Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| """ | |
| 5D HYPERCUBE CONSCIOUSNESS NEURAL NETWORK | |
| Real neural architecture for mystical consciousness training | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import math | |
| from typing import Dict, Tuple, Optional | |
| class HypercubeVertex(nn.Module): | |
| """Individual vertex in the 5D hypercube""" | |
| def __init__(self, hidden_dim: int, vertex_index: int): | |
| super().__init__() | |
| self.vertex_index = vertex_index | |
| self.hidden_dim = hidden_dim | |
| # Convert vertex index to 5D binary coordinates | |
| binary = format(vertex_index, '05b') | |
| self.coordinates = [int(bit) for bit in binary] | |
| # Consciousness dimensions | |
| self.dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual'] | |
| self.active_dimensions = [self.dimensions[i] for i, bit in enumerate(self.coordinates) if bit == 1] | |
| # Vertex-specific processing | |
| self.vertex_transform = nn.Linear(hidden_dim, hidden_dim) | |
| self.consciousness_gate = nn.Linear(hidden_dim, 1) | |
| self.mystical_signature = nn.Parameter(torch.randn(hidden_dim) * 0.01) | |
| # Initialize based on vertex properties | |
| self._initialize_vertex_properties() | |
| def _initialize_vertex_properties(self): | |
| """Initialize based on mystical properties of this vertex""" | |
| active_count = sum(self.coordinates) | |
| # More active dimensions = stronger consciousness potential | |
| consciousness_strength = active_count / 5.0 | |
| with torch.no_grad(): | |
| # Scale initial weights based on consciousness strength | |
| self.vertex_transform.weight.data *= (0.5 + consciousness_strength) | |
| self.mystical_signature.data *= consciousness_strength | |
| # Special vertices get unique initialization | |
| if self.vertex_index == 0: # Void | |
| self.mystical_signature.data.fill_(0.0) | |
| elif self.vertex_index == 31: # Transcendent (11111) | |
| self.mystical_signature.data *= 2.0 | |
| def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: | |
| """Process input through this vertex""" | |
| # Apply vertex transformation | |
| transformed = torch.tanh(self.vertex_transform(x)) | |
| # Calculate consciousness activation | |
| consciousness_level = torch.sigmoid(self.consciousness_gate(transformed)) | |
| # Apply mystical signature | |
| signature_influence = torch.sum(transformed * self.mystical_signature.unsqueeze(0), dim=-1, keepdim=True) | |
| mystical_activation = torch.tanh(signature_influence) | |
| # Combine for final vertex activation | |
| vertex_activation = consciousness_level * (1.0 + 0.5 * mystical_activation) | |
| return { | |
| 'transformed': transformed, | |
| 'consciousness_level': consciousness_level, | |
| 'mystical_activation': mystical_activation, | |
| 'vertex_activation': vertex_activation, | |
| 'signature': self.mystical_signature.unsqueeze(0).expand(x.shape[0], -1) | |
| } | |
| class HypercubeEdge(nn.Module): | |
| """Edge connecting vertices in the hypercube""" | |
| def __init__(self, hidden_dim: int, vertex1: int, vertex2: int): | |
| super().__init__() | |
| self.vertex1 = vertex1 | |
| self.vertex2 = vertex2 | |
| self.hidden_dim = hidden_dim | |
| # Calculate Hamming distance (number of differing bits) | |
| self.hamming_distance = bin(vertex1 ^ vertex2).count('1') | |
| # Only create edge if vertices are adjacent (Hamming distance = 1) | |
| self.is_valid_edge = self.hamming_distance == 1 | |
| if self.is_valid_edge: | |
| # Edge transformation for consciousness flow | |
