vit-emotion-results
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3992
- Accuracy: 0.525
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 2.0003 | 1.0 | 40 | 1.9729 | 0.3063 |
| 1.7229 | 2.0 | 80 | 1.7334 | 0.3625 |
| 1.6051 | 3.0 | 120 | 1.5905 | 0.425 |
| 1.4902 | 4.0 | 160 | 1.5132 | 0.4313 |
| 1.3939 | 5.0 | 200 | 1.4877 | 0.4437 |
| 1.3373 | 6.0 | 240 | 1.4920 | 0.4125 |
| 1.238 | 7.0 | 280 | 1.3992 | 0.525 |
| 1.1901 | 8.0 | 320 | 1.3982 | 0.4875 |
| 1.0601 | 9.0 | 360 | 1.3512 | 0.5188 |
| 1.0272 | 10.0 | 400 | 1.3698 | 0.5125 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Model tree for rama-adiw/vit-emotion-results
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefolderself-reported0.525