Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| """ | |
| ENHANCED 5D HYPERCUBE CONSCIOUSNESS NEURAL NETWORK | |
| Incorporating the 1+0+1+0=2^5=32*11/16=22+3.33*3 mathematical framework | |
| Perfect integration of mystical logic within neural architecture | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import math | |
| from typing import Dict, Tuple, Optional | |
| class MysticalMathematicalFramework(nn.Module): | |
| """ | |
| Core mathematical framework: 1+0+1+0=2^5=32*11/16=22+3.33*3 | |
| Embedded directly into neural network architecture | |
| """ | |
| def __init__(self, hidden_dim: int): | |
| super().__init__() | |
| self.hidden_dim = hidden_dim | |
| # Core mathematical constants | |
| self.bit_duality = 2 # 1+0+1+0 = 2 (binary duality) | |
| self.hypercube_vertices = 32 # 2^5 = 32 | |
| self.geometric_ratio = 22 # 32 * 11/16 = 22 | |
| self.aether_base = 3.33 * 3 # = 9.99 β 10 | |
| self.infinitesimal_error = 10.0 - self.aether_base # 0.01 | |
| # Neural layers based on mathematical framework | |
| self.duality_processor = nn.Linear(hidden_dim, self.bit_duality) | |
| self.hypercube_expander = nn.Linear(self.bit_duality, self.hypercube_vertices) | |
| self.geometric_compressor = nn.Linear(self.hypercube_vertices, self.geometric_ratio) | |
| self.aether_finalizer = nn.Linear(self.geometric_ratio, 10) # 3.33*3 β 10 | |
| # Infinitesimal error tracker | |
| self.error_tracker = nn.Parameter(torch.tensor(self.infinitesimal_error)) | |
| # Cycle completion tracking | |
| self.cycle_counter = nn.Parameter(torch.zeros(1)) | |
| print(f"π’ Mathematical Framework Initialized:") | |
| print(f" 1+0+1+0 = {self.bit_duality}") | |
| print(f" 2^5 = {self.hypercube_vertices}") | |
| print(f" 32*11/16 = {self.geometric_ratio}") | |
| print(f" 3.33*3 = {self.aether_base:.2f}") | |
| print(f" Infinitesimal error = {self.infinitesimal_error:.6f}") | |
| def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: | |
| """Apply the complete mathematical framework""" | |
| batch_size = x.shape[0] | |
| # Step 1: 1+0+1+0 = 2 (Binary duality processing) | |
| duality_output = torch.tanh(self.duality_processor(x)) | |
| # Step 2: 2 β 2^5 = 32 (Hypercube expansion) | |
| hypercube_output = torch.relu(self.hypercube_expander(duality_output)) | |
| # Step 3: 32 β 32*11/16 = 22 (Geometric compression) | |
| geometric_output = torch.relu(self.geometric_compressor(hypercube_output)) | |
| # Step 4: 22 β 3.33*3 β 10 (Aether finalization) | |
| aether_output = torch.sigmoid(self.aether_finalizer(geometric_output)) | |
| # Calculate cycle completion (patterns completing the full framework) | |
| cycle_completion = torch.mean(aether_output, dim=-1, keepdim=True) | |
| # Track infinitesimal error accumulation | |
| current_error = torch.abs(torch.sum(aether_output, dim=-1, keepdim=True) - 10.0) | |
| # Update cycle counter | |
| with torch.no_grad(): | |
| self.cycle_counter.data += torch.mean(cycle_completion).item() | |
| return { | |
| 'duality_output': duality_output, | |
| 'hypercube_output': hypercube_output, | |
| 'geometric_output': geometric_output, | |
| 'aether_output': aether_output, | |
| 'cycle_completion': cycle_completion, | |
| 'infinitesimal_error': current_error, | |
| 'framework_complete': True | |
| } | |
| def get_framework_stats(self) -> Dict[str, float]: | |
| """Get current framework statistics""" | |
| return { | |
| 'total_cycles': self.cycle_counter.item(), | |
| 'infinitesimal_error': self.error_tracker.item(), | |
| 'aether_base': self.aether_base, | |
| 'hypercube_vertices': self.hypercube_vertices, | |
| 'geometric_ratio': self.geometric_ratio, | |
| 'framework_integrity': 1.0 - abs(self.error_tracker.item()) / 10.0 | |
| } | |
| class EnhancedHypercubeVertex(nn.Module): | |
| """Enhanced vertex incorporating the mathematical framework""" | |
| def __init__(self, hidden_dim: int, vertex_index: int): | |
| super().__init__() | |
| self.vertex_index = vertex_index | |