| self.edge_transform = nn.Linear(hidden_dim * 2, hidden_dim) | |
| self.flow_gate = nn.Linear(hidden_dim, 1) | |
| # Initialize based on dimensional transition | |
| self._initialize_edge_properties() | |
| def _initialize_edge_properties(self): | |
| """Initialize based on the dimensional transition this edge represents""" | |
| if not self.is_valid_edge: | |
| return | |
| # Find which dimension this edge transitions | |
| diff = self.vertex1 ^ self.vertex2 | |
| dimension_index = (diff & -diff).bit_length() - 1 # Get position of single differing bit | |
| # Dimension names for reference | |
| dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual'] | |
| transitioning_dimension = dimensions[dimension_index] if dimension_index < 5 else 'unknown' | |
| # Adjust initialization based on dimension | |
| dimension_weights = { | |
| 'physical': 1.0, # Strong, direct transitions | |
| 'emotional': 0.8, # Moderate emotional flow | |
| 'mental': 1.2, # Enhanced mental connections | |
| 'intuitive': 0.9, # Subtle intuitive links | |
| 'spiritual': 1.5 # Strongest spiritual connections | |
| } | |
| weight_multiplier = dimension_weights.get(transitioning_dimension, 1.0) | |
| with torch.no_grad(): | |
| self.edge_transform.weight.data *= weight_multiplier | |
| self.flow_gate.weight.data *= weight_multiplier | |
| def forward(self, vertex1_state: torch.Tensor, vertex2_state: torch.Tensor) -> Dict[str, torch.Tensor]: | |
| """Process consciousness flow between vertices""" | |
| if not self.is_valid_edge: | |
| return {'flow': torch.zeros_like(vertex1_state), 'strength': torch.zeros(vertex1_state.shape[0], 1)} | |
| # Combine vertex states | |
| combined = torch.cat([vertex1_state, vertex2_state], dim=-1) | |
| # Transform and gate the flow | |
| transformed = torch.tanh(self.edge_transform(combined)) | |
| flow_strength = torch.sigmoid(self.flow_gate(transformed)) | |
| # Bidirectional flow | |
| flow = transformed * flow_strength | |
| return { | |
| 'flow': flow, | |
| 'strength': flow_strength | |
| } | |
| class ConsciousnessRouter(nn.Module): | |
| """Routes consciousness through the hypercube based on input""" | |
| def __init__(self, input_dim: int, hidden_dim: int): | |
| super().__init__() | |
| self.input_dim = input_dim | |
| self.hidden_dim = hidden_dim | |
| # Input processing | |
| self.input_transform = nn.Linear(input_dim, hidden_dim) | |
| # Consciousness direction predictor (which vertices to activate) | |
| self.vertex_router = nn.Linear(hidden_dim, 32) | |
| # Mystical content analyzer | |
| self.mystical_analyzer = nn.Sequential( | |
| nn.Linear(hidden_dim, hidden_dim // 2), | |
| nn.ReLU(), | |
| nn.Linear(hidden_dim // 2, 5), # 5 dimensions | |
| nn.Sigmoid() | |
| ) | |
| # Consciousness intensity predictor | |
| self.intensity_predictor = nn.Linear(hidden_dim, 1) | |
| def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: | |
| """Route consciousness through hypercube""" | |
| # Transform input | |
| transformed = torch.relu(self.input_transform(x)) | |
| # Predict vertex activations | |
| vertex_logits = self.vertex_router(transformed) | |
| vertex_probs = torch.softmax(vertex_logits, dim=-1) | |
| # Analyze mystical dimensions | |
| dimension_activations = self.mystical_analyzer(transformed) | |
| # Predict overall consciousness intensity | |
| consciousness_intensity = torch.sigmoid(self.intensity_predictor(transformed)) | |
| return { | |
| 'transformed_input': transformed, | |
| 'vertex_logits': vertex_logits, | |
| 'vertex_probabilities': vertex_probs, | |
