THAU 7B - Cognitive AI Assistant
Thinking Human-like Artificial Understanding
THAU 7B is a fine-tuned version of Qwen2.5-7B-Instruct, specialized in cognitive reasoning, code generation, and autonomous agent capabilities.
Model Details
- Base Model: Qwen/Qwen2.5-7B-Instruct
- Training Method: LoRA (r=16, alpha=32)
- Parameters: 7.6B
- Context Length: 4096 tokens
- Languages: English, Spanish
Capabilities
| Feature | Status |
|---|---|
| Code Generation | Full |
| Chain of Thought | Full |
| Tool Calling (MCP) | Full |
| SVG Generation | Full |
| Accounting/Finance | Full |
| Multi-language | Spanish/English |
Training Data
- 677 unique training examples across 8 categories
- Programming: Python, JavaScript, Java, Rust, Go, SQL
- Reasoning: Step-by-step problem solving
- DevOps: CI/CD, Docker, Kubernetes
- Accounting: Double-entry bookkeeping, IFRS
Usage
With Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"luepow/thau-7b",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("luepow/thau-7b")
messages = [
{"role": "system", "content": "You are THAU, a cognitive AI assistant."},
{"role": "user", "content": "Explain Python decorators with examples."}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
With Ollama
ollama run luepow/thau-7b
Tool Calling
THAU supports JSON-based tool invocation:
<tool_call>{"name": "execute_python", "arguments": {"code": "print(2+2)"}}</tool_call>
Limitations
- No vision/multimodal capabilities
- No internal thinking tokens (uses prompting-based CoT)
- Quality depends on prompt engineering for complex tasks
License
Apache 2.0
Citation
@misc{thau-7b,
author = {Luis Perez},
title = {THAU 7B: Cognitive AI Assistant},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/luepow/thau-7b}
}
Acknowledgments
- Qwen Team for the excellent base model
- Anthropic's Claude for AI pair programming assistance
- TinyLlama Team for inspiration
- Downloads last month
- 23