secret-model-stage-1-0.6B-32

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9642
  • Centroid Acc: 0.8491
  • Centroid Macro F1: 0.8510
  • Knn Acc: 0.8868
  • Knn Macro F1: 0.8922
  • Alignment: 0.6861
  • Uniformity: -3.0154
  • Combined Score: 0.8647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Centroid Acc Centroid Macro F1 Knn Acc Knn Macro F1 Alignment Uniformity Combined Score
No log 0 0 2.5120 0.4906 0.4741 0.7170 0.7022 0.4456 -0.9957 0.5501
1.8667 3.125 100 1.7566 0.6981 0.6999 0.8679 0.8777 0.4242 -1.4639 0.7592
1.4456 6.25 200 1.1371 0.8491 0.8500 0.8491 0.8399 0.4276 -1.8594 0.8466
1.1259 9.375 300 1.0450 0.8302 0.8326 0.8302 0.8259 0.3959 -1.8022 0.8304
0.6033 12.5 400 0.9749 0.8113 0.8014 0.8113 0.8032 0.6055 -2.6825 0.8020
0.6079 15.625 500 0.9847 0.8491 0.8498 0.8868 0.8816 0.5269 -2.3363 0.8604
0.4846 18.75 600 0.9544 0.8302 0.8332 0.8491 0.8410 0.5448 -2.5200 0.8358
0.3492 21.875 700 0.9976 0.8491 0.8516 0.8113 0.8113 0.6177 -2.6891 0.8382
0.2924 25.0 800 1.0358 0.8302 0.8371 0.8302 0.8292 0.6377 -2.7912 0.8345
0.2924 25.0 800 1.0358 0.8302 0.8371 0.8302 0.8292 0.6377 -2.7912 0.8345
0.2142 28.125 900 1.0408 0.8491 0.8468 0.8491 0.8468 0.6262 -2.8568 0.8468
0.1433 31.25 1000 0.9725 0.8491 0.8519 0.8868 0.8848 0.6383 -2.9037 0.8629
0.1468 34.375 1100 1.0977 0.8491 0.8393 0.8302 0.8201 0.6942 -2.9770 0.8329
0.1229 37.5 1200 1.1407 0.7925 0.7804 0.8491 0.8376 0.6696 -2.8946 0.7995
0.0275 40.625 1300 0.8793 0.8868 0.8853 0.8679 0.8690 0.6394 -2.8780 0.8799
0.0293 43.75 1400 0.8398 0.8679 0.8690 0.8491 0.8527 0.6248 -2.8809 0.8636
0.0189 46.875 1500 0.9692 0.8679 0.8727 0.8868 0.8893 0.6852 -3.0108 0.8782
0.0089 50.0 1600 0.9862 0.8302 0.8414 0.8491 0.8563 0.6540 -2.9116 0.8464
0.0089 50.0 1600 0.9862 0.8302 0.8414 0.8491 0.8563 0.6540 -2.9116 0.8464
0.054 53.125 1700 0.9374 0.8679 0.8730 0.8491 0.8563 0.6712 -2.9751 0.8674
0.0051 56.25 1800 1.0472 0.8302 0.8308 0.8491 0.8563 0.6784 -2.9614 0.8393
0.0118 59.375 1900 1.0015 0.8491 0.8527 0.8491 0.8563 0.6757 -2.9613 0.8539
0.0311 62.5 2000 0.8517 0.8491 0.8527 0.8491 0.8563 0.6774 -3.0056 0.8539
0.0026 65.625 2100 0.9519 0.8679 0.8730 0.8491 0.8563 0.6728 -2.9874 0.8674
0.0017 68.75 2200 0.9554 0.8491 0.8510 0.8491 0.8563 0.6738 -2.9841 0.8528
0.0016 71.875 2300 0.9851 0.8491 0.8510 0.8491 0.8563 0.6742 -2.9753 0.8528
0.0015 75.0 2400 0.9575 0.8491 0.8510 0.8491 0.8563 0.6742 -2.9841 0.8528
0.0015 75.0 2400 0.9575 0.8491 0.8510 0.8491 0.8563 0.6742 -2.9841 0.8528
0.0021 78.125 2500 0.9687 0.8491 0.8510 0.8679 0.8756 0.6788 -2.9943 0.8592
0.0019 81.25 2600 0.9789 0.8679 0.8730 0.8868 0.8922 0.6788 -2.9937 0.8794
0.0091 84.375 2700 0.9718 0.8491 0.8510 0.8868 0.8922 0.6807 -3.0014 0.8647
0.0013 87.5 2800 0.9700 0.8491 0.8510 0.8868 0.8922 0.6837 -3.0070 0.8647
0.0013 90.625 2900 0.9731 0.8491 0.8510 0.8868 0.8922 0.6883 -3.0182 0.8647
0.0015 93.75 3000 0.9667 0.8491 0.8510 0.8868 0.8922 0.6875 -3.0176 0.8647
0.0389 96.875 3100 0.9678 0.8491 0.8510 0.8868 0.8922 0.6868 -3.0167 0.8647
0.0009 100.0 3200 0.9642 0.8491 0.8510 0.8868 0.8922 0.6861 -3.0154 0.8647
0.0009 100.0 3200 0.9642 0.8491 0.8510 0.8868 0.8922 0.6861 -3.0154 0.8647

Framework versions

  • Transformers 4.56.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
32.8k params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results