|
|
--- |
|
|
license: cc-by-4.0 |
|
|
task_categories: |
|
|
- other |
|
|
tags: |
|
|
- physics |
|
|
- high-energy-physics |
|
|
- particle-physics |
|
|
- collider-physics |
|
|
- tracking |
|
|
- calorimetry |
|
|
- machine-learning |
|
|
- simulation |
|
|
- particle-tracking |
|
|
- jet-tagging |
|
|
pretty_name: ColliderML Dataset Release 1 |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
--- |
|
|
|
|
|
# ColliderML: Dataset Release 1 |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
This dataset contains simulated high-energy physics collision events generated using the **Open Data Detector (ODD)** geometry within the **Key4hep** and **ACTS (A Common Tracking Software)** frameworks, representing a generic collider detector similar to those at the HL-LHC. |
|
|
|
|
|
### Dataset Summary |
|
|
|
|
|
- **Collision Energy**: 14 TeV (proton-proton) |
|
|
- **Detector**: Open Data Detector (ODD) |
|
|
- **Simulation**: DD4hep + Geant4 + ACTS |
|
|
- **Format**: Apache Parquet with list columns for variable-length data |
|
|
- **License**: CC-BY-4.0 |
|
|
|
|
|
### Available Configurations |
|
|
|
|
|
The dataset is organized into multiple configurations, each representing a combination of: |
|
|
- **Physics process** (e.g., ttbar, ggf, dihiggs) |
|
|
- **Pileup condition** (pu0 = no pileup, pu200 = HL-LHC pileup) |
|
|
- **Object type** (particles, tracker_hits, calo_hits, tracks) |
|
|
|
|
|
### Supported Tasks |
|
|
|
|
|
This dataset is designed for machine learning tasks in high-energy physics, including: |
|
|
|
|
|
- **Particle tracking**: Reconstruct charged particle trajectories from detector hits |
|
|
- **Track-to-particle matching**: Associate reconstructed tracks with truth particles |
|
|
- **Jet tagging**: Identify jets originating from top quarks, b-quarks, or light quarks |
|
|
- **Energy reconstruction**: Predict particle energies from calorimeter deposits |
|
|
- **Physics analysis**: Event classification (signal vs. background discrimination) |
|
|
- **Representation learning**: Study hierarchical information at different detector levels |
|
|
|
|
|
## Quick Start |
|
|
|
|
|
### Installation |
|
|
|
|
|
```bash |
|
|
pip install datasets pyarrow |
|
|
``` |
|
|
|
|
|
### Load a Configuration |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load truth particles from ttbar (no pileup) |
|
|
particles = load_dataset( |
|
|
"OpenDataDetector/ColliderML-Release-1", |
|
|
"ttbar_pu0_particles", |
|
|
split="train" |
|
|
) |
|
|
|
|
|
print(f"Loaded {len(particles)} events") |
|
|
print(f"Columns: {particles.column_names}") |
|
|
``` |
|
|
|
|
|
### Load First 100 Events with Specific Columns |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import numpy as np |
|
|
|
|
|
# Load only specific columns |
|
|
particles = load_dataset( |
|
|
"OpenDataDetector/ColliderML-Release-1", |
|
|
"ttbar_pu0_particles", |
|
|
split="train[:100]", |
|
|
columns=["event_id", "px", "py", "pz", "energy", "pdg_id"] |
|
|
) |
|
|
|
|
|
# Process events |
|
|
for event in particles: |
|
|
px = np.array(event['px']) |
|
|
py = np.array(event['py']) |
|
|
pt = np.sqrt(px**2 + py**2) |
|
|
print(f"Event {event['event_id']}: {len(px)} particles, mean pT = {pt.mean():.2f} GeV") |
