Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| NON_SARCASTIC |
|
| SARCASTIC |
|
| Label | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|
| all | 0.6618 | 0.3952 | 0.2891 | 0.6242 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("w11wo/bge-small-en-v1.5-isarcasm")
# Run inference
preds = model("last day in my twenties")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 2 | 19.8489 | 63 |
| Label | Training Sample Count |
|---|---|
| NON_SARCASTIC | 609 |
| SARCASTIC | 609 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0003 | 1 | 0.2571 | - |
| 0.0172 | 50 | 0.251 | - |
| 0.0344 | 100 | 0.2556 | - |
| 0.0517 | 150 | 0.2513 | - |
| 0.0689 | 200 | 0.2531 | - |
| 0.0861 | 250 | 0.2518 | - |
| 0.1033 | 300 | 0.2553 | - |
| 0.1206 | 350 | 0.2501 | - |
| 0.1378 | 400 | 0.2546 | - |
| 0.1550 | 450 | 0.2506 | - |
| 0.1722 | 500 | 0.2317 | - |
| 0.1895 | 550 | 0.093 | - |
| 0.2067 | 600 | 0.0139 | - |
| 0.2239 | 650 | 0.0166 | - |
| 0.2411 | 700 | 0.0053 | - |
| 0.2584 | 750 | 0.0013 | - |
| 0.2756 | 800 | 0.0121 | - |
| 0.2928 | 850 | 0.0096 | - |
| 0.3100 | 900 | 0.0043 | - |
| 0.3272 | 950 | 0.0014 | - |
| 0.3445 | 1000 | 0.0009 | - |
| 0.3617 | 1050 | 0.0117 | - |
| 0.3789 | 1100 | 0.0144 | - |
| 0.3961 | 1150 | 0.0084 | - |
| 0.4134 | 1200 | 0.0006 | - |
| 0.4306 | 1250 | 0.0005 | - |
| 0.4478 | 1300 | 0.0081 | - |
| 0.4650 | 1350 | 0.0144 | - |
| 0.4823 | 1400 | 0.0045 | - |
| 0.4995 | 1450 | 0.0042 | - |
| 0.5167 | 1500 | 0.0005 | - |
| 0.5339 | 1550 | 0.003 | - |
| 0.5512 | 1600 | 0.0004 | - |
| 0.5684 | 1650 | 0.0005 | - |
| 0.5856 | 1700 | 0.0004 | - |
| 0.6028 | 1750 | 0.0004 | - |
| 0.6200 | 1800 | 0.0026 | - |
| 0.6373 | 1850 | 0.0004 | - |
| 0.6545 | 1900 | 0.0004 | - |
| 0.6717 | 1950 | 0.0003 | - |
| 0.6889 | 2000 | 0.0014 | - |
| 0.7062 | 2050 | 0.0004 | - |
| 0.7234 | 2100 | 0.0003 | - |
| 0.7406 | 2150 | 0.0003 | - |
| 0.7578 | 2200 | 0.0004 | - |
| 0.7751 | 2250 | 0.0003 | - |
| 0.7923 | 2300 | 0.0003 | - |
| 0.8095 | 2350 | 0.0003 | - |
| 0.8267 | 2400 | 0.0003 | - |
| 0.8440 | 2450 | 0.0003 | - |
| 0.8612 | 2500 | 0.0003 | - |
| 0.8784 | 2550 | 0.0003 | - |
| 0.8956 | 2600 | 0.0003 | - |
| 0.9128 | 2650 | 0.0003 | - |
| 0.9301 | 2700 | 0.0003 | - |
| 0.9473 | 2750 | 0.0004 | - |
| 0.9645 | 2800 | 0.0003 | - |
| 0.9817 | 2850 | 0.0003 | - |
| 0.9990 | 2900 | 0.0036 | - |
| 1.0162 | 2950 | 0.0003 | - |
| 1.0334 | 3000 | 0.0003 | - |
| 1.0506 | 3050 | 0.0002 | - |
| 1.0679 | 3100 | 0.0002 | - |
| 1.0851 | 3150 | 0.0002 | - |
| 1.1023 | 3200 | 0.0002 | - |
| 1.1195 | 3250 | 0.0002 | - |
| 1.1368 | 3300 | 0.0003 | - |
| 1.1540 | 3350 | 0.0004 | - |
| 1.1712 | 3400 | 0.0002 | - |
| 1.1884 | 3450 | 0.0002 | - |
| 1.2056 | 3500 | 0.0002 | - |
| 1.2229 | 3550 | 0.0002 | - |
| 1.2401 | 3600 | 0.0002 | - |
| 1.2573 | 3650 | 0.0009 | - |
| 1.2745 | 3700 | 0.0002 | - |
| 1.2918 | 3750 | 0.0002 | - |
| 1.3090 | 3800 | 0.0002 | - |
| 1.3262 | 3850 | 0.0002 | - |
| 1.3434 | 3900 | 0.0002 | - |
| 1.3607 | 3950 | 0.0002 | - |
