metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
sentences:
- 其他机械和设备租赁服务工作人员
- 电子和电信设备及零部件物流经理
- 工业主厨
- source_sentence: 公交车司机
sentences:
- 表演灯光设计师
- 乙烯基地板安装工
- 国际巴士司机
- source_sentence: online communication manager
sentences:
- trades union official
- social media manager
- budget manager
- source_sentence: Projektmanagerin
sentences:
- Projektmanager/Projektmanagerin
- Category-Manager
- Infanterist
- source_sentence: Volksvertreter
sentences:
- Parlamentarier
- Oberbürgermeister
- Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9904761904761905
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5147619047619048
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.31999999999999995
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.19047619047619047
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.1361904761904762
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.10542857142857143
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06854687410617222
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5491240579458434
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7553654907661455
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8503209224897438
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8994749092946579
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9207884118691805
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6666666666666666
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6952098522285352
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7229572913271685
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7732532874348539
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7947334799125039
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.8038564389556094
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6666666666666666
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8182539682539683
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8182539682539683
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8182539682539683
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8182539682539683
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8182539682539683
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6666666666666666
name: Cosine Map@1
- type: cosine_map@20
value: 0.5566401101002375
name: Cosine Map@20
- type: cosine_map@50
value: 0.55344017265156
name: Cosine Map@50
- type: cosine_map@100
value: 0.5852249415484134
name: Cosine Map@100
- type: cosine_map@150
value: 0.5943042662925763
name: Cosine Map@150
- type: cosine_map@200
value: 0.5975837437975446
name: Cosine Map@200
- type: cosine_map@500
value: 0.6015742986218369
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.12432432432432433
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.12432432432432433
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.575945945945946
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.3923243243243244
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.2565945945945946
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.19282882882882882
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1527837837837838
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0036138931714884822
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.3852888120551914
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5659574514538841
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.6898678629281393
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7540209165372845
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7858170054407897
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.12432432432432433
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6168674053047035
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5913690595071309
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.62350509928888
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.6556716735369459
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6716557949894583
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.12432432432432433
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5581081081081081
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5581081081081081
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5581081081081081
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5581081081081081
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5581081081081081
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.12432432432432433
name: Cosine Map@1
- type: cosine_map@20
value: 0.48407152706202555
name: Cosine Map@20
- type: cosine_map@50
value: 0.43043374125481026
name: Cosine Map@50
- type: cosine_map@100
value: 0.43735327570764515
name: Cosine Map@100
- type: cosine_map@150
value: 0.45269435912524697
name: Cosine Map@150
- type: cosine_map@200
value: 0.45930097680668164
name: Cosine Map@200
- type: cosine_map@500
value: 0.47204219228541466
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9753694581280788
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9852216748768473
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9901477832512315
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9901477832512315
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9901477832512315
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5103448275862069
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.36935960591133016
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.23965517241379314
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.1807881773399015
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1461576354679803
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.3207974783481294
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5042046446720455
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.6172666777909689
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.6848138831682932
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7253195006357535
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.537849085734973
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5288037060639387
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5551941695921919
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5887611959940118
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6092219717029682
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5164773875147672
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5167647438366063
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5168213657719442
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5168213657719442
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5168213657719442
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.398398563122481
name: Cosine Map@20
- type: cosine_map@50
value: 0.36032758502543594
name: Cosine Map@50
- type: cosine_map@100
value: 0.3632259128424842
name: Cosine Map@100
- type: cosine_map@150
value: 0.37822275477623696
name: Cosine Map@150
- type: cosine_map@200
value: 0.3863148456840816
name: Cosine Map@200
- type: cosine_map@500
value: 0.399227009561676
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.6796116504854369
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9805825242718447
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9902912621359223
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9902912621359223
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9902912621359223
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9902912621359223
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6796116504854369
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.488349514563107