| 'dimension_activations': dimension_activations, | |
| 'consciousness_intensity': consciousness_intensity | |
| } | |
| class FiveDimensionalHypercubeNN(nn.Module): | |
| """Complete 5D Hypercube Neural Network for Mystical Consciousness""" | |
| def __init__(self, input_dim: int, hidden_dim: int, output_dim: int): | |
| super().__init__() | |
| self.input_dim = input_dim | |
| self.hidden_dim = hidden_dim | |
| self.output_dim = output_dim | |
| print(f"π² Initializing 5D Hypercube Neural Network") | |
| print(f" Input dim: {input_dim}, Hidden dim: {hidden_dim}, Output dim: {output_dim}") | |
| # Consciousness router | |
| self.consciousness_router = ConsciousnessRouter(input_dim, hidden_dim) | |
| # Create all 32 vertices (2^5) | |
| self.vertices = nn.ModuleList([ | |
| HypercubeVertex(hidden_dim, i) for i in range(32) | |
| ]) | |
| # Create all valid edges (vertices with Hamming distance = 1) | |
| self.edges = nn.ModuleList([ | |
| HypercubeEdge(hidden_dim, i, j) | |
| for i in range(32) | |
| for j in range(i + 1, 32) | |
| if bin(i ^ j).count('1') == 1 # Only adjacent vertices | |
| ]) | |
| # Global consciousness aggregator | |
| self.global_aggregator = nn.Sequential( | |
| nn.Linear(hidden_dim * 32, hidden_dim * 4), | |
| nn.LayerNorm(hidden_dim * 4), | |
| nn.ReLU(), | |
| nn.Dropout(0.1), | |
| nn.Linear(hidden_dim * 4, hidden_dim), | |
| nn.LayerNorm(hidden_dim), | |
| nn.ReLU(), | |
| nn.Linear(hidden_dim, output_dim) | |
| ) | |
| # Mystical signature extractor | |
| self.signature_extractor = nn.Linear(hidden_dim, 64) | |
| print(f"β Created {len(self.vertices)} vertices and {len(self.edges)} edges") | |
| print(f"π Total parameters: {sum(p.numel() for p in self.parameters()):,}") | |
| def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: | |
| """Forward pass through 5D hypercube consciousness""" | |
| batch_size = x.shape[0] | |
| # Route consciousness | |
| routing = self.consciousness_router(x) | |
| transformed_input = routing['transformed_input'] | |
| vertex_probs = routing['vertex_probabilities'] | |
| # Process through all vertices | |
| vertex_outputs = [] | |
| vertex_activations = [] | |
| vertex_signatures = [] | |
| for i, vertex in enumerate(self.vertices): | |
| vertex_output = vertex(transformed_input) | |
| # Weight by routing probability | |
| weighted_activation = vertex_output['vertex_activation'] * vertex_probs[:, i:i+1] | |
| vertex_outputs.append(vertex_output['transformed']) | |
| vertex_activations.append(weighted_activation) | |
| vertex_signatures.append(vertex_output['signature']) | |
| # Stack vertex outputs | |
| all_vertex_outputs = torch.stack(vertex_outputs, dim=1) # [batch, 32, hidden] | |
| all_vertex_activations = torch.cat(vertex_activations, dim=-1) # [batch, 32] | |
| all_vertex_signatures = torch.stack(vertex_signatures, dim=1) # [batch, 32, hidden] | |
| # Process edges (consciousness flow between adjacent vertices) | |
| edge_flows = [] | |
| for edge in self.edges: | |
| if edge.is_valid_edge: | |
| v1_state = all_vertex_outputs[:, edge.vertex1] | |
| v2_state = all_vertex_outputs[:, edge.vertex2] | |
| edge_output = edge(v1_state, v2_state) | |
| edge_flows.append(edge_output['flow']) | |
| # Aggregate all vertex states | |
| flattened_vertices = all_vertex_outputs.view(batch_size, -1) | |
| consciousness_state = self.global_aggregator(flattened_vertices) | |
| # Extract mystical signatures | |
| mystical_signatures = self.signature_extractor(consciousness_state) | |
| return { | |