|
|
``` |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Instances |
|
|
|
|
|
Each row represents a single collision event. Variable-length quantities (particles, hits, tracks) are stored as Parquet list columns. |
|
|
|
|
|
Example event structure: |
|
|
```python |
|
|
{ |
|
|
'event_id': 42, |
|
|
'particle_id': [0, 1, 2, 3, ...], |
|
|
'pdg_id': [11, -11, 211, ...], |
|
|
'px': [1.2, -0.5, 3.4, ...], |
|
|
'py': [0.8, 1.1, -0.3, ...], |
|
|
'pz': [5.2, -2.1, 10.5, ...], |
|
|
'energy': [5.5, 2.3, 11.2, ...], |
|
|
# ... additional fields |
|
|
} |
|
|
``` |
|
|
|
|
|
### Data Fields by Object Type |
|
|
|
|
|
#### 1. `particles` (Truth-level) |
|
|
|
|
|
Truth information about generated particles before detector simulation. |
|
|
|
|
|
| Field | Type | Description | |
|
|
|-------|------|-------------| |
|
|
| `event_id` | uint32 | Unique event identifier | |
|
|
| `particle_id` | list\<uint64\> | Unique particle ID within event | |
|
|
| `pdg_id` | list\<int64\> | PDG particle code (11=electron, 13=muon, 211=pion, etc.) | |
|
|
| `mass` | list\<float32\> | Particle rest mass (GeV/c²) | |
|
|
| `energy` | list\<float32\> | Particle total energy (GeV) | |
|
|
| `charge` | list\<float32\> | Electric charge (units of e) | |
|
|
| `px`, `py`, `pz` | list\<float32\> | Momentum components (GeV/c) | |
|
|
| `vx`, `vy`, `vz` | list\<float32\> | Vertex position (mm) | |
|
|
| `time` | list\<float32\> | Production time (ns) | |
|
|
| `perigee_d0` | list\<float32\> | Perigee transverse impact parameter (mm) | |
|
|
| `perigee_z0` | list\<float32\> | Perigee longitudinal impact parameter (mm) | |
|
|
| `num_tracker_hits` | list\<uint16\> | Number of hits in tracker | |
|
|
| `num_calo_hits` | list\<uint16\> | Number of hits in calorimeter | |
|
|
| `primary` | list\<bool\> | Whether particle is primary | |
|
|
| `vertex_primary` | list\<uint16\> | Primary vertex index (1=hard scatter) | |
|
|
| `parent_id` | list\<int64\> | ID of parent particle (-1 if none) | |
|
|
|
|
|
#### 2. `tracker_hits` (Detector-level) |
|
|
|
|
|
Digitized spatial measurements from the tracking detector (silicon sensors). |
|
|
|
|
|
| Field | Type | Description | |
|
|
|-------|------|-------------| |
|
|
| `event_id` | uint32 | Unique event identifier | |
|
|
| `x`, `y`, `z` | list\<float32\> | Measured hit position (mm) | |
|
|
| `true_x`, `true_y`, `true_z` | list\<float32\> | True hit position before digitization (mm) | |
|
|
| `time` | list\<float32\> | Hit time (ns) | |
|
|
| `particle_id` | list\<uint64\> | Truth particle that created this hit | |
|
|
| `volume_id` | list\<uint8\> | Detector volume identifier | |
|
|
| `layer_id` | list\<uint16\> | Detector layer number | |
|
|
| `surface_id` | list\<uint32\> | Sensor surface identifier | |
|
|
| `detector` | list\<uint8\> | Detector subsystem code | |
|
|
|
|
|
#### 3. `calo_hits` (Calorimeter-level) |
|
|
|
|
|
Energy deposits in the calorimeter system (electromagnetic + hadronic). |
|
|
|
|
|
| Field | Type | Description | |
|
|
|-------|------|-------------| |
|
|
| `event_id` | uint32 | Unique event identifier | |
|
|
| `detector` | list\<uint8\> | Calorimeter subsystem code | |
|
|