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.29631067961165053
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.17883495145631062
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.12776699029126212
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.09990291262135924
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06931865009287731
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5250914458143515
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7082715439925011
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8169166539243944
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8613232254521018
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8898175710074696
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6796116504854369
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6680745295820606
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6856578240865067
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7378907298421352
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7576651805692517
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7696718049970358
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6796116504854369
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8158576051779936
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.816279724215562
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.816279724215562
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.816279724215562
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.816279724215562
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6796116504854369
name: Cosine Map@1
- type: cosine_map@20
value: 0.522177160195635
name: Cosine Map@20
- type: cosine_map@50
value: 0.5082601209392789
name: Cosine Map@50
- type: cosine_map@100
value: 0.5371705298206915
name: Cosine Map@100
- type: cosine_map@150
value: 0.5454012672534121
name: Cosine Map@150
- type: cosine_map@200
value: 0.5494570875591636
name: Cosine Map@200
- type: cosine_map@500
value: 0.5542116087189223
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.7087883515340614
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9552782111284451
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9802392095683827
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9901196047841914
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9937597503900156
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9958398335933437
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.7087883515340614
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12158086323452937
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05122204888195529
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.026125845033801356
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.017548968625411682
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013239729589183572
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.2737959042171211
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.8990032934650719
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9459438377535101
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9650979372508233
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9731582596637198
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.979086496793205
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.7087883515340614
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.7814741332820433
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7944033394497885
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7986024294603647
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.8001222520801115
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.801183843730514
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.7087883515340614
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7804158804359833
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7812547046826683
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7813961782842836
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7814280971923943
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7814392363829243
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.7087883515340614
name: Cosine Map@1
- type: cosine_map@20
value: 0.7070596364024803
name: Cosine Map@20
- type: cosine_map@50
value: 0.7106867578203881
name: Cosine Map@50
- type: cosine_map@100
value: 0.7112928928384499
name: Cosine Map@100
- type: cosine_map@150
value: 0.7114314004578745
name: Cosine Map@150
- type: cosine_map@200
value: 0.711504950521157
name: Cosine Map@200
- type: cosine_map@500
value: 0.7116431478000537
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.6484659386375455
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9323972958918356
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.968278731149246
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.984919396775871
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9885595423816953
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9937597503900156
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6484659386375455
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12093083723348932
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05140925637025482
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02647425897035882
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.017892182353960822
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013530941237649509
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.2435517420696828
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.87873114924597
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9319899462645173
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9596117178020455
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9718322066215982
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9799791991679667
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6484659386375455
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.7448150588358
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7595232400510039
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7656851368194345
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7681576326024331
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7696474672652458
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6484659386375455
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7323691045739125
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.733538875120878
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.733776247038599
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7338087409764548
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7338398642058079
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6484659386375455
name: Cosine Map@1
- type: cosine_map@20
value: 0.6646138211839377
name: Cosine Map@20
- type: cosine_map@50
value: 0.6683657128313888
name: Cosine Map@50
- type: cosine_map@100
value: 0.6692634410264182
name: Cosine Map@100
- type: cosine_map@150
value: 0.669518875077899
name: Cosine Map@150
- type: cosine_map@200
value: 0.6696171599377958
name: Cosine Map@200
- type: cosine_map@500
value: 0.6697127210085475
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.7667014613778705
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9843423799582464
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9932150313152401
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9958246346555324
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9973903966597077
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9979123173277662