| 1.3779 | 4000 | 0.0002 | - |
| 1.3951 | 4050 | 0.0002 | - |
| 1.4123 | 4100 | 0.0002 | - |
| 1.4296 | 4150 | 0.0002 | - |
| 1.4468 | 4200 | 0.0003 | - |
| 1.4640 | 4250 | 0.0002 | - |
| 1.4812 | 4300 | 0.0002 | - |
| 1.4984 | 4350 | 0.0002 | - |
| 1.5157 | 4400 | 0.0002 | - |
| 1.5329 | 4450 | 0.0002 | - |
| 1.5501 | 4500 | 0.0002 | - |
| 1.5673 | 4550 | 0.0002 | - |
| 1.5846 | 4600 | 0.0002 | - |
| 1.6018 | 4650 | 0.0002 | - |
| 1.6190 | 4700 | 0.0002 | - |
| 1.6362 | 4750 | 0.0002 | - |
| 1.6535 | 4800 | 0.0002 | - |
| 1.6707 | 4850 | 0.0002 | - |
| 1.6879 | 4900 | 0.0002 | - |
| 1.7051 | 4950 | 0.0002 | - |
| 1.7224 | 5000 | 0.0003 | - |
| 1.7396 | 5050 | 0.0002 | - |
| 1.7568 | 5100 | 0.0002 | - |
| 1.7740 | 5150 | 0.0002 | - |
| 1.7913 | 5200 | 0.0002 | - |
| 1.8085 | 5250 | 0.0002 | - |
| 1.8257 | 5300 | 0.0038 | - |
| 1.8429 | 5350 | 0.0002 | - |
| 1.8601 | 5400 | 0.0002 | - |
| 1.8774 | 5450 | 0.0002 | - |
| 1.8946 | 5500 | 0.0002 | - |
| 1.9118 | 5550 | 0.0002 | - |
| 1.9290 | 5600 | 0.0005 | - |
| 1.9463 | 5650 | 0.0002 | - |
| 1.9635 | 5700 | 0.0002 | - |
| 1.9807 | 5750 | 0.0002 | - |
| 1.9979 | 5800 | 0.0002 | - |
| 2.0152 | 5850 | 0.0001 | - |
| 2.0324 | 5900 | 0.0002 | - |
| 2.0496 | 5950 | 0.0002 | - |
| 2.0668 | 6000 | 0.0002 | - |
| 2.0841 | 6050 | 0.0002 | - |
| 2.1013 | 6100 | 0.0002 | - |
| 2.1185 | 6150 | 0.0002 | - |
| 2.1357 | 6200 | 0.0001 | - |
| 2.1529 | 6250 | 0.0002 | - |
| 2.1702 | 6300 | 0.0002 | - |
| 2.1874 | 6350 | 0.0001 | - |
| 2.2046 | 6400 | 0.0001 | - |
| 2.2218 | 6450 | 0.0001 | - |
| 2.2391 | 6500 | 0.0001 | - |
| 2.2563 | 6550 | 0.0001 | - |
| 2.2735 | 6600 | 0.0001 | - |
| 2.2907 | 6650 | 0.0001 | - |
| 2.3080 | 6700 | 0.0001 | - |
| 2.3252 | 6750 | 0.0001 | - |
| 2.3424 | 6800 | 0.0001 | - |
| 2.3596 | 6850 | 0.0001 | - |
| 2.3769 | 6900 | 0.0001 | - |
| 2.3941 | 6950 | 0.0001 | - |
| 2.4113 | 7000 | 0.0001 | - |
| 2.4285 | 7050 | 0.0001 | - |
| 2.4457 | 7100 | 0.0001 | - |
| 2.4630 | 7150 | 0.0001 | - |
| 2.4802 | 7200 | 0.0001 | - |
| 2.4974 | 7250 | 0.0001 | - |
| 2.5146 | 7300 | 0.0001 | - |
| 2.5319 | 7350 | 0.0001 | - |
| 2.5491 | 7400 | 0.0001 | - |
| 2.5663 | 7450 | 0.0001 | - |
| 2.5835 | 7500 | 0.0001 | - |
| 2.6008 | 7550 | 0.0001 | - |
| 2.6180 | 7600 | 0.0001 | - |
| 2.6352 | 7650 | 0.0001 | - |
| 2.6524 | 7700 | 0.0001 | - |
| 2.6697 | 7750 | 0.0001 | - |
| 2.6869 | 7800 | 0.0001 | - |
| 2.7041 | 7850 | 0.0001 | - |
| 2.7213 | 7900 | 0.0001 | - |
| 2.7385 | 7950 | 0.0001 | - |
| 2.7558 | 8000 | 0.0001 | - |
| 2.7730 | 8050 | 0.0001 | - |
| 2.7902 | 8100 | 0.0001 | - |
| 2.8074 | 8150 | 0.0001 | - |
| 2.8247 | 8200 | 0.0001 | - |
| 2.8419 | 8250 | 0.0001 | - |
| 2.8591 | 8300 | 0.0001 | - |
| 2.8763 | 8350 | 0.0001 | - |
| 2.8936 | 8400 | 0.0001 | - |
| 2.9108 | 8450 | 0.0001 | - |
| 2.9280 | 8500 | 0.0001 | - |
| 2.9452 | 8550 | 0.0001 | - |
| 2.9625 | 8600 | 0.0001 | - |
| 2.9797 | 8650 | 0.0001 | - |
| 2.9969 | 8700 | 0.0001 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
Base model
BAAI/bge-small-en-v1.5