gemma-3-270m-sports-finetune
This model is a fine-tuned version of unsloth/gemma-3-270m-it-unsloth-bnb-4bit on a sports statistics query dataset.
Model Details
- Base Model: unsloth/gemma-3-270m-it-unsloth-bnb-4bit
- Fine-tuning Method: LoRA (Low-Rank Adaptation)
- Dataset: Sports statistics queries (15k samples)
- Task: Convert natural language sports queries to structured JSON
Usage
from unsloth import FastLanguageModel
import torch
# Load model
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="rjml/gemma-3-270m-sports-finetune",
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
# Enable inference mode
FastLanguageModel.for_inference(model)
# Example usage
prompt = "What is the average points per game for a basketball player?"
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=128, temperature=0.1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Training Details
- LoRA Rank: 16
- LoRA Alpha: 32
- Learning Rate: 3e-5
- Batch Size: 4 per device
- Epochs: 2
- Gradient Accumulation: 4 steps
Intended Use
This model is designed to convert natural language sports statistics queries into structured JSON format for database queries or API calls.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rjml/gemma-3-270m-sports-finetune
Base model
google/gemma-3-270m
Finetuned
google/gemma-3-270m-it
Quantized
unsloth/gemma-3-270m-it-unsloth-bnb-4bit