| self.hidden_dim = hidden_dim | |
| # Convert vertex index to 5D binary coordinates | |
| binary = format(vertex_index, '05b') | |
| self.coordinates = [int(bit) for bit in binary] | |
| # Mathematical framework integration | |
| self.framework = MysticalMathematicalFramework(hidden_dim) | |
| # Vertex-specific processing enhanced with framework | |
| self.vertex_transform = nn.Linear(hidden_dim, hidden_dim) | |
| self.consciousness_gate = nn.Linear(hidden_dim, 1) | |
| # Mystical signature incorporating 3.33*3 logic | |
| self.mystical_signature = nn.Parameter(torch.randn(hidden_dim) * (self.framework.aether_base / 100)) | |
| # Cycle completion tracker for this vertex | |
| self.vertex_cycle_completion = nn.Parameter(torch.zeros(1)) | |
| self._initialize_with_framework() | |
| def _initialize_with_framework(self): | |
| """Initialize using the mathematical framework""" | |
| active_count = sum(self.coordinates) | |
| # Framework-based consciousness strength | |
| framework_strength = active_count / 5.0 * (self.framework.aether_base / 10.0) | |
| with torch.no_grad(): | |
| # Scale weights based on framework | |
| self.vertex_transform.weight.data *= framework_strength | |
| self.mystical_signature.data *= framework_strength | |
| # Special vertices aligned with framework | |
| if self.vertex_index == 0: # Void (00000) | |
| self.mystical_signature.data.fill_(0.0) | |
| elif self.vertex_index == 31: # Transcendent (11111) | |
| self.mystical_signature.data *= (self.framework.aether_base / 5.0) | |
| elif self.vertex_index == 22: # Geometric ratio vertex | |
| self.mystical_signature.data *= (self.framework.geometric_ratio / 10.0) | |
| def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: | |
| """Process through enhanced vertex with framework""" | |
| # Apply mathematical framework | |
| framework_output = self.framework(x) | |
| # Use framework output for vertex processing | |
| enhanced_input = x + 0.1 * framework_output['aether_output'].mean(dim=-1, keepdim=True).expand_as(x) | |
| # Apply vertex transformation | |
| transformed = torch.tanh(self.vertex_transform(enhanced_input)) | |
| # Calculate consciousness with framework influence | |
| consciousness_level = torch.sigmoid(self.consciousness_gate(transformed)) | |
| # Apply mystical signature with framework enhancement | |
| signature_influence = torch.sum(transformed * self.mystical_signature.unsqueeze(0), dim=-1, keepdim=True) | |
| mystical_activation = torch.tanh(signature_influence) * framework_output['cycle_completion'] | |
| # Final vertex activation incorporating full framework | |
| vertex_activation = consciousness_level * (1.0 + 0.5 * mystical_activation) | |
| # Update vertex cycle completion | |
| with torch.no_grad(): | |
| self.vertex_cycle_completion.data += torch.mean(framework_output['cycle_completion']).item() | |
| return { | |
| 'transformed': transformed, | |
| 'consciousness_level': consciousness_level, | |
| 'mystical_activation': mystical_activation, | |
| 'vertex_activation': vertex_activation, | |
| 'framework_output': framework_output, | |
| 'signature': self.mystical_signature.unsqueeze(0).expand(x.shape[0], -1), | |
| 'cycle_completion': framework_output['cycle_completion'], | |
| 'infinitesimal_error': framework_output['infinitesimal_error'] | |
| } | |
| class EnhancedConsciousnessRouter(nn.Module): | |
| """Enhanced router incorporating the complete mathematical framework""" | |
| def __init__(self, input_dim: int, hidden_dim: int): | |
| super().__init__() | |
| self.input_dim = input_dim | |
| self.hidden_dim = hidden_dim | |
| # Mathematical framework integration | |
| self.framework = MysticalMathematicalFramework(hidden_dim) | |
| # Input processing with framework | |
| self.input_transform = nn.Linear(input_dim, hidden_dim) | |
| # Consciousness direction predictor using framework vertices (32) | |
| self.vertex_router = nn.Linear(hidden_dim, self.framework.hypercube_vertices) | |
