YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
license: mit ---# CHG Algorithm Package
CHG (Covariance-based Hilbert Geometry) Algorithm is a sophisticated implementation of Gaussian Process regression with enhanced multi-head attention mechanisms for improved covariance computation and uncertainty quantification.
Features
- Multi-head Attention: Advanced attention mechanism for better feature representation
- Enhanced Covariance: Sophisticated covariance computation using neural network components
- Uncertainty Quantification: Built-in uncertainty estimation for predictions
- Optimization Support: Gradient-based parameter optimization
- Robust Implementation: Handles numerical instabilities gracefully
Installation
From Source
git clone <repository-url>
cd chg_package
pip install -e .
Development Installation
pip install -e ".[dev]"
Quick Start
Basic Usage
from chg_algorithm import CHG
import numpy as np
# Initialize model
model = CHG(input_dim=3, hidden_dim=24, num_heads=4)
# Generate sample data
X_train = np.random.randn(100, 3)
y_train = np.sum(X_train**2, axis=1) + 0.1 * np.random.randn(100)
X_test = np.random.randn(20, 3)
# Make predictions
pred_mean, pred_var = model.fit_predict(X_train, y_train, X_test)
print(f"Predictions: {pred_mean}")
print(f"Uncertainties: {np.sqrt(pred_var)}")
Running Demo
from chg_algorithm import run_chg_experiment
# Run complete demonstration
model, predictions, variances = run_chg_experiment()
Using Optimizer
from chg_algorithm import CHG, CHGOptimizer
# Initialize model and optimizer
model = CHG(input_dim=3, hidden_dim=24, num_heads=4)
optimizer = CHGOptimizer(model, learning_rate=0.001)
# Optimize model parameters
for epoch in range(10):
optimizer.step(X_train, y_train)
lml = model.log_marginal_likelihood(X_train, y_train)
print(f"Epoch {epoch}: Log Marginal Likelihood = {lml:.4f}")
API Reference
CHG Class
Main model class implementing the CHG algorithm.
Parameters:
input_dim(int): Dimensionality of input featureshidden_dim(int): Hidden dimension for feature transformationnum_heads(int): Number of attention heads
Key Methods:
fit_predict(X_train, y_train, X_test, noise_var=1e-6): Fit model and predictlog_marginal_likelihood(X, y, noise_var=1e-6): Compute log marginal likelihoodget_covariance_matrix(X): Get covariance matrix for inputs
CHGOptimizer Class
Optimizer for CHG model parameters.
Parameters:
model(CHG): CHG model instance to optimizelearning_rate(float): Learning rate for parameter updates
Key Methods:
step(X, y, noise_var=1e-6): Perform one optimization stepcompute_gradients(X, y, noise_var=1e-6): Compute parameter gradients
Algorithm Details
The CHG algorithm combines several advanced techniques:
- Multi-head Attention: Uses multiple attention heads to capture different aspects of feature relationships
- Enhanced Covariance: Computes covariance using feedforward networks and layer normalization
- Gaussian Process Framework: Built on solid GP foundations for uncertainty quantification
- Numerical Stability: Includes fallback methods for numerical edge cases
Requirements
- Python >= 3.7
- NumPy >= 1.19.0
- typing-extensions >= 3.7.4
License
This project is licensed under the MIT License - see the LICENSE file for details.
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Citation
If you use this software in your research, please cite:
@software{chg_algorithm,
title={CHG Algorithm: Covariance-based Hilbert Geometry for Gaussian Processes},
author={CHG Algorithm Team},
year={2024},
url={https://github.com/your-username/chg-algorithm}
}
Contact
For questions and support, please contact:[email protected]
If you need the while of it,you can emali to me. Cite it must be email to me. Good luck for everyone!
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support