CrossEncoder based on jhu-clsp/ettin-encoder-32m
This is a Cross Encoder model finetuned from jhu-clsp/ettin-encoder-32m on the msmarco dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: jhu-clsp/ettin-encoder-32m
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Training Dataset:
- Language: en
Model Sources
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
model = CrossEncoder("tomaarsen/ms-marco-ettin-32m-reranker")
pairs = [
['what is honor society', 'In the United States, an honor society is a rank organization that recognizes excellence among peers. Numerous societies recognize various fields and circumstances. The Order of the Arrow, for example, is the national honor society of the Boy Scouts of America.'],
['what happens to blood pressure when you raise your arm', 'Well, you measured blood pressure in that arm would drop because while the pressure that your heart puts out will stay pretty constant, your arm is now higher and requires more energy to reach the end, so the pressure seen there will be lower. The Doc · 7 years ago.'],
['what country is the name astrid from', 'Comment by silkfire. Astrid, Estrid, Ã\x86striðr æstriðr Ã\x81strÃ\xadðr astriðr ástrÃ\xadðr is a given Name Of north. Germanic origin it Comes From Ã\x81sfrÃ\xadðr (Norse Asfriðr), ásfrÃ\xadðr divine (beauty) + from (ass). áss god friðr FrÃ\xadðr beautiful names derived From, astrid include the name astrida which is a somewhat common name for Girls. in the country of latviat comes from Old Norse Ã\x81sfrÃ\xadðr (ásfrÃ\xadðr Divine), beauty from (ass) + áss (god). Friðr frÃ\xadðr beautiful Names derived from astrid Include, the name astrida which is a somewhat common name for girls in The. country of latvia'],
['where the latin people came from', 'Latina is a city in Italy and the Latin people come from southern Italy around Rome.'],
['how long do cocker spaniels', "the cocker spaniel's life span is 12-15 years. a dog that is kept fit and on nutritious dog food has a better chance of living longer than those who aren't. I would assume roughly 10-15 years. My cocker spaniel is 13.5 years old and just starting to lose her health."],
]
scores = model.predict(pairs)
print(scores.shape)
ranks = model.rank(
'what is honor society',
[
'In the United States, an honor society is a rank organization that recognizes excellence among peers. Numerous societies recognize various fields and circumstances. The Order of the Arrow, for example, is the national honor society of the Boy Scouts of America.',
'Well, you measured blood pressure in that arm would drop because while the pressure that your heart puts out will stay pretty constant, your arm is now higher and requires more energy to reach the end, so the pressure seen there will be lower. The Doc · 7 years ago.',
'Comment by silkfire. Astrid, Estrid, Ã\x86striðr æstriðr Ã\x81strÃ\xadðr astriðr ástrÃ\xadðr is a given Name Of north. Germanic origin it Comes From Ã\x81sfrÃ\xadðr (Norse Asfriðr), ásfrÃ\xadðr divine (beauty) + from (ass). áss god friðr FrÃ\xadðr beautiful names derived From, astrid include the name astrida which is a somewhat common name for Girls. in the country of latviat comes from Old Norse Ã\x81sfrÃ\xadðr (ásfrÃ\xadðr Divine), beauty from (ass) + áss (god). Friðr frÃ\xadðr beautiful Names derived from astrid Include, the name astrida which is a somewhat common name for girls in The. country of latvia',
'Latina is a city in Italy and the Latin people come from southern Italy around Rome.',
"the cocker spaniel's life span is 12-15 years. a dog that is kept fit and on nutritious dog food has a better chance of living longer than those who aren't. I would assume roughly 10-15 years. My cocker spaniel is 13.5 years old and just starting to lose her health.",
]
)
Evaluation
Metrics
Cross Encoder Reranking
| Metric |
NanoMSMARCO_R100 |
NanoNFCorpus_R100 |
NanoNQ_R100 |
| map |
0.6380 (+0.1484) |
0.3547 (+0.0937) |
0.6748 (+0.2552) |
| mrr@10 |
0.6319 (+0.1544) |
0.6102 (+0.1104) |
0.6919 (+0.2652) |
| ndcg@10 |
0.6951 (+0.1547) |
0.4138 (+0.0888) |
0.7294 (+0.2287) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean
- Evaluated with
CrossEncoderNanoBEIREvaluator with these parameters:{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
| Metric |
Value |
| map |
0.5558 (+0.1658) |
| mrr@10 |
0.6446 (+0.1766) |
| ndcg@10 |
0.6128 (+0.1574) |
Training Details
Training Dataset
msmarco
Evaluation Dataset
msmarco
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 256
