents (P F) f' f [PROOFSTEP] rw [MvPFunctor.appendContents, MvPFunctor.appendContents] [GOAL] case a.h.e_a.e_snd n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ ((TypeVec.id ::: fixToW) ⊚ splitFun f' fun x => Quotient.mk (wSetoid α) (f x)) = (TypeVec.id ::: wrepr) ⊚ splitFun f' f [PROOFSTEP] rw [appendFun, appendFun, ← splitFun_comp, ← splitFun_comp] [GOAL] case a.h.e_a.e_snd n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ⊢ splitFun (TypeVec.id ⊚ f') (fixToW ∘ fun x => Quotient.mk (wSetoid α) (f x)) = splitFun (TypeVec.id ⊚ f') (wrepr ∘ f) [PROOFSTEP] rfl [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α this : mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) = Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f)) ⊢ mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) = Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] rw [this] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α this : mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) = Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f)) ⊢ Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f)) = Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] apply Quot.sound [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α this : mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) = Quotient.mk (wSetoid α) (wrepr (MvPFunctor.wMk (P F) a f' f)) ⊢ Setoid.r (wrepr (MvPFunctor.wMk (P F) a f' f)) (MvPFunctor.wMk (P F) a f' f) [PROOFSTEP] apply wrepr_equiv [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) ⊢ ∀ (x : Fix F α), g₁ x = g₂ x [PROOFSTEP] apply Quot.ind [GOAL] case mk n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) ⊢ ∀ (a : MvPFunctor.W (P F) α), g₁ (Quot.mk Setoid.r a) = g₂ (Quot.mk Setoid.r a) [PROOFSTEP] intro x [GOAL] case mk n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α ⊢ g₁ (Quot.mk Setoid.r x) = g₂ (Quot.mk Setoid.r x) [PROOFSTEP] apply q.P.w_ind _ x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α), (∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i))) → g₁ (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f)) = g₂ (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f)) [PROOFSTEP] intro a f' f ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) ⊢ g₁ (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f)) = g₂ (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f)) [PROOFSTEP] show g₁ ⟦q.P.wMk a f' f⟧ = g₂ ⟦q.P.wMk a f' f⟧ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) ⊢ g₁ (Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f)) = g₂ (Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f)) [PROOFSTEP] rw [← Fix.ind_aux a f' f] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) ⊢ g₁ (mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) })) = g₂ (mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) })) [PROOFSTEP] apply h [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) ⊢ (TypeVec.id ::: g₁) <$$> abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } = (TypeVec.id ::: g₂) <$$> abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } [PROOFSTEP] rw [← abs_map, ← abs_map, MvPFunctor.map_eq, MvPFunctor.map_eq] [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) ⊢ abs { fst := a, snd := (TypeVec.id ::: g₁) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } = abs { fst := a, snd := (TypeVec.id ::: g₂) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } [PROOFSTEP] congr 2 [GOAL] case a.e_a.e_snd n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) ⊢ ((TypeVec.id ::: g₁) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x)) = (TypeVec.id ::: g₂) ⊚ MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) [PROOFSTEP] rw [MvPFunctor.appendContents, appendFun, appendFun, ← splitFun_comp, ← splitFun_comp] [GOAL] case a.e_a.e_snd n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) ⊢ splitFun (TypeVec.id ⊚ f') (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) = splitFun (TypeVec.id ⊚ f') (g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x)) [PROOFSTEP] have : (g₁ ∘ fun x => ⟦f x⟧) = g₂ ∘ fun x => ⟦f x⟧ := by ext x exact ih x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) ⊢ (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) = g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x) [PROOFSTEP] ext x [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x✝ : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) x : PFunctor.B (MvPFunctor.last (P F)) a ⊢ (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) x = (g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x)) x [PROOFSTEP] exact ih x [GOAL] case a.e_a.e_snd n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g₁ g₂ : Fix F α → β h : ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: g₁) <$$> x = (TypeVec.id ::: g₂) <$$> x → g₁ (mk x) = g₂ (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), g₁ (Quot.mk Setoid.r (f i)) = g₂ (Quot.mk Setoid.r (f i)) this : (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) = g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x) ⊢ splitFun (TypeVec.id ⊚ f') (g₁ ∘ fun x => Quotient.mk (wSetoid α) (f x)) = splitFun (TypeVec.id ⊚ f') (g₂ ∘ fun x => Quotient.mk (wSetoid α) (f x)) [PROOFSTEP] rw [this] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β h : Fix F α → β hyp : ∀ (x : F (α ::: Fix F α)), h (mk x) = g ((TypeVec.id ::: h) <$$> x) ⊢ rec g = h [PROOFSTEP] ext x [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β h : Fix F α → β hyp : ∀ (x : F (α ::: Fix F α)), h (mk x) = g ((TypeVec.id ::: h) <$$> x) x : Fix F α ⊢ rec g x = h x [PROOFSTEP] apply Fix.ind_rec [GOAL] case h.h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β h : Fix F α → β hyp : ∀ (x : F (α ::: Fix F α)), h (mk x) = g ((TypeVec.id ::: h) <$$> x) x : Fix F α ⊢ ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: rec g) <$$> x = (TypeVec.id ::: fun x => h x) <$$> x → rec g (mk x) = h (mk x) [PROOFSTEP] intro x hyp' [GOAL] case h.h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Type u g : F (α ::: β) → β h : Fix F α → β hyp : ∀ (x : F (α ::: Fix F α)), h (mk x) = g ((TypeVec.id ::: h) <$$> x) x✝ : Fix F α x : F (α ::: Fix F α) hyp' : (TypeVec.id ::: rec g) <$$> x = (TypeVec.id ::: fun x => h x) <$$> x ⊢ rec g (mk x) = h (mk x) [PROOFSTEP] rw [hyp, ← hyp', Fix.rec_eq] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : Fix F α ⊢ mk (dest x) = x [PROOFSTEP] change (Fix.mk ∘ Fix.dest) x = x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : Fix F α ⊢ (mk ∘ dest) x = x [PROOFSTEP] apply Fix.ind_rec [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : Fix F α ⊢ ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: mk ∘ dest) <$$> x = (TypeVec.id ::: fun x => x) <$$> x → (mk ∘ dest) (mk x) = mk x [PROOFSTEP] intro x [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x✝ : Fix F α x : F (α ::: Fix F α) ⊢ (TypeVec.id ::: mk ∘ dest) <$$> x = (TypeVec.id ::: fun x => x) <$$> x → (mk ∘ dest) (mk x) = mk x [PROOFSTEP] dsimp [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x✝ : Fix F α x : F (α ::: Fix F α) ⊢ (TypeVec.id ::: mk ∘ dest) <$$> x = (TypeVec.id ::: fun x => x) <$$> x → mk (dest (mk x)) = mk x [PROOFSTEP] rw [Fix.dest, Fix.rec_eq, ← comp_map, ← appendFun_comp, id_comp] [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x✝ : Fix F α x : F (α ::: Fix F α) ⊢ (TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x = (TypeVec.id ::: fun x => x) <$$> x → mk ((TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x) = mk x [PROOFSTEP] intro h [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x✝ : Fix F α x : F (α ::: Fix F α) h : (TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x = (TypeVec.id ::: fun x => x) <$$> x ⊢ mk ((TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x) = mk x [PROOFSTEP] rw [h] [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x✝ : Fix F α x : F (α ::: Fix F α) h : (TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x = (TypeVec.id ::: fun x => x) <$$> x ⊢ mk ((TypeVec.id ::: fun x => x) <$$> x) = mk x [PROOFSTEP] show Fix.mk (appendFun id id <$$> x) = Fix.mk x [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x✝ : Fix F α x : F (α ::: Fix F α) h : (TypeVec.id ::: mk ∘ rec (MvFunctor.map (TypeVec.id ::: mk))) <$$> x = (TypeVec.id ::: fun x => x) <$$> x ⊢ mk ((TypeVec.id ::: _root_.id) <$$> x) = mk x [PROOFSTEP] rw [appendFun_id_id, MvFunctor.id_map] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) ⊢ dest (mk x) = x [PROOFSTEP] unfold Fix.dest [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) ⊢ rec (MvFunctor.map (TypeVec.id ::: mk)) (mk x) = x [PROOFSTEP] rw [Fix.rec_eq, ← Fix.dest, ← comp_map] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) ⊢ ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = x [PROOFSTEP] conv => rhs rw [← MvFunctor.id_map x] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) | ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = x [PROOFSTEP] rhs rw [← MvFunctor.id_map x] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) | ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = x [PROOFSTEP] rhs rw [← MvFunctor.id_map x] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) | ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = x [PROOFSTEP] rhs [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) | x [PROOFSTEP] rw [← MvFunctor.id_map x] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) ⊢ ((TypeVec.id ::: mk) ⊚ (TypeVec.id ::: dest)) <$$> x = TypeVec.id <$$> x [PROOFSTEP] rw [← appendFun_comp, id_comp] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) ⊢ (TypeVec.id ::: mk ∘ dest) <$$> x = TypeVec.id <$$> x [PROOFSTEP] have : Fix.mk ∘ Fix.dest = _root_.id := by ext (x : Fix F α) apply Fix.mk_dest [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) ⊢ mk ∘ dest = _root_.id [PROOFSTEP] ext (x : Fix F α) [GOAL] case h n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x✝ : F (α ::: Fix F α) x : Fix F α ⊢ (mk ∘ dest) x = _root_.id x [PROOFSTEP] apply Fix.mk_dest [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n x : F (α ::: Fix F α) this : mk ∘ dest = _root_.id ⊢ (TypeVec.id ::: mk ∘ dest) <$$> x = TypeVec.id <$$> x [PROOFSTEP] rw [this, appendFun_id_id] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) ⊢ ∀ (x : Fix F α), p x [PROOFSTEP] apply Quot.ind [GOAL] case mk n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) ⊢ ∀ (a : MvPFunctor.W (P F) α), p (Quot.mk Setoid.r a) [PROOFSTEP] intro x [GOAL] case mk n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α ⊢ p (Quot.mk Setoid.r x) [PROOFSTEP] apply q.P.w_ind _ x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α ⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α) (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α), (∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i))) → p (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f)) [PROOFSTEP] intro a f' f ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i)) ⊢ p (Quot.mk Setoid.r (MvPFunctor.wMk (P F) a f' f)) [PROOFSTEP] change p ⟦q.P.wMk a f' f⟧ [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i)) ⊢ p (Quotient.mk (wSetoid α) (MvPFunctor.wMk (P F) a f' f)) [PROOFSTEP] rw [← Fix.ind_aux a f' f] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i)) ⊢ p (mk (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) })) [PROOFSTEP] apply h [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i)) ⊢ LiftP (PredLast α p) (abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) }) [PROOFSTEP] rw [MvQPF.liftP_iff] [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i)) ⊢ ∃ a_1 f_1, abs { fst := a, snd := MvPFunctor.appendContents (P F) f' fun x => Quotient.mk (wSetoid α) (f x) } = abs { fst := a_1, snd := f_1 } ∧ ∀ (i : Fin2 (n + 1)) (j : MvPFunctor.B (P F) a_1 i), PredLast α p (f_1 i j) [PROOFSTEP] refine' ⟨_, _, rfl, _⟩ [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i)) ⊢ ∀ (i : Fin2 (n + 1)) (j : MvPFunctor.B (P F) a i), PredLast α p (MvPFunctor.appendContents (P F) f' (fun x => Quotient.mk (wSetoid α) (f x)) i j) [PROOFSTEP] intro i j [GOAL] case a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i)) i : Fin2 (n + 1) j : MvPFunctor.B (P F) a i ⊢ PredLast α p (MvPFunctor.appendContents (P F) f' (fun x => Quotient.mk (wSetoid α) (f x)) i j) [PROOFSTEP] cases i [GOAL] case a.fz n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i)) j : MvPFunctor.B (P F) a Fin2.fz ⊢ PredLast α p (MvPFunctor.appendContents (P F) f' (fun x => Quotient.mk (wSetoid α) (f x)) Fin2.fz j) [PROOFSTEP] apply ih [GOAL] case a.fs n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n p : Fix F α → Prop h : ∀ (x : F (α ::: Fix F α)), LiftP (PredLast α p) x → p (mk x) x : MvPFunctor.W (P F) α a : (P F).A f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α ih : ∀ (i : PFunctor.B (MvPFunctor.last (P F)) a), p (Quot.mk Setoid.r (f i)) a✝ : Fin2 (Nat.add n 0) j : MvPFunctor.B (P F) a (Fin2.fs a✝) ⊢ PredLast α p (MvPFunctor.appendContents (P F) f' (fun x => Quotient.mk (wSetoid α) (f x)) (Fin2.fs a✝) j) [PROOFSTEP] trivial [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n ⊢ ∀ {α : TypeVec n} (x : Fix F α), (fun {α} α_1 => Quot.mk WEquiv α_1) ((fun {α} α_1 => fixToW α_1) x) = x [PROOFSTEP] intro α [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n ⊢ ∀ (x : Fix F α), (fun {α} α_1 => Quot.mk WEquiv α_1) ((fun {α} α_1 => fixToW α_1) x) = x [PROOFSTEP] apply Quot.ind [GOAL] case mk n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n ⊢ ∀ (a : MvPFunctor.W (P F) α), (fun {α} α_1 => Quot.mk WEquiv α_1) ((fun {α} α_1 => fixToW α_1) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] intro a [GOAL] case mk n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n a : MvPFunctor.W (P F) α ⊢ (fun {α} α_1 => Quot.mk WEquiv α_1) ((fun {α} α_1 => fixToW α_1) (Quot.mk Setoid.r a)) = Quot.mk Setoid.r a [PROOFSTEP] apply Quot.sound [GOAL] case mk.a n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α : TypeVec n a : MvPFunctor.W (P F) α ⊢ WEquiv ((fun {α} α_1 => fixToW α_1) (Quot.mk Setoid.r a)) a [PROOFSTEP] apply wrepr_equiv [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n ⊢ ∀ {α β : TypeVec n} (f : α ⟹ β) (p : MvPFunctor.Obj (MvPFunctor.wp (P F)) α), (fun {α} α_1 => Quot.mk WEquiv α_1) (f <$$> p) = f <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) p [PROOFSTEP] intro α β g x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α β : TypeVec n g : α ⟹ β x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α ⊢ (fun {α} α_1 => Quot.mk WEquiv α_1) (g <$$> x) = g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x [PROOFSTEP] conv => rhs dsimp [MvFunctor.map] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α β : TypeVec n g : α ⟹ β x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α | (fun {α} α_1 => Quot.mk WEquiv α_1) (g <$$> x) = g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x [PROOFSTEP] rhs dsimp [MvFunctor.map] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α β : TypeVec n g : α ⟹ β x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α | (fun {α} α_1 => Quot.mk WEquiv α_1) (g <$$> x) = g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x [PROOFSTEP] rhs dsimp [MvFunctor.map] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α β : TypeVec n g : α ⟹ β x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α | (fun {α} α_1 => Quot.mk WEquiv α_1) (g <$$> x) = g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x [PROOFSTEP] rhs [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α✝ α β : TypeVec n g : α ⟹ β x : MvPFunctor.Obj (MvPFunctor.wp (P F)) α | g <$$> (fun {α} α_1 => Quot.mk WEquiv α_1) x [PROOFSTEP] dsimp [MvFunctor.map] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x ⊢ x = y.fst [PROOFSTEP] symm [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x ⊢ y.fst = x [PROOFSTEP] dsimp [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x ⊢ (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst = x [PROOFSTEP] apply Fix.ind_rec _ id _ x [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x ⊢ ∀ (x : F (α ::: Fix F α)), (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x = (TypeVec.id ::: _root_.id) <$$> x → (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) (mk x)).fst = _root_.id (mk x) [PROOFSTEP] intro x' ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = (TypeVec.id ::: _root_.id) <$$> x' ⊢ (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) (mk x')).fst = _root_.id (mk x') [PROOFSTEP] rw [Fix.rec_eq] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = (TypeVec.id ::: _root_.id) <$$> x' ⊢ { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> (TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x'), snd := g ((TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x') }.fst = _root_.id (mk x') [PROOFSTEP] dsimp [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = (TypeVec.id ::: _root_.id) <$$> x' ⊢ mk ((TypeVec.id ::: Sigma.fst) <$$> (TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x') = mk x' [PROOFSTEP] simp [appendFun_id_id] at ih [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = x' ⊢ mk ((TypeVec.id ::: Sigma.fst) <$$> (TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x') = mk x' [PROOFSTEP] congr [GOAL] case e_x n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = x' ⊢ (TypeVec.id ::: Sigma.fst) <$$> (TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' = x' [PROOFSTEP] conv => rhs rw [← ih] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = x' | (TypeVec.id ::: Sigma.fst) <$$> (TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' = x' [PROOFSTEP] rhs rw [← ih] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = x' | (TypeVec.id ::: Sigma.fst) <$$> (TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' = x' [PROOFSTEP] rhs rw [← ih] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = x' | (TypeVec.id ::: Sigma.fst) <$$> (TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' = x' [PROOFSTEP] rhs [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = x' | x' [PROOFSTEP] rw [← ih] [GOAL] case e_x n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = x' ⊢ (TypeVec.id ::: Sigma.fst) <$$> (TypeVec.id ::: rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' = (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' [PROOFSTEP] rw [MvFunctor.map_map, ← appendFun_comp, id_comp] [GOAL] case e_x n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x x' : F (α ::: Fix F α) ih : (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' = x' ⊢ (TypeVec.id ::: Sigma.fst ∘ rec fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) <$$> x' = (TypeVec.id ::: fun x => (rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x).fst) <$$> x' [PROOFSTEP] simp only [Function.comp] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u inst✝ : MvFunctor F q : MvQPF F α : TypeVec n β : Fix F α → Type u g : (x : F (α ::: Sigma β)) → β (mk ((TypeVec.id ::: Sigma.fst) <$$> x)) x : Fix F α y : Sigma β := rec (fun i => { fst := mk ((TypeVec.id ::: Sigma.fst) <$$> i), snd := g i }) x this : x = y.fst ⊢ β y.fst = β x [PROOFSTEP] rw [this]
{"mathlib_filename": "Mathlib.Data.QPF.Multivariate.Constructions.Fix", "llama_tokens": 48558}
