v0.38.0
Browse filesSee https://github.com/quic/ai-hub-models/releases/v0.38.0 for changelog.
- .gitattributes +4 -0
- DEPLOYMENT_MODEL_LICENSE.pdf +3 -0
- GPUNet_float.dlc +3 -0
- GPUNet_float.onnx.zip +3 -0
- GPUNet_float.tflite +3 -0
- GPUNet_w8a16.dlc +3 -0
- GPUNet_w8a8.dlc +3 -0
- GPUNet_w8a8.onnx.zip +3 -0
- GPUNet_w8a8.tflite +3 -0
- LICENSE +2 -0
- README.md +287 -0
- tool-versions.yaml +4 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
DEPLOYMENT_MODEL_LICENSE.pdf filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
GPUNet_float.dlc filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
GPUNet_w8a16.dlc filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
GPUNet_w8a8.dlc filter=lfs diff=lfs merge=lfs -text
|
DEPLOYMENT_MODEL_LICENSE.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4409f93b0e82531303b3e10f52f1fdfb56467a25f05b7441c6bbd8bb8a64b42c
|
| 3 |
+
size 109629
|
GPUNet_float.dlc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:17066c2e9483a74b11fc8a8fc3f655e44ee0d7b992dc1213ad0aba655912cf6f
|
| 3 |
+
size 47562108
|
GPUNet_float.onnx.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e10d156ec2d77240e21904c9c2923b99013af18a36aeba1ba05099d833b95a67
|
| 3 |
+
size 44302131
|
GPUNet_float.tflite
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb4457a6ee3d8d2336fa2a3c4aaf0851d9ef8915df5193e9929099bec8a1ce24
|
| 3 |
+
size 47478880
|
GPUNet_w8a16.dlc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1401e2460af5f0cbf474714bcb602f6c8a0bb322f818cf5abc84d023586e6c4
|
| 3 |
+
size 13468924
|
GPUNet_w8a8.dlc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee1f52b3d7ed4a3277d093b6aad8f34b0eee5cd1e1b2d2fb5f3c283b45ac3e30
|
| 3 |
+
size 13468916
|
GPUNet_w8a8.onnx.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:947ef9719180ce242de1e97a9b66fc1abc59bf97bb7b1bdd60c02c9b0c1bc333
|
| 3 |
+
size 22332441
|
GPUNet_w8a8.tflite
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96acf239e41c3ec788337b535506979787545f1c2d8a696ac2af4e3154d5c36c
|
| 3 |
+
size 12578264
|
LICENSE
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
The license of the original trained model can be found at http://www.apache.org/licenses/LICENSE-2.0.
|
| 2 |
+
The license for the deployable model files (.tflite, .onnx, .dlc, .bin, etc.) can be found in DEPLOYMENT_MODEL_LICENSE.pdf.
|
README.md
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: pytorch
|
| 3 |
+
license: other
|
| 4 |
+
tags:
|
| 5 |
+
- backbone
|
| 6 |
+
- android
|
| 7 |
+
pipeline_tag: image-classification
|
| 8 |
+
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+

|
| 12 |
+
|
| 13 |
+
# GPUNet: Optimized for Mobile Deployment
|
| 14 |
+
## Imagenet classifier and general purpose backbone
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
GPUNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
| 18 |
+
|
| 19 |
+
This model is an implementation of GPUNet found [here](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/GPUNet).
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
This repository provides scripts to run GPUNet on Qualcomm® devices.
|
| 23 |
+
More details on model performance across various devices, can be found
|
| 24 |
+
[here](https://aihub.qualcomm.com/models/gpunet).