per_device_eval_batch_size: 256
learning_rate: 2e-05
num_train_epochs: 1
warmup_ratio: 0.1
seed: 12
bf16: True
load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 256
per_device_eval_batch_size: 256
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 12
data_seed: None
jit_mode_eval: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
project: huggingface
trackio_space_id: trackio
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: no
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: True
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
Validation Loss |
NanoMSMARCO_R100_ndcg@10 |
NanoNFCorpus_R100_ndcg@10 |
NanoNQ_R100_ndcg@10 |
NanoBEIR_R100_mean_ndcg@10 |
| -1 |
-1 |
- |
- |
0.0694 (-0.4711) |
0.2964 (-0.0286) |
0.0281 (-0.4725) |
0.1313 (-0.3241) |
| 0.0001 |
1 |
209.9035 |
- |
- |
- |
- |
- |
| 0.0020 |
39 |
207.8315 |
- |
- |
- |
- |
- |
| 0.0040 |
78 |
204.3864 |
- |
- |
- |
- |
- |
| 0.0060 |
117 |
197.3435 |
- |
- |
- |
- |
- |
| 0.0080 |
156 |
188.2296 |
- |
- |
- |
- |
- |
| 0.0100 |
195 |
176.2927 |
169.8326 |
0.1222 (-0.4182) |
0.2790 (-0.0460) |
0.0840 (-0.4166) |
0.1618 (-0.2936) |
| 0.0121 |
234 |
161.1845 |
- |
- |
- |
- |
- |
| 0.0141 |
273 |
145.5738 |
- |
- |
- |
- |
- |
| 0.0161 |
312 |
122.6948 |
- |
- |
- |
- |
- |
| 0.0181 |
351 |
81.3822 |
- |
- |
- |
- |
- |
| 0.0201 |
390 |
43.1117 |
35.8988 |
0.5569 (+0.0164) |
0.3702 (+0.0452) |
0.4567 (-0.0439) |
0.4613 (+0.0059) |
| 0.0221 |
429 |
32.5851 |
- |
- |
- |
- |
- |
| 0.0241 |
468 |
27.7726 |
- |
- |
- |
- |
- |
| 0.0261 |
507 |
24.6193 |
- |
- |
- |
- |
- |
| 0.0281 |
546 |
22.2331 |
- |
- |
- |
- |
- |
| 0.0301 |
585 |
20.8158 |
19.3642 |
0.6007 (+0.0603) |
0.3694 (+0.0444) |
0.5467 (+0.0460) |
0.5056 (+0.0502) |
| 0.0321 |
624 |
19.5039 |
- |
- |
- |
- |
- |
| 0.0341 |
663 |
18.151 |
- |
- |
- |
- |
- |
| 0.0362 |
702 |
17.1317 |
- |
- |
- |
- |
- |
| 0.0382 |
741 |
16.6977 |
- |
- |
- |
- |
- |
| 0.0402 |
780 |
15.6749 |
15.1013 |
0.6167 (+0.0763) |
0.3794 (+0.0544) |
0.5682 (+0.0675) |
0.5214 (+0.0661) |
| 0.0422 |
819 |
15.2219 |
- |
- |
- |
- |
- |
| 0.0442 |
858 |
14.7046 |
- |
- |
- |
- |
- |
| 0.0462 |
897 |
14.1086 |
- |
- |
- |
- |
- |
| 0.0482 |
936 |
13.5811 |
- |
- |
- |
- |
- |
| 0.0502 |
975 |
13.2202 |
12.5601 |
0.6616 (+0.1212) |
0.3763 (+0.0513) |
0.5839 (+0.0833) |
0.5406 (+0.0852) |
| 0.0522 |
1014 |
12.7417 |
- |
- |
- |
- |
- |
| 0.0542 |
1053 |
12.4341 |
- |
- |
- |
- |
- |
| 0.0562 |
1092 |
12.1748 |
- |
- |
- |
- |
- |
| 0.0582 |
1131 |
11.8355 |
- |
- |
- |
- |
- |
| 0.0603 |
1170 |
11.3288 |
11.0595 |
0.6582 (+0.1178) |
0.3847 (+0.0596) |
0.6125 (+0.1118) |
0.5518 (+0.0964) |
| 0.0623 |
1209 |
11.2907 |
- |
- |
- |
- |
- |
| 0.0643 |
1248 |
10.9028 |
- |
- |
- |
- |
- |
| 0.0663 |
1287 |
10.627 |
- |
- |
- |
- |
- |
| 0.0683 |
1326 |
10.4322 |
- |
- |
- |
- |
- |
| 0.0703 |
1365 |
10.0831 |
9.7591 |
0.6565 (+0.1161) |
0.3910 (+0.0659) |
0.6118 (+0.1111) |
0.5531 (+0.0977) |
| 0.0723 |
1404 |
10.0484 |
- |
- |
- |
- |
- |
| 0.0743 |
1443 |
9.7691 |
- |
- |
- |
- |
- |
| 0.0763 |
1482 |
9.5597 |
- |
- |
- |
- |
- |
| 0.0783 |
1521 |
9.47 |
- |
- |
- |
- |
- |
| 0.0803 |
1560 |
9.2528 |
8.9910 |
0.6667 (+0.1263) |
0.3815 (+0.0564) |
0.6247 (+0.1240) |
0.5576 (+0.1023) |
| 0.0823 |
1599 |
9.1445 |
- |
- |
- |
- |
- |
| 0.0844 |
1638 |
9.0069 |
- |
- |
- |
- |
- |
| 0.0864 |
1677 |
8.6523 |
- |
- |
- |
- |
- |
| 0.0884 |
1716 |
8.5901 |
- |
- |
- |
- |
- |
| 0.0904 |
1755 |
8.715 |
8.3166 |
0.6402 (+0.0997) |
0.3853 (+0.0603) |
0.6448 (+0.1442) |
0.5568 (+0.1014) |
| 0.0924 |
1794 |
8.457 |
- |
- |
- |
- |
- |
| 0.0944 |
1833 |
8.3209 |
- |
- |
- |
- |
- |
| 0.0964 |
1872 |
8.1242 |
- |
- |
- |
- |
- |
| 0.0984 |
1911 |
8.1453 |
- |
- |
- |
- |
- |
| 0.1004 |
1950 |
8.0561 |
7.6634 |
0.6806 (+0.1401) |
0.3843 (+0.0592) |
0.6495 (+0.1489) |
0.5715 (+0.1161) |
| 0.1024 |
1989 |
7.855 |
- |
- |
- |
- |
- |
| 0.1044 |
2028 |
7.7573 |
- |
- |
- |
- |
- |
| 0.1064 |
2067 |
7.5976 |
- |
- |
- |
- |
- |
| 0.1085 |
2106 |
7.4529 |
- |
- |
- |
- |
- |
| 0.1105 |
2145 |
7.372 |
7.0798 |
0.6667 (+0.1263) |
0.3952 (+0.0702) |
0.6386 (+0.1379) |
0.5668 (+0.1115) |
| 0.1125 |
2184 |
7.1673 |
- |
- |
- |
- |
- |
| 0.1145 |
2223 |
7.2075 |
- |
- |
- |
- |
- |
| 0.1165 |
2262 |
7.1261 |
- |
- |
- |
- |
- |
| 0.1185 |
2301 |
7.0716 |
- |
- |
- |
- |
- |
| 0.1205 |
2340 |
7.0182 |
6.7560 |
0.6557 (+0.1153) |
0.3876 (+0.0626) |
0.6544 (+0.1537) |
0.5659 (+0.1105) |
| 0.1225 |
2379 |
6.861 |
- |
- |
