coach / vis.py
rlogh's picture
Upload 117 files
e931856 verified
import sys
import argparse
import cv2
from lib.preprocess import h36m_coco_format, revise_kpts
from lib.hrnet.gen_kpts import gen_video_kpts as hrnet_pose
import os
import numpy as np
import torch
import torch.nn as nn
import glob
from tqdm import tqdm
import copy
sys.path.append(os.getcwd())
from common.model_poseformer import PoseTransformerV2 as Model
from common.camera import *
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.gridspec as gridspec
plt.switch_backend('agg')
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
def show2Dpose(kps, img):
connections = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5],
[5, 6], [0, 7], [7, 8], [8, 9], [9, 10],
[8, 11], [11, 12], [12, 13], [8, 14], [14, 15], [15, 16]]
LR = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], dtype=bool)
lcolor = (255, 0, 0)
rcolor = (0, 0, 255)
thickness = 3
for j,c in enumerate(connections):
start = map(int, kps[c[0]])
end = map(int, kps[c[1]])
start = list(start)
end = list(end)
cv2.line(img, (start[0], start[1]), (end[0], end[1]), lcolor if LR[j] else rcolor, thickness)
cv2.circle(img, (start[0], start[1]), thickness=-1, color=(0, 255, 0), radius=3)
cv2.circle(img, (end[0], end[1]), thickness=-1, color=(0, 255, 0), radius=3)
return img
def show3Dpose(vals, ax):
ax.view_init(elev=15., azim=70)
lcolor=(0,0,1)
rcolor=(1,0,0)
I = np.array( [0, 0, 1, 4, 2, 5, 0, 7, 8, 8, 14, 15, 11, 12, 8, 9])
J = np.array( [1, 4, 2, 5, 3, 6, 7, 8, 14, 11, 15, 16, 12, 13, 9, 10])
LR = np.array([0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0], dtype=bool)
for i in np.arange( len(I) ):
x, y, z = [np.array( [vals[I[i], j], vals[J[i], j]] ) for j in range(3)]
ax.plot(x, y, z, lw=2, color = lcolor if LR[i] else rcolor)
RADIUS = 0.72
RADIUS_Z = 0.7
xroot, yroot, zroot = vals[0,0], vals[0,1], vals[0,2]
ax.set_xlim3d([-RADIUS+xroot, RADIUS+xroot])
ax.set_ylim3d([-RADIUS+yroot, RADIUS+yroot])
ax.set_zlim3d([-RADIUS_Z+zroot, RADIUS_Z+zroot])
ax.set_aspect('auto') # works fine in matplotlib==2.2.2
white = (1.0, 1.0, 1.0, 0.0)
ax.xaxis.set_pane_color(white)
ax.yaxis.set_pane_color(white)
ax.zaxis.set_pane_color(white)
ax.tick_params('x', labelbottom = False)
ax.tick_params('y', labelleft = False)
ax.tick_params('z', labelleft = False)
def get_pose2D(video_path, output_dir):
cap = cv2.VideoCapture(video_path)
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
print('\nGenerating 2D pose...')
keypoints, scores = hrnet_pose(video_path, det_dim=416, num_peroson=1, gen_output=True)
keypoints, scores, valid_frames = h36m_coco_format(keypoints, scores)
re_kpts = revise_kpts(keypoints, scores, valid_frames)
print('Generating 2D pose successful!')
