ASRCONTRI / app.py
kasimali
Update app.py
54c7199 verified
import os
import re
import gradio as gr
import fasttext
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
# ----------------------------
# Download required models
# ----------------------------
print("Downloading IndicLID models...")
FTN_PATH = hf_hub_download("ai4bharat/IndicLID-FTN", filename="model_baseline_roman.bin")
FTR_PATH = hf_hub_download("ai4bharat/IndicLID-FTR", filename="model_baseline_roman.bin")
BERT_PATH = hf_hub_download("ai4bharat/IndicLID-BERT", filename="basline_nn_simple.pt")
print("Download complete.")
# ----------------------------
# Data helper for BERT batching
# ----------------------------
class IndicBERT_Data(Dataset):
def __init__(self, indices, X):
self.x = list(X)
self.i = list(indices)
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
return self.i[idx], self.x[idx]
# ----------------------------
# IndicLID Class
# ----------------------------
class IndicLID:
def __init__(self, input_threshold=0.5, roman_lid_threshold=0.6):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.FTN = fasttext.load_model(FTN_PATH)
self.FTR = fasttext.load_model(FTR_PATH)
self.BERT = torch.load(BERT_PATH, map_location=self.device)
self.BERT.eval()
self.tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBERTv2-MLM-only")
self.input_threshold = input_threshold
self.model_threshold = roman_lid_threshold
# Official label map
self.label_map_reverse = {
0:'asm_Latn',1:'ben_Latn',2:'brx_Latn',3:'guj_Latn',4:'hin_Latn',
5:'kan_Latn',6:'kas_Latn',7:'kok_Latn',8:'mai_Latn',9:'mal_Latn',
10:'mni_Latn',11:'mar_Latn',12:'nep_Latn',13:'ori_Latn',14:'pan_Latn',
15:'san_Latn',16:'snd_Latn',17:'tam_Latn',18:'tel_Latn',19:'urd_Latn',
20:'eng_Latn',21:'other',22:'asm_Beng',23:'ben_Beng',24:'brx_Deva',
25:'doi_Deva',26:'guj_Gujr',27:'hin_Deva',28:'kan_Knda',29:'kas_Arab',
30:'kas_Deva',31:'kok_Deva',32:'mai_Deva',33:'mal_Mlym',34:'mni_Beng',
35:'mni_Meti',36:'mar_Deva',37:'nep_Deva',38:'ori_Orya',39:'pan_Guru',
40:'san_Deva',41:'sat_Olch',42:'snd_Arab',43:'tam_Tamil',44:'tel_Telu',
45:'urd_Arab'
}
def char_percent_check(self, text):
total_chars = sum(c.isalpha() for c in text)
roman_chars = sum(bool(re.match(r"[A-Za-z]", c)) for c in text)
return roman_chars / total_chars if total_chars else 0
def native_inference(self, data, out_dict):
if not data: return out_dict
texts = [x[1] for x in data]
preds = self.FTN.predict(texts)
for (idx, txt), lbls, scrs in zip(data, preds[0], preds[1]):
out_dict[idx] = {"text": txt, "label": lbls[0][9:], "score": float(scrs[0]), "model": "FTN"}
return out_dict
def ftr_inference(self, data, out_dict, batch_size):
if not data: return out_dict
texts = [x[1] for x in data]
preds = self.FTR.predict(texts)
bert_inputs = []
for (idx, txt), lbls, scrs in zip(data, preds[0], preds[1]):
if float(scrs[0]) > self.model_threshold:
out_dict[idx] = {"text": txt, "label": lbls[0][9:], "score": float(scrs[0]), "model": "FTR"}
else:
bert_inputs.append((idx, txt))
return self.bert_inference(bert_inputs, out_dict, batch_size)
def bert_inference(self, data, out_dict, batch_size):
if not data: return out_dict
ds = IndicBERT_Data([x[0] for x in data], [x[1] for x in data])
dl = DataLoader(ds, batch_size=batch_size)
with torch.no_grad():
for idxs, texts in dl:
enc = self.tokenizer(list(texts), return_tensors="pt", padding=True,
truncation=True, max_length=512).to(self.device)
outputs = self.BERT(**enc)
preds = torch.argmax(outputs.logits, dim=1)
probs = torch.softmax(outputs.logits, dim=1)
for batch_i, p in enumerate(preds):
i = idxs[batch_i].item()
label_idx = p.item()
out_dict[i] = {
"text": texts[batch_i],
"label": self.label_map_reverse[label_idx],
"score": probs[batch_i, label_idx].item(),
"model": "BERT"
}
return out_dict
def batch_predict(self, texts, batch_size=8):
native, roman = [], []
for i, t in enumerate(texts):
if self.char_percent_check(t) > self.input_threshold:
roman.append((i, t))
else:
native.append((i, t))
out_dict = {}
out_dict = self.native_inference(native, out_dict)
out_dict = self.ftr_inference(roman, out_dict, batch_size)
return [out_dict[i] for i in sorted(out_dict.keys())]
# ----------------------------
# Gradio UI
# ----------------------------
lid_model = IndicLID()
def detect(text_block):
lines = [l.strip() for l in text_block.splitlines() if l.strip()]
if not lines:
return []
return lid_model.batch_predict(lines)
with gr.Blocks(title="IndicLID by AI4Bharat") as demo:
gr.Markdown("## IndicLID (AI4Bharat) — Full Ensemble\nDetects Indian languages in native & roman scripts.")
inp = gr.Textbox(lines=8, label="Enter one sentence per line")
out = gr.JSON(label="Predictions")
btn = gr.Button("Detect Language")
btn.click(fn=detect, inputs=inp, outputs=out)
if __name__ == "__main__":
demo.launch()