- |
- |
- |
| 0.1245 |
2418 |
6.8366 |
- |
- |
- |
- |
- |
| 0.1265 |
2457 |
6.6857 |
- |
- |
- |
- |
- |
| 0.1285 |
2496 |
6.665 |
- |
- |
- |
- |
- |
| 0.1305 |
2535 |
6.6564 |
6.2824 |
0.6796 (+0.1392) |
0.3834 (+0.0584) |
0.6637 (+0.1630) |
0.5756 (+0.1202) |
| 0.1326 |
2574 |
6.5436 |
- |
- |
- |
- |
- |
| 0.1346 |
2613 |
6.4091 |
- |
- |
- |
- |
- |
| 0.1366 |
2652 |
6.2974 |
- |
- |
- |
- |
- |
| 0.1386 |
2691 |
6.3251 |
- |
- |
- |
- |
- |
| 0.1406 |
2730 |
6.2799 |
5.9852 |
0.6719 (+0.1314) |
0.3829 (+0.0579) |
0.6711 (+0.1704) |
0.5753 (+0.1199) |
| 0.1426 |
2769 |
6.2637 |
- |
- |
- |
- |
- |
| 0.1446 |
2808 |
6.1648 |
- |
- |
- |
- |
- |
| 0.1466 |
2847 |
6.1382 |
- |
- |
- |
- |
- |
| 0.1486 |
2886 |
6.1291 |
- |
- |
- |
- |
- |
| 0.1506 |
2925 |
5.9413 |
5.8402 |
0.6665 (+0.1261) |
0.3950 (+0.0700) |
0.6448 (+0.1441) |
0.5688 (+0.1134) |
| 0.1526 |
2964 |
5.9748 |
- |
- |
- |
- |
- |
| 0.1546 |
3003 |
5.8973 |
- |
- |
- |
- |
- |
| 0.1567 |
3042 |
5.8654 |
- |
- |
- |
- |
- |
| 0.1587 |
3081 |
5.6654 |
- |
- |
- |
- |
- |
| 0.1607 |
3120 |
5.8549 |
5.6918 |
0.6765 (+0.1361) |
0.3948 (+0.0697) |
0.6639 (+0.1632) |
0.5784 (+0.1230) |
| 0.1627 |
3159 |
5.6934 |
- |
- |
- |
- |
- |
| 0.1647 |
3198 |
5.7285 |
- |
- |
- |
- |
- |
| 0.1667 |
3237 |
5.5589 |
- |
- |
- |
- |
- |
| 0.1687 |
3276 |
5.6317 |
- |
- |
- |
- |
- |
| 0.1707 |
3315 |
5.5741 |
5.4521 |
0.6545 (+0.1141) |
0.3988 (+0.0738) |
0.6863 (+0.1856) |
0.5799 (+0.1245) |
| 0.1727 |
3354 |
5.4948 |
- |
- |
- |
- |
- |
| 0.1747 |
3393 |
5.4782 |
- |
- |
- |
- |
- |
| 0.1767 |
3432 |
5.5595 |
- |
- |
- |
- |
- |
| 0.1787 |
3471 |
5.417 |
- |
- |
- |
- |
- |
| 0.1808 |
3510 |
5.4339 |
5.2730 |
0.6224 (+0.0820) |
0.3970 (+0.0720) |
0.6666 (+0.1660) |
0.5620 (+0.1066) |
| 0.1828 |
3549 |
5.3723 |
- |
- |
- |
- |
- |
| 0.1848 |
3588 |
5.2479 |
- |
- |
- |
- |
- |
| 0.1868 |
3627 |
5.2665 |
- |
- |
- |
- |
- |
| 0.1888 |
3666 |
5.2302 |
- |
- |
- |
- |
- |
| 0.1908 |
3705 |
5.1863 |
5.1419 |
0.6791 (+0.1387) |
0.4037 (+0.0786) |
0.6941 (+0.1934) |
0.5923 (+0.1369) |
| 0.1928 |
3744 |
5.1855 |
- |
- |
- |
- |
- |
| 0.1948 |
3783 |
5.1529 |
- |
- |
- |
- |
- |
| 0.1968 |
3822 |
5.2058 |
- |
- |
- |
- |
- |
| 0.1988 |
3861 |
5.098 |
- |
- |
- |
- |
- |
| 0.2008 |
3900 |
5.0176 |
4.9869 |
0.6590 (+0.1186) |
0.3849 (+0.0599) |
0.6844 (+0.1837) |
0.5761 (+0.1207) |
| 0.2028 |
3939 |
5.0708 |
- |
- |
- |
- |
- |
| 0.2049 |
3978 |
5.0215 |
- |
- |
- |
- |
- |
| 0.2069 |
4017 |
4.974 |
- |
- |
- |
- |
- |
| 0.2089 |
4056 |
4.9687 |
- |
- |
- |
- |
- |
| 0.2109 |
4095 |
4.9689 |
4.8506 |
0.6734 (+0.1330) |
0.3995 (+0.0745) |
0.7023 (+0.2016) |
0.5917 (+0.1364) |
| 0.2129 |
4134 |
4.8809 |
- |
- |
- |
- |
- |
| 0.2149 |
4173 |
4.9176 |
- |
- |
- |
- |
- |
| 0.2169 |
4212 |
4.7451 |
- |
- |
- |
- |
- |
| 0.2189 |
4251 |
4.7807 |
- |
- |
- |
- |
- |
| 0.2209 |
4290 |
4.8157 |
4.7150 |
0.6269 (+0.0865) |
0.3948 (+0.0698) |
0.6938 (+0.1932) |
0.5719 (+0.1165) |
| 0.2229 |
4329 |
4.7986 |
- |
- |
- |
- |
- |
| 0.2249 |
4368 |
4.7942 |
- |
- |
- |
- |
- |
| 0.2269 |
4407 |
4.7008 |
- |
- |
- |
- |
- |
| 0.2290 |
4446 |
4.7572 |
- |
- |
- |
- |
- |
| 0.2310 |
4485 |
4.7616 |
4.6657 |
0.6577 (+0.1172) |
0.4022 (+0.0772) |
0.7019 (+0.2013) |
0.5873 (+0.1319) |
| 0.2330 |
4524 |
4.7014 |
- |
- |
- |
- |
- |
| 0.2350 |
4563 |
4.6512 |
- |
- |
- |
- |
- |
| 0.2370 |
4602 |
4.6997 |
- |
- |
- |
- |
- |
| 0.2390 |
4641 |
4.5655 |
- |
- |
- |
- |
- |
| 0.2410 |
4680 |
4.5727 |
4.5367 |
0.6826 (+0.1422) |
0.3937 (+0.0687) |
0.6958 (+0.1951) |
0.5907 (+0.1353) |
| 0.2430 |
4719 |
4.5258 |
- |
- |
- |
- |
- |
| 0.2450 |
4758 |
4.6012 |
- |
- |
- |
- |
- |
| 0.2470 |
4797 |
4.5785 |
- |
- |
- |
- |
- |
| 0.2490 |
4836 |
4.5415 |
- |
- |
- |
- |
- |
| 0.2510 |
4875 |
4.4921 |
4.4462 |
0.6689 (+0.1285) |
0.3977 (+0.0727) |
0.7103 (+0.2096) |
0.5923 (+0.1369) |
| 0.2531 |
4914 |
4.4911 |
- |
- |
- |
- |
- |
| 0.2551 |
4953 |
4.4795 |
- |
- |
- |
- |
- |
| 0.2571 |
4992 |
4.4027 |
- |
- |
- |
- |
- |
| 0.2591 |
5031 |
4.3652 |
- |
- |
- |
- |
- |
| 0.2611 |
5070 |
4.3868 |
4.3909 |
0.6535 (+0.1130) |
0.3868 (+0.0617) |
0.6815 (+0.1809) |
0.5739 (+0.1185) |
| 0.2631 |
5109 |
4.4055 |
- |
- |
- |
- |
- |
| 0.2651 |
5148 |
4.3968 |
- |
- |
- |
- |
- |
| 0.2671 |
5187 |
4.3333 |
- |
- |
- |
- |
- |
| 0.2691 |
5226 |
4.3369 |
- |
- |
- |
- |
- |
| 0.2711 |
5265 |
4.3079 |
4.3355 |
0.6550 (+0.1145) |
0.3895 (+0.0644) |
0.6957 (+0.1950) |
0.5800 (+0.1247) |
| 0.2731 |
5304 |
4.3211 |
