Spaces:
Running
Running
File size: 16,860 Bytes
7b60214 2a9cc3f 7b60214 2a9cc3f 7b60214 9b4a15e 41bbfbc 2a9cc3f 41bbfbc 9b4a15e 7b60214 124022a 2a9cc3f 124022a ffafe20 124022a 652f2dc 7b60214 9b4a15e 41bbfbc 2a9cc3f 652f2dc 2a9cc3f 652f2dc 2a9cc3f 7b60214 9b4a15e 2a9cc3f 124022a 96f344f 124022a a6245b3 2a9cc3f 74fb05d 124022a 74fb05d edbe0aa 74fb05d 124022a 74fb05d a6245b3 7b60214 9b4a15e 2a9cc3f 41bbfbc 2a9cc3f 9b4a15e 2a9cc3f b431b3d 181cf2b 124022a 181cf2b b431b3d 181cf2b b431b3d 181cf2b ffafe20 8ca7ca7 124022a 8ca7ca7 ffafe20 8ca7ca7 41bbfbc 2a9cc3f 124022a 5b9d522 9b4a15e 2a9cc3f 617dccf 2a9cc3f 7b60214 8697998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="AUTOMOTIVE-ENV: Benchmarking Multimodal Agents in Vehicle Interface Systems. A high-fidelity benchmark and environment for in-vehicle GUIs with 185 parameterized tasks and reproducible checks.">
<meta name="keywords" content="Automotive-ENV, multimodal agents, vehicle GUI, benchmark, ASURADA">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>AUTOMOTIVE-ENV: Benchmarking Multimodal Agents in Vehicle Interface Systems</title>
<!-- (Optional) Google Analytics - remove if not needed -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){ dataLayer.push(arguments); }
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
<style>
/* Paper-like tuning */
body { background: #ffffff; color: #111; }
.hero { background: #fff; }
.publication-title { letter-spacing: -0.02em; }
.publication-links .button { margin: 0 6px 8px; }
.subtitle { color: #444; }
.footer { background: #fafafa; }
/* Center all section titles like the hero title */
.section .title.is-3 { text-align: center; }
/* Match content width to teaser video width (full container), overriding Bulma's 4/5 column */
.container.is-max-desktop .columns .column.is-four-fifths {
flex: 0 0 100%;
max-width: 100%;
}
/* Consistent media scaling */
.hero.teaser video#teaser { width: 100%; height: auto; display: block; }
.system-figure img,
#task-statistics img,
#results-analysis img { width: 100%; height: auto; display: block; border: 1px solid #eee; border-radius: 6px; }
/* Gentle spacing under the overview description */
.system-overview-desc { margin-top: 12px; }
</style>
</head>
<body>
<!-- Hero: title, authors, links -->
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">AUTOMOTIVE-ENV: Benchmarking Multimodal Agents in Vehicle Interface Systems</h1>
<div class="is-size-5 publication-authors">
<span class="author-block"><strong>Junfeng Yan</strong><sup>*1</sup>,</span>
<span class="author-block"><strong>Biao Wu</strong><sup>*1</sup>,</span>
<span class="author-block"><strong>Meng Fang</strong><sup>2</sup>,</span>
<span class="author-block"><strong>Ling Chen</strong><sup>1</sup></span>
</div>
<div class="is-size-6 publication-authors" style="margin-top:6px;">
<span class="author-block"><sup>1</sup>Australian Artificial Intelligence Institute, Sydney, Australia</span><br>
<span class="author-block"><sup>2</sup>University of Liverpool, Liverpool, United Kingdom</span>
</div>
<div class="column has-text-centered" style="margin-top:16px;">
<div class="publication-links">
<span class="link-block">
<a href="https://arxiv.org/abs/2509.21143"
class="external-link button is-normal is-rounded is-dark" target="_blank" rel="noopener">
<span class="icon"><i class="ai ai-arxiv"></i></span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://github.com/automotive-env/AutmotiveEnv.github.io"
class="external-link button is-normal is-rounded is-dark" target="_blank" rel="noopener">
<span class="icon"><i class="fab fa-github"></i></span>
<span>Code (coming soon)</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Teaser video (local mp4). Put your video at ./static/videos/demo.mp4 -->
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video id="teaser" autoplay muted loop playsinline height="100%">
<source src="./static/videos/demo.mp4" type="video/mp4">
</video>
</div>
</div>
</section>
<!-- System overview: two stacked images + description -->
<section class="section" id="system-overview">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-four-fifths">
<h2 class="title is-3 has-text-centered">System Overview</h2>
<figure class="system-figure has-text-centered" style="margin-bottom:16px;">
<img src="./static/images/demo_task.jpg" alt="Automotive-ENV task overview">
<figcaption class="subtitle is-6" style="margin-top:8px;">
Task instruction: Open the front windshield defroster, open the rear windshield defroster.
