File size: 12,986 Bytes
400e20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""
Fine-tuning Script for Medical AI Models
Trains models on real medical datasets for production use
"""

import os
import torch
import pandas as pd
import numpy as np
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from transformers import (
    ViTImageProcessor, 
    ViTForImageClassification,
    Trainer, 
    TrainingArguments,
    AutoTokenizer,
    AutoModelForSequenceClassification
)
from datasets import load_dataset
from sklearn.model_selection import train_test_split
import json


class SkinLesionDataset(Dataset):
    """Dataset for skin lesion images (HAM10000 format)"""
    
    def __init__(self, image_paths, labels, processor):
        self.image_paths = image_paths
        self.labels = labels
        self.processor = processor
    
    def __len__(self):
        return len(self.image_paths)
    
    def __getitem__(self, idx):
        image = Image.open(self.image_paths[idx]).convert('RGB')
        encoding = self.processor(images=image, return_tensors="pt")
        encoding = {key: val.squeeze() for key, val in encoding.items()}
        encoding['labels'] = torch.tensor(self.labels[idx])
        return encoding


class SymptomDataset(Dataset):
    """Dataset for symptom-to-disease classification"""
    
    def __init__(self, texts, labels, tokenizer, max_length=128):
        self.texts = texts
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_length = max_length
    
    def __len__(self):
        return len(self.texts)
    
    def __getitem__(self, idx):
        encoding = self.tokenizer(
            self.texts[idx],
            truncation=True,
            padding='max_length',
            max_length=self.max_length,
            return_tensors='pt'
        )
        encoding = {key: val.squeeze() for key, val in encoding.items()}
        encoding['labels'] = torch.tensor(self.labels[idx])
        return encoding


class MedicalModelTrainer:
    """Fine-tune models on medical datasets"""
    
    def __init__(self, output_dir="./trained_models"):
        self.output_dir = output_dir
        os.makedirs(output_dir, exist_ok=True)
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Using device: {self.device}")
    
    def finetune_skin_model(self, data_dir, num_epochs=10):
        """
        Fine-tune Vision Transformer on HAM10000 skin lesion dataset
        
        Dataset structure:
        data_dir/
        β”œβ”€β”€ images/
        β”‚   β”œβ”€β”€ image1.jpg
        β”‚   β”œβ”€β”€ image2.jpg
        └── labels.csv (columns: image_id, diagnosis)
        
        Download from: https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
        """
        print("πŸ”¬ Fine-tuning Skin Condition Model...")
        
        # Load dataset
        try:
            labels_df = pd.read_csv(os.path.join(data_dir, "HAM10000_metadata.csv"))
        except FileNotFoundError:
            print("❌ Dataset not found. Download HAM10000 from Kaggle:")
            print("   kaggle datasets download -d kmader/skin-cancer-mnist-ham10000")
            return None
        
        # Map diagnoses to indices
        diagnosis_map = {
            'akiec': 0,  # Actinic keratoses
            'bcc': 1,    # Basal cell carcinoma
            'bkl': 2,    # Benign keratosis
            'df': 3,     # Dermatofibroma
            'mel': 4,    # Melanoma
            'nv': 5,     # Melanocytic nevi
            'vasc': 6    # Vascular lesions
        }
        
        labels_df['label'] = labels_df['dx'].map(diagnosis_map)
        
        # Prepare image paths
        image_dir = os.path.join(data_dir, "images")
        labels_df['image_path'] = labels_df['image_id'].apply(
            lambda x: os.path.join(image_dir, f"{x}.jpg")
        )
        
        # Filter existing images
        labels_df = labels_df[labels_df['image_path'].apply(os.path.exists)]
        
        print(f"πŸ“Š Loaded {len(labels_df)} images")
        
        # Split dataset
        train_df, val_df = train_test_split(
            labels_df, 
            test_size=0.2, 
            stratify=labels_df['label'],
            random_state=42
        )
        
        # Load processor and model
        processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
        model = ViTForImageClassification.from_pretrained(
            'google/vit-base-patch16-224',
            num_labels=len(diagnosis_map),
            ignore_mismatched_sizes=True
        )
        
        # Create datasets
        train_dataset = SkinLesionDataset(
            train_df['image_path'].tolist(),
            train_df['label'].tolist(),
            processor
        )
        
        val_dataset = SkinLesionDataset(
            val_df['image_path'].tolist(),
            val_df['label'].tolist(),
            processor
        )
        
        # Training arguments
        training_args = TrainingArguments(
            output_dir=os.path.join(self.output_dir, "skin-condition-vit"),
            evaluation_strategy="epoch",
            save_strategy="epoch",
            learning_rate=2e-5,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=16,
            num_train_epochs=num_epochs,
            weight_decay=0.01,
            load_best_model_at_end=True,
            metric_for_best_model="accuracy",
            logging_dir='./logs',
            logging_steps=100,
            save_total_limit=2
        )
        
        # Define metrics
        def compute_metrics(eval_pred):
            predictions, labels = eval_pred
            predictions = np.argmax(predictions, axis=1)
            accuracy = (predictions == labels).mean()
            return {"accuracy": accuracy}
        
        # Create trainer
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
            compute_metrics=compute_metrics
        )
        
        # Train
        print("πŸ‹οΈ Training started...")
        trainer.train()
        
        # Save model
        model_path = os.path.join(self.output_dir, "skin-condition-vit-final")
        trainer.save_model(model_path)
        processor.save_pretrained(model_path)
        