- |
- |
- |
- |
- |
| 0.2751 |
5343 |
4.2841 |
- |
- |
- |
- |
- |
| 0.2772 |
5382 |
4.2753 |
- |
- |
- |
- |
- |
| 0.2792 |
5421 |
4.221 |
- |
- |
- |
- |
- |
| 0.2812 |
5460 |
4.2146 |
4.2056 |
0.6590 (+0.1186) |
0.3796 (+0.0545) |
0.7028 (+0.2021) |
0.5804 (+0.1251) |
| 0.2832 |
5499 |
4.2692 |
- |
- |
- |
- |
- |
| 0.2852 |
5538 |
4.2236 |
- |
- |
- |
- |
- |
| 0.2872 |
5577 |
4.1555 |
- |
- |
- |
- |
- |
| 0.2892 |
5616 |
4.1684 |
- |
- |
- |
- |
- |
| 0.2912 |
5655 |
4.1731 |
4.1304 |
0.6734 (+0.1329) |
0.3865 (+0.0615) |
0.6950 (+0.1944) |
0.5850 (+0.1296) |
| 0.2932 |
5694 |
4.1562 |
- |
- |
- |
- |
- |
| 0.2952 |
5733 |
4.1689 |
- |
- |
- |
- |
- |
| 0.2972 |
5772 |
4.1617 |
- |
- |
- |
- |
- |
| 0.2992 |
5811 |
4.1256 |
- |
- |
- |
- |
- |
| 0.3013 |
5850 |
4.0592 |
4.0723 |
0.6694 (+0.1290) |
0.3870 (+0.0619) |
0.7079 (+0.2073) |
0.5881 (+0.1327) |
| 0.3033 |
5889 |
4.0894 |
- |
- |
- |
- |
- |
| 0.3053 |
5928 |
4.103 |
- |
- |
- |
- |
- |
| 0.3073 |
5967 |
4.0083 |
- |
- |
- |
- |
- |
| 0.3093 |
6006 |
4.03 |
- |
- |
- |
- |
- |
| 0.3113 |
6045 |
3.9931 |
4.0058 |
0.6695 (+0.1290) |
0.3914 (+0.0664) |
0.7024 (+0.2018) |
0.5878 (+0.1324) |
| 0.3133 |
6084 |
4.0186 |
- |
- |
- |
- |
- |
| 0.3153 |
6123 |
3.9312 |
- |
- |
- |
- |
- |
| 0.3173 |
6162 |
4.0398 |
- |
- |
- |
- |
- |
| 0.3193 |
6201 |
3.9672 |
- |
- |
- |
- |
- |
| 0.3213 |
6240 |
3.9879 |
3.9322 |
0.6696 (+0.1292) |
0.3932 (+0.0681) |
0.7075 (+0.2068) |
0.5901 (+0.1347) |
| 0.3233 |
6279 |
3.879 |
- |
- |
- |
- |
- |
| 0.3254 |
6318 |
3.9123 |
- |
- |
- |
- |
- |
| 0.3274 |
6357 |
3.9144 |
- |
- |
- |
- |
- |
| 0.3294 |
6396 |
3.903 |
- |
- |
- |
- |
- |
| 0.3314 |
6435 |
3.9447 |
3.9070 |
0.6440 (+0.1036) |
0.3849 (+0.0599) |
0.7099 (+0.2092) |
0.5796 (+0.1242) |
| 0.3334 |
6474 |
3.9082 |
- |
- |
- |
- |
- |
| 0.3354 |
6513 |
3.8405 |
- |
- |
- |
- |
- |
| 0.3374 |
6552 |
3.8633 |
- |
- |
- |
- |
- |
| 0.3394 |
6591 |
3.8301 |
- |
- |
- |
- |
- |
| 0.3414 |
6630 |
3.8188 |
3.8524 |
0.6611 (+0.1206) |
0.3804 (+0.0554) |
0.6935 (+0.1929) |
0.5783 (+0.1230) |
| 0.3434 |
6669 |
3.8292 |
- |
- |
- |
- |
- |
| 0.3454 |
6708 |
3.8502 |
- |
- |
- |
- |
- |
| 0.3474 |
6747 |
3.8649 |
- |
- |
- |
- |
- |
| 0.3495 |
6786 |
3.7942 |
- |
- |
- |
- |
- |
| 0.3515 |
6825 |
3.7324 |
3.7958 |
0.6732 (+0.1328) |
0.3816 (+0.0565) |
0.7011 (+0.2005) |
0.5853 (+0.1299) |
| 0.3535 |
6864 |
3.7916 |
- |
- |
- |
- |
- |
| 0.3555 |
6903 |
3.7299 |
- |
- |
- |
- |
- |
| 0.3575 |
6942 |
3.8087 |
- |
- |
- |
- |
- |
| 0.3595 |
6981 |
3.7821 |
- |
- |
- |
- |
- |
| 0.3615 |
7020 |
3.7395 |
3.7438 |
0.6585 (+0.1181) |
0.3875 (+0.0625) |
0.7004 (+0.1998) |
0.5821 (+0.1268) |
| 0.3635 |
7059 |
3.7345 |
- |
- |
- |
- |
- |
| 0.3655 |
7098 |
3.7472 |
- |
- |
- |
- |
- |
| 0.3675 |
7137 |
3.7277 |
- |
- |
- |
- |
- |
| 0.3695 |
7176 |
3.6535 |
- |
- |
- |
- |
- |
| 0.3715 |
7215 |
3.6586 |
3.6982 |
0.6616 (+0.1212) |
0.3823 (+0.0573) |
0.7002 (+0.1996) |
0.5814 (+0.1260) |
| 0.3736 |
7254 |
3.6653 |
- |
- |
- |
- |
- |
| 0.3756 |
7293 |
3.7074 |
- |
- |
- |
- |
- |
| 0.3776 |
7332 |
3.6542 |
- |
- |
- |
- |
- |
| 0.3796 |
7371 |
3.5972 |
- |
- |
- |
- |
- |
| 0.3816 |
7410 |
3.6499 |
3.6283 |
0.6569 (+0.1165) |
0.3796 (+0.0545) |
0.7079 (+0.2073) |
0.5815 (+0.1261) |
| 0.3836 |
7449 |
3.6373 |
- |
- |
- |
- |
- |
| 0.3856 |
7488 |
3.6253 |
- |
- |
- |
- |
- |
| 0.3876 |
7527 |
3.6441 |
- |
- |
- |
- |
- |
| 0.3896 |
7566 |
3.6278 |
- |
- |
- |
- |
- |
| 0.3916 |
7605 |
3.6291 |
3.6008 |
0.6695 (+0.1291) |
0.3928 (+0.0677) |
0.7187 (+0.2180) |
0.5936 (+0.1383) |
| 0.3936 |
7644 |
3.5957 |
- |
- |
- |
- |
- |
| 0.3956 |
7683 |
3.6031 |
- |
- |
- |
- |
- |
| 0.3977 |
7722 |
3.5544 |
- |
- |
- |
- |
- |
| 0.3997 |
7761 |
3.5823 |
- |
- |
- |
- |
- |
| 0.4017 |
7800 |
3.5426 |
3.6026 |
0.6732 (+0.1328) |
0.3851 (+0.0600) |
0.7170 (+0.2163) |
0.5918 (+0.1364) |
| 0.4037 |
7839 |
3.5943 |
- |
- |
- |
- |
- |
| 0.4057 |
7878 |
3.4955 |
- |
- |
- |
- |
- |
| 0.4077 |
7917 |
3.5072 |
- |
- |
- |
- |
- |
| 0.4097 |
7956 |
3.5529 |
- |
- |
- |
- |
- |
| 0.4117 |
7995 |
3.5523 |
3.4759 |
0.6666 (+0.1262) |
0.3826 (+0.0576) |
0.7048 (+0.2041) |
0.5847 (+0.1293) |
| 0.4137 |
8034 |
3.4947 |
- |
- |
- |
- |
- |
| 0.4157 |
8073 |
3.4753 |
- |
- |
- |
- |
- |
| 0.4177 |
8112 |
3.431 |
- |
- |
- |
- |
- |
| 0.4197 |
8151 |
3.4871 |
- |
- |
- |
- |
- |
| 0.4218 |
8190 |
3.5072 |
3.4841 |
0.6703 (+0.1299) |
0.3880 (+0.0630) |
0.7216 (+0.2210) |
0.5933 (+0.1380) |
| 0.4238 |
8229 |
