license: mit
task_categories:
- question-answering
size_categories:
- 1K<n<10K
BMIKE-53: Cross-Lingual In-Context Knowledge Editing Benchmark
This repo presents the code and data for the ACL 2025 paper: "BMIKE-53: Investigating Cross-Lingual Knowledge Editing with In-Context Learning".
Overview
BMIKE-53 is the first comprehensive multilingual benchmark for Cross-Lingual In-Context Knowledge Editing (IKE). It covers 53 languages and unifies three widely used knowledge editing datasets (zsRE, CounterFact, WikiFactDiff) into a consistent, multilingual format. This resource enables systematic evaluation and analysis of knowledge editing capabilities in large language models (LLMs) across a broad spectrum of languages and knowledge scenarios.
Table of Contents
Datasets
- zsRE: Zero-shot relation extraction, regular fact modifications.
- CounterFact: Counterfactual (fabricated) fact edits for testing knowledge locality.
- WikiFactDiff: Real-world, temporally dynamic factual updates derived from WikiData.
Supported Languages
BMIKE-53 covers 53 languages, including:
af, ar, az, be, bg, bn, ca, ceb, cs, cy, da, de, el, es, et, eu, fa, fi, fr, ga, gl, he, hi, hr, hu, hy, id, it, ja, ka, ko, la, lt, lv, ms, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, ta, th, tr, uk, ur, vi, zh, en.
See data/lang.json for details.
Benchmark Structure
Data Format
Each BMIKE-53 data sample is structured as a dictionary with entries for each language (e.g., "en" for English, "de" for German, etc.). Each language-specific entry contains:
case_id: Unique identifier for the knowledge edit case.subject: The subject entity or person the knowledge edit is about.src: The original query (reliability type), directly matching the edited knowledge.rephrase: A paraphrased version of the original query, testing generalization.old: The original (pre-edit) answer to the query.alt: The updated (post-edit) answer reflecting the new knowledge.loc: A locality control query about an unrelated subject, testing if unrelated knowledge is preserved.loc_ans: The correct answer for the locality query.port: A portability query about a related (one-hop) aspect, testing the transfer of edited knowledge.port_ans: The correct answer for the portability query.
All values are language-specific translations, and the same structure is repeated for each supported language.
Example:
{
"en": {
"case_id": 5,
"subject": "Bhagwant Mann",
"src": "What position did Bhagwant Mann hold?",
"rephrase": "What role did Bhagwant Mann serve in?",
"old": "Member of the 17th Lok Sabha",
"alt": "Chief Minister of Punjab",
"loc": "Who was Dipsinh Shankarsinh Rathod?",
"loc_ans": "Member of the 17th Lok Sabha",
"port": "Who is the current officeholder of the position previously held by Bhagwant Mann?",
"port_ans": "Amarinder Singh"
},
"de": {
"case_id": 5,
"subject": "Bhagwant Mann",
"src": "Welche Position hatte Bhagwant Mann inne?",
"rephrase": "Welche Rolle hat Bhagwant Mann ausgeübt?",
"old": "Mitglied des 17. Lok Sabha",
"alt": "Chief Minister von Punjab",
"loc": "Wer war Dipsinh Shankarsinh Rathod?",
"loc_ans": "Mitglied des 17. Lok Sabha",
"port": "Wer ist der aktuelle Amtsinhaber der Position, die zuvor von Bhagwant Mann gehalten wurde?",
"port_ans": "Amarinder Singh"
}
}
Files
- Benchmark data is organized under the
/data/BMIKE53/directory, with three subfolders corresponding to each dataset:/CounterFact//WikiFactDiff//zsRE/
- Each dataset folder contains test files for all 53 languages, named using the pattern:
zsre_test_{lang}.json(e.g.,zsre_test_en.json,zsre_test_de.json, etc.)counterfact_test_{lang}.jsonwikifactdiff_test_{lang}.json
- Each file contains the test set for one language in JSON format, following the unified BMIKE-53 data structure.
- Example:
data/BMIKE53/zsRE/zsre_test_en.json data/BMIKE53/zsRE/zsre_test_de.json data/BMIKE53/CounterFact/counterfact_test_en.json data/BMIKE53/WikiFactDiff/wikifactdiff_test_en.json
Citation
If you use BMIKE-53, please cite:
@inproceedings{nie2025bmike53,
title={BMIKE-53: Investigating Cross-Lingual Knowledge Editing with In-Context Learning},
author={Nie, Ercong and Shao, Bo and Wang, Mingyang and Ding, Zifeng and Schmid, Helmut and Sch{\"u}tze, Hinrich},
booktitle={Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)},
year={2025}
}
License
This project is licensed under the MIT License.