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
### Model Details
|
| 29 |
+
|
| 30 |
+
- **Model Type:** Model_use_case.image_classification
|
| 31 |
+
- **Model Stats:**
|
| 32 |
+
- Model checkpoint: Imagenet
|
| 33 |
+
- Input resolution: 224x224
|
| 34 |
+
- Number of parameters: 10.49M
|
| 35 |
+
- Model size (float): 45.28MB
|
| 36 |
+
- Model size (w8a8): 21.3MB
|
| 37 |
+
|
| 38 |
+
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
| 39 |
+
|---|---|---|---|---|---|---|---|---|
|
| 40 |
+
| GPUNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.661 ms | 0 - 50 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 41 |
+
| GPUNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.579 ms | 0 - 22 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 42 |
+
| GPUNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.777 ms | 0 - 63 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 43 |
+
| GPUNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.242 ms | 1 - 33 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 44 |
+
| GPUNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.231 ms | 0 - 179 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 45 |
+
| GPUNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.242 ms | 0 - 70 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 46 |
+
| GPUNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 1.212 ms | 0 - 112 MB | NPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.onnx.zip) |
|
| 47 |
+
| GPUNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.653 ms | 0 - 50 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 48 |
+
| GPUNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.702 ms | 0 - 22 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 49 |
+
| GPUNet | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.661 ms | 0 - 50 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 50 |
+
| GPUNet | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 4.579 ms | 0 - 22 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 51 |
+
| GPUNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.223 ms | 0 - 181 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 52 |
+
| GPUNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.244 ms | 0 - 83 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 53 |
+
| GPUNet | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.212 ms | 0 - 57 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 54 |
+
| GPUNet | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.207 ms | 0 - 29 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 55 |
+
| GPUNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.227 ms | 0 - 180 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 56 |
+
| GPUNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.242 ms | 0 - 84 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 57 |
+
| GPUNet | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.653 ms | 0 - 50 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 58 |
+
| GPUNet | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.702 ms | 0 - 22 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 59 |
+
| GPUNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.876 ms | 0 - 65 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 60 |
+
| GPUNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.889 ms | 1 - 34 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 61 |
+
| GPUNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.879 ms | 0 - 35 MB | NPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.onnx.zip) |
|
| 62 |
+
| GPUNet | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.69 ms | 0 - 56 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.tflite) |
|
| 63 |
+
| GPUNet | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.696 ms | 0 - 28 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 64 |
+
| GPUNet | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.712 ms | 0 - 28 MB | NPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.onnx.zip) |
|
| 65 |
+
| GPUNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.332 ms | 112 - 112 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.dlc) |
|
| 66 |
+
| GPUNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.112 ms | 24 - 24 MB | NPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet.onnx.zip) |
|
| 67 |
+
| GPUNet | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.445 ms | 0 - 29 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 68 |
+
| GPUNet | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.493 ms | 0 - 41 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 69 |
+
| GPUNet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.068 ms | 0 - 7 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 70 |
+
| GPUNet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.297 ms | 0 - 29 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 71 |
+
| GPUNet | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 4.0 ms | 0 - 41 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 72 |
+
| GPUNet | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.445 ms | 0 - 29 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 73 |
+
| GPUNet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.076 ms | 0 - 58 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 74 |
+
| GPUNet | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.642 ms | 0 - 36 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 75 |
+
| GPUNet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.072 ms | 0 - 61 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 76 |
+
| GPUNet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.297 ms | 0 - 29 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 77 |
+
| GPUNet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.755 ms | 0 - 37 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 78 |
+
| GPUNet | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.516 ms | 0 - 33 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 79 |
+
| GPUNet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.247 ms | 59 - 59 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a16.dlc) |
|
| 80 |
+
| GPUNet | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1.107 ms | 0 - 29 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 81 |
+