3.4812 |
- |
- |
- |
- |
- |
| 0.4258 |
8268 |
3.4408 |
- |
- |
- |
- |
- |
| 0.4278 |
8307 |
3.4781 |
- |
- |
- |
- |
- |
| 0.4298 |
8346 |
3.4667 |
- |
- |
- |
- |
- |
| 0.4318 |
8385 |
3.4618 |
3.4575 |
0.6709 (+0.1305) |
0.3785 (+0.0535) |
0.7062 (+0.2055) |
0.5852 (+0.1298) |
| 0.4338 |
8424 |
3.4711 |
- |
- |
- |
- |
- |
| 0.4358 |
8463 |
3.4586 |
- |
- |
- |
- |
- |
| 0.4378 |
8502 |
3.4246 |
- |
- |
- |
- |
- |
| 0.4398 |
8541 |
3.4322 |
- |
- |
- |
- |
- |
| 0.4418 |
8580 |
3.3901 |
3.4289 |
0.6657 (+0.1253) |
0.3780 (+0.0530) |
0.7118 (+0.2111) |
0.5852 (+0.1298) |
| 0.4438 |
8619 |
3.3776 |
- |
- |
- |
- |
- |
| 0.4459 |
8658 |
3.3819 |
- |
- |
- |
- |
- |
| 0.4479 |
8697 |
3.393 |
- |
- |
- |
- |
- |
| 0.4499 |
8736 |
3.3559 |
- |
- |
- |
- |
- |
| 0.4519 |
8775 |
3.4004 |
3.2981 |
0.6748 (+0.1344) |
0.3870 (+0.0620) |
0.7121 (+0.2114) |
0.5913 (+0.1359) |
| 0.4539 |
8814 |
3.426 |
- |
- |
- |
- |
- |
| 0.4559 |
8853 |
3.3938 |
- |
- |
- |
- |
- |
| 0.4579 |
8892 |
3.3304 |
- |
- |
- |
- |
- |
| 0.4599 |
8931 |
3.3455 |
- |
- |
- |
- |
- |
| 0.4619 |
8970 |
3.3314 |
3.3531 |
0.6700 (+0.1296) |
0.3775 (+0.0524) |
0.7173 (+0.2166) |
0.5882 (+0.1329) |
| 0.4639 |
9009 |
3.3455 |
- |
- |
- |
- |
- |
| 0.4659 |
9048 |
3.3363 |
- |
- |
- |
- |
- |
| 0.4679 |
9087 |
3.3492 |
- |
- |
- |
- |
- |
| 0.4700 |
9126 |
3.3272 |
- |
- |
- |
- |
- |
| 0.4720 |
9165 |
3.3253 |
3.2839 |
0.6963 (+0.1558) |
0.3831 (+0.0581) |
0.7113 (+0.2107) |
0.5969 (+0.1415) |
| 0.4740 |
9204 |
3.3214 |
- |
- |
- |
- |
- |
| 0.4760 |
9243 |
3.2383 |
- |
- |
- |
- |
- |
| 0.4780 |
9282 |
3.3198 |
- |
- |
- |
- |
- |
| 0.4800 |
9321 |
3.2898 |
- |
- |
- |
- |
- |
| 0.4820 |
9360 |
3.2641 |
3.2287 |
0.6832 (+0.1428) |
0.3880 (+0.0630) |
0.7206 (+0.2200) |
0.5973 (+0.1419) |
| 0.4840 |
9399 |
3.2974 |
- |
- |
- |
- |
- |
| 0.4860 |
9438 |
3.3147 |
- |
- |
- |
- |
- |
| 0.4880 |
9477 |
3.2911 |
- |
- |
- |
- |
- |
| 0.4900 |
9516 |
3.2745 |
- |
- |
- |
- |
- |
| 0.4920 |
9555 |
3.2168 |
3.2729 |
0.6730 (+0.1326) |
0.3920 (+0.0669) |
0.7173 (+0.2167) |
0.5941 (+0.1387) |
| 0.4941 |
9594 |
3.2036 |
- |
- |
- |
- |
- |
| 0.4961 |
9633 |
3.2618 |
- |
- |
- |
- |
- |
| 0.4981 |
9672 |
3.2786 |
- |
- |
- |
- |
- |
| 0.5001 |
9711 |
3.2214 |
- |
- |
- |
- |
- |
| 0.5021 |
9750 |
3.1759 |
3.2106 |
0.6764 (+0.1360) |
0.3852 (+0.0602) |
0.7226 (+0.2220) |
0.5948 (+0.1394) |
| 0.5041 |
9789 |
3.2159 |
- |
- |
- |
- |
- |
| 0.5061 |
9828 |
3.1856 |
- |
- |
- |
- |
- |
| 0.5081 |
9867 |
3.209 |
- |
- |
- |
- |
- |
| 0.5101 |
9906 |
3.2239 |
- |
- |
- |
- |
- |
| 0.5121 |
9945 |
3.2142 |
3.2159 |
0.6697 (+0.1292) |
0.3913 (+0.0662) |
0.7009 (+0.2003) |
0.5873 (+0.1319) |
| 0.5141 |
9984 |
3.2156 |
- |
- |
- |
- |
- |
| 0.5161 |
10023 |
3.1568 |
- |
- |
- |
- |
- |
| 0.5182 |
10062 |
3.1344 |
- |
- |
- |
- |
- |
| 0.5202 |
10101 |
3.1754 |
- |
- |
- |
- |
- |
| 0.5222 |
10140 |
3.1414 |
3.2009 |
0.6913 (+0.1509) |
0.3913 (+0.0663) |
0.7180 (+0.2173) |
0.6002 (+0.1448) |
| 0.5242 |
10179 |
3.2359 |
- |
- |
- |
- |
- |
| 0.5262 |
10218 |
3.149 |
- |
- |
- |
- |
- |
| 0.5282 |
10257 |
3.1741 |
- |
- |
- |
- |
- |
| 0.5302 |
10296 |
3.081 |
- |
- |
- |
- |
- |
| 0.5322 |
10335 |
3.1457 |
3.1939 |
0.6685 (+0.1281) |
0.3858 (+0.0608) |
0.7304 (+0.2297) |
0.5949 (+0.1395) |
| 0.5342 |
10374 |
3.1322 |
- |
- |
- |
- |
- |
| 0.5362 |
10413 |
3.1307 |
- |
- |
- |
- |
- |
| 0.5382 |
10452 |
3.1212 |
- |
- |
- |
- |
- |
| 0.5402 |
10491 |
3.105 |
- |
- |
- |
- |
- |
| 0.5423 |
10530 |
3.1339 |
3.1324 |
0.6693 (+0.1289) |
0.3942 (+0.0692) |
0.7101 (+0.2094) |
0.5912 (+0.1358) |
| 0.5443 |
10569 |
3.111 |
- |
- |
- |
- |
- |
| 0.5463 |
10608 |
3.1045 |
- |
- |
- |
- |
- |
| 0.5483 |
10647 |
3.0923 |
- |
- |
- |
- |
- |
| 0.5503 |
10686 |
3.075 |
- |
- |
- |
- |
- |
| 0.5523 |
10725 |
3.062 |
3.1363 |
0.6931 (+0.1527) |
0.4079 (+0.0828) |
0.7233 (+0.2227) |
0.6081 (+0.1527) |
| 0.5543 |
10764 |
3.1167 |
- |
- |
- |
- |
- |
| 0.5563 |
10803 |
3.0903 |
- |
- |
- |
- |
- |
| 0.5583 |
10842 |
3.0604 |
- |
- |
- |
- |
- |
| 0.5603 |
10881 |
3.0724 |
- |
- |
- |
- |
- |
| 0.5623 |
10920 |
3.1052 |
3.1181 |
0.6856 (+0.1452) |
0.4003 (+0.0753) |
0.7249 (+0.2242) |
0.6036 (+0.1482) |
| 0.5643 |
10959 |
3.0984 |
- |
- |
- |
- |
- |
| 0.5664 |
10998 |
3.0779 |
- |
- |
- |
- |
- |
| 0.5684 |
11037 |
2.9911 |
- |
- |
- |
- |
- |
| 0.5704 |
11076 |
3.0431 |
- |
- |
- |
- |
- |
| 0.5724 |
11115 |
3.0793 |
3.1106 |
0.6709 (+0.1305) |
0.3998 (+0.0748) |
0.7186 (+0.2180) |
