SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
This is a sentence-transformers model finetuned from nreimers/TinyBERT_L-4_H-312_v2 on the sentence-transformers/wikipedia-en-sentences dataset. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nreimers/TinyBERT_L-4_H-312_v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 312 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2")
# Run inference
sentences = [
'A person standing',
'There is a person standing outside',
'A young man plays a racing video game.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8078 |
| spearman_cosine | 0.8209 |
| pearson_manhattan | 0.8226 |
| spearman_manhattan | 0.8203 |
| pearson_euclidean | 0.8216 |
| spearman_euclidean | 0.8202 |
| pearson_dot | 0.7901 |
| spearman_dot | 0.7914 |
| pearson_max | 0.8226 |
| spearman_max | 0.8209 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
| Metric | Value |
|---|---|
| negative_mse | -50.1254 |
Semantic Similarity
- Dataset:
sts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.7517 |
| spearman_cosine | 0.7558 |
| pearson_manhattan | 0.7763 |
| spearman_manhattan | 0.7597 |
| pearson_euclidean | 0.7706 |
| spearman_euclidean | 0.7554 |
| pearson_dot | 0.7307 |
| spearman_dot | 0.7098 |
| pearson_max | 0.7763 |
| spearman_max | 0.7597 |
Training Details
Training Dataset
sentence-transformers/wikipedia-en-sentences
- Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
- Size: 200,000 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 4 tokens
- mean: 12.24 tokens
- max: 52 tokens
- size: 312 elements
- Samples:
sentence label A person on a horse jumps over a broken down airplane.[-0.09614687412977219, 0.6815224885940552, 2.702199935913086, 1.8371250629425049, -1.2949433326721191, ...]Children smiling and waving at camera[2.769360303878784, 3.074428081512451, -7.291755676269531, 5.248741149902344, 2.85081148147583, ...]A boy is jumping on skateboard in the middle of a red bridge.[-3.0669667720794678, 2.9899890422821045, -1.253997802734375, 6.15218448638916, 0.5838223099708557, ...] - Loss:
MSELoss
Evaluation Dataset
sentence-transformers/wikipedia-en-sentences
- Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
- Size: 10,000 evaluation samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 13.23 tokens
- max: 57 tokens
- size: 312 elements
- Samples:
sentence label Two women are embracing while holding to go packages.[6.200135707855225, -2.0865142345428467, -2.1313390731811523, -1.9593913555145264, -1.081985592842102, ...]Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.[1.7725015878677368, 0.6873414516448975, -2.5191268920898438, 3.866339683532715, 2.853647470474243, ...]A man selling donuts to a customer during a world exhibition event held in the city of Angeles[-3.317653179168701, 3.0908589363098145, 0.1683920919895172, -2.4405274391174316, -3.1366524696350098, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 0.0001num_train_epochs: 1warmup_ratio: 0.1fp16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Falseper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 0.0001weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Nonedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|---|
| 0.032 | 100 | 0.8847 | - | - | - | - |
| 0.064 | 200 | 0.8136 | - | - | - | - |
| 0.096 | 300 | 0.697 | - | - | - | - |
| 0.128 | 400 | 0.6128 | - | - | - | - |
| 0.16 | 500 | 0.5634 | 0.6324 | -63.2356 | 0.7564 | - |
| 0.192 | 600 | 0.5294 | - | - | - | - |
| 0.224 | 700 | 0.5035 | - | - | - | - |
| 0.256 | 800 | 0.4861 | - | - | - | - |
| 0.288 | 900 | 0.4668 | - | - | - | - |
| 0.32 | 1000 | 0.4515 | 0.5673 | -56.7263 | 0.7965 | - |
| 0.352 | 1100 | 0.4376 | - | - | - | - |
| 0.384 | 1200 | 0.4274 | - | - | - | - |
| 0.416 | 1300 | 0.4178 | - | - | - | - |
| 0.448 | 1400 | 0.4098 | - | - | - | - |
| 0.48 | 1500 | 0.4053 | 0.5354 | -53.5381 | 0.8091 | - |
| 0.512 | 1600 | 0.3934 | - | - | - | - |
| 0.544 | 1700 | 0.391 | - | - | - | - |
| 0.576 | 1800 | 0.3848 | - | - | - | - |
| 0.608 | 1900 | 0.3785 | - | - | - | - |
| 0.64 | 2000 | 0.3737 | 0.5168 | -51.6829 | 0.8159 | - |
| 0.672 | 2100 | 0.3716 | - | - | - | - |
| 0.704 | 2200 | 0.3695 | - | - | - | - |
| 0.736 | 2300 | 0.3666 | - | - | - | - |
| 0.768 | 2400 | 0.3616 | - | - | - | - |
| 0.8 | 2500 | 0.358 | 0.5067 | -50.6687 | 0.8189 | - |
| 0.832 | 2600 | 0.3551 | - | - | - | - |
| 0.864 | 2700 | 0.3544 | - | - | - | - |
| 0.896 | 2800 | 0.3524 | - | - | - | - |
| 0.928 | 2900 | 0.3524 | - | - | - | - |
| 0.96 | 3000 | 0.3529 | 0.5013 | -50.1254 | 0.8209 | - |
| 0.992 | 3100 | 0.3496 | - | - | - | - |
| 1.0 | 3125 | - | - | - | - | 0.7558 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.009 kWh
- Carbon Emitted: 0.003 kg of CO2
- Hours Used: 0.054 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 5
Model tree for tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2
Base model
nreimers/TinyBERT_L-4_H-312_v2Evaluation results
- Pearson Cosine on sts devself-reported0.808
- Spearman Cosine on sts devself-reported0.821
- Pearson Manhattan on sts devself-reported0.823
- Spearman Manhattan on sts devself-reported0.820
- Pearson Euclidean on sts devself-reported0.822
- Spearman Euclidean on sts devself-reported0.820
- Pearson Dot on sts devself-reported0.790
- Spearman Dot on sts devself-reported0.791
- Pearson Max on sts devself-reported0.823
- Spearman Max on sts devself-reported0.821