Person-Foot-Detection: Optimized for Mobile Deployment
Multi-task Human detector
Real-time multiple person detection with accurate feet localization optimized for mobile and edge.
This model is an implementation of Person-Foot-Detection found here.
This repository provides scripts to run Person-Foot-Detection on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.object_detection
- Model Stats:
- Inference latency: RealTime
- Input resolution: 640x480
- Number of output classes: 2
- Number of parameters: 2.53M
- Model size (float): 9.69 MB
- Model size (w8a8): 2.62 MB
- Model size (w8a16): 2.90 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| Person-Foot-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 22.126 ms | 5 - 136 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 22.535 ms | 4 - 133 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 7.911 ms | 5 - 170 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 12.242 ms | 4 - 170 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.322 ms | 5 - 7 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.471 ms | 4 - 6 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 6.104 ms | 14 - 18 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 28.681 ms | 5 - 136 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 29.489 ms | 1 - 131 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 22.126 ms | 5 - 136 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 22.535 ms | 4 - 133 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.318 ms | 4 - 6 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.468 ms | 4 - 6 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 7.476 ms | 5 - 149 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 8.812 ms | 0 - 143 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.307 ms | 5 - 8 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.492 ms | 4 - 6 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 28.681 ms | 5 - 136 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 29.489 ms | 1 - 131 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.236 ms | 0 - 166 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.18 ms | 4 - 163 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.284 ms | 18 - 154 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 2.483 ms | 0 - 139 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 2.595 ms | 4 - 143 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 3.649 ms | 1 - 104 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 2.195 ms | 0 - 137 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 2.4 ms | 4 - 179 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 2.658 ms | 2 - 114 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.891 ms | 4 - 4 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.553 ms | 17 - 17 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a16 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | QNN_DLC | 37.064 ms | 2 - 140 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | ONNX | 283.474 ms | 86 - 100 MB | CPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a16 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 12.311 ms | 3 - 9 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 528.417 ms | 92 - 97 MB | CPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 8.431 ms | 2 - 139 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 5.721 ms | 2 - 167 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.315 ms | 2 - 4 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 4.749 ms | 7 - 14 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.736 ms | 2 - 139 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 230.027 ms | 83 - 89 MB | CPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 8.431 ms | 2 - 139 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.327 ms | 2 - 4 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 5.006 ms | 2 - 146 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.312 ms | 1 - 3 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.736 ms | 2 - 139 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.323 ms | 2 - 171 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.225 ms | 0 - 147 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.872 ms | 2 - 141 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 2.891 ms | 0 - 125 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 6.652 ms | 2 - 140 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 276.284 ms | 93 - 110 MB | CPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 2.05 ms | 2 - 144 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 2.752 ms | 0 - 125 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.737 ms | 2 - 2 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 4.765 ms | 10 - 10 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | TFLITE | 15.177 ms | 1 - 133 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | QNN_DLC | 14.834 ms | 1 - 135 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | ONNX | 75.601 ms | 46 - 62 MB | CPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 4.63 ms | 1 - 8 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 4.758 ms | 0 - 4 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 76.002 ms | 50 - 58 MB | CPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.64 ms | 1 - 131 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.579 ms | 1 - 131 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.448 ms | 0 - 149 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.435 ms | 1 - 154 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.145 ms | 0 - 8 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.168 ms | 1 - 3 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 1.659 ms | 0 - 5 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.614 ms | 0 - 129 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.611 ms | 0 - 130 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 56.19 ms | 10 - 28 MB | GPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 59.412 ms | 48 - 54 MB | CPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.64 ms | 1 - 131 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.579 ms | 1 - 131 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.145 ms | 0 - 2 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.173 ms | 1 - 3 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.228 ms | 0 - 137 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.231 ms | 0 - 137 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.139 ms | 0 - 3 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.177 ms | 1 - 3 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.614 ms | 0 - 129 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.611 ms | 0 - 130 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.795 ms | 0 - 154 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.791 ms | 1 - 153 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.101 ms | 0 - 136 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.648 ms | 0 - 131 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.648 ms | 1 - 133 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.938 ms | 0 - 115 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 2.272 ms | 0 - 136 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 2.25 ms | 1 - 139 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 71.3 ms | 51 - 68 MB | CPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.514 ms | 0 - 135 MB | NPU | Person-Foot-Detection.tflite |
| Person-Foot-Detection | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.516 ms | 1 - 132 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.81 ms | 0 - 117 MB | NPU | Person-Foot-Detection.onnx.zip |
| Person-Foot-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.39 ms | 1 - 1 MB | NPU | Person-Foot-Detection.dlc |
| Person-Foot-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.63 ms | 8 - 8 MB | NPU | Person-Foot-Detection.onnx.zip |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[foot-track-net]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.foot_track_net.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.foot_track_net.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.foot_track_net.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.foot_track_net import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.foot_track_net.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.foot_track_net.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Person-Foot-Detection's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Person-Foot-Detection can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 84