0.5965 (+0.1411) |
| 0.5744 |
11154 |
3.0504 |
- |
- |
- |
- |
- |
| 0.5764 |
11193 |
3.0118 |
- |
- |
- |
- |
- |
| 0.5784 |
11232 |
3.0704 |
- |
- |
- |
- |
- |
| 0.5804 |
11271 |
3.0498 |
- |
- |
- |
- |
- |
| 0.5824 |
11310 |
3.0393 |
3.0475 |
0.6806 (+0.1401) |
0.4091 (+0.0841) |
0.7122 (+0.2116) |
0.6006 (+0.1453) |
| 0.5844 |
11349 |
2.9919 |
- |
- |
- |
- |
- |
| 0.5864 |
11388 |
3.0291 |
- |
- |
- |
- |
- |
| 0.5884 |
11427 |
3.0119 |
- |
- |
- |
- |
- |
| 0.5905 |
11466 |
3.0201 |
- |
- |
- |
- |
- |
| 0.5925 |
11505 |
3.0319 |
3.0064 |
0.6852 (+0.1448) |
0.4061 (+0.0811) |
0.7163 (+0.2156) |
0.6025 (+0.1472) |
| 0.5945 |
11544 |
3.0309 |
- |
- |
- |
- |
- |
| 0.5965 |
11583 |
3.0097 |
- |
- |
- |
- |
- |
| 0.5985 |
11622 |
2.9759 |
- |
- |
- |
- |
- |
| 0.6005 |
11661 |
2.9937 |
- |
- |
- |
- |
- |
| 0.6025 |
11700 |
2.9885 |
3.0262 |
0.6729 (+0.1325) |
0.3985 (+0.0735) |
0.7227 (+0.2221) |
0.5980 (+0.1427) |
| 0.6045 |
11739 |
3.0092 |
- |
- |
- |
- |
- |
| 0.6065 |
11778 |
2.9569 |
- |
- |
- |
- |
- |
| 0.6085 |
11817 |
2.9665 |
- |
- |
- |
- |
- |
| 0.6105 |
11856 |
2.9774 |
- |
- |
- |
- |
- |
| 0.6125 |
11895 |
2.9915 |
2.9842 |
0.6857 (+0.1452) |
0.4055 (+0.0804) |
0.7379 (+0.2372) |
0.6097 (+0.1543) |
| 0.6146 |
11934 |
2.9555 |
- |
- |
- |
- |
- |
| 0.6166 |
11973 |
2.9833 |
- |
- |
- |
- |
- |
| 0.6186 |
12012 |
2.9858 |
- |
- |
- |
- |
- |
| 0.6206 |
12051 |
2.9743 |
- |
- |
- |
- |
- |
| 0.6226 |
12090 |
2.9686 |
2.9523 |
0.6821 (+0.1417) |
0.4044 (+0.0794) |
0.7238 (+0.2232) |
0.6035 (+0.1481) |
| 0.6246 |
12129 |
2.9867 |
- |
- |
- |
- |
- |
| 0.6266 |
12168 |
2.9548 |
- |
- |
- |
- |
- |
| 0.6286 |
12207 |
2.9557 |
- |
- |
- |
- |
- |
| 0.6306 |
12246 |
2.9506 |
- |
- |
- |
- |
- |
| 0.6326 |
12285 |
2.9692 |
2.9323 |
0.6862 (+0.1458) |
0.4063 (+0.0813) |
0.7257 (+0.2251) |
0.6061 (+0.1507) |
| 0.6346 |
12324 |
2.9458 |
- |
- |
- |
- |
- |
| 0.6366 |
12363 |
2.9131 |
- |
- |
- |
- |
- |
| 0.6387 |
12402 |
2.9118 |
- |
- |
- |
- |
- |
| 0.6407 |
12441 |
2.8914 |
- |
- |
- |
- |
- |
| 0.6427 |
12480 |
2.8845 |
2.9832 |
0.6796 (+0.1392) |
0.4009 (+0.0759) |
0.7250 (+0.2244) |
0.6019 (+0.1465) |
| 0.6447 |
12519 |
2.9312 |
- |
- |
- |
- |
- |
| 0.6467 |
12558 |
2.9344 |
- |
- |
- |
- |
- |
| 0.6487 |
12597 |
2.9033 |
- |
- |
- |
- |
- |
| 0.6507 |
12636 |
2.892 |
- |
- |
- |
- |
- |
| 0.6527 |
12675 |
2.8944 |
2.9286 |
0.6874 (+0.1469) |
0.4015 (+0.0764) |
0.7247 (+0.2241) |
0.6045 (+0.1491) |
| 0.6547 |
12714 |
2.9269 |
- |
- |
- |
- |
- |
| 0.6567 |
12753 |
2.8988 |
- |
- |
- |
- |
- |
| 0.6587 |
12792 |
2.9167 |
- |
- |
- |
- |
- |
| 0.6607 |
12831 |
2.8703 |
- |
- |
- |
- |
- |
| 0.6628 |
12870 |
2.8619 |
2.8724 |
0.6829 (+0.1425) |
0.4005 (+0.0754) |
0.7176 (+0.2170) |
0.6003 (+0.1450) |
| 0.6648 |
12909 |
2.868 |
- |
- |
- |
- |
- |
| 0.6668 |
12948 |
2.8775 |
- |
- |
- |
- |
- |
| 0.6688 |
12987 |
2.866 |
- |
- |
- |
- |
- |
| 0.6708 |
13026 |
2.8877 |
- |
- |
- |
- |
- |
| 0.6728 |
13065 |
2.896 |
2.9117 |
0.6846 (+0.1442) |
0.4023 (+0.0773) |
0.7198 (+0.2192) |
0.6022 (+0.1469) |
| 0.6748 |
13104 |
2.8351 |
- |
- |
- |
- |
- |
| 0.6768 |
13143 |
2.8679 |
- |
- |
- |
- |
- |
| 0.6788 |
13182 |
2.9197 |
- |
- |
- |
- |
- |
| 0.6808 |
13221 |
2.822 |
- |
- |
- |
- |
- |
| 0.6828 |
13260 |
2.8443 |
2.9010 |
0.6775 (+0.1371) |
0.4039 (+0.0789) |
0.7116 (+0.2109) |
0.5977 (+0.1423) |
| 0.6848 |
13299 |
2.8646 |
- |
- |
- |
- |
- |
| 0.6869 |
13338 |
2.8645 |
- |
- |
- |
- |
- |
| 0.6889 |
13377 |
2.8659 |
- |
- |
- |
- |
- |
| 0.6909 |
13416 |
2.8264 |
- |
- |
- |
- |
- |
| 0.6929 |
13455 |
2.8222 |
2.8632 |
0.6947 (+0.1543) |
0.4057 (+0.0807) |
0.7314 (+0.2307) |
0.6106 (+0.1552) |
| 0.6949 |
13494 |
2.8565 |
- |
- |
- |
- |
- |
| 0.6969 |
13533 |
2.8385 |
- |
- |
- |
- |
- |
| 0.6989 |
13572 |
2.8305 |
- |
- |
- |
- |
- |
| 0.7009 |
13611 |
2.8368 |
- |
- |
- |
- |
- |
| 0.7029 |
13650 |
2.8416 |
2.8309 |
0.6784 (+0.1380) |
0.4113 (+0.0863) |
0.7270 (+0.2264) |
0.6056 (+0.1502) |
| 0.7049 |
13689 |
2.8007 |
- |
- |
- |
- |
- |
| 0.7069 |
13728 |
2.8565 |
- |
- |
- |
- |
- |
| 0.7089 |
13767 |
2.8893 |
- |
- |
- |
- |
- |
| 0.7110 |
13806 |
2.844 |
- |
- |
- |
- |
- |
| 0.7130 |
13845 |
2.8293 |
2.8423 |
0.6693 (+0.1289) |
0.4053 (+0.0803) |
0.7244 (+0.2238) |
0.5997 (+0.1443) |
| 0.7150 |
13884 |
2.8424 |
- |
- |
- |
- |
- |
| 0.7170 |
13923 |
2.7951 |
- |
- |
- |
- |
- |
| 0.7190 |
13962 |
2.8004 |
- |
- |
- |
- |
- |
| 0.7210 |
14001 |
2.7833 |
- |
- |
- |
- |
- |
| 0.7230 |
14040 |