        # Save label mapping
        with open(os.path.join(model_path, "label_map.json"), "w") as f:
            reverse_map = {v: k for k, v in diagnosis_map.items()}
            json.dump(reverse_map, f)
        
        print(f"βœ… Model saved to {model_path}")
        return model_path
    
    def finetune_symptom_model(self, data_file, num_epochs=5):
        """
        Fine-tune BERT on symptom-to-disease dataset
        
        Dataset format (CSV):
        symptoms,disease
        "headache fever cough","Influenza"
        "chest pain shortness of breath","Heart Condition"
        
        Download from Kaggle: Disease Symptom Prediction Dataset
        """
        print("πŸ”¬ Fine-tuning Symptom Analysis Model...")
        
        try:
            # Load dataset
            df = pd.read_csv(data_file)
            
            # Create disease label mapping
            diseases = df['disease'].unique()
            disease_map = {disease: idx for idx, disease in enumerate(diseases)}
            df['label'] = df['disease'].map(disease_map)
            
            print(f"πŸ“Š Loaded {len(df)} examples with {len(diseases)} diseases")
            
            # Split dataset
            train_df, val_df = train_test_split(
                df, 
                test_size=0.2,
                stratify=df['label'],
                random_state=42
            )
            
            # Load tokenizer and model
            model_name = "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract"
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModelForSequenceClassification.from_pretrained(
                model_name,
                num_labels=len(diseases)
            )
            
            # Create datasets
            train_dataset = SymptomDataset(
                train_df['symptoms'].tolist(),
                train_df['label'].tolist(),
                tokenizer
            )
            
            val_dataset = SymptomDataset(
                val_df['symptoms'].tolist(),
                val_df['label'].tolist(),
                tokenizer
            )
            
            # Training arguments
            training_args = TrainingArguments(
                output_dir=os.path.join(self.output_dir, "symptom-bert"),
                evaluation_strategy="epoch",
                save_strategy="epoch",
                learning_rate=2e-5,
                per_device_train_batch_size=16,
                per_device_eval_batch_size=16,
                num_train_epochs=num_epochs,
                weight_decay=0.01,
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                logging_steps=50
            )
            
            # Define metrics
            def compute_metrics(eval_pred):
                predictions, labels = eval_pred
                predictions = np.argmax(predictions, axis=1)
                accuracy = (predictions == labels).mean()
                return {"accuracy": accuracy}
            
            # Create trainer
            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=val_dataset,
                compute_metrics=compute_metrics
            )
            
            # Train
            print("πŸ‹οΈ Training started...")
            trainer.train()
            
            # Save model
            model_path = os.path.join(self.output_dir, "symptom-bert-final")
            trainer.save_model(model_path)
            tokenizer.save_pretrained(model_path)
            
            # Save label mapping
            with open(os.path.join(model_path, "disease_map.json"), "w") as f:
                reverse_map = {v: k for k, v in disease_map.items()}
                json.dump(reverse_map, f)
            
            print(f"βœ… Model saved to {model_path}")
            return model_path
            
        except FileNotFoundError:
            print("❌ Dataset not found. Create or download symptom-disease dataset")
            print("   Format: CSV with columns 'symptoms' and 'disease'")
            return None
    
    def create_sample_symptom_dataset(self, output_file="symptom_dataset.csv"):
        """Create a sample symptom dataset for testing"""
        print("πŸ“ Creating sample symptom dataset...")
        
        sample_data = [
            ("headache fever fatigue", "Influenza"),
            ("cough shortness of breath chest pain", "Pneumonia"),
            ("nausea vomiting diarrhea", "Gastroenteritis"),
            ("rash itching redness", "Allergic Reaction"),
            ("sore throat fever headache", "Strep Throat"),
            ("fatigue weakness pale skin", "Anemia"),
            ("headache sensitivity to light nausea", "Migraine"),
            ("chest pain shortness of breath", "Heart Condition"),
            ("fever cough body aches", "Common Cold"),
            ("abdominal pain nausea fever", "Appendicitis")
        ] * 50  # Duplicate for larger dataset
        
        df = pd.DataFrame(sample_data, columns=['symptoms', 'disease'])
        df.to_csv(output_file, index=False)
        
        print(f"βœ… Sample dataset saved to {output_file}")
        return output_file


def main():
    """Main training pipeline"""
    trainer = MedicalModelTrainer()
    
    print("=" * 60)
    print("πŸ₯ Medical AI Model Fine-tuning Pipeline")
    print("=" * 60)
    
    # Option 1: Fine-tune skin condition model
    print("\n1️⃣ Skin Condition Model")
    print("   Dataset: HAM10000 (download from Kaggle)")
    print("   Command: kaggle datasets download -d kmader/skin-cancer-mnist-ham10000")
    
    skin_data_dir = "./HAM10000"
    if os.path.exists(skin_data_dir):
        trainer.finetune_skin_model(skin_data_dir, num_epochs=3)
    else:
        print("   ⏭️  Skipping (dataset not found)")
    
    # Option 2: Fine-tune symptom model
    print("\n2️⃣ Symptom Analysis Model")
    
    symptom_dataset = "./symptom_dataset.csv"
    if not os.path.exists(symptom_dataset):
        symptom_dataset = trainer.create_sample_symptom_dataset()
    
    trainer.finetune_symptom_model(symptom_dataset, num_epochs=3)
    
    print("\n" + "=" * 60)
    print("βœ… Training complete!")
    print("=" * 60)
    print("\nπŸ“¦ Trained models saved in ./trained_models/")
    print("\nπŸš€ To use in production:")
    print("   1. Update ai_models.py to load from ./trained_models/")
    print("   2. Replace model_name with local path")
    print("   3. Test with test_api.py")


if __name__ == "__main__":
    main()