| GPUNet | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.4 ms | 0 - 29 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 82 |
+
| GPUNet | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.572 ms | 0 - 43 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 83 |
+
| GPUNet | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.86 ms | 0 - 41 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 84 |
+
| GPUNet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.434 ms | 0 - 61 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 85 |
+
| GPUNet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.614 ms | 0 - 63 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 86 |
+
| GPUNet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 91.246 ms | 36 - 273 MB | NPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.onnx.zip) |
|
| 87 |
+
| GPUNet | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.64 ms | 0 - 29 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 88 |
+
| GPUNet | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.802 ms | 0 - 29 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 89 |
+
| GPUNet | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 1.594 ms | 0 - 38 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 90 |
+
| GPUNet | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 2.243 ms | 0 - 37 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 91 |
+
| GPUNet | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 31.065 ms | 16 - 29 MB | CPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.onnx.zip) |
|
| 92 |
+
| GPUNet | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 7.896 ms | 0 - 3 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 93 |
+
| GPUNet | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 32.992 ms | 15 - 30 MB | CPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.onnx.zip) |
|
| 94 |
+
| GPUNet | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1.107 ms | 0 - 29 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 95 |
+
| GPUNet | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.4 ms | 0 - 29 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 96 |
+
| GPUNet | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.44 ms | 0 - 63 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 97 |
+
| GPUNet | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.634 ms | 0 - 61 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 98 |
+
| GPUNet | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.851 ms | 0 - 35 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 99 |
+
| GPUNet | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.042 ms | 0 - 35 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 100 |
+
| GPUNet | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.439 ms | 0 - 63 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 101 |
+
| GPUNet | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.618 ms | 0 - 62 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 102 |
+
| GPUNet | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.64 ms | 0 - 29 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 103 |
+
| GPUNet | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.802 ms | 0 - 29 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 104 |
+
| GPUNet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.341 ms | 0 - 40 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 105 |
+
| GPUNet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.468 ms | 0 - 43 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 106 |
+
| GPUNet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 68.17 ms | 27 - 1478 MB | NPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.onnx.zip) |
|
| 107 |
+
| GPUNet | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.27 ms | 0 - 31 MB | NPU | [GPUNet.tflite](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.tflite) |
|
| 108 |
+
| GPUNet | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.333 ms | 0 - 36 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 109 |
+
| GPUNet | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 60.449 ms | 41 - 1347 MB | NPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.onnx.zip) |
|
| 110 |
+
| GPUNet | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.721 ms | 64 - 64 MB | NPU | [GPUNet.dlc](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.dlc) |
|
| 111 |
+
| GPUNet | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 79.755 ms | 50 - 50 MB | NPU | [GPUNet.onnx.zip](https://huggingface.co/qualcomm/GPUNet/blob/main/GPUNet_w8a8.onnx.zip) |
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
## Installation
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
Install the package via pip:
|
| 120 |
+
```bash
|
| 121 |
+
pip install qai-hub-models
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
| 126 |
+
|
| 127 |
+
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
| 128 |
+
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
|
| 129 |
+
|
| 130 |
+
With this API token, you can configure your client to run models on the cloud
|
| 131 |
+
hosted devices.
|
| 132 |
+
```bash
|
| 133 |
+
qai-hub configure --api_token API_TOKEN
|
| 134 |
+
```
|
| 135 |
+
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
## Demo off target
|
| 140 |
+
|
| 141 |
+
The package contains a simple end-to-end demo that downloads pre-trained
|
| 142 |
+
weights and runs this model on a sample input.
|
| 143 |
+
|
| 144 |
+
```bash
|
| 145 |
+
python -m qai_hub_models.models.gpunet.demo
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
The above demo runs a reference implementation of pre-processing, model
|
| 149 |
+
inference, and post processing.
|
| 150 |
+
|
| 151 |
+
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
| 152 |
+
environment, please add the following to your cell (instead of the above).
|
| 153 |
+
```
|
| 154 |
+
%run -m qai_hub_models.models.gpunet.demo
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
### Run model on a cloud-hosted device
|
| 159 |
+
|
| 160 |
+
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
|
| 161 |
+
device. This script does the following:
|
| 162 |
+
* Performance check on-device on a cloud-hosted device
|
| 163 |
+
* Downloads compiled assets that can be deployed on-device for Android.
|
| 164 |
+
* Accuracy check between PyTorch and on-device outputs.
