Spaces:
Sleeping
Sleeping
File size: 7,894 Bytes
1e0b125 bcc64df 1d738ce 885cdd2 1d738ce e6fb42e 25048ee bcc64df 79ecc0a 1d738ce bcc64df 1d738ce 885cdd2 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 885cdd2 25048ee 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a c813449 79ecc0a c813449 885cdd2 c813449 a16b974 25048ee 79ecc0a 1d738ce 79ecc0a 885cdd2 e6fb42e 1d738ce 79ecc0a 1d738ce 79ecc0a 1d738ce 885cdd2 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 885cdd2 79ecc0a 1d738ce 79ecc0a 1d738ce 79ecc0a 885cdd2 1d738ce 79ecc0a 25048ee 885cdd2 1d738ce 25048ee 4be3951 885cdd2 79ecc0a 25048ee 0e8175e 12cb601 7575966 ce56720 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
import time
import threading
import random
from datetime import datetime
from datasets import load_dataset
import pandas as pd
import spaces
import io
# Global state
class TrainingState:
def __init__(self):
self.status = "idle"
self.progress = 0
self.logs = ["✅ System initialized"]
self.start_time = None
self.model_name = "tasal9/pashto-base-bloom"
self.active_process = None
self.dataset_loaded = False
self.dataset_info = "No dataset loaded"
self.dataset_sample = pd.DataFrame()
def load_dataset(self):
try:
self.logs.append("⏳ Loading dataset: tasal9/ZamAi-Pashto-Datasets-V2")
dataset = load_dataset("tasal9/ZamAi-Pashto-Datasets-V2")
self.dataset_loaded = True
self.dataset_info = f"✅ Dataset loaded!\nName: ZamAi-Pashto-Datasets-V2\nSize: {len(dataset['train'])} examples"
self.dataset_sample = pd.DataFrame(dataset['train'].select(range(5)))
self.logs.append(f"📊 {len(dataset['train'])} Pashto examples loaded")
return True
except Exception as e:
self.logs.append(f"❌ Error loading dataset: {str(e)}")
self.dataset_info = f"Error: {str(e)}"
return False
def load_local_file(self, file):
try:
ext = file.name.split('.')[-1]
if ext == "csv":
df = pd.read_csv(file.name)
elif ext == "json":
df = pd.read_json(file.name)
elif ext == "txt":
df = pd.DataFrame({"text": open(file.name).read().splitlines()})
else:
raise ValueError("Unsupported file format")
self.dataset_sample = df.head(5)
self.dataset_info = f"✅ Local file loaded: {file.name}"
self.dataset_loaded = True
self.logs.append(f"📁 Local dataset loaded: {file.name}")
return True
except Exception as e:
self.dataset_info = f"❌ Error loading file: {str(e)}"
self.logs.append(self.dataset_info)
return False
def start_training(self, size):
self.status = "training"
self.progress = 0
self.logs = [f"🏋️ Training started at {datetime.now().strftime('%H:%M:%S')}"]
self.logs.append(f"📝 Data size: {size} characters")
self.start_time = time.time()
def start_finetuning(self, size):
self.status = "fine-tuning"
self.progress = 0
self.logs = [f"🎯 Fine-tuning started at {datetime.now().strftime('%H:%M:%S')}"]
self.logs.append(f"📝 Data size: {size} characters")
self.start_time = time.time()
def update_progress(self, progress):
self.progress = min(100, max(0, progress))
if progress >= 100:
self.complete_process()
def add_log(self, msg):
self.logs.append(f"[{datetime.now().strftime('%H:%M:%S')}] {msg}")
if len(self.logs) > 15:
self.logs.pop(0)
def get_status(self):
return self.status
@spaces.GPU
def complete_process(self):
elapsed = time.time() - self.start_time
self.add_log(f"🏁 {self.status.capitalize()} completed in {elapsed:.1f}s")
self.status = "idle"
self.progress = 100
state = TrainingState()
translations = {
"English": {
"title": "🌸 Pashto-Base-Bloom Trainer",
"load_dataset": "Load Dataset",
