pj-mathematician's picture
Add files using upload-large-folder tool
8fd808f verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:124788
  - loss:GISTEmbedLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
  - source_sentence: 其他机械、设备和有形货物租赁服务代表
    sentences:
      - 其他机械和设备租赁服务工作人员
      - 电子和电信设备及零部件物流经理
      - 工业主厨
  - source_sentence: 公交车司机
    sentences:
      - 表演灯光设计师
      - 乙烯基地板安装工
      - 国际巴士司机
  - source_sentence: online communication manager
    sentences:
      - trades union official
      - social media manager
      - budget manager
  - source_sentence: Projektmanagerin
    sentences:
      - Projektmanager/Projektmanagerin
      - Category-Manager
      - Infanterist
  - source_sentence: Volksvertreter
    sentences:
      - Parlamentarier
      - Oberbürgermeister
      - Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@20
  - cosine_accuracy@50
  - cosine_accuracy@100
  - cosine_accuracy@150
  - cosine_accuracy@200
  - cosine_precision@1
  - cosine_precision@20
  - cosine_precision@50
  - cosine_precision@100
  - cosine_precision@150
  - cosine_precision@200
  - cosine_recall@1
  - cosine_recall@20
  - cosine_recall@50
  - cosine_recall@100
  - cosine_recall@150
  - cosine_recall@200
  - cosine_ndcg@1
  - cosine_ndcg@20
  - cosine_ndcg@50
  - cosine_ndcg@100
  - cosine_ndcg@150
  - cosine_ndcg@200
  - cosine_mrr@1
  - cosine_mrr@20
  - cosine_mrr@50
  - cosine_mrr@100
  - cosine_mrr@150
  - cosine_mrr@200
  - cosine_map@1
  - cosine_map@20
  - cosine_map@50
  - cosine_map@100
  - cosine_map@150
  - cosine_map@200
  - cosine_map@500
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full en
          type: full_en
        metrics:
          - type: cosine_accuracy@1
            value: 0.6666666666666666
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9904761904761905
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9904761904761905
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9904761904761905
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9904761904761905
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9904761904761905
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6666666666666666
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5147619047619048
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.31999999999999995
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.19047619047619047
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.1361904761904762
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.10542857142857143
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.06854687410617222
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.5491240579458434
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.7553654907661455
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.8503209224897438
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.8994749092946579
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.9207884118691805
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6666666666666666
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6952098522285352
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.7229572913271685
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7732532874348539
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7947334799125039
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.8038564389556094
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6666666666666666
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.8182539682539683
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.8182539682539683
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.8182539682539683
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.8182539682539683
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.8182539682539683
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6666666666666666
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.5566401101002375
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.55344017265156
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.5852249415484134
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.5943042662925763
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.5975837437975446
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.6015742986218369
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full es
          type: full_es
        metrics:
          - type: cosine_accuracy@1
            value: 0.12432432432432433
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 1
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 1
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 1
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 1
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 1
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.12432432432432433
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.575945945945946
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.3923243243243244
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.2565945945945946
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.19282882882882882
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.1527837837837838
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.0036138931714884822
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.3852888120551914
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.5659574514538841
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.6898678629281393
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.7540209165372845
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.7858170054407897
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.12432432432432433
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6168674053047035
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5913690595071309
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.62350509928888
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.6556716735369459
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.6716557949894583
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.12432432432432433
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.5581081081081081
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.5581081081081081
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.5581081081081081
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.5581081081081081
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.5581081081081081
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.12432432432432433
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.48407152706202555
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.43043374125481026
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.43735327570764515
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.45269435912524697
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.45930097680668164
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.47204219228541466
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full de
          type: full_de
        metrics:
          - type: cosine_accuracy@1
            value: 0.2955665024630542
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9753694581280788
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9852216748768473
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9901477832512315
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9901477832512315
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9901477832512315
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.2955665024630542
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.5103448275862069
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.36935960591133016
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.23965517241379314
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.1807881773399015
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.1461576354679803
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.01108543831680986
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.3207974783481294
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.5042046446720455
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.6172666777909689
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.6848138831682932
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.7253195006357535
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.2955665024630542
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.537849085734973
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.5288037060639387
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.5551941695921919
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.5887611959940118
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.6092219717029682
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.2955665024630542
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.5164773875147672
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.5167647438366063
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.5168213657719442
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.5168213657719442
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.5168213657719442
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.2955665024630542
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.398398563122481
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.36032758502543594
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.3632259128424842
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.37822275477623696
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.3863148456840816
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.399227009561676
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: full zh
          type: full_zh
        metrics:
          - type: cosine_accuracy@1
            value: 0.6796116504854369
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9805825242718447
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9902912621359223
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9902912621359223
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9902912621359223
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9902912621359223
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6796116504854369
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.488349514563107
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.29631067961165053
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.17883495145631062
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.12776699029126212
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.09990291262135924
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.06931865009287731
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.5250914458143515
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.7082715439925011
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.8169166539243944
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.8613232254521018