2.8133 |
2.8021 |
0.6788 (+0.1383) |
0.4013 (+0.0763) |
0.7285 (+0.2278) |
0.6028 (+0.1475) |
| 0.7250 |
14079 |
2.8245 |
- |
- |
- |
- |
- |
| 0.7270 |
14118 |
2.7995 |
- |
- |
- |
- |
- |
| 0.7290 |
14157 |
2.7859 |
- |
- |
- |
- |
- |
| 0.7310 |
14196 |
2.8067 |
- |
- |
- |
- |
- |
| 0.7330 |
14235 |
2.7606 |
2.8098 |
0.6750 (+0.1346) |
0.4012 (+0.0762) |
0.7381 (+0.2375) |
0.6048 (+0.1494) |
| 0.7351 |
14274 |
2.7662 |
- |
- |
- |
- |
- |
| 0.7371 |
14313 |
2.8081 |
- |
- |
- |
- |
- |
| 0.7391 |
14352 |
2.8159 |
- |
- |
- |
- |
- |
| 0.7411 |
14391 |
2.7604 |
- |
- |
- |
- |
- |
| 0.7431 |
14430 |
2.7721 |
2.7912 |
0.6759 (+0.1355) |
0.4040 (+0.0790) |
0.7283 (+0.2276) |
0.6027 (+0.1474) |
| 0.7451 |
14469 |
2.7772 |
- |
- |
- |
- |
- |
| 0.7471 |
14508 |
2.8183 |
- |
- |
- |
- |
- |
| 0.7491 |
14547 |
2.7821 |
- |
- |
- |
- |
- |
| 0.7511 |
14586 |
2.7434 |
- |
- |
- |
- |
- |
| 0.7531 |
14625 |
2.812 |
2.7940 |
0.6673 (+0.1268) |
0.4034 (+0.0783) |
0.7277 (+0.2271) |
0.5995 (+0.1441) |
| 0.7551 |
14664 |
2.7847 |
- |
- |
- |
- |
- |
| 0.7571 |
14703 |
2.7604 |
- |
- |
- |
- |
- |
| 0.7592 |
14742 |
2.7271 |
- |
- |
- |
- |
- |
| 0.7612 |
14781 |
2.7663 |
- |
- |
- |
- |
- |
| 0.7632 |
14820 |
2.7731 |
2.7489 |
0.6694 (+0.1290) |
0.3963 (+0.0713) |
0.7380 (+0.2373) |
0.6012 (+0.1459) |
| 0.7652 |
14859 |
2.8013 |
- |
- |
- |
- |
- |
| 0.7672 |
14898 |
2.762 |
- |
- |
- |
- |
- |
| 0.7692 |
14937 |
2.7646 |
- |
- |
- |
- |
- |
| 0.7712 |
14976 |
2.762 |
- |
- |
- |
- |
- |
| 0.7732 |
15015 |
2.77 |
2.7367 |
0.6815 (+0.1411) |
0.4066 (+0.0816) |
0.7262 (+0.2256) |
0.6048 (+0.1494) |
| 0.7752 |
15054 |
2.7827 |
- |
- |
- |
- |
- |
| 0.7772 |
15093 |
2.7027 |
- |
- |
- |
- |
- |
| 0.7792 |
15132 |
2.7395 |
- |
- |
- |
- |
- |
| 0.7812 |
15171 |
2.7425 |
- |
- |
- |
- |
- |
| 0.7833 |
15210 |
2.7757 |
2.7380 |
0.6720 (+0.1315) |
0.4057 (+0.0807) |
0.7374 (+0.2367) |
0.6050 (+0.1497) |
| 0.7853 |
15249 |
2.7185 |
- |
- |
- |
- |
- |
| 0.7873 |
15288 |
2.7287 |
- |
- |
- |
- |
- |
| 0.7893 |
15327 |
2.7311 |
- |
- |
- |
- |
- |
| 0.7913 |
15366 |
2.7281 |
- |
- |
- |
- |
- |
| 0.7933 |
15405 |
2.7039 |
2.7142 |
0.6854 (+0.1450) |
0.4034 (+0.0784) |
0.7364 (+0.2358) |
0.6084 (+0.1531) |
| 0.7953 |
15444 |
2.7028 |
- |
- |
- |
- |
- |
| 0.7973 |
15483 |
2.7182 |
- |
- |
- |
- |
- |
| 0.7993 |
15522 |
2.688 |
- |
- |
- |
- |
- |
| 0.8013 |
15561 |
2.7562 |
- |
- |
- |
- |
- |
| 0.8033 |
15600 |
2.6968 |
2.7413 |
0.6669 (+0.1264) |
0.4118 (+0.0867) |
0.7269 (+0.2263) |
0.6018 (+0.1465) |
| 0.8053 |
15639 |
2.6802 |
- |
- |
- |
- |
- |
| 0.8074 |
15678 |
2.6936 |
- |
- |
- |
- |
- |
| 0.8094 |
15717 |
2.7059 |
- |
- |
- |
- |
- |
| 0.8114 |
15756 |
2.7052 |
- |
- |
- |
- |
- |
| 0.8134 |
15795 |
2.7178 |
2.6968 |
0.6738 (+0.1334) |
0.4064 (+0.0813) |
0.7283 (+0.2277) |
0.6028 (+0.1475) |
| 0.8154 |
15834 |
2.669 |
- |
- |
- |
- |
- |
| 0.8174 |
15873 |
2.6881 |
- |
- |
- |
- |
- |
| 0.8194 |
15912 |
2.6973 |
- |
- |
- |
- |
- |
| 0.8214 |
15951 |
2.6861 |
- |
- |
- |
- |
- |
| 0.8234 |
15990 |
2.6695 |
2.7110 |
0.6821 (+0.1417) |
0.4104 (+0.0853) |
0.7304 (+0.2298) |
0.6076 (+0.1523) |
| 0.8254 |
16029 |
2.6974 |
- |
- |
- |
- |
- |
| 0.8274 |
16068 |
2.7043 |
- |
- |
- |
- |
- |
| 0.8294 |
16107 |
2.6929 |
- |
- |
- |
- |
- |
| 0.8315 |
16146 |
2.667 |
- |
- |
- |
- |
- |
| 0.8335 |
16185 |
2.7035 |
2.6746 |
0.6891 (+0.1487) |
0.4084 (+0.0834) |
0.7262 (+0.2256) |
0.6079 (+0.1526) |
| 0.8355 |
16224 |
2.6472 |
- |
- |
- |
- |
- |
| 0.8375 |
16263 |
2.6956 |
- |
- |
- |
- |
- |
| 0.8395 |
16302 |
2.6823 |
- |
- |
- |
- |
- |
| 0.8415 |
16341 |
2.695 |
- |
- |
- |
- |
- |
| 0.8435 |
16380 |
2.6439 |
2.6841 |
0.6835 (+0.1430) |
0.4015 (+0.0764) |
0.7288 (+0.2282) |
0.6046 (+0.1492) |
| 0.8455 |
16419 |
2.6767 |
- |
- |
- |
- |
- |
| 0.8475 |
16458 |
2.6556 |
- |
- |
- |
- |
- |
| 0.8495 |
16497 |
2.6431 |
- |
- |
- |
- |
- |
| 0.8515 |
16536 |
2.6594 |
- |
- |
- |
- |
- |
| 0.8535 |
16575 |
2.6403 |
2.6657 |
0.6709 (+0.1304) |
0.4044 (+0.0794) |
0.7323 (+0.2316) |
0.6025 (+0.1471) |
| 0.8556 |
16614 |
2.6687 |
- |
- |
- |
- |
- |
| 0.8576 |
16653 |
2.6887 |
- |
- |
- |
- |
- |
| 0.8596 |
16692 |
2.6761 |
- |
- |
- |
- |
- |
| 0.8616 |
16731 |
2.6371 |
- |
- |
- |
- |
- |
| 0.8636 |
16770 |
2.6368 |
2.6791 |
0.6768 (+0.1364) |
0.4068 (+0.0818) |
0.7314 (+0.2308) |
0.6050 (+0.1497) |
| 0.8656 |
16809 |
2.6325 |
- |
- |
- |
- |
- |
| 0.8676 |
16848 |
2.641 |
- |
- |
- |
- |
- |
| 0.8696 |
16887 |
2.6614 |
- |
- |
