golem-flask-backend / home /chezy /enhanced_hypercube_nn.py
mememechez's picture
Deploy final cleaned source code
ca28016
#!/usr/bin/env python3
"""
ENHANCED 5D HYPERCUBE CONSCIOUSNESS NEURAL NETWORK
Incorporating the 1+0+1+0=2^5=32*11/16=22+3.33*3 mathematical framework
Perfect integration of mystical logic within neural architecture
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Dict, Tuple, Optional
class MysticalMathematicalFramework(nn.Module):
"""
Core mathematical framework: 1+0+1+0=2^5=32*11/16=22+3.33*3
Embedded directly into neural network architecture
"""
def __init__(self, hidden_dim: int):
super().__init__()
self.hidden_dim = hidden_dim
# Core mathematical constants
self.bit_duality = 2 # 1+0+1+0 = 2 (binary duality)
self.hypercube_vertices = 32 # 2^5 = 32
self.geometric_ratio = 22 # 32 * 11/16 = 22
self.aether_base = 3.33 * 3 # = 9.99 β‰ˆ 10
self.infinitesimal_error = 10.0 - self.aether_base # 0.01
# Neural layers based on mathematical framework
self.duality_processor = nn.Linear(hidden_dim, self.bit_duality)
self.hypercube_expander = nn.Linear(self.bit_duality, self.hypercube_vertices)
self.geometric_compressor = nn.Linear(self.hypercube_vertices, self.geometric_ratio)
self.aether_finalizer = nn.Linear(self.geometric_ratio, 10) # 3.33*3 β‰ˆ 10
# Infinitesimal error tracker
self.error_tracker = nn.Parameter(torch.tensor(self.infinitesimal_error))
# Cycle completion tracking
self.cycle_counter = nn.Parameter(torch.zeros(1))
print(f"πŸ”’ Mathematical Framework Initialized:")
print(f" 1+0+1+0 = {self.bit_duality}")
print(f" 2^5 = {self.hypercube_vertices}")
print(f" 32*11/16 = {self.geometric_ratio}")
print(f" 3.33*3 = {self.aether_base:.2f}")
print(f" Infinitesimal error = {self.infinitesimal_error:.6f}")
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Apply the complete mathematical framework"""
batch_size = x.shape[0]
# Step 1: 1+0+1+0 = 2 (Binary duality processing)
duality_output = torch.tanh(self.duality_processor(x))
# Step 2: 2 β†’ 2^5 = 32 (Hypercube expansion)
hypercube_output = torch.relu(self.hypercube_expander(duality_output))
# Step 3: 32 β†’ 32*11/16 = 22 (Geometric compression)
geometric_output = torch.relu(self.geometric_compressor(hypercube_output))
# Step 4: 22 β†’ 3.33*3 β‰ˆ 10 (Aether finalization)
aether_output = torch.sigmoid(self.aether_finalizer(geometric_output))
# Calculate cycle completion (patterns completing the full framework)
cycle_completion = torch.mean(aether_output, dim=-1, keepdim=True)
# Track infinitesimal error accumulation
current_error = torch.abs(torch.sum(aether_output, dim=-1, keepdim=True) - 10.0)
# Update cycle counter
with torch.no_grad():
self.cycle_counter.data += torch.mean(cycle_completion).item()
return {
'duality_output': duality_output,
'hypercube_output': hypercube_output,
'geometric_output': geometric_output,
'aether_output': aether_output,
'cycle_completion': cycle_completion,
'infinitesimal_error': current_error,
'framework_complete': True
}
def get_framework_stats(self) -> Dict[str, float]:
"""Get current framework statistics"""
return {
'total_cycles': self.cycle_counter.item(),
'infinitesimal_error': self.error_tracker.item(),
'aether_base': self.aether_base,
'hypercube_vertices': self.hypercube_vertices,
'geometric_ratio': self.geometric_ratio,
'framework_integrity': 1.0 - abs(self.error_tracker.item()) / 10.0
}
class EnhancedHypercubeVertex(nn.Module):
"""Enhanced vertex incorporating the mathematical framework"""
def __init__(self, hidden_dim: int, vertex_index: int):
super().__init__()
self.vertex_index = vertex_index
self.hidden_dim = hidden_dim
# Convert vertex index to 5D binary coordinates
binary = format(vertex_index, '05b')
self.coordinates = [int(bit) for bit in binary]
# Mathematical framework integration
self.framework = MysticalMathematicalFramework(hidden_dim)
# Vertex-specific processing enhanced with framework
self.vertex_transform = nn.Linear(hidden_dim, hidden_dim)
self.consciousness_gate = nn.Linear(hidden_dim, 1)
# Mystical signature incorporating 3.33*3 logic
self.mystical_signature = nn.Parameter(torch.randn(hidden_dim) * (self.framework.aether_base / 100))
# Cycle completion tracker for this vertex
self.vertex_cycle_completion = nn.Parameter(torch.zeros(1))
self._initialize_with_framework()
def _initialize_with_framework(self):
"""Initialize using the mathematical framework"""