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.8898175710074696
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6796116504854369
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.6680745295820606
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.6856578240865067
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7378907298421352
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7576651805692517
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7696718049970358
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6796116504854369
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.8158576051779936
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.816279724215562
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.816279724215562
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.816279724215562
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.816279724215562
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6796116504854369
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.522177160195635
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.5082601209392789
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.5371705298206915
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.5454012672534121
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.5494570875591636
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.5542116087189223
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix es
          type: mix_es
        metrics:
          - type: cosine_accuracy@1
            value: 0.7087883515340614
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9552782111284451
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9802392095683827
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9901196047841914
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9937597503900156
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9958398335933437
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.7087883515340614
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.12158086323452937
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.05122204888195529
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.026125845033801356
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.017548968625411682
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.013239729589183572
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.2737959042171211
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.8990032934650719
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.9459438377535101
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.9650979372508233
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.9731582596637198
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.979086496793205
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.7087883515340614
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.7814741332820433
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.7944033394497885
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7986024294603647
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.8001222520801115
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.801183843730514
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.7087883515340614
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.7804158804359833
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.7812547046826683
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.7813961782842836
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7814280971923943
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7814392363829243
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.7087883515340614
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.7070596364024803
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.7106867578203881
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.7112928928384499
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.7114314004578745
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.711504950521157
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.7116431478000537
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix de
          type: mix_de
        metrics:
          - type: cosine_accuracy@1
            value: 0.6484659386375455
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9323972958918356
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.968278731149246
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.984919396775871
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9885595423816953
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9937597503900156
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.6484659386375455
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.12093083723348932
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.05140925637025482
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.02647425897035882
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.017892182353960822
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.013530941237649509
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.2435517420696828
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.87873114924597
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.9319899462645173
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.9596117178020455
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.9718322066215982
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.9799791991679667
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.6484659386375455
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.7448150588358
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.7595232400510039
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.7656851368194345
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.7681576326024331
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.7696474672652458
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.6484659386375455
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.7323691045739125
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.733538875120878
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.733776247038599
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.7338087409764548
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.7338398642058079
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.6484659386375455
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.6646138211839377
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.6683657128313888
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.6692634410264182
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.669518875077899
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.6696171599377958
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.6697127210085475
            name: Cosine Map@500
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: mix zh
          type: mix_zh
        metrics:
          - type: cosine_accuracy@1
            value: 0.7667014613778705
            name: Cosine Accuracy@1
          - type: cosine_accuracy@20
            value: 0.9843423799582464
            name: Cosine Accuracy@20
          - type: cosine_accuracy@50
            value: 0.9932150313152401
            name: Cosine Accuracy@50
          - type: cosine_accuracy@100
            value: 0.9958246346555324
            name: Cosine Accuracy@100
          - type: cosine_accuracy@150
            value: 0.9973903966597077
            name: Cosine Accuracy@150
          - type: cosine_accuracy@200
            value: 0.9979123173277662
            name: Cosine Accuracy@200
          - type: cosine_precision@1
            value: 0.7667014613778705
            name: Cosine Precision@1
          - type: cosine_precision@20
            value: 0.13870041753653445
            name: Cosine Precision@20
          - type: cosine_precision@50
            value: 0.05810020876826725
            name: Cosine Precision@50
          - type: cosine_precision@100
            value: 0.029598121085595
            name: Cosine Precision@100
          - type: cosine_precision@150
            value: 0.01986778009742519
            name: Cosine Precision@150
          - type: cosine_precision@200
            value: 0.014945198329853866
            name: Cosine Precision@200
          - type: cosine_recall@1
            value: 0.25692041952480366
            name: Cosine Recall@1
          - type: cosine_recall@20
            value: 0.9156576200417536
            name: Cosine Recall@20
          - type: cosine_recall@50
            value: 0.9582637439109255
            name: Cosine Recall@50
          - type: cosine_recall@100
            value: 0.9765483646485734
            name: Cosine Recall@100
          - type: cosine_recall@150
            value: 0.9833768267223383
            name: Cosine Recall@150
          - type: cosine_recall@200
            value: 0.986464857341684
            name: Cosine Recall@200
          - type: cosine_ndcg@1
            value: 0.7667014613778705
            name: Cosine Ndcg@1
          - type: cosine_ndcg@20
            value: 0.8002168358295473
            name: Cosine Ndcg@20
          - type: cosine_ndcg@50
            value: 0.8125113081884888
            name: Cosine Ndcg@50
          - type: cosine_ndcg@100
            value: 0.8167350090334409
            name: Cosine Ndcg@100
          - type: cosine_ndcg@150
            value: 0.8181122471507385
            name: Cosine Ndcg@150
          - type: cosine_ndcg@200
            value: 0.8186874070081017
            name: Cosine Ndcg@200
          - type: cosine_mrr@1
            value: 0.7667014613778705
            name: Cosine Mrr@1
          - type: cosine_mrr@20
            value: 0.8421752732824312
            name: Cosine Mrr@20
          - type: cosine_mrr@50
            value: 0.8424954415974232
            name: Cosine Mrr@50
          - type: cosine_mrr@100
            value: 0.8425358910333786
            name: Cosine Mrr@100
          - type: cosine_mrr@150
            value: 0.8425483391786986
            name: Cosine Mrr@150
          - type: cosine_mrr@200
            value: 0.8425515411459873
            name: Cosine Mrr@200
          - type: cosine_map@1
            value: 0.7667014613778705
            name: Cosine Map@1
          - type: cosine_map@20
            value: 0.7007206423896271
            name: Cosine Map@20
          - type: cosine_map@50
            value: 0.7046277360194696
            name: Cosine Map@50
          - type: cosine_map@100
            value: 0.7053668771050886
            name: Cosine Map@100
          - type: cosine_map@150
            value: 0.7055166914145262
            name: Cosine Map@150
          - type: cosine_map@200
            value: 0.7055658329670217
            name: Cosine Map@200
          - type: cosine_map@500
            value: 0.7056512281794008
            name: Cosine Map@500