[GOAL] α : Type u β : Type v γ : Type w a : α s : Seq α ⊢ IsSeq (some a :: ↑s) [PROOFSTEP] rintro (n | _) h [GOAL] case zero α : Type u β : Type v γ : Type w a : α s : Seq α h : (some a :: ↑s) Nat.zero = none ⊢ (some a :: ↑s) (Nat.zero + 1) = none [PROOFSTEP] contradiction [GOAL] case succ α : Type u β : Type v γ : Type w a : α s : Seq α n✝ : ℕ h : (some a :: ↑s) (Nat.succ n✝) = none ⊢ (some a :: ↑s) (Nat.succ n✝ + 1) = none [PROOFSTEP] exact s.2 h [GOAL] α : Type u β : Type v γ : Type w x y : α s t : Seq α h : cons x s = cons y t ⊢ x = y [PROOFSTEP] rw [← Option.some_inj, ← get?_cons_zero, h, get?_cons_zero] [GOAL] α : Type u β : Type v γ : Type w x y : α s t : Seq α h : cons x s = cons y t n : ℕ ⊢ get? s n = get? t n [PROOFSTEP] simp_rw [← get?_cons_succ x s n, h, get?_cons_succ] [GOAL] α : Type u β : Type v γ : Type w s : Seq α n : ℕ ⊢ TerminatedAt s n ↔ Option.isNone (get? s n) = true [PROOFSTEP] unfold TerminatedAt [GOAL] α : Type u β : Type v γ : Type w s : Seq α n : ℕ ⊢ get? s n = none ↔ Option.isNone (get? s n) = true [PROOFSTEP] cases s.get? n [GOAL] case none α : Type u β : Type v γ : Type w s : Seq α n : ℕ ⊢ none = none ↔ Option.isNone none = true [PROOFSTEP] simp [GOAL] case some α : Type u β : Type v γ : Type w s : Seq α n : ℕ val✝ : α ⊢ some val✝ = none ↔ Option.isNone (some val✝) = true [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s : Seq α ⊢ ¬Terminates s ↔ ∀ (n : ℕ), Option.isSome (get? s n) = true [PROOFSTEP] simp only [Terminates, TerminatedAt, ← Ne.def, Option.ne_none_iff_isSome, not_exists, iff_self] [GOAL] α : Type u β : Type v γ : Type w s : Seq α n✝ : ℕ n' : Stream'.tail (↑s) n✝ = none ⊢ Stream'.tail (↑s) (n✝ + 1) = none [PROOFSTEP] cases' s with f al [GOAL] case mk α : Type u β : Type v γ : Type w n✝ : ℕ f : Stream' (Option α) al : IsSeq f n' : Stream'.tail (↑{ val := f, property := al }) n✝ = none ⊢ Stream'.tail (↑{ val := f, property := al }) (n✝ + 1) = none [PROOFSTEP] exact al n' [GOAL] α : Type u β : Type v γ : Type w s : Seq α m n : ℕ h : m ≤ n ⊢ get? s m = none → get? s n = none [PROOFSTEP] cases' s with f al [GOAL] case mk α : Type u β : Type v γ : Type w m n : ℕ h : m ≤ n f : Stream' (Option α) al : IsSeq f ⊢ get? { val := f, property := al } m = none → get? { val := f, property := al } n = none [PROOFSTEP] induction' h with n _ IH [GOAL] case mk.refl α : Type u β : Type v γ : Type w m n : ℕ f : Stream' (Option α) al : IsSeq f ⊢ get? { val := f, property := al } m = none → get? { val := f, property := al } m = none case mk.step α : Type u β : Type v γ : Type w m n✝ : ℕ f : Stream' (Option α) al : IsSeq f n : ℕ a✝ : Nat.le m n IH : get? { val := f, property := al } m = none → get? { val := f, property := al } n = none ⊢ get? { val := f, property := al } m = none → get? { val := f, property := al } (Nat.succ n) = none [PROOFSTEP] exacts [id, fun h2 => al (IH h2)] [GOAL] α : Type u β : Type v γ : Type w s : Seq α aₙ : α n m : ℕ m_le_n : m ≤ n s_nth_eq_some : get? s n = some aₙ ⊢ get? s n ≠ none [PROOFSTEP] simp [s_nth_eq_some] [GOAL] α : Type u β : Type v γ : Type w a : α x✝ : a ∈ nil w✝ : ℕ h : some a = none ⊢ False [PROOFSTEP] injection h [GOAL] α : Type u β : Type v γ : Type w a b : α f : Stream' (Option α) al : IsSeq f h✝ : a ∈ cons b { val := f, property := al } h : some a = some b ⊢ a = b [PROOFSTEP] injection h [GOAL] α : Type u β : Type v γ : Type w a b : α s : Seq α ⊢ a = b ∨ a ∈ s → a ∈ cons b s [PROOFSTEP] rintro (rfl | m) <;> [apply mem_cons; exact mem_cons_of_mem _ m] [GOAL] α : Type u β : Type v γ : Type w a b : α s : Seq α ⊢ a = b ∨ a ∈ s → a ∈ cons b s [PROOFSTEP] rintro (rfl | m) [GOAL] case inl α : Type u β : Type v γ : Type w a : α s : Seq α ⊢ a ∈ cons a s [PROOFSTEP] apply mem_cons [GOAL] case inr α : Type u β : Type v γ : Type w a b : α s : Seq α m : a ∈ s ⊢ a ∈ cons b s [PROOFSTEP] exact mem_cons_of_mem _ m [GOAL] α : Type u β : Type v γ : Type w s : Seq α ⊢ destruct s = none → s = nil [PROOFSTEP] dsimp [destruct] [GOAL] α : Type u β : Type v γ : Type w s : Seq α ⊢ Option.map (fun a' => (a', tail s)) (get? s 0) = none → s = nil [PROOFSTEP] induction' f0 : get? s 0 [GOAL] case none α : Type u β : Type v γ : Type w s : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ f0 : get? s 0 = none ⊢ Option.map (fun a' => (a', tail s)) none = none → s = nil [PROOFSTEP] intro h [GOAL] case some α : Type u β : Type v γ : Type w s : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ val✝ : α f0 : get? s 0 = some val✝ ⊢ Option.map (fun a' => (a', tail s)) (some val✝) = none → s = nil [PROOFSTEP] intro h [GOAL] case none α : Type u β : Type v γ : Type w s : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ f0 : get? s 0 = none h : Option.map (fun a' => (a', tail s)) none = none ⊢ s = nil [PROOFSTEP] apply Subtype.eq [GOAL] case none.a α : Type u β : Type v γ : Type w s : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ f0 : get? s 0 = none h : Option.map (fun a' => (a', tail s)) none = none ⊢ ↑s = ↑nil [PROOFSTEP] funext n [GOAL] case none.a.h α : Type u β : Type v γ : Type w s : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ f0 : get? s 0 = none h : Option.map (fun a' => (a', tail s)) none = none n : ℕ ⊢ ↑s n = ↑nil n [PROOFSTEP] induction' n with n IH [GOAL] case none.a.h.zero α : Type u β : Type v γ : Type w s : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ f0 : get? s 0 = none h : Option.map (fun a' => (a', tail s)) none = none ⊢ ↑s Nat.zero = ↑nil Nat.zero case none.a.h.succ α : Type u β : Type v γ : Type w s : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ f0 : get? s 0 = none h : Option.map (fun a' => (a', tail s)) none = none n : ℕ IH : ↑s n = ↑nil n ⊢ ↑s (Nat.succ n) = ↑nil (Nat.succ n) [PROOFSTEP] exacts [f0, s.2 IH] [GOAL] case some α : Type u β : Type v γ : Type w s : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ val✝ : α f0 : get? s 0 = some val✝ h : Option.map (fun a' => (a', tail s)) (some val✝) = none ⊢ s = nil [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v γ : Type w s : Seq α a : α s' : Seq α ⊢ destruct s = some (a, s') → s = cons a s' [PROOFSTEP] dsimp [destruct] [GOAL] α : Type u β : Type v γ : Type w s : Seq α a : α s' : Seq α ⊢ Option.map (fun a' => (a', tail s)) (get? s 0) = some (a, s') → s = cons a s' [PROOFSTEP] induction' f0 : get? s 0 with a' [GOAL] case none α : Type u β : Type v γ : Type w s : Seq α a : α s' : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ f0 : get? s 0 = none ⊢ Option.map (fun a' => (a', tail s)) none = some (a, s') → s = cons a s' [PROOFSTEP] intro h [GOAL] case some α : Type u β : Type v γ : Type w s : Seq α a : α s' : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ a' : α f0 : get? s 0 = some a' ⊢ Option.map (fun a' => (a', tail s)) (some a') = some (a, s') → s = cons a s' [PROOFSTEP] intro h [GOAL] case none α : Type u β : Type v γ : Type w s : Seq α a : α s' : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ f0 : get? s 0 = none h : Option.map (fun a' => (a', tail s)) none = some (a, s') ⊢ s = cons a s' [PROOFSTEP] contradiction [GOAL] case some α : Type u β : Type v γ : Type w s : Seq α a : α s' : Seq α x✝ : Option α f0✝ : get? s 0 = x✝ a' : α f0 : get? s 0 = some a' h : Option.map (fun a' => (a', tail s)) (some a') = some (a, s') ⊢ s = cons a s' [PROOFSTEP] cases' s with f al [GOAL] case some.mk α : Type u β : Type v γ : Type w a : α s' : Seq α x✝ : Option α a' : α f : Stream' (Option α) al : IsSeq f f0✝ : get? { val := f, property := al } 0 = x✝ f0 : get? { val := f, property := al } 0 = some a' h : Option.map (fun a' => (a', tail { val := f, property := al })) (some a') = some (a, s') ⊢ { val := f, property := al } = cons a s' [PROOFSTEP] injections _ h1 h2 [GOAL] case some.mk α : Type u β : Type v γ : Type w a : α s' : Seq α x✝ : Option α a' : α f : Stream' (Option α) al : IsSeq f f0✝ : get? { val := f, property := al } 0 = x✝ f0 : get? { val := f, property := al } 0 = some a' h1 : a' = a h2 : tail { val := f, property := al } = s' ⊢ { val := f, property := al } = cons a s' [PROOFSTEP] rw [← h2] [GOAL] case some.mk α : Type u β : Type v γ : Type w a : α s' : Seq α x✝ : Option α a' : α f : Stream' (Option α) al : IsSeq f f0✝ : get? { val := f, property := al } 0 = x✝ f0 : get? { val := f, property := al } 0 = some a' h1 : a' = a h2 : tail { val := f, property := al } = s' ⊢ { val := f, property := al } = cons a (tail { val := f, property := al }) [PROOFSTEP] apply Subtype.eq [GOAL] case some.mk.a α : Type u β : Type v γ : Type w a : α s' : Seq α x✝ : Option α a' : α f : Stream' (Option α) al : IsSeq f f0✝ : get? { val := f, property := al } 0 = x✝ f0 : get? { val := f, property := al } 0 = some a' h1 : a' = a h2 : tail { val := f, property := al } = s' ⊢ ↑{ val := f, property := al } = ↑(cons a (tail { val := f, property := al })) [PROOFSTEP] dsimp [tail, cons] [GOAL] case some.mk.a α : Type u β : Type v γ : Type w a : α s' : Seq α x✝ : Option α a' : α f : Stream' (Option α) al : IsSeq f f0✝ : get? { val := f, property := al } 0 = x✝ f0 : get? { val := f, property := al } 0 = some a' h1 : a' = a h2 : tail { val := f, property := al } = s' ⊢ f = some a :: Stream'.tail f [PROOFSTEP] rw [h1] at f0 [GOAL] case some.mk.a α : Type u β : Type v γ : Type w a : α s' : Seq α x✝ : Option α a' : α f : Stream' (Option α) al : IsSeq f f0✝ : get? { val := f, property := al } 0 = x✝ f0 : get? { val := f, property := al } 0 = some a h1 : a' = a h2 : tail { val := f, property := al } = s' ⊢ f = some a :: Stream'.tail f [PROOFSTEP] rw [← f0] [GOAL] case some.mk.a α : Type u β : Type v γ : Type w a : α s' : Seq α x✝ : Option α a' : α f : Stream' (Option α) al : IsSeq f f0✝ : get? { val := f, property := al } 0 = x✝ f0 : get? { val := f, property := al } 0 = some a h1 : a' = a h2 : tail { val := f, property := al } = s' ⊢ f = get? { val := f, property := al } 0 :: Stream'.tail f [PROOFSTEP] exact (Stream'.eta f).symm [GOAL] α : Type u β : Type v γ : Type w a : α f : Stream' (Option α) al : IsSeq f ⊢ destruct (cons a { val := f, property := al }) = some (a, { val := f, property := al }) [PROOFSTEP] unfold cons destruct Functor.map [GOAL] α : Type u β : Type v γ : Type w a : α f : Stream' (Option α) al : IsSeq f ⊢ instFunctorOption.1 (fun a' => (a', tail { val := some a :: ↑{ val := f, property := al }, property := (_ : ∀ {n : ℕ}, (some a :: ↑{ val := f, property := al }) n = none → (some a :: ↑{ val := f, property := al }) (n + 1) = none) })) (get? { val := some a :: ↑{ val := f, property := al }, property := (_ : ∀ {n : ℕ}, (some a :: ↑{ val := f, property := al }) n = none → (some a :: ↑{ val := f, property := al }) (n + 1) = none) } 0) = some (a, { val := f, property := al }) [PROOFSTEP] apply congr_arg fun s => some (a, s) [GOAL] α : Type u β : Type v γ : Type w a : α f : Stream' (Option α) al : IsSeq f ⊢ tail { val := some a :: ↑{ val := f, property := al }, property := (_ : ∀ {n : ℕ}, (some a :: ↑{ val := f, property := al }) n = none → (some a :: ↑{ val := f, property := al }) (n + 1) = none) } = { val := f, property := al } [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w a : α f : Stream' (Option α) al : IsSeq f ⊢ ↑(tail { val := some a :: ↑{ val := f, property := al }, property := (_ : ∀ {n : ℕ}, (some a :: ↑{ val := f, property := al }) n = none → (some a :: ↑{ val := f, property := al }) (n + 1) = none) }) = ↑{ val := f, property := al } [PROOFSTEP] dsimp [tail] [GOAL] α : Type u β : Type v γ : Type w s : Seq α ⊢ head s = Prod.fst <$> destruct s [PROOFSTEP] unfold destruct head [GOAL] α : Type u β : Type v γ : Type w s : Seq α ⊢ get? s 0 = Prod.fst <$> (fun a' => (a', tail s)) <$> get? s 0 [PROOFSTEP] cases get? s 0 [GOAL] case none α : Type u β : Type v γ : Type w s : Seq α ⊢ none = Prod.fst <$> (fun a' => (a', tail s)) <$> none [PROOFSTEP] rfl [GOAL] case some α : Type u β : Type v γ : Type w s : Seq α val✝ : α ⊢ some val✝ = Prod.fst <$> (fun a' => (a', tail s)) <$> some val✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w a : α s : Seq α ⊢ head (cons a s) = some a [PROOFSTEP] rw [head_eq_destruct, destruct_cons, Option.map_eq_map, Option.map_some'] [GOAL] α : Type u β : Type v γ : Type w a : α s : Seq α ⊢ tail (cons a s) = s [PROOFSTEP] cases' s with f al [GOAL] case mk α : Type u β : Type v γ : Type w a : α f : Stream' (Option α) al : IsSeq f ⊢ tail (cons a { val := f, property := al }) = { val := f, property := al } [PROOFSTEP] apply Subtype.eq [GOAL] case mk.a α : Type u β : Type v γ : Type w a : α f : Stream' (Option α) al : IsSeq f ⊢ ↑(tail (cons a { val := f, property := al })) = ↑{ val := f, property := al } [PROOFSTEP] dsimp [tail, cons] [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Sort v s : Seq α h1 : C nil h2 : (x : α) → (s : Seq α) → C (cons x s) ⊢ C s [PROOFSTEP] cases' H : destruct s with v [GOAL] case none α : Type u β : Type v γ : Type w C : Seq α → Sort v s : Seq α h1 : C nil h2 : (x : α) → (s : Seq α) → C (cons x s) H : destruct s = none ⊢ C s [PROOFSTEP] rw [destruct_eq_nil H] [GOAL] case none α : Type u β : Type v γ : Type w C : Seq α → Sort v s : Seq α h1 : C nil h2 : (x : α) → (s : Seq α) → C (cons x s) H : destruct s = none ⊢ C nil [PROOFSTEP] apply h1 [GOAL] case some α : Type u β : Type v γ : Type w C : Seq α → Sort v s : Seq α h1 : C nil h2 : (x : α) → (s : Seq α) → C (cons x s) v : Seq1 α H : destruct s = some v ⊢ C s [PROOFSTEP] cases' v with a s' [GOAL] case some.mk α : Type u β : Type v γ : Type w C : Seq α → Sort v s : Seq α h1 : C nil h2 : (x : α) → (s : Seq α) → C (cons x s) a : α s' : Seq α H : destruct s = some (a, s') ⊢ C s [PROOFSTEP] rw [destruct_eq_cons H] [GOAL] case some.mk α : Type u β : Type v γ : Type w C : Seq α → Sort v s : Seq α h1 : C nil h2 : (x : α) → (s : Seq α) → C (cons x s) a : α s' : Seq α H : destruct s = some (a, s') ⊢ C (cons a s') [PROOFSTEP] apply h2 [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s : Seq α M : a ∈ s h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') ⊢ C s [PROOFSTEP] cases' M with k e [GOAL] case intro α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ e : (fun b => some a = b) (nth (↑s) k) ⊢ C s [PROOFSTEP] unfold Stream'.nth at e [GOAL] case intro α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ e : (fun b => some a = b) (↑s k) ⊢ C s [PROOFSTEP] induction' k with k IH generalizing s [GOAL] case intro.zero α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ e✝ : (fun b => some a = b) (↑s✝ k) s : Seq α e : some a = ↑s Nat.zero ⊢ C s [PROOFSTEP] have TH : s = cons a (tail s) := by apply destruct_eq_cons unfold destruct get? Functor.map rw [← e] rfl [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ e✝ : (fun b => some a = b) (↑s✝ k) s : Seq α e : some a = ↑s Nat.zero ⊢ s = cons a (tail s) [PROOFSTEP] apply destruct_eq_cons [GOAL] case a α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ e✝ : (fun b => some a = b) (↑s✝ k) s : Seq α e : some a = ↑s Nat.zero ⊢ destruct s = some (a, tail s) [PROOFSTEP] unfold destruct get? Functor.map [GOAL] case a α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ e✝ : (fun b => some a = b) (↑s✝ k) s : Seq α e : some a = ↑s Nat.zero ⊢ instFunctorOption.1 (fun a' => (a', tail s)) (↑s 0) = some (a, tail s) [PROOFSTEP] rw [← e] [GOAL] case a α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ e✝ : (fun b => some a = b) (↑s✝ k) s : Seq α e : some a = ↑s Nat.zero ⊢ instFunctorOption.1 (fun a' => (a', tail s)) (some a) = some (a, tail s) [PROOFSTEP] rfl [GOAL] case intro.zero α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ e✝ : (fun b => some a = b) (↑s✝ k) s : Seq α e : some a = ↑s Nat.zero TH : s = cons a (tail s) ⊢ C s [PROOFSTEP] rw [TH] [GOAL] case intro.zero α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k : ℕ e✝ : (fun b => some a = b) (↑s✝ k) s : Seq α e : some a = ↑s Nat.zero TH : s = cons a (tail s) ⊢ C (cons a (tail s)) [PROOFSTEP] apply h1 _ _ (Or.inl rfl) -- porting note: had to reshuffle `intro` [GOAL] case intro.succ α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e✝ : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α e : some a = ↑s (Nat.succ k) ⊢ C s [PROOFSTEP] revert e [GOAL] case intro.succ α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α ⊢ some a = ↑s (Nat.succ k) → C s [PROOFSTEP] apply s.recOn _ fun b s' => _ [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α ⊢ some a = ↑nil (Nat.succ k) → C nil [PROOFSTEP] intro e [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e✝ : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α e : some a = ↑nil (Nat.succ k) ⊢ C nil [PROOFSTEP] injection e [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α ⊢ ∀ (b : α) (s' : Seq α), some a = ↑(cons b s') (Nat.succ k) → C (cons b s') [PROOFSTEP] intro b s' e [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e✝ : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α b : α s' : Seq α e : some a = ↑(cons b s') (Nat.succ k) ⊢ C (cons b s') [PROOFSTEP] have h_eq : (cons b s').val (Nat.succ k) = s'.val k := by cases s'; rfl [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e✝ : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α b : α s' : Seq α e : some a = ↑(cons b s') (Nat.succ k) ⊢ ↑(cons b s') (Nat.succ k) = ↑s' k [PROOFSTEP] cases s' [GOAL] case mk α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e✝ : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α b : α val✝ : Stream' (Option α) property✝ : IsSeq val✝ e : some a = ↑(cons b { val := val✝, property := property✝ }) (Nat.succ k) ⊢ ↑(cons b { val := val✝, property := property✝ }) (Nat.succ k) = ↑{ val := val✝, property := property✝ } k [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e✝ : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α b : α s' : Seq α e : some a = ↑(cons b s') (Nat.succ k) h_eq : ↑(cons b s') (Nat.succ k) = ↑s' k ⊢ C (cons b s') [PROOFSTEP] rw [h_eq] at e [GOAL] α : Type u β : Type v γ : Type w C : Seq α → Prop a : α s✝ : Seq α h1 : ∀ (b : α) (s' : Seq α), a = b ∨ C s' → C (cons b s') k✝ : ℕ e✝ : (fun b => some a = b) (↑s✝ k✝) k : ℕ IH : ∀ {s : Seq α}, some a = ↑s k → C s s : Seq α b : α s' : Seq α e : some a = ↑s' k h_eq : ↑(cons b s') (Nat.succ k) = ↑s' k ⊢ C (cons b s') [PROOFSTEP] apply h1 _ _ (Or.inr (IH e)) [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β ⊢ Seq α [PROOFSTEP] refine' ⟨Stream'.corec' (Corec.f f) (some b), fun {n} h => _⟩ [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β n : ℕ h : corec' (Corec.f f) (some b) n = none ⊢ corec' (Corec.f f) (some b) (n + 1) = none [PROOFSTEP] rw [Stream'.corec'_eq] [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β n : ℕ h : corec' (Corec.f f) (some b) n = none ⊢ ((Corec.f f (some b)).fst :: corec' (Corec.f f) (Corec.f f (some b)).snd) (n + 1) = none [PROOFSTEP] change Stream'.corec' (Corec.f f) (Corec.f f (some b)).2 n = none [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β n : ℕ h : corec' (Corec.f f) (some b) n = none ⊢ corec' (Corec.f f) (Corec.f f (some b)).snd n = none [PROOFSTEP] revert h [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β n : ℕ ⊢ corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (Corec.f f (some b)).snd n = none [PROOFSTEP] generalize some b = o [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β n : ℕ o : Option β ⊢ corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none [PROOFSTEP] revert o [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β n : ℕ ⊢ ∀ (o : Option β), corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none [PROOFSTEP] induction' n with n IH [GOAL] case zero α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β ⊢ ∀ (o : Option β), corec' (Corec.f f) o Nat.zero = none → corec' (Corec.f f) (Corec.f f o).snd Nat.zero = none [PROOFSTEP] intro o [GOAL] case succ α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β n : ℕ IH : ∀ (o : Option β), corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none ⊢ ∀ (o : Option β), corec' (Corec.f f) o (Nat.succ n) = none → corec' (Corec.f f) (Corec.f f o).snd (Nat.succ n) = none [PROOFSTEP] intro o [GOAL] case zero α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β o : Option β ⊢ corec' (Corec.f f) o Nat.zero = none → corec' (Corec.f f) (Corec.f f o).snd Nat.zero = none [PROOFSTEP] change (Corec.f f o).1 = none → (Corec.f f (Corec.f f o).2).1 = none [GOAL] case zero α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β o : Option β ⊢ (Corec.f f o).fst = none → (Corec.f f (Corec.f f o).snd).fst = none [PROOFSTEP] cases' o with b [GOAL] case zero.none α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β ⊢ (Corec.f f none).fst = none → (Corec.f f (Corec.f f none).snd).fst = none [PROOFSTEP] intro h [GOAL] case zero.some α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β ⊢ (Corec.f f (some b)).fst = none → (Corec.f f (Corec.f f (some b)).snd).fst = none [PROOFSTEP] intro h [GOAL] case zero.none α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h : (Corec.f f none).fst = none ⊢ (Corec.f f (Corec.f f none).snd).fst = none [PROOFSTEP] rfl [GOAL] case zero.some α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β h : (Corec.f f (some b)).fst = none ⊢ (Corec.f f (Corec.f f (some b)).snd).fst = none [PROOFSTEP] dsimp [Corec.f] at h [GOAL] case zero.some α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β h : (match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none ⊢ (Corec.f f (Corec.f f (some b)).snd).fst = none [PROOFSTEP] dsimp [Corec.f] [GOAL] case zero.some α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β h : (match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none ⊢ (match (match f b with | none => (none, none) | some (a, b') => (some a, some b')).snd with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none [PROOFSTEP] revert h [GOAL] case zero.some α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β ⊢ (match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none → (match (match f b with | none => (none, none) | some (a, b') => (some a, some b')).snd with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none [PROOFSTEP] cases' h₁ : f b with s [GOAL] case zero.some.none α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β h₁ : f b = none ⊢ (match none with | none => (none, none) | some (a, b') => (some a, some b')).fst = none → (match (match none with | none => (none, none) | some (a, b') => (some a, some b')).snd with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none [PROOFSTEP] intro h [GOAL] case zero.some.some α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β s : α × β h₁ : f b = some s ⊢ (match some s with | none => (none, none) | some (a, b') => (some a, some b')).fst = none → (match (match some s with | none => (none, none) | some (a, b') => (some a, some b')).snd with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none [PROOFSTEP] intro h [GOAL] case zero.some.none α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β h₁ : f b = none h : (match none with | none => (none, none) | some (a, b') => (some a, some b')).fst = none ⊢ (match (match none with | none => (none, none) | some (a, b') => (some a, some b')).snd with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none [PROOFSTEP] rfl [GOAL] case zero.some.some α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β s : α × β h₁ : f b = some s h : (match some s with | none => (none, none) | some (a, b') => (some a, some b')).fst = none ⊢ (match (match some s with | none => (none, none) | some (a, b') => (some a, some b')).snd with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none [PROOFSTEP] cases' s with a b' [GOAL] case zero.some.some.mk α : Type u β : Type v γ : Type w f : β → Option (α × β) b✝ b : β a : α b' : β h₁ : f b = some (a, b') h : (match some (a, b') with | none => (none, none) | some (a, b') => (some a, some b')).fst = none ⊢ (match (match some (a, b') with | none => (none, none) | some (a, b') => (some a, some b')).snd with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = none [PROOFSTEP] contradiction [GOAL] case succ α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β n : ℕ IH : ∀ (o : Option β), corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none o : Option β ⊢ corec' (Corec.f f) o (Nat.succ n) = none → corec' (Corec.f f) (Corec.f f o).snd (Nat.succ n) = none [PROOFSTEP] rw [Stream'.corec'_eq (Corec.f f) (Corec.f f o).2, Stream'.corec'_eq (Corec.f f) o] [GOAL] case succ α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β n : ℕ IH : ∀ (o : Option β), corec' (Corec.f f) o n = none → corec' (Corec.f f) (Corec.f f o).snd n = none o : Option β ⊢ ((Corec.f f o).fst :: corec' (Corec.f f) (Corec.f f o).snd) (Nat.succ n) = none → ((Corec.f f (Corec.f f o).snd).fst :: corec' (Corec.f f) (Corec.f f (Corec.f f o).snd).snd) (Nat.succ n) = none [PROOFSTEP] exact IH (Corec.f f o).2 [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β ⊢ destruct (corec f b) = omap (corec f) (f b) [PROOFSTEP] dsimp [corec, destruct, nth] -- porting note: next two lines were `change`...`with`... [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β ⊢ Option.map (fun a' => (a', tail { val := corec' (Corec.f f) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })) (corec' (Corec.f f) (some b) 0) = match f b with | none => none | some (a, b) => some (a, { val := corec' (Corec.f f) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) [PROOFSTEP] have h : Stream'.corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).1 := rfl [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst ⊢ Option.map (fun a' => (a', tail { val := corec' (Corec.f f) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })) (corec' (Corec.f f) (some b) 0) = match f b with | none => none | some (a, b) => some (a, { val := corec' (Corec.f f) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) [PROOFSTEP] rw [h] [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst ⊢ Option.map (fun a' => (a', tail { val := corec' (Corec.f f) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })) (Corec.f f (some b)).fst = match f b with | none => none | some (a, b) => some (a, { val := corec' (Corec.f f) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) [PROOFSTEP] dsimp [Corec.f] [GOAL] α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst ⊢ Option.map (fun a' => (a', tail { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })) (match f b with | none => (none, none) | some (a, b') => (some a, some b')).fst = match f b with | none => none | some (a, b) => some (a, { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) [PROOFSTEP] induction' h : f b with s [GOAL] case none α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst x✝ : Option (α × β) h✝ : f b = x✝ h : f b = none ⊢ Option.map (fun a' => (a', tail { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })) (match none with | none => (none, none) | some (a, b') => (some a, some b')).fst = match none with | none => none | some (a, b) => some (a, { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) [PROOFSTEP] rfl [GOAL] case some α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst x✝ : Option (α × β) h✝ : f b = x✝ s : α × β h : f b = some s ⊢ Option.map (fun a' => (a', tail { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })) (match some s with | none => (none, none) | some (a, b') => (some a, some b')).fst = match some s with | none => none | some (a, b) => some (a, { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) [PROOFSTEP] cases' s with a b' [GOAL] case some.mk α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst x✝ : Option (α × β) h✝ : f b = x✝ a : α b' : β h : f b = some (a, b') ⊢ Option.map (fun a' => (a', tail { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) })) (match some (a, b') with | none => (none, none) | some (a, b') => (some a, some b')).fst = match some (a, b') with | none => none | some (a, b) => some (a, { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) [PROOFSTEP] dsimp [Corec.f] [GOAL] case some.mk α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst x✝ : Option (α × β) h✝ : f b = x✝ a : α b' : β h : f b = some (a, b') ⊢ some (a, tail { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) = some (a, { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b'), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b') n = none → corec' (Corec.f f) (some b') (n + 1) = none) }) [PROOFSTEP] apply congr_arg fun b' => some (a, b') [GOAL] case some.mk α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst x✝ : Option (α × β) h✝ : f b = x✝ a : α b' : β h : f b = some (a, b') ⊢ tail { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) } = { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b'), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b') n = none → corec' (Corec.f f) (some b') (n + 1) = none) } [PROOFSTEP] apply Subtype.eq [GOAL] case some.mk.a α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst x✝ : Option (α × β) h✝ : f b = x✝ a : α b' : β h : f b = some (a, b') ⊢ ↑(tail { val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b) n = none → corec' (Corec.f f) (some b) (n + 1) = none) }) = ↑{ val := corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b'), property := (_ : ∀ {n : ℕ}, corec' (Corec.f f) (some b') n = none → corec' (Corec.f f) (some b') (n + 1) = none) } [PROOFSTEP] dsimp [corec, tail] [GOAL] case some.mk.a α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst x✝ : Option (α × β) h✝ : f b = x✝ a : α b' : β h : f b = some (a, b') ⊢ Stream'.tail (corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b)) = corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b') [PROOFSTEP] rw [Stream'.corec'_eq, Stream'.tail_cons] [GOAL] case some.mk.a α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst x✝ : Option (α × β) h✝ : f b = x✝ a : α b' : β h : f b = some (a, b') ⊢ corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (match some b with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')).snd = corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b') [PROOFSTEP] dsimp [Corec.f] [GOAL] case some.mk.a α : Type u β : Type v γ : Type w f : β → Option (α × β) b : β h✝¹ : corec' (Corec.f f) (some b) 0 = (Corec.f f (some b)).fst x✝ : Option (α × β) h✝ : f b = x✝ a : α b' : β h : f b = some (a, b') ⊢ corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (match f b with | none => (none, none) | some (a, b') => (some a, some b')).snd = corec' (fun x => match x with | none => (none, none) | some b => match f b with | none => (none, none) | some (a, b') => (some a, some b')) (some b') [PROOFSTEP] rw [h] [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ ⊢ s₁ = s₂ [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ ⊢ ↑s₁ = ↑s₂ [PROOFSTEP] apply Stream'.eq_of_bisim fun x y => ∃ s s' : Seq α, s.1 = x ∧ s'.1 = y ∧ R s s' [GOAL] case a.bisim α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ ⊢ Stream'.IsBisimulation fun x y => ∃ s s', ↑s = x ∧ ↑s' = y ∧ R s s' case a.a α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ ⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s' [PROOFSTEP] dsimp [Stream'.IsBisimulation] [GOAL] case a.bisim α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ ⊢ ∀ ⦃s₁ s₂ : Stream' (Option α)⦄, (∃ s s', ↑s = s₁ ∧ ↑s' = s₂ ∧ R s s') → Stream'.head s₁ = Stream'.head s₂ ∧ ∃ s s', ↑s = Stream'.tail s₁ ∧ ↑s' = Stream'.tail s₂ ∧ R s s' case a.a α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ ⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s' [PROOFSTEP] intro t₁ t₂ e [GOAL] case a.bisim α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' ⊢ Stream'.head t₁ = Stream'.head t₂ ∧ ∃ s s', ↑s = Stream'.tail t₁ ∧ ↑s' = Stream'.tail t₂ ∧ R s s' case a.a α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ ⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s' [PROOFSTEP] exact match t₁, t₂, e with | _, _, ⟨s, s', rfl, rfl, r⟩ => by suffices head s = head s' ∧ R (tail s) (tail s') from And.imp id (fun r => ⟨tail s, tail s', by cases s; rfl, by cases s'; rfl, r⟩) this have := bisim r; revert r this apply recOn s _ _ <;> apply recOn s' _ _ · intro r _ constructor · rfl · assumption · intro x s _ this rw [destruct_nil, destruct_cons] at this exact False.elim this · intro x s _ this rw [destruct_nil, destruct_cons] at this exact False.elim this · intro x s x' s' _ this rw [destruct_cons, destruct_cons] at this rw [head_cons, head_cons, tail_cons, tail_cons] cases' this with h1 h2 constructor rw [h1] exact h2 [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α r : R s s' ⊢ Stream'.head ↑s = Stream'.head ↑s' ∧ ∃ s_1 s'_1, ↑s_1 = Stream'.tail ↑s ∧ ↑s'_1 = Stream'.tail ↑s' ∧ R s_1 s'_1 [PROOFSTEP] suffices head s = head s' ∧ R (tail s) (tail s') from And.imp id (fun r => ⟨tail s, tail s', by cases s; rfl, by cases s'; rfl, r⟩) this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝¹ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α r✝ : R s s' this : head s = head s' ∧ R (tail s) (tail s') r : R (tail s) (tail s') ⊢ ↑(tail s) = Stream'.tail ↑s [PROOFSTEP] cases s [GOAL] case mk α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝¹ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s' : Seq α val✝ : Stream' (Option α) property✝ : IsSeq val✝ r✝ : R { val := val✝, property := property✝ } s' this : head { val := val✝, property := property✝ } = head s' ∧ R (tail { val := val✝, property := property✝ }) (tail s') r : R (tail { val := val✝, property := property✝ }) (tail s') ⊢ ↑(tail { val := val✝, property := property✝ }) = Stream'.tail ↑{ val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝¹ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α r✝ : R s s' this : head s = head s' ∧ R (tail s) (tail s') r : R (tail s) (tail s') ⊢ ↑(tail s') = Stream'.tail ↑s' [PROOFSTEP] cases s' [GOAL] case mk α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝¹ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s : Seq α val✝ : Stream' (Option α) property✝ : IsSeq val✝ r✝ : R s { val := val✝, property := property✝ } this : head s = head { val := val✝, property := property✝ } ∧ R (tail s) (tail { val := val✝, property := property✝ }) r : R (tail s) (tail { val := val✝, property := property✝ }) ⊢ ↑(tail { val := val✝, property := property✝ }) = Stream'.tail ↑{ val := val✝, property := property✝ } [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α r : R s s' ⊢ head s = head s' ∧ R (tail s) (tail s') [PROOFSTEP] have := bisim r [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α r : R s s' this : BisimO R (destruct s) (destruct s') ⊢ head s = head s' ∧ R (tail s) (tail s') [PROOFSTEP] revert r this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α ⊢ R s s' → BisimO R (destruct s) (destruct s') → head s = head s' ∧ R (tail s) (tail s') [PROOFSTEP] apply recOn s _ _ [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α ⊢ R nil s' → BisimO R (destruct nil) (destruct s') → head nil = head s' ∧ R (tail nil) (tail s') [PROOFSTEP] apply recOn s' _ _ [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α ⊢ ∀ (x : α) (s : Seq α), R (cons x s) s' → BisimO R (destruct (cons x s)) (destruct s') → head (cons x s) = head s' ∧ R (tail (cons x s)) (tail s') [PROOFSTEP] apply recOn s' _ _ [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α ⊢ R nil nil → BisimO R (destruct nil) (destruct nil) → head nil = head nil ∧ R (tail nil) (tail nil) [PROOFSTEP] intro r _ [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α r : R nil nil this✝ : BisimO R (destruct nil) (destruct nil) ⊢ head nil = head nil ∧ R (tail nil) (tail nil) [PROOFSTEP] constructor [GOAL] case left α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α r : R nil nil this✝ : BisimO R (destruct nil) (destruct nil) ⊢ head nil = head nil [PROOFSTEP] rfl [GOAL] case right α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r✝ : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α r : R nil nil this✝ : BisimO R (destruct nil) (destruct nil) ⊢ R (tail nil) (tail nil) [PROOFSTEP] assumption [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α ⊢ ∀ (x : α) (s : Seq α), R nil (cons x s) → BisimO R (destruct nil) (destruct (cons x s)) → head nil = head (cons x s) ∧ R (tail nil) (tail (cons x s)) [PROOFSTEP] intro x s _ this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s' : Seq α x : α s : Seq α r✝ : R nil (cons x s) this : BisimO R (destruct nil) (destruct (cons x s)) ⊢ head nil = head (cons x s) ∧ R (tail nil) (tail (cons x s)) [PROOFSTEP] rw [destruct_nil, destruct_cons] at this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s' : Seq α x : α s : Seq α r✝ : R nil (cons x s) this : BisimO R none (some (x, s)) ⊢ head nil = head (cons x s) ∧ R (tail nil) (tail (cons x s)) [PROOFSTEP] exact False.elim this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α ⊢ ∀ (x : α) (s : Seq α), R (cons x s) nil → BisimO R (destruct (cons x s)) (destruct nil) → head (cons x s) = head nil ∧ R (tail (cons x s)) (tail nil) [PROOFSTEP] intro x s _ this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s' : Seq α x : α s : Seq α r✝ : R (cons x s) nil this : BisimO R (destruct (cons x s)) (destruct nil) ⊢ head (cons x s) = head nil ∧ R (tail (cons x s)) (tail nil) [PROOFSTEP] rw [destruct_nil, destruct_cons] at this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s' : Seq α x : α s : Seq α r✝ : R (cons x s) nil this : BisimO R (some (x, s)) none ⊢ head (cons x s) = head nil ∧ R (tail (cons x s)) (tail nil) [PROOFSTEP] exact False.elim this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s s' : Seq α ⊢ ∀ (x : α) (s : Seq α) (x_1 : α) (s_1 : Seq α), R (cons x_1 s_1) (cons x s) → BisimO R (destruct (cons x_1 s_1)) (destruct (cons x s)) → head (cons x_1 s_1) = head (cons x s) ∧ R (tail (cons x_1 s_1)) (tail (cons x s)) [PROOFSTEP] intro x s x' s' _ this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s'✝ : Seq α x : α s : Seq α x' : α s' : Seq α r✝ : R (cons x' s') (cons x s) this : BisimO R (destruct (cons x' s')) (destruct (cons x s)) ⊢ head (cons x' s') = head (cons x s) ∧ R (tail (cons x' s')) (tail (cons x s)) [PROOFSTEP] rw [destruct_cons, destruct_cons] at this [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s'✝ : Seq α x : α s : Seq α x' : α s' : Seq α r✝ : R (cons x' s') (cons x s) this : BisimO R (some (x', s')) (some (x, s)) ⊢ head (cons x' s') = head (cons x s) ∧ R (tail (cons x' s')) (tail (cons x s)) [PROOFSTEP] rw [head_cons, head_cons, tail_cons, tail_cons] [GOAL] α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s'✝ : Seq α x : α s : Seq α x' : α s' : Seq α r✝ : R (cons x' s') (cons x s) this : BisimO R (some (x', s')) (some (x, s)) ⊢ some x' = some x ∧ R s' s [PROOFSTEP] cases' this with h1 h2 [GOAL] case intro α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s'✝ : Seq α x : α s : Seq α x' : α s' : Seq α r✝ : R (cons x' s') (cons x s) h1 : x' = x h2 : R s' s ⊢ some x' = some x ∧ R s' s [PROOFSTEP] constructor [GOAL] case intro.left α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s'✝ : Seq α x : α s : Seq α x' : α s' : Seq α r✝ : R (cons x' s') (cons x s) h1 : x' = x h2 : R s' s ⊢ some x' = some x case intro.right α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s'✝ : Seq α x : α s : Seq α x' : α s' : Seq α r✝ : R (cons x' s') (cons x s) h1 : x' = x h2 : R s' s ⊢ R s' s [PROOFSTEP] rw [h1] [GOAL] case intro.right α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ t₁ t₂ : Stream' (Option α) e : ∃ s s', ↑s = t₁ ∧ ↑s' = t₂ ∧ R s s' s✝ s'✝ : Seq α x : α s : Seq α x' : α s' : Seq α r✝ : R (cons x' s') (cons x s) h1 : x' = x h2 : R s' s ⊢ R s' s [PROOFSTEP] exact h2 [GOAL] case a.a α : Type u β : Type v γ : Type w R : Seq α → Seq α → Prop bisim : IsBisimulation R s₁ s₂ : Seq α r : R s₁ s₂ ⊢ ∃ s s', ↑s = ↑s₁ ∧ ↑s' = ↑s₂ ∧ R s s' [PROOFSTEP] exact ⟨s₁, s₂, rfl, rfl, r⟩ [GOAL] α : Type u β : Type v γ : Type w s : Seq α f g : Seq α → Seq β H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s)) ⊢ f s = g s [PROOFSTEP] refine' eq_of_bisim (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) _ ⟨s, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s : Seq α f g : Seq α → Seq β H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s)) ⊢ IsBisimulation fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s [PROOFSTEP] intro s1 s2 h [GOAL] α : Type u β : Type v γ : Type w s : Seq α f g : Seq α → Seq β H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s)) s1 s2 : Seq β h : ∃ s, s1 = f s ∧ s2 = g s ⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct s1) (destruct s2) [PROOFSTEP] rcases h with ⟨s, h1, h2⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w s✝ : Seq α f g : Seq α → Seq β H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s)) s1 s2 : Seq β s : Seq α h1 : s1 = f s h2 : s2 = g s ⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct s1) (destruct s2) [PROOFSTEP] rw [h1, h2] [GOAL] case intro.intro α : Type u β : Type v γ : Type w s✝ : Seq α f g : Seq α → Seq β H : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s)) s1 s2 : Seq β s : Seq α h1 : s1 = f s h2 : s2 = g s ⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s)) [PROOFSTEP] apply H [GOAL] α : Type u β : Type v γ : Type w l : List α n : ℕ h : List.get? l n = none ⊢ List.get? l (n + 1) = none [PROOFSTEP] rw [List.get?