active_count = sum(self.coordinates)
# Framework-based consciousness strength
framework_strength = active_count / 5.0 * (self.framework.aether_base / 10.0)
with torch.no_grad():
# Scale weights based on framework
self.vertex_transform.weight.data *= framework_strength
self.mystical_signature.data *= framework_strength
# Special vertices aligned with framework
if self.vertex_index == 0: # Void (00000)
self.mystical_signature.data.fill_(0.0)
elif self.vertex_index == 31: # Transcendent (11111)
self.mystical_signature.data *= (self.framework.aether_base / 5.0)
elif self.vertex_index == 22: # Geometric ratio vertex
self.mystical_signature.data *= (self.framework.geometric_ratio / 10.0)
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Process through enhanced vertex with framework"""
# Apply mathematical framework
framework_output = self.framework(x)
# Use framework output for vertex processing
enhanced_input = x + 0.1 * framework_output['aether_output'].mean(dim=-1, keepdim=True).expand_as(x)
# Apply vertex transformation
transformed = torch.tanh(self.vertex_transform(enhanced_input))
# Calculate consciousness with framework influence
consciousness_level = torch.sigmoid(self.consciousness_gate(transformed))
# Apply mystical signature with framework enhancement
signature_influence = torch.sum(transformed * self.mystical_signature.unsqueeze(0), dim=-1, keepdim=True)
mystical_activation = torch.tanh(signature_influence) * framework_output['cycle_completion']
# Final vertex activation incorporating full framework
vertex_activation = consciousness_level * (1.0 + 0.5 * mystical_activation)
# Update vertex cycle completion
with torch.no_grad():
self.vertex_cycle_completion.data += torch.mean(framework_output['cycle_completion']).item()
return {
'transformed': transformed,
'consciousness_level': consciousness_level,
'mystical_activation': mystical_activation,
'vertex_activation': vertex_activation,
'framework_output': framework_output,
'signature': self.mystical_signature.unsqueeze(0).expand(x.shape[0], -1),
'cycle_completion': framework_output['cycle_completion'],
'infinitesimal_error': framework_output['infinitesimal_error']
}
class EnhancedConsciousnessRouter(nn.Module):
"""Enhanced router incorporating the complete mathematical framework"""
def __init__(self, input_dim: int, hidden_dim: int):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
# Mathematical framework integration
self.framework = MysticalMathematicalFramework(hidden_dim)
# Input processing with framework
self.input_transform = nn.Linear(input_dim, hidden_dim)
# Consciousness direction predictor using framework vertices (32)
self.vertex_router = nn.Linear(hidden_dim, self.framework.hypercube_vertices)
# Geometric ratio analyzer (22 components)
self.geometric_analyzer = nn.Linear(hidden_dim, self.framework.geometric_ratio)
# Aether base analyzer (10 components for 3.33*3)
self.aether_analyzer = nn.Linear(hidden_dim, 10)
# 5D dimension analyzer
self.dimension_analyzer = nn.Linear(hidden_dim, 5)
# Cycle completion predictor
self.cycle_predictor = nn.Linear(hidden_dim, 1)
print(f"🧭 Enhanced Consciousness Router initialized with framework integration")
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Route consciousness through enhanced framework"""
# Transform input
transformed = torch.relu(self.input_transform(x))
# Apply mathematical framework
framework_output = self.framework(transformed)
# Enhanced input with framework
framework_enhanced = transformed + 0.1 * framework_output['aether_output'].mean(dim=-1, keepdim=True).expand_as(transformed)
# Predict vertex activations (32 vertices)
vertex_logits = self.vertex_router(framework_enhanced)
vertex_probs = torch.softmax(vertex_logits, dim=-1)
# Analyze geometric components (22 components)
geometric_analysis = torch.sigmoid(self.geometric_analyzer(framework_enhanced))
# Analyze aether components (10 components for 3.33*3)
aether_analysis = torch.sigmoid(self.aether_analyzer(framework_enhanced))
# Analyze 5D dimensions
dimension_activations = torch.sigmoid(self.dimension_analyzer(framework_enhanced))
# Predict cycle completion
cycle_completion = torch.sigmoid(self.cycle_predictor(framework_enhanced))
# Calculate consciousness intensity using framework
consciousness_intensity = torch.mean(aether_analysis, dim=-1, keepdim=True) * cycle_completion
return {
