Person-Foot-Detection: Optimized for Mobile Deployment

Multi-task Human detector

Real-time multiple person detection with accurate feet localization optimized for mobile and edge.

This model is an implementation of Person-Foot-Detection found here.

This repository provides scripts to run Person-Foot-Detection on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.object_detection
  • Model Stats:
    • Inference latency: RealTime
    • Input resolution: 640x480
    • Number of output classes: 2
    • Number of parameters: 2.53M
    • Model size (float): 9.69 MB
    • Model size (w8a8): 2.62 MB
    • Model size (w8a16): 2.90 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
Person-Foot-Detection float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 22.126 ms 5 - 136 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 22.535 ms 4 - 133 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 7.911 ms 5 - 170 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 12.242 ms 4 - 170 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 4.322 ms 5 - 7 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 4.471 ms 4 - 6 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 6.104 ms 14 - 18 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 28.681 ms 5 - 136 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 29.489 ms 1 - 131 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float SA7255P ADP Qualcomm® SA7255P TFLITE 22.126 ms 5 - 136 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float SA7255P ADP Qualcomm® SA7255P QNN_DLC 22.535 ms 4 - 133 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 4.318 ms 4 - 6 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 4.468 ms 4 - 6 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float SA8295P ADP Qualcomm® SA8295P TFLITE 7.476 ms 5 - 149 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float SA8295P ADP Qualcomm® SA8295P QNN_DLC 8.812 ms 0 - 143 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 4.307 ms 5 - 8 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 4.492 ms 4 - 6 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float SA8775P ADP Qualcomm® SA8775P TFLITE 28.681 ms 5 - 136 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float SA8775P ADP Qualcomm® SA8775P QNN_DLC 29.489 ms 1 - 131 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 3.236 ms 0 - 166 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 3.18 ms 4 - 163 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 4.284 ms 18 - 154 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 2.483 ms 0 - 139 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 2.595 ms 4 - 143 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 3.649 ms 1 - 104 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 2.195 ms 0 - 137 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 2.4 ms 4 - 179 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 2.658 ms 2 - 114 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 4.891 ms 4 - 4 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 5.553 ms 17 - 17 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a16 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 QNN_DLC 37.064 ms 2 - 140 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 ONNX 283.474 ms 86 - 100 MB CPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a16 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 QNN_DLC 12.311 ms 3 - 9 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 528.417 ms 92 - 97 MB CPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 8.431 ms 2 - 139 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 5.721 ms 2 - 167 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 3.315 ms 2 - 4 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 4.749 ms 7 - 14 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 4.736 ms 2 - 139 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 230.027 ms 83 - 89 MB CPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a16 SA7255P ADP Qualcomm® SA7255P QNN_DLC 8.431 ms 2 - 139 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 3.327 ms 2 - 4 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 SA8295P ADP Qualcomm® SA8295P QNN_DLC 5.006 ms 2 - 146 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 3.312 ms 1 - 3 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 SA8775P ADP Qualcomm® SA8775P QNN_DLC 4.736 ms 2 - 139 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 2.323 ms 2 - 171 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 3.225 ms 0 - 147 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 1.872 ms 2 - 141 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 2.891 ms 0 - 125 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a16 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 6.652 ms 2 - 140 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 276.284 ms 93 - 110 MB CPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 2.05 ms 2 - 144 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 2.752 ms 0 - 125 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 3.737 ms 2 - 2 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 4.765 ms 10 - 10 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 TFLITE 15.177 ms 1 - 133 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 QNN_DLC 14.834 ms 1 - 135 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 ONNX 75.601 ms 46 - 62 MB CPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 TFLITE 4.63 ms 1 - 8 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 QNN_DLC 4.758 ms 0 - 4 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 76.002 ms 50 - 58 MB CPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 3.64 ms 1 - 131 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 3.579 ms 1 - 131 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 1.448 ms 0 - 149 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.435 ms 1 - 154 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.145 ms 0 - 8 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.168 ms 1 - 3 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 1.659 ms 0 - 5 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.614 ms 0 - 129 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 1.611 ms 0 - 130 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 56.19 ms 10 - 28 MB GPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 59.412 ms 48 - 54 MB CPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 3.64 ms 1 - 131 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 3.579 ms 1 - 131 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.145 ms 0 - 2 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.173 ms 1 - 3 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 2.228 ms 0 - 137 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 2.231 ms 0 - 137 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.139 ms 0 - 3 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.177 ms 1 - 3 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.614 ms 0 - 129 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 1.611 ms 0 - 130 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.795 ms 0 - 154 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.791 ms 1 - 153 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 1.101 ms 0 - 136 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 0.648 ms 0 - 131 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.648 ms 1 - 133 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 0.938 ms 0 - 115 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 2.272 ms 0 - 136 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 2.25 ms 1 - 139 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 71.3 ms 51 - 68 MB CPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.514 ms 0 - 135 MB NPU Person-Foot-Detection.tflite
Person-Foot-Detection w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.516 ms 1 - 132 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 0.81 ms 0 - 117 MB NPU Person-Foot-Detection.onnx.zip
Person-Foot-Detection w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.39 ms 1 - 1 MB NPU Person-Foot-Detection.dlc
Person-Foot-Detection w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.63 ms 8 - 8 MB NPU Person-Foot-Detection.onnx.zip

Installation

Install the package via pip:

# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[foot-track-net]"

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.foot_track_net.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.foot_track_net.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.foot_track_net.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.foot_track_net import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.foot_track_net.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.foot_track_net.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Person-Foot-Detection's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Person-Foot-Detection can be found here.

References

Community

Downloads last month
84
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support