HACK_DOC (Medical Assistant)

This is a Llama-3 based medical assistant model. It was fine-tuned on the ChatDoctor-HealthCareMagic-100k dataset to provide empathetic, doctor-style responses to medical queries.

Model Details

  • Base Model: unsloth/llama-3-8b-instruct-bnb-4bit
  • Adapter Type: LoRA (Rank 64)
  • Training Framework: Unsloth / PyTorch
  • Trigger Phrase: The model is trained to start responses with: "THANKS FOR ASKING HACK_DOC. Here is my answer:"

How to use

You must load this adapter on top of the base Llama-3 model.

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

# 1. Load Base Model
base_model_name = "unsloth/llama-3-8b-instruct-bnb-4bit"
base_model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    load_in_4bit=True,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)

# 2. Load HACK_DOC Adapter
model = PeftModel.from_pretrained(base_model, "shri171981/genai_hack_doc")

# 3. Run Inference
inputs = tokenizer("I have a severe headache.", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
49
Safetensors
Model size
8B params
Tensor type
F16
F32
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Space using shri171981/medical_chat_generative 1