"upload_file": "Upload Local File",
"status": "Status",
"preview": "Sample Preview",
"test_input": "Input",
"test_output": "Output",
"test": "Test",
"train_data": "Training Data",
"train": "Start Training",
"finetune_data": "Fine-tuning Data",
"finetune": "Start Fine-tuning",
"current_status": "Current Status",
"progress": "Progress",
"logs": "Logs",
"refresh": "🔄 Refresh",
"export_logs": "📥 Export Logs",
"language": "Language"
},
"پښتو": {
"title": "🌸 پښتو-بیس-بلوم روزونکی",
"load_dataset": "ډیټاسټ لوډ کړئ",
"upload_file": "محلي فایل اپلوډ کړئ",
"status": "حالت",
"preview": "نمونه ښودنه",
"test_input": "ورودی",
"test_output": "وتی",
"test": "ازموینه",
"train_data": "د روزنې معلومات",
"train": "روزنه پیل کړئ",
"finetune_data": "د فاین ټیون معلومات",
"finetune": "فاین ټیون پیل کړئ",
"current_status": "اوسنی حالت",
"progress": "پرمختګ",
"logs": "لاګونه",
"refresh": "🔄 تازه کړئ",
"export_logs": "📥 لاګونه ډاونلوډ کړئ",
"language": "ژبه"
}
}
def test_model(text):
if not text.strip():
return "❗ Enter text to test."
options = [
f"Processed: '{text}'",
f"Model response to: {text}",
f"Pashto analysis: {len(text)} characters",
f"✅ Got it: {text}",
f"Generated: {text}... [simulated]",
f"🔍 Words: {len(text.split())}"
]
return random.choice(options)
@spaces.GPU
def simulate_process(duration, process_type, data_size):
if process_type == "train":
state.start_training(data_size)
else:
state.start_finetuning(data_size)
steps = 10
for i in range(steps + 1):
time.sleep(duration / steps)
state.update_progress(int((i / steps) * 100))
if i % 3 == 0:
state.add_log(random.choice([
f"Batch {i}/{steps}",
f"Loss: {random.uniform(0.1, 1.0):.3f}",
f"LR: {random.uniform(1e-5, 1e-3):.6f}",
f"GPU: {random.randint(60, 95)}% (sim)",
]))
state.complete_process()
def train_model(text):
if not text.strip():
return "❌ Add training data.", ""
if not state.dataset_loaded:
return "❌ Load dataset first.", ""
if state.status != "idle":
return "⏳ Wait for current process.", ""
threading.Thread(target=simulate_process, args=(15, "train", len(text)), daemon=True).start()
return "✅ Training started", ""
def finetune_model(text):
if not text.strip():
return "❌ Add fine-tuning data.", ""
if not state.dataset_loaded:
return "❌ Load dataset first.", ""
if state.status != "idle":
return "⏳ Wait for current process.", ""
threading.Thread(target=simulate_process, args=(10, "fine-tune", len(text)), daemon=True).start()
return "✅ Fine-tuning started", ""
def load_hf_dataset():
ok = state.load_dataset()
return state.dataset_info, state.dataset_sample if ok else pd.DataFrame()
def load_local_dataset(file):
ok = state.load_local_file(file)
return state.dataset_info, state.dataset_sample if ok else pd.DataFrame()
def get_current_status():
return state.get_status(), state.progress / 100, "\n".join(state.logs)
def export_logs():
df = pd.DataFrame({"Logs": state.logs})
buffer = io.StringIO()
df.to_csv(buffer, index=False)
buffer.seek(0)
return buffer.getvalue()
with gr.Blocks(title="Pashto Base Bloom Trainer", theme="soft") as demo:
lang_selector = gr.Dropdown(choices=["English", "پښتو"], value="English", label="Language")
labels = translations["English"]
gr.Markdown(f"# {labels['title']}")
with gr.Tab(labels["load_dataset"]):
gr.Markdown(f"### {labels['load_dataset']}")
with gr.Row():
dataset_btn = gr.Button(labels["load_dataset"])
dataset_status = gr.Textbox(label=labels["status"], lines=2, interactive=False)
if __name__ == "__main__":
demo.launch()
|