File size: 7,894 Bytes
1e0b125
bcc64df
1d738ce
 
 
885cdd2
1d738ce
e6fb42e
25048ee
bcc64df
79ecc0a
1d738ce
bcc64df
1d738ce
 
 
 
 
 
 
 
 
885cdd2
1d738ce
 
79ecc0a
1d738ce
 
79ecc0a
 
 
1d738ce
 
79ecc0a
 
1d738ce
885cdd2
25048ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ecc0a
1d738ce
 
 
79ecc0a
1d738ce
79ecc0a
 
1d738ce
 
 
79ecc0a
1d738ce
79ecc0a
1d738ce
 
79ecc0a
1d738ce
79ecc0a
 
 
 
1d738ce
79ecc0a
c813449
 
79ecc0a
c813449
 
 
 
 
 
885cdd2
c813449
a16b974
25048ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ecc0a
 
 
 
 
 
 
 
 
 
1d738ce
79ecc0a
885cdd2
e6fb42e
1d738ce
 
 
 
 
 
 
 
79ecc0a
1d738ce
79ecc0a
 
 
 
 
 
1d738ce
885cdd2
79ecc0a
 
 
1d738ce
79ecc0a
1d738ce
79ecc0a
 
 
885cdd2
79ecc0a
 
 
1d738ce
79ecc0a
1d738ce
79ecc0a
 
 
885cdd2
1d738ce
79ecc0a
25048ee
 
 
 
 
885cdd2
1d738ce
25048ee
 
 
 
 
 
 
4be3951
885cdd2
79ecc0a
25048ee
 
 
0e8175e
12cb601
 
 
 
 
7575966
ce56720
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import gradio as gr
import time
import threading
import random
from datetime import datetime
from datasets import load_dataset
import pandas as pd
import spaces
import io

# Global state
class TrainingState:
    def __init__(self):
        self.status = "idle"
        self.progress = 0
        self.logs = ["✅ System initialized"]
        self.start_time = None
        self.model_name = "tasal9/pashto-base-bloom"
        self.active_process = None
        self.dataset_loaded = False
        self.dataset_info = "No dataset loaded"
        self.dataset_sample = pd.DataFrame()

    def load_dataset(self):
        try:
            self.logs.append("⏳ Loading dataset: tasal9/ZamAi-Pashto-Datasets-V2")
            dataset = load_dataset("tasal9/ZamAi-Pashto-Datasets-V2")
            self.dataset_loaded = True
            self.dataset_info = f"✅ Dataset loaded!\nName: ZamAi-Pashto-Datasets-V2\nSize: {len(dataset['train'])} examples"
            self.dataset_sample = pd.DataFrame(dataset['train'].select(range(5)))
            self.logs.append(f"📊 {len(dataset['train'])} Pashto examples loaded")
            return True
        except Exception as e:
            self.logs.append(f"❌ Error loading dataset: {str(e)}")
            self.dataset_info = f"Error: {str(e)}"
            return False

    def load_local_file(self, file):
        try:
            ext = file.name.split('.')[-1]
            if ext == "csv":
                df = pd.read_csv(file.name)
            elif ext == "json":
                df = pd.read_json(file.name)
            elif ext == "txt":
                df = pd.DataFrame({"text": open(file.name).read().splitlines()})
            else:
                raise ValueError("Unsupported file format")
            self.dataset_sample = df.head(5)
            self.dataset_info = f"✅ Local file loaded: {file.name}"
            self.dataset_loaded = True
            self.logs.append(f"📁 Local dataset loaded: {file.name}")
            return True
        except Exception as e:
            self.dataset_info = f"❌ Error loading file: {str(e)}"
            self.logs.append(self.dataset_info)
            return False

    def start_training(self, size):
        self.status = "training"
        self.progress = 0
        self.logs = [f"🏋️ Training started at {datetime.now().strftime('%H:%M:%S')}"]
        self.logs.append(f"📝 Data size: {size} characters")
        self.start_time = time.time()

    def start_finetuning(self, size):
        self.status = "fine-tuning"
        self.progress = 0
        self.logs = [f"🎯 Fine-tuning started at {datetime.now().strftime('%H:%M:%S')}"]
        self.logs.append(f"📝 Data size: {size} characters")
        self.start_time = time.time()

    def update_progress(self, progress):
        self.progress = min(100, max(0, progress))
        if progress >= 100:
            self.complete_process()

    def add_log(self, msg):
        self.logs.append(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}")
        if len(self.logs) > 15:
            self.logs.pop(0)

    def get_status(self):
        return self.status

    @spaces.GPU
    def complete_process(self):
        elapsed = time.time() - self.start_time
        self.add_log(f"🏁 {self.status.capitalize()} completed in {elapsed:.1f}s")
        self.status = "idle"
        self.progress = 100