</figcaption>
</figure>
<figure class="system-figure has-text-centered">
<img src="./static/images/demo_arch.jpg" alt="Automotive-ENV system architecture overview">
</figure>
<div class="content has-text-justified system-overview-desc">
<p>
Automotive OS-based environment where the agent observes the accessibility tree, screen, and GPS;
optionally consults GPS-contextualized web knowledge; and acts through tap screens and API calls.
Task success is determined by low-level programmatic checks of system signals.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- Abstract -->
<section class="section">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Multimodal agents have demonstrated strong performance in general GUI interactions, but their
application in automotive systems has been largely unexplored. In-vehicle GUIs present distinct
challenges: drivers’ limited attention, strict safety requirements, and complex location-based
interaction patterns. To address these challenges, we introduce <strong>Automotive-ENV</strong>,
the first high-fidelity benchmark and interaction environment tailored for vehicle GUIs.
</p>
<p>
This platform defines <strong>185 parameterized tasks</strong> spanning explicit control,
implicit intent understanding, and safety-aware tasks, and provides structured multimodal
observations with precise programmatic checks for reproducible evaluation. Building on this
benchmark, we propose <strong>ASURADA</strong>, a geo-aware multimodal agent that integrates
GPS-informed context to dynamically adjust actions based on location, environmental conditions,
and regional driving norms.
</p>
<p>
Experiments show that geo-aware information significantly improves success on safety-aware tasks,
highlighting the importance of location-based context in automotive environments. We will release
Automotive-ENV, complete with all tasks and benchmarking tools, to further the development of
safe and adaptive in-vehicle agents.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- Task Statistics and Comparison -->
<section class="section" id="task-statistics">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-four-fifths">
<h2 class="title is-3 has-text-centered">Task Statistics and Comparison</h2>
<div class="content has-text-justified">
<p>
<strong>Automotive-ENV</strong> contains <em>185 parameterized tasks</em> spanning multiple dimensions:
modalities (screen, accessibility tree, GPS), intent types (explicit control, implicit intent,
safety-aware), and UI primitives (tap, long-press, slider, toggle, text). We report distributions
across these dimensions and across task categories (Maps, HVAC, Road, Phenomenon, Media, Apps, System, Comms).
</p>
</div>
<figure class="system-figure has-text-centered" style="margin-top:12px;">
<img src="./static/images/static.jpg" alt="Task distributions across dimensions and categories">
<figcaption class="subtitle is-6" style="margin-top:8px;">
Task distributions across different dimensions. (a) Distribution of tasks by task dimensions.
(b) Distribution of tasks across task categories (Maps, HVAC, Road, Phenomenon, Media, Apps, System, Comms).
</figcaption>
</figure>
<figure class="system-figure has-text-centered" style="margin-top:18px;">
<img src="./static/images/task_and_check.jpg" alt="Representative instructions and validation methods">
<figcaption class="subtitle is-6" style="margin-top:8px;">
Representative user instructions for in-vehicle tasks, categorized by task type, with corresponding validation methods.
</figcaption>
</figure>
</div>
</div>
</div>
</section>
<!-- Results and Analysis (+ Discussion & Conclusion appended at the end) -->
<section class="section" id="results-analysis">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-four-fifths">
<h2 class="title is-3 has-text-centered">Results and Analysis</h2>
<div class="content has-text-justified">
<p>
We evaluate multiple agent configurations on <strong>Automotive-ENV</strong>, reporting success
rates across General tasks (Explicit Control, Implicit Intent) and Safety-Aware tasks
(Driving Alignment, Environment Alerts). We also analyze the effect of GPS-aware context
on inference token usage and task-wise performance across hotspot categories.
