🟣 Green-Guard β€” RoBERTa ESG Category Classifier (v1)

Task: Sentence-level classification for Environmental (E), Social (S), and Governance (G) categories.
Base model: roberta-base, fine-tuned with class-weighted loss to address label imbalance.
Repository: GitHub β†’ Green-Guard Project


πŸ“Š Metrics (Test Set)

Metric Value
Accuracy 0.81
Macro F1 0.81
Weighted F1 0.81

Metrics computed on the same held-out test split (data/processed/splits/)
using reports/category_metrics_v1.json


🧩 Labels

{ "0": "E", "1": "S", "2": "G" }

πŸš€ Quick Inference

You can load and run the model directly:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model_id = "salitahir/roberta-esg-category-green-guard-v1"
tok = AutoTokenizer.from_pretrained(model_id)
mod = AutoModelForSequenceClassification.from_pretrained(model_id).eval()

text = "We invested in renewable energy sources for our operations."
inputs = tok(text, return_tensors="pt", truncation=True)
pred = torch.softmax(mod(**inputs).logits, dim=-1)
label_id = pred.argmax(-1).item()
label = mod.config.id2label[str(label_id)]
print(label, float(pred[0][label_id]))

βœ… Expected output:

E 0.88


🧠 Intended Use

This model acts as Stage 2 in the Green-Guard pipeline β€” categorizing sustainability-related sentences identified by the Relevance Model.


βš–οΈ License

MIT License β€” open for research and commercial reuse with attribution.

Downloads last month
2
Safetensors
Model size
0.1B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for salitahir/roberta-esg-category-green-guard-v1

Finetuned
(2049)
this model