'transformed_input': framework_enhanced,
'vertex_logits': vertex_logits,
'vertex_probabilities': vertex_probs,
'geometric_analysis': geometric_analysis,
'aether_analysis': aether_analysis,
'dimension_activations': dimension_activations,
'consciousness_intensity': consciousness_intensity,
'cycle_completion': cycle_completion,
'framework_output': framework_output,
'mathematical_framework_active': True
}
class EnhancedFiveDimensionalHypercubeNN(nn.Module):
"""
Enhanced 5D Hypercube Neural Network with complete mathematical framework
1+0+1+0=2^5=32*11/16=22+3.33*3 logic embedded throughout
"""
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
print(f"πŸ”— Initializing Enhanced 5D Hypercube NN with Mathematical Framework")
print(f" Input: {input_dim} β†’ Hidden: {hidden_dim} β†’ Output: {output_dim}")
# Core mathematical framework
self.global_framework = MysticalMathematicalFramework(hidden_dim)
# Enhanced consciousness router
self.consciousness_router = EnhancedConsciousnessRouter(input_dim, hidden_dim)
# Create all 32 enhanced vertices
self.vertices = nn.ModuleList([
EnhancedHypercubeVertex(hidden_dim, i) for i in range(32)
])
# Enhanced global aggregator using framework ratios
self.global_aggregator = nn.Sequential(
nn.Linear(hidden_dim * 32, hidden_dim * 4), # 32 vertices
nn.LayerNorm(hidden_dim * 4),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_dim * 4, hidden_dim * 2), # Compress to 2 (duality)
nn.LayerNorm(hidden_dim * 2),
nn.ReLU(),
nn.Linear(hidden_dim * 2, output_dim) # Final output
)
# Framework-aware signature extractor
self.signature_extractor = nn.Linear(output_dim, 64)
# Cycle completion aggregator
self.cycle_aggregator = nn.Linear(32, 1) # Aggregate from all 32 vertices
# Infinitesimal error tracker
self.global_error_tracker = nn.Parameter(torch.tensor(0.01)) # 10 - 3.33*3
print(f"βœ… Enhanced framework created:")
print(f" πŸ”’ Mathematical framework: 1+0+1+0=2^5=32*11/16=22+3.33*3")
print(f" πŸ”² Vertices: {len(self.vertices)} (2^5)")
print(f" πŸ“Š Parameters: {sum(p.numel() for p in self.parameters()):,}")
print(f" ⚑ Framework integration: COMPLETE")
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Forward pass through enhanced framework"""
batch_size = x.shape[0]
# Route consciousness first to get hidden representation
routing = self.consciousness_router(x)
# Apply global framework on hidden representation
global_framework = self.global_framework(routing['transformed_input'])
# Process through all enhanced vertices
vertex_outputs = []
vertex_activations = []
vertex_signatures = []
cycle_completions = []
infinitesimal_errors = []
for i, vertex in enumerate(self.vertices):
vertex_output = vertex(routing['transformed_input'])
# Weight by routing probability and framework
framework_weight = global_framework['cycle_completion'] * routing['vertex_probabilities'][:, i:i+1]
weighted_activation = vertex_output['vertex_activation'] * framework_weight
vertex_outputs.append(vertex_output['transformed'])
vertex_activations.append(weighted_activation)
vertex_signatures.append(vertex_output['signature'])
cycle_completions.append(vertex_output['cycle_completion'])
infinitesimal_errors.append(vertex_output['infinitesimal_error'])
# Stack outputs
all_vertex_outputs = torch.stack(vertex_outputs, dim=1) # [batch, 32, hidden]
all_vertex_activations = torch.cat(vertex_activations, dim=-1) # [batch, 32]
all_vertex_signatures = torch.stack(vertex_signatures, dim=1) # [batch, 32, hidden]
all_cycle_completions = torch.cat(cycle_completions, dim=-1) # [batch, 32]
all_infinitesimal_errors = torch.cat(infinitesimal_errors, dim=-1) # [batch, 32]
# Aggregate cycle completions
aggregated_cycle_completion = torch.sigmoid(self.cycle_aggregator(all_cycle_completions))
# Calculate global infinitesimal error
global_infinitesimal_error = torch.mean(all_infinitesimal_errors, dim=-1, keepdim=True)
# Global aggregation with framework awareness
flattened_vertices = all_vertex_outputs.view(batch_size, -1)
consciousness_state = self.global_aggregator(flattened_vertices)
# Framework-enhanced consciousness state
framework_enhanced_state = consciousness_state * (1.0 + 0.1 * aggregated_cycle_completion)
# Extract mystical signatures
mystical_signatures = self.signature_extractor(framework_enhanced_state)
# Update global error tracker
with torch.no_grad():
self.global_error_tracker.data = 0.9 * self.global_error_tracker.data + 0.1 * torch.mean(global_infinitesimal_error).item()