_eq_none] at h ⊢ [GOAL] α : Type u β : Type v γ : Type w l : List α n : ℕ h : List.length l ≤ n ⊢ List.length l ≤ n + 1 [PROOFSTEP] exact h.trans (Nat.le_succ n) [GOAL] α : Type u β : Type v γ : Type w a : α l : List α ⊢ ↑(a :: l) = cons a ↑l [PROOFSTEP] ext1 (_ | n) [GOAL] case h.zero α : Type u β : Type v γ : Type w a : α l : List α ⊢ get? (↑(a :: l)) Nat.zero = get? (cons a ↑l) Nat.zero [PROOFSTEP] rfl [GOAL] case h.succ α : Type u β : Type v γ : Type w a : α l : List α n : ℕ ⊢ get? (↑(a :: l)) (Nat.succ n) = get? (cons a ↑l) (Nat.succ n) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w s : Stream' α n : ℕ h : map some s n = none ⊢ map some s (n + 1) = none [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : IsSeq s n : ℕ ⊢ Stream'.map (Option.map f) s n = none → Stream'.map (Option.map f) s (n + 1) = none [PROOFSTEP] dsimp [Stream'.map, Stream'.nth] [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : IsSeq s n : ℕ ⊢ Option.map f (s n) = none → Option.map f (s (n + 1)) = none [PROOFSTEP] induction' e : s n with e [GOAL] case none α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : IsSeq s n : ℕ x✝ : Option α e✝ : s n = x✝ e : s n = none ⊢ Option.map f none = none → Option.map f (s (n + 1)) = none [PROOFSTEP] intro [GOAL] case some α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : IsSeq s n : ℕ x✝ : Option α e✝¹ : s n = x✝ e✝ : α e : s n = some e✝ ⊢ Option.map f (some e✝) = none → Option.map f (s (n + 1)) = none [PROOFSTEP] intro [GOAL] case none α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : IsSeq s n : ℕ x✝ : Option α e✝ : s n = x✝ e : s n = none a✝ : Option.map f none = none ⊢ Option.map f (s (n + 1)) = none [PROOFSTEP] rw [al e] [GOAL] case none α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : IsSeq s n : ℕ x✝ : Option α e✝ : s n = x✝ e : s n = none a✝ : Option.map f none = none ⊢ Option.map f none = none [PROOFSTEP] assumption [GOAL] case some α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : IsSeq s n : ℕ x✝ : Option α e✝¹ : s n = x✝ e✝ : α e : s n = some e✝ a✝ : Option.map f (some e✝) = none ⊢ Option.map f (s (n + 1)) = none [PROOFSTEP] contradiction [GOAL] α : Type u β : Type v γ : Type w s : Seq α ⊢ append nil s = s [PROOFSTEP] apply coinduction2 [GOAL] case H α : Type u β : Type v γ : Type w s : Seq α ⊢ ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = append nil s ∧ s2 = s) (destruct (append nil s)) (destruct s) [PROOFSTEP] intro s [GOAL] case H α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ BisimO (fun s1 s2 => ∃ s, s1 = append nil s ∧ s2 = s) (destruct (append nil s)) (destruct s) [PROOFSTEP] dsimp [append] [GOAL] case H α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ match destruct (corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s)), destruct s with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1, s = corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s_1) ∧ s' = s_1 | x, x_1 => False [PROOFSTEP] rw [corec_eq] [GOAL] case H α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ match omap (corec fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (match destruct (nil, s).fst with | none => match destruct (nil, s).snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', (nil, s).snd)), destruct s with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1, s = corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s_1) ∧ s' = s_1 | x, x_1 => False [PROOFSTEP] dsimp [append] [GOAL] case H α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ match match match destruct s with | none => none | some (a, b) => some (a, nil, b) with | none => none | some (a, b) => some (a, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) b), destruct s with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1, s = corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s_1) ∧ s' = s_1 | x, x_1 => False [PROOFSTEP] apply recOn s _ _ [GOAL] α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ match match match destruct nil with | none => none | some (a, b) => some (a, nil, b) with | none => none | some (a, b) => some (a, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) b), destruct nil with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1, s = corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s_1) ∧ s' = s_1 | x, x_1 => False [PROOFSTEP] trivial [GOAL] α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ ∀ (x : α) (s : Seq α), match match match destruct (cons x s) with | none => none | some (a, b) => some (a, nil, b) with | none => none | some (a, b) => some (a, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) b), destruct (cons x s) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1, s = corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s_1) ∧ s' = s_1 | x, x_1 => False [PROOFSTEP] intro x s [GOAL] α : Type u β : Type v γ : Type w s✝¹ s✝ : Seq α x : α s : Seq α ⊢ match match match destruct (cons x s) with | none => none | some (a, b) => some (a, nil, b) with | none => none | some (a, b) => some (a, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) b), destruct (cons x s) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1, s = corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s_1) ∧ s' = s_1 | x, x_1 => False [PROOFSTEP] rw [destruct_cons] [GOAL] α : Type u β : Type v γ : Type w s✝¹ s✝ : Seq α x : α s : Seq α ⊢ match match match some (x, s) with | none => none | some (a, b) => some (a, nil, b) with | none => none | some (a, b) => some (a, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) b), some (x, s) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1, s = corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s_1) ∧ s' = s_1 | x, x_1 => False [PROOFSTEP] dsimp [GOAL] α : Type u β : Type v γ : Type w s✝¹ s✝ : Seq α x : α s : Seq α ⊢ x = x ∧ ∃ s_1, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s) = corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (nil, s_1) ∧ s = s_1 [PROOFSTEP] exact ⟨rfl, s, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w a : α s t : Seq α ⊢ destruct (append (cons a s) t) = some (a, append s t) [PROOFSTEP] dsimp [append] [GOAL] α : Type u β : Type v γ : Type w a : α s t : Seq α ⊢ destruct (corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (cons a s, t)) = some (a, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (s, t)) [PROOFSTEP] rw [corec_eq] [GOAL] α : Type u β : Type v γ : Type w a : α s t : Seq α ⊢ omap (corec fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (match destruct (cons a s, t).fst with | none => match destruct (cons a s, t).snd with | none => none | some (a, b) => some (a, nil, b) | some (a_1, s₁') => some (a_1, s₁', (cons a s, t).snd)) = some (a, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (s, t)) [PROOFSTEP] dsimp [append] [GOAL] α : Type u β : Type v γ : Type w a : α s t : Seq α ⊢ (match match destruct (cons a s) with | none => match destruct t with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', t) with | none => none | some (a, b) => some (a, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) b)) = some (a, corec (fun x => match destruct x.fst with | none => match destruct x.snd with | none => none | some (a, b) => some (a, nil, b) | some (a, s₁') => some (a, s₁', x.snd)) (s, t)) [PROOFSTEP] rw [destruct_cons] [GOAL] α : Type u β : Type v γ : Type w s : Seq α ⊢ append s nil = s [PROOFSTEP] apply coinduction2 s [GOAL] case H α : Type u β : Type v γ : Type w s : Seq α ⊢ ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append s nil)) (destruct s) [PROOFSTEP] intro s [GOAL] case H α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append s nil)) (destruct s) [PROOFSTEP] apply recOn s _ _ [GOAL] α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append nil nil)) (destruct nil) [PROOFSTEP] trivial [GOAL] α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ ∀ (x : α) (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append (cons x s) nil)) (destruct (cons x s)) [PROOFSTEP] intro x s [GOAL] α : Type u β : Type v γ : Type w s✝¹ s✝ : Seq α x : α s : Seq α ⊢ BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (destruct (append (cons x s) nil)) (destruct (cons x s)) [PROOFSTEP] rw [cons_append, destruct_cons, destruct_cons] [GOAL] α : Type u β : Type v γ : Type w s✝¹ s✝ : Seq α x : α s : Seq α ⊢ BisimO (fun s1 s2 => ∃ s, s1 = append s nil ∧ s2 = s) (some (x, append s nil)) (some (x, s)) [PROOFSTEP] dsimp [GOAL] α : Type u β : Type v γ : Type w s✝¹ s✝ : Seq α x : α s : Seq α ⊢ x = x ∧ ∃ s_1, append s nil = append s_1 nil ∧ s = s_1 [PROOFSTEP] exact ⟨rfl, s, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s t u : Seq α ⊢ append (append s t) u = append s (append t u) [PROOFSTEP] apply eq_of_bisim fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) [GOAL] case bisim α : Type u β : Type v γ : Type w s t u : Seq α ⊢ IsBisimulation fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) [PROOFSTEP] intro s1 s2 h [GOAL] case bisim α : Type u β : Type v γ : Type w s t u s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) ⊢ BisimO (fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)) (destruct s1) (destruct s2) [PROOFSTEP] exact match s1, s2, h with | _, _, ⟨s, t, u, rfl, rfl⟩ => by apply recOn s <;> simp · apply recOn t <;> simp · apply recOn u <;> simp · intro _ u refine' ⟨nil, nil, u, _, _⟩ <;> simp · intro _ t refine' ⟨nil, t, u, _, _⟩ <;> simp · intro _ s exact ⟨s, t, u, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ BisimO (fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)) (destruct (append (append s t) u)) (destruct (append s (append t u))) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ BisimO (fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)) (destruct (append (append nil t) u)) (destruct (append nil (append t u))) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ ∀ (x : α) (s : Seq α), BisimO (fun s1 s2 => ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)) (destruct (append (append (cons x s) t) u)) (destruct (append (cons x s) (append t u))) [PROOFSTEP] simp [GOAL] case h1 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ match destruct (append t u), destruct (append t u) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u) | x, x_1 => False [PROOFSTEP] apply recOn t [GOAL] case h1.h1 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ match destruct (append nil u), destruct (append nil u) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ ∀ (x : α) (s : Seq α), match destruct (append (cons x s) u), destruct (append (cons x s) u) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h1 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ match destruct u, destruct u with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u) | x, x_1 => False [PROOFSTEP] apply recOn u [GOAL] case h1.h1.h1 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ match destruct nil, destruct nil with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h1.h2 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ ∀ (x : α) (s : Seq α), match destruct (cons x s), destruct (cons x s) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t u, s = append (append s_1 t) u ∧ s' = append s_1 (append t u) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h1.h2 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ α → ∀ (s : Seq α), ∃ s_1 t u, s = append (append s_1 t) u ∧ s = append s_1 (append t u) [PROOFSTEP] intro _ u [GOAL] case h1.h1.h2 α : Type u β : Type v γ : Type w s✝ t✝ u✝¹ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u✝ : Seq α x✝ : α u : Seq α ⊢ ∃ s t u_1, u = append (append s t) u_1 ∧ u = append s (append t u_1) [PROOFSTEP] refine' ⟨nil, nil, u, _, _⟩ [GOAL] case h1.h1.h2.refine'_1 α : Type u β : Type v γ : Type w s✝ t✝ u✝¹ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u✝ : Seq α x✝ : α u : Seq α ⊢ u = append (append nil nil) u [PROOFSTEP] simp [GOAL] case h1.h1.h2.refine'_2 α : Type u β : Type v γ : Type w s✝ t✝ u✝¹ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u✝ : Seq α x✝ : α u : Seq α ⊢ u = append nil (append nil u) [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ α → ∀ (s : Seq α), ∃ s_1 t u_1, append s u = append (append s_1 t) u_1 ∧ append s u = append s_1 (append t u_1) [PROOFSTEP] intro _ t [GOAL] case h1.h2 α : Type u β : Type v γ : Type w s✝ t✝¹ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t✝ u : Seq α x✝ : α t : Seq α ⊢ ∃ s t_1 u_1, append t u = append (append s t_1) u_1 ∧ append t u = append s (append t_1 u_1) [PROOFSTEP] refine' ⟨nil, t, u, _, _⟩ [GOAL] case h1.h2.refine'_1 α : Type u β : Type v γ : Type w s✝ t✝¹ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t✝ u : Seq α x✝ : α t : Seq α ⊢ append t u = append (append nil t) u [PROOFSTEP] simp [GOAL] case h1.h2.refine'_2 α : Type u β : Type v γ : Type w s✝ t✝¹ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t✝ u : Seq α x✝ : α t : Seq α ⊢ append t u = append nil (append t u) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w s✝ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s t u : Seq α ⊢ α → ∀ (s : Seq α), ∃ s_1 t_1 u_1, append (append s t) u = append (append s_1 t_1) u_1 ∧ append s (append t u) = append s_1 (append t_1 u_1) [PROOFSTEP] intro _ s [GOAL] case h2 α : Type u β : Type v γ : Type w s✝¹ t✝ u✝ s1 s2 : Seq α h : ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u) s✝ t u : Seq α x✝ : α s : Seq α ⊢ ∃ s_1 t_1 u_1, append (append s t) u = append (append s_1 t_1) u_1 ∧ append s (append t u) = append s_1 (append t_1 u_1) [PROOFSTEP] exact ⟨s, t, u, rfl, rfl⟩ [GOAL] case r α : Type u β : Type v γ : Type w s t u : Seq α ⊢ ∃ s_1 t_1 u_1, append (append s t) u = append (append s_1 t_1) u_1 ∧ append s (append t u) = append s_1 (append t_1 u_1) [PROOFSTEP] exact ⟨s, t, u, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w f : α → β a : α s : Stream' (Option α) al : IsSeq s ⊢ map f (cons a { val := s, property := al }) = cons (f a) (map f { val := s, property := al }) [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w f : α → β a : α s : Stream' (Option α) al : IsSeq s ⊢ ↑(map f (cons a { val := s, property := al })) = ↑(cons (f a) (map f { val := s, property := al })) [PROOFSTEP] dsimp [cons, map] [GOAL] case a α : Type u β : Type v γ : Type w f : α → β a : α s : Stream' (Option α) al : IsSeq s ⊢ Stream'.map (Option.map f) (some a :: s) = some (f a) :: Stream'.map (Option.map f) s [PROOFSTEP] rw [Stream'.map_cons] [GOAL] case a α : Type u β : Type v γ : Type w f : α → β a : α s : Stream' (Option α) al : IsSeq s ⊢ Option.map f (some a) :: Stream'.map (Option.map f) s = some (f a) :: Stream'.map (Option.map f) s [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w s : Stream' (Option α) al : IsSeq s ⊢ map id { val := s, property := al } = { val := s, property := al } [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w s : Stream' (Option α) al : IsSeq s ⊢ ↑(map id { val := s, property := al }) = ↑{ val := s, property := al } [PROOFSTEP] dsimp [map] [GOAL] case a α : Type u β : Type v γ : Type w s : Stream' (Option α) al : IsSeq s ⊢ Stream'.map (Option.map id) s = s [PROOFSTEP] rw [Option.map_id, Stream'.map_id] [GOAL] α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : IsSeq s ⊢ map f (tail { val := s, property := al }) = tail (map f { val := s, property := al }) [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w f : α → β s : Stream' (Option α) al : IsSeq s ⊢ ↑(map f (tail { val := s, property := al })) = ↑(tail (map f { val := s, property := al })) [PROOFSTEP] dsimp [tail, map] [GOAL] α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : IsSeq s ⊢ map (g ∘ f) { val := s, property := al } = map g (map f { val := s, property := al }) [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : IsSeq s ⊢ ↑(map (g ∘ f) { val := s, property := al }) = ↑(map g (map f { val := s, property := al })) [PROOFSTEP] dsimp [map] [GOAL] case a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : IsSeq s ⊢ Stream'.map (Option.map (g ∘ f)) s = Stream'.map (Option.map g ∘ Option.map f) s [PROOFSTEP] apply congr_arg fun f : _ → Option γ => Stream'.map f s [GOAL] case a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : IsSeq s ⊢ Option.map (g ∘ f) = Option.map g ∘ Option.map f [PROOFSTEP] ext ⟨⟩ [GOAL] case a.h.none.a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : IsSeq s a✝ : γ ⊢ a✝ ∈ Option.map (g ∘ f) none ↔ a✝ ∈ (Option.map g ∘ Option.map f) none [PROOFSTEP] rfl [GOAL] case a.h.some.a α : Type u β : Type v γ : Type w f : α → β g : β → γ s : Stream' (Option α) al : IsSeq s val✝ : α a✝ : γ ⊢ a✝ ∈ Option.map (g ∘ f) (some val✝) ↔ a✝ ∈ (Option.map g ∘ Option.map f) (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w f : α → β s t : Seq α ⊢ map f (append s t) = append (map f s) (map f t) [PROOFSTEP] apply eq_of_bisim (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)) _ ⟨s, t, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w f : α → β s t : Seq α ⊢ IsBisimulation fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) [PROOFSTEP] intro s1 s2 h [GOAL] α : Type u β : Type v γ : Type w f : α → β s t : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) ⊢ BisimO (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)) (destruct s1) (destruct s2) [PROOFSTEP] exact match s1, s2, h with | _, _, ⟨s, t, rfl, rfl⟩ => by apply recOn s <;> simp · apply recOn t <;> simp · intro _ t refine' ⟨nil, t, _, _⟩ <;> simp · intro _ s refine' ⟨s, t, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w f : α → β s✝ t✝ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t : Seq α ⊢ BisimO (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)) (destruct (map f (append s t))) (destruct (append (map f s) (map f t))) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β s✝ t✝ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t : Seq α ⊢ BisimO (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)) (destruct (map f (append nil t))) (destruct (append (map f nil) (map f t))) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β s✝ t✝ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t : Seq α ⊢ ∀ (x : α) (s : Seq α), BisimO (fun s1 s2 => ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)) (destruct (map f (append (cons x s) t))) (destruct (append (map f (cons x s)) (map f t))) [PROOFSTEP] simp [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β s✝ t✝ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t : Seq α ⊢ match destruct (map f t), destruct (map f t) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t, s = map f (append s_1 t) ∧ s' = append (map f s_1) (map f t) | x, x_1 => False [PROOFSTEP] apply recOn t [GOAL] case h1.h1 α : Type u β : Type v γ : Type w f : α → β s✝ t✝ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t : Seq α ⊢ match destruct (map f nil), destruct (map f nil) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t, s = map f (append s_1 t) ∧ s' = append (map f s_1) (map f t) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w f : α → β s✝ t✝ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t : Seq α ⊢ ∀ (x : α) (s : Seq α), match destruct (map f (cons x s)), destruct (map f (cons x s)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 t, s = map f (append s_1 t) ∧ s' = append (map f s_1) (map f t) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w f : α → β s✝ t✝ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t : Seq α ⊢ α → ∀ (s : Seq α), ∃ s_1 t, map f s = map f (append s_1 t) ∧ map f s = append (map f s_1) (map f t) [PROOFSTEP] intro _ t [GOAL] case h1.h2 α : Type u β : Type v γ : Type w f : α → β s✝ t✝¹ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t✝ : Seq α x✝ : α t : Seq α ⊢ ∃ s t_1, map f t = map f (append s t_1) ∧ map f t = append (map f s) (map f t_1) [PROOFSTEP] refine' ⟨nil, t, _, _⟩ [GOAL] case h1.h2.refine'_1 α : Type u β : Type v γ : Type w f : α → β s✝ t✝¹ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t✝ : Seq α x✝ : α t : Seq α ⊢ map f t = map f (append nil t) [PROOFSTEP] simp [GOAL] case h1.h2.refine'_2 α : Type u β : Type v γ : Type w f : α → β s✝ t✝¹ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t✝ : Seq α x✝ : α t : Seq α ⊢ map f t = append (map f nil) (map f t) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β s✝ t✝ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s t : Seq α ⊢ α → ∀ (s : Seq α), ∃ s_1 t_1, map f (append s t) = map f (append s_1 t_1) ∧ append (map f s) (map f t) = append (map f s_1) (map f t_1) [PROOFSTEP] intro _ s [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β s✝¹ t✝ : Seq α s1 s2 : Seq β h : ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t) s✝ t : Seq α x✝ : α s : Seq α ⊢ ∃ s_1 t_1, map f (append s t) = map f (append s_1 t_1) ∧ append (map f s) (map f t) = append (map f s_1) (map f t_1) [PROOFSTEP] refine' ⟨s, t, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w a : α S : Seq (Seq1 α) ⊢ destruct (join (cons (a, nil) S)) = some (a, join S) [PROOFSTEP] simp [join] [GOAL] α : Type u β : Type v γ : Type w a b : α s : Seq α S : Seq (Seq1 α) ⊢ destruct (join (cons (a, cons b s) S)) = some (a, join (cons (b, s) S)) [PROOFSTEP] simp [join] [GOAL] α : Type u β : Type v γ : Type w a : α s : Seq α S : Seq (Seq1 α) ⊢ join (cons (a, s) S) = cons a (append s (join S)) [PROOFSTEP] apply eq_of_bisim (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) _ (Or.inr ⟨a, s, S, rfl, rfl⟩) [GOAL] α : Type u β : Type v γ : Type w a : α s : Seq α S : Seq (Seq1 α) ⊢ IsBisimulation fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) [PROOFSTEP] intro s1 s2 h [GOAL] α : Type u β : Type v γ : Type w a : α s : Seq α S : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) ⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct s1) (destruct s2) [PROOFSTEP] exact match s1, s2, h with | s, _, Or.inl <| Eq.refl s => by apply recOn s; · trivial · intro x s rw [destruct_cons] exact ⟨rfl, Or.inl rfl⟩ | _, _, Or.inr ⟨a, s, S, rfl, rfl⟩ => by apply recOn s · simp [join_cons_cons, join_cons_nil] · intro x s simp [join_cons_cons, join_cons_nil] refine' Or.inr ⟨x, s, S, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w a : α s✝ : Seq α S : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) s : Seq α ⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct s) (destruct s) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w a : α s✝ : Seq α S : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) s : Seq α ⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct nil) (destruct nil) [PROOFSTEP] trivial [GOAL] case h2 α : Type u β : Type v γ : Type w a : α s✝ : Seq α S : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) s : Seq α ⊢ ∀ (x : α) (s : Seq α), BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct (cons x s)) (destruct (cons x s)) [PROOFSTEP] intro x s [GOAL] case h2 α : Type u β : Type v γ : Type w a : α s✝¹ : Seq α S : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) s✝ : Seq α x : α s : Seq α ⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct (cons x s)) (destruct (cons x s)) [PROOFSTEP] rw [destruct_cons] [GOAL] case h2 α : Type u β : Type v γ : Type w a : α s✝¹ : Seq α S : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) s✝ : Seq α x : α s : Seq α ⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (some (x, s)) (some (x, s)) [PROOFSTEP] exact ⟨rfl, Or.inl rfl⟩ [GOAL] α : Type u β : Type v γ : Type w a✝ : α s✝ : Seq α S✝ : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) a : α s : Seq α S : Seq (Seq1 α) ⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct (join (cons (a, s) S))) (destruct (cons a (append s (join S)))) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w a✝ : α s✝ : Seq α S✝ : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) a : α s : Seq α S : Seq (Seq1 α) ⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct (join (cons (a, nil) S))) (destruct (cons a (append nil (join S)))) [PROOFSTEP] simp [join_cons_cons, join_cons_nil] [GOAL] case h2 α : Type u β : Type v γ : Type w a✝ : α s✝ : Seq α S✝ : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) a : α s : Seq α S : Seq (Seq1 α) ⊢ ∀ (x : α) (s : Seq α), BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct (join (cons (a, cons x s) S))) (destruct (cons a (append (cons x s) (join S)))) [PROOFSTEP] intro x s [GOAL] case h2 α : Type u β : Type v γ : Type w a✝ : α s✝¹ : Seq α S✝ : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) a : α s✝ : Seq α S : Seq (Seq1 α) x : α s : Seq α ⊢ BisimO (fun s1 s2 => s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) (destruct (join (cons (a, cons x s) S))) (destruct (cons a (append (cons x s) (join S)))) [PROOFSTEP] simp [join_cons_cons, join_cons_nil] [GOAL] case h2 α : Type u β : Type v γ : Type w a✝ : α s✝¹ : Seq α S✝ : Seq (Seq1 α) s1 s2 : Seq α h : s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S)) a : α s✝ : Seq α S : Seq (Seq1 α) x : α s : Seq α ⊢ join (cons (x, s) S) = cons x (append s (join S)) ∨ ∃ a s_1 S_1, join (cons (x, s) S) = join (cons (a, s_1) S_1) ∧ cons x (append s (join S)) = cons a (append s_1 (join S_1)) [PROOFSTEP] refine' Or.inr ⟨x, s, S, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w S T : Seq (Seq1 α) ⊢ join (append S T) = append (join S) (join T) [PROOFSTEP] apply eq_of_bisim fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) [GOAL] case bisim α : Type u β : Type v γ : Type w S T : Seq (Seq1 α) ⊢ IsBisimulation fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) [PROOFSTEP] intro s1 s2 h [GOAL] case bisim α : Type u β : Type v γ : Type w S T : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) ⊢ BisimO (fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))) (destruct s1) (destruct s2) [PROOFSTEP] exact match s1, s2, h with | _, _, ⟨s, S, T, rfl, rfl⟩ => by apply recOn s <;> simp · apply recOn S <;> simp · apply recOn T · simp · intro s T cases' s with a s; simp refine' ⟨s, nil, T, _, _⟩ <;> simp · intro s S cases' s with a s; simp exact ⟨s, S, T, rfl, rfl⟩ · intro _ s exact ⟨s, S, T, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ BisimO (fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))) (destruct (append s (join (append S T)))) (destruct (append s (append (join S) (join T)))) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ BisimO (fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))) (destruct (append nil (join (append S T)))) (destruct (append nil (append (join S) (join T)))) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ ∀ (x : α) (s : Seq α), BisimO (fun s1 s2 => ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))) (destruct (append (cons x s) (join (append S T)))) (destruct (append (cons x s) (append (join S) (join T)))) [PROOFSTEP] simp [GOAL] case h1 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ match destruct (join (append S T)), destruct (append (join S) (join T)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] apply recOn S [GOAL] case h1.h1 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ match destruct (join (append nil T)), destruct (append (join nil) (join T)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)), match destruct (join (append (cons x s) T)), destruct (append (join (cons x s)) (join T)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h1 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ match destruct (join T), destruct (join T) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] apply recOn T [GOAL] case h1.h1.h1 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ match destruct (join nil), destruct (join nil) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h1.h2 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)), match destruct (join (cons x s)), destruct (join (cons x s)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] intro s T [GOAL] case h1.h1.h2 α : Type u β : Type v γ : Type w S✝ T✝¹ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s✝ : Seq α S T✝ : Seq (Seq1 α) s : Seq1 α T : Seq (Seq1 α) ⊢ match destruct (join (cons s T)), destruct (join (cons s T)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] cases' s with a s [GOAL] case h1.h1.h2.mk α : Type u β : Type v γ : Type w S✝ T✝¹ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s✝ : Seq α S T✝ T : Seq (Seq1 α) a : α s : Seq α ⊢ match destruct (join (cons (a, s) T)), destruct (join (cons (a, s) T)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h1.h2.mk α : Type u β : Type v γ : Type w S✝ T✝¹ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s✝ : Seq α S T✝ T : Seq (Seq1 α) a : α s : Seq α ⊢ ∃ s_1 S T_1, append s (join T) = append s_1 (join (append S T_1)) ∧ append s (join T) = append s_1 (append (join S) (join T_1)) [PROOFSTEP] refine' ⟨s, nil, T, _, _⟩ [GOAL] case h1.h1.h2.mk.refine'_1 α : Type u β : Type v γ : Type w S✝ T✝¹ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s✝ : Seq α S T✝ T : Seq (Seq1 α) a : α s : Seq α ⊢ append s (join T) = append s (join (append nil T)) [PROOFSTEP] simp [GOAL] case h1.h1.h2.mk.refine'_2 α : Type u β : Type v γ : Type w S✝ T✝¹ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s✝ : Seq α S T✝ T : Seq (Seq1 α) a : α s : Seq α ⊢ append s (join T) = append s (append (join nil) (join T)) [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)), match destruct (join (cons x (append s T))), destruct (append (join (cons x s)) (join T)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] intro s S [GOAL] case h1.h2 α : Type u β : Type v γ : Type w S✝¹ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s✝ : Seq α S✝ T : Seq (Seq1 α) s : Seq1 α S : Seq (Seq1 α) ⊢ match destruct (join (cons s (append S T))), destruct (append (join (cons s S)) (join T)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] cases' s with a s [GOAL] case h1.h2.mk α : Type u β : Type v γ : Type w S✝¹ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s✝ : Seq α S✝ T S : Seq (Seq1 α) a : α s : Seq α ⊢ match destruct (join (cons (a, s) (append S T))), destruct (append (join (cons (a, s) S)) (join T)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S T, s = append s_1 (join (append S T)) ∧ s' = append s_1 (append (join S) (join T)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2.mk α : Type u β : Type v γ : Type w S✝¹ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s✝ : Seq α S✝ T S : Seq (Seq1 α) a : α s : Seq α ⊢ ∃ s_1 S_1 T_1, append s (join (append S T)) = append s_1 (join (append S_1 T_1)) ∧ append s (append (join S) (join T)) = append s_1 (append (join S_1) (join T_1)) [PROOFSTEP] exact ⟨s, S, T, rfl, rfl⟩ [GOAL] case h2 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s : Seq α S T : Seq (Seq1 α) ⊢ α → ∀ (s : Seq α), ∃ s_1 S_1 T_1, append s (join (append S T)) = append s_1 (join (append S_1 T_1)) ∧ append s (append (join S) (join T)) = append s_1 (append (join S_1) (join T_1)) [PROOFSTEP] intro _ s [GOAL] case h2 α : Type u β : Type v γ : Type w S✝ T✝ : Seq (Seq1 α) s1 s2 : Seq α h : ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T)) s✝ : Seq α S T : Seq (Seq1 α) x✝ : α s : Seq α ⊢ ∃ s_1 S_1 T_1, append s (join (append S T)) = append s_1 (join (append S_1 T_1)) ∧ append s (append (join S) (join T)) = append s_1 (append (join S_1) (join T_1)) [PROOFSTEP] exact ⟨s, S, T, rfl, rfl⟩ [GOAL] case r α : Type u β : Type v γ : Type w S T : Seq (Seq1 α) ⊢ ∃ s S_1 T_1, join (append S T) = append s (join (append S_1 T_1)) ∧ append (join S) (join T) = append s (append (join S_1) (join T_1)) [PROOFSTEP] refine' ⟨nil, S, T, _, _⟩ [GOAL] case r.refine'_1 α : Type u β : Type v γ : Type w S T : Seq (Seq1 α) ⊢ join (append S T) = append nil (join (append S T)) [PROOFSTEP] simp [GOAL] case r.refine'_2 α : Type u β : Type v γ : Type w S T : Seq (Seq1 α) ⊢ append (join S) (join T) = append nil (append (join S) (join T)) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w a : α s : Stream' α ⊢ ↑(a :: s) = cons a ↑s [PROOFSTEP] apply Subtype.eq [GOAL] case a α : Type u β : Type v γ : Type w a : α s : Stream' α ⊢ ↑↑(a :: s) = ↑(cons a ↑s) [PROOFSTEP] simp [ofStream, cons] [GOAL] case a α : Type u β : Type v γ : Type w a : α s : Stream' α ⊢ Stream'.map some (a :: s) = some a :: Stream'.map some s [PROOFSTEP] rw [Stream'.map_cons] [GOAL] α : Type u β : Type v γ : Type w l l' : List α ⊢ ↑(l ++ l') = append ↑l ↑l' [PROOFSTEP] induction l [GOAL] case nil α : Type u β : Type v γ : Type w l' : List α ⊢ ↑([] ++ l') = append ↑[] ↑l' [PROOFSTEP] simp [*] [GOAL] case cons α : Type u β : Type v γ : Type w l' : List α head✝ : α tail✝ : List α tail_ih✝ : ↑(tail✝ ++ l') = append ↑tail✝ ↑l' ⊢ ↑(head✝ :: tail✝ ++ l') = append ↑(head✝ :: tail✝) ↑l' [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v γ : Type w l : List α s : Stream' α ⊢ ↑(l ++ₛ s) = append ↑l ↑s [PROOFSTEP] induction l [GOAL] case nil α : Type u β : Type v γ : Type w s : Stream' α ⊢ ↑([] ++ₛ s) = append ↑[] ↑s [PROOFSTEP] simp [*, Stream'.nil_append_stream, Stream'.cons_append_stream] [GOAL] case cons α : Type u β : Type v γ : Type w s : Stream' α head✝ : α tail✝ : List α tail_ih✝ : ↑(tail✝ ++ₛ s) = append ↑tail✝ ↑s ⊢ ↑(head✝ :: tail✝ ++ₛ s) = append ↑(head✝ :: tail✝) ↑s [PROOFSTEP] simp [*, Stream'.nil_append_stream, Stream'.cons_append_stream] [GOAL] α : Type u β : Type v γ : Type w s : Seq α n : ℕ ⊢ drop (tail s) n = drop s (n + 1) [PROOFSTEP] rw [add_comm] [GOAL] α : Type u β : Type v γ : Type w s : Seq α n : ℕ ⊢ drop (tail s) n = drop s (1 + n) [PROOFSTEP] symm [GOAL] α : Type u β : Type v γ : Type w s : Seq α n : ℕ ⊢ drop s (1 + n) = drop (tail s) n [PROOFSTEP] apply dropn_add [GOAL] α : Type u β : Type v γ : Type w s : Seq α n : ℕ ⊢ head (drop s n) = get? s n [PROOFSTEP] induction' n with n IH generalizing s [GOAL] case zero α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ head (drop s Nat.zero) = get? s Nat.zero [PROOFSTEP] rfl [GOAL] case succ α : Type u β : Type v γ : Type w s✝ : Seq α n : ℕ IH : ∀ (s : Seq α), head (drop s n) = get? s n s : Seq α ⊢ head (drop s (Nat.succ n)) = get? s (Nat.succ n) [PROOFSTEP] rw [Nat.succ_eq_add_one, ← get?_tail, ← dropn_tail] [GOAL] case succ α : Type u β : Type v γ : Type w s✝ : Seq α n : ℕ IH : ∀ (s : Seq α), head (drop s n) = get? s n s : Seq α ⊢ head (drop (tail s) n) = get? (tail s) n [PROOFSTEP] apply IH [GOAL] α : Type u β : Type v γ : Type w f : α → β b : β s : Seq α h : b ∈ map f s ⊢ ∃ a, a ∈ s ∧ f a = b [PROOFSTEP] match s with | ⟨g, al⟩ => let ⟨o, om, oe⟩ := @Stream'.exists_of_mem_map _ _ (Option.map f) (some b) g h cases' o with a · injection oe · injection oe with h'; exact ⟨a, om, h'⟩ [GOAL] α : Type u β : Type v γ : Type w f : α → β b : β s : Seq α g : Stream' (Option α) al : IsSeq g h : b ∈ map f { val := g, property := al } ⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b [PROOFSTEP] let ⟨o, om, oe⟩ := @Stream'.exists_of_mem_map _ _ (Option.map f) (some b) g h [GOAL] α : Type u β : Type v γ : Type w f : α → β b : β s : Seq α g : Stream' (Option α) al : IsSeq g h : b ∈ map f { val := g, property := al } o : Option α om : o ∈ g oe : Option.map f o = some b ⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b [PROOFSTEP] cases' o with a [GOAL] case none α : Type u β : Type v γ : Type w f : α → β b : β s : Seq α g : Stream' (Option α) al : IsSeq g h : b ∈ map f { val := g, property := al } om : none ∈ g oe : Option.map f none = some b ⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b [PROOFSTEP] injection oe [GOAL] case some α : Type u β : Type v γ : Type w f : α → β b : β s : Seq α g : Stream' (Option α) al : IsSeq g h : b ∈ map f { val := g, property := al } a : α om : some a ∈ g oe : Option.map f (some a) = some b ⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b [PROOFSTEP] injection oe with h' [GOAL] case some α : Type u β : Type v γ : Type w f : α → β b : β s : Seq α g : Stream' (Option α) al : IsSeq g h : b ∈ map f { val := g, property := al } a : α om : some a ∈ g h' : f a = b ⊢ ∃ a, a ∈ { val := g, property := al } ∧ f a = b [PROOFSTEP] exact ⟨a, om, h'⟩ [GOAL] α : Type u β : Type v γ : Type w s₁ s₂ : Seq α a : α h : a ∈ append s₁ s₂ ⊢ a ∈ s₁ ∨ a ∈ s₂ [PROOFSTEP] have := h [GOAL] α : Type u β : Type v γ : Type w s₁ s₂ : Seq α a : α h this : a ∈ append s₁ s₂ ⊢ a ∈ s₁ ∨ a ∈ s₂ [PROOFSTEP] revert this [GOAL] α : Type u β : Type v γ : Type w s₁ s₂ : Seq α a : α h : a ∈ append s₁ s₂ ⊢ a ∈ append s₁ s₂ → a ∈ s₁ ∨ a ∈ s₂ [PROOFSTEP] generalize e : append s₁ s₂ = ss [GOAL] α : Type u β : Type v γ : Type w s₁ s₂ : Seq α a : α h : a ∈ append s₁ s₂ ss : Seq α e : append s₁ s₂ = ss ⊢ a ∈ ss → a ∈ s₁ ∨ a ∈ s₂ [PROOFSTEP] intro h [GOAL] α : Type u β : Type v γ : Type w s₁ s₂ : Seq α a : α h✝ : a ∈ append s₁ s₂ ss : Seq α e : append s₁ s₂ = ss h : a ∈ ss ⊢ a ∈ s₁ ∨ a ∈ s₂ [PROOFSTEP] revert s₁ [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss ⊢ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = ss → a ∈ s₁ ∨ a ∈ s₂ [PROOFSTEP] apply mem_rec_on h _ [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss ⊢ ∀ (b : α) (s' : Seq α), (a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂) → ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = cons b s' → a ∈ s₁ ∨ a ∈ s₂ [PROOFSTEP] intro b s' o s₁ [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α ⊢ a ∈ append s₁ s₂ → append s₁ s₂ = cons b s' → a ∈ s₁ ∨ a ∈ s₂ [PROOFSTEP] apply s₁.recOn _ fun c t₁ => _ [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α ⊢ a ∈ append nil s₂ → append nil s₂ = cons b s' → a ∈ nil ∨ a ∈ s₂ [PROOFSTEP] intro m _ [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α m : a ∈ append nil s₂ e✝ : append nil s₂ = cons b s' ⊢ a ∈ nil ∨ a ∈ s₂ [PROOFSTEP] apply Or.inr [GOAL] case h α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α m : a ∈ append nil s₂ e✝ : append nil s₂ = cons b s' ⊢ a ∈ s₂ [PROOFSTEP] simpa using m [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α ⊢ ∀ (c : α) (t₁ : Seq α), a ∈ append (cons c t₁) s₂ → append (cons c t₁) s₂ = cons b s' → a ∈ cons c t₁ ∨ a ∈ s₂ [PROOFSTEP] intro c t₁ m e [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α c : α t₁ : Seq α m : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' ⊢ a ∈ cons c t₁ ∨ a ∈ s₂ [PROOFSTEP] have this := congr_arg destruct e [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α c : α t₁ : Seq α m : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' this : destruct (append (cons c t₁) s₂) = destruct (cons b s') ⊢ a ∈ cons c t₁ ∨ a ∈ s₂ [PROOFSTEP] cases' show a = c ∨ a ∈ append t₁ s₂ by simpa using m with e' m [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α c : α t₁ : Seq α m : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' this : destruct (append (cons c t₁) s₂) = destruct (cons b s') ⊢ a = c ∨ a ∈ append t₁ s₂ [PROOFSTEP] simpa using m [GOAL] case inl α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α c : α t₁ : Seq α m : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' this : destruct (append (cons c t₁) s₂) = destruct (cons b s') e' : a = c ⊢ a ∈ cons c t₁ ∨ a ∈ s₂ [PROOFSTEP] rw [e'] [GOAL] case inl α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α c : α t₁ : Seq α m : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' this : destruct (append (cons c t₁) s₂) = destruct (cons b s') e' : a = c ⊢ c ∈ cons c t₁ ∨ c ∈ s₂ [PROOFSTEP] exact Or.inl (mem_cons _ _) [GOAL] case inr α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α c : α t₁ : Seq α m✝ : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' this : destruct (append (cons c t₁) s₂) = destruct (cons b s') m : a ∈ append t₁ s₂ ⊢ a ∈ cons c t₁ ∨ a ∈ s₂ [PROOFSTEP] cases' show c = b ∧ append t₁ s₂ = s' by simpa with i1 i2 [GOAL] α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α c : α t₁ : Seq α m✝ : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' this : destruct (append (cons c t₁) s₂) = destruct (cons b s') m : a ∈ append t₁ s₂ ⊢ c = b ∧ append t₁ s₂ = s' [PROOFSTEP] simpa [GOAL] case inr.intro α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' : Seq α o : a = b ∨ ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ s₁ : Seq α c : α t₁ : Seq α m✝ : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' this : destruct (append (cons c t₁) s₂) = destruct (cons b s') m : a ∈ append t₁ s₂ i1 : c = b i2 : append t₁ s₂ = s' ⊢ a ∈ cons c t₁ ∨ a ∈ s₂ [PROOFSTEP] cases' o with e' IH [GOAL] case inr.intro.inl α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' s₁ : Seq α c : α t₁ : Seq α m✝ : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' this : destruct (append (cons c t₁) s₂) = destruct (cons b s') m : a ∈ append t₁ s₂ i1 : c = b i2 : append t₁ s₂ = s' e' : a = b ⊢ a ∈ cons c t₁ ∨ a ∈ s₂ [PROOFSTEP] simp [i1, e'] [GOAL] case inr.intro.inr α : Type u β : Type v γ : Type w s₂ : Seq α a : α ss : Seq α h : a ∈ ss b : α s' s₁ : Seq α c : α t₁ : Seq α m✝ : a ∈ append (cons c t₁) s₂ e : append (cons c t₁) s₂ = cons b s' this : destruct (append (cons c t₁) s₂) = destruct (cons b s') m : a ∈ append t₁ s₂ i1 : c = b i2 : append t₁ s₂ = s' IH : ∀ {s₁ : Seq α}, a ∈ append s₁ s₂ → append s₁ s₂ = s' → a ∈ s₁ ∨ a ∈ s₂ ⊢ a ∈ cons c t₁ ∨ a ∈ s₂ [PROOFSTEP] exact Or.imp_left (mem_cons_of_mem _) (IH m i2) [GOAL] α : Type u β : Type v γ : Type w s₁ s₂ : Seq α a : α h : a ∈ s₁ ⊢ a ∈ append s₁ s₂ [PROOFSTEP] apply mem_rec_on h [GOAL] α : Type u β : Type v γ : Type w s₁ s₂ : Seq α a : α h : a ∈ s₁ ⊢ ∀ (b : α) (s' : Seq α), a = b ∨ a ∈ append s' s₂ → a ∈ append (cons b s') s₂ [PROOFSTEP] intros [GOAL] α : Type u β : Type v γ : Type w s₁ s₂ : Seq α a : α h : a ∈ s₁ b✝ : α s'✝ : Seq α a✝ : a = b✝ ∨ a ∈ append s'✝ s₂ ⊢ a ∈ append (cons b✝ s'✝) s₂ [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v γ : Type w s : Seq α x : α ⊢ enum (cons x s) = cons (0, x) (map (Prod.map Nat.succ id) (enum s)) [PROOFSTEP] ext ⟨n⟩ : 1 [GOAL] case h.zero α : Type u β : Type v γ : Type w s : Seq α x : α ⊢ get? (enum (cons x s)) Nat.zero = get? (cons (0, x) (map (Prod.map Nat.succ id) (enum s))) Nat.zero [PROOFSTEP] simp [GOAL] case h.succ α : Type u β : Type v γ : Type w s : Seq α x : α n✝ : ℕ ⊢ get? (enum (cons x s)) (Nat.succ n✝) = get? (cons (0, x) (map (Prod.map Nat.succ id) (enum s))) (Nat.succ n✝) [PROOFSTEP] simp only [get?