Job - Job matching Alibaba-NLP/gte-multilingual-base (v2)

Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-multilingual-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • full_en
    • full_de
    • full_es
    • full_zh
    • mix

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v2")
# Run inference
sentences = [
    'Volksvertreter',
    'Parlamentarier',
    'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric full_en full_es full_de full_zh mix_es mix_de mix_zh
cosine_accuracy@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_accuracy@20 0.9905 1.0 0.9754 0.9806 0.9553 0.9324 0.9843
cosine_accuracy@50 0.9905 1.0 0.9852 0.9903 0.9802 0.9683 0.9932
cosine_accuracy@100 0.9905 1.0 0.9901 0.9903 0.9901 0.9849 0.9958
cosine_accuracy@150 0.9905 1.0 0.9901 0.9903 0.9938 0.9886 0.9974
cosine_accuracy@200 0.9905 1.0 0.9901 0.9903 0.9958 0.9938 0.9979
cosine_precision@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_precision@20 0.5148 0.5759 0.5103 0.4883 0.1216 0.1209 0.1387
cosine_precision@50 0.32 0.3923 0.3694 0.2963 0.0512 0.0514 0.0581
cosine_precision@100 0.1905 0.2566 0.2397 0.1788 0.0261 0.0265 0.0296
cosine_precision@150 0.1362 0.1928 0.1808 0.1278 0.0175 0.0179 0.0199
cosine_precision@200 0.1054 0.1528 0.1462 0.0999 0.0132 0.0135 0.0149
cosine_recall@1 0.0685 0.0036 0.0111 0.0693 0.2738 0.2436 0.2569
cosine_recall@20 0.5491 0.3853 0.3208 0.5251 0.899 0.8787 0.9157
cosine_recall@50 0.7554 0.566 0.5042 0.7083 0.9459 0.932 0.9583
cosine_recall@100 0.8503 0.6899 0.6173 0.8169 0.9651 0.9596 0.9765
cosine_recall@150 0.8995 0.754 0.6848 0.8613 0.9732 0.9718 0.9834
cosine_recall@200 0.9208 0.7858 0.7253 0.8898 0.9791 0.98 0.9865
cosine_ndcg@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_ndcg@20 0.6952 0.6169 0.5378 0.6681 0.7815 0.7448 0.8002
cosine_ndcg@50 0.723 0.5914 0.5288 0.6857 0.7944 0.7595 0.8125
cosine_ndcg@100 0.7733 0.6235 0.5552 0.7379 0.7986 0.7657 0.8167
cosine_ndcg@150 0.7947 0.6557 0.5888 0.7577 0.8001 0.7682 0.8181
cosine_ndcg@200 0.8039 0.6717 0.6092 0.7697 0.8012 0.7696 0.8187
cosine_mrr@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_mrr@20 0.8183 0.5581 0.5165 0.8159 0.7804 0.7324 0.8422
cosine_mrr@50 0.8183 0.5581 0.5168 0.8163 0.7813 0.7335 0.8425
cosine_mrr@100 0.8183 0.5581 0.5168 0.8163 0.7814 0.7338 0.8425
cosine_mrr@150 0.8183 0.5581 0.5168 0.8163 0.7814 0.7338 0.8425
cosine_mrr@200 0.8183 0.5581 0.5168 0.8163 0.7814 0.7338 0.8426
cosine_map@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_map@20 0.5566 0.4841 0.3984 0.5222 0.7071 0.6646 0.7007
cosine_map@50 0.5534 0.4304 0.3603 0.5083 0.7107 0.6684 0.7046
cosine_map@100 0.5852 0.4374 0.3632 0.5372 0.7113 0.6693 0.7054
cosine_map@150 0.5943 0.4527 0.3782 0.5454 0.7114 0.6695 0.7055
cosine_map@200 0.5976 0.4593 0.3863 0.5495 0.7115 0.6696 0.7056
cosine_map@500 0.6016 0.472 0.3992 0.5542 0.7116 0.6697 0.7057