- |
- |
- |
| 0.8716 |
16926 |
2.7 |
- |
- |
- |
- |
- |
| 0.8736 |
16965 |
2.678 |
2.6354 |
0.6938 (+0.1533) |
0.4108 (+0.0857) |
0.7274 (+0.2268) |
0.6107 (+0.1553) |
| 0.8756 |
17004 |
2.6619 |
- |
- |
- |
- |
- |
| 0.8776 |
17043 |
2.681 |
- |
- |
- |
- |
- |
| 0.8797 |
17082 |
2.6465 |
- |
- |
- |
- |
- |
| 0.8817 |
17121 |
2.6977 |
- |
- |
- |
- |
- |
| 0.8837 |
17160 |
2.6476 |
2.6324 |
0.6969 (+0.1565) |
0.4118 (+0.0868) |
0.7293 (+0.2287) |
0.6127 (+0.1573) |
| 0.8857 |
17199 |
2.6405 |
- |
- |
- |
- |
- |
| 0.8877 |
17238 |
2.6645 |
- |
- |
- |
- |
- |
| 0.8897 |
17277 |
2.6635 |
- |
- |
- |
- |
- |
| 0.8917 |
17316 |
2.6038 |
- |
- |
- |
- |
- |
| 0.8937 |
17355 |
2.6807 |
2.642 |
0.6951 (+0.1547) |
0.4138 (+0.0888) |
0.7294 (+0.2287) |
0.6128 (+0.1574) |
| 0.8957 |
17394 |
2.6679 |
- |
- |
- |
- |
- |
| 0.8977 |
17433 |
2.6063 |
- |
- |
- |
- |
- |
| 0.8997 |
17472 |
2.6215 |
- |
- |
- |
- |
- |
| 0.9017 |
17511 |
2.6141 |
- |
- |
- |
- |
- |
| 0.9038 |
17550 |
2.6324 |
2.6330 |
0.6963 (+0.1559) |
0.4117 (+0.0866) |
0.7287 (+0.2280) |
0.6122 (+0.1568) |
| 0.9058 |
17589 |
2.6405 |
- |
- |
- |
- |
- |
| 0.9078 |
17628 |
2.619 |
- |
- |
- |
- |
- |
| 0.9098 |
17667 |
2.6153 |
- |
- |
- |
- |
- |
| 0.9118 |
17706 |
2.6323 |
- |
- |
- |
- |
- |
| 0.9138 |
17745 |
2.5891 |
2.6280 |
0.6886 (+0.1482) |
0.4110 (+0.0860) |
0.7275 (+0.2268) |
0.6090 (+0.1537) |
| 0.9158 |
17784 |
2.6385 |
- |
- |
- |
- |
- |
| 0.9178 |
17823 |
2.6138 |
- |
- |
- |
- |
- |
| 0.9198 |
17862 |
2.6181 |
- |
- |
- |
- |
- |
| 0.9218 |
17901 |
2.6414 |
- |
- |
- |
- |
- |
| 0.9238 |
17940 |
2.6362 |
2.6224 |
0.6907 (+0.1502) |
0.4085 (+0.0835) |
0.7360 (+0.2354) |
0.6117 (+0.1564) |
| 0.9258 |
17979 |
2.6156 |
- |
- |
- |
- |
- |
| 0.9279 |
18018 |
2.597 |
- |
- |
- |
- |
- |
| 0.9299 |
18057 |
2.6254 |
- |
- |
- |
- |
- |
| 0.9319 |
18096 |
2.6434 |
- |
- |
- |
- |
- |
| 0.9339 |
18135 |
2.6474 |
2.6014 |
0.6884 (+0.1479) |
0.4133 (+0.0882) |
0.7248 (+0.2242) |
0.6088 (+0.1534) |
| 0.9359 |
18174 |
2.6214 |
- |
- |
- |
- |
- |
| 0.9379 |
18213 |
2.6145 |
- |
- |
- |
- |
- |
| 0.9399 |
18252 |
2.617 |
- |
- |
- |
- |
- |
| 0.9419 |
18291 |
2.6209 |
- |
- |
- |
- |
- |
| 0.9439 |
18330 |
2.5976 |
2.6057 |
0.6871 (+0.1467) |
0.4072 (+0.0821) |
0.7290 (+0.2284) |
0.6078 (+0.1524) |
| 0.9459 |
18369 |
2.61 |
- |
- |
- |
- |
- |
| 0.9479 |
18408 |
2.614 |
- |
- |
- |
- |
- |
| 0.9499 |
18447 |
2.6187 |
- |
- |
- |
- |
- |
| 0.9520 |
18486 |
2.6004 |
- |
- |
- |
- |
- |
| 0.9540 |
18525 |
2.6515 |
2.6052 |
0.6871 (+0.1467) |
0.4091 (+0.0841) |
0.7270 (+0.2263) |
0.6077 (+0.1524) |
| 0.9560 |
18564 |
2.6141 |
- |
- |
- |
- |
- |
| 0.9580 |
18603 |
2.6016 |
- |
- |
- |
- |
- |
| 0.9600 |
18642 |
2.5918 |
- |
- |
- |
- |
- |
| 0.9620 |
18681 |
2.5684 |
- |
- |
- |
- |
- |
| 0.9640 |
18720 |
2.6087 |
2.5941 |
0.6797 (+0.1393) |
0.4105 (+0.0854) |
0.7284 (+0.2277) |
0.6062 (+0.1508) |
| 0.9660 |
18759 |
2.5961 |
- |
- |
- |
- |
- |
| 0.9680 |
18798 |
2.6121 |
- |
- |
- |
- |
- |
| 0.9700 |
18837 |
2.5896 |
- |
- |
- |
- |
- |
| 0.9720 |
18876 |
2.6101 |
- |
- |
- |
- |
- |
| 0.9740 |
18915 |
2.6106 |
2.5921 |
0.6856 (+0.1452) |
0.4093 (+0.0843) |
0.7284 (+0.2277) |
0.6078 (+0.1524) |
| 0.9761 |
18954 |
2.6046 |
- |
- |
- |
- |
- |
| 0.9781 |
18993 |
2.6155 |
- |
- |
- |
- |
- |
| 0.9801 |
19032 |
2.6166 |
- |
- |
- |
- |
- |
| 0.9821 |
19071 |
2.5866 |
- |
- |
- |
- |
- |
| 0.9841 |
19110 |
2.6369 |
2.5943 |
0.6838 (+0.1433) |
0.4117 (+0.0867) |
0.7284 (+0.2277) |
0.6079 (+0.1526) |
| 0.9861 |
19149 |
2.6319 |
- |
- |
- |
- |
- |
| 0.9881 |
19188 |
2.6035 |
- |
- |
- |
- |
- |
| 0.9901 |
19227 |
2.565 |
- |
- |
- |
- |
- |
| 0.9921 |
19266 |
2.6071 |
- |
- |
- |
- |
- |
| 0.9941 |
19305 |
2.5908 |
2.5866 |
0.6838 (+0.1433) |
0.4116 (+0.0866) |
0.7284 (+0.2277) |
0.6079 (+0.1525) |
| 0.9961 |
19344 |
2.5983 |
- |
- |
- |
- |
- |
| 0.9981 |
19383 |
2.5995 |
- |
- |
- |
- |
- |
| -1 |
-1 |
- |
- |
0.6951 (+0.1547) |
0.4138 (+0.0888) |
0.7294 (+0.2287) |
0.6128 (+0.1574) |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 6.535 kWh
- Carbon Emitted: 2.412 kg of CO2
- Hours Used: 1.932 hours
Training Hardware
- On Cloud: No
- GPU Model: 8 x NVIDIA H100 80GB HBM3
- CPU Model: AMD EPYC 7R13 Processor
- RAM Size: 1999.99 GB
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.9.1+cu126
- Accelerate: 1.12.0
- Datasets: 4.4.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MarginMSELoss
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}