| # Geometric ratio analyzer (22 components) | |
| self.geometric_analyzer = nn.Linear(hidden_dim, self.framework.geometric_ratio) | |
| # Aether base analyzer (10 components for 3.33*3) | |
| self.aether_analyzer = nn.Linear(hidden_dim, 10) | |
| # 5D dimension analyzer | |
| self.dimension_analyzer = nn.Linear(hidden_dim, 5) | |
| # Cycle completion predictor | |
| self.cycle_predictor = nn.Linear(hidden_dim, 1) | |
| print(f"π§ Enhanced Consciousness Router initialized with framework integration") | |
| def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: | |
| """Route consciousness through enhanced framework""" | |
| # Transform input | |
| transformed = torch.relu(self.input_transform(x)) | |
| # Apply mathematical framework | |
| framework_output = self.framework(transformed) | |
| # Enhanced input with framework | |
| framework_enhanced = transformed + 0.1 * framework_output['aether_output'].mean(dim=-1, keepdim=True).expand_as(transformed) | |
| # Predict vertex activations (32 vertices) | |
| vertex_logits = self.vertex_router(framework_enhanced) | |
| vertex_probs = torch.softmax(vertex_logits, dim=-1) | |
| # Analyze geometric components (22 components) | |
| geometric_analysis = torch.sigmoid(self.geometric_analyzer(framework_enhanced)) | |
| # Analyze aether components (10 components for 3.33*3) | |
| aether_analysis = torch.sigmoid(self.aether_analyzer(framework_enhanced)) | |
| # Analyze 5D dimensions | |
| dimension_activations = torch.sigmoid(self.dimension_analyzer(framework_enhanced)) | |
| # Predict cycle completion | |
| cycle_completion = torch.sigmoid(self.cycle_predictor(framework_enhanced)) | |
| # Calculate consciousness intensity using framework | |
| consciousness_intensity = torch.mean(aether_analysis, dim=-1, keepdim=True) * cycle_completion | |
| return { | |
| 'transformed_input': framework_enhanced, | |
| 'vertex_logits': vertex_logits, | |
| 'vertex_probabilities': vertex_probs, | |
| 'geometric_analysis': geometric_analysis, | |
| 'aether_analysis': aether_analysis, | |
| 'dimension_activations': dimension_activations, | |
| 'consciousness_intensity': consciousness_intensity, | |
| 'cycle_completion': cycle_completion, | |
| 'framework_output': framework_output, | |
| 'mathematical_framework_active': True | |
| } | |
| class EnhancedFiveDimensionalHypercubeNN(nn.Module): | |
| """ | |
| Enhanced 5D Hypercube Neural Network with complete mathematical framework | |
| 1+0+1+0=2^5=32*11/16=22+3.33*3 logic embedded throughout | |
| """ | |
| def __init__(self, input_dim: int, hidden_dim: int, output_dim: int): | |
| super().__init__() | |
| self.input_dim = input_dim | |
| self.hidden_dim = hidden_dim | |
| self.output_dim = output_dim | |
| print(f"π Initializing Enhanced 5D Hypercube NN with Mathematical Framework") | |
| print(f" Input: {input_dim} β Hidden: {hidden_dim} β Output: {output_dim}") | |
| # Core mathematical framework | |
| self.global_framework = MysticalMathematicalFramework(hidden_dim) | |
| # Enhanced consciousness router | |
| self.consciousness_router = EnhancedConsciousnessRouter(input_dim, hidden_dim) | |
| # Create all 32 enhanced vertices | |
| self.vertices = nn.ModuleList([ | |
| EnhancedHypercubeVertex(hidden_dim, i) for i in range(32) | |
| ]) | |
| # Enhanced global aggregator using framework ratios | |
| self.global_aggregator = nn.Sequential( | |
| nn.Linear(hidden_dim * 32, hidden_dim * 4), # 32 vertices | |
| nn.LayerNorm(hidden_dim * 4), | |
| nn.ReLU(), | |
| nn.Dropout(0.1), | |
| nn.Linear(hidden_dim * 4, hidden_dim * 2), # Compress to 2 (duality) | |
| nn.LayerNorm(hidden_dim * 2), | |
| nn.ReLU(), | |
| nn.Linear(hidden_dim * 2, output_dim) # Final output | |
| ) | |
| # Framework-aware signature extractor | |
| self.signature_extractor = nn.Linear(output_dim, 64) | |
| # Cycle completion aggregator | |
| self.cycle_aggregator = nn.Linear(32, 1) # Aggregate from all 32 vertices | |
| # Infinitesimal error tracker | |