output_dir += 'input_2D/'
os.makedirs(output_dir, exist_ok=True)
output_npz = output_dir + 'keypoints.npz'
np.savez_compressed(output_npz, reconstruction=keypoints)
def img2video(video_path, output_dir):
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS)) + 5
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
names = sorted(glob.glob(os.path.join(output_dir + 'pose/', '*.png')))
img = cv2.imread(names[0])
size = (img.shape[1], img.shape[0])
videoWrite = cv2.VideoWriter(output_dir + video_name + '.mp4', fourcc, fps, size)
for name in names:
img = cv2.imread(name)
videoWrite.write(img)
videoWrite.release()
def showimage(ax, img):
ax.set_xticks([])
ax.set_yticks([])
plt.axis('off')
ax.imshow(img)
def get_pose3D(video_path, output_dir):
args, _ = argparse.ArgumentParser().parse_known_args()
args.embed_dim_ratio, args.depth, args.frames = 32, 4, 243
args.number_of_kept_frames, args.number_of_kept_coeffs = 27, 27
args.pad = (args.frames - 1) // 2
args.previous_dir = 'checkpoint/'
args.n_joints, args.out_joints = 17, 17
## Reload
cuda_available = torch.cuda.is_available()
print(f"CUDA available in get_pose3D: {cuda_available}")
if cuda_available:
print(f"CUDA device count: {torch.cuda.device_count()}")
print(f"CUDA device name: {torch.cuda.get_device_name(0)}")
device = torch.device('cuda' if cuda_available else 'cpu')
print(f"Using device: {device}")
base_model = Model(args=args)
# Always use DataParallel when CUDA is available (checkpoint expects it)
if cuda_available:
model = nn.DataParallel(base_model).to(device)
else:
model = base_model.to(device)
model_dict = model.state_dict()
# Put the pretrained model of PoseFormerV2 in 'checkpoint/']
# model_path = sorted(glob.glob(os.path.join(args.previous_dir, '27_243_45.2.bin')))
# Support both local structure and HF Spaces structure
if os.path.exists("./demo/lib/checkpoint/27_243_45.2.bin"):
model_path = "./demo/lib/checkpoint/27_243_45.2.bin"
elif os.path.exists("./lib/checkpoint/27_243_45.2.bin"):
model_path = "./lib/checkpoint/27_243_45.2.bin"
else:
model_path = "./checkpoint/27_243_45.2.bin"
map_location = device
pre_dict = torch.load(model_path, map_location=map_location, weights_only=False)
# Handle DataParallel checkpoint mismatch
state_dict = pre_dict['model_pos']
from collections import OrderedDict
new_state_dict = OrderedDict()
# Check if we need to add or remove "module." prefix
checkpoint_has_module = any(k.startswith('module.') for k in state_dict.keys())
model_has_module = isinstance(model, nn.DataParallel)
if checkpoint_has_module and not model_has_module:
# Remove "module." prefix
for k, v in state_dict.items():
name = k[7:] if k.startswith('module.') else k
new_state_dict[name] = v
elif not checkpoint_has_module and model_has_module:
# Add "module." prefix
for k, v in state_dict.items():
name = 'module.' + k if not k.startswith('module.') else k
new_state_dict[name] = v
else:
# No change needed
new_state_dict = state_dict
model.load_state_dict(new_state_dict, strict=True)
model.eval()
## input
keypoints = np.load(output_dir + 'input_2D/keypoints.npz', allow_pickle=True)['reconstruction']
cap = cv2.VideoCapture(video_path)
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
## 3D
print('\nGenerating 3D pose...')
keypoints_3D = []
for i in tqdm(range(video_length)):
ret, img = cap.read()
if img is None:
continue
img_size = img.shape
## input frames
start = max(0, i - args.pad)
end = min(i + args.pad, len(keypoints[0])-1)
input_2D_no = keypoints[0][start:end+1]
left_pad, right_pad = 0, 0
if input_2D_no.shape[0] != args.frames:
if i < args.pad:
left_pad = args.pad - i
if i > len(keypoints[0]) - args.pad - 1:
right_pad = i + args.pad - (len(keypoints[0]) - 1)
input_2D_no = np.pad(input_2D_no, ((left_pad, right_pad), (0, 0), (0, 0)), 'edge')
joints_left = [4, 5, 6, 11, 12, 13]
joints_right = [1, 2, 3, 14, 15, 16]
# input_2D_no += np.random.normal(loc=0.0, scale=5, size=input_2D_no.shape)
input_2D = normalize_screen_coordinates(input_2D_no, w=img_size[1], h=img_size[0])
input_2D_aug = copy.deepcopy(input_2D)
input_2D_aug[ :, :, 0] *= -1
input_2D_aug[ :, joints_left + joints_right] = input_2D_aug[ :, joints_right + joints_left]
input_2D = np.concatenate((np.expand_dims(input_2D, axis=0), np.expand_dims(input_2D_aug, axis=0)), 0)
# (2, 243, 17, 2)
input_2D = input_2D[np.newaxis, :, :, :, :]