_enum, get?_cons_succ, map_get?, Option.map_map] [GOAL] case h.succ α : Type u β : Type v γ : Type w s : Seq α x : α n✝ : ℕ ⊢ Option.map (Prod.mk (Nat.succ n✝)) (get? s n✝) = Option.map (Prod.map Nat.succ id ∘ Prod.mk n✝) (get? s n✝) [PROOFSTEP] congr [GOAL] α : Type u β : Type v γ : Type w a : α s : Seq α ⊢ map id (a, s) = (a, s) [PROOFSTEP] simp [map] [GOAL] α : Type u β : Type v γ : Type w a b : α s : Seq α S : Seq (Seq1 α) ⊢ join ((a, Seq.cons b s), S) = (a, Seq.join (Seq.cons (b, s) S)) [PROOFSTEP] dsimp [join] [GOAL] α : Type u β : Type v γ : Type w a b : α s : Seq α S : Seq (Seq1 α) ⊢ (match destruct (Seq.cons b s) with | none => (a, Seq.join S) | some s' => (a, Seq.join (Seq.cons s' S))) = (a, Seq.join (Seq.cons (b, s) S)) [PROOFSTEP] rw [destruct_cons] [GOAL] α : Type u β : Type v γ : Type w s : Seq α ⊢ Seq.join (Seq.map ret s) = s [PROOFSTEP] apply coinduction2 s [GOAL] case H α : Type u β : Type v γ : Type w s : Seq α ⊢ ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = Seq.join (Seq.map ret s) ∧ s2 = s) (destruct (Seq.join (Seq.map ret s))) (destruct s) [PROOFSTEP] intro s [GOAL] case H α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ BisimO (fun s1 s2 => ∃ s, s1 = Seq.join (Seq.map ret s) ∧ s2 = s) (destruct (Seq.join (Seq.map ret s))) (destruct s) [PROOFSTEP] apply recOn s [GOAL] case H.h1 α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ BisimO (fun s1 s2 => ∃ s, s1 = Seq.join (Seq.map ret s) ∧ s2 = s) (destruct (Seq.join (Seq.map ret nil))) (destruct nil) [PROOFSTEP] simp [ret] [GOAL] case H.h2 α : Type u β : Type v γ : Type w s✝ s : Seq α ⊢ ∀ (x : α) (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = Seq.join (Seq.map ret s) ∧ s2 = s) (destruct (Seq.join (Seq.map ret (Seq.cons x s)))) (destruct (Seq.cons x s)) [PROOFSTEP] simp [ret] [GOAL] α : Type u β : Type v γ : Type w f : α → β a : α s : Seq α ⊢ bind (a, s) (ret ∘ f) = map f (a, s) [PROOFSTEP] dsimp [bind, map] -- Porting note: Was `rw [map_comp]; simp [Function.comp, ret]` [GOAL] α : Type u β : Type v γ : Type w f : α → β a : α s : Seq α ⊢ join (ret (f a), Seq.map (ret ∘ f) s) = (f a, Seq.map f s) [PROOFSTEP] rw [map_comp, ret] [GOAL] α : Type u β : Type v γ : Type w f : α → β a : α s : Seq α ⊢ join ((f a, nil), Seq.map ret (Seq.map f s)) = (f a, Seq.map f s) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w a : α f : α → Seq1 β ⊢ bind (ret a) f = f a [PROOFSTEP] simp [ret, bind, map] [GOAL] α : Type u β : Type v γ : Type w a : α f : α → Seq1 β ⊢ join (f a, nil) = f a [PROOFSTEP] cases' f a with a s [GOAL] case mk α : Type u β : Type v γ : Type w a✝ : α f : α → Seq1 β a : β s : Seq β ⊢ join ((a, s), nil) = (a, s) [PROOFSTEP] apply recOn s [GOAL] case mk.h1 α : Type u β : Type v γ : Type w a✝ : α f : α → Seq1 β a : β s : Seq β ⊢ join ((a, nil), nil) = (a, nil) [PROOFSTEP] intros [GOAL] case mk.h2 α : Type u β : Type v γ : Type w a✝ : α f : α → Seq1 β a : β s : Seq β ⊢ ∀ (x : β) (s : Seq β), join ((a, Seq.cons x s), nil) = (a, Seq.cons x s) [PROOFSTEP] intros [GOAL] case mk.h1 α : Type u β : Type v γ : Type w a✝ : α f : α → Seq1 β a : β s : Seq β ⊢ join ((a, nil), nil) = (a, nil) [PROOFSTEP] simp [GOAL] case mk.h2 α : Type u β : Type v γ : Type w a✝ : α f : α → Seq1 β a : β s : Seq β x✝ : β s✝ : Seq β ⊢ join ((a, Seq.cons x✝ s✝), nil) = (a, Seq.cons x✝ s✝) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w f : α → β S : Seq (Seq1 α) ⊢ Seq.map f (Seq.join S) = Seq.join (Seq.map (map f) S) [PROOFSTEP] apply Seq.eq_of_bisim fun s1 s2 => ∃ s S, s1 = Seq.append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) [GOAL] case bisim α : Type u β : Type v γ : Type w f : α → β S : Seq (Seq1 α) ⊢ Seq.IsBisimulation fun s1 s2 => ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) [PROOFSTEP] intro s1 s2 h [GOAL] case bisim α : Type u β : Type v γ : Type w f : α → β S : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) ⊢ BisimO (fun s1 s2 => ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))) (destruct s1) (destruct s2) [PROOFSTEP] exact match s1, s2, h with | _, _, ⟨s, S, rfl, rfl⟩ => by apply recOn s <;> simp · apply recOn S <;> simp · intro x S cases' x with a s; simp [map] exact ⟨_, _, rfl, rfl⟩ · intro _ s refine' ⟨s, S, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w f : α → β S✝ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s : Seq β S : Seq (Seq1 α) ⊢ BisimO (fun s1 s2 => ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))) (destruct (append s (Seq.map f (Seq.join S)))) (destruct (append s (Seq.join (Seq.map (map f) S)))) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β S✝ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s : Seq β S : Seq (Seq1 α) ⊢ BisimO (fun s1 s2 => ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))) (destruct (append nil (Seq.map f (Seq.join S)))) (destruct (append nil (Seq.join (Seq.map (map f) S)))) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β S✝ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s : Seq β S : Seq (Seq1 α) ⊢ ∀ (x : β) (s : Seq β), BisimO (fun s1 s2 => ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S))) (destruct (append (Seq.cons x s) (Seq.map f (Seq.join S)))) (destruct (append (Seq.cons x s) (Seq.join (Seq.map (map f) S)))) [PROOFSTEP] simp [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β S✝ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s : Seq β S : Seq (Seq1 α) ⊢ match destruct (Seq.map f (Seq.join S)), destruct (Seq.join (Seq.map (map f) S)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S)) | x, x_1 => False [PROOFSTEP] apply recOn S [GOAL] case h1.h1 α : Type u β : Type v γ : Type w f : α → β S✝ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s : Seq β S : Seq (Seq1 α) ⊢ match destruct (Seq.map f (Seq.join nil)), destruct (Seq.join (Seq.map (map f) nil)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w f : α → β S✝ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s : Seq β S : Seq (Seq1 α) ⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)), match destruct (Seq.map f (Seq.join (Seq.cons x s))), destruct (Seq.join (Seq.map (map f) (Seq.cons x s))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w f : α → β S✝ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s : Seq β S : Seq (Seq1 α) ⊢ ∀ (x : Seq1 α) (s : Seq (Seq1 α)), match destruct (Seq.map f (Seq.join (Seq.cons x s))), destruct (Seq.join (Seq.cons (map f x) (Seq.map (map f) s))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S)) | x, x_1 => False [PROOFSTEP] intro x S [GOAL] case h1.h2 α : Type u β : Type v γ : Type w f : α → β S✝¹ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s : Seq β S✝ : Seq (Seq1 α) x : Seq1 α S : Seq (Seq1 α) ⊢ match destruct (Seq.map f (Seq.join (Seq.cons x S))), destruct (Seq.join (Seq.cons (map f x) (Seq.map (map f) S))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S)) | x, x_1 => False [PROOFSTEP] cases' x with a s [GOAL] case h1.h2.mk α : Type u β : Type v γ : Type w f : α → β S✝¹ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s✝ : Seq β S✝ S : Seq (Seq1 α) a : α s : Seq α ⊢ match destruct (Seq.map f (Seq.join (Seq.cons (a, s) S))), destruct (Seq.join (Seq.cons (map f (a, s)) (Seq.map (map f) S))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 S, s = append s_1 (Seq.map f (Seq.join S)) ∧ s' = append s_1 (Seq.join (Seq.map (map f) S)) | x, x_1 => False [PROOFSTEP] simp [map] [GOAL] case h1.h2.mk α : Type u β : Type v γ : Type w f : α → β S✝¹ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s✝ : Seq β S✝ S : Seq (Seq1 α) a : α s : Seq α ⊢ ∃ s_1 S_1, append (Seq.map f s) (Seq.map f (Seq.join S)) = append s_1 (Seq.map f (Seq.join S_1)) ∧ append (Seq.map f s) (Seq.join (Seq.map (fun x => match x with | (a, s) => (f a, Seq.map f s)) S)) = append s_1 (Seq.join (Seq.map (fun x => match x with | (a, s) => (f a, Seq.map f s)) S_1)) [PROOFSTEP] exact ⟨_, _, rfl, rfl⟩ [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β S✝ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s : Seq β S : Seq (Seq1 α) ⊢ β → ∀ (s : Seq β), ∃ s_1 S_1, append s (Seq.map f (Seq.join S)) = append s_1 (Seq.map f (Seq.join S_1)) ∧ append s (Seq.join (Seq.map (map f) S)) = append s_1 (Seq.join (Seq.map (map f) S_1)) [PROOFSTEP] intro _ s [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β S✝ : Seq (Seq1 α) s1 s2 : Seq β h : ∃ s S, s1 = append s (Seq.map f (Seq.join S)) ∧ s2 = append s (Seq.join (Seq.map (map f) S)) s✝ : Seq β S : Seq (Seq1 α) x✝ : β s : Seq β ⊢ ∃ s_1 S_1, append s (Seq.map f (Seq.join S)) = append s_1 (Seq.map f (Seq.join S_1)) ∧ append s (Seq.join (Seq.map (map f) S)) = append s_1 (Seq.join (Seq.map (map f) S_1)) [PROOFSTEP] refine' ⟨s, S, rfl, rfl⟩ [GOAL] case r α : Type u β : Type v γ : Type w f : α → β S : Seq (Seq1 α) ⊢ ∃ s S_1, Seq.map f (Seq.join S) = append s (Seq.map f (Seq.join S_1)) ∧ Seq.join (Seq.map (map f) S) = append s (Seq.join (Seq.map (map f) S_1)) [PROOFSTEP] refine' ⟨nil, S, _, _⟩ [GOAL] case r.refine'_1 α : Type u β : Type v γ : Type w f : α → β S : Seq (Seq1 α) ⊢ Seq.map f (Seq.join S) = append nil (Seq.map f (Seq.join S)) [PROOFSTEP] simp [GOAL] case r.refine'_2 α : Type u β : Type v γ : Type w f : α → β S : Seq (Seq1 α) ⊢ Seq.join (Seq.map (map f) S) = append nil (Seq.join (Seq.map (map f) S)) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w f : α → β a : α s : Seq α S : Seq (Seq1 α) ⊢ map f (join ((a, s), S)) = join (map (map f) ((a, s), S)) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β a : α s : Seq α S : Seq (Seq1 α) ⊢ map f (join ((a, nil), S)) = join (map (map f) ((a, nil), S)) [PROOFSTEP] intros [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β a : α s : Seq α S : Seq (Seq1 α) ⊢ ∀ (x : α) (s : Seq α), map f (join ((a, Seq.cons x s), S)) = join (map (map f) ((a, Seq.cons x s), S)) [PROOFSTEP] intros [GOAL] case h1 α : Type u β : Type v γ : Type w f : α → β a : α s : Seq α S : Seq (Seq1 α) ⊢ map f (join ((a, nil), S)) = join (map (map f) ((a, nil), S)) [PROOFSTEP] simp [map] [GOAL] case h2 α : Type u β : Type v γ : Type w f : α → β a : α s : Seq α S : Seq (Seq1 α) x✝ : α s✝ : Seq α ⊢ map f (join ((a, Seq.cons x✝ s✝), S)) = join (map (map f) ((a, Seq.cons x✝ s✝), S)) [PROOFSTEP] simp [map] [GOAL] α : Type u β : Type v γ : Type w SS : Seq (Seq1 (Seq1 α)) ⊢ Seq.join (Seq.join SS) = Seq.join (Seq.map join SS) [PROOFSTEP] apply Seq.eq_of_bisim fun s1 s2 => ∃ s SS, s1 = Seq.append s (Seq.join (Seq.join SS)) ∧ s2 = Seq.append s (Seq.join (Seq.map join SS)) [GOAL] case bisim α : Type u β : Type v γ : Type w SS : Seq (Seq1 (Seq1 α)) ⊢ Seq.IsBisimulation fun s1 s2 => ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) [PROOFSTEP] intro s1 s2 h [GOAL] case bisim α : Type u β : Type v γ : Type w SS : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) ⊢ BisimO (fun s1 s2 => ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))) (destruct s1) (destruct s2) [PROOFSTEP] exact match s1, s2, h with | _, _, ⟨s, SS, rfl, rfl⟩ => by apply recOn s <;> simp · apply recOn SS <;> simp · intro S SS cases' S with s S; cases' s with x s; simp [map] apply recOn s <;> simp · exact ⟨_, _, rfl, rfl⟩ · intro x s refine' ⟨Seq.cons x (append s (Seq.join S)), SS, _, _⟩ <;> simp · intro _ s exact ⟨s, SS, rfl, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w SS✝ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s : Seq α SS : Seq (Seq1 (Seq1 α)) ⊢ BisimO (fun s1 s2 => ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))) (destruct (append s (Seq.join (Seq.join SS)))) (destruct (append s (Seq.join (Seq.map join SS)))) [PROOFSTEP] apply recOn s [GOAL] case h1 α : Type u β : Type v γ : Type w SS✝ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s : Seq α SS : Seq (Seq1 (Seq1 α)) ⊢ BisimO (fun s1 s2 => ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))) (destruct (append nil (Seq.join (Seq.join SS)))) (destruct (append nil (Seq.join (Seq.map join SS)))) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w SS✝ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s : Seq α SS : Seq (Seq1 (Seq1 α)) ⊢ ∀ (x : α) (s : Seq α), BisimO (fun s1 s2 => ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS))) (destruct (append (Seq.cons x s) (Seq.join (Seq.join SS)))) (destruct (append (Seq.cons x s) (Seq.join (Seq.map join SS)))) [PROOFSTEP] simp [GOAL] case h1 α : Type u β : Type v γ : Type w SS✝ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s : Seq α SS : Seq (Seq1 (Seq1 α)) ⊢ match destruct (Seq.join (Seq.join SS)), destruct (Seq.join (Seq.map join SS)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_1 => False [PROOFSTEP] apply recOn SS [GOAL] case h1.h1 α : Type u β : Type v γ : Type w SS✝ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s : Seq α SS : Seq (Seq1 (Seq1 α)) ⊢ match destruct (Seq.join (Seq.join nil)), destruct (Seq.join (Seq.map join nil)) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w SS✝ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s : Seq α SS : Seq (Seq1 (Seq1 α)) ⊢ ∀ (x : Seq1 (Seq1 α)) (s : Seq (Seq1 (Seq1 α))), match destruct (Seq.join (Seq.join (Seq.cons x s))), destruct (Seq.join (Seq.map join (Seq.cons x s))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2 α : Type u β : Type v γ : Type w SS✝ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s : Seq α SS : Seq (Seq1 (Seq1 α)) ⊢ ∀ (x : Seq1 (Seq1 α)) (s : Seq (Seq1 (Seq1 α))), match destruct (Seq.join (Seq.join (Seq.cons x s))), destruct (Seq.join (Seq.cons (join x) (Seq.map join s))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_1 => False [PROOFSTEP] intro S SS [GOAL] case h1.h2 α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s : Seq α SS✝ : Seq (Seq1 (Seq1 α)) S : Seq1 (Seq1 α) SS : Seq (Seq1 (Seq1 α)) ⊢ match destruct (Seq.join (Seq.join (Seq.cons S SS))), destruct (Seq.join (Seq.cons (join S) (Seq.map join SS))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_1 => False [PROOFSTEP] cases' S with s S [GOAL] case h1.h2.mk α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) s : Seq1 α S : Seq (Seq1 α) ⊢ match destruct (Seq.join (Seq.join (Seq.cons (s, S) SS))), destruct (Seq.join (Seq.cons (join (s, S)) (Seq.map join SS))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_1 => False [PROOFSTEP] cases' s with x s [GOAL] case h1.h2.mk.mk α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) S : Seq (Seq1 α) x : α s : Seq α ⊢ match destruct (Seq.join (Seq.join (Seq.cons ((x, s), S) SS))), destruct (Seq.join (Seq.cons (join ((x, s), S)) (Seq.map join SS))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_1 => False [PROOFSTEP] simp [map] [GOAL] case h1.h2.mk.mk α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) S : Seq (Seq1 α) x : α s : Seq α ⊢ match some (x, append s (append (Seq.join S) (Seq.join (Seq.join SS)))), destruct (Seq.join (Seq.cons (join ((x, s), S)) (Seq.map join SS))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_1 => False [PROOFSTEP] apply recOn s [GOAL] case h1.h2.mk.mk.h1 α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) S : Seq (Seq1 α) x : α s : Seq α ⊢ match some (x, append nil (append (Seq.join S) (Seq.join (Seq.join SS)))), destruct (Seq.join (Seq.cons (join ((x, nil), S)) (Seq.map join SS))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_1 => False [PROOFSTEP] simp [GOAL] case h1.h2.mk.mk.h2 α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) S : Seq (Seq1 α) x : α s : Seq α ⊢ ∀ (x_1 : α) (s : Seq α), match some (x, append (Seq.cons x_1 s) (append (Seq.join S) (Seq.join (Seq.join SS)))), destruct (Seq.join (Seq.cons (join ((x, Seq.cons x_1 s), S)) (Seq.map join SS))) with | none, none => True | some (a, s), some (a', s') => a = a' ∧ ∃ s_1 SS, s = append s_1 (Seq.join (Seq.join SS)) ∧ s' = append s_1 (Seq.join (Seq.map join SS)) | x, x_2 => False [PROOFSTEP] simp [GOAL] case h1.h2.mk.mk.h1 α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) S : Seq (Seq1 α) x : α s : Seq α ⊢ ∃ s SS_1, append (Seq.join S) (Seq.join (Seq.join SS)) = append s (Seq.join (Seq.join SS_1)) ∧ append (Seq.join S) (Seq.join (Seq.map join SS)) = append s (Seq.join (Seq.map join SS_1)) [PROOFSTEP] exact ⟨_, _, rfl, rfl⟩ [GOAL] case h1.h2.mk.mk.h2 α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) S : Seq (Seq1 α) x : α s : Seq α ⊢ ∀ (x : α) (s : Seq α), ∃ s_1 SS_1, Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.join SS)))) = append s_1 (Seq.join (Seq.join SS_1)) ∧ Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.map join SS)))) = append s_1 (Seq.join (Seq.map join SS_1)) [PROOFSTEP] intro x s [GOAL] case h1.h2.mk.mk.h2 α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝¹ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) S : Seq (Seq1 α) x✝ : α s✝ : Seq α x : α s : Seq α ⊢ ∃ s_1 SS_1, Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.join SS)))) = append s_1 (Seq.join (Seq.join SS_1)) ∧ Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.map join SS)))) = append s_1 (Seq.join (Seq.map join SS_1)) [PROOFSTEP] refine' ⟨Seq.cons x (append s (Seq.join S)), SS, _, _⟩ [GOAL] case h1.h2.mk.mk.h2.refine'_1 α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝¹ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) S : Seq (Seq1 α) x✝ : α s✝ : Seq α x : α s : Seq α ⊢ Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.join SS)))) = append (Seq.cons x (append s (Seq.join S))) (Seq.join (Seq.join SS)) [PROOFSTEP] simp [GOAL] case h1.h2.mk.mk.h2.refine'_2 α : Type u β : Type v γ : Type w SS✝¹ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝¹ : Seq α SS✝ SS : Seq (Seq1 (Seq1 α)) S : Seq (Seq1 α) x✝ : α s✝ : Seq α x : α s : Seq α ⊢ Seq.cons x (append s (append (Seq.join S) (Seq.join (Seq.map join SS)))) = append (Seq.cons x (append s (Seq.join S))) (Seq.join (Seq.map join SS)) [PROOFSTEP] simp [GOAL] case h2 α : Type u β : Type v γ : Type w SS✝ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s : Seq α SS : Seq (Seq1 (Seq1 α)) ⊢ α → ∀ (s : Seq α), ∃ s_1 SS_1, append s (Seq.join (Seq.join SS)) = append s_1 (Seq.join (Seq.join SS_1)) ∧ append s (Seq.join (Seq.map join SS)) = append s_1 (Seq.join (Seq.map join SS_1)) [PROOFSTEP] intro _ s [GOAL] case h2 α : Type u β : Type v γ : Type w SS✝ : Seq (Seq1 (Seq1 α)) s1 s2 : Seq α h : ∃ s SS, s1 = append s (Seq.join (Seq.join SS)) ∧ s2 = append s (Seq.join (Seq.map join SS)) s✝ : Seq α SS : Seq (Seq1 (Seq1 α)) x✝ : α s : Seq α ⊢ ∃ s_1 SS_1, append s (Seq.join (Seq.join SS)) = append s_1 (Seq.join (Seq.join SS_1)) ∧ append s (Seq.join (Seq.map join SS)) = append s_1 (Seq.join (Seq.map join SS_1)) [PROOFSTEP] exact ⟨s, SS, rfl, rfl⟩ [GOAL] case r α : Type u β : Type v γ : Type w SS : Seq (Seq1 (Seq1 α)) ⊢ ∃ s SS_1, Seq.join (Seq.join SS) = append s (Seq.join (Seq.join SS_1)) ∧ Seq.join (Seq.map join SS) = append s (Seq.join (Seq.map join SS_1)) [PROOFSTEP] refine' ⟨nil, SS, _, _⟩ [GOAL] case r.refine'_1 α : Type u β : Type v γ : Type w SS : Seq (Seq1 (Seq1 α)) ⊢ Seq.join (Seq.join SS) = append nil (Seq.join (Seq.join SS)) [PROOFSTEP] simp [GOAL] case r.refine'_2 α : Type u β : Type v γ : Type w SS : Seq (Seq1 (Seq1 α)) ⊢ Seq.join (Seq.map join SS) = append nil (Seq.join (Seq.map join SS)) [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w s : Seq1 α f : α → Seq1 β g : β → Seq1 γ ⊢ bind (bind s f) g = bind s fun x => bind (f x) g [PROOFSTEP] cases' s with a s [GOAL] case mk α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a : α s : Seq α ⊢ bind (bind (a, s) f) g = bind (a, s) fun x => bind (f x) g [PROOFSTEP] simp only [bind, map_pair, map_join] [GOAL] case mk α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a : α s : Seq α ⊢ join (join (map g (f a), Seq.map (map g) (Seq.map f s))) = join (join (map g (f a)), Seq.map (fun x => join (map g (f x))) s) [PROOFSTEP] rw [← map_comp] [GOAL] case mk α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a : α s : Seq α ⊢ join (join (map g (f a), Seq.map (map g ∘ f) s)) = join (join (map g (f a)), Seq.map (fun x => join (map g (f x))) s) [PROOFSTEP] simp only [show (fun x => join (map g (f x))) = join ∘ (map g ∘ f) from rfl] [GOAL] case mk α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a : α s : Seq α ⊢ join (join (map g (f a), Seq.map (map g ∘ f) s)) = join (join (map g (f a)), Seq.map (join ∘ map g ∘ f) s) [PROOFSTEP] rw [map_comp _ join] [GOAL] case mk α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a : α s : Seq α ⊢ join (join (map g (f a), Seq.map (map g ∘ f) s)) = join (join (map g (f a)), Seq.map join (Seq.map (map g ∘ f) s)) [PROOFSTEP] generalize Seq.map (map g ∘ f) s = SS [GOAL] case mk α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) ⊢ join (join (map g (f a), SS)) = join (join (map g (f a)), Seq.map join SS) [PROOFSTEP] rcases map g (f a) with ⟨⟨a, s⟩, S⟩ -- Porting note: Instead of `apply recOn s <;> intros`, `induction'` are used to -- give names to variables. [GOAL] case mk.mk.mk α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s✝ : Seq α SS : Seq (Seq1 (Seq1 γ)) S : Seq (Seq1 γ) a : γ s : Seq γ ⊢ join (join (((a, s), S), SS)) = join (join ((a, s), S), Seq.map join SS) [PROOFSTEP] induction' s using recOn with x s_1 [GOAL] case mk.mk.mk.h1 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) S : Seq (Seq1 γ) a : γ ⊢ join (join (((a, nil), S), SS)) = join (join ((a, nil), S), Seq.map join SS) [PROOFSTEP] induction' S using recOn with x_1 s_2 [GOAL] case mk.mk.mk.h2 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) S : Seq (Seq1 γ) a x : γ s_1 : Seq γ ⊢ join (join (((a, Seq.cons x s_1), S), SS)) = join (join ((a, Seq.cons x s_1), S), Seq.map join SS) [PROOFSTEP] induction' S using recOn with x_1 s_2 [GOAL] case mk.mk.mk.h1.h1 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a : γ ⊢ join (join (((a, nil), nil), SS)) = join (join ((a, nil), nil), Seq.map join SS) [PROOFSTEP] simp [GOAL] case mk.mk.mk.h1.h2 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a : γ x_1 : Seq1 γ s_2 : Seq (Seq1 γ) ⊢ join (join (((a, nil), Seq.cons x_1 s_2), SS)) = join (join ((a, nil), Seq.cons x_1 s_2), Seq.map join SS) [PROOFSTEP] simp [GOAL] case mk.mk.mk.h2.h1 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a x : γ s_1 : Seq γ ⊢ join (join (((a, Seq.cons x s_1), nil), SS)) = join (join ((a, Seq.cons x s_1), nil), Seq.map join SS) [PROOFSTEP] simp [GOAL] case mk.mk.mk.h2.h2 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a x : γ s_1 : Seq γ x_1 : Seq1 γ s_2 : Seq (Seq1 γ) ⊢ join (join (((a, Seq.cons x s_1), Seq.cons x_1 s_2), SS)) = join (join ((a, Seq.cons x s_1), Seq.cons x_1 s_2), Seq.map join SS) [PROOFSTEP] simp [GOAL] case mk.mk.mk.h1.h2 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a : γ x_1 : Seq1 γ s_2 : Seq (Seq1 γ) ⊢ (a, Seq.join (Seq.cons x_1 (append s_2 (Seq.join SS)))) = join ((a, Seq.join (Seq.cons x_1 s_2)), Seq.map join SS) [PROOFSTEP] cases' x_1 with x t [GOAL] case mk.mk.mk.h1.h2.mk α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a : γ s_2 : Seq (Seq1 γ) x : γ t : Seq γ ⊢ (a, Seq.join (Seq.cons (x, t) (append s_2 (Seq.join SS)))) = join ((a, Seq.join (Seq.cons (x, t) s_2)), Seq.map join SS) [PROOFSTEP] apply recOn t [GOAL] case mk.mk.mk.h1.h2.mk.h1 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a : γ s_2 : Seq (Seq1 γ) x : γ t : Seq γ ⊢ (a, Seq.join (Seq.cons (x, nil) (append s_2 (Seq.join SS)))) = join ((a, Seq.join (Seq.cons (x, nil) s_2)), Seq.map join SS) [PROOFSTEP] intros [GOAL] case mk.mk.mk.h1.h2.mk.h2 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a : γ s_2 : Seq (Seq1 γ) x : γ t : Seq γ ⊢ ∀ (x_1 : γ) (s : Seq γ), (a, Seq.join (Seq.cons (x, Seq.cons x_1 s) (append s_2 (Seq.join SS)))) = join ((a, Seq.join (Seq.cons (x, Seq.cons x_1 s) s_2)), Seq.map join SS) [PROOFSTEP] intros [GOAL] case mk.mk.mk.h1.h2.mk.h1 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a : γ s_2 : Seq (Seq1 γ) x : γ t : Seq γ ⊢ (a, Seq.join (Seq.cons (x, nil) (append s_2 (Seq.join SS)))) = join ((a, Seq.join (Seq.cons (x, nil) s_2)), Seq.map join SS) [PROOFSTEP] simp [GOAL] case mk.mk.mk.h1.h2.mk.h2 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a : γ s_2 : Seq (Seq1 γ) x : γ t : Seq γ x✝ : γ s✝ : Seq γ ⊢ (a, Seq.join (Seq.cons (x, Seq.cons x✝ s✝) (append s_2 (Seq.join SS)))) = join ((a, Seq.join (Seq.cons (x, Seq.cons x✝ s✝) s_2)), Seq.map join SS) [PROOFSTEP] simp [GOAL] case mk.mk.mk.h2.h2 α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a x : γ s_1 : Seq γ x_1 : Seq1 γ s_2 : Seq (Seq1 γ) ⊢ (a, Seq.cons x (append s_1 (Seq.join (Seq.cons x_1 (append s_2 (Seq.join SS)))))) = (a, Seq.cons x (append s_1 (append (Seq.join (Seq.cons x_1 s_2)) (Seq.join (Seq.map join SS))))) [PROOFSTEP] cases' x_1 with y t [GOAL] case mk.mk.mk.h2.h2.mk α : Type u β : Type v γ : Type w f : α → Seq1 β g : β → Seq1 γ a✝ : α s : Seq α SS : Seq (Seq1 (Seq1 γ)) a x : γ s_1 : Seq γ s_2 : Seq (Seq1 γ) y : γ t : Seq γ ⊢ (a, Seq.cons x (append s_1 (Seq.join (Seq.cons (y, t) (append s_2 (Seq.join SS)))))) = (a, Seq.cons x (append s_1 (append (Seq.join (Seq.cons (y, t) s_2)) (Seq.join (Seq.map join SS))))) [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Data.Seq.Seq", "llama_tokens": 69499}
{"mathlib_filename": "Mathlib.Data.MLList.Heartbeats", "llama_tokens": 0}
[GOAL] ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) ⊢ Fibration (InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd) (DFinsupp.Lex r s) fun x => piecewise x.snd.fst x.snd.snd x.fst [PROOFSTEP] rintro ⟨p, x₁, x₂⟩ x ⟨i, hr, hs⟩ [GOAL] case mk.mk.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = ↑((fun x => piecewise x.snd.fst x.snd.snd x.fst) (p, x₁, x₂)) j hs : s i (↑x i) (↑((fun x => piecewise x.snd.fst x.snd.snd x.fst) (p, x₁, x₂)) i) ⊢ ∃ a', InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧ (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x [PROOFSTEP] simp_rw [piecewise_apply] at hs hr [GOAL] case mk.mk.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hs : s i (↑x i) (if i ∈ p then ↑x₁ i else ↑x₂ i) hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j ⊢ ∃ a', InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧ (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x [PROOFSTEP] split_ifs at hs with hp [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) ⊢ ∃ a', InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧ (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x [PROOFSTEP] refine ⟨⟨{j | r j i → j ∈ p}, piecewise x₁ x {j | r j i}, x₂⟩, .fst ⟨i, fun j hj ↦ ?_, ?_⟩, ?_⟩ [GOAL] case pos.refine_1 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι hj : r j i ⊢ ↑(piecewise x₁ x {j | r j i}) j = ↑x₁ j [PROOFSTEP] simp only [piecewise_apply, Set.mem_setOf_eq] [GOAL] case pos.refine_2 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) ⊢ (fun {i} => s i) (↑(piecewise x₁ x {j | r j i}) i) (↑x₁ i) [PROOFSTEP] simp only [piecewise_apply, Set.mem_setOf_eq] [GOAL] case pos.refine_3 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) ⊢ (fun x => piecewise x.snd.fst x.snd.snd x.fst) ({j | r j i → j ∈ p}, piecewise x₁ x {j | r j i}, x₂) = x [PROOFSTEP] simp only [piecewise_apply, Set.mem_setOf_eq] [GOAL] case pos.refine_1 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι hj : r j i ⊢ (if r j i then ↑x₁ j else ↑x j) = ↑x₁ j [PROOFSTEP] simp only [if_pos hj] [GOAL] case pos.refine_2 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) ⊢ s i (if r i i then ↑x₁ i else ↑x i) (↑x₁ i) [PROOFSTEP] split_ifs with hi [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) hi : r i i ⊢ s i (↑x₁ i) (↑x₁ i) [PROOFSTEP] rwa [hr i hi, if_pos hp] at hs [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) hi : ¬r i i ⊢ s i (↑x i) (↑x₁ i) [PROOFSTEP] assumption [GOAL] case pos.refine_3 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) ⊢ piecewise (piecewise x₁ x {j | r j i}) x₂ {j | r j i → j ∈ p} = x [PROOFSTEP] ext1 j [GOAL] case pos.refine_3.h ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι ⊢ ↑(piecewise (piecewise x₁ x {j | r j i}) x₂ {j | r j i → j ∈ p}) j = ↑x j [PROOFSTEP] simp only [piecewise_apply, Set.mem_setOf_eq] [GOAL] case pos.refine_3.h ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι ⊢ (if r j i → j ∈ p then if r j i then ↑x₁ j else ↑x j else ↑x₂ j) = ↑x j [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι h₁ : r j i → j ∈ p h₂ : r j i ⊢ ↑x₁ j = ↑x j [PROOFSTEP] try rfl [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι h₁ : r j i → j ∈ p h₂ : r j i ⊢ ↑x₁ j = ↑x j [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι h₁ : r j i → j ∈ p h₂ : ¬r j i ⊢ ↑x j = ↑x j [PROOFSTEP] try rfl [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι h₁ : r j i → j ∈ p h₂ : ¬r j i ⊢ ↑x j = ↑x j [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι h₁ : ¬(r j i → j ∈ p) ⊢ ↑x₂ j = ↑x j [PROOFSTEP] try rfl [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι h₁ : ¬(r j i → j ∈ p) ⊢ ↑x₂ j = ↑x j [PROOFSTEP] rfl [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι h₁ : r j i → j ∈ p h₂ : r j i ⊢ ↑x₁ j = ↑x j [PROOFSTEP] rw [hr j h₂, if_pos (h₁ h₂)] [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι h₁ : ¬(r j i → j ∈ p) ⊢ ↑x₂ j = ↑x j [PROOFSTEP] rw [not_imp] at h₁ [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : i ∈ p hs : s i (↑x i) (↑x₁ i) j : ι h₁ : r j i ∧ ¬j ∈ p ⊢ ↑x₂ j = ↑x j [PROOFSTEP] rw [hr j h₁.1, if_neg h₁.2] [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) ⊢ ∃ a', InvImage (GameAdd (DFinsupp.Lex r s) (DFinsupp.Lex r s)) snd a' (p, x₁, x₂) ∧ (fun x => piecewise x.snd.fst x.snd.snd x.fst) a' = x [PROOFSTEP] refine ⟨⟨{j | r j i ∧ j ∈ p}, x₁, piecewise x₂ x {j | r j i}⟩, .snd ⟨i, fun j hj ↦ ?_, ?_⟩, ?_⟩ [GOAL] case neg.refine_1 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι hj : r j i ⊢ ↑(piecewise x₂ x {j | r j i}) j = ↑x₂ j [PROOFSTEP] simp only [piecewise_apply, Set.mem_setOf_eq] [GOAL] case neg.refine_2 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) ⊢ (fun {i} => s i) (↑(piecewise x₂ x {j | r j i}) i) (↑x₂ i) [PROOFSTEP] simp only [piecewise_apply, Set.mem_setOf_eq] [GOAL] case neg.refine_3 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) ⊢ (fun x => piecewise x.snd.fst x.snd.snd x.fst) ({j | r j i ∧ j ∈ p}, x₁, piecewise x₂ x {j | r j i}) = x [PROOFSTEP] simp only [piecewise_apply, Set.mem_setOf_eq] [GOAL] case neg.refine_1 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι hj : r j i ⊢ (if r j i then ↑x₂ j else ↑x j) = ↑x₂ j [PROOFSTEP] exact if_pos hj [GOAL] case neg.refine_2 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) ⊢ s i (if r i i then ↑x₂ i else ↑x i) (↑x₂ i) [PROOFSTEP] split_ifs with hi [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) hi : r i i ⊢ s i (↑x₂ i) (↑x₂ i) [PROOFSTEP] rwa [hr i hi, if_neg hp] at hs [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) hi : ¬r i i ⊢ s i (↑x i) (↑x₂ i) [PROOFSTEP] assumption [GOAL] case neg.refine_3 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) ⊢ piecewise x₁ (piecewise x₂ x {j | r j i}) {j | r j i ∧ j ∈ p} = x [PROOFSTEP] ext1 j [GOAL] case neg.refine_3.h ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι ⊢ ↑(piecewise x₁ (piecewise x₂ x {j | r j i}) {j | r j i ∧ j ∈ p}) j = ↑x j [PROOFSTEP] simp only [piecewise_apply, Set.mem_setOf_eq] [GOAL] case neg.refine_3.h ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι ⊢ (if r j i ∧ j ∈ p then ↑x₁ j else if r j i then ↑x₂ j else ↑x j) = ↑x j [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι h₁ : r j i ∧ j ∈ p ⊢ ↑x₁ j = ↑x j [PROOFSTEP] try rfl [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι h₁ : r j i ∧ j ∈ p ⊢ ↑x₁ j = ↑x j [PROOFSTEP] rfl [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι h₁ : ¬(r j i ∧ j ∈ p) h₂ : r j i ⊢ ↑x₂ j = ↑x j [PROOFSTEP] try rfl [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι h₁ : ¬(r j i ∧ j ∈ p) h₂ : r j i ⊢ ↑x₂ j = ↑x j [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι h₁ : ¬(r j i ∧ j ∈ p) h₂ : ¬r j i ⊢ ↑x j = ↑x j [PROOFSTEP] try rfl [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι h₁ : ¬(r j i ∧ j ∈ p) h₂ : ¬r j i ⊢ ↑x j = ↑x j [PROOFSTEP] rfl [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι h₁ : r j i ∧ j ∈ p ⊢ ↑x₁ j = ↑x j [PROOFSTEP] rw [hr j h₁.1, if_pos h₁.2] [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι h₁ : ¬(r j i ∧ j ∈ p) h₂ : r j i ⊢ ↑x₂ j = ↑x j [PROOFSTEP] rw [hr j h₂, if_neg] [GOAL] case pos.hnc ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : (i : ι) → (s : Set ι) → Decidable (i ∈ s) p : Set ι x₁ x₂ x : Π₀ (i : ι), α i i : ι hr : ∀ (j : ι), r j i → ↑x j = if j ∈ p then ↑x₁ j else ↑x₂ j hp : ¬i ∈ p hs : s i (↑x i) (↑x₂ i) j : ι h₁ : ¬(r j i ∧ j ∈ p) h₂ : r j i ⊢ ¬j ∈ p [PROOFSTEP] simpa [h₂] using h₁ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : DecidableEq ι x : Π₀ (i : ι), α i i : ι hs : Acc (DFinsupp.Lex r s) (single i (↑x i)) hu : Acc (DFinsupp.Lex r s) (erase i x) ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] classical convert ← @Acc.of_fibration _ _ _ _ _ (lex_fibration r s) ⟨{ i }, _⟩ (InvImage.accessible snd <| hs.prod_gameAdd hu) convert piecewise_single_erase x i [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : DecidableEq ι x : Π₀ (i : ι), α i i : ι hs : Acc (DFinsupp.Lex r s) (single i (↑x i)) hu : Acc (DFinsupp.Lex r s) (erase i x) ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] convert ← @Acc.of_fibration _ _ _ _ _ (lex_fibration r s) ⟨{ i }, _⟩ (InvImage.accessible snd <| hs.prod_gameAdd hu) [GOAL] case h.e'_3 ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝ : DecidableEq ι x : Π₀ (i : ι), α i i : ι hs : Acc (DFinsupp.Lex r s) (single i (↑x i)) hu : Acc (DFinsupp.Lex r s) (erase i x) ⊢ piecewise ({i}, single i (↑x i), erase i x).snd.fst ({i}, single i (↑x i), erase i x).snd.snd ({i}, single i (↑x i), erase i x).fst = x [PROOFSTEP] convert piecewise_single_erase x i [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) x : Π₀ (i : ι), α i ⊢ (∀ (i : ι), i ∈ support x → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x [PROOFSTEP] generalize ht : x.support = t [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) x : Π₀ (i : ι), α i t : Finset ι ht : support x = t ⊢ (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x [PROOFSTEP] revert x [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) t : Finset ι ⊢ ∀ (x : Π₀ (i : ι), α i), support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x [PROOFSTEP] classical induction' t using Finset.induction with b t hb ih · intro x ht rw [support_eq_empty.1 ht] exact fun _ => Lex.acc_zero hbot refine' fun x ht h => Lex.acc_of_single_erase b (h b <| t.mem_insert_self b) _ refine' ih _ (by rw [support_erase, ht, Finset.erase_insert hb]) fun a ha => _ rw [erase_ne (ha.ne_of_not_mem hb)] exact h a (Finset.mem_insert_of_mem ha) [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) t : Finset ι ⊢ ∀ (x : Π₀ (i : ι), α i), support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x [PROOFSTEP] induction' t using Finset.induction with b t hb ih [GOAL] case empty ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) ⊢ ∀ (x : Π₀ (i : ι), α i), support x = ∅ → (∀ (i : ι), i ∈ ∅ → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x [PROOFSTEP] intro x ht [GOAL] case empty ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) x : Π₀ (i : ι), α i ht : support x = ∅ ⊢ (∀ (i : ι), i ∈ ∅ → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x [PROOFSTEP] rw [support_eq_empty.1 ht] [GOAL] case empty ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) x : Π₀ (i : ι), α i ht : support x = ∅ ⊢ (∀ (i : ι), i ∈ ∅ → Acc (DFinsupp.Lex r s) (single i (↑0 i))) → Acc (DFinsupp.Lex r s) 0 [PROOFSTEP] exact fun _ => Lex.acc_zero hbot [GOAL] case insert ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) b : ι t : Finset ι hb : ¬b ∈ t ih : ∀ (x : Π₀ (i : ι), α i), support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x ⊢ ∀ (x : Π₀ (i : ι), α i), support x = insert b t → (∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x [PROOFSTEP] refine' fun x ht h => Lex.acc_of_single_erase b (h b <| t.mem_insert_self b) _ [GOAL] case insert ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) b : ι t : Finset ι hb : ¬b ∈ t ih : ∀ (x : Π₀ (i : ι), α i), support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x x : Π₀ (i : ι), α i ht : support x = insert b t h : ∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i)) ⊢ Acc (DFinsupp.Lex r s) (erase b x) [PROOFSTEP] refine' ih _ (by rw [support_erase, ht, Finset.erase_insert hb]) fun a ha => _ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) b : ι t : Finset ι hb : ¬b ∈ t ih : ∀ (x : Π₀ (i : ι), α i), support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x x : Π₀ (i : ι), α i ht : support x = insert b t h : ∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i)) ⊢ support (erase b x) = t [PROOFSTEP] rw [support_erase, ht, Finset.erase_insert hb] [GOAL] case insert ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) b : ι t : Finset ι hb : ¬b ∈ t ih : ∀ (x : Π₀ (i : ι), α i), support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x x : Π₀ (i : ι), α i ht : support x = insert b t h : ∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i)) a : ι ha : a ∈ t ⊢ Acc (DFinsupp.Lex r s) (single a (↑(erase b x) a)) [PROOFSTEP] rw [erase_ne (ha.ne_of_not_mem hb)] [GOAL] case insert ι : Type u_1 α : ι → Type u_2 inst✝² : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 inst✝¹ : DecidableEq ι inst✝ : (i : ι) → (x : α i) → Decidable (x ≠ 0) b : ι t : Finset ι hb : ¬b ∈ t ih : ∀ (x : Π₀ (i : ι), α i), support x = t → (∀ (i : ι), i ∈ t → Acc (DFinsupp.Lex r s) (single i (↑x i))) → Acc (DFinsupp.Lex r s) x x : Π₀ (i : ι), α i ht : support x = insert b t h : ∀ (i : ι), i ∈ insert b t → Acc (DFinsupp.Lex r s) (single i (↑x i)) a : ι ha : a ∈ t ⊢ Acc (DFinsupp.Lex r s) (single a (↑x a)) [PROOFSTEP] exact h a (Finset.mem_insert_of_mem ha) [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i : ι hi : Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) i ⊢ ∀ (a : α i), Acc (DFinsupp.Lex r s) (single i a) [PROOFSTEP] induction' hi with i _ ih [GOAL] case intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) ⊢ ∀ (a : α i), Acc (DFinsupp.Lex r s) (single i a) [PROOFSTEP] refine fun a => WellFounded.induction (hs i) (C := fun x ↦ Acc (DFinsupp.Lex r s) (single i x)) a fun a ha ↦ ?_ [GOAL] case intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y ⊢ (fun x => Acc (DFinsupp.Lex r s) (single i x)) a [PROOFSTEP] refine Acc.intro _ fun x ↦ ?_ [GOAL] case intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i ⊢ DFinsupp.Lex r s x (single i a) → Acc (DFinsupp.Lex r s) x [PROOFSTEP] rintro ⟨k, hr, hs⟩ [GOAL] case intro.