Training Details

Training Datasets

full_en

full_en

  • Dataset: full_en
  • Size: 28,880 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 5.68 tokens
    • max: 11 tokens
    • min: 3 tokens
    • mean: 5.76 tokens
    • max: 12 tokens
  • Samples:
    anchor positive
    air commodore flight lieutenant
    command and control officer flight officer
    air commodore command and control officer
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_de

full_de

  • Dataset: full_de
  • Size: 23,023 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 7.99 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 8.19 tokens
    • max: 30 tokens
  • Samples:
    anchor positive
    Staffelkommandantin Kommodore
    Luftwaffenoffizierin Luftwaffenoffizier/Luftwaffenoffizierin
    Staffelkommandantin Luftwaffenoffizierin
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_es

full_es

  • Dataset: full_es
  • Size: 20,724 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 9.13 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 8.84 tokens
    • max: 32 tokens
  • Samples:
    anchor positive
    jefe de escuadrón instructor
    comandante de aeronave instructor de simulador
    instructor oficial del Ejército del Aire
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_zh

full_zh

  • Dataset: full_zh
  • Size: 30,401 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 7.15 tokens
    • max: 14 tokens
    • min: 5 tokens
    • mean: 7.46 tokens
    • max: 21 tokens
  • Samples:
    anchor positive
    技术总监 技术和运营总监
    技术总监 技术主管
    技术总监 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
mix

mix

  • Dataset: mix
  • Size: 21,760 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 2 tokens
    • mean: 6.71 tokens
    • max: 19 tokens
    • min: 2 tokens
    • mean: 7.69 tokens
    • max: 19 tokens
  • Samples:
    anchor positive
    technical manager Technischer Direktor für Bühne, Film und Fernsehen
    head of technical directora técnica
    head of technical department 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 2
  • num_train_epochs: 5
  • warmup_ratio: 0.05
  • log_on_each_node: False
  • fp16: True
  • dataloader_num_workers: 4
  • ddp_find_unused_parameters: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: False
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: True
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss full_en_cosine_ndcg@200 full_es_cosine_ndcg@200 full_de_cosine_ndcg@200 full_zh_cosine_ndcg@200 mix_es_cosine_ndcg@200 mix_de_cosine_ndcg@200 mix_zh_cosine_ndcg@200
-1 -1 - 0.7447 0.6125 0.5378 0.7240 0.7029 0.6345 0.7437
0.0082 1 4.3088 - - - - - - -
0.8230 100 1.9026 - - - - - - -
1.6502 200 0.9336 0.8024 0.6703 0.6109 0.7695 0.7914 0.7594 0.8136
2.4774 300 0.161 - - - - - - -
3.3045 400 0.1398 0.8039 0.6717 0.6092 0.7697 0.8012 0.7696 0.8187

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}