DistilBERT MLM Multilingual - CoreML (Fast)

This is a CoreML conversion of distilbert-base-multilingual-cased with the Masked Language Model (MLM) head, optimized for iOS deployment.

Why DistilBERT?

DistilBERT is a smaller, faster version of BERT that retains 97% of BERT's language understanding while being:

  • 40% smaller (~258MB vs ~340MB)
  • 60% faster inference
  • Same 104 language support

Model Description

  • Base Model: distilbert-base-multilingual-cased
  • Task: Masked Language Modeling (MLM)
  • Languages: 104 languages including English, Chinese, Cantonese
  • Format: CoreML (.mlmodelc)
  • Size: ~258MB compiled

Intended Use

Grammar correction that preserves code-switching (mixed language text). Ideal for mobile keyboards where speed is important.

Comparison with BERT

Model Size Speed Quality
BERT-base-multilingual ~340MB Baseline 100%
DistilBERT-multilingual ~258MB ~2x faster ~97%

Model Files

  • vocab.txt - WordPiece vocabulary (119,547 tokens)
  • distilbert_mlm.mlmodelc/ - Compiled CoreML model for iOS

Technical Details

  • Architecture: DistilBERT (6 layers, 768 hidden, 12 attention heads)
  • Parameters: ~66M (vs BERT's 110M)
  • Max Sequence Length: 128 tokens
  • Compute Units: CPU (for iOS background app compatibility)
  • Minimum iOS: 15.0

Usage in iOS

import CoreML

// Load model
let config = MLModelConfiguration()
config.computeUnits = .cpuOnly
let model = try MLModel(contentsOf: modelURL, configuration: config)

// Prepare inputs (DistilBERT doesn't use token_type_ids)
let inputIds: MLMultiArray = // tokenized input with [MASK] tokens
let attentionMask: MLMultiArray = // attention mask

// Run inference
let input = try MLDictionaryFeatureProvider(dictionary: [
    "input_ids": MLFeatureValue(multiArray: inputIds),
    "attention_mask": MLFeatureValue(multiArray: attentionMask)
])
let output = try model.prediction(from: input)
let logits = output.featureValue(for: "logits")?.multiArrayValue

License

This model is released under the Apache 2.0 License.

Attribution

Citation

@article{sanh2019distilbert,
  title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
  author={Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas},
  journal={arXiv preprint arXiv:1910.01108},
  year={2019}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for goodpixelltd/distilbert-mlm-multilingual-coreml

Finetuned
(406)
this model

Paper for goodpixelltd/distilbert-mlm-multilingual-coreml