|
|
--- |
|
|
language: |
|
|
- id |
|
|
license: mit |
|
|
tags: |
|
|
- text-classification |
|
|
- bert |
|
|
- spam-detection |
|
|
- indonesian |
|
|
- twitter |
|
|
- retrained |
|
|
datasets: |
|
|
- nahiar/mail_data |
|
|
pipeline_tag: text-classification |
|
|
inference: true |
|
|
base_model: nahiar/spam-detection-bert-v2 |
|
|
model_type: bert |
|
|
library_name: transformers |
|
|
widget: |
|
|
- text: "Senin, 21 Juli 2025, Samapta Polsek Ngaglik melaksanakan patroli stasioner balong jalan palagan donoharjo" |
|
|
example_title: "Ham Example" |
|
|
- text: "Mari berkontribusi terhadap gerakan rakyat dengan membeli baju ini seharga Rp 160.000. Hubungi kami melalui WA 08977472296" |
|
|
example_title: "Spam Example" |
|
|
model-index: |
|
|
- name: spam-detection-bert-v3 |
|
|
results: |
|
|
- task: |
|
|
type: text-classification |
|
|
name: Text Classification |
|
|
dataset: |
|
|
name: Mail Data Indonesian Spam Detection |
|
|
type: csv |
|
|
metrics: |
|
|
- name: Accuracy |
|
|
type: accuracy |
|
|
value: 0.95 |
|
|
- name: F1 Score (Weighted) |
|
|
type: f1 |
|
|
value: 0.95 |
|
|
- name: Precision (HAM) |
|
|
type: precision |
|
|
value: 0.98 |
|
|
- name: Recall (HAM) |
|
|
type: recall |
|
|
value: 0.96 |
|
|
- name: Precision (SPAM) |
|
|
type: precision |
|
|
value: 0.77 |
|
|
- name: Recall (SPAM) |
|
|
type: recall |
|
|
value: 0.85 |
|
|
--- |
|
|
|
|
|
# Indonesian Spam Detection BERT |
|
|
|
|
|
BERT model for spam detection in Indonesian with **95% accuracy**. This v3 model has been fine-tuned from v2 model with email dataset for optimal performance on Indonesian content. |
|
|
|
|
|
## Quick Start |
|
|
|
|
|
```python |
|
|
from transformers import pipeline |
|
|
|
|
|
# The easiest way to use the model |
|
|
classifier = pipeline("text-classification", |
|
|
model="nahiar/spam-detection-bert-v3", |
|
|
tokenizer="nahiar/spam-detection-bert-v3") |
|
|
|
|
|
# Test with text |
|
|
texts = [ |
|
|
"lacak hp hilang by no hp / imei lacak penipu/scammer/tabrak lari/terror/revengeporn sadap / hack / pulihkan akun", |
|
|
"Senin, 21 Juli 2025, Samapta Polsek Ngaglik melaksanakan patroli stasioner balong jalan palagan donoharjo", |
|
|
"Mari berkontribusi terhadap gerakan rakyat dengan membeli baju ini seharga Rp 160.000. Hubungi kami melalui WA 08977472296" |
|
|
] |
|
|
|
|
|
results = classifier(texts) |
|
|
for text, result in zip(texts, results): |
|
|
print(f"Text: {text}") |
|
|
print(f"Result: {result['label']} (confidence: {result['score']:.4f})") |
|
|
print("---") |
|
|
``` |
|
|
|
|
|
## Model Details |
|
|
|
|
|
- **Base Model**: nahiar/spam-detection-bert-v2 |
|
|
- **Task**: Binary Text Classification (Spam vs Ham) |
|
|
- **Language**: Indonesian (Bahasa Indonesia) |
|
|
- **Model Size**: ~110M parameters |
|
|
- **Max Sequence Length**: 512 tokens |
|
|
- **Training Epochs**: 3 |
|
|
- **Batch Size**: 16 |
|
|
- **Learning Rate**: 2e-5 |
|
|
|
|
|
## Performance |
|
|
|
|
|
| Metric | HAM | SPAM | Overall | |
|
|
| -------------------- | --- | ---- | ------- | |
|
|
| Precision | 98% | 77% | 95% | |
|
|
| Recall | 96% | 85% | 95% | |
|
|
| F1-Score | 97% | 81% | 95% | |
|
|
| **Overall Accuracy** | - | - | **95%** | |
|
|
|
|
|
### Confusion Matrix |
|
|
|
|
|
- True HAM correctly predicted: 953/988 (96%) |
|
|
- True SPAM correctly predicted: 115/135 (85%) |
|
|
- False Positives (HAM predicted as SPAM): 35 |
|
|
- False Negatives (SPAM predicted as HAM): 20 |
|
|
|
|
|
## Key Features |
|
|
|
|
|
- **Fine-tuned** from v2 model with email dataset |
|
|
- **Good accuracy** (95%) on spam detection with Indonesian context |
|
|
- **Better handling** for spam email content |
|
|
- **Enhanced performance** on Indonesian email text |
|
|
- **Optimized** for Indonesian email and social media spam detection |
|
|
|
|
|
## Label Mapping |
|
|
|
|
|
``` |
|
|
0: "HAM" (not spam) |
|
|
1: "SPAM" (spam) |
|
|
``` |
|
|
|
|
|
## Training Process |
|
|
|
|
|
This model was retrained using: |
|
|
|
|
|
- **Optimizer**: AdamW |
|
|
- **Learning Rate**: 2e-5 |
|
|
- **Epochs**: 3 |
|
|
- **Batch Size**: 16 |
|
|
- **Max Length**: 128 tokens |
|
|
- **Train/Validation Split**: 80/20 |
|
|
|
|
|
## Usage Example |
|
|
|
|
|
```python |
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
|
|
# Load model and tokenizer |
|
|
tokenizer = AutoTokenizer.from_pretrained("nahiar/spam-detection-bert-v3") |
|
|
model = AutoModelForSequenceClassification.from_pretrained("nahiar/spam-detection-bert-v3") |
|
|
|
|
|
def predict_spam(text): |
|
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) |
|
|
outputs = model(**inputs) |
|
|
probs = torch.softmax(outputs.logits, dim=1) |
|
|
predicted_label = torch.argmax(probs, dim=1).item() |
|
|
confidence = probs[0][predicted_label].item() |
|
|
label_map = {0: "HAM", 1: "SPAM"} |
|
|
return label_map[predicted_label], confidence |
|
|
|
|
|
# Test |
|
|
text = "Dapatkan uang dengan mudah! Klik link ini sekarang!" |
|
|
result, confidence = predict_spam(text) |
|
|
print(f"Prediksi: {result} (Confidence: {confidence:.4f})") |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@misc{nahiar_spam_detection_bert, |
|
|
title={Indonesian Spam Detection BERT}, |
|
|
author={Raihan Hidayatullah Djunaedi}, |
|
|
year={2025}, |
|
|
url={https://huggingface.co/nahiar/spam-detection-bert-v3} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Changelog |
|
|
|
|
|
### Current Version v3 (August 2025) |
|
|
|
|
|
- Fine-tuned from v2 model with email dataset (mail_data.csv) |
|
|
- Enhanced handling for Indonesian spam email content |
|
|
- Good performance (95% accuracy) on email spam detection |
|
|
- Optimized for Indonesian email and social media content |
|
|
- Improved with GPU-accelerated training using RTX 3080 |
|
|
|