</p>
</div>
<figure class="system-figure has-text-centered" style="margin-top:12px;">
<img src="./static/images/results.jpg" alt="Success rates of different agent configurations across task groups">
<figcaption class="subtitle is-6" style="margin-top:8px;">
Success rates (SR %) of different agent configurations on Automotive-ENV. Results are
reported across General tasks (Explicit Control, Implicit Intent) and Safety-Aware tasks
(Driving Alignment, Environment Alerts).
</figcaption>
</figure>
<figure class="system-figure has-text-centered" style="margin-top:18px;">
<img src="./static/images/task_and_check.jpg" alt="Token length distributions and task-wise performance with vs. without GPS">
<figcaption class="subtitle is-6" style="margin-top:8px;">
Comparison of inference tokens with and without GPS information. Left: distribution of
token lengths. Right: task-wise performance across hotspot categories.
</figcaption>
</figure>
<!-- Discussion -->
<div class="content has-text-justified" style="margin-top:28px;">
<h3 class="title is-4 has-text-centered">Discussion</h3>
<p>
GPS signals are indispensable for providing geographic context in automotive agents, yet they
are prone to disruptions in real-world environments such as tunnels, underground parking, or dense
urban canyons. These interruptions can cause temporary localization failures, directly undermining
navigation and geo-dependent decision-making. To address this limitation, large language models
(LLMs) can act as virtual sensors by leveraging their built-in knowledge of road networks together
with the last available GPS coordinates and timestamps. During short signal outages, the agent can
simulate intermediate positions and continue offering navigation or context-aware recommendations.
Once connectivity is restored, the simulated trajectory can be aligned with actual positioning
data. This capability highlights the potential of LLMs to complement imperfect sensor signals and
enhance robustness in safety-critical automotive applications.
</p>
</div>
<!-- Conclusion -->
<div class="content has-text-justified" style="margin-top:18px;">
<h3 class="title is-4 has-text-centered">Conclusion</h3>
<p>
In this work, we present <strong>Automotive-ENV</strong>, the first large-scale benchmark explicitly designed for
evaluating multimodal agents in realistic automotive GUI environments. Unlike desktop or mobile
benchmarks, Automotive-ENV provides structured, reproducible, and geographically parameterized
tasks that capture the complexity of in-vehicle interaction under real-world constraints. Building on
this foundation, we propose <strong>ASURADA</strong>, a geo-adaptive agent capable of integrating GPS location
and contextual signals to deliver safe and personalized actions. Our experiments show that geo-context
integration not only improves task accuracy, especially in safety-critical settings, but also
reduces reasoning overhead by enabling proactive, context-driven planning. Together, Automotive-ENV
and ASURADA establish a foundation for the next generation of in-vehicle assistants that are
multimodal, safety-aware, and culturally adaptive, advancing the reliable deployment of autonomous
agents in high-stakes driving environments.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- BibTeX -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title is-3 has-text-centered">BibTeX</h2>
<pre><code>@misc{yan2025automotiveenvbenchmarkingmultimodalagents,
title={Automotive-ENV: Benchmarking Multimodal Agents in Vehicle Interface Systems},
author={Junfeng Yan and Biao Wu and Meng Fang and Ling Chen},
year={2025},
eprint={2509.21143},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2509.21143}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<p>
This website adapts the open-source <a href="https://nerfies.github.io" target="_blank" rel="noopener">Nerfies/OS-World</a> page framework.
Template code © original authors, used under
<a href="https://creativecommons.org/licenses/by-sa/4.0/" target="_blank" rel="noopener">CC BY-SA 4.0</a>.
</p>
<p>
Site content (text, figures, video) © 2025 automotive-env.
Source for this page: <a href="https://github.com/automotive-env/AutmotiveEnv.github.io" target="_blank" rel="noopener">GitHub</a>.
</p>
<p>
<a class="icon-link" href="https://arxiv.org/abs/2509.21143" target="_blank" rel="noopener" title="arXiv">
<i class="ai ai-arxiv"></i>
</a>
<a class="icon-link" href="https://github.com/automotive-env/AutmotiveEnv.github.io" target="_blank" rel="noopener" title="GitHub">
<i class="fab fa-github"></i>
</a>
<a class="icon-link" href="https://creativecommons.org/licenses/by-sa/4.0/" target="_blank" rel="noopener" title="CC BY-SA 4.0">
<i class="fab fa-creative-commons"></i>
</a>
</p>
<p>© 2025 automotive-env — Hosted on GitHub Pages.</p>
</div>
</div>
</footer>
</body>
</html> |