| `total_energy` | list\<float32\> | Total energy deposited in cell (GeV) | |
|
|
| `x`, `y`, `z` | list\<float32\> | Cell center position (mm) | |
|
|
| `contrib_particle_ids` | list\<list\<uint64\>\> | IDs of particles contributing to this cell | |
|
|
| `contrib_energies` | list\<list\<float32\>\> | Energy contribution from each particle (GeV) | |
|
|
| `contrib_times` | list\<list\<float32\>\> | Time of each contribution (ns) | |
|
|
|
|
|
#### 4. `tracks` (Reconstruction-level) |
|
|
|
|
|
Reconstructed particle tracks from ACTS pattern recognition and track fitting. |
|
|
|
|
|
| Field | Type | Description | |
|
|
|-------|------|-------------| |
|
|
| `event_id` | uint32 | Unique event identifier | |
|
|
| `track_id` | list\<uint16\> | Unique track identifier within event | |
|
|
| `majority_particle_id` | list\<uint64\> | Truth particle with most hits on this track | |
|
|
| `d0` | list\<float32\> | Transverse impact parameter (mm) | |
|
|
| `z0` | list\<float32\> | Longitudinal impact parameter (mm) | |
|
|
| `phi` | list\<float32\> | Azimuthal angle (radians) | |
|
|
| `theta` | list\<float32\> | Polar angle (radians) | |
|
|
| `qop` | list\<float32\> | Charge divided by momentum (e/GeV) | |
|
|
| `hit_ids` | list\<list\<uint32\>\> | List of tracker hit IDs on this track | |
|
|
|
|
|
**Derived quantities for tracks:** |
|
|
- Transverse momentum: `pt = abs(1/qop) * sin(theta)` |
|
|
- Pseudorapidity: `eta = -ln(tan(theta/2))` |
|
|
- Total momentum: `p = abs(1/qop)` |
|
|
|
|
|
## Dataset Creation |
|
|
|
|
|
### Simulation Chain |
|
|
|
|
|
1. **Event Generation**: MadGraph5 + Pythia8 for hard scatter and parton shower |
|
|
2. **Detector Simulation**: Geant4 via DD4hep with the Open Data Detector geometry |
|
|
3. **Digitization**: Realistic detector response simulation |
|
|
4. **Reconstruction**: ACTS track finding and fitting algorithms |
|
|
5. **Format Conversion**: EDM4HEP → Parquet using the ColliderML pipeline |
|
|
|
|
|
### Software Stack |
|
|
|
|
|
- **ACTS**: A Common Tracking Software - https://acts.readthedocs.io/ |
|
|
- **Open Data Detector**: https://github.com/acts-project/odd |
|
|
- **Key4hep**: https://key4hep.github.io/ |
|
|
- **EDM4HEP**: https://edm4hep.web.cern.ch/ |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@dataset{colliderml_release1_2025, |
|
|
title={{ColliderML Dataset Release 1}}, |
|
|
author={{ColliderML Collaboration}}, |
|
|
year={2025}, |
|
|
publisher={Hugging Face}, |
|
|
howpublished={\url{https://huggingface.co/datasets/OpenDataDetector/ColliderML-Release-1}}, |
|
|
note={Simulation performed using ACTS and the Open Data Detector} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Support |
|
|
|
|
|
For questions, issues, or feature requests: |
|
|
- **Email**: [email protected] |
|
|
- **GitHub**: https://github.com/OpenDataDetector/ColliderML |
|
|
|
|
|
## Acknowledgments |
|
|
|
|
|
This work was supported by: |
|
|
- NERSC computing resources (National Energy Research Scientific Computing Center) |
|
|
- U.S. Department of Energy, Office of Science |
|
|
- Danish Data Science Academy (DDSA) |
|
|
|
|
|
--- |
|
|
|
|
|
**Release Version**: 1.0 |
|
|
**Last Updated**: November 2025 |
|
|
|