state = TrainingState()

translations = {
    "English": {
        "title": "🌸 Pashto-Base-Bloom Trainer",
        "load_dataset": "Load Dataset",
        "upload_file": "Upload Local File",
        "status": "Status",
        "preview": "Sample Preview",
        "test_input": "Input",
        "test_output": "Output",
        "test": "Test",
        "train_data": "Training Data",
        "train": "Start Training",
        "finetune_data": "Fine-tuning Data",
        "finetune": "Start Fine-tuning",
        "current_status": "Current Status",
        "progress": "Progress",
        "logs": "Logs",
        "refresh": "🔄 Refresh",
        "export_logs": "📥 Export Logs",
        "language": "Language"
    },
    "پښتو": {
        "title": "🌸 پښتو-بیس-بلوم روزونکی",
        "load_dataset": "ډیټاسټ لوډ کړئ",
        "upload_file": "محلي فایل اپلوډ کړئ",
        "status": "حالت",
        "preview": "نمونه ښودنه",
        "test_input": "ورودی",
        "test_output": "وتی",
        "test": "ازموینه",
        "train_data": "د روزنې معلومات",
        "train": "روزنه پیل کړئ",
        "finetune_data": "د فاین ټیون معلومات",
        "finetune": "فاین ټیون پیل کړئ",
        "current_status": "اوسنی حالت",
        "progress": "پرمختګ",
        "logs": "لاګونه",
        "refresh": "🔄 تازه کړئ",
        "export_logs": "📥 لاګونه ډاونلوډ کړئ",
        "language": "ژبه"
    }
}

def test_model(text):
    if not text.strip():
        return "❗ Enter text to test."
    options = [
        f"Processed: '{text}'",
        f"Model response to: {text}",
        f"Pashto analysis: {len(text)} characters",
        f"✅ Got it: {text}",
        f"Generated: {text}... [simulated]",
        f"🔍 Words: {len(text.split())}"
    ]
    return random.choice(options)

@spaces.GPU
def simulate_process(duration, process_type, data_size):
    if process_type == "train":
        state.start_training(data_size)
    else:
        state.start_finetuning(data_size)
    steps = 10
    for i in range(steps + 1):
        time.sleep(duration / steps)
        state.update_progress(int((i / steps) * 100))
        if i % 3 == 0:
            state.add_log(random.choice([
                f"Batch {i}/{steps}",
                f"Loss: {random.uniform(0.1, 1.0):.3f}",
                f"LR: {random.uniform(1e-5, 1e-3):.6f}",
                f"GPU: {random.randint(60, 95)}% (sim)",
            ]))
    state.complete_process()

def train_model(text):
    if not text.strip():
        return "❌ Add training data.", ""
    if not state.dataset_loaded:
        return "❌ Load dataset first.", ""
    if state.status != "idle":
        return "⏳ Wait for current process.", ""
    threading.Thread(target=simulate_process, args=(15, "train", len(text)), daemon=True).start()
    return "✅ Training started", ""

def finetune_model(text):
    if not text.strip():
        return "❌ Add fine-tuning data.", ""
    if not state.dataset_loaded:
        return "❌ Load dataset first.", ""
    if state.status != "idle":
        return "⏳ Wait for current process.", ""
    threading.Thread(target=simulate_process, args=(10, "fine-tune", len(text)), daemon=True).start()
    return "✅ Fine-tuning started", ""

def load_hf_dataset():
    ok = state.load_dataset()
    return state.dataset_info, state.dataset_sample if ok else pd.DataFrame()

def load_local_dataset(file):
    ok = state.load_local_file(file)
    return state.dataset_info, state.dataset_sample if ok else pd.DataFrame()

def get_current_status():
    return state.get_status(), state.progress / 100, "\n".join(state.logs)

def export_logs():
    df = pd.DataFrame({"Logs": state.logs})
    buffer = io.StringIO()
    df.to_csv(buffer, index=False)
    buffer.seek(0)
    return buffer.getvalue()

with gr.Blocks(title="Pashto Base Bloom Trainer", theme="soft") as demo:
    lang_selector = gr.Dropdown(choices=["English", "پښتو"], value="English", label="Language")
    labels = translations["English"]

    gr.Markdown(f"# {labels['title']}")

    with gr.Tab(labels["load_dataset"]):
        gr.Markdown(f"### {labels['load_dataset']}")
        with gr.Row():
            dataset_btn = gr.Button(labels["load_dataset"])
            dataset_status = gr.Textbox(label=labels["status"], lines=2, interactive=False)

if __name__ == "__main__":
    demo.launch()