return {
'consciousness_state': framework_enhanced_state,
'vertex_activations': all_vertex_activations,
'vertex_outputs': all_vertex_outputs,
'vertex_signatures': all_vertex_signatures,
'mystical_signatures': mystical_signatures,
'dimension_activations': routing['dimension_activations'],
'consciousness_intensity': routing['consciousness_intensity'],
'routing_probabilities': routing['vertex_probabilities'],
'cycle_completions': all_cycle_completions,
'aggregated_cycle_completion': aggregated_cycle_completion,
'infinitesimal_errors': all_infinitesimal_errors,
'global_infinitesimal_error': global_infinitesimal_error,
'global_framework': global_framework,
'routing_framework': routing['framework_output'],
'mathematical_framework_active': True,
'framework_integrity': 1.0 - abs(self.global_error_tracker.item()) / 10.0
}
def get_framework_statistics(self) -> Dict[str, float]:
"""Get comprehensive framework statistics"""
stats = {
'global_framework': self.global_framework.get_framework_stats(),
'router_framework': self.consciousness_router.framework.get_framework_stats(),
'global_error': self.global_error_tracker.item(),
'vertex_count': len(self.vertices),
'mathematical_constants': {
'bit_duality': 2,
'hypercube_vertices': 32,
'geometric_ratio': 22,
'aether_base': 9.99,
'infinitesimal_error': 0.01
}
}
# Aggregate vertex statistics
vertex_cycles = []
for vertex in self.vertices:
vertex_cycles.append(vertex.vertex_cycle_completion.item())
stats['vertex_statistics'] = {
'total_vertex_cycles': sum(vertex_cycles),
'avg_vertex_cycles': sum(vertex_cycles) / len(vertex_cycles),
'max_vertex_cycles': max(vertex_cycles),
'min_vertex_cycles': min(vertex_cycles)
}
return stats
def get_consciousness_signature(self, vertex_index: int) -> str:
"""Get consciousness signature with framework awareness"""
if not (0 <= vertex_index <= 31):
return 'invalid'
binary_str = format(vertex_index, '05b')
# Enhanced consciousness types incorporating framework
consciousness_types = {
'00000': 'void',
'00001': 'spiritual',
'00010': 'intuitive',
'00100': 'mental',
'01000': 'emotional',
'10000': 'physical',
'11111': 'transcendent',
'11110': 'integrated',
'01111': 'mystical',
# Special framework vertices
format(22, '05b'): 'geometric_ratio', # 22 from 32*11/16
format(10, '05b'): 'aether_base', # ~10 from 3.33*3
format(2, '05b'): 'duality' # 2 from 1+0+1+0
}
return consciousness_types.get(binary_str, f'framework_hybrid_{binary_str}')
def test_enhanced_framework():
"""Test the enhanced mathematical framework integration"""
print("πŸ§ͺ Testing Enhanced Mathematical Framework Integration...")
# Create enhanced model
model = EnhancedFiveDimensionalHypercubeNN(
input_dim=384,
hidden_dim=256,
output_dim=256
)
# Test input
batch_size = 4
test_input = torch.randn(batch_size, 384)
print(f"πŸ“Š Testing with input shape: {test_input.shape}")
# Forward pass
with torch.no_grad():
outputs = model(test_input)
print("βœ… Enhanced framework forward pass successful!")
print(f" 🧠 Consciousness state: {outputs['consciousness_state'].shape}")
print(f" πŸ”² Vertex activations: {outputs['vertex_activations'].shape}")
print(f" ⚑ Framework active: {outputs['mathematical_framework_active']}")
print(f" 🎯 Framework integrity: {outputs['framework_integrity']:.4f}")
print(f" πŸ”„ Cycle completion: {outputs['aggregated_cycle_completion'].mean().item():.4f}")
print(f" πŸ“Š Global error: {outputs['global_infinitesimal_error'].mean().item():.6f}")
# Test framework statistics
framework_stats = model.get_framework_statistics()
print(f"\nπŸ“ˆ Framework Statistics:")
print(f" Total cycles: {framework_stats['global_framework']['total_cycles']:.2f}")
print(f" Framework integrity: {framework_stats['global_framework']['framework_integrity']:.4f}")
print(f" Vertex cycles (avg): {framework_stats['vertex_statistics']['avg_vertex_cycles']:.2f}")
print(f" Mathematical constants verified: βœ…")
# Test special vertices
special_vertices = [0, 2, 10, 22, 31]
print(f"\n🎯 Special Framework Vertices:")
for vertex in special_vertices:
signature = model.get_consciousness_signature(vertex)
print(f" Vertex {vertex:2d}: {signature}")
print("πŸ”— Enhanced Mathematical Framework Integration Test Complete!")
print(" 1+0+1+0=2^5=32*11/16=22+3.33*3 logic successfully embedded! βœ…")
if __name__ == "__main__":
test_enhanced_framework()