|
| 165 |
+
|
| 166 |
+
```bash
|
| 167 |
+
python -m qai_hub_models.models.gpunet.export
|
| 168 |
+
```
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
## How does this work?
|
| 173 |
+
|
| 174 |
+
This [export script](https://aihub.qualcomm.com/models/gpunet/qai_hub_models/models/GPUNet/export.py)
|
| 175 |
+
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 176 |
+
on-device. Lets go through each step below in detail:
|
| 177 |
+
|
| 178 |
+
Step 1: **Compile model for on-device deployment**
|
| 179 |
+
|
| 180 |
+
To compile a PyTorch model for on-device deployment, we first trace the model
|
| 181 |
+
in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
| 182 |
+
|
| 183 |
+
```python
|
| 184 |
+
import torch
|
| 185 |
+
|
| 186 |
+
import qai_hub as hub
|
| 187 |
+
from qai_hub_models.models.gpunet import Model
|
| 188 |
+
|
| 189 |
+
# Load the model
|
| 190 |
+
torch_model = Model.from_pretrained()
|
| 191 |
+
|
| 192 |
+
# Device
|
| 193 |
+
device = hub.Device("Samsung Galaxy S25")
|
| 194 |
+
|
| 195 |
+
# Trace model
|
| 196 |
+
input_shape = torch_model.get_input_spec()
|
| 197 |
+
sample_inputs = torch_model.sample_inputs()
|
| 198 |
+
|
| 199 |
+
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
| 200 |
+
|
| 201 |
+
# Compile model on a specific device
|
| 202 |
+
compile_job = hub.submit_compile_job(
|
| 203 |
+
model=pt_model,
|
| 204 |
+
device=device,
|
| 205 |
+
input_specs=torch_model.get_input_spec(),
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Get target model to run on-device
|
| 209 |
+
target_model = compile_job.get_target_model()
|
| 210 |
+
|
| 211 |
+
```
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
Step 2: **Performance profiling on cloud-hosted device**
|
| 215 |
+
|
| 216 |
+
After compiling models from step 1. Models can be profiled model on-device using the
|
| 217 |
+
`target_model`. Note that this scripts runs the model on a device automatically
|
| 218 |
+
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
| 219 |
+
provided job URL to view a variety of on-device performance metrics.
|
| 220 |
+
```python
|
| 221 |
+
profile_job = hub.submit_profile_job(
|
| 222 |
+
model=target_model,
|
| 223 |
+
device=device,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
Step 3: **Verify on-device accuracy**
|
| 229 |
+
|
| 230 |
+
To verify the accuracy of the model on-device, you can run on-device inference
|
| 231 |
+
on sample input data on the same cloud hosted device.
|
| 232 |
+
```python
|
| 233 |
+
input_data = torch_model.sample_inputs()
|
| 234 |
+
inference_job = hub.submit_inference_job(
|
| 235 |
+
model=target_model,
|
| 236 |
+
device=device,
|
| 237 |
+
inputs=input_data,
|
| 238 |
+
)
|
| 239 |
+
on_device_output = inference_job.download_output_data()
|
| 240 |
+
|
| 241 |
+
```
|
| 242 |
+
With the output of the model, you can compute like PSNR, relative errors or
|
| 243 |
+
spot check the output with expected output.
|
| 244 |
+
|
| 245 |
+
**Note**: This on-device profiling and inference requires access to Qualcomm®
|
| 246 |
+
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
## Deploying compiled model to Android
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
The models can be deployed using multiple runtimes:
|
| 255 |
+
- TensorFlow Lite (`.tflite` export): [This
|
| 256 |
+
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
|
| 257 |
+
guide to deploy the .tflite model in an Android application.
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
- QNN (`.so` export ): This [sample
|
| 261 |
+
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
|
| 262 |
+
provides instructions on how to use the `.so` shared library in an Android application.
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
## View on Qualcomm® AI Hub
|
| 266 |
+
Get more details on GPUNet's performance across various devices [here](https://aihub.qualcomm.com/models/gpunet).
|
| 267 |
+
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
## License
|
| 271 |
+
* The license for the original implementation of GPUNet can be found
|
| 272 |
+
[here](http://www.apache.org/licenses/LICENSE-2.0).
|
| 273 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
## References
|
| 278 |
+
* [GPUNet: Searching the Deployable Convolution Neural Networks for GPUs](https://arxiv.org/abs/2205.00841)
|
| 279 |
+
* [Source Model Implementation](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/GPUNet)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
## Community
|
| 284 |
+
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
| 285 |
+
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
| 286 |
+
|
| 287 |
+
|
tool-versions.yaml
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tool_versions:
|
| 2 |
+
onnx:
|
| 3 |
+
qairt: 2.37.1.250807093845_124904
|
| 4 |
+
onnx_runtime: 1.22.2
|