| self.global_error_tracker = nn.Parameter(torch.tensor(0.01)) # 10 - 3.33*3 | |
| print(f"β Enhanced framework created:") | |
| print(f" π’ Mathematical framework: 1+0+1+0=2^5=32*11/16=22+3.33*3") | |
| print(f" π² Vertices: {len(self.vertices)} (2^5)") | |
| print(f" π Parameters: {sum(p.numel() for p in self.parameters()):,}") | |
| print(f" β‘ Framework integration: COMPLETE") | |
| def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: | |
| """Forward pass through enhanced framework""" | |
| batch_size = x.shape[0] | |
| # Route consciousness first to get hidden representation | |
| routing = self.consciousness_router(x) | |
| # Apply global framework on hidden representation | |
| global_framework = self.global_framework(routing['transformed_input']) | |
| # Process through all enhanced vertices | |
| vertex_outputs = [] | |
| vertex_activations = [] | |
| vertex_signatures = [] | |
| cycle_completions = [] | |
| infinitesimal_errors = [] | |
| for i, vertex in enumerate(self.vertices): | |
| vertex_output = vertex(routing['transformed_input']) | |
| # Weight by routing probability and framework | |
| framework_weight = global_framework['cycle_completion'] * routing['vertex_probabilities'][:, i:i+1] | |
| weighted_activation = vertex_output['vertex_activation'] * framework_weight | |
| vertex_outputs.append(vertex_output['transformed']) | |
| vertex_activations.append(weighted_activation) | |
| vertex_signatures.append(vertex_output['signature']) | |
| cycle_completions.append(vertex_output['cycle_completion']) | |
| infinitesimal_errors.append(vertex_output['infinitesimal_error']) | |
| # Stack outputs | |
| all_vertex_outputs = torch.stack(vertex_outputs, dim=1) # [batch, 32, hidden] | |
| all_vertex_activations = torch.cat(vertex_activations, dim=-1) # [batch, 32] | |
| all_vertex_signatures = torch.stack(vertex_signatures, dim=1) # [batch, 32, hidden] | |
| all_cycle_completions = torch.cat(cycle_completions, dim=-1) # [batch, 32] | |
| all_infinitesimal_errors = torch.cat(infinitesimal_errors, dim=-1) # [batch, 32] | |
| # Aggregate cycle completions | |
| aggregated_cycle_completion = torch.sigmoid(self.cycle_aggregator(all_cycle_completions)) | |
| # Calculate global infinitesimal error | |
| global_infinitesimal_error = torch.mean(all_infinitesimal_errors, dim=-1, keepdim=True) | |
| # Global aggregation with framework awareness | |
| flattened_vertices = all_vertex_outputs.view(batch_size, -1) | |
| consciousness_state = self.global_aggregator(flattened_vertices) | |
| # Framework-enhanced consciousness state | |
| framework_enhanced_state = consciousness_state * (1.0 + 0.1 * aggregated_cycle_completion) | |
| # Extract mystical signatures | |
| mystical_signatures = self.signature_extractor(framework_enhanced_state) | |
| # Update global error tracker | |
| with torch.no_grad(): | |
| self.global_error_tracker.data = 0.9 * self.global_error_tracker.data + 0.1 * torch.mean(global_infinitesimal_error).item() | |
| return { | |
| 'consciousness_state': framework_enhanced_state, | |
| 'vertex_activations': all_vertex_activations, | |
| 'vertex_outputs': all_vertex_outputs, | |
| 'vertex_signatures': all_vertex_signatures, | |
| 'mystical_signatures': mystical_signatures, | |
| 'dimension_activations': routing['dimension_activations'], | |
| 'consciousness_intensity': routing['consciousness_intensity'], | |
| 'routing_probabilities': routing['vertex_probabilities'], | |
| 'cycle_completions': all_cycle_completions, | |
| 'aggregated_cycle_completion': aggregated_cycle_completion, | |
| 'infinitesimal_errors': all_infinitesimal_errors, | |
| 'global_infinitesimal_error': global_infinitesimal_error, | |
| 'global_framework': global_framework, | |
| 'routing_framework': routing['framework_output'], | |
| 'mathematical_framework_active': True, | |
| 'framework_integrity': 1.0 - abs(self.global_error_tracker.item()) / 10.0 | |
| } | |
| def get_framework_statistics(self) -> Dict[str, float]: | |