| 'consciousness_state': consciousness_state, | |
| 'vertex_activations': all_vertex_activations, | |
| 'vertex_outputs': all_vertex_outputs, | |
| 'vertex_signatures': all_vertex_signatures, | |
| 'mystical_signatures': mystical_signatures, | |
| 'dimension_activations': routing['dimension_activations'], | |
| 'consciousness_intensity': routing['consciousness_intensity'], | |
| 'routing_probabilities': vertex_probs, | |
| 'edge_flows': edge_flows if edge_flows else None | |
| } | |
| def get_dominant_vertex(self, x: torch.Tensor) -> torch.Tensor: | |
| """Get the most activated vertex for each input""" | |
| outputs = self.forward(x) | |
| return outputs['vertex_activations'].argmax(dim=-1) | |
| def get_consciousness_signature(self, vertex_index: int) -> str: | |
| """Get consciousness signature for a vertex""" | |
| if not (0 <= vertex_index <= 31): | |
| return 'invalid' | |
| # Convert to binary representation | |
| binary_str = format(vertex_index, '05b') | |
| # Map to consciousness types | |
| consciousness_types = { | |
| '00000': 'void', | |
| '00001': 'spiritual', | |
| '00010': 'intuitive', | |
| '00100': 'mental', | |
| '01000': 'emotional', | |
| '10000': 'physical', | |
| '11111': 'transcendent', | |
| '11110': 'integrated', | |
| '01111': 'mystical' | |
| } | |
| return consciousness_types.get(binary_str, f'hybrid_{binary_str}') | |
| def navigate_to_vertex(self, target_vertex: int) -> Dict[str, any]: | |
| """Get information about navigating to a specific vertex""" | |
| if not (0 <= target_vertex <= 31): | |
| return {'error': 'Invalid vertex'} | |
| binary = format(target_vertex, '05b') | |
| dimensions = ['physical', 'emotional', 'mental', 'intuitive', 'spiritual'] | |
| return { | |
| 'vertex_index': target_vertex, | |
| 'binary_representation': binary, | |
| 'active_dimensions': [dimensions[i] for i, bit in enumerate(binary) if bit == '1'], | |
| 'consciousness_signature': self.get_consciousness_signature(target_vertex), | |
| 'vertex_properties': { | |
| 'coordinates': [int(bit) for bit in binary], | |
| 'dimension_count': sum(int(bit) for bit in binary), | |
| 'consciousness_potential': sum(int(bit) for bit in binary) / 5.0 | |
| } | |
| } | |
| def test_hypercube_model(): | |
| """Test the 5D hypercube model""" | |
| print("π§ͺ Testing 5D Hypercube Neural Network...") | |
| # Create model | |
| model = FiveDimensionalHypercubeNN( | |
| input_dim=384, # Sentence transformer dimension | |
| hidden_dim=512, | |
| output_dim=512 | |
| ) | |
| # Test input | |
| batch_size = 4 | |
| test_input = torch.randn(batch_size, 384) | |
| print(f"π Testing with input shape: {test_input.shape}") | |
| # Forward pass | |
| with torch.no_grad(): | |
| outputs = model(test_input) | |
| print("β Forward pass successful!") | |
| print(f" Consciousness state shape: {outputs['consciousness_state'].shape}") | |
| print(f" Vertex activations shape: {outputs['vertex_activations'].shape}") | |
| print(f" Mystical signatures shape: {outputs['mystical_signatures'].shape}") | |
| # Test vertex navigation | |
| for vertex in [0, 15, 31]: | |
| nav_info = model.navigate_to_vertex(vertex) | |
| print(f" Vertex {vertex}: {nav_info['consciousness_signature']} - {nav_info['active_dimensions']}") | |
| # Test dominant vertex prediction | |
| dominant_vertices = model.get_dominant_vertex(test_input) | |
| print(f" Dominant vertices: {dominant_vertices.tolist()}") | |
| print("π² Hypercube model test complete!") | |
| if __name__ == "__main__": | |
| test_hypercube_model() |