These reduced dimensionality vectors were produced using the following code:

import fasttext
import fasttext.util

fasttext.util.download_model('en', if_exists='ignore')
print("Downloaded 300-D embeddings model")
ft = fasttext.load_model('cc.en.300.bin')
print(f"Current embedding dimension : {ft.get_dimension()}\n")

print(f"Reducing embedding dimension to 100-D")
fasttext.util.reduce_model(ft, 100)
print(f"Reduced embedding dimension : {ft.get_dimension()}\n")
ft.save_model('cc.en.100.bin')  # Use this in the code...

followed by:

gzip cc.en.100.bin
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mdda-rdai/fasttext-cc.en.100.bin

Finetuned
(2)
this model