distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.80
  • Accuracy: 0.89
  • Macro F1: 0.8957

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
2.2641 1.0 450 2.2228 0.45 0.3545
1.8857 2.0 900 1.8527 0.56 0.4640
1.6008 3.0 1350 1.4108 0.68 0.6543
1.1742 4.0 1800 1.1191 0.72 0.6910
0.9257 5.0 2250 0.8738 0.81 0.8026
0.7766 6.0 2700 0.6843 0.82 0.8216
0.4557 7.0 3150 0.6263 0.82 0.8170
0.3278 8.0 3600 0.5555 0.84 0.8285
0.3262 9.0 4050 0.5471 0.87 0.8641
0.2547 10.0 4500 0.7685 0.81 0.8043
0.2713 11.0 4950 0.6107 0.89 0.8782
0.1555 12.0 5400 0.6796 0.88 0.8767
0.1983 13.0 5850 0.8251 0.86 0.8466
0.1146 14.0 6300 0.8332 0.85 0.8341
0.1164 15.0 6750 0.8060 0.89 0.8957
0.0103 16.0 7200 1.1965 0.84 0.8345
0.0247 17.0 7650 1.1232 0.86 0.8539
0.0037 18.0 8100 1.0172 0.87 0.8665
0.0021 19.0 8550 0.9868 0.88 0.8734
0.0594 20.0 9000 1.4043 0.86 0.8591

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.9.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
19
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for sanyam3/distilhubert-finetuned-gtzan

Finetuned
(539)
this model

Dataset used to train sanyam3/distilhubert-finetuned-gtzan

Evaluation results