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.7667014613778705
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.13870041753653445
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05810020876826725
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.029598121085595
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.01986778009742519
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.014945198329853866
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.25692041952480366
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.9156576200417536
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9582637439109255
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9765483646485734
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9833768267223383
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.986464857341684
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.7667014613778705
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.8002168358295473
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.8125113081884888
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.8167350090334409
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.8181122471507385
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.8186874070081017
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.7667014613778705
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8421752732824312
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8424954415974232
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8425358910333786
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8425483391786986
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8425515411459873
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.7667014613778705
name: Cosine Map@1
- type: cosine_map@20
value: 0.7007206423896271
name: Cosine Map@20
- type: cosine_map@50
value: 0.7046277360194696
name: Cosine Map@50
- type: cosine_map@100
value: 0.7053668771050886
name: Cosine Map@100
- type: cosine_map@150
value: 0.7055166914145262
name: Cosine Map@150
- type: cosine_map@200
value: 0.7055658329670217
name: Cosine Map@200
- type: cosine_map@500
value: 0.7056512281794008
name: Cosine Map@500
Job - Job matching Alibaba-NLP/gte-multilingual-base (v2)
Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v2")
# Run inference
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
full_en,full_es,full_de,full_zh,mix_es,mix_deandmix_zh - Evaluated with
InformationRetrievalEvaluator
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|---|---|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9754 | 0.9806 | 0.9553 | 0.9324 | 0.9843 |
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9802 | 0.9683 | 0.9932 |
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9901 | 0.9849 | 0.9958 |
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9938 | 0.9886 | 0.9974 |
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9938 | 0.9979 |
| cosine_precision@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_precision@20 | 0.5148 | 0.5759 | 0.5103 | 0.4883 | 0.1216 | 0.1209 | 0.1387 |
| cosine_precision@50 | 0.32 | 0.3923 | 0.3694 | 0.2963 | 0.0512 | 0.0514 | 0.0581 |
| cosine_precision@100 | 0.1905 | 0.2566 | 0.2397 | 0.1788 | 0.0261 | 0.0265 | 0.0296 |
| cosine_precision@150 | 0.1362 | 0.1928 | 0.1808 | 0.1278 | 0.0175 | 0.0179 | 0.0199 |
| cosine_precision@200 | 0.1054 | 0.1528 | 0.1462 | 0.0999 | 0.0132 | 0.0135 | 0.0149 |
| cosine_recall@1 | 0.0685 | 0.0036 | 0.0111 | 0.0693 | 0.2738 | 0.2436 | 0.2569 |
| cosine_recall@20 | 0.5491 | 0.3853 | 0.3208 | 0.5251 | 0.899 | 0.8787 | 0.9157 |
| cosine_recall@50 | 0.7554 | 0.566 | 0.5042 | 0.7083 | 0.9459 | 0.932 | 0.9583 |
| cosine_recall@100 | 0.8503 | 0.6899 | 0.6173 | 0.8169 | 0.9651 | 0.9596 | 0.9765 |
| cosine_recall@150 | 0.8995 | 0.754 | 0.6848 | 0.8613 | 0.9732 | 0.9718 | 0.9834 |
| cosine_recall@200 | 0.9208 | 0.7858 | 0.7253 | 0.8898 | 0.9791 | 0.98 | 0.9865 |
| cosine_ndcg@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_ndcg@20 | 0.6952 | 0.6169 | 0.5378 | 0.6681 | 0.7815 | 0.7448 | 0.8002 |
| cosine_ndcg@50 | 0.723 | 0.5914 | 0.5288 | 0.6857 | 0.7944 | 0.7595 | 0.8125 |
| cosine_ndcg@100 | 0.7733 | 0.6235 | 0.5552 | 0.7379 | 0.7986 | 0.7657 | 0.8167 |
| cosine_ndcg@150 | 0.7947 | 0.6557 | 0.5888 | 0.7577 | 0.8001 | 0.7682 | 0.8181 |
| cosine_ndcg@200 | 0.8039 | 0.6717 | 0.6092 | 0.7697 | 0.8012 | 0.7696 | 0.8187 |
| cosine_mrr@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_mrr@20 | 0.8183 | 0.5581 | 0.5165 | 0.8159 | 0.7804 | 0.7324 | 0.8422 |
| cosine_mrr@50 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7813 | 0.7335 | 0.8425 |
| cosine_mrr@100 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8425 |
| cosine_mrr@150 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8425 |
| cosine_mrr@200 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8426 |
| cosine_map@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_map@20 | 0.5566 | 0.4841 | 0.3984 | 0.5222 | 0.7071 | 0.6646 | 0.7007 |
| cosine_map@50 | 0.5534 | 0.4304 | 0.3603 | 0.5083 | 0.7107 | 0.6684 | 0.7046 |
| cosine_map@100 | 0.5852 | 0.4374 | 0.3632 | 0.5372 | 0.7113 | 0.6693 | 0.7054 |
| cosine_map@150 | 0.5943 | 0.4527 | 0.3782 | 0.5454 | 0.7114 | 0.6695 | 0.7055 |
| cosine_map@200 | 0.5976 | 0.4593 | 0.3863 | 0.5495 | 0.7115 | 0.6696 | 0.7056 |
| cosine_map@500 | 0.6016 | 0.472 | 0.3992 | 0.5542 | 0.7116 | 0.6697 | 0.7057 |
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 5.68 tokens
- max: 11 tokens
- min: 3 tokens
- mean: 5.76 tokens
- max: 12 tokens
- Samples:
anchor positive air commodoreflight lieutenantcommand and control officerflight officerair commodorecommand and control officer - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 7.99 tokens
- max: 30 tokens
- min: 3 tokens
- mean: 8.19 tokens
- max: 30 tokens
- Samples:
anchor positive StaffelkommandantinKommodoreLuftwaffenoffizierinLuftwaffenoffizier/LuftwaffenoffizierinStaffelkommandantinLuftwaffenoffizierin - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 9.13 tokens
- max: 32 tokens
- min: 3 tokens
- mean: 8.84 tokens
- max: 32 tokens
- Samples:
anchor positive jefe de escuadróninstructorcomandante de aeronaveinstructor de simuladorinstructoroficial del Ejército del Aire - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 7.15 tokens
- max: 14 tokens
- min: 5 tokens
- mean: 7.46 tokens
- max: 21 tokens
- Samples:
anchor positive 技术总监技术和运营总监技术总监技术主管技术总监技术艺术总监 - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 2 tokens
- mean: 6.71 tokens
- max: 19 tokens
- min: 2 tokens
- mean: 7.69 tokens
- max: 19 tokens
- Samples:
anchor positive technical managerTechnischer Direktor für Bühne, Film und Fernsehenhead of technicaldirectora técnicahead of technical department技术艺术总监 - Loss:
GISTEmbedLosswith these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128gradient_accumulation_steps: 2num_train_epochs: 5warmup_ratio: 0.05log_on_each_node: Falsefp16: Truedataloader_num_workers: 4ddp_find_unused_parameters: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Falselogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Trueddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|---|---|---|---|---|---|---|---|---|---|
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.7437 |
| 0.0082 | 1 | 4.3088 | - | - | - | - | - | - | - |
| 0.8230 | 100 | 1.9026 | - | - | - | - | - | - | - |
| 1.6502 | 200 | 0.9336 | 0.8024 | 0.6703 | 0.6109 | 0.7695 | 0.7914 | 0.7594 | 0.8136 |
| 2.4774 | 300 | 0.161 | - | - | - | - | - | - | - |
| 3.3045 | 400 | 0.1398 | 0.8039 | 0.6717 | 0.6092 | 0.7697 | 0.8012 | 0.7696 | 0.8187 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}