Pi0Fast
Collection
π₀ Fast base models
•
3 items
•
Updated
•
2
PI0Fast is a Vision-Language-Action (VLA) policy that predicts continuous robot actions via autoregressive next-token prediction over FAST action tokens.
Checkpoint trained and evaluated on LIBERO tasks: 82.5 % SR on all tasks.
Original authors / paper: FAST: Efficient Action Tokenization for Vision-Language-Action Models Implementation: This LeRobot implementation follows the original reference code for compatibility. Reference implementation: [https://github.com/Physical-Intelligence/openpi]
pip install "lerobot[pi]@git+https://github.com/huggingface/lerobot.git"
For full installation details (including optional video dependencies such as ffmpeg for torchcodec), see the official documentation: https://huggingface.co/docs/lerobot/installation
select_action
import torch
from lerobot.datasets.lerobot_dataset import LeRobotDataset
from lerobot.policies.factory import make_pre_post_processors
# Swap this import per-policy
from lerobot.policies.pi0_fast.modeling_pi0_fast import PI0FastPolicy
# load a policy
model_id = "lerobot/pi0fast-libero" # <- swap checkpoint
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
policy = PI0FastPolicy.from_pretrained(model_id).to(device).eval()
preprocess, postprocess = make_pre_post_processors(
policy.config,
model_id,
preprocessor_overrides={"device_processor": {"device": str(device)}},
)
# load a lerobotdataset
dataset = LeRobotDataset("lerobot/libero")
# pick an episode
episode_index = 0
# each episode corresponds to a contiguous range of frame indices
from_idx = dataset.meta.episodes["dataset_from_index"][episode_index]
to_idx = dataset.meta.episodes["dataset_to_index"][episode_index]
# get a single frame from that episode (e.g. the first frame)
frame_index = from_idx
frame = dict(dataset[frame_index])
batch = preprocess(frame)
with torch.inference_mode():
pred_action = policy.select_action(batch)
# use your policy postprocess, this post process the action
# for instance unnormalize the actions, detokenize it etc..
pred_action = postprocess(pred_action)
If you’re training / fine-tuning, you typically call forward(...) to get a loss and then:
policy.train()
batch = dict(dataset[0])
batch = preprocess(batch)
loss, outputs = policy.forward(batch)
loss.backward()
Notes:
- Some policies expose
policy(**batch)or return a dict; keep this snippet aligned with the policy API.- Use your trainer script (
lerobot-train) for full training loops.
lerobot-train \
--dataset.repo_id=HuggingFaceVLA/libero \
--output_dir=./outputs/[RUN_NAME] \
--job_name=[RUN_NAME] \
--policy.repo_id=[THIS_REPO_OR_CHECKPOINT] \
--policy.path=lerobot/[BASE_CHECKPOINT] \
--policy.dtype=bfloat16 \
--policy.device=cuda \
--steps=100000 \
--batch_size=4
Add policy-specific flags below:
-policy.chunk_size=...-policy.n_action_steps=...-policy.max_action_tokens=...-policy.gradient_checkpointing=trueYou can evaluate the model in Libero environment.
lerobot-eval \
--policy.path=lerobot/pi0fast-libero \
--env.type=libero \
--env.task=libero_object \
--eval.batch_size=1 \
--eval.n_episodes=20