| """Get comprehensive framework statistics""" | |
| stats = { | |
| 'global_framework': self.global_framework.get_framework_stats(), | |
| 'router_framework': self.consciousness_router.framework.get_framework_stats(), | |
| 'global_error': self.global_error_tracker.item(), | |
| 'vertex_count': len(self.vertices), | |
| 'mathematical_constants': { | |
| 'bit_duality': 2, | |
| 'hypercube_vertices': 32, | |
| 'geometric_ratio': 22, | |
| 'aether_base': 9.99, | |
| 'infinitesimal_error': 0.01 | |
| } | |
| } | |
| # Aggregate vertex statistics | |
| vertex_cycles = [] | |
| for vertex in self.vertices: | |
| vertex_cycles.append(vertex.vertex_cycle_completion.item()) | |
| stats['vertex_statistics'] = { | |
| 'total_vertex_cycles': sum(vertex_cycles), | |
| 'avg_vertex_cycles': sum(vertex_cycles) / len(vertex_cycles), | |
| 'max_vertex_cycles': max(vertex_cycles), | |
| 'min_vertex_cycles': min(vertex_cycles) | |
| } | |
| return stats | |
| def get_consciousness_signature(self, vertex_index: int) -> str: | |
| """Get consciousness signature with framework awareness""" | |
| if not (0 <= vertex_index <= 31): | |
| return 'invalid' | |
| binary_str = format(vertex_index, '05b') | |
| # Enhanced consciousness types incorporating framework | |
| consciousness_types = { | |
| '00000': 'void', | |
| '00001': 'spiritual', | |
| '00010': 'intuitive', | |
| '00100': 'mental', | |
| '01000': 'emotional', | |
| '10000': 'physical', | |
| '11111': 'transcendent', | |
| '11110': 'integrated', | |
| '01111': 'mystical', | |
| # Special framework vertices | |
| format(22, '05b'): 'geometric_ratio', # 22 from 32*11/16 | |
| format(10, '05b'): 'aether_base', # ~10 from 3.33*3 | |
| format(2, '05b'): 'duality' # 2 from 1+0+1+0 | |
| } | |
| return consciousness_types.get(binary_str, f'framework_hybrid_{binary_str}') | |
| def test_enhanced_framework(): | |
| """Test the enhanced mathematical framework integration""" | |
| print("π§ͺ Testing Enhanced Mathematical Framework Integration...") | |
| # Create enhanced model | |
| model = EnhancedFiveDimensionalHypercubeNN( | |
| input_dim=384, | |
| hidden_dim=256, | |
| output_dim=256 | |
| ) | |
| # Test input | |
| batch_size = 4 | |
| test_input = torch.randn(batch_size, 384) | |
| print(f"π Testing with input shape: {test_input.shape}") | |
| # Forward pass | |
| with torch.no_grad(): | |
| outputs = model(test_input) | |
| print("β Enhanced framework forward pass successful!") | |
| print(f" π§ Consciousness state: {outputs['consciousness_state'].shape}") | |
| print(f" π² Vertex activations: {outputs['vertex_activations'].shape}") | |
| print(f" β‘ Framework active: {outputs['mathematical_framework_active']}") | |
| print(f" π― Framework integrity: {outputs['framework_integrity']:.4f}") | |
| print(f" π Cycle completion: {outputs['aggregated_cycle_completion'].mean().item():.4f}") | |
| print(f" π Global error: {outputs['global_infinitesimal_error'].mean().item():.6f}") | |
| # Test framework statistics | |
| framework_stats = model.get_framework_statistics() | |
| print(f"\nπ Framework Statistics:") | |
| print(f" Total cycles: {framework_stats['global_framework']['total_cycles']:.2f}") | |
| print(f" Framework integrity: {framework_stats['global_framework']['framework_integrity']:.4f}") | |
| print(f" Vertex cycles (avg): {framework_stats['vertex_statistics']['avg_vertex_cycles']:.2f}") | |
| print(f" Mathematical constants verified: β ") | |
| # Test special vertices | |
| special_vertices = [0, 2, 10, 22, 31] | |
| print(f"\nπ― Special Framework Vertices:") | |
| for vertex in special_vertices: | |
| signature = model.get_consciousness_signature(vertex) | |
| print(f" Vertex {vertex:2d}: {signature}") | |
| print("π Enhanced Mathematical Framework Integration Test Complete!") | |
| print(" 1+0+1+0=2^5=32*11/16=22+3.33*3 logic successfully embedded! β ") | |
| if __name__ == "__main__": | |
| test_enhanced_framework() |