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i k : ι hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j hs : s k (↑x k) (↑(single i a) k) ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] rw [single_apply] at hs [GOAL] case intro.intro.intro ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i k : ι hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j hs : s k (↑x k) (if h : i = k then Eq.recOn h a else 0) ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] split_ifs at hs with hik [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i k : ι hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j hik : i = k hs : s k (↑x k) (Eq.recOn hik a) ⊢ Acc (DFinsupp.Lex r s) x case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i k : ι hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j hik : ¬i = k hs : s k (↑x k) 0 ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] swap [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i k : ι hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j hik : ¬i = k hs : s k (↑x k) 0 ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] exact (hbot hs).elim [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i k : ι hr : ∀ (j : ι), r j k → ↑x j = ↑(single i a) j hik : i = k hs : s k (↑x k) (Eq.recOn hik a) ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] subst hik [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j hs : s i (↑x i) (Eq.recOn (_ : i = i) a) ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] classical refine Lex.acc_of_single hbot x fun j hj ↦ ?_ obtain rfl | hij := eq_or_ne i j · exact ha _ hs by_cases r j i · rw [hr j h, single_eq_of_ne hij, single_zero] exact Lex.acc_zero hbot · exact ih _ ⟨h, hij.symm⟩ _ [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j hs : s i (↑x i) (Eq.recOn (_ : i = i) a) ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] refine Lex.acc_of_single hbot x fun j hj ↦ ?_ [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j hs : s i (↑x i) (Eq.recOn (_ : i = i) a) j : ι hj : j ∈ support x ⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j)) [PROOFSTEP] obtain rfl | hij := eq_or_ne i j [GOAL] case pos.inl ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j hs : s i (↑x i) (Eq.recOn (_ : i = i) a) hj : i ∈ support x ⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single i (↑x i)) [PROOFSTEP] exact ha _ hs [GOAL] case pos.inr ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j hs : s i (↑x i) (Eq.recOn (_ : i = i) a) j : ι hj : j ∈ support x hij : i ≠ j ⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j)) [PROOFSTEP] by_cases r j i [GOAL] case pos.inr ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j hs : s i (↑x i) (Eq.recOn (_ : i = i) a) j : ι hj : j ∈ support x hij : i ≠ j ⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j)) [PROOFSTEP] by_cases r j i [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j hs : s i (↑x i) (Eq.recOn (_ : i = i) a) j : ι hj : j ∈ support x hij : i ≠ j h : r j i ⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j)) [PROOFSTEP] rw [hr j h, single_eq_of_ne hij, single_zero] [GOAL] case pos ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j hs : s i (↑x i) (Eq.recOn (_ : i = i) a) j : ι hj : j ∈ support x hij : i ≠ j h : r j i ⊢ Acc (DFinsupp.Lex r fun i a => s i a) 0 [PROOFSTEP] exact Lex.acc_zero hbot [GOAL] case neg ι : Type u_1 α : ι → Type u_2 inst✝¹ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs✝ : ∀ (i : ι), WellFounded (s i) inst✝ : DecidableEq ι i✝ i : ι h✝ : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → Acc (rᶜ ⊓ fun x x_1 => x ≠ x_1) y ih : ∀ (y : ι), (rᶜ ⊓ fun x x_1 => x ≠ x_1) y i → ∀ (a : α y), Acc (DFinsupp.Lex r s) (single y a) a✝ a : α i ha : ∀ (y : α i), s i y a → (fun x => Acc (DFinsupp.Lex r s) (single i x)) y x : Π₀ (i : ι), α i hr : ∀ (j : ι), r j i → ↑x j = ↑(single i a) j hs : s i (↑x i) (Eq.recOn (_ : i = i) a) j : ι hj : j ∈ support x hij : i ≠ j h : ¬r j i ⊢ Acc (DFinsupp.Lex r fun i a => s i a) (single j (↑x j)) [PROOFSTEP] exact ih _ ⟨h, hij.symm⟩ _ [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs : ∀ (i : ι), WellFounded (s i) hr : WellFounded (rᶜ ⊓ fun x x_1 => x ≠ x_1) x : Π₀ (i : ι), α i ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] classical exact Lex.acc hbot hs x fun i _ => hr.apply i [GOAL] ι : Type u_1 α : ι → Type u_2 inst✝ : (i : ι) → Zero (α i) r : ι → ι → Prop s : (i : ι) → α i → α i → Prop hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬s i a 0 hs : ∀ (i : ι), WellFounded (s i) hr : WellFounded (rᶜ ⊓ fun x x_1 => x ≠ x_1) x : Π₀ (i : ι), α i ⊢ Acc (DFinsupp.Lex r s) x [PROOFSTEP] exact Lex.acc hbot hs x fun i _ => hr.apply i [GOAL] ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : IsStrictTotalOrder ι r inst✝ : Finite ι hs : ∀ (i : ι), WellFounded (s i) ⊢ WellFounded (Pi.Lex r fun {i} => s i) [PROOFSTEP] obtain h | ⟨⟨x⟩⟩ := isEmpty_or_nonempty (∀ i, α i) [GOAL] case inl ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : IsStrictTotalOrder ι r inst✝ : Finite ι hs : ∀ (i : ι), WellFounded (s i) h : IsEmpty ((i : ι) → α i) ⊢ WellFounded (Pi.Lex r fun {i} => s i) [PROOFSTEP] convert emptyWf.wf [GOAL] case inr.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : IsStrictTotalOrder ι r inst✝ : Finite ι hs : ∀ (i : ι), WellFounded (s i) x : (i : ι) → α i ⊢ WellFounded (Pi.Lex r fun {i} => s i) [PROOFSTEP] letI : ∀ i, Zero (α i) := fun i => ⟨(hs i).min ⊤ ⟨x i, trivial⟩⟩ [GOAL] case inr.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : IsStrictTotalOrder ι r inst✝ : Finite ι hs : ∀ (i : ι), WellFounded (s i) x : (i : ι) → α i this : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) } ⊢ WellFounded (Pi.Lex r fun {i} => s i) [PROOFSTEP] haveI := IsTrans.swap r [GOAL] case inr.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : IsStrictTotalOrder ι r inst✝ : Finite ι hs : ∀ (i : ι), WellFounded (s i) x : (i : ι) → α i this✝ : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) } this : IsTrans ι (Function.swap r) ⊢ WellFounded (Pi.Lex r fun {i} => s i) [PROOFSTEP] haveI := IsIrrefl.swap r [GOAL] case inr.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : IsStrictTotalOrder ι r inst✝ : Finite ι hs : ∀ (i : ι), WellFounded (s i) x : (i : ι) → α i this✝¹ : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) } this✝ : IsTrans ι (Function.swap r) this : IsIrrefl ι (Function.swap r) ⊢ WellFounded (Pi.Lex r fun {i} => s i) [PROOFSTEP] haveI := Fintype.ofFinite ι [GOAL] case inr.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : IsStrictTotalOrder ι r inst✝ : Finite ι hs : ∀ (i : ι), WellFounded (s i) x : (i : ι) → α i this✝² : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) } this✝¹ : IsTrans ι (Function.swap r) this✝ : IsIrrefl ι (Function.swap r) this : Fintype ι ⊢ WellFounded (Pi.Lex r fun {i} => s i) [PROOFSTEP] refine' InvImage.wf equivFunOnFintype.symm (Lex.wellFounded' (fun i a => _) hs _) [GOAL] case inr.intro.refine'_1 ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : IsStrictTotalOrder ι r inst✝ : Finite ι hs : ∀ (i : ι), WellFounded (s i) x : (i : ι) → α i this✝² : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) } this✝¹ : IsTrans ι (Function.swap r) this✝ : IsIrrefl ι (Function.swap r) this : Fintype ι i : ι a : α i ⊢ ¬s i a 0 case inr.intro.refine'_2 ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : IsStrictTotalOrder ι r inst✝ : Finite ι hs : ∀ (i : ι), WellFounded (s i) x : (i : ι) → α i this✝² : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded (s i)) ⊤ (_ : ∃ x, x ∈ ⊤) } this✝¹ : IsTrans ι (Function.swap r) this✝ : IsIrrefl ι (Function.swap r) this : Fintype ι ⊢ WellFounded (Function.swap fun j i => r j i) [PROOFSTEP] exacts [(hs i).not_lt_min ⊤ _ trivial, Finite.wellFounded_of_trans_of_irrefl (Function.swap r)] [GOAL] ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] set β := fun i ↦ Antisymmetrization (α i) (· ≤ ·) [GOAL] ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] set e : (i : ι) → α i → β i := fun i ↦ toAntisymmetrization (· ≤ ·) [GOAL] ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] let _ : ∀ i, Zero (β i) := fun i ↦ ⟨e i 0⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] have : WellFounded (DFinsupp.Lex (Function.swap <| @WellOrderingRel ι) (fun _ ↦ (· < ·) : (i : ι) → β i → β i → Prop)) [GOAL] case this ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } ⊢ WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2) [PROOFSTEP] have := IsTrichotomous.swap (@WellOrderingRel ι) [GOAL] case this ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } this : IsTrichotomous ι (Function.swap WellOrderingRel) ⊢ WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2) [PROOFSTEP] refine Lex.wellFounded' ?_ (fun i ↦ IsWellFounded.wf) ?_ [GOAL] case this.refine_1 ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } this : IsTrichotomous ι (Function.swap WellOrderingRel) ⊢ ∀ ⦃i : ι⦄ ⦃a : β i⦄, ¬a < 0 [PROOFSTEP] rintro i ⟨a⟩ [GOAL] case this.refine_1.mk ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } this : IsTrichotomous ι (Function.swap WellOrderingRel) i : ι a✝ : β i a : α i ⊢ ¬Quot.mk Setoid.r a < 0 [PROOFSTEP] apply hbot [GOAL] case this.refine_2 ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } this : IsTrichotomous ι (Function.swap WellOrderingRel) ⊢ WellFounded (Function.swap (Function.swap WellOrderingRel)) [PROOFSTEP] simp only [Function.swap] [GOAL] case this.refine_2 ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } this : IsTrichotomous ι (Function.swap WellOrderingRel) ⊢ WellFounded fun y x => WellOrderingRel y x [PROOFSTEP] exact IsWellFounded.wf [GOAL] ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } this : WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2) ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] refine Subrelation.wf (fun h => ?_) <| InvImage.wf (mapRange (fun i ↦ e i) fun _ ↦ rfl) this [GOAL] ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝¹ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } this : WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2) x✝ y✝ : Π₀ (i : ι), α i h : x✝ < y✝ ⊢ InvImage (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2) (mapRange (fun i => e i) (_ : ∀ (x : ι), (fun i => e i) x 0 = (fun i => e i) x 0)) x✝ y✝ [PROOFSTEP] have := IsStrictOrder.swap (@WellOrderingRel ι) [GOAL] ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝¹ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } this✝ : WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2) x✝ y✝ : Π₀ (i : ι), α i h : x✝ < y✝ this : IsStrictOrder ι (Function.swap WellOrderingRel) ⊢ InvImage (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2) (mapRange (fun i => e i) (_ : ∀ (x : ι), (fun i => e i) x 0 = (fun i => e i) x 0)) x✝ y✝ [PROOFSTEP] obtain ⟨i, he, hl⟩ := lex_lt_of_lt_of_preorder (Function.swap WellOrderingRel) h [GOAL] case intro.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝² : (i : ι) → Zero (α i) inst✝¹ : (i : ι) → Preorder (α i) inst✝ : ∀ (i : ι), WellFoundedLT (α i) hbot : ∀ ⦃i : ι⦄ ⦃a : α i⦄, ¬a < 0 β : ι → Type u_2 := fun i => Antisymmetrization (α i) fun x x_1 => x ≤ x_1 e : (i : ι) → α i → β i := fun i => toAntisymmetrization fun x x_1 => x ≤ x_1 x✝¹ : (i : ι) → Zero (β i) := fun i => { zero := e i 0 } this✝ : WellFounded (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2) x✝ y✝ : Π₀ (i : ι), α i h : x✝ < y✝ this : IsStrictOrder ι (Function.swap WellOrderingRel) i : ι he : ∀ (j : ι), Function.swap WellOrderingRel j i → ↑x✝ j ≤ ↑y✝ j ∧ ↑y✝ j ≤ ↑x✝ j hl : ↑x✝ i < ↑y✝ i ⊢ InvImage (DFinsupp.Lex (Function.swap WellOrderingRel) fun x x_1 x_2 => x_1 < x_2) (mapRange (fun i => e i) (_ : ∀ (x : ι), (fun i => e i) x 0 = (fun i => e i) x 0)) x✝ y✝ [PROOFSTEP] exact ⟨i, fun j hj ↦ Quot.sound (he j hj), hl⟩ [GOAL] ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : Finite ι inst✝ : (i : ι) → Preorder (α i) hw : ∀ (i : ι), WellFoundedLT (α i) ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] obtain h | ⟨⟨x⟩⟩ := isEmpty_or_nonempty (∀ i, α i) [GOAL] case inl ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : Finite ι inst✝ : (i : ι) → Preorder (α i) hw : ∀ (i : ι), WellFoundedLT (α i) h : IsEmpty ((i : ι) → α i) ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] convert emptyWf.wf [GOAL] case inr.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : Finite ι inst✝ : (i : ι) → Preorder (α i) hw : ∀ (i : ι), WellFoundedLT (α i) x : (i : ι) → α i ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] letI : ∀ i, Zero (α i) := fun i => ⟨(hw i).wf.min ⊤ ⟨x i, trivial⟩⟩ [GOAL] case inr.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : Finite ι inst✝ : (i : ι) → Preorder (α i) hw : ∀ (i : ι), WellFoundedLT (α i) x : (i : ι) → α i this : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) ⊤ (_ : ∃ x, x ∈ ⊤) } ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] haveI := Fintype.ofFinite ι [GOAL] case inr.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : Finite ι inst✝ : (i : ι) → Preorder (α i) hw : ∀ (i : ι), WellFoundedLT (α i) x : (i : ι) → α i this✝ : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) ⊤ (_ : ∃ x, x ∈ ⊤) } this : Fintype ι ⊢ WellFounded fun x x_1 => x < x_1 [PROOFSTEP] refine' InvImage.wf equivFunOnFintype.symm (DFinsupp.wellFoundedLT fun i a => _).wf [GOAL] case inr.intro ι : Type u_1 α : ι → Type u_2 r : ι → ι → Prop s : (i : ι) → α i → α i → Prop inst✝¹ : Finite ι inst✝ : (i : ι) → Preorder (α i) hw : ∀ (i : ι), WellFoundedLT (α i) x : (i : ι) → α i this✝ : (i : ι) → Zero (α i) := fun i => { zero := WellFounded.min (_ : WellFounded fun x x_1 => x < x_1) ⊤ (_ : ∃ x, x ∈ ⊤) } this : Fintype ι i : ι a : α i ⊢ ¬a < 0 [PROOFSTEP] exact (hw i).wf.not_lt_min ⊤ _ trivial
{"mathlib_filename": "Mathlib.Data.DFinsupp.WellFounded", "llama_tokens": 31298}
[GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → Zero (N a) f✝ g✝ f g : Π₀ (a : α), N a a : α ⊢ a ∈ neLocus f g ↔ ↑f a ≠ ↑g a [PROOFSTEP] simpa only [neLocus, Finset.mem_filter, Finset.mem_union, mem_support_iff, and_iff_right_iff_imp] using Ne.ne_or_ne _ [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → Zero (N a) f✝ g✝ f g : Π₀ (a : α), N a h : f = g ⊢ neLocus f f = ∅ [PROOFSTEP] simp only [neLocus, Ne.def, eq_self_iff_true, not_true, Finset.filter_False] [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → Zero (N a) f g : Π₀ (a : α), N a ⊢ neLocus f g = neLocus g f [PROOFSTEP] simp_rw [neLocus, Finset.union_comm, ne_comm] [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → Zero (N a) f g : Π₀ (a : α), N a ⊢ neLocus f 0 = support f [PROOFSTEP] ext [GOAL] case a α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → Zero (N a) f g : Π₀ (a : α), N a a✝ : α ⊢ a✝ ∈ neLocus f 0 ↔ a✝ ∈ support f [PROOFSTEP] rw [mem_neLocus, mem_support_iff, coe_zero, Pi.zero_apply] [GOAL] α : Type u_1 N : α → Type u_2 inst✝⁵ : DecidableEq α M : α → Type u_3 P : α → Type u_4 inst✝⁴ : (a : α) → Zero (N a) inst✝³ : (a : α) → Zero (M a) inst✝² : (a : α) → Zero (P a) inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → DecidableEq (M a) f g : Π₀ (a : α), N a F : (a : α) → N a → M a F0 : ∀ (a : α), F a 0 = 0 a : α ⊢ a ∈ neLocus (mapRange F F0 f) (mapRange F F0 g) → a ∈ neLocus f g [PROOFSTEP] simpa only [mem_neLocus, mapRange_apply, not_imp_not] using congr_arg (F a) [GOAL] α : Type u_1 N : α → Type u_2 inst✝⁵ : DecidableEq α M : α → Type u_3 P : α → Type u_4 inst✝⁴ : (a : α) → Zero (N a) inst✝³ : (a : α) → Zero (M a) inst✝² : (a : α) → Zero (P a) inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → DecidableEq (P a) F : (a : α) → M a → N a → P a F0 : ∀ (a : α), F a 0 0 = 0 f : Π₀ (a : α), M a g₁ g₂ : Π₀ (a : α), N a hF : ∀ (a : α) (f : M a), Function.Injective fun g => F a f g ⊢ neLocus (zipWith F F0 f g₁) (zipWith F F0 f g₂) = neLocus g₁ g₂ [PROOFSTEP] ext a [GOAL] case a α : Type u_1 N : α → Type u_2 inst✝⁵ : DecidableEq α M : α → Type u_3 P : α → Type u_4 inst✝⁴ : (a : α) → Zero (N a) inst✝³ : (a : α) → Zero (M a) inst✝² : (a : α) → Zero (P a) inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → DecidableEq (P a) F : (a : α) → M a → N a → P a F0 : ∀ (a : α), F a 0 0 = 0 f : Π₀ (a : α), M a g₁ g₂ : Π₀ (a : α), N a hF : ∀ (a : α) (f : M a), Function.Injective fun g => F a f g a : α ⊢ a ∈ neLocus (zipWith F F0 f g₁) (zipWith F F0 f g₂) ↔ a ∈ neLocus g₁ g₂ [PROOFSTEP] simpa only [mem_neLocus] using (hF a _).ne_iff [GOAL] α : Type u_1 N : α → Type u_2 inst✝⁵ : DecidableEq α M : α → Type u_3 P : α → Type u_4 inst✝⁴ : (a : α) → Zero (N a) inst✝³ : (a : α) → Zero (M a) inst✝² : (a : α) → Zero (P a) inst✝¹ : (a : α) → DecidableEq (M a) inst✝ : (a : α) → DecidableEq (P a) F : (a : α) → M a → N a → P a F0 : ∀ (a : α), F a 0 0 = 0 f₁ f₂ : Π₀ (a : α), M a g : Π₀ (a : α), N a hF : ∀ (a : α) (g : N a), Function.Injective fun f => F a f g ⊢ neLocus (zipWith F F0 f₁ g) (zipWith F F0 f₂ g) = neLocus f₁ f₂ [PROOFSTEP] ext a [GOAL] case a α : Type u_1 N : α → Type u_2 inst✝⁵ : DecidableEq α M : α → Type u_3 P : α → Type u_4 inst✝⁴ : (a : α) → Zero (N a) inst✝³ : (a : α) → Zero (M a) inst✝² : (a : α) → Zero (P a) inst✝¹ : (a : α) → DecidableEq (M a) inst✝ : (a : α) → DecidableEq (P a) F : (a : α) → M a → N a → P a F0 : ∀ (a : α), F a 0 0 = 0 f₁ f₂ : Π₀ (a : α), M a g : Π₀ (a : α), N a hF : ∀ (a : α) (g : N a), Function.Injective fun f => F a f g a : α ⊢ a ∈ neLocus (zipWith F F0 f₁ g) (zipWith F F0 f₂ g) ↔ a ∈ neLocus f₁ f₂ [PROOFSTEP] simpa only [mem_neLocus] using (hF a _).ne_iff [GOAL] α : Type u_1 N : α → Type u_2 inst✝⁵ : DecidableEq α M : α → Type u_3 P : α → Type u_4 inst✝⁴ : (a : α) → Zero (N a) inst✝³ : (a : α) → Zero (M a) inst✝² : (a : α) → Zero (P a) inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → DecidableEq (M a) f g : Π₀ (a : α), N a F : (a : α) → N a → M a F0 : ∀ (a : α), F a 0 = 0 hF : ∀ (a : α), Function.Injective (F a) ⊢ neLocus (mapRange F F0 f) (mapRange F F0 g) = neLocus f g [PROOFSTEP] ext a [GOAL] case a α : Type u_1 N : α → Type u_2 inst✝⁵ : DecidableEq α M : α → Type u_3 P : α → Type u_4 inst✝⁴ : (a : α) → Zero (N a) inst✝³ : (a : α) → Zero (M a) inst✝² : (a : α) → Zero (P a) inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → DecidableEq (M a) f g : Π₀ (a : α), N a F : (a : α) → N a → M a F0 : ∀ (a : α), F a 0 = 0 hF : ∀ (a : α), Function.Injective (F a) a : α ⊢ a ∈ neLocus (mapRange F F0 f) (mapRange F F0 g) ↔ a ∈ neLocus f g [PROOFSTEP] simpa only [mem_neLocus] using (hF a).ne_iff [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a ⊢ neLocus (-f) g = neLocus f (-g) [PROOFSTEP] rw [← neLocus_neg_neg, neg_neg] [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a ⊢ neLocus f g = support (f - g) [PROOFSTEP] rw [← @neLocus_add_right α N _ _ _ _ _ (-g), add_right_neg, neLocus_zero_right, sub_eq_add_neg] [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a ⊢ neLocus (f - g₁) (f - g₂) = neLocus g₁ g₂ [PROOFSTEP] simp only [sub_eq_add_neg, @neLocus_add_left α N _ _ _, neLocus_neg_neg] [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a ⊢ neLocus (f₁ - g) (f₂ - g) = neLocus f₁ f₂ [PROOFSTEP] simpa only [sub_eq_add_neg] using @neLocus_add_right α N _ _ _ _ _ _ [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a ⊢ neLocus f (f + g) = support g [PROOFSTEP] rw [← neLocus_zero_left, ← @neLocus_add_left α N _ _ _ f 0 g, add_zero] [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a ⊢ neLocus (f + g) f = support g [PROOFSTEP] rw [neLocus_comm, neLocus_self_add_right] [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a ⊢ neLocus f (f - g) = support g [PROOFSTEP] rw [sub_eq_add_neg, neLocus_self_add_right, support_neg] [GOAL] α : Type u_1 N : α → Type u_2 inst✝² : DecidableEq α inst✝¹ : (a : α) → DecidableEq (N a) inst✝ : (a : α) → AddGroup (N a) f f₁ f₂ g g₁ g₂ : Π₀ (a : α), N a ⊢ neLocus (f - g) f = support g [PROOFSTEP] rw [neLocus_comm, neLocus_self_sub_right]
{"mathlib_filename": "Mathlib.Data.DFinsupp.NeLocus", "llama_tokens": 3860}
{"mathlib_filename": "Mathlib.Data.Stream.Defs", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Data.MLList.Split", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Data.MLList.IO", "llama_tokens": 0}