input_2D = torch.from_numpy(input_2D.astype('float32')).to(device)
N = input_2D.size(0)
## estimation
output_3D_non_flip = model(input_2D[:, 0])
output_3D_flip = model(input_2D[:, 1])
# [1, 1, 17, 3]
output_3D_flip[:, :, :, 0] *= -1
output_3D_flip[:, :, joints_left + joints_right, :] = output_3D_flip[:, :, joints_right + joints_left, :]
output_3D = (output_3D_non_flip + output_3D_flip) / 2
output_3D[:, :, 0, :] = 0
post_out = output_3D[0, 0].cpu().detach().numpy()
keypoints_3D.append(post_out)
# print(f'Output 3D shape: {output_3D.shape}, post_out shape: {post_out.shape}, output 3D sample: {output_3D[0]}, post out sample: {post_out}')
rot = [0.1407056450843811, -0.1500701755285263, -0.755240797996521, 0.6223280429840088]
rot = np.array(rot, dtype='float32')
post_out = camera_to_world(post_out, R=rot, t=0)
post_out[:, 2] -= np.min(post_out[:, 2])
input_2D_no = input_2D_no[args.pad]
## 2D
image = show2Dpose(input_2D_no, copy.deepcopy(img))
output_dir_2D = output_dir +'pose2D/'
os.makedirs(output_dir_2D, exist_ok=True)
cv2.imwrite(output_dir_2D + str(('%04d'% i)) + '_2D.png', image)
## 3D
fig = plt.figure(figsize=(9.6, 5.4))
gs = gridspec.GridSpec(1, 1)
gs.update(wspace=-0.00, hspace=0.05)
ax = plt.subplot(gs[0], projection='3d')
show3Dpose( post_out, ax)
output_dir_3D = output_dir +'pose3D/'
os.makedirs(output_dir_3D, exist_ok=True)
plt.savefig(output_dir_3D + str(('%04d'% i)) + '_3D.png', dpi=200, format='png', bbox_inches = 'tight')
plt.clf()
plt.close(fig)
output_npz = output_dir + 'keypoints_3D.npz'
np.savez_compressed(output_npz, reconstruction=keypoints_3D)
print('Generating 3D pose successful!')
## all
image_dir = 'results/'
image_2d_dir = sorted(glob.glob(os.path.join(output_dir_2D, '*.png')))
image_3d_dir = sorted(glob.glob(os.path.join(output_dir_3D, '*.png')))
print('\nGenerating demo...')
for i in tqdm(range(len(image_2d_dir))):
image_2d = plt.imread(image_2d_dir[i])
image_3d = plt.imread(image_3d_dir[i])
## crop
edge = (image_2d.shape[1] - image_2d.shape[0]) // 2
image_2d = image_2d[:, edge:image_2d.shape[1] - edge]
edge = 130
image_3d = image_3d[edge:image_3d.shape[0] - edge, edge:image_3d.shape[1] - edge]
## show
font_size = 12
fig = plt.figure(figsize=(15.0, 5.4))
ax = plt.subplot(121)
showimage(ax, image_2d)
ax.set_title("Input", fontsize = font_size)
ax = plt.subplot(122)
showimage(ax, image_3d)
ax.set_title("Reconstruction", fontsize = font_size)
## save
output_dir_pose = output_dir +'pose/'
os.makedirs(output_dir_pose, exist_ok=True)
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.savefig(output_dir_pose + str(('%04d'% i)) + '_pose.png', dpi=200, bbox_inches = 'tight')
plt.clf()
plt.close(fig)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--video', type=str, default='sample_video.mp4', help='input video')
parser.add_argument('--gpu', type=str, default='0', help='GPU device ID (set CUDA_VISIBLE_DEVICES before running if needed)')
args = parser.parse_args()
# Note: CUDA_VISIBLE_DEVICES must be set BEFORE importing torch
# Since torch is imported at the top, setting it here won't work
# Set it in your environment before running: $env:CUDA_VISIBLE_DEVICES="0" (PowerShell) or export CUDA_VISIBLE_DEVICES=0 (bash)
# Verify CUDA availability
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA device count: {torch.cuda.device_count()}")
print(f"Current device: {torch.cuda.current_device()}")
print(f"Device name: {torch.cuda.get_device_name(0)}")
if "CUDA_VISIBLE_DEVICES" in os.environ:
print(f"CUDA_VISIBLE_DEVICES={os.environ['CUDA_VISIBLE_DEVICES']}")
else:
print("WARNING: CUDA is not available!")
print("This might be because:")
print(" 1. CUDA_VISIBLE_DEVICES was set incorrectly")
print(" 2. PyTorch was installed without CUDA support")
print(" 3. GPU drivers are not installed")
print("\nTo use GPU, set CUDA_VISIBLE_DEVICES BEFORE running Python:")
print(" PowerShell: $env:CUDA_VISIBLE_DEVICES='0'")
print(" Bash: export CUDA_VISIBLE_DEVICES=0")
print("\nOr don't set it at all to use the default GPU")
video_path = './demo/video/' + args.video
video_name = video_path.split('/')[-1].split('.')[0]
output_dir = './demo/output/' + video_name + '/'
get_pose2D(video_path, output_dir)
get_pose3D(video_path, output_dir)
img2video(video